Polish topologies for graph products of cyclic groups

by Paolini and Shelah. [PaSh:1115]

We give a complete characterization of the graph products of cyclic groups admitting a Polish group topology, and show that they are all realizable as the group of automorphisms of a countable structure. In particular, we characterize the right-angled Coxeter groups (resp. Artin groups) admitting a Polish group topology. This generalizes results from Shelah and Paolini-Shelah.


Back to the list of publications