### The universality spectrum of stable unsuperstable theories

by Kojman and Shelah. [KjSh:447]

Annals Pure and Applied Logic, 1992

It is shown that if T is stable unsuperstable, and
aleph_1< lambda =cf(lambda)< 2^{aleph_0}, or 2^{aleph_0}
< mu^+< lambda =cf(lambda)< mu^{aleph_0} then T has no
universal model in cardinality lambda, and if e.g. aleph_omega
< 2^{aleph_0} then T has no universal model in
aleph_omega . These results are generalized to kappa =cf(kappa)
< kappa (T) in the place of aleph_0 . Also: if there is a
universal model in lambda >|T|, T stable and kappa <
kappa (T) then there is a universal tree of height kappa +1 in
cardinality lambda .

Back to the list of publications