Toward classifying unstable theories

by Shelah. [Sh:500]
Annals Pure and Applied Logic, 1996
The paper deals with two issues: the existence of universal models of a theory T and related properties when cardinal arithmetic does not give this existence offhand. In the first section we prove that simple theories (e.g., theories without the tree property, a class properly containing the stable theories) behaves ``better'' than theories with the strict order property, by criterion from [Sh:457]. In the second section we introduce properties SOP_n such that the strict order property implies SOP_{n+1}, which implies SOP_n, which in turn implies the tree property. Now SOP_4 already implies non-existence of universal models in cases where earlier the strict order property was needed, and SOP_3 implies maximality in the Keisler order, again improving an earlier result which had used the strict order property.

Back to the list of publications