Joint papers of Komjath and Shelah

KoSh:303
Komjath+Shelah, Forcing constructions for uncountably chromatic graphs -- J Symbolic Logic 53 (1988) 696-707
KoSh:346 1994-01-31 [pdf] [ps] [abstract] [arXiv:math.LO/9402213]
Komjath+Shelah, On Taylor's Problem -- Acta Math Hungarica 70 (1996) 217-225
KoSh:414
Komjath+Shelah, A consistent partition theorem for infinite graphs -- Acta Math Hungarica 61 (1993) 115-120
KoSh:431
Komjath+Shelah, A note on a set-mapping problem of Hajnal and Mate -- Periodica Math Hungarica 28 (1994) 39-42
KoSh:492 1993-08-22 [pdf] [ps] [abstract] [arXiv:math.LO/9308221]
Komjath+Shelah, Universal graphs without large cliques -- J Combinatorial Theory. Ser. B 63 (1995) 125-135
KoSh:502 1993-08-27 [pdf] [ps] [abstract] [arXiv:math.LO/9308222]
Komjath+Shelah, On uniformly antisymmetric functions -- Real Analysis Exchange 19 (1993-1994) 218-225
KoSh:516 1995-05-12 [pdf] [ps] [abstract] [arXiv:math.LO/9505216]
Komjath+Shelah, Coloring finite subsets of uncountable sets -- Proc American Math Soc 124 (1996) 3501-3505
KoSh:645 1998-07-23 [pdf] [ps] [abstract] [arXiv:math.LO/9807182]
Komjath+Shelah, Two consistency results on set mappings -- J Symbolic Logic 65 (2000) 333-338
KoSh:788 2002-05-24 [pdf] [ps] [abstract] [arXiv:math.LO/0212064]
Komjath+Shelah, Finite subgraphs of uncountably chromatic graphs -- J Graph Theory. 49 (2005) 28-38
KoSh:796 2002-06-13 [pdf] [ps] [abstract] [arXiv:math.LO/0212022]
Komjath+Shelah, A partition theorem for scattered order types -- Combinatorics Probability and Computing 12 (2003, no.5-6) 621-626
KoSh:1080 [abstract]
Komjath+Shelah, Consistently $\mathcal P (\omega_1)$ is the union of less than $2^{\aleph_1}$ strongly independent families


Back to theList of coauthors
Back to Shelah's Archive