ZF+DC+AX₄
SH1005

SAHARON SHELAH

Abstract. We consider mainly the following version of set theory: “ZF +
DC and for every λ, λ^{ℵ₀} is well ordered”, our thesis is that this is a reasonable
set theory, e.g. on the one hand it is much weaker than full choice, and on the
other hand much can be said or at least this is what the present work tries to
indicate. In particular, we prove that for a sequence δ = ⟨δₛ : s ∈ Y⟩, cf(δₛ)
large enough compared to Y, we can prove the pcf theorem with minor changes
(in particular, using true cofinalities not the pseudo ones). We then deduce the
existence of covering numbers and define and prove existence of true successor
cardinal. Using this we give some diagonalization arguments (more specifically
some black boxes and consequences) on Abelian groups, chosen as a character-
istic case. We end by showing that some such consequences hold even in
ZF above.

Date: November 1, 2014.

2010 Mathematics Subject Classification. Primary 03E04, 03E25; Secondary:
Key words and phrases. set theory, weak axiom of choice, pcf, abelian groups, group. References to outside papers like [Sh:835, 2.13=Ls.2] means to 2.13 where s.2 is the label used there, so
intended only to help the author if more is added to [Sh:835].

The author thanks Alice Leonhardt for the beautiful typing. Publication 1005. First typed
August 12, 2010.

1
Anotated Content

§0 Introduction, (labels z -), pg.4

§(0A) Background and results, pg.4

[We investigate ZF+DC+Ax₄ asserting it is quite strong, not like the chaos usually related to universes without choices. We consider using weaker versions and relatives of Ax₄ but not in the Anotated Content.]

§(0B) Preliminaries, pg.6

[We define Ax₄, Ax₄, prove that a suitable closure operation cl exists, and define “δ-uniformly definable”. We also define “η-eub”, tcf and A ≤_qu B.]

§1 The pcf theorem again, (labels c-), pg.13

[The version of the pcf theorem proved here is quite strong. Assume δ = ⟨δₜ : t ∈ T⟩, cf(δₜ) large enough compared to T; we do not demand “δₜ regular cardinals”. We prove first the existence of scales for ℵ₁-complete filters; note that we have said “for any T” in spite of our having Ax₄ (or less) only. Then we prove that we have ⟨⟨Dₜ, Aₜ/Dₜ, ℓₜ⟩ : t ≤ tₜ⟩ as usual (so Dₜ not necessarily ℵ₁-complete) but
(a) ℓₜ(ℓₜ) is not necessarily a regular cardinal,
(b) the cofinality of ℓₜ(ℓₜ) is not necessarily increasing
(c) as generators, for the time being we have only Aₜ/Dₜ not necessarily Aₜ.

However, here there is a gain compared to the ZFC version because of a new phenomena: the results apply also when many (even all) δₜ have small cofinality but δ does not; expressed by cf−id <θ(δ). Of course, an additional gain is that the objects above are definable (from a well ordering of some [λ]^{ℵ₀}).]

§2 More on the pcf theorem, pg.23

§(2A) When Cofinalities are smaller, pg.23

[A drawback of §1 is that we need cf−id<θ(δ) where θ > hrtg(℘(℘(Y))). We weaken the assumption to Ax₄,∞,δ,κ with possibly κ > ℵ₁. If Y is countable we can weaken the large cofinality demand to > ℵ₁. Moreover, there is a pcf analysis of (Πδ,cf−id<θ(δ)) iff there is a well orderable F ⊆ Πδ which is <id−cf<θ(Πδ) cofinal, and we can choose generators Aₜ under reasonable conditions.]

§(2B) Elaborations, pg.31

[We revisit some points. We give a sharper version of the result of [Sh:835] that "λ can be divided to few (really X₂ = "(Fil_{ℵ₁}(Y)) well ordered subsets (in Theorem 2.19). We also reconsider the eub-existence (in 2.18), existence of ⟨eₐ : a⟩ and existence of u with a minimal cl(u) such that u includes a club of δₜ for s ∈ T (in 2.17). We finish getting essential equality in hrtg("μ), wilog ("μ) and so called o-Depth^₀("μ) in 2.21. See 2.18, 2.19, 2.22.]

§(2C) True successor cardinal, pg.36
[p16] See 2.26. We say that λ is true successor cardinal when $\lambda = \mu^+$ and there is $f = \langle f_\alpha : \alpha \in [\mu, \lambda), f_\alpha \text{ a one-to-one function from } \mu \text{ onto } \alpha \rangle$. We investigate this notion in particular proving many successor cardinals are true successor cardinals.]

§(2D) Covering numbers, pg. 39
[We prove that covering number exists. Note that we can present the results: if $L[X]$ contain $[\lambda^*]^{\aleph_0}$ then “enough below λ^*”, $L[X]$ is closed enough to V by covering lemmas, singulars being true successor, etc.]

§3 Black boxes, pg. 42
[Normally theorems using diagonalization used choice quite heavily. We show that at least for one way (one kind of black boxes), Ax$_4$ suffice.]

§(3A) Existence proof, pg. 42
[We show that using ZF + Ax$_4$, we can prove a Black Box which has been used not a few times, e.g. in the book of Eklof-Mekler [EM02] and in the book of Göbel-Trlifaj [GT12]. We then as an example prove one such theorem: the existence of an \aleph_1-free Abelian group with trivial dual.]

§(3B) Black boxes with no choice, pg. 49
[Here we go in another direction: we try to build examples on sets which are not well ordered, working in ZF only.]
§ 0. Introduction

§ 0(A). Background and Results.

Everyone knows that the issue of weakening AC, the axiom of choice issue, is
dead, settled, as naturally the axiom of choice is true, and its weakenings lead
to bizarre universes on which there is not much to be proved, or assuming AC is
irrelevant (as in inner models).

The works on determinacy are not a real exception: it e.g. replace Borel sets
and projective sets by sets in $L[\mathbb{R}]$, so have much to say on this inner model, for
which the only choice missing is a well ordering of $\mathcal{P}(\mathbb{N})$. In [Sh:835] we suggest
to consider several related axioms, the strongest of them being Ax_4, assuming $\text{ZF}+
\text{DC}$ of course. It is in a sense an anti-thesis to considering $L[\mathbb{R}]$: it says we can
well order (not all the subsets just) the countable subsets of any ordinal. This was
continued in [Sh:937], [Sh:955] and in Larson-Shelah [LrSh:925]. We may wonder
how to get natural models of $\text{ZF} + \text{DC} + \text{Ax}_4$. Such a natural model is gotten
starting with $V \models \text{G.C.H.}$ and forcing by the choiceless version of Easton forcing
except for \aleph_0.

While [Sh:497] claims to prove that “the theory of pcf with weak choice is non-
empty”, [Sh:835] seems to us the true beginning of such set theory, proving (in
$\text{ZFC} + \text{DC} + \text{Ax}_4$ or so): there is a class of successor regular cardinals, and for
any set Y, $\lambda \in \text{pcf}(\lambda)$ can, in a suitable sense, be decomposed to “few” well order sets (see
[Sh:835, 0.3] and more here in 2.19).

Much attention there was given to trying to get the results from weaker relatives
of Ax_4. A major aim of this work is to try to justify:

\begin{enumerate}
\item[(y4)] Thesis 0.1. $\text{ZF} + \text{DC} + \text{Ax}_4$ is a reasonable set theory, for which much of combinatorial set theory can be generalized, but many times in a challenging way and
even discover new phenomena.
\end{enumerate}

In particular we consider diagonalization arguments, including in ZF alone. Returning
to the original issue, i.e. the position that “set theory with weak choice is
dead”, which we had wholeheartedly supported, the paper’s position here is that:

\begin{enumerate}
\item[(a)] AC is obviously true
\item[(b)] general set theory in $\text{ZF} + \text{DC} + \text{Ax}_4$ is a worthwhile endeavor
\item[(c)] an important reason for not adopting $\text{ZF} + \text{DC}$ was the lack of something
like (b), hence intellectual honesty urges you to investigate this direction
\item[(d)] this is just a way to look at strengthening existence results to existence by
nicely definable sets.
\end{enumerate}

Let us try to explain the results.

We assume $\text{ZF} + \text{DC}$. Consider a sequence $\delta = \langle \delta_s : s \in Y \rangle$ of limit ordinals,
when can we get a cofinal $<_I$-increasing sequence in $(\prod I \delta, <_I)$ for I on ideal on Y?
When can we get a parallel to the pcf-theorem?

In [Sh:938, §5],[Sh:955] we use $\text{AC}_{\mathcal{P}(Y)}$ (and DC) to deal with true pseudo cofinality, but here instead we continue [Sh:835] assuming Ax_4. In [Sh:835, 1.8=L6.1]
we generalize the pcf-theorem (i.e. existence of $\langle b_{\alpha, \theta}, f_{\alpha, \theta} : \theta \in \text{pcf}(\alpha) \rangle$) for countable index set Y. What about large Y, with each δ_s having cofinality large compared
\{c13\} to \(Y\)? Here first we deal with \(D\) an \(\aleph_1\)-complete filter in \(1.5\); this continues the ideas of [Sh:835, 1.2=Lr.2]. We then can\(^1\) choose \((A_\zeta,J_\zeta,\hat{f} : \zeta < \varepsilon(\ast))\). \(J_\zeta\) the \(\aleph_1\)-complete ideal on \(Y\) generated by \(\{A_\zeta : \zeta < \varepsilon\}\), \(\hat{f}\) cofinal in \((\Pi(\hat{\delta}|A_\zeta),<_I)\). Can we waive “\(\aleph_1\)-complete”? For this in \(1.7\) we combine the above with a generalization of [Sh:835, 1.6=Lp.4], i.e. above \(I_\varepsilon\) is the ideal on \(Y\) generated by \(\{A_\zeta : \zeta < \varepsilon\}\). If \(I_\varepsilon\) is not \(\aleph_1\)-complete we deal essentially with all quotients of \(I_\varepsilon\) which are ideals on countable sets.

But in Theorem 1.7, what about \(\Pi(\hat{\delta})\) when \(s \in Y \implies cf(\delta_s)\) small? With choice, we cannot generalize the pcf theorem\(^2\), but here, even if each \(\delta_s\) has countable cofinality this is not necessarily the case. This motivates the definition of the ideal \(cf(id_{<\varepsilon}(\hat{\delta}))\) noting that in general it may well be that \(s \in Y \implies cf(\delta_s) = \aleph_0\) but \(cf(\Pi(\hat{\delta}))\) is large.

In our context, the set “\(\lambda\) does not in general have a cardinality, i.e. its power is not a cardinal, i.e. an \(\aleph\), equivalently the set is not well orderable. But surprisingly, by Theorem 2.34 in §(2D), relevant covering numbers exist, i.e. \(cov(\lambda,\theta_4(\kappa),\kappa,\sigma)\) is a well defined \(\aleph\) when the cardinality of the sets by which we cover \((<\theta_4(\kappa))\) is large enough compared to the ones we cover \((<\kappa)\). This is an additional witness for the covering number’s naturality. This follows by moreover proving when \(\kappa = \sigma = \aleph_1\), there is a cofinal subset which is well orderable. In particular here it gives us a way to circumvent the non-existence of well orders of “\(\lambda\)”.

In §(2A), §(2B) we deal with relatives of §1: pcf system, cub and more. Also in 2.19 we give an improvement of the result of [Sh:835, §1].

Another issue is the “successor of a singular cardinal is regular” in §(2C). Recall that the consistency strength of two successive singular cardinal is large, but not for “a successor cardinal is singular”. So a posteriori (i.e. after [Sh:835, §1]) it is natural to hope that if \(\mu\) is singular large enough then \(\mu^+\) is regular. In [Sh:835, 2.13=Ls.2] we show that for many \(\mu\) the answer is yes; here we get a stronger conclusion: \(\mu^+\) is a true successor cardinal; in fact \(|\alpha < \mu \implies |\alpha|^\aleph_0 < \mu|\) suffice; see 2.28(2).

Many proofs rely on diagonalizing so seemingly inherently use strong choice. Still we succeed to save some, see §3. As a test problem, we deal with constructing Abelian groups and with Black Boxes. We also note that [Sh:460] applies even in \(ZF + AC\) in 0.19.

A natural question is:

\(\ast\) assume \(cf(\mu) = \aleph_0\), \((\forall \alpha < \mu)|\alpha|^\aleph_0 < \mu)\)

(a) if \(\mu < \lambda < \mu^0\) and \(\lambda\) is singular, is \(\lambda^+\) a true successor? or at least \(b)\) if \(\mu < \lambda < pp(\mu)\) and \(\lambda\) is singular is \(\lambda^+\) is regular?

We may try to use \(cf\) which is only \(\aleph_1\)-well founded, hence have to use DC\(_{\aleph_1}\).

Why do we concentrate on \(\ast\)? We may try to prove that if \(\mu > 2^{\aleph_0}\) is singular then \(\lambda = \mu^+\) is regular improving [Sh:835, 2.13=Ls.2], where there are further restrictions on \(\mu\). A natural approach is letting \(\chi < \mu\) be minimal such that \(\chi^{\aleph_0} \geq \mu\), so \(\chi > 2^{\aleph_0}\), so as there we can find \(C_1 = \langle C_\alpha : \alpha \in S_{\geq \chi}\rangle, C_\alpha \subseteq \alpha = sup(C_\alpha)\) and \(|C_\alpha| < \chi\). But what about \(S_{\geq \chi}\)? Assume \(\lambda = pp(\chi)\) so we can find \(\langle \lambda_n : n < \omega \rangle,\)

\(^1\)We temporarily cheat a little, only \(A_\varepsilon/I_\varepsilon\) is defined.

\(^2\)Still by [Sh:506], in ZFC, we can deal with \((\Pi(\lambda,<_I))\) if \(\lambda_\varepsilon > \theta\) and a relative of “\(\mathcal{P}(\Pi)/I\) satisfies the \(\theta\)-c.c.” hold.
each λ_α is $< \chi$, J ideal on ω, tcf($\Pi \lambda_\alpha, < J$) = λ and $f = (f_\alpha : \alpha < \lambda)$ is $< J$-increasing cofinal in ($\Pi \lambda_\alpha, < J$). Without loss of generality cf(α) $> 2^{\aleph_0}$ $\Rightarrow f_\alpha$ a $< J$-elub of $f|\alpha$.

Another approach is to build an AD family $\mathcal{A} \subseteq [\lambda]^{\aleph_0}$ which induces a “good” function $cl_\mathcal{A}: \mathcal{P}(\lambda) \rightarrow \mathcal{P}(\lambda)$; where $cl_\mathcal{A}(u) = \bigcup\{A \in \mathcal{A} : A \cap u$ infinite\}, maybe let \mathcal{A}_0 be induced by f.

Naturally we may ask (and deal with some, as mentioned).

\{d15\} Question 0.2. 1) Can we bound $\hrtg(\mathcal{P}(\mu))$ for μ singular? (recall Gitik-Koepke [GK, pg.2]).
2) Can we deduce $\wlor(\nu, \mu) = \hrtg(\nu, \mu)$ when μ is singular large enough? Maybe see [Sh:F1303, Ld21].
3) In §1 we may replace θ by several θ_ℓ, defined by the proof (i.e. θ_ℓ is minimal satisfying some demands involving $\theta_0, \ldots, \theta_{\ell-1}$ and the pcf problem); but seemingly this does not make a serious gain, maybe see on this in [Sh:F1303, 5.2=Le4].
4) Can we generalize RGCH (see [Sh:460], [Sh:829, §1]), see 0.19, 2.35. Maybe see more in [Sh:F1438].

We thank the referee for checking the paper very carefully discovering many things which should be mended much above the call of duty.

\{p38\} § 0(B). Preliminaries.

Future work in ZF + DC.

\{z6\} Hypothesis 0.3. 1) We work in ZF + DC.
2) Usually we assume $\text{Ax}_{4, \theta}$, see Definition 0.4(5) relying on 0.5(3), 0.4(4), so a reader may assume it throughout; or even assume $\text{Ax}_{4, \star}$, see 0.5(2), (1). Many times we use weaker relatives so we try to mention the case of $\text{Ax}_{4, \lambda, \theta, \varnothing}$ actually used. So the case $\theta = \partial = \aleph_1$ means $\text{Ax}_{4, \lambda}$ holds and note Ax_{4} is stronger than Ax_{4, \aleph_1}.
3) So no such assumption means ZF + DC but still ∂ is a fixed cardinal $\geq \aleph_1$.

\{z4\} Definition 0.4. 1) $\hrtg(A) = \text{Min}\{\alpha : \text{there is no function from} \ A \ \text{onto} \ \alpha\}.$
2) $\wlor(A) = \text{Min}\{\alpha : \text{there is no one-to-one function from} \ A \ \text{into} \ A \ \text{or} \ \alpha = 0 \land A = \emptyset\}$ so $\wlor(A) \leq \hrtg(A)$.

\{z4\} Definition 0.5. 1) $\text{Ax}_{4, \star}$ means $[\lambda]^{\aleph_0}$ can be well ordered so λ^{\aleph_0} is a well defined cardinal.
2) Ax_{4} means $\text{Ax}_{4, \star}$ for every cardinality λ.
3) $\text{Ax}_{4, \lambda, \theta, \varnothing}$ means that $(\lambda \geq \partial \geq \theta \geq \aleph_1$ and): there is a witness \mathcal{I} which means:
 (a) $\mathcal{I} \subseteq ([\lambda]^{< \theta}, \subseteq)$
 (b) for every $u_1 \in [\lambda]^{< \theta}$ there is $u_2 \in \mathcal{I}$ such that $u_1 \subseteq u_2$
 (c) \mathcal{I} is well-orderable
 (d) for notational simplicity: \mathcal{I} of minimal cardinality.

3A) But we may use an ordinal β instead of λ above. So trivially $\text{Ax}_{4, \star} \Rightarrow \text{Ax}_{4, \lambda, \lambda, \varnothing, \varnothing}$ because we can choose $\mathcal{I} = [\lambda]^{\leq \aleph_0}$.

3B) If $\text{Ax}_{4, \lambda, \theta, \varnothing}$ then we let $\text{cov}(\lambda, \partial, \theta, 2)$ be the minimal $|\mathcal{I}|$ for \mathcal{I} as in 0.5(3); necessarily it is $< \wlor([\lambda]^{< \theta})$ which is $< \hrtg([\lambda]^{< \theta})$; so if $\neg \text{Ax}_{4, \lambda, \theta, \varnothing}$ then it is not well defined.

3C) We say $(\mathcal{I}, <_*)$ witness $\text{Ax}_{4, \lambda, \theta, \varnothing}$ when \mathcal{I} as in part (3) and $<_*$ is a well ordering of \mathcal{I}.
4) Let $Ax_{4,\lambda,\theta}$ mean $Ax_{4,\lambda,\theta,\aleph_1}$; note that even if $\theta = \aleph_1$, $Ax_{4,\lambda,\theta}$ is not Ax_4^4.
5) Let $Ax_{4,\theta}$ mean $Ax_{4,\lambda,\theta}$ for every λ, so $Ax_{4,\theta}$ is not the same as Ax_4^4.
6) We may write \leq_{θ} instead of θ^+, and writing an ordinal α instead of θ means $\text{otp}(u_1) < \alpha$ in clause (b) of part (3); similarly for the other parameters.

We try to make the paper reasonably self-contained. Still we assume knowledge of \[\text{Sh:835, §(0B)} \]

The preliminaries, in particular, recall:

\textbf{Claim 0.6.} 1) For every λ, θ such that $Ax_{4,\lambda,\theta}$ there is a function cl, moreover one which is (we may use α instead of λ) definable from $(\mathcal{I}_*, <_*)$ where $(\mathcal{I}_*, <_*)$ witness $Ax_{4,\lambda,\theta}$, see 0.5(3),(3B), even uniformly such that:

\begin{enumerate}
\item (a) $cl : \mathcal{P}(\lambda) \to \mathcal{P}(\lambda)$
\item (b) $u \subseteq cl(u) \subseteq \lambda$, (but we do not require $cl(cl(u)) = cl(u)$)
\item (c) $|cl(u)| < hrtg([u]^{\aleph_0} \times \theta)$, and if Ax_4 even $\leq [u]^{\aleph_0}$ for $u \subseteq \lambda$
\item (d) there is no sequence $\langle u_n : n < \omega \rangle$ such that $u_{n+1} \subseteq u_n \not\subseteq cl(u_{n+1})$.
\end{enumerate}

2) We can above replace $Ax_{4,\lambda,\theta}$ by: there is a well orderable $\mathcal{I}_* \subseteq [\lambda]^c_{<\theta}$ such that there is no $u \in [\lambda]^\aleph_0$ satisfying $v \subseteq \mathcal{I}_* \Rightarrow \aleph_0 > |v \cap u|$.

\textbf{Proof.} 1) Recall $\mathcal{I}_* \subseteq [\lambda]^{<\theta}$ and $u_1 \in [\lambda]^{\aleph_0}$ $\Rightarrow (\exists u_2 \in \mathcal{I}_*)(u_1 \subseteq u_2)$ and $<_*$ is a well ordering of \mathcal{I}_* and let $\langle w^*_i : i < \text{otp}(\mathcal{I}_*, <_*) \rangle$ list \mathcal{I}_* in $<_*$-increasing order; if Ax_4 we can use $\mathcal{I}_* = [\lambda]^\aleph_0$. For $v \in [\lambda]^{\aleph_0}$ let $i(v) = \text{i}(v, \mathcal{I}_*, <_*) = \min\{i : v \cap w^*_i \text{ is finite}\}$.

For $u \subseteq \lambda$ let $cl(u) = \bigcup \{w^*_i \mid \text{for some } v \in [u]^{\aleph_0} \text{ we have } i = i(v) \cup u \cup \{0\}$.

So clearly clauses (a), (b) of the conclusion hold.

For clause (c) define $F : [u]^{\aleph_0} \times \theta \to \lambda$ by $F(v, \alpha) = \text{the } \alpha\text{-th member of } w^*_i(v)$ when $\text{otp}(w^*_i(v)) > \alpha$, and 0 otherwise; clearly F is a function from $[u]^{\aleph_0} \times \theta \to \lambda$ and its range is included in $cl(u)$ and includes $cl(u) \setminus u$; we like F to be onto $cl(u)$, but clearly $u \setminus \text{Rang}(F)$ is finite, hence this last part can be corrected easily hence $cl(u)$ has cardinality $< hrtg([u]^{\aleph_0} \times \theta)$ so we are done with clause (c).

Lastly, to prove clause (d), toward contradiction assume $\bar{u} = \langle u_n : n < \omega \rangle$ and $u_{n+1} \subseteq u_n \not\subseteq cl(u_{n+1})$ for every n; by DC or just AC$_{\aleph_0}$ choose $\alpha = \langle \alpha_n : n < \omega \rangle$ such that $\alpha_n \in u_n \setminus cl(u_{n+1})$. Now let $v = \{\alpha_n : n < \omega \}$ and $i = i(v)$, so for every n, $v \setminus \{v \cap u_n\}$ is finite hence $i(v) = i(v \cap u_n)$ and let n be such that $v \cap w^*_i \subseteq \{\alpha_0, \ldots, \alpha_{n-1}\}$, so $\alpha_n \in w^*_i \setminus cl(u_{n+1})$, contradicting the choice of α_n.

2) Similarly but first for any infinite $v \subseteq \lambda$ let $i(v) = i(v, \mathcal{I}_*, <_*) := \min\{i : v \cap w^*_i \text{ is infinite}\}$. Second, $F(v, \alpha)$ is:

- the α-th member of $w^*_i(v)$ if $\alpha < \text{otp}(w^*_i(v))$
- 0 otherwise.

Third, note:

- if $u \subseteq \lambda$ then $u \setminus \{F(v, \alpha) : v \in [u]^{\aleph_0} \text{ and } \alpha < \theta\}$ is finite.

[Why? If not, let v be a subset of the difference of cardinality \aleph_0, (exist by our assumption), hence $\{F(v, \alpha) : \alpha < \lambda\}$ is not disjoint to v, contradiction.]

Fourth, in the end, instead of “let n be such that $v \setminus w^*_i \subseteq \{\alpha_0, \ldots, \alpha_{n-1}\}$” we choose n such that $\alpha_n \in w^*_i(v) \cap v$; possible as $w^*_i(v) \cap v = w^*_i(v) \cap \{\alpha_n : n < \omega\}$ is infinite and $n < \omega \Rightarrow i(v) = i(\{\alpha_n : k > n\})$.
Observation 0.7. 1) For any set \(Y \), if \(\mu \) a cardinal and \(\theta := \text{hrtg}(Y) \) then
\[\text{hrtg}(Y \times \mu) \leq (\theta + \mu)^+ \].

2) In 0.6 we can replace clause (c) by:

\[(c') \left| \mathcal{c}(u) \right| < \max\{\partial^+, \text{hrtg}(\{u\}^{\aleph_0})\} \].

Proof. 1) Assume \(F \) is a function from \(Y \times \mu \) onto an ordinal \(\gamma \).

For \(\beta < \mu \) let \(v_\beta = \{ F(y, \beta) : y \in Y \} \), so \(\langle v_\beta : \beta < \mu \rangle \) is a well defined sequence of subsets of the ordinal \(\gamma \) with union \(\gamma \), and clearly \(\beta < \mu \Rightarrow |v_\beta| < \text{hrtg}(Y) = \theta \).

Really we can use \(v'_\beta = v_\beta \setminus \{ v_\alpha : \alpha < \beta \} \), in this case clearly \(\langle v'_\beta : \beta < \mu \rangle \) is a partition of \(\gamma \). Hence easily \(|\gamma| = | \bigcup_{\beta < \mu} v_\beta | = | \bigcup_{\beta < \mu} v'_\beta | \leq \theta + \mu \), so the desired result follows.

2) Let \(\theta = \text{hrtg}(\{u\}^{\aleph_0}) \), if \(\theta \leq \partial \) then applying part (1), \(\text{hrtg}(\{u\}^{\aleph_0} \times \partial) \leq (\theta + \partial)^+ = \partial^+ \) so we are done. If \(\theta > \partial \), then \(\text{hrtg}(\{u\}^{\aleph_0} \times \partial) \leq \text{hrtg}(\{u\}^{\aleph_0} \times \{u\}^{\aleph_0}) \) and if \(|u| \geq \aleph_0 \) we have \(|\{u\}^{\aleph_0} \times \{u\}^{\aleph_0}| = |u|^{\aleph_0} \) hence we are done.

Lastly, if \(\neg(|u| \geq \aleph_0) \) then (as \(u \subseteq \lambda \)) necessarily \(u \) is finite and so \(\mathcal{c}(u) = u \cup \{0\} \) hence \(|\mathcal{c}(u)| < \partial \), so having covered all cases we are done. \(\square \).

Convention 0.8. Let “there is \(y \) satisfying \(\psi(y, a) \), \(\partial \)-uniformly definable (or uniformly \(\partial \)-definable) for \(a \in A \)” means that there is a formula \(\varphi(x, y, z) \) such that:

- for every \(\mu \) large enough if \(a \in A \) and \(\text{Ax}_{4, \mu, \partial} \) holds and \(<_* \) well orders some \(\mathcal{F}_* \subseteq [\mu]^\kappa_* \) as in 0.5(3) then (3\(\forall \beta \in A \)) then (\(\exists \beta \)) defines \(\varphi \).

1) Note that it follows that there is a definable function \(A \mapsto \mu_A \) in card such that above, \(\mu \geq \mu_A \) suffice.

2) Similarly with \((\partial, \theta) \)-uniformly definable we use \(\text{Ax}_{4, \partial, \theta} \) and \((\mu, \partial, \theta) \)-uniformly definable when we fix \(\mu \).

3) If the parameter \(\theta \) or \((\partial, \theta) \) or \((\mu, \partial, \theta) \) is clear we may omit it. We may not always remember to state this.

4) \(\delta \) denotes an ordinal, limit one if not said otherwise.

Definition 0.9. Let \(D \) be a filter on a set \(Y \).

1) For \(\delta \in \text{Ord} \) let \(\lambda = \text{tcf}(\Pi \delta, <_D) \) means that \((\Pi \delta, <_D) \) has true cofinality \(\lambda \), i.e. \(\lambda \) is a regular cardinal and there is a witness that is a \(<_D \)-increasing sequence \(\langle f_\alpha : \alpha < \lambda \rangle \) of members of \(\Pi \delta \) which is cofinal in \((\Pi \delta, <_D) \); but sometimes we allow \(\lambda \) to be an ordinal so not unique. (Why helpful? See part (2)).

2) We say that \(\bigwedge_{\delta \in I} \lambda_{\delta} = \text{tcf}(\Pi \delta_{\delta}, <_D) \) when \(\delta \in \text{Ord} \) for \(\delta \in I \) and there is a sequence \(\langle f^i_{\alpha} : \alpha < \lambda_i \rangle : i \in I \rangle \) such that \(\langle f^i_{\alpha} : \alpha < \lambda_i \rangle \) is as above for \(\lambda_i = \text{tcf}(\Pi \delta_{\delta}, <_D) \), but \(\lambda_i \) may be any ordinal hence is not unique; so \(\bigwedge_{\delta \in I} \lambda_{\delta} = \text{tcf}(\Pi \delta_{\delta}, <_D) \) and \(\lambda_{\delta} \in \langle f^i_{\alpha} : \alpha < \lambda \rangle \rangle \) has a different meaning.

3) Assume \(f = \langle f_{\alpha} : \alpha < \delta \rangle \) and \(\alpha < \delta \Rightarrow f_{\alpha} \in \text{Ord} \) and \(D \) is a filter on \(Y \). We say \(f \in \text{Ord} \) is a \(<_D \)-eub of \(f \) when:

\[(a) \alpha < \delta \Rightarrow f_{\alpha} \leq f \bmod D \]
\[(b) \text{if } g \in Y \text{ Ord and } (\forall \alpha \in Y)(g(s) < f(s) \lor g(s) = 0) \Rightarrow (\exists \alpha < \delta)(g \leq f_{\alpha} \bmod D) \].
\{z11\}

Definition 0.10. 1) Let \(Y \) be the set and let \(\kappa \) be an infinite cardinal.

\begin{itemize}
 \item[(a)] \(\text{Fil}_\kappa^1(Y) \) is the set of \(\kappa \)-complete filters on \(Y \), (so \(Y \) is defined from \(D \) as \(\cup\{X : X \in D\} \))
 \item[(b)] \(\text{Fil}_\kappa^2(Y) = \{(D_1, D_2) : D_1 \subseteq D_2 \text{ are } \kappa \text{-complete filters on } Y, (\emptyset \notin D_2, \text{ of course})\} \); in this context \(Z \in D \) means \(Z \in D_2 \)
 \item[(c)] \(\text{Fil}_\kappa^3(Y, \mu) = \{(D_1, D_2, h) : (D_1, D_2) \in \text{Fil}_\kappa^2(Y) \text{ and } h : Y \to \alpha \text{ for some } \alpha < \mu, \text{ if we omit } \mu \text{ we mean } \mu = \text{ hrtg}(\mathcal{P}(\mathbb{N}) \times \emptyset) \cup \omega, \text{ recalling 0.3} \}
 \item[(d)] \(\text{Fil}_\kappa^4(Y, \mu) = \{(D_1, D_2, h, Z) : (D_1, D_2, h) \in \text{Fil}_\kappa^3(Y, \mu) \text{ and } Z \in D_2\}; \text{ omitting } \mu \text{ means as above.} \)
\end{itemize}

2) For \(\eta \in \text{Fil}_\kappa^4(Y, \mu) \) let \(Y = Y^n = Y_\eta, \eta = (D_1^n, D_2^n, h^n, Z^n) = (D_1, D_2, h, Z) \); similarly for the others and let \(D^n = D[\eta] \) be \(D_1^n + Z^n \) recalling \(D + Z \) is the filter generated by \(D \cup \{Z\} \).

3) If \(\kappa = \aleph_1 \) we may omit it.

We now repeat to a large extent [Sh:835], [Sh:938]

Definition/Claim 0.11. Assume \(\delta \) is a limit ordinal (or zero for some parts), \(D = D_1 \in \text{Fil}_{\aleph_0}^1(Y), f = (f_\alpha : \alpha < \delta) \) is a sequence of members\(^3\) of \(Y^{\text{Ord}}, \) usually \(\delta \)-increasing in \(Y^{\text{Ord}}, f \) is a \(\delta \)-upper bound of \(\bar{f} \) but there is no such \(g < \delta ; f \); necessarily there is such \(f \) (using DC).

1) [Definition] Let \(J = J[f, \bar{f}, D] := \{A \subseteq Y : \text{ either } A = \emptyset \text{ mod } D \text{ or } A \in D^+ \text{ but there is a } \leq_{D+A} \text{-upper bound } g <_{D+A} f \text{ of } \bar{f}\} \).

2) [Definition] Recalling \(D_1 = D \), let \(D_2 = D_2(f, f, D_1) = \text{ dual}(J[f, \bar{f}, D_1]) := \{A \subseteq Y : Y \setminus A \in J[f, \bar{f}, D_1]\}; \text{ note that, e.g. as } D_1 \text{ is } \aleph_1 \text{-complete then } D_2 \text{ is an } \aleph_1 \text{-complete filter on } Y \text{ extending } D_1 \).

3) In (3), \(f \) is a unique modulo \(D_2 \), i.e. if also \(g \in Y^{\text{Ord}}, \) is a \(\delta \)-upper bound of \(\bar{f} \) and \(J[g, \bar{f}, D_1] = J[f, \bar{f}, D_1] \) then \(g = f \mod D_2, \) equivalently \(\text{ mod } J[f, \bar{f}, D_1] \).

4) If \(f \) is \(\leq_{D_1} \)-increasing, and \(cf(\delta) \geq \text{ hrtg}(\mathcal{P}(Y)) \) then \(f \) from above is a \(\leq_{D_2} \text{-eub of } f \), see Definition 0.9(3).

5) If \(f \) is \(\leq_{D_1} \)-increasing, and \(cf(\delta) \geq \text{ hrtg}(\mathcal{P}(Y)) \) then \(f \) from above is a \(\leq_{D_2} \text{-eub of } f \), see Definition 0.9(3).

Definition 0.12. Assume \(f \in Y^{\text{Ord}}, D_2 \supseteq D_1 \) are \(\aleph_1 \)-complete filters on \(Y, \epsilon f \) is as in 0.6 for \(\alpha(\epsilon) \) and \(\text{Rang}(f) \subseteq \alpha(\epsilon) \).

0) For some \(\eta \in \text{Fil}_{\aleph_0}^4(Y), D_1^n = D_1, D_2^n = D_2 \) and the function \(f \) satisfies \(\eta \), see below.

1) We say \(f : Y \to \text{Ord weakly satisfies } \eta \in \text{Fil}_{\aleph_0}^4(Y) \) when:

 \begin{itemize}
 \item[(a)] if \(Z \in D_2 \) and \(Z \subseteq Z_\eta \) then \(cf(\{f(t) : t \in Z\}) = cf(\{f(t) : t \in Z_\eta\}) \)
 \item[(b)] \(y \in Z_\eta \Rightarrow h_\eta(y) = \text{ otp}(f(y) \cap \text{Rang}(f[Z_\eta])) \)
 \item[(c)] if \(t \in Y \) and \(f(t) \in cf(\{f(s) : s \in Z_\eta\}) \) then \(t \in Z_\eta \)
 \item[(d)] \(y \in Z \setminus Z_\eta \Rightarrow f(y) = 0 \).
 \end{itemize}

2) “Semi satisfies” mean we omit clause (d).

3) Let “weakly satisfies” means we omit clauses (c),(d).

\{z10\}

\(^3\) We can use any index set instead of \(\delta \) (in particular the empty one), except in part (5); this applies also to Definition 0.9.
Definition 0.13. Let Y, f, \bar{f}, D be as in 0.11 and $Y, \alpha(\ast), c\ell$ as in 0.12.

1) We say f is the canonical \bar{f}-cub for η (and $c\ell$)

 (a) $\eta \in \Fil_{\aleph_1}^1(Y)$
 (b) $\bar{f} = (f_\alpha : \alpha < \alpha_\ast)$
 (c) f_α, f are from $Y, \alpha(\ast)$
 (d) $f_\alpha \leq_{D_{\eta,1}} f$
 (e) $D_{\eta,1} = D$ and $D_{\eta,2} \supseteq \text{dual}(J[f, \bar{f}, D_{\eta,0}])$
 (f) f satisfies η (for $c\ell$).

Claim 0.14. Let Y, f, \bar{f}, D as in 0.11, $f, \alpha(\ast), c\ell$ as in 0.12.

1) The “the” is 0.13 is justified, that is, f is unique given $c\ell$ (so $\alpha(\ast), \bar{f}, \eta$).
2) There is one and only one η such that

 (a) $\eta \in \Fil_{\aleph_1}^1(Y)$
 (b) $D_{\eta,1} = D$
 (c) $D_{\eta,2} = \text{dual}(J[f, \bar{f}, D])$
 (d) f semi satisfies η.

3) For the η from part (2), letting $g = (f|_{Z_\eta}) \cup (0_{Y \setminus Z_\eta})$ we have g is the canonical f-cub for η (and $c\ell$), in particular it satisfies η.

Proof. Should be clear. \(\Box_{0.14}\)

Recall the related (not really used)

Definition/Claim 0.15. Assume $D \in \Fil_{\aleph_1}^1(Y)$ and $f : Y \rightarrow \text{Ord}$.

1) $\text{[Definition]} J[f, D] = \{ A \subseteq Y : A = \emptyset \mod D \text{ or } A \in D^+ \text{ and } \text{rk}_{D+A}(f) > \text{rk}_{D}(f) \}$.
2) J is an \aleph_1-complete filter disjoint to D.
3) If $f_1, f_2 : Y \rightarrow \text{Ord}$ and $J[f_1, D] = J[f_2, D]$.
4) There is one and only $\eta \in \Fil_{\aleph_1}^1(Y)$ such that f semi satisfies $\eta, D_{\eta,1} = D$ and $D_{\eta,2} = \text{dual}(J[f, \bar{f}, D])$.
5) In (4) there is a unique f' which satisfies η and $f'|_{Z_\eta} = f|_{Z_\eta}$.

Notation 0.16. Let $A \leq_{\text{qu}} B$ means that $A = \emptyset$ or there is a function from B onto A.

Observation 0.17. Assume $\partial \leq |Y|$ and even $\partial \subseteq Y$ for transparency.

1) $\Fil_{\aleph_1}^1(Y) \leq_{\text{qu}} |\mathcal{P}(\mathcal{P}(3 \times Y))|$
2) Also $\langle (\Fil_{\aleph_1}^1(Y)) \leq_{\text{qu}} \mathcal{P}(\mathcal{P}(Y)) \rangle$.
3) If $\theta = \text{hrtg}(\mathcal{P}(Y))$ then θ satisfies:
 - if $\alpha < \theta$ then $\text{hrtg}(\mathcal{P}([\alpha]^{\aleph_0} \times \partial)) \leq \theta$
 - so if Ax_4 then $|\alpha|^{\aleph_0} \times \partial < \theta$.
4) Assume Ax_4. If $\alpha < \text{hrtg}(\mathcal{P}(Y))$ then $|\alpha|^{\aleph_0} < \text{hrtg}(\mathcal{P}(Y))$; hence if $\partial \leq |Y|$ and $\alpha < \text{hrtg}(\mathcal{P}(Y))$ then $|\alpha|^{\aleph_0} \times \partial < \text{hrtg}(\mathcal{P}(Y))$.

Remark 0.18. If Y is a set of ordinals, infinite to avoid trivialities then $|Y \times 3| = |Y|$, justifying this see 2.13.
Proof. 1) Let $Y_0 = Y, Y_{t+1} = \mathcal{P}(Y_t)$ for $\ell = 0, 1$ and let $Y_{t^*} = [Y_1]^{<\aleph_0}, Y_{\ell}^* = \mathcal{P}(Y_{t^*}), Y_0^* = 3 \times Y$ and $Y_{t+1}^* = \mathcal{P}(Y_t^*)$ for $\ell = 0, 1$

$(*)_1 |Y_0| + 1 = |Y_0|$ and even $|Y_0| + \partial = |Y_0|.

[Why? As $\partial \leq |Y|$ is an infinite cardinal.]

$(*)_2 |Y_1| = \partial \times |Y_1|$ and $\partial \times |Y_{t^*}| = |Y_{t^*}|$ and $|Y_{t^*}| = |Y_{t^*} \times \partial| = \partial \times |Y_{t^*}|$.

[Why? Both follow by $(*)_{1.1}$.]

$(*)_3 |Y_2| \times |Y_2| = |Y_2|$ and $|Y_0| \leq |Y_1| \leq |Y_2|$ and $|Y_2| \times |Y_2| = |Y_2|^2$; moreover

(for part (2)) $|\mathcal{P}(Y_2)| = |Y_2|$ and $|\mathcal{P}(Y_2)| = |Y_2|$

[Why? By the definition each $D_{\eta,\ell}$ is a subset of $\mathcal{P}(Y) = \mathcal{P}(Y_0) = Y_1$.]

$(*)_4 \{D_{\eta,\ell} : \eta \in Fil^{\triangleleft \aleph_0}_\omega(Y')\}$ has power $\leq |Y_2|$ for $\ell = 1, 2$.

[Why? By the definition each $D_{\eta,\ell}$ is a subset of $\mathcal{P}(Y) = \mathcal{P}(Y_0) = Y_1$.]

$(*)_5 \{Z_\eta : \eta \in Fil^{\triangleleft \aleph_0}_\omega(Y')\}$ has power $\leq |Y_2|$.

[Why? As $Z_\eta \subseteq Y = Y_0$ so $Z_\eta \in Y_1$.]

$(*)_6 |Y|^\aleph_0 \times \partial$ has the same power as $|Y|^{<\aleph_0}$.

[Why? Let Z be a set of ordinals disjoint to Y of order type ∂; by $(*)_1$ we have $|Y| = |Y \cup Z|$ hence $|Y|^{<\aleph_0} = |Y \cup Z|^{<\aleph_0} \geq |Y|^{<\aleph_0} \times |\partial| \geq |Y|^{<\aleph_0} \times |\partial| \geq |Y|^{<\aleph_0}$.]

$(*)_7 |Y \times |^{\aleph_0} \times |Y|^\aleph_0| \leq |\mathcal{P}(3 \times Y)| \leq |Y_2|$,

[Why? The mapping $(y, u_1, u_2) \mapsto ((0, y), (1, z_1), (2, z_2) : z_1 \in u_1, z_2 \in u_2)$ from

$Y \times |Y|^\aleph_0 \times |Y|^\aleph_0$ into $\mathcal{P}(3 \times Y)$ prove the first inequality, the second inequality

follows from $|3 \times Y| = |3 \times Y_0| \leq |3 \times Y_0| = |Y_1|$.]

$(*)_8 \mathcal{H} := \{h_\eta : \eta \in Fil^{\triangleleft \aleph_0}_\omega(Y')\} \leq_{\text{qu}} |Y_2|$.

[Why? Recalling $(*)_6$ clearly $|\mathcal{H}| \leq |\{h : h \text{ a function, Dom}(h) = Y \text{ and Rang}(h)\text{ a bounded subset of hrtg}(|Y|^{<\aleph_0} \times \partial)\}| \leq |\{h : h \text{ a function from } Y \text{ into some } \alpha \in hrtg(|Y|^{<\aleph_0})\}| \leq_{\text{qu}} |X_1| \text{ where}

$X_1 := \{(h, g) : \text{ for some ordinal } \alpha, g \text{ is a partial function from } |Y|^{<\aleph_0} \text{ onto } \alpha, \text{ so necessarily } \alpha < hrtg(|Y|^{<\aleph_0}) \text{ and } h \text{ is a function from } Y \text{ into } \alpha\}$.]

Clearly $|\mathcal{H}| \leq |X_1|$. Let $t \notin Y$ and for $(h, g) \in X_1$ let set(h, g) := \{(y, u_1, u_2) : y = t \land g(u_1) \leq g(u_2) \text{ or } y \in Y \text{ and } u_1, u_2 \in |Y|^{<\aleph_0} \text{ satisfies } h(y) = g(u_1) \\ g(u_2) = g(u_1)\}$. Easily $(h, g) \mapsto \text{set}(h, g)$ is a one-to-one function from X_1 into $X_2 := \mathcal{P}(X_3)$ where $X_3 := (Y \cup \{t\}) \times |Y|^{<\aleph_0} \times |Y|^{<\aleph_0}$ and by $(*)_7$ we have $|X_3| = |\mathcal{P}(3 \times Y)|$. Hence $|X_1| \leq |X_2| = |\mathcal{P}(X_3)| \leq |\mathcal{P}(\mathcal{P}(3 \times Y))|$. Recalling $|\mathcal{H}| \leq |X_1|$ we are done proving $(*)_8$.

Now $|Fil^{\triangleleft \aleph_0}_\omega(Y')| \leq |Fil^{\triangleleft \aleph_0}_\omega(Y') \times Fil^{\triangleleft \aleph_0}_\omega(Y') \times \mathcal{H} \times \mathcal{P}(Y')|$ by the definition of $Fil^{\triangleleft \aleph_0}_\omega$ and this is, by the inequalities above $\leq_{\text{qu}} |Y_2|^4 |Y_2|^4 |Y_2|^4 |Y_2|^4 = |Y_2|^4$.

$\square_{0.17}$
Note also we may wonder about the RGCH, see [Sh:460], we note (not using any version of Ax), that we can get such a result using only AC_\aleph_0. From the results of §1 we can deduce more. see 2.35.

Theorem 0.19. [ZF + AC_\aleph_0] Assume that \(\mu > \aleph_0\) and \(\chi < \mu \Rightarrow hrtg(\mathcal{P}(\chi)) < \mu\). Then for every \(\lambda > \mu\) for some \(\kappa < \mu\) we have:

\[(\ast)_{\lambda,\mu,\kappa}\]

if \(\theta \in (\kappa, \mu)\) and \(D\) is a \(\kappa\)-complete filter on \(\theta\) then there is no \(<_D\)-increasing sequence \(\langle f_\alpha : \alpha < \lambda^+ \rangle\) of members of \(\theta\).

Remark 0.20. In 0.19 we can replace \(\chi < \mu \Rightarrow hrtg(\mathcal{P}(\chi)) < \mu\) by \(\chi < \mu \Rightarrow wlor(\mathcal{P}(\chi)) < \mu\); this holds by the proof.

Proof. Assume that this fails for a given \(\lambda\). We choose \(\kappa_n < \theta_n < \mu\) by induction on \(n\). Let \(\kappa_0 = \aleph_0\), so \(\kappa_0 = \aleph_0 < \mu\) as required. Assume \(\kappa_n < \mu\) has been chosen, note that it cannot be as required so there is \(\theta \in [\kappa_n, \mu)\) such that it exemplifies \(\neg (\ast)_{\lambda,\mu,\kappa_n}\) and let \(\theta_n\) be the first such \(\theta\).

Given \(\theta_n\) let \(\kappa_{n+1} := wlor(\mathcal{P}(\theta_n))\) so \(\kappa_{n+1} \in (\kappa_n, \mu) \subseteq (\kappa_n, \mu)\). So \(\langle \kappa_n : n < \omega \rangle\) is well defined increasing and \(\mu_\ast = \sum \kappa_n \leq \mu\). Let \(X_n = \{ (\theta, D, \bar{f}) : \theta \in [\kappa_n, \kappa_{n+1})\}, D\) is a \(\kappa_n\)-complete filter on \(\theta\), \(\bar{f} = \langle f_\alpha : \alpha < \lambda^+ \rangle\) is a \(<_D\)-increasing sequence of members of \(\theta\), so by the construction we have \(X_n \neq \emptyset\) and \(\langle X_n : n < \omega \rangle\) exist being well defined. As we are assuming AC_\aleph_0 there is a sequence \(\langle (\theta_n, D_n, f_n) : n < \omega \rangle\) from \(\prod X_n\).

We can consider \(\bar{f} = \langle f_n : n < \omega \rangle\) (and also \(\bar{\kappa} = \langle \kappa_n : n < \omega \rangle\)) as a set of ordinals (using a pairing function on the ordinals) hence \(V_\ast = L[\bar{f}, \bar{\kappa}]\) is a model of ZFC and a transitive class. In \(V_\ast\) we can define \(D'_n\) as the minimal \(\kappa_n\)-complete filter on \(\theta_n\) such that \(f_n\) is \(<_{D'_n}\)-increasing. Clearly \(\langle 2^{\theta_n}\rangle^{V_\ast} < wlor(\mathcal{P}(\theta_n)) < \mu\) hence \(V_\ast \models "\mu_\ast\) is strong limit". By [Sh:460] or see [Sh:829, §1.13=Lg.8] where \(\lambda^{[\theta, \theta]}\) is defined we get a contradiction. □_0.19
§ 1. The pcf theorem again

We prove a version of the pcf theorem; weaker than [Sh:g, Ch.I,II] as we do not assume just \(\min \{ \text{cf}(\alpha_y) : y \in Y \} \) but a stronger inequality. Still we gain in a point which disappears under AC: dealing with a sequence of singular ordinals (and the ideal \(\text{cf} - \text{id}_{<\theta}(\delta) \), see below). In addition we gain in having the scales being uniformly definable. Also the result is stronger than in [Sh:955], as we use functions rather than sets of functions; (i.e. true cofinality rather than pseudo true cofinality; of course, the axioms of set theory used are different accordingly; full choice in [Sh:g], ZF + DC + AC_{\mathcal{P}(Y)} in [Sh:955] and ZF + DC + Ax_{A4} here).

* * *

It seems natural in our context instead of looking at \(\{ \text{cf}(\delta_s) : s \in Y \} \) we should look at:

Definition 1.1. 1) For a sequence \(\delta = \langle \delta_s : s \in Y \rangle \) of limit ordinals and a cardinal \(\theta \) let \(\text{cf} - \text{id}_{<\theta}(\delta) = \{ X \subseteq Y : \) there is a sequence \(\bar{u} = \langle u_s : s \in Y \rangle \) such that \(s \in X \Rightarrow \bar{u}_s \subseteq \delta_s = \sup(u_s) \) and \(s \in X \Rightarrow \text{otp}(u_s) < \theta \}. \)

2) Let \(\bar{u} = \text{fil}_{<\theta}(\delta) \) be the filter dual to the ideal \(\text{cf} - \text{id}_{<\theta}(\delta) \).

3) We may replace \(\delta \) by a set of ordinals, i.e. instead of \(\langle \alpha : \alpha \in u \rangle \) we may write \(u \).

4) For \(\bar{\delta} = \langle \delta_s : s \in Y \rangle \) and \(\bar{\theta} = \langle \theta_s : s \in Y \rangle \) we define \(\text{cf} - \text{id}_{<\theta}(\bar{\delta}) \) similarly to part (1); similarly in the other cases.

5) For \(\bar{\theta} \) a sequence of infinite cardinals, let \(\text{cf} - \text{fil}_{<\theta}(\bar{\delta}) \) be the dual filter; similarly in the other cases.

Observation 1.2. 1) In 1.1, \(\text{cf} - \text{id}_{<\theta}(\bar{\delta}), \text{cf} - \text{id}_{<\theta}(\bar{\delta}) \) are ideals on \(Y \) or equal to \(\mathcal{P}(Y) \).

1A) Moreover \(\aleph_1 \)-complete ideals.

2) Similarly for the filters.

Proof. Should be clear, e.g. use the definitions recalling we are assuming AC_{\aleph_0}.

Observation 1.3. Assume

(a) \(D = \text{cf} - \text{fil}_{<\theta}(\bar{\delta}) \) is a well defined filter (that is \(\emptyset \notin D \)), so \(\bar{\delta} \in \check{\text{Ord}} \text{ is a sequence of limit ordinals, } \bar{\theta} = \langle \theta_s : s \in Y \rangle \in (\text{Car}, e.g. \bigwedge_s \theta_s = \theta \), hence \(Y \) is a model of ZF + DC + AC_{\mathcal{P}(Y)} in [Sh:955] and ZF + DC + Ax_{A4} here).

(b) \(\bar{\mathcal{W}} = \langle \mathcal{W}_s : s \in Y \rangle \) satisfies \(\mathcal{W}_s \subseteq \delta_s, \text{otp}(\mathcal{W}_s) < \theta_s \) for \(s \in Y \),

(c) \(g \in \Pi \bar{\delta} \) is defined by

\begin{itemize}
 \item \(g(s) = \sup\{ \alpha + 1 : \alpha \in \mathcal{W}_s \} \) if this value is < \(\delta_s \)
 \item \(g(s) \) is zero otherwise.
\end{itemize}

Then

(a) \(g \) belongs to \(\Pi \bar{\delta} \) indeed

(b) if \(f \in \prod_{s \in Y} \mathcal{W}_s \subseteq \Pi \bar{\delta} \) then \(f < g \) mod \(D \).

Remark 1.4. Clause (b) of 1.3 holds, e.g. if \(\mathcal{W} \subseteq \text{Ord}, \text{otp}(\mathcal{W}) < \min\{ \theta_s : s \in Y \}, \mathcal{W}_s = \mathcal{W} \cap \delta_s \).
Proof. Clause (α) is obvious by the choice of the function g; for clause (β) let \(f \in \prod_{s \in Y} \mathcal{U}_s \) and let \(X = \{ s \in Y : f(s) \geq g(s) \} \). Necessarily \(s \in X \) implies (by the assumption on \(f \) and the definition of \(X \)) that \((\exists \alpha)(\alpha \in \mathcal{U}_s \land g(s) \leq \alpha) \) which implies (by clause (c), the definition of \(g \)) that \(g(s) = 0 \land \sup(\{u_s : s \in Y\}) = \delta_s \). So by the definition of \(\text{cf} - \text{fil}_{<\vartheta}(\delta) \) we have \(X \in \text{cf} - \text{fil}_{<\vartheta}(\delta) \) hence we are done. \(\square_{1.3} \)

Claim 1.5. Assume \(\text{Ax}_{4,\vartheta} \), see Definition 0.5(3); if (A) then (B) where:

(A) we are given \(Y, \) an arbitrary set, \(\delta, \) a sequence of limit ordinals and \(\mu, \) an infinite cardinal (or just a limit ordinal) such that:

(a) \(\delta = (\delta_s : s \in Y) \) and \(\mu = \sup(\delta_s : s \in Y) \)
(b) \(D_\vartheta \) is an \(\aleph_1 \)-complete filter on \(Y, \) it may be \(\{Y\} \)
(c) \(\vartheta \) is any cardinal satisfying:
 (α) \(\text{cf} - \text{id}_{<\vartheta}(\delta) \subseteq \text{dual}(D_\vartheta), \)
 (β) \(\alpha < \vartheta \Rightarrow \text{hrtg}(\{\alpha\}_{0,\delta}) \leq \vartheta \) so \(\vartheta < \vartheta \)
 (γ) \(\text{hrtg}(\mathcal{P}(Y)) \leq \vartheta \)
 (δ) \(\text{hrtg}(\text{Fil}_1^\mu(Y)) \leq \vartheta \)

(B) there are \(\alpha_\vartheta \), \(f \), \(f_\vartheta / D_\vartheta \) \(\vartheta \)-uniformly defined from the triple \((Y, \delta, D_\vartheta) \), see 0.8 such that (see more in the proof):

(a) \(\alpha_\vartheta \) is a limit ordinal of cofinality \(\geq \vartheta \)
(b) \(f_\vartheta = \langle f_\alpha : \alpha < \alpha_\vartheta \rangle \)
(c) \(f_\alpha \in \Pi\delta \) and \(f \in \Pi\delta \)
(d) \(\bar{f} \) is \(\leq \vartheta \)-increasing
(e) \(A_\vartheta \subseteq D_\vartheta^{\vartheta} \)
(f) \(\bar{f} \) is cofinal in \((\Pi\delta, \leq_{D_\vartheta^{\vartheta} + A_\vartheta}) \)
(g) if \(Y \setminus A_\vartheta \subseteq D_\vartheta^\vartheta \) then \(\bar{f} \) is a \(<_{D_\vartheta^{\vartheta} + (Y \setminus A_\vartheta)} \)-ub of the sequence \(\bar{f} \).

Remark 1.6.
1) Note that we do not use AC\(_{\mathcal{P}(Y)} \) and even not AC\(_Y \) which would simplify.
2) Note that \(\vartheta \) is not necessarily regular.
3) In (A)(c)(δ), we can restrict ourselves to \(\aleph_1 \)-complete filters on \(Y \) extending \(D_\vartheta \).
4) Originally we use several \(\vartheta \)'s to get best results but not clear if worth it.

5) Why for a given \(Y \) there is \(\vartheta \) as in 1.5(A)(c)(β),(γ),(δ)? see 0.17(3).
6) In 1.5 we can replace the assumption \(\text{Ax}_{4,\vartheta} \) by \(\text{Ax}_{4,\text{hrtg}(\gamma, \vartheta), \vartheta} \), see 0.5(4),(5).
7) Concerning (A)(c)(α) note that this holds when each \(\delta_s \) is an ordinal \(\leq \mu \) of cofinality \(\geq \vartheta \).
7A) In (A)(c)(β), if \(\text{Ax}_4 \) then the demand is equivalent to \(\vartheta < \vartheta \) and \(\alpha < \vartheta \Rightarrow |\alpha|_{0,\vartheta} < \vartheta \), see 0.17(4).

Proof. Let

\[(*)_1 \]
(a) \(\lambda_* = \text{hrtg}(\gamma, \mu) \)
(b) \(J_{\lambda_*} \subseteq [\lambda_*]^{<\vartheta} \) is as in 0.5(3)
(c) \(\prec_{\lambda_*} \) be a well ordering of \(J_{\lambda_*} \)
(d) \(\bar{w} = \langle \bar{w}_i^* : i < \text{otp}(J_{\lambda_*}, \prec_{\lambda_*}) \rangle \) list \(J_{\lambda_*} \) in \(\prec_{\lambda_*} \)-increasing order

\[(*)_2 \]
(ε) be as in 0.6 for \(\lambda_* \)
\(\ast \cdot 3\) \(\Omega = \{ \alpha < \lambda : \aleph_0 \leq \text{cf}(\alpha) < \theta \}\).

\(\ast \cdot 4\) There is a sequence \(\alpha\) (in fact, \(\theta\)-uniformly definable one) such that:

\[(a) \ \bar{e} = (e_\alpha : \alpha \in \Omega)\]

\[(b) \ e_\alpha \subseteq \alpha = \text{sup}(e_\alpha)\]

\[(c) \ e_\alpha \text{ has order type } < \theta;\]

and we can add

\[(c)_1 \ e_\alpha \text{ has order type } < \theta \text{ if } \text{cf}(\alpha) = \aleph_0\]

\[(c)_2 \ e_\alpha \text{ has cardinality } < \text{hrtg}([\text{cf}(\alpha)]^{\aleph_0} \times \delta).\]

[How?]

- If \(\text{cf}(\alpha) = \aleph_0\) let \(i(\alpha) = \min \{ i : w_i \cap \alpha \text{ is unbounded in } \alpha \}\) and \(e_\alpha = w_i \cap \alpha\).

- If \(\text{cf}(\alpha) > \aleph_0\) let \(e_\alpha = \text{cf}(e)\) where \(e\) is any club of \(\alpha\) of order type \(\text{cf}(\alpha)\) such that \(\forall e' \subseteq e \text{ a club of } \alpha \Rightarrow \text{cf}(e') = \text{cf}(e)\).

[Why? Such \(e\) exists by the choice of \(\text{cf}\) in 0.6 and if \(e', e''\) are two such clubs then \(e' \cap e''\) is a club of \(\alpha\) of order type \(\text{cf}(\alpha)\) and \(\text{cf}(e') = \text{cf}(e') = \text{cf}(e'')\) by the assumption on \(e'\) and on \(e''\) respectively, so \(e_\alpha\) is well defined.]

Lastly, the cardinality is as required by the clause \((A)(e)(\beta)\) and 0.6(c); similarly to [Sh:835, 2.11=Lr.9].

So \((\ast)_4\) holds indeed.

Now we try to choose \(f_\alpha \in \Pi \delta\) by induction on \(\alpha\) such that \(\beta < \alpha \Rightarrow f_\beta < f_\alpha\) mod \(D_\star\).

\textbf{Case 1:} \(\alpha = 0\)

Let \(f_0\) be constantly zero, i.e. \(s \in Y \Rightarrow f_0(s) = 0\), clearly \(f_\alpha \in \Pi \delta\) as each \(\delta_\star\) is a limit ordinal.

\textbf{Case 2:} \(\alpha = \beta + 1\)

Let \(f_\alpha(s) = f_\beta(s) + 1\) for \(s \in Y\), so \(f_\alpha \in \Pi \delta\) as \(f_\beta \in \Pi \delta\) and each \(\delta_\star\) is a limit ordinal and \(\gamma < \alpha \Rightarrow f_\gamma < f_\alpha\) mod \(D_\star\) as \(f_\gamma \leq f_\beta < f_\alpha\) mod \(D_\star\).

\textbf{Case 3:} \(\alpha\) is a limit ordinal of cofinality \(< \theta\).

So \(e_\alpha\) is well defined and we define \(f_\alpha : Y \to \text{Ord}\) as follows: \(f_\alpha(s)\) is equal to \(\sup\{f_\beta(s) + 1 : \beta \in e_\alpha\}\) if this is \(< \delta_\star\) and is zero otherwise.

\((\ast)_5\) \(f_\alpha \in \Pi \delta\).

[Why? Obvious.]

Let \(\mathcal{U}_{\alpha,s} = \{ f_\beta(s) + 1 : \beta \in e_\alpha \}\), so clearly \(\langle \mathcal{U}_{\alpha,s} : s \in Y \rangle\) is well defined and \(\sup(\mathcal{U}_{\alpha,s})\) is an ordinal, it is \(\leq \delta_\star\) as \(\beta \in e_\alpha \Rightarrow f_\beta \in \Pi \delta\). Let \(X = \{ s \in Y : f_\alpha(s) > 0 \text{ equivalently } \delta_\star > \sup(\mathcal{U}_{\alpha,s}) \}\)

\((\ast)_6\) \(X \in D_\star\), i.e. \(X = Y\) mod \(D_\star\).

[Why? For \(s \in X \setminus Y\) note that \(|\mathcal{U}_{\alpha,s}| \leq \text{cf}|e_\alpha|\) and \(|e_\alpha| < \theta\) by \((\ast)_4(c)\), hence \(|\mathcal{U}_{\alpha,s}| < \theta\). By the choice of \(X\) and Definition 1.1 we have \(Y \setminus X \in \text{cf} - \text{id}_{<\theta}(\delta)\) hence the clause \((A)(e)(\alpha)\) of the assumption of the claim, \(X = Y\) mod \(D_\star\) as promised.]
\((*)_7\) if \(\beta < \alpha\) then \(f_\beta < f_\alpha\) mod \(D_\ast\).

[Why? Clearly \(e_\alpha\) has no last element so we can choose \(\gamma \in e_\alpha \setminus (\beta + 1)\) and let \(X' = \{s \in Y : f_\beta(s) < f_\gamma(s)\}\). Necessarily \(X' \notin D_\ast\) hence \(X' \cap X \notin D_\ast\) but clearly \(s \in X' \cap X \Rightarrow f_\beta(s) < f_\gamma(s) < f_\alpha(s)\) so \((*)_7\) holds.]

We arrive to the main case.

Case 4: \(\alpha\) a limit ordinal of cofinality \(\geq \theta\)

Let

- \(f^\alpha = \langle f_\beta : \beta < \alpha \rangle\)
- \(D = \{D : D\) is an \(\aleph_1\)-complete filter on \(Y\) extending \(D_\ast\}\)
- \(D^1_\alpha = \{D \in D : f^\alpha\) is not cofinal in \((\Pi \delta, < D)\}\)
- \(D^2_\alpha = \{D \in D^1_\alpha : f^\alpha\) has a \(<_D\)-upper bound \(f \in \Pi \delta\}\)
- \(D^3_\alpha = \{D \in D^2_\alpha : f^\alpha\) has a \(<_D\)-eub \(f \in \Pi \delta\}\).

For every \(D \in D^3_\alpha\) let

- \(\mathcal{F}^3_{\alpha,D} = \{f \in \Pi \delta : f\) is a \(<_D\)-eub of \(\langle f_\beta : \beta < \alpha \rangle\}\).

Note

\(\circ_1\) if \(D_1 \in D^1_\alpha\) and \(f\) exemplifies this then for some \(D_2, D_1 \subseteq D_2 \in D\) and \(f\) is a \(<_D\)-upper bound of \(f\), i.e. \(f\) exemplifies \(D_2 \in D^2_\alpha\); in fact \(D_2\) is uniformly definable from \(f\) (and \(f^\alpha, D_1\)).

[Why? Let \(A = \langle A_\gamma : \gamma < \alpha \rangle\) be defined by \(A_\gamma := \{s \in Y : f(s) \leq f_\gamma(s)\}\). So \(\langle A_\gamma/D_1 : \gamma < \alpha \rangle\) is increasing (in the Boolean algebra \(\mathcal{P}(Y)/D_1\), of course), but clearly \(|\{A/D_1 : A \subseteq Y\}| \leq \aleph_0|\mathcal{P}(Y)|\) and \(\text{hrtg}(\mathcal{P}(Y)) \leq \theta\) by clause \((A)(c)(\gamma)\) of the assumption. Let \(\mathcal{Z} = \{\gamma < \alpha : \) for no \(\beta < \gamma\) do we have \(A_\gamma = A_\beta\) mod \(D_1\}, so clearly \(|\mathcal{Z}| \leq \text{hrtg}(\mathcal{P}(Y)) \leq \theta\) by \((A)(c)(\gamma)\) but by the present case assumption, \(\text{cf}(\alpha) \geq \theta\) so \(\langle A_\gamma/D_1 : \gamma < \alpha \rangle\) is necessarily eventually constant. Let \(\alpha(*) = \min(\gamma : \) if \(\beta \in (\gamma, \alpha)\) then \(A_\beta = A_\gamma\) mod \(D_1\); it is well defined (and \(< \alpha\)). Now \(A_{\alpha(*)} \notin D_1\) as otherwise \(f \leq f_{\alpha(*)} < f_{\alpha(*)+1}\) mod \(D_1\) contradicting the assumption on \(f\). Let \(D_2 := D_1 + (Y \setminus A_{\alpha(*)})\). Clearly \(D_2\) is as required.]

\(\circ_2\) if \(D \in D^2_\alpha\) and \(f\) exemplifies it then for some \(g\) we have:

- (a) \(g \in \Pi \delta\)
- (b) \(g \leq_D f\)
- (c) \(g\) is a \(<_D\)-upper bound of \(\langle f_\gamma : \gamma < \alpha \rangle\)
- (d) there is no \(h \in \Pi \delta\) which is an \(<_D\)-upper bound of \(\langle f_\gamma : \gamma < \alpha \rangle\) such that \(h <_D g\).

[Why? Use DC and \(D\) being \(\aleph_1\)-complete.]

\(\circ_3\) if \(D_1 \in D^2_\alpha\) and \(g\) is as in \(\circ_2\) then for a unique pair \((\eta, f)\) we have

- (a) \(\eta \in \text{Fil}^1_{\aleph_1}(Y)\)
- (b) \(D_{\eta,1} = D_1\)
- (c) \(D_{\eta,2} = \text{dual}(J[g, f^\alpha, D_1])\) from 0.11(1)
- (d) \(Z_\eta\) satisfies:
\(a\) \(Z_\alpha \in D_{\alpha,2}\)

\(b\) \(Z \in D_{\alpha,2} \land Z \subseteq Z_\alpha \Rightarrow c\ell((\text{Rang}(g|Z_\alpha)) = c\ell(\text{Rang}(g|Z)).\)

\(c\) if \(t \in Y\) and \(g(t) \in c\ell(\text{Rang}(g|Z_\alpha))\) then \(t \in Z_\alpha\).

\(d\) \(h_\alpha : Z_\alpha \rightarrow \text{Ord} (\text{really into some } \alpha < \text{hrtg}(\mathcal{P}(Y)))\) is defined by \(g(s) = \text{the } h_\alpha(s)-\text{th member of } c\ell(\text{Rang}(g|Z_\alpha))\) if \(s \in Z_\alpha\) and \(Z \alpha \setminus Z_\alpha\).

\(e\) \(f : Y \rightarrow \text{Ord} \text{ is defined by } f|Z_\alpha = g|Z_\alpha \text{ and } f(s) = 0 \text{ for } s \in Y \setminus Z_\alpha.\)

[Why? We apply 0.14(2) with \(g, \langle f_\gamma : \gamma < \alpha \rangle\) here standing for \(\bar{f}, \bar{f}\) there to define \(\eta\) and then let \(f = (g|Z_\alpha, 0|Y \setminus Z_\alpha)\) as in 0.14(3).]

In particular, the “the” in \(\circ_3(c)\) is justified by:

\(\circ_4\) if \(\eta \in \text{Fil}^4\!(Y)\) and \(f', f''\) are \(\eta\text{-eub of } \bar{f}^{\alpha}\) then \(f' = f''\), i.e. 0.14(3).

Also, (recalling \(\text{dom}(f') = \text{dom}(f; \bar{\delta}) = Z_\alpha \text{ by } \circ_3, \delta\), see 0.11(4))

\(\circ_5\) if \(\eta \in \text{Fil}^4\!(Y)\) and \(f', f''\) satisfy \(\circ_3(c)(\beta), (\gamma), (\delta)\) then \(f' = f'' \Leftrightarrow f' = f''\) mod \(D_{\alpha,2}\).

Recalling 0.11(5), for \(D \in \mathbf{D}\) let

\(\circ_6\) for \(s \in Y\) let \(\mathcal{U}_{\alpha,s} = \{f_\eta(s) : \eta \in \text{Fil}^2\!(Y)\}\).

Clearly

\(\circ_7\) (a) \(\langle \mathcal{U}_{\alpha,s} : s \in Y \rangle\) is well defined

(b) \(\mathcal{U}_{\alpha,s} \subseteq \delta_s\)

(c) if \(s \in Y\) then \(|\mathcal{U}_{\alpha,s}| < \theta\).

[Why? Clause \((a)\) holds by \(\circ_6\) and clause \((b)\) by \(\circ_5 + \circ_6\). As for clause \((c)\) by \(\circ_6\), \(\mathcal{U}_{\alpha,s}\) is the range of the function \(\eta \mapsto f_\eta(s)\) for \(\eta \in \text{Fil}^2\!(Y), s \in Z_\alpha\), so clearly \(|\mathcal{U}_{\alpha,s}| \leq \text{qu}|\text{Fil}^2\!(Y)| \text{ hence } |\mathcal{U}_{\alpha,s}| < \text{hrtg} \text{(Fil}^2\!(Y))\text{ which is } \leq \theta\) by (A)(c)(\(\bar{\delta}\)) of the claim.]

\(\circ_8\) \(X := \{s \in Y : \sup(\mathcal{U}_{\alpha,s}) < \delta_s\} = Y \text{ mod } \text{cf} - \text{id}_{<\theta}(\bar{\delta})\text{ hence } X \in D_*\).

[Why? By \(\circ_7(a), (b), (c)\) and Definition 1.3 we have \(X = Y \text{ mod } \text{cf} - \text{id}_{<\theta}(\bar{\delta})\) but \(\text{(A)(c)(\alpha)}, \text{this implies } X \in D_*\).]

So define \(f_\alpha \in \Pi\bar{\delta}\) by:

\[\circ_9\ f_\alpha(s) \begin{cases} \text{is } \sup(\mathcal{U}_{\alpha,s}) & \text{if } s \in X \\ 0 & \text{if } s \in Y \setminus X \end{cases}\]

Also clearly

\(\circ_{10}\ f_\alpha \in \Pi\bar{\delta}\)

and also
Theorem 1.7. The pcf Theorem

If \(\gamma = \min\{\gamma < \alpha : \text{for every } \beta \in (\gamma, \alpha) \text{ we have } A^\alpha_\beta/D_\gamma = A^\alpha_\beta/D_\gamma \} \)

If \(A^\alpha_\beta \in D_\gamma \) then \(\beta < \alpha \Rightarrow A^\alpha_\beta \supseteq A^\alpha_{\max(\beta, \gamma(\alpha))} = A^\alpha_{\gamma(\alpha)} \mod D_\gamma \Rightarrow f_\beta < f_\alpha \mod D_\gamma \), so \(f_\alpha \) is as required. Otherwise, \(A^\alpha_{\gamma(\alpha)} \notin D_\gamma \), so \(A_\gamma := Y \setminus A^\alpha_{\gamma(\alpha)} \in D_\gamma \) so \(D_\gamma = D_\gamma \cup A_\gamma \in D_\gamma \). Now if \(D_\gamma \in D^1_0 \) then by \(\circ \) there is \(D_\delta \) such that \(D_\gamma \subseteq D_\delta \subseteq D^1_\alpha \) hence there is \(g \in \Pi \delta \) as in \(\circ \) for \(D_\delta \). Hence there is \(n \in \text{Fil}^4_{\alpha_0}(Y) \) as in \(\circ \) hence \(f_n \in \Pi(\delta) \) as in \(\circ \), so \(Z_n \in D_\gamma \), and by the choice of \(\gamma(\alpha) \text{ (s in } Y) \) and \(f_\alpha \) we have \(f_n < f_\alpha \mod D_\gamma \) hence \(\beta < \alpha \Rightarrow f_\beta < f_\alpha \mod D_\gamma \) so \(f_\gamma(\alpha) < f_\beta \mod D_\gamma \). But \(A_\gamma \in D_\gamma \), \(D_\gamma \subseteq D_\gamma \) and by the choice of \(A^\alpha_{\gamma(\alpha)} \) and \(A_\gamma \) we have \(f_\beta \mod A_\gamma \leq f_\gamma(\alpha) \mod A_\gamma \) contradicting the previous sentence.

So necessarily \((A_\gamma \in D^1_\gamma \) and \(D_\gamma = D_\gamma \cup A_\gamma \in D_\delta \) which means \(f_\beta \) is cofinal in \((\Pi \delta, \leq) \) hence letting the desired \((\alpha, f, f, A_\gamma, D_\gamma) \) in \(\Delta \) of 1.5 be \((\alpha, f_\gamma, f_\gamma, A_\gamma, D_\gamma) \) we are done.

\[\Box \]

\textbf{Theorem 1.7. The pcf Theorem:} \[[\text{Ax}_{\text{a}, \gamma, 0, \theta} = \text{htrg}(\gamma \mu) + DC] \]

\((A) \) if \(\gamma \) is an arbitrary set, \(\delta \), a sequence of limit ordinals and \(\mu \), an infinite cardinal (or just a limit ordinal) such that:

(a) \(\delta = (\delta_s : s \in Y) \) and \(\mu = \sup\{\delta_s : s \in Y\} \)

(b) \(D_\gamma \) is an \(\aleph_0 \)-complete filter \(5 \) on \(Y \), it may be \(\{Y\} \)

(c) \(\theta \) is any cardinal satisfying:

\((\alpha) \ cf - \text{id}_{\epsilon^0}(\delta) \subseteq \text{dual}(D_\delta) \), note that this holds when each \(\delta_s \) is an ordinal \(\leq \mu \) of cofinality \(\geq \sigma \), see below

\((\beta) \ \alpha < \theta \Rightarrow \text{htrg}([\alpha]^{\text{h}_\theta} \times \delta) \leq \theta \) so \(\sigma < \theta \)

\((\gamma) \ \text{htrg}(\Pi(Y)) \leq \theta \)

\((\delta) \ \text{htrg}(\text{Fil}^4_{\alpha_0}(Y)) \leq \theta \)

\((B) \) there are \(\epsilon(\delta), D^\ast, A^\ast, E^\ast, \bar{\delta}, \bar{\gamma}, \) in fact \(\theta \)-uniformly definable from \((Y, \delta, D_\delta) \) such that:

(a) \(\epsilon(\delta) < \text{htrg}(\Pi(Y)) \)

(b) \(D^\ast = (D^\ast_s : \epsilon < \epsilon(\delta) \text{ and } E^\ast = (E^\ast_s : \epsilon < \epsilon(\delta)) \)

(c) \(D^\ast \) is a \(\subseteq \)-increasing continuous sequence of filters on \(Y \)

(d) if \(\epsilon = \zeta + 1 \) then \(D^\ast_{\epsilon} \) is a filter on \(Y \) generated by \(D_\delta \cup \{A\} \) for some \(A \subseteq Y \) such that \(A \in D^1_\delta \)

(e) \(D^\ast_0 = D_\delta \)

(f) \(D^\ast_{\epsilon} \) is a filter on \(Y \) for \(\epsilon < \epsilon(\delta) \) but \(D^\ast_{\epsilon(\delta)} = \Pi(Y) \),

\(\Box \)

\(\Delta \)\(\Delta \) (1.5) as in 1.5(A) but \(D_\delta \) is just a filter on \(Y \), not necessarily \(\aleph_1 \)-complete filter on \(Y \) (i.e. we weaken clause (b)), noting that possibly \(D_\delta = \{Y\} \), still we require \(cf - \text{id}_{\epsilon^0}(\delta) \subseteq D_\delta \).

\(\Delta \)\(\Delta \) This is reasonable as we normally use \(D_\delta = \text{dual}(cf - \text{id}_{\epsilon^0}(\delta)) \) which is \(\aleph_1 \)-complete by 1.3(1A).
This process converges.

Now we try again to choose \(g \).

Concerning 1.7 (Why? As have first chosen \(\alpha \)).

We may get \(A^* = (A^*_\epsilon/D^*_\epsilon : \epsilon < \varepsilon(\star)) \) where \(A^*_\epsilon \subseteq Y \), so only \(A^*_\epsilon/D^*_\epsilon \) is computed\(^6\) not \(A^* \), still \((Y \setminus A^*_\epsilon)/D^*_\epsilon \) and \(D^*_\epsilon + (Y \setminus A^*_\epsilon) \) are well defined.

Concerning 1.7 (B).

\(D^*_\epsilon+1 = D^*_\epsilon + A^*_\epsilon \) and \(E^*_\epsilon = D^*_\epsilon + (Y \setminus A^*_\epsilon) \) if \(\varepsilon \) is a successor ordinal and \(D^*_\epsilon \) otherwise.

\(\langle g_\alpha : \alpha \in [\alpha^*_\epsilon, \alpha^*_\epsilon+1] \rangle \) is increasing and cofinal in \((\Pi^\delta, <_{E^*_\epsilon}) \) so also \(\bar{g}|\alpha^*_\epsilon+1 \) is.

\[(c_{19}) \]

Remark 1.8. 1) Note that unlike the ZFC case, the \(\alpha^*_\epsilon+1 \)'s (and even \(\alpha^*_\epsilon+1 - \alpha^*_\epsilon \)) are ordinals rather than regular cardinals and we do not exclude here \(\varepsilon < \zeta \wedge \text{cf}(\alpha^*_\epsilon+1) = \text{cf}(\alpha^*_\epsilon) \). Also we do not know that \(\langle \text{cf}(\alpha^*_\epsilon) : \varepsilon < \varepsilon(\star) \rangle \) is increasing or even non-decreasing.

2) We may get \(\alpha^*_\epsilon+1 - \alpha^*_\epsilon : \varepsilon < \varepsilon(\star) \) non-decreasing but this is of unclear value. [For this we proceed as below but when we arrive to \(\varepsilon+1 \) and there is \(\varepsilon < \zeta \) such that \(\alpha^*_\epsilon+1 - \alpha^*_\epsilon < \zeta - \alpha^*_\epsilon+1 \), choose the first one, we go back, retaining only \(\bar{g}|\alpha^*_\epsilon \).

Now we try again to choose \(g_\alpha \) for \(\alpha \geq \alpha^*_\epsilon \) but demanding \(g_\alpha|_{\alpha^*_\epsilon+1} \geq g_{\alpha+1}^\prime, g_{\alpha+\beta} \).

This process converges.]

3) However 2.11(5) below is a simpler way. Working harder we get \(\langle \alpha^*_\epsilon+1 - \alpha^*_\epsilon : \varepsilon < \varepsilon(\star) \rangle \) is (strictly) increasing (using increasing rectangles of functions).

4) As in (\(\star \)) of the proof of 1.5, without loss of generality \(\alpha^*_\epsilon+1 - \alpha^*_\epsilon < \text{hrtg}(\text{cf}(\alpha^*_\epsilon+1))^{\text{Rg}} \).

[Why? As have first chosen \(\langle g_\alpha : \alpha \in (\alpha^*_\epsilon, \alpha^*_\epsilon+1) \rangle \) and just as \(\langle g_\alpha : \alpha \in (\alpha^*_\epsilon, \alpha^*_\epsilon+1) \rangle \) was chosen before we choose \(\langle g_\alpha : \alpha \in (\alpha^*_\epsilon, \alpha^*_\epsilon+1) \rangle \) by

- \(\alpha^*_\epsilon+1 = \alpha^*_\epsilon + \text{otp}(\varepsilon_{\alpha^*_\epsilon+1}\setminus(\alpha^*_\epsilon+1)) \)
- if \(\beta \in \varepsilon_{\alpha^*_\epsilon+1}\setminus(\alpha^*_\epsilon+1) \) and \(\gamma = \text{otp}(\varepsilon_{\alpha^*_\epsilon+1}\setminus(\alpha^*_\epsilon+1)) \) then \(g_\gamma = g_{\gamma+1} \)
- if \(\beta = \alpha^*_\epsilon+1 \) then \(g_{\beta} = g_{\beta+1} \).

So we are done.

5) Concerning (\(\beta \)) of 1.7(\(B^+ \))(\(\varepsilon \)), it follows that \(D^*_\epsilon \) include \(\text{fil} <_{\epsilon(\delta)} \).

6) Concerning 1.7(\(B^+ \))(\(f \)), if \(D^*_\epsilon = \mathcal{P}(Y) \) then it is not really a filter.

7) Concerning 1.7 (\(B^+ \))(\(i \)), note that using this clause in Definition 2.1(\(2 \)) we mean only \(\leq \), that is we may have

\((B^+) \)(\(i' \)) \[(c_{17}) \]

\(\text{if } \beta < \alpha < \alpha^*_\epsilon+1 \text{ then } g_{\beta+1} \leq g_\alpha \text{ mod } D^*_\epsilon \).

Proof. Let \(\mathcal{F}_{\lambda_{\epsilon}}, <_{\lambda_{\epsilon}} \langle w^*_i : i < \text{otp}(\mathcal{F}_{\lambda_{\epsilon}}, <_{\lambda_{\epsilon}}) \rangle \) as well as \(\bar{e} \) be as in the proof of 1.5.

We try to choose \(\langle \alpha^*_\psi, \bar{g}|(\alpha^*_\psi+1), D^\xi, D^\xi = (D^\xi_\epsilon : \xi < \varepsilon) \rangle \) by induction on \(\varepsilon < \text{hrtg}(\mathcal{P}(Y)) \) such that the relevant parts of \((B^+) \) holds, but if \(\emptyset \in D^*_\epsilon \) then \(g_{\alpha^*_\psi} \) is not well defined, so \(\bar{g}^\xi = \bar{g}|\alpha^*_\psi = \langle g_\alpha : \alpha < \alpha^*_\psi \rangle \) and \(\langle A^*_\psi/D^*_\psi : \xi < \varepsilon \rangle \)

\[(d_{12}) \]

\(^6 \text{But see 2.16.} \)
are determined. Clearly the induction has to stop before $\text{hrtg}(\mathcal{P}(Y))$, otherwise the sequence $(A_{\xi}/D_{\xi}^* : \xi < \text{hrtg}(\mathcal{P}(Y)))$ gives a contradiction to the definition of $\text{hrtg}(\mathcal{P}(Y))$.

Case A: $\varepsilon = 0$

Let $\alpha_{\varepsilon}^* = 0$, $D_{\varepsilon}^* = D_\varepsilon$ and g_0 is constantly zero.

Case B: ε a limit ordinal

Let $\alpha_{\varepsilon}^* = \bigcup \{\alpha_{\xi}^* : \xi < \varepsilon\}$, $D_{\varepsilon}^* = \bigcup \{D_{\xi}^* : \xi < \varepsilon\}$ and $g_{\varepsilon}^* = \alpha_{\varepsilon}^*$ is naturally defined and define $g_{\alpha_{\varepsilon}^*} \in \Pi \tilde{\delta}$ by, for $s \in Y$ letting $g_{\alpha_{\varepsilon}^*}(s) = \bigcup \{g_{\alpha^*}(s) + 1 : \xi < \varepsilon\}$ if it is $< \delta_\alpha$ and 0 otherwise. As in Case 3 of the proof of 1.5, clause $(B)^+ (i)$ is satisfied, because $\text{hrtg}(\mathcal{P}(Y)) > \varepsilon$.

Case C: $\varepsilon = \zeta + 1$ and $\emptyset \notin D_{\varepsilon}^*$

Let (note that $A_{\alpha,n}$ in (b) below is almost equal to $Y \setminus A_{\xi}^*$ but we know only $A_{\xi,n}/D_{\xi,n}^*$):

\[(*)_1 (a) \quad J_{\varepsilon, 1} = \{A \subseteq Y : A \in (D_{\xi}^*)^+ \text{ and } D_{\xi}^* + A \text{ is } \aleph_1\text{-complete}\} \]

\[(b) \quad U_\varepsilon = \{a : a = \langle (A_{\alpha,n}, \xi_n) : n < \omega \rangle = \langle (A_{\alpha,n}, \xi_n, n) : n < \omega \rangle, \]

for every $n < \omega$ we have $\xi_n < \xi$ and $D_{\xi+1}^* = D_{\xi}^* + (Y \setminus A_n)$ and $A_n := \cup \{A_n : n < \omega\} \not\equiv g \mod D_{\xi}^*$;

so this concerns witnesses to D_{ξ}^* being not \aleph_1-complete and $A_{\varepsilon} \in D_{\varepsilon}^* \subseteq \mathcal{P}(Y)$

\[(c) \quad J_{\varepsilon, 2} = \{A \subseteq Y : A \in (D_{\xi}^*)^+ \text{ and for some } a \in U_\varepsilon \text{ we have } A \subseteq A_{\varepsilon}\}. \]

Note

\[(*)_2 (a) \quad J_{\varepsilon, 1} \cup J_{\varepsilon, 2} \subseteq (D_{\xi}^*)^+ \text{ is dense, i.e. if } A \in (D_{\xi}^*)^+ \text{ then for some } B \subseteq A, \]

we have $B \in J_{\varepsilon, 1} \cup J_{\varepsilon, 2}$

\[(b) \quad \text{if } \ell \in \{1, 2\}, A \in J_{\varepsilon, \ell}, B \subseteq A \text{ and } B \in D_{\xi}^+ \text{ then } B \in J_{\varepsilon, \ell}. \]

[Why Clause (a)? Because we are assuming that D_ε is \aleph_1-complete in (A)(b). For clause (b), just read the definition of $J_{\varepsilon, \ell}$.

Now we try to choose f_α (or pedantically f^*_α if you like) by induction on α such that:

\[(*)_3 (a) \quad f_\alpha \in \prod \tilde{\delta} \]

\[(b) \quad \beta < \alpha_{\varepsilon}^* \Rightarrow g_{\beta} < f_\alpha \mod D_{\xi}^*; \text{ follows by } (c) \text{ and } (d) \]

\[(c) \quad \beta < \alpha \Rightarrow f_{\beta} < f_\alpha \mod D_{\xi}^* \]

\[(d) \quad f_0 = g_{\alpha_{\varepsilon}^*}. \]

Arriving to $\alpha, f = (f_{\beta} : \beta < \alpha)$ has been defined. Let $J_{\xi, \alpha} = \{A \subseteq Y : A \in (D_{\xi}^*)^+ \text{ and } f \text{ has an upper bound in } (\Pi \tilde{\delta}, <_{D_{\xi}^* + A})\}$.

Sub-case CI: $(J_{\xi, 1} \cup J_{\xi, 2}) \cap J_{\xi, \alpha}^*$ is dense in $((D_{\xi}^*)^+, \supseteq)$.

First, as in the proof of 1.5, (that is, choosing f_α in the inductive step in the proof) we can define f_α such that:

\[(*)_4 (a) \quad f^*_\varepsilon = \langle f_{\varepsilon, \alpha}^* : f_{\varepsilon, 0} : A \in J_{\xi, 1} \cap J_{\xi, \alpha}^* \rangle \]
(b) $f^1_{\zeta,\alpha,A} \in \Pi^\delta$

(c) $f^\ast_{\zeta,\alpha,A}$ is a $<D_{\zeta}^\ast + A$-upper bound of $\{g_{\alpha_{\zeta}}\} \cup \{f_{\beta} : \beta < \alpha\}$.

Second, we consider $a \in U_\zeta$ hence $A_a \in J_{\zeta,2}$.

Let

- for $u \subseteq \alpha_{\zeta}^\ast$ let $g[u] \in \Pi^\delta$ be defined by $g[u] = \sup\{g_{\beta}(s) + 1 : \beta \in u\}$ if this supremum is $< \delta_s$ and 0 otherwise.

Note that

(*)$_5$ (a) if $A \subseteq Y, A = \emptyset \mod D^\ast_{\zeta}$ then for every $f \in \Pi^\delta$ for some finite $v \subseteq \alpha_{\zeta}^\ast$ we have $\{s \in A : -(\exists \beta \in v)(f(s) < g_{\beta}(s))\} = \emptyset \mod D$.

(*)$_6$ if $u_1 \subseteq u_2$ are from $[\alpha_{\zeta}^\ast]^{< \emptyset}$ then $g[u_1] \leq g[u_2] \mod D$.

[Why? By induction on ζ using (B)$^+ (k),(l)$ recalling $D_0^\ast = D_\ast$ or see the proof of 2.13. Clause (b) is proved by $\text{id}_{\zeta < \theta}(\delta) \subseteq \text{id}_{\zeta < \theta}(\delta) \subseteq \text{dual}(D_\ast)$]

(*)$_7$ let $f^2_{\zeta,a} = (f^2_{\zeta,a,a} : a \in U_\zeta)$ be defined by: $f^2_{\zeta,a,a} = g[u]$ where $u = u_a \in \mathcal{J}_\lambda$ is the $<_{\lambda}$-first $u \in \mathcal{J}_\lambda$ for which $g[u] \in \Pi^\delta$ is a $<D_{\zeta}^\ast + A_a$-common upper bound of $\{g_{\alpha_{\zeta}}\} \cup \{f_{\beta} : \beta < \alpha\}$.

Note that

(*)$_8$ if $a_1, a_2 \in U_\zeta$ and if $A_{a_1}/D_{\zeta}^\ast = A_{a_2}/D_{\zeta}^\ast$ then $f^2_{\zeta,a_1,a} = f^2_{\zeta,a_2,a}$.

Having defined $(f^1_{\zeta,a,A} : A \in J_{\zeta,1} \cap J_{\zeta,0}^\ast)$ and $(f^2_{\zeta,a,a} : a \in U_\zeta \cap J_{\zeta,0,1}^\ast)$, of course, they all depend on ζ, too; we define $f_a \in \mathcal{Y}$ by

(*)$_9$ $f_a(s)$ is: the supremum below it if it is $< \delta_s$ and zero otherwise, where the supremum is $\sup((f^1_{\zeta,a,A}(s) + 1 : A \in J_{\zeta,1} \cap J_{\zeta,0}^\ast) \cup \{f^2_{\zeta,a,a}(s) + 1 : a \in U_\zeta\})$.

So indeed $f_a \in \Pi^\delta$ as in the end of the proof of 1.5 and is as required for a as $\text{hrtg}(J_{\zeta,1} \cap J_{\zeta,0}^\ast) \leq \text{hrtg}(\mathcal{P}(Y) / D_s) \leq \theta$ and $\text{hrtg}((f_{\zeta,a,a} : a \in U_\zeta)) \leq \text{hrtg}((A_a : a \in U_\zeta)) \leq \text{hrtg}(\mathcal{P}(Y)) \leq \theta$ because of (*)$_8$ (so even $\text{hrtg}(\mathcal{P}(Y) / D_{\zeta}^\ast)$ suffices; note that we have used $(B)^+ (c)(\beta)$.

Sub-case C2: $(J_{\zeta,1} \cap J_{\zeta,2}) \cap J_{\zeta,0}^\ast$ is not dense in $((D_{\zeta}^\ast)^+, \leq)$.

Let $A_\ast \in (D_{\zeta}^\ast)^+$ be such that $A \subseteq A_\ast \wedge A \in (D_{\zeta}^\ast)^+ \Rightarrow A \notin (J_{\zeta,1} \cup J_{\zeta,2}) \cap J_{\zeta,0}^\ast$.

For some $\ell \in \{1, 2\}$ we have $A_\ast \in J_{\zeta,\ell}$.

As in the proof of 1.5, necessarily \(\alpha \) is a limit ordinal of cofinality \(\geq \theta \). Now as in Sub-Case C1 we define \(f_1^1 = (f_1^1 : A \in (J_{\xi,1} \cup J_{\xi,2}) \cap J_{\xi,0}^* \rangle \) satisfying: \(f_1^1 : A \in (J_{\xi,1} \cup J_{\xi,2}) \cap J_{\xi,0}^* \rangle \) is a \(<D_{\xi,A^*}^* \)-upper bound of \((f_\beta : \beta < \alpha) \). Let \(f^* \in \Pi \delta \) be defined by

\[
\begin{align*}
&\bullet f_*(s) the supremum below if it is \(< \delta \) and is zero otherwise, where sup\{f_1^1, A \in (J_{\xi,1} \cup J_{\xi,2}) \cap J_{\xi,0}^* \rangle \}.

As in the proof of 1.3 there is \(\beta < \alpha \) such that \(\gamma \in [\beta, \alpha) \Rightarrow \{s \in Y : f_\gamma(s) < f_*(s)\} = \{s \in Y : f_\beta(s) < f_*(s)\} \mod D_{\xi}^*.

Let \(\beta^* \) be the minimal such \(\beta \). Lastly, let \(A_\xi = \{s \in Y : f_\beta(s) \geq f_*(s)\} \) and \n
\[
\begin{align*}
&\bullet E_\xi = E_\xi + A_\xi \\
&\bullet D_{\xi} = D_{\xi}^* + (Y \setminus A_\xi) \\
&\bullet \alpha_\xi^* = \alpha_\xi^* + \alpha \\
&\bullet g_\beta = f_\beta for \beta \in (\alpha_\xi^*, \alpha_\xi^*) \\
&\bullet g_\alpha^* = f_*.
\end{align*}
\]

Case D: None of the above.

So \(Y \in D_{\xi}^* \) and we are done. \(\square \)

Discussion 1.9. In the results above, is \(\langle cf(\alpha_\xi^* : \varepsilon < \varepsilon(\star)) \rangle \) without repetitions? Certainly this is not obviously so and it seems we can maneuver \(\delta \) and the closure operation to be otherwise. But can we replace \(\alpha^* \) and \(\phi \) to take care of this? Clearly if \(\forall \subseteq \alpha_\xi^*(\varepsilon) \) satisfies \(\varepsilon < \varepsilon(\star) \Rightarrow \alpha_\xi^* + 1 = \sup(\forall \cap \alpha_\xi^* + 1) \) then we can replace \(\phi \) by \(\forall \setminus \forall \) so by renaming get \(\alpha' = \langle \text{otp}(\forall \cap \alpha_\xi^*) : \varepsilon \leq \varepsilon(\star) \rangle \). So \(\text{cf}(\alpha_\xi^*) = \text{cf}(\alpha_\xi^*) \Leftrightarrow \text{cf}(\alpha_\xi') = \text{cf}(\alpha_\xi') \) and if we have \(\text{cf}(\alpha_\xi') = \text{cf}(\alpha_\xi') \Rightarrow \alpha_\xi^* + 1 - \alpha_\xi^* = \alpha_\xi^* + 1 - \alpha_\xi^* \) we can change \(\phi \) to get desired implication. So if \(AC(\varepsilon(\star)) \) holds we are done but we are not assuming it. In this case we also get \(\langle \alpha_\xi^* : \varepsilon < \varepsilon(\star) \rangle \) is a sequence of regular cardinals.
§ 2. More on the pcf theorem

§ 2(A). When the Cofinalities are Smaller.

Definition 2.1. 1) We say \(x = (Y, \delta, \theta, \epsilon(*) , \delta^\ast, D^\ast, E^\ast, f) \) is a pcf-system or a pcf-system for \(\delta \) or for \((\Pi \delta , \prec_D)\) when they are as in \((B)^+\) of 1.7, with \(f \) here standing for \(g \) there; so \(\delta = (\delta : s \in Y) , \delta_s \) a limit ordinal; now 2.3 below apply, we will use \(D_x = (D^\ast_x : \epsilon < \epsilon_x) \) similarly for \(f, D_x = D^\ast_0 \); let \(\epsilon(x) = \epsilon_x \).

2) Above we say is “almost a pcf-system” if we demand \(\delta \) here standing for \(\delta \) there; so \(\delta = (\delta : s \in Y) , \delta_s \) a limit ordinal; now 2.3 below apply, we will use \(D_x = (D^\ast_x : \epsilon < \epsilon_x) \), similarly for \(f, D_x = D^\ast_0 \); let \(\epsilon(x) = \epsilon_x \).

3) Above we say \(x \) is a pcf-system or a pcf-system for \(\delta \) if we demand \(\delta \) here standing for \(\delta \) there; so \(\delta = (\delta : s \in Y) , \delta_s \) a limit ordinal; now 2.3 below apply, we will use \(D_x = (D^\ast_x : \epsilon < \epsilon_x) \), similarly for \(f, D_x = D^\ast_0 \); let \(\epsilon(x) = \epsilon_x \).

Observation 2.2. If \(\theta, Y, D \) and \(\delta = (\delta : s \in Y) \) satisfies clause \((A)\) of 1.7, then there is a pcf-system \(x \) for \((\Pi \delta, \prec_D)\) with \(0_x = \theta \).

Proof. By 1.7.

Observation 2.3. Let \(x = (Y, \delta, \theta, \epsilon(*) , \delta^\ast, D^\ast, E^\ast, f) \) be as in 1.7 (with \(f \) instead of \(g \)) or Definition 2.1(2).

1) \((\Pi \delta, \prec_D)\) has a cofinal well orderable set, in fact, of cardinality \(|\alpha^\ast_2(*)| \).

2) Assume \(f \in \Pi \delta \) and for \(\epsilon < \epsilon(*) \) we let \(\beta_\epsilon = \min(\beta : \beta \in [\alpha^\ast_2(\epsilon),\alpha^\ast_{2+1}(\epsilon)] \cap f < f_\beta \ (mod \ (E^\ast_{2+1})) \) then:

(a) \(\beta_\epsilon \in [\alpha^\ast_2(\epsilon),\alpha^\ast_{2+1}(\epsilon)] \) is well defined hence \(\langle \beta_\epsilon : \epsilon < \epsilon(*) \rangle \) is well defined

(b) for some finite \(u \subseteq \epsilon(*) \) we have \(f < \sup\{f_\beta : \beta \in u\} \)

(b)\(^+\) moreover \(\langle f_\beta_x : \epsilon \in u \rangle \) is \(\delta \)-uniformly definable from \(f \) and \(\delta \) and \(D^\ast_0 \) (equivalently, \(f \) and \(x \)).

Proof. 1) By (2).

2) Easy; e.g.

Clause (b):

Let \(\epsilon \leq \epsilon_x \) be minimal such that

\[(*) \quad \epsilon = \epsilon_x \quad \text{for some finite } u \subseteq [\epsilon, \epsilon_x] \quad \text{we have } f < \max\{f_\beta_x : \zeta \in u\} \mod E_{x,\epsilon} \]

Now \(\epsilon \) is well defined because \(\epsilon_x \) is a successor ordinal and \(\langle f_\beta_x : \beta < \alpha^\ast_{\epsilon(*)} \rangle \) is cofinal in \((\Pi \delta^\ast, \prec_D, x, \epsilon_x - 1)\) and so \(u = \{\beta_\epsilon(*) - 1\} \) is as required.

If \(\epsilon = \zeta + 1 < \epsilon_x \) and \(u \) is as in \((*) \) the set \(Z = \{s \in Y : f(s) < \max\{f_\beta(x) : \zeta \in u\} \mod E_{\zeta + 1}\} \) repeat the argument for \(\epsilon = \epsilon_x - 1 \).

Lastly, if \(\epsilon = 0 \) then we are done.

Discussion 2.4. 1) In 2.3, we may restrict ourselves to \(N_1 \)-complete filters only, so replace \(\epsilon_x \) by \(\{\epsilon < \epsilon_x : E^\ast_\epsilon \text{ is } N_1 \text{-complete}\} \).

2) Similarly for \(\theta \)-complete.
3) Recall that with choice or just AC_Y, the ideal $\text{cf} - \text{id}_\theta(\delta)$ is degenerate: if, for transparency, θ is regular, then $\text{cf} - \text{id}_\theta(\delta) = \{X \subseteq Y : (\forall s \in X)[\text{cf}(\delta_s) < \theta] \}$.

We have dealt with $(\prod \delta_s, <_D)$ when $D \supseteq \text{cf} - \text{fil}_\theta(\delta)$ and $\theta \geq \text{hrtg}(\text{Fil}_{\kappa_1}(Y))$; we try to lower the restriction on the cardinal θ with some price.

Definition 2.5. Assume D is a filter on Y, $\alpha(\ast)$ an ordinal and $\tilde{f} = (f_\alpha : \alpha < \alpha(\ast))$ is a \leq_D-increasing sequence of members of ^YOrd and $f \in ^Y\text{Ord}$ is not $<_D$-below any f_α. We define

\[\text{id}(f, \tilde{f}, D) = \{Z \subseteq Y : \text{there is } \alpha < \alpha(\ast) \text{ such that } Z \subseteq \{s \in Y : f(s) < f_\alpha(s)\} \mod D\}.\]

Claim 2.6. For Y, D, \tilde{f}, f as in Definition 2.5 above.
1) $\text{id}(f, \tilde{f}, D)$ is an ideal on Y extending dual(D).
2) f is a $\leq_{\text{id}(f, \tilde{f}, D)}$-upper bound of \tilde{f}.
3) For $A \in D^+$ we have: $\mathcal{P}(A) \cap \text{id}(f, \tilde{f}, D) \subseteq \text{dual}(D)$ iff f is a \leq_{D+A}-upper bound of f.
4) If $A \in D^+ \cap \text{id}(f, \tilde{f}, D)$ then for every $\alpha < \alpha(\ast)$ large enough, $f < f_\alpha \mod (D + A)$.
5) $\text{id}(f, \tilde{f}, D) = \text{id}(f', \tilde{f}, D)$ when $f' \in ^Y\text{Ord}$ and $f' =_D f$.

Proof. Straightforward. \(\square_{2.6}\)

Notation 2.7. 1) Given $\delta = (\delta_s : s \in Y)$ and set u of ordinals let $h_{[u, \delta]}$ be the function h with domain Y such that: $h(s)$ is $\text{sup}(u \cap \delta_s)$ when it is δ_s, is 0 when otherwise.
2) For $\bar{u} = (u_s : s \in Y)$ we define $h_{[\bar{u}, \delta]}$ similarly.

Claim 2.8. If we assume \oplus below and (A) + (B) then (C) where:

\[\oplus\]
\begin{itemize}
 \item[(a)] $\text{Ax}_{4, \theta} \land |Y| \leq \aleph_0$
 \item[(b)] κ, θ \quad the union of any sequence of length $\leq \kappa$ of sets of ordinals each of cardinality $< \theta$ is of cardinality $< \theta$
 \item[(c)] $\kappa \leq \theta$
\end{itemize}

\[\text{(A)}\]
\begin{itemize}
 \item[(a)] $\delta = (\delta_s : s \in Y)$ is a sequence of limit ordinals
 \item[(b)] D is a filter on Y
 \item[(c)] $\delta \supseteq \text{cf} - \text{fil}_\theta(\delta)$
 \item[(d)] $\mu = \cup \{\delta_s : s \in Y\}$
\end{itemize}

\[\text{(B)}\]
\begin{itemize}
 \item[(a)] δ_s is an ordinal and
 \begin{itemize}
 \item[(a)] $f_\alpha \in \prod_{s \in Y} \delta_s$ for $\alpha < \delta_s$
 \item[(b)] if $\alpha < \beta < \delta_s$ then $f_\alpha < f_\beta \mod D$
 \end{itemize}
 \item[(c)] $f = (f_\alpha : \alpha < \delta_s)$ is not cofinal in $(\prod_{s \in Y} \delta_s, <_D)$
 \item[(d)] $\text{cf}(\delta_s) > \kappa$
\end{itemize}

\[\text{(C)}\]
\begin{itemize}
 \item[(a)] we can θ-uniformly define (or (θ, κ)-uniformly define) g such that:
 \begin{itemize}
 \item[(a)] $g \in \prod_{s \in Y} \delta_s$ is not $<_D$-below any f_α
 \end{itemize}
\end{itemize}
(b) if \(g \leq D g' \in \prod_{s \in Y} \delta_s \) then \(\text{id}(g', f, D) = \text{id}(g, f, D) \).

Remark 2.9. 1) See more in 2.13.
2) Do we uniformly have the parallel of: some stationary \(S \subseteq S^\lambda_\kappa \) belongs to \(\dot{I}_\kappa \)? See later.
3) We can weaken 2.8 \(\oplus (a) \) to \(\text{Ax}_{4, \mu, \theta, \kappa} \land \text{hrt}(Y) \leq \kappa \), (see 0.5(3)) the proof is written for this.

Proof. Stage A:
Let \((\mathcal{J}, <_+) \) witness \(\text{Ax}_{4, \mu, \theta, \kappa} \).
We try to choose \(g_\varepsilon, w_\varepsilon, Y_\varepsilon \) by induction on \(\varepsilon < \kappa \) such that:

\[(a) \ g_\varepsilon \in \prod_{s \in Y} \delta_s \]
\[(b) \ u_\varepsilon \subseteq \mu \text{ has cardinality } < \theta \text{ and } \zeta < \varepsilon \Rightarrow u_\zeta \subseteq u_\varepsilon \]
\[(c) \ Y_\varepsilon = \{ s \in Y : \delta_s = \sup(\delta_z \cap u_z) \} = \emptyset \text{ mod } D \]
\[(d) \text{ if } s \in Y \setminus Y_\varepsilon \text{ and } \zeta < \varepsilon \text{ then } g_\varepsilon(s) < g_\varepsilon(s) \]
\[(e) \ g_\varepsilon = h_{[u_\varepsilon, s]}, \text{ see } 2.7 \]
\[(f) \text{ if } \varepsilon \text{ is a limit ordinal then:} \]
\[\quad \text{• } u_\varepsilon = \cup \{ u_\zeta : \zeta < \varepsilon \} \]
\[\quad \text{• } g_\varepsilon(s) \text{ is } \cup \{ g_\zeta(s) : \zeta < \varepsilon \} \text{ when it is } < \delta_s \text{ is 0 when otherwise} \]
\[(g) \text{ if } \varepsilon = \zeta + 1 \text{ then} \]
\[(\alpha) \ g_\varepsilon \text{ is not as required on } g \text{ in clause (C)} \]
\[(\beta) \ u_\varepsilon \text{ is the } <_+ \text{-first } u \in \mathcal{J} \text{ extending } u_\zeta \text{ such that if we define } g_\varepsilon \]
\[\text{as } h_{[u_\varepsilon, s]} \text{ then it is a counterexample like } g' \text{ there} \]
\[(h) \text{ if } \varepsilon = 0, g_\varepsilon \text{ is defined from } u_\varepsilon \text{ similarly.} \]

Now we shall finish by proving in stages B, C below that:

\[* \] if we have defined \(g_\varepsilon \) but \(g_\varepsilon \) is as required on \(g \) in clause (C)(b), then we are done; this is obvious
\[*_2 \] we can choose \(g_\varepsilon \) if \(\varepsilon = 0 \)
\[*_3 \] if \(\langle g_\zeta : \zeta < \varepsilon \rangle \) was defined we can define \(g_\varepsilon \) if \(\varepsilon \) is a limit ordinal \(< \kappa \)
\[*_4 \] if \(\varepsilon = \zeta + 1 \) and \(\langle g_\zeta : \zeta \leq \zeta \rangle \) has been defined and \(g_\zeta \) fail (C), then we can define \(g_\varepsilon \)
\[*_5 \] we cannot succeed to choose \(\langle g_\varepsilon : \varepsilon < \kappa \rangle \).

Stage B:
Proof of \(* \): Toward contradiction assume \(\langle g_\varepsilon : \varepsilon < \kappa \rangle \) is well defined.

For \(\varepsilon < \kappa \) and \(\alpha < \delta_\varepsilon \) let \(Z_{\varepsilon, \alpha} = \{ s \in Y : g_\varepsilon(s) \geq f_\alpha(s) \} \) and let \(Y_\varepsilon = \{ s \in Y : \sup(u_\varepsilon \cap \delta_s) = \delta_s \} \), it belongs. By clauses (b),(c),(d) of \(\Box \) we have \(Z_{\varepsilon_1, \alpha} \setminus Y_{\varepsilon_1} \subseteq Z_{\varepsilon_2, \alpha} \setminus Y_{\varepsilon_2} \) for \(\varepsilon_1 < \varepsilon_2, \alpha < \delta_\varepsilon \).

Now by clause (g)(f) of \(\Box \), if \(\varepsilon = \zeta + 1 \) then for some \(\alpha < \delta_\varepsilon, Z_{\varepsilon, \alpha} \not\subseteq \text{id}(g_\varepsilon, f, D) \) and let \(\alpha_\gamma \) be the minimal such \(\alpha \). As \(cf(\delta_\varepsilon) > \kappa \) by Clause (B)(d) of the assumption,
\[\gamma := \cup \{ \alpha_\zeta : \zeta < \kappa \} \text{ is } < \delta_\varepsilon. \]
Now the sequence \((Y_\varepsilon : \varepsilon < \kappa)\) is \(\subseteq\)-increasing sequence of subsets of \(Y\) because \(\langle u_\varepsilon : \varepsilon < \kappa \rangle\) is by \(\exists f\) and the choice of \(Y_\varepsilon\). By \(\oplus(a)\) we have \(\text{hrtg}(Y) \leq \kappa\).

Also clearly

- \(Z_{c+1} \not\in Z_{c+1} \mod D\) and \(Y_\varepsilon\).

Together \(\langle Z_{c+1}, Z_{c+1} \setminus Y_\varepsilon : \varepsilon < \kappa\rangle\) is a sequence pairwise distinct non-empty of subsets of \(Y\), so recalling \(\text{hrtg}(Y) \leq \kappa\), this is contradiction to the first paragraph.

Stage C:

Obviously \((\ast)_1\) holds.

Proof of \((\ast)_2\): we can choose \(g_\varepsilon\) for \(\varepsilon = 0\)

- \(1\) there is \(g'' \in \prod_{s \in Y} \delta_s\) such that \(\alpha < \delta_s \Rightarrow g'' \notin f_\alpha \mod D\).

[Why? By clause (B)(c) of the claim. For such a \(g''\) there is \(u \in \mathcal{J}_s\) such that \(\text{Rang}(g'') \subseteq u\) because \(\text{hrtg}(G) \leq \kappa\) and \(\mathcal{J}_s\) witness \(\mathbf{AX}_{\mu, \theta, \kappa}\). We choose \(u \in \mathcal{J}_s\) as the \(<_\varepsilon\)-first such \(u \in \mathcal{J}_s\) and choose \(g \in \prod_{s \in Y} \delta_s\) as \(\langle h_{[u, \varepsilon]} \rangle\)]

So

- \(2\) \(g \in \Pi \delta_s\)
- \(3\) \(g'' \leq g \mod D\).

[Why? Recall \(\text{cf} - \text{fil}_{< \delta}(\delta) \subseteq D\) by the assumption \((A)(c)\), hence \(\{s \in Y : \sup(u \cap \delta_2) \leq g(s)\}\) as \(|u| < \theta\) being a member of \(\mathcal{J}_s\). So as \(\langle s \in Y : g''(s) \in \delta_s \cap u \rangle\) we have \(g'' \leq g \mod D\) by the choice of \(u\).]

- \(4\) \(\alpha < \delta_s \Rightarrow g \notin f_\alpha \mod D\).

[Why? By \((\ast)_3\) and by the choice of \(g''\) in \((\ast)_1\).]

Proof of \((\ast)_3\): limit \(\varepsilon\)

We define \(g_\varepsilon\) as in \(\exists f\), as it is as required because \(D \supseteq \text{cf} - \text{fil}_{< \delta}(\delta_2)\) by clause \((A)(c)\) of the assumption recalling \(\oplus(b)\) of the assumption.

Proof of \((\ast)_4\):

So we are assuming \(g_\varepsilon\) is well defined but fail \((C)(b)\) as exemplified by \(g\), let \(u \in \mathcal{J}_s\) be \(<_\varepsilon\)-minimal such that \(\text{Rang}(g) \subseteq u\) and let \(h = h^*_{[u, \delta]} + 1\), that is \(s \in Y \Rightarrow h(s) = h^*_{[u, \delta]}(s) + 1 < \delta_s\) hence \(g < J h_{[u, \delta]}\mod D\) and we can finish easily as in the proof of \((\ast)_2\).

\(\square_{2.8}\)

Observation 2.10. \(\text{cf}(\alpha(\ast)) \geq \theta\) when

(a) \(D\) is a filter on \(Y\)
(b) \(\delta = \langle \delta_s : s \in Y \rangle\) is a sequence of limit ordinals
(c) \(D \supseteq \text{cf} - \text{fil}_{< \delta}(\delta)\)
(d) \(\bar{f} = \{f_\alpha : \alpha < \alpha(\ast)\}\) is \(<_D\)-increasing sequence of members of \(\prod_{s \in Y} \delta_s\)
(e) \(\bar{f}\) has no \(<_D\)-upper bound in \(\prod_{s \in Y} \delta_s\)
Proof. The proof splits into cases proving the existence of a $<_D$-upper bound $g \in \prod s \in Y \delta_s$.

Case 1: $\alpha(*) = 0$

The constantly zero function $g : Y \to \{0\}$ can serve.

Case 2: $\alpha(*)$ is a successor ordinal

Let $\alpha(*) = \beta + 1$ and g be defined by $g(s) = f_\beta(s) + 1$. As each δ_s is a limit ordinal, $g \in \prod s \in Y \delta_s$.

Case 3: $\text{cf}(\alpha(*)) \in [\aleph_0, \theta]$

Let $w \subseteq \alpha(*)$ be cofinal of order type $\text{cf}(\alpha(*))$, let $u_s = \{f_\alpha(s) : \alpha \in w\}$ for $s \in Y$ so $\bar{u} := \langle u_s : s \in Y \rangle$ is well defined and $s \in Y \Rightarrow |u_s| < \theta$, hence $g = h_{[u, \theta]}$ is as required.

Claim 2.11. If \boxplus below holds then $\oplus_1 \Rightarrow \ominus_2 \Rightarrow \ominus_3$ where

\ominus_1	$\text{Ax}_{\mathcal{A}, \mu, \theta, \kappa}$
\ominus_2	there is a well orderable set cofinal in $(\Pi \delta, <_D)$, defined (μ, θ, κ)-uniformly
\ominus_3	we can (θ, κ)-uniformly define a $<_D$-increasing sequence $f = \langle f_\alpha : \alpha < \alpha(*) \rangle$ in $(\prod s \in Y \delta_s, <_D)$ with no upper bound

where

\begin{itemize}
 \item [(a)] D a filter on Y
 \item [(b)] $\bar{\delta} := \langle \delta_s : s \in Y \rangle$ is a sequence of limit ordinals
 \item [(c)] $D \supseteq \text{fil}_{<\theta}(\bar{\delta})$
 \item [(d)] $\text{hrtg}(Y) \leq \kappa \leq \theta$
 \item [(e)] $\mu = \sup\{\delta_s : s \in Y\}$.
\end{itemize}

Proof. $\oplus_1 \Rightarrow \ominus_2$

Let $(\mathcal{F}, <_*)$ witness $\text{Ax}_{\mathcal{A}, \mu, \theta, \kappa}$. For every $g \in \Pi \delta, \text{Rang}(g)$ is a subset of $\sup\{\delta_s : s \in Y\} = \mu$ of cardinality $\leq \kappa$ and $\text{hrtg}(Y) \leq \kappa$ hence there is $u \in \mathcal{F}$ such that $\text{Rang}(g) \subseteq u$, so $|u| < \theta$ hence easily $g \leq h_{[\bar{u}, \theta]} \mod D$, see 2.7. Hence $\mathcal{F} = \{h_{[\bar{u}, \theta]} : u \in \mathcal{F}\}$ is a cofinal subset of $(\Pi \delta, <_D)$ and being $\leq_{\text{ro}} \mathcal{F}_*$ it is well orderable. Recall $h_{[\bar{u}, \theta]} \in \Pi \delta$ is defined by $h_{[\bar{u}, \theta]}(s)$ is $\sup(\delta_s \cap u)$ if $\sup(\delta_s \cap u) < \delta_s$ and is zero otherwise.

Now $\mathcal{F} \subseteq \Pi \delta$ being cofinal in $(\Pi \delta, <_D)$ follows from $D \supseteq \text{fil}_{<\theta}(\bar{\delta})$ that is $\boxplus(c)$.

$\ominus_2 \Rightarrow \ominus_3$

Let $\mathcal{F} \subseteq \Pi \delta$ be cofinal in $(\Pi \delta, <_D)$ and $<_*$ well order \mathcal{F}. We try to choose f_α by induction on the ordinal α. If $f^\alpha = \langle f_\beta : \beta < \alpha \rangle$ has no $<_D$-upper bound we are done so assume $g \in \prod s \in Y \delta_s$ is a $<_D$-upper bound of f^α so there is $h \in \mathcal{F}$ such that $g \leq_D h$, so h is a $<_D$-lub of f and let $f_\alpha \in \mathcal{F}$ be the $<_*$-minimal such h. Necessarily for some α we cannot continue so f^α is as promised. \qed_{2.11}
Conclusion 2.12. In clause (C) of 2.8 letting

- \(Z_\alpha = \{ s \in Y : g(s) < f_\alpha(s) \} \) for \(\alpha < \delta_* \)
- \(\mathcal{W} = \{ \alpha < \delta_* : Z_\beta \neq Z_\alpha \mod D \text{ for every } \beta < \alpha \} \)
- \(D_\alpha = D + Z_\alpha \text{ for } \alpha < \delta_* \)
- \(\alpha_* = \min\{ \alpha \leq \delta_* : \text{if } \alpha < \delta_* \text{ then } Z_\alpha \in D^+ \} \)

we can add:

(c) \(\langle Z_\alpha / D : \alpha \in \mathcal{W} \rangle \) is \(\subseteq \)-increasing and \(\alpha_* < \delta_* \)

(d) for \(\alpha \in \mathcal{W} , \alpha \geq \alpha_* , D_\alpha \) is a filter on \(Y \) and \(\langle f_{\alpha + \gamma} : \gamma < \delta_* - \alpha \text{ and } \alpha + \gamma \in \mathcal{W} \rangle \) is \(< D_* \)-increasing and cofinal in \(\Pi \bar{\delta} \)

(e) \(\langle D_\alpha : \alpha \in \mathcal{W} \setminus \alpha_* \rangle \) is a strictly \(\subseteq \)-increasing sequence of filters of \(Y \) and \(0 \in \mathcal{W} \)

(f) \(\bar{f} \) is \(< D_* \)-increasing and \(< D_* \)-cofinal in \(\Pi \bar{\delta} \) if \(\alpha \in \mathcal{W} \setminus \alpha_* \)

(g) if \(\text{cf}(\delta_*) \geq \text{hrtg}(\mathcal{P}(Y)) \) then \(\mathcal{W} \) has a last member.

Proof. Easy or see [Sh:g, Ch.II, §2]; but we elaborate.

Clause (c): The sequence is \(\subseteq \)-increasing as \(\bar{f} \) is \(< D \)-increasing and \(\alpha_* < \delta_* \) as otherwise \(\bar{f} \) is \(< D \)-cofinal in \(\Pi \bar{\delta} \), (by (C)(a),(b)) and this contradicts (B)(c).

Clause (d): \(D_\alpha \) is a filter as by clause (c), \(\alpha \geq \alpha_* \Rightarrow Z_\alpha \in D^+ \) and obviously \(Z_\alpha \in D^+ \Rightarrow (D_\alpha \text{ is a filter}) \).

Clause (e): By the definition of \(\mathcal{W} \).

Clause (f): By (C)(a),(b) and clause (d).

Clause (g): Obvious. \(\square_2.13 \)

Theorem 2.13. Assume \(\mathbb{H}(a) - (e) \) of 2.11.

1) If \(\text{cf}(\theta) \geq \text{hrtg}(\mathcal{P}(Y)) \) and \(\text{AX}_{4,\bar{\delta},0,\bar{\theta},s} \), then the conclusion (B)\(^+\) of Theorem 1.7 holds, i.e. there is a pcf-system \(\mathbf{x} \) such that \(Y_\mathbf{x} = Y, \bar{\delta}_\mathbf{x} = \bar{\delta}, \bar{\theta}_\mathbf{x} = \theta \).

2) Without the extra assumption \(\text{cf}(\theta) \geq \text{hrtg}(\mathcal{P}(Y)) \), we get only a weakly pcf-system (see 2.1(3)) \(\mathbf{x} \) with \(\theta = \text{hrtg}(\mathcal{P}(Y)) \).

3) If there is a weak pcf-system \(\mathbf{x} \) for \(\delta \) then \(\Pi \bar{\delta} \) has a subset which is a well-orderable and \(\text{cf}(\mathbf{x}) = \delta \), and is cofinal in \((\Pi \bar{\delta}, < D_\delta) \).

4) If \((\Pi \bar{\delta}, < D) \) has a well-orderable cofinal subset and \(\text{hrtg}(\mathcal{P}(Y)) \leq \theta \) then there is a pcf-system \(\mathbf{x} \) for \(\delta \) with \(D_\delta = D \).

5) If \((\Pi \bar{\delta}, < D) \) has a well-ordered cofinal subset and \(\theta \geq \text{hrtg}(Y) \) then there is a pcf-system \(\mathbf{x} \) for \(\delta \) with \(D_\delta = D, \alpha_{\delta + 1} > \alpha_{\delta, s} \) increasing.

Remark 2.14. Note that later parts of 2.13 supercede earlier ones. One reason for this is that it may be better to avoid using inner models, developing the set theory of \(ZF + DC + \text{Ax}_4 \) per se.

Proof. 1) We repeat the proof of 1.7, but using 2.8, 2.10, 2.13, i.e. in case (c) after (*)_3 we use [Sh:E62]. But a simpler argument is that by 2.11 we know that there is a \(< D \)-cofinal subset \(\mathcal{F} \) of \(\Pi \bar{\delta} \) which is well orderable, say by \(<_s \).

2) Like part (1).

3) Let \(\mathbf{x} \) be a weak pcf-system for \((\Pi \bar{\delta}, < D) \), clearly \(\{ f_{x,\alpha} : \alpha < \alpha_{\delta; s}(\mathbf{x}) \} \) is a well orderable subset of \(\Pi \bar{\delta} \) and so is \(\mathcal{F} = \{ \text{max}\{ f_{x,\alpha} : \ell < n \} : \bar{\alpha} = (\alpha_{\ell} : \ell < n) \} \) is a
finite sequence of ordinals \(\langle \alpha_{x,\varepsilon(x)} \rangle \). Hence it suffices to prove that the set \(\mathcal{F} \) is cofinal in \((\Pi\delta,<_D) \).

This means to show that

\[(*) \text{ for every } g \in \Pi\delta \text{ there are } n \text{ and } \alpha_\ell < \alpha_{x,\varepsilon(x)} \text{ for } \ell < n \text{ such that } g < \max\{ f_{x,\alpha_\ell}(s) : \ell < n \} \text{ mod } D_x.\]

For this we prove by induction on \(\varepsilon \leq \varepsilon_x \) that

\[(*) \varepsilon \text{ if } X \in D_{x,\varepsilon} \text{ and } g \in \Pi\delta \text{ then we can find } Z \in D_x \text{ and } n \text{ and } \alpha_\ell < \alpha_{x,\varepsilon} \text{ for } \ell < n \text{ such that } s \in Z \setminus X \Rightarrow g(s) < \max\{ f_{x,\alpha_\ell}(s) : \ell < n \}.\]

This suffices as for \(\varepsilon = \varepsilon_x \) we can use \(X = \emptyset \).

For \(\varepsilon = 0 \) necessarily \(Z := X \) is as required because \(X \in D_{x,\varepsilon} = D_x \).

For \(\varepsilon \) a limit ordinal, if \(X \in D_{x,\varepsilon} \) then for some \(\zeta < \varepsilon, X \in D_{x,\zeta} \) and use the induction hypothesis for \(\zeta \).

For \(\varepsilon = \zeta + 1 \), we are given \(X \in D_{x,\varepsilon} \) and \(g \in \Pi\delta \). By clause \((B)^+(\ell)\) of 1.7 if \(X \in D_{x,\zeta} \) use the induction hypothesis so without loss of generality \(X \notin D_{x,\zeta} \)

hence \(D_{x,\zeta} + (\gamma \setminus X) \) is a filter on \(Y_x \) and it is \(\geq E_{x,\zeta} \). Hence by clause \((B)^+(\ell)\) of Theorem 1.7 there is \(\alpha \in \langle \alpha_{x,\zeta}, \alpha_{x,\zeta+1} \rangle \) such that \(g < f_{x,\alpha} \text{ mod } (D_{x,\zeta} + (\gamma \setminus X)).\)

Let \(X_1 = \{ s \in Y : s \notin X \text{ and } g(s) < f_{x,\alpha}(s) \} \), so \(X_2 \in D_{x,\zeta} + (\gamma \setminus X) \) hence \(X \cup X_1 \in D_{x,\zeta} \) so by the induction hypothesis there are \(n_1 \) and \(\beta_\ell < \alpha_{x,\zeta} \) for \(\ell < n_1 \) and \(Z \in D_x \) such that \(s \in Z \setminus X_2 \Rightarrow g(s) < \max\{ f_{x,\beta_\ell}(s) : \ell < n_1 \}. \)

Let \(n = n_1 + 1 \) and let \(\alpha_\ell \) be \(\beta_\ell \) if \(\ell < n_1, \alpha_\ell = \zeta \) if \(\ell = n_1, \) so \(Z, (\alpha_\ell : \ell < n) \) witness the desired conclusion in \((*)_{\varepsilon}. \) So we can carry the induction and as said above this suffices.

4) Let \(\mathcal{F} \subseteq \Pi\delta \) be well orderable \(<_D \)-cofinal subset so let \(\bar{g} = (g_\alpha : \alpha < \alpha(\bar{g})) \) list \(\mathcal{F}.\)

Case 1: \(Y \subseteq \text{Ord} \)

Let \(V_1 = L[\bar{g}] \) and \(V_2 = V_1[D], \) using \(D \) as a predicate so \(V_1, V_2 \) are transitive models of ZFC and let \(D_2 = D \cap V_2 \in V_2, \) of course, also \(V_2 \models "\theta \text{ a cardinal } > |Y|^\"." \)

In \(V_2 \) we let \(\bar{\lambda} = \langle \lambda_s : s \in Y \rangle \) be defined by \(\lambda_s = \text{cf}(\delta_s)^{V_2}. \) Now if \(a \in V_2 \) is a set of ordinals of cardinality \(< \theta \) then the set \(\{ s : \delta_s > \sup(u \cap \delta_s) \} \) belongs to \(D \) hence to \(D \cap V_2; \) this implies that \(Y_\lambda = \{ s \in Y : \lambda_s \geq \theta \} \) belong to \(D. \) Now apply the pcf theorem in \(V_2 \) on \((\lambda_s : s \in Y_\lambda) \) getting \((J_{<\mu}, Y_\mu : \mu \in b) \) and \((g_{\lambda,\alpha} : \lambda \in b, \alpha < \lambda) \)

where \(a = \{ \lambda_s : s \in Y_\lambda \}, b = \text{pcf}(a)^{V_2}, \) in particular such that

- \(b = \text{pcf}\{ \lambda_s : s \in Y \} \)
- \(Y_\mu \subseteq Y \)
- \(J_{<\mu} \) is the ideal on \(Y \) generated by \(\{ Y_\lambda : \lambda \in b \cap \mu \} \)
- \((g_{\lambda,\alpha} : \alpha < \lambda) \) is a sequence of members of \(\prod_{s \in Y_\lambda} \lambda_s, (J_{<\mu} \setminus Y_\mu)-\text{increasing and cofinal.} \)

We can translate this to get a pcf-system for \((\Pi\delta,<_D) \) in \(V_2 \) hence in \(V.\)

Case 2: \(Y \not\subseteq \text{Ord} \)

We shall show that it essentially suffices to deal with \(\delta \) without repetitions. Note that each \(f \in \mathcal{F} \) or just \(f \) a function from \(Y \) into Ord induces an equivalence relation \(\text{eq}_f \) on \(Y_\lambda : s_1(\text{eq}_f)s_2 \iff f(s_1) = f(s_2) \) and \(\delta_{s_1} = \delta_{s_2}. \) For any equivalence
Claim 2.16. \(V \) is as required.

Proof. Fix \(\varepsilon < \varepsilon_X \), if \(\varepsilon_X = \varepsilon + 1 \) let \(Y_\varepsilon = Y \), so assume \(\varepsilon + 1 < \varepsilon_X \). So for some \(Y \subseteq Y_X \) we have \(D_{X,\varepsilon+1} = D_{X,\varepsilon+1} \cap \varepsilon \) hence \(E_{X,\varepsilon} = D_{X,\varepsilon} + (Y_X \setminus Y) \); and \(f_{X,\alpha_\varepsilon} \) is a \(<D_{X,\varepsilon+1} \)-upper bound of \(f_{X}[\alpha_\varepsilon, \alpha_{X,\varepsilon+1}) \). But \(f_{X}[\alpha_\varepsilon, \alpha_{X,\varepsilon+1}) \) is cofinal in \((\Pi \delta, \leq \varepsilon_X) \) hence we can find \(\beta \in [\alpha_\varepsilon, \alpha_{X,\varepsilon+1}) \) such that \(f_{X,\alpha_\varepsilon+1} < f_{X,\beta} \mod E_{X,\varepsilon} \).

Let \(\beta \) be the minimal such \(\beta \) and easily \(Y_\varepsilon := \{ s \in Y_X : f_{X,\beta}(s) < g_X, \alpha_{X,\varepsilon+1}(s) \} \) is as required.

\(\square_{2.16} \)

Discussion 2.15.

Alternate proof: we can uniformly choose \(\bar{\beta} = \langle f_\alpha : \alpha < \delta_X \rangle \) which is \(\langle D, \leq D \rangle \)-increasing and cofinal in \((\Pi \delta, \leq D) \). We define an equivalence relation \(E \) on \(\bar{\beta} \) by: \(\alpha E \beta \) if \(f_\alpha = f_\beta \); let \(\bar{\beta} = \langle \beta_\zeta : \zeta < \zeta_X \rangle \) list \(\alpha < |\bar{\beta}| : \alpha = \min(\alpha/E) \) in increasing order and let \(\zeta : |\bar{\beta}| \to \zeta_X \) be \(\zeta(\alpha) = \min\{ \zeta : \alpha < \beta_\zeta \} \).

Let \(\xi = \langle \xi_\zeta : \zeta < \zeta_X \rangle \) where \(\xi_\zeta = \langle \min\{ \xi : \alpha < \beta_\zeta \} \rangle \) for \(\alpha \in |\bar{\beta}| \) let \(\bar{g}_\alpha(\xi_\zeta) = \gamma \) if for some \(s \in Y_X \) we have \(f_\alpha(s) = \gamma \land \xi = \min\{ \min(f_\alpha, s) \} \cap \min(f_\beta, s) \).

Lastly, let \(\bar{R} = \{ (\xi_1, \xi_2) \in \bar{\beta}^2 : \text{for some } s \in Y \text{ for } \ell = 1, 2 \text{ we have } \zeta_1 < \zeta_X, \xi_1 < \xi_1, \xi_2 = \min\{ \min(f_\alpha, s) \} \cap \min(f_\beta, s) \} \). Now we use \(V_1 = L[\delta, \bar{g}, E, \bar{\xi}] \) let \(\bar{D} = \langle \bar{D}_\zeta : \zeta < \zeta_X \rangle, D_\zeta = D_X(e_{\bar{g}_\alpha}) \), \(V_2 = V_1[D_X] \) and for \(\zeta < \zeta_X \) let \(\bar{\lambda}_\zeta = \langle \lambda_\zeta, \xi : \xi < \lambda_\zeta, \lambda_\zeta, \xi = \min\{ \min(f_\alpha, s) \} \cap \min(f_\beta, s) \) when \(\zeta = \min(f_\alpha, s) \) for some appropriate \(s \).

Clearly \(\zeta < \zeta_X \) \(\Rightarrow \zeta < \zeta_X \), as before without loss of generality \(\lambda_{\zeta, \xi} = \min\{ \min(f_\alpha, s) \} \cap \min(f_\beta, s) \) and \(\theta > hrtg(Y) \) by an assumption hence the pcf analysis in \(V_2 \) of \(\Pi \lambda_\zeta \) is O.K.; moreover and \(\{ \lambda_\eta, \xi : \xi < \lambda_\zeta \} \) does not depend on.

Now the analysis for \(\eta \), recalling \(eq_\eta = e_{\bar{g}_\alpha} = e_{\eta, \alpha_\xi} \) is enough.
§ 2(B). Elaborations.

Claim 2.17. Assume $\text{Ax}_{4, \lambda, \theta}$.

For any λ we can θ-uniformly define the following.

1) For $\delta < \lambda$ of cofinality \aleph_0, an unbounded subset e_{δ} of δ of order type $< \theta$.

2) For $\theta = \text{hrtg}(Y), \delta = (\delta_s : s \in Y)$ a sequence of limit ordinals $< \lambda$ of uncountable cofinality satisfying $Y \in \text{cf} - \text{id}_{<\theta}(\delta)$, (see 1.1) a closed $u_s \subseteq \sup\{\delta_s : s \in Y\}, \{\text{c2}\}$ unbounded in each δ_s of cardinality $< \text{hrtg}([\theta_1]^{<\theta})$ where

- $\theta_1 = \min\{|u| : (\forall s)[s \in Y \rightarrow \delta_s = \sup(u \cap \delta_s)]$ is necessarily $< \theta$.

3) For $\delta < \lambda$, an unbounded subset e_{δ} of cardinality $< \text{hrtg}([\text{cf}(\delta)]^{\aleph_0})$.

Proof. 1) See [Sh:835] or as in the proof of (1.4) inside the proof of 1.5.

2) Let $U_\delta = \{u : u \subseteq \sup\{\delta_s : s \in Y\}$ of cardinality $< \theta$ and $u \cap \delta_s$ an unbounded subset of δ_s for every $s \in Y$. By the assumption “$Y \in \text{cf} - \text{id}_{<\theta}(\delta)$” clearly $U_\delta \neq \emptyset$, hence $U_\delta' = \{u \in U_\delta : u$ is closed $\}$ is non-empty. Using cf from 0.6, the set $u_s = \cap\{\text{cf}(u) : u \in U_\delta\}$ has cardinality $< \text{hrtg}([\min\{|u| : u \in U_\delta\}]^{<\theta})$ because

- if $u_n \in U_\delta'$ for $n < \omega$ then $u := \cap\{u_n : n < \omega\}$ belongs to U_δ'.

[Why? Clearly it is a subset of μ of cardinality $< \theta$, being $\subseteq u_0$ and it is closed because each u_n is. But for any $s \in Y$, why is u unbounded in δ_s? Because δ_s has uncountable cofinality

- for some $u \in U_\delta', |u| \leq \theta_1$ and without loss of generality u is closed, so $|u_s| \leq |\text{cf}(u)| \leq \text{hrtg}([\text{cf}(\delta)]^{\aleph_0})$ as promised.

3) By the proof of (1.4) inside the proof of 1.5.

We give a sufficient condition for $<\delta$-eub existence, try to write such that we get the trichotomy.

Claim 2.18. The eub-existence claim:

Assume $\text{Ax}_{4, \theta}$ or just $\text{Ax}_{4, \text{hrtg}(\text{cf})}. \theta$. The sequence f has a $<\delta$-eub (see Definition 0.11(5)), even one θ-uniformly definable from (Y, D, f) when:

- (a) (θ, Y) satisfies clauses (A)(c)(\gamma_1, \delta)$ of 1.5
- (b) D is a filter on Y, so not necessarily \aleph_1-complete
- (c) $f = (f_\alpha : \alpha < \delta)$
- (d) $f_\alpha \in Y \text{ Ord is } \leq D$-increasing
- (e) $\text{cf}(\delta) \geq \theta$ and $\text{cf}(\delta) \geq \text{hrtg}(\prod_{s \in Y} \zeta_s)$ when $\zeta_s < \text{hrtg}(\mathcal{P}(Y))$ for $s \in Y$.

Proof. Toward contradiction assume that the desired conclusion fails. Let $\alpha^*_s = \cup\{f_\alpha(s) : \alpha < \delta\}$ for $s \in Y$ and $\alpha_s = \sup\{\alpha^*_s + 1 : s \in Y\}$. We try to choose g_ζ and $\beta_\zeta < \delta$ by induction on $\zeta < \text{hrtg}(\mathcal{P}(Y))$ when $\zeta < \text{hrtg}(\mathcal{P}(Y))$ such that:

- (a) $g_\zeta \in \prod_{s \in Y} (\alpha^*_s + 1)$
- (b) if $\alpha < \delta$ then $f_\alpha < g_\zeta$ mod D
(c) if $\varepsilon < \zeta$ then $g_\zeta \leq g_\varepsilon \mod D$ and $g_\zeta / D \neq g_\varepsilon / D$

(d) g_ζ and $\beta_\zeta < \delta$ are defined as below.

Clearly impossible as $\text{cf}(\delta) \geq \text{hrtg}(\mathcal{P}(Y))$ by assumption $\mathbb{P}(d)$, so we shall get stuck somewhere. If $\tilde{g}^\zeta = \{g_\varepsilon : \varepsilon < \zeta\}$ is well defined, we let $\tilde{u}_\zeta = \{u_{\zeta,s} : s \in Y\}$ be defined by $u_{\zeta,0} = \{\gamma : \text{for each } \beta < \alpha \text{ and } n \text{ we have } \gamma + n = g_\beta(s) \text{ or } \gamma + n = \alpha_s^*\}$, so $u_{\zeta,0} \subseteq \alpha_s^* + 1$ and $\{u_{\zeta,0}\} \subseteq \aleph_0 + |\zeta|$ even uniformly. Next for $\alpha < \delta$ we let $f_\alpha^\zeta = \prod\{\alpha_s + 1 : s \in Y\}$ be defined by $f_\alpha^\zeta(s) = \min\{u_{\zeta,s} \setminus f_\alpha(s)\}$, clearly well defined and belongs to $\prod\{\alpha_s^* + 1\}$ and is $\leq D$-increasing. Now $\{f_\alpha^\zeta : \alpha < \delta\} \subseteq \prod\{u_{\zeta,s}\}$ so as $\text{cf}(\delta) \geq \text{hrtg}(Y(1 + \zeta)) \geq \text{hrtg}(\prod\{u_{\zeta,s}\})$, necessarily $\langle f_\alpha^\zeta / D : \alpha < \delta\rangle$ is eventually constant. Let $\bar{\beta}_{\zeta,1} = \min\{\beta < \delta : \text{if } \alpha \in (\beta, \delta) \text{ then } f_\alpha^\zeta = f_\beta^\zeta \mod D\}$ so $\alpha < \delta \Rightarrow f_\alpha \leq D f_\beta^\zeta \mod D$ and let $g_{\zeta,1} = f_{\bar{\beta}_{\zeta,1}}^\zeta$. If $g_{\zeta,1}$ is a $<D$-eub of \bar{f} we are done, otherwise the construction will split to cases.

Let $Y_0 = \{s \in Y : f_{\bar{\beta}_{\zeta,1}}^\zeta(s) = 0\}$, $Y_1 = \{s \in Y : f_{\bar{\beta}_{\zeta,1}}^\zeta(s) \text{ is a successor ordinal}\}$ and $Y_2 = \{s \in Y : f_{\bar{\beta}_{\zeta,1}}^\zeta(s) \text{ is a limit ordinal of cofinality } < \theta\}$ and $Y_3 = \{s \in Y : f_{\bar{\beta}_{\zeta,1}}^\zeta(s) \text{ is a limit ordinal of cofinality } \geq \theta\}$, so (Y_0, Y_1, Y_2, Y_3) is a partition of Y.

(3) without loss of generality $Y_1 \in D$, $g_{\zeta,1}$ is not an lub and even $Y_1 = Y$ from some $\ell < 4$.

[Why? For each $\ell < 4$ such that $Y_1 \in D^+$, clearly we can replace D by $D + Y_1$ hence (by the present assumption) a $<D$-Y_1-eub g_ℓ exists; if $Y \not\subseteq D^+$ let g_ℓ be constantly zero. Lastly, $\bigcup\{g_\ell^\ell \mid Y : \ell < 4\}$ as required.]

Case 0: $Y_0 \in D$ so $Y_0 = x$.

Trivial.

Case 1: $Y_2 \in D$ so $Y_1 = Y$.

Define $g_\zeta \in \prod\{\alpha_s + 1\}$ by: $g_\zeta(s) = g_{\zeta,1}(s) - 1$. Clearly it is still a $\leq D$-upper bound of \bar{f} as \bar{f} is $<D$-increasing, and $g_\zeta < g_\varepsilon \mod D$ for every $\varepsilon < \zeta$. Lastly, let $\bar{\beta}_{\zeta} = \bar{\beta}_{\zeta,1}$.

Case 2: $Y_2 \in D$.

Let $\langle e_{\alpha} : \alpha < \alpha_s \rangle$ be as in 2.17(1),(3) for $\alpha < \delta$, then we define $f_{\alpha}^\zeta \in \prod\{\alpha_s + 1\}$ by $f_{\alpha}^\zeta(s) = \min(e_{g_{\zeta,1}(s)} \setminus f_\alpha(s))$ and let $\zeta_\alpha = \text{otp}(e_{g_{\zeta,1}(s)}) < \theta$, this holds by 1.5(3)(iv) (b) in turn holds by $\mathbb{P}(a)$ of the assumption of the claim.

Now as $\text{cf}(\delta) \geq \text{hrtg}(\prod e_{\zeta,1}(s))$ clearly $\langle f_{\alpha}^\zeta / D : \alpha < \delta\rangle$ is eventually constant, so $\beta_{\zeta,2} = \min\{\beta < \delta : \text{if } \alpha \in (\beta, \delta) \text{ then } f_{\alpha}^\zeta / D = f_{\beta}^\zeta / D\}$ is well defined. Let $\bar{\beta}_{\zeta} = \sup\{\beta_{\zeta,2}, \beta_{\zeta,2} + 1 : \varepsilon < \zeta\}$ it is $< \delta, \text{cf}(\delta) > |\zeta|$ and let $g_\zeta = f_{\bar{\beta}_{\zeta,1}}^\zeta$. Clearly $\zeta < \zeta \Rightarrow g_\zeta = f_{\bar{\beta}_{\zeta,1}}^\zeta < \zeta_{\bar{\beta}_{\zeta,1}}^\zeta \leq g_\varepsilon \mod D$, so $(g_\zeta, \bar{\beta}_{\zeta})$ are as required.

Case 3: $Y_3 = Y$.

Let $\bar{f}^\ell = \langle f_{\alpha}^\ell : \alpha < \delta\rangle, f_{\alpha}^\ell \in \prod\{g_{\zeta,1}(s)\}$ defined as $f_\alpha(s)$ if $g_{\zeta,1}(s) < 0$, zero otherwise.

Now $g_{\zeta,1}$ is not a $<D$-eub of \bar{f} hence there is $h \in Y$ Ord such that $h < g_{\zeta,1} \mod D$ and for no $\alpha < \delta$ do we have $h < f_\alpha \mod D$. But h was not canonically
\{d5\} chosen. Clearly the assumption of 2.2, i.e. 1.7 holds with \(Y, \theta, g, f\) here standing for \(Y, \theta, \delta, \bar{f}\) here. So there is a pcf-system \(\mathbf{x}\) with \(Y_\mathbf{x} = Y, \theta_\mathbf{x} = \theta, D_\mathbf{x} = D, f_\mathbf{x} = f\) and \(\delta_\mathbf{x} = g, 1\).

Hence by 2.3(1) we can define a pair \((\mathcal{F}, \prec_*)\) such that \(\mathcal{F} \subseteq \prod_{s \in Y_2} g_{\zeta, 1}(s)\) is cofinal and \(\prec_*\) a well ordering of \(\mathcal{F}\).

So as \(g_{\zeta, 1}\) is not a \(D\)-cub of \(f\) there is \(h \in \mathcal{F}\) witnessing this and let \(h_* \in \mathcal{F}\) be the \(\prec_*\)-first one.

Let

\[
b_{\zeta, 3} = \min \{\beta < \alpha : \text{ if } \alpha \in (\beta, \delta) \text{ then } \{s \in Y : f_\alpha(s) \leq g_\zeta(h_*(s))\} = \{s \in Y : f_\beta(s) \leq h_*(s)\} \mod D + Y_2\},
\]

well defined as before. Lastly, let \(g_\zeta \in \mathcal{Y}_\text{Ord}\) be defined as follows: \(g_\zeta(s)\) is

- \(h_*\) if \(f_{b_{\zeta, 3}}(s) \leq h_*(s)\)
- \(f_{b_{\zeta, 3}}(s)\) if \(f_{b_{\zeta, 3}}(s) > h_*(s)\).

\(\square\)

Theorem 2.19. [Ax\(_{4, \lambda, \bar{\alpha}}\)]

For \(\kappa < \lambda\) let \(X_\kappa = \langle \text{Fil}^1_{\kappa}(\kappa)\rangle\). We can \(\partial\)uniformly define \(\langle (\mathcal{J}_t, \prec_t) : t \in X_\kappa\rangle\) such that:

(a) \(\cup \{\mathcal{J}_t : t \in X_\kappa\} = {}^*\lambda\)

(b) \(\prec_t\) is a well ordering of \(\mathcal{J}_t\)

(c) there is an equivalence relation \(E\) on \(\lambda\) such that:

- (a) \((\lambda)^*/E\) is well ordered
- (b) each equivalence class is of power \(\leq X_\kappa\)

(d) moreover for some \(\bar{g} = \langle g_{\alpha, \bar{\alpha}} : \bar{\alpha} \in X_\kappa, \alpha \in S_\beta\rangle\) and \(\bar{S} = \langle S_\bar{\alpha} : \bar{\alpha} \in X_\kappa\rangle\) and \(\mathcal{F} = \langle \mathcal{F}_\beta : \beta < \beta(*)\rangle\) we have

- (a) \(\beta(*) \leq \text{hrtg}(\alpha(*))\) where \(\alpha(*) = \sup \{\text{rk}_D(\lambda) : D \in \text{Fil}^1_{\lambda}(Y)\}\)
- (b) \(\beta(*) = \cup \{S_\bar{\alpha} : \bar{\alpha} \in X_\kappa\}\)
- (c) \(g_{\alpha, \bar{\alpha}}\) is equal to \((\alpha(*))\)
- (d) \(g_{\alpha_1, \bar{\alpha}_1} = g_{\alpha_2, \bar{\alpha}_2}\) implies \(\alpha_1 = \alpha_2\)
- (e) \(\mathcal{F} = \langle \mathcal{F}_\beta : \beta < \beta(*)\rangle\) is a partition of \(\lambda\)
- (f) \(|\mathcal{F}_\beta| \leq \text{qu} |X_\kappa|\).

Remark 2.20. 1) We may compare with [Sh:835, §1].
2) Recall 0.17(2).

\(\{z24\}\)
Proof. Fix a witness cl of $Ax_{4.1.β}$. For every $η ∈ Fil^4_{α}(Y)$ and ordinal $α$ there is at most one $f ∈ Y(α+1)$ such that f satisfies $η$ so $f|Y \setminus Z_η$ is constantly zero and $D^η_β = \text{dual}(f[f,D^η_β])$, see 0.12, 0.15 if $α = rk_D(f)$; in this case call it $f_{α,η}$ and let $S_{η,α}$ be a set of $α$ such that $f_{α,η}$ is well defined.

So $(f_{η,α} : η ∈ Fil^4_{η}(Y), α ∈ S_{η,α})$ is well defined. For every $f ∈ Y$ and $S_{η,α}$-complete filter D_1 on Y for some $η ∈ Fil^4_{η}(Y)$ satisfying $D_{η,1} = D_1$ and ordinal $α$ we have $f = f_{η,α} \mod D_{η,α}$ (in fact $α = rk_{D_1}(f) < rk_D(λ) ≤ α(1), α(*)$ from (d)) of the Theorem).

Now

\[(*)_1 \text{ for every } f ∈ Y(λ+1) \text{ there is a countable set } Z \subseteq Fil^4_{η}(Y) \text{ such that}
\]

\[\begin{align*}
(α) \text{ } & f \text{ semi-satisfies each } η ∈ Z \\
(β) \text{ } & Y = \cup \{Z_η : η ∈ Z\} \\
(γ) \text{ } & \text{for each } η ∈ Z, \text{ for some } α \text{ we have } f|Z_η = f_{η,α}|Z_η.
\end{align*}\]

[Why? Let $Z = \{Z_η : η ∈ Fil^4_{η}(Y)\}$ and for some $α ∈ S_{η,λ}$ we have $f|Z_η = f_{η,α}|Z_η$. If Y is the union of a countable subset of Z then $Y = \cup \{Z_η : n\}$ for some $\{η_n : n < ω\} ⊆ Fil^4_{η}(Y)$ and we are easily done. If not, $D_1 := \{Z \subseteq Y : Z \text{ includes } Y \setminus \bigcup Z_η \text{ for some } \{η_n : n < ω\} \in Fil^4_{η}(Y) \text{ we have } Z_{n+1} \in Z \text{ for } n < ω \}$ is an \aleph_1-complete filter and we easily get a contradiction.]

Recall $S_{η,λ} = \{α < α(*) : f_{η,α} \text{ well defined}\}$ and by Ax_4 we can find a list $\{η_β : β < β(*)\}$ of $\{η : η ∈ ^ωα(α)\}$, $β(*) < hrtg(α(*)$) and even $β(*) = (β(*))^{α(*)}$.

Now for every $η ∈ X_κ = ^ω(\text{Fil}^4_{η}(Y))$, let $W_η = \{β < β(*) : η_β(n) ∈ S_{η,λ} \text{ for each } n \text{ and } \cup \{f_{η,η_β(n)} : n < ω\} \text{ is a function, in fact one from } Y \text{ to } λ+1\}$.

For $β ∈ W_η$ let $g_η,β$ be $\cup \{f_{η,η_β(n)} : n < ω\}$ and let $S_η = \{β ∈ W_η : g_η,β \notin \{g_η,γ : γ ∈ X_κ \text{ and } γ < β\}\}$.

Note that

\[\begin{align*}
(α) & \text{ } \text{} \\
(β) & \text{ } \text{} \\
(γ) & \text{ } \text{}
\end{align*}\]

Note also that clause (d) of the theorem implies clauses (a),(b); let $X_κ = \{g_{η,α} : α ∈ S_κ\}$ and $<κ = \{(g_{η,α}, g_{η,α}, g_{η,β}) : α < β \text{ are from the set } S_κ\}$ of ordinals.

Also clause (d) implies clause (c) letting $E = \{g_{η,α_1, α_2} : η ∈ X - κ, α_1 ≠ S_η, \text{ for } α_1, α_2 \text{ α_1, 1, 2 \& } α_1 = α_1\}$.

So it is enough to prove clause (d).

Now

- clause (d)(α) holds by the choices of $α(*)$, $β(*)$
- clause (d)(β) should be clear
- clause (d)(γ) holds by (γ), where we have only $β(*) \supseteq \cup \{S_η : η ∈ X_κ\}$, but we can replace $β(*)$ by $\text{otp}(\cup \{S_η : η ∈ X_κ\}$
- clause (d)(δ): $g_{η,β}$ is defined above but where $^ωλ = \{g_{η,α} : η ∈ X_κ, α ∈ S_η\}$.

As said above, if $f ∈ ^ωλ$ by (β) there is $η$ a countable subset $η \subseteq Fil^4_{η}(Y)$ as there, hence for some sequence $\langle η_n, α_n : n < ω\rangle$ we have $η = η_n : n < ω)$ and $f|Z_{η_n} = f_{η_n,α_n}|Z_η$. Hence $η = η_n : n < ω ≤ X_κ$ and for some $γ <
$\beta(*)$ we have $\eta_\delta = (\delta_\alpha : n < \omega)$. So $f = \cup\{f_{\eta_\delta, n, \eta_\delta(n)} \mid \eta_\delta : n < \omega\} = g_{\theta, \beta}$ so $f \in W_\theta$, so $f = g_{\theta, \gamma}$, hence by the choice of S_θ there are $\bar{\delta} \in X_\kappa$ and $\beta^* \leq \gamma$ such that $\beta \in u^*_\gamma$ and $f = g_{\gamma, \beta}$, so we are done

- clause (d)(δ): look again at the choice of S_θ.

$\square_{2.19}$ \{d31\}

Conclusion 2.21. Assume $\text{Ax}_{4,0}$. If $\vartheta \leq \kappa < \mu$ and $\text{hrtg}(\text{Fil}^4_{S_\kappa}(\kappa)) < \mu$. Then the following cardinals are almost equal (as in $[\text{Sh}:955, \S(3A)]$):

(a) $\text{hrtg}(\kappa\mu)$
(b) $\text{wlor}(\kappa\mu)$
(c) α-Depth$_D^+$ $(\kappa\mu) = \sup \{\alpha - \text{Depth}_D^+(\mu): D$ a filter $\}.$

Proof. By 2.19. $\square_{2.21}$ \{d29\}

A drawback of the pcf theorem is the demand $\theta \geq \text{hrtg}(\text{Fil}^4_{S_\kappa}(Y))$ rather than just $\theta \geq \text{hrtg}(\mathcal{P}(Y))$ or even $\theta \geq \text{hrtg}(Y)$. Note: in $[\text{Sh}:b, \text{Ch.XII,\S5}]$ we work to assume just the parallel of $\theta \geq \text{hrtg}(\mathcal{P}(Y))$, i.e. $\text{Min}(\alpha) > 2^{[\alpha]}$ rather than the parallel of $\theta \geq \text{hrtg}(\mathcal{P}(Y))$, i.e. $\text{Min}(\alpha) > 2^{[\alpha]}$ and only in $[\text{Sh}:345]$ we succeed to use just the parallel of $\theta \geq \text{hrtg}(Y)$.

We may try to analyze not $\Pi\bar{\delta}, \bar{\delta} = (\delta_\alpha : s \in Y)$ but rather all $\Pi(\delta|Z), Z \in \mathcal{A}$ simultaneously where $\mathcal{A} \subseteq \mathcal{P}(Y)$, demanding $Z \in \mathcal{A} \Rightarrow \theta \geq \text{hrtg}(\text{Fil}^4_{S_\kappa}(Z))$ but less on $|Y|$; hopefully see $[\text{Sh}:F1303]$.

We may consider $\text{Def} 2.22$. Let $\text{Ax}_{5,F}$ say: if $Y = \kappa \in \text{Card}$ then $\text{Ax}_{5,\kappa,F(\kappa)}$ means that: if $\bar{\delta} = (\delta_\alpha : s \in Y)$ is a sequence of limit ordinals and $D = \text{cf} - \text{fil}_<\delta(\bar{\delta})$ then there is a pcf-system $x_{\bar{\delta}}$ for $(\Pi\bar{\delta}, <_D)$, see 2.13. Moreover, the choice of $x_{\bar{\delta}}$ is $\bar{\delta}$-uniform.

$\text{Def} 2.23$. 1) We say p is a pcf-problem when it consists of:

(a) $\bar{\delta} = \langle \delta_\alpha : s \in Y \rangle$ and $\mu = \sup \{\delta_\alpha : s \in Y\}$ and $\mathcal{A} \subseteq \mathcal{P}(Y)$
(b) D_κ is a filter on Y, it may be $\{Y\}$
(c) $\theta = \theta[Y, \bar{\delta}, D_\kappa] = \theta[Y, \delta, D_\kappa, \bar{\delta}]$ is any cardinal satisfying:
 - $\alpha \leq \mu$ of cofinality $\geq \theta$, see below
 - $\alpha < \theta \Rightarrow \text{hrtg}(\langle [\alpha]^{\kappa_0} \times \bar{\delta} \rangle) \leq \theta$ so $\bar{\delta} < \theta$ and so if Ax_4 then the demand is equivalent to $\bar{\delta} < \theta$ and $\alpha < \theta \Rightarrow [\alpha]^{\kappa_0} < \theta$
 - $\text{hrtg}(\text{Fil}^4_{S_\kappa}(Z)) \leq \theta$ for every $Z \in \mathcal{A}$.

2) For p a pcf-problem let $\bar{\delta}_p = \bar{\delta}, \delta_{p,s} = \delta_s$, etc., if clear from the context p is omitted.
3) For D a filter on Y_p extending D_p let $c\ell_p(D) = c\ell(D, p) = \{A \subseteq Y_p : \text{if } Z \in \mathcal{A}_p \text{ then } A \cup (Y_p \setminus Z) \in D\}$
4) p is nice if $\text{hrtg}(\mathcal{P}(Y)) \leq \theta_p$.

Def 2.24. We say x is a wide pcf system when x consists of (if we omit $(y)(\alpha), (\beta)$, i.e. A_κ we say “almost wide”):

(a) p, a pcf-problem let $D_x = D_p, \theta_x$ so $\theta = \theta_p$, etc.
bol. an ordinal $\varepsilon_x = \varepsilon(x)$

d) $\alpha^* = (\alpha^*_\varepsilon : \varepsilon \leq \varepsilon_x)$ is increasing continuous

e) $D = \langle D_\varepsilon : \varepsilon \leq \varepsilon_x \rangle$ is a continuous sequence of filters on Y except that possibly $D_\varepsilon = \mathcal{P}(Y)$

\[\begin{align*}
\beta) & \quad D_\varepsilon = cf(p(D_\varepsilon)) \\
\gamma) & \quad \text{for limit } \varepsilon, D_\varepsilon = cf(p(\bigcup_{\zeta \varepsilon} D_\zeta))
\end{align*}\]

(f) $D_0 = D_x$ is cf-regular

(g) for each $\varepsilon \leq \varepsilon_x < \theta$ there is $A_\varepsilon \in D_\varepsilon^+$ such that

\[\begin{align*}
(\alpha) & \quad D_{\varepsilon+1} = D_\varepsilon + A_\varepsilon \\
(\beta) & \quad E_\varepsilon = D_\varepsilon + (u \setminus A_\varepsilon) \\
(\gamma) & \quad \text{there are } a_\varepsilon \subseteq \kappa \text{ and } h_\varepsilon \in \prod_{i \varepsilon} u_i \text{ such that } \{ (i, h_\varepsilon(i)) : i \in a_\varepsilon \} \notin D_\varepsilon
\end{align*}\]

- but A_ε is not necessarily unique, only $A_\varepsilon/D_\varepsilon$ is, and of course, also $a_\varepsilon, h_\varepsilon$ are not necessarily unique

(\delta) there is $Z \in \mathcal{A}$ such that $Z \in \text{dual}(D_{\varepsilon+1}) \setminus \text{dual}(D_\varepsilon)$

(h) $f = \langle f_\alpha : \alpha < \varepsilon_x, f_\alpha \in \Pi \delta \rangle$

(i) $f|_{\alpha+1}$ is $\leq D_\varepsilon$-increasing

(j) $f|_{\alpha+1} \alpha_\varepsilon = \leq D_\varepsilon + Z$-cofinal for some $Z \in D_\varepsilon^+$.

\{38\}

Theorem 2.25. Assume $\mathcal{A}_{4, 0}$. Assume \mathcal{P} is a pcf-problem and $\text{hrtg}(\mathcal{A}_\mathcal{P}) \leq \theta_p, \vartheta < \theta_p$. Then there is a wide pcf-system x such that $p_x = p$.

Proof. As in $\S 1$ we try to choose a_ε and $(f_\alpha : \alpha \leq \varepsilon_x), D_\varepsilon, E_\varepsilon$ by induction on ε satisfying the relevant demands. The main point is having chosen $(\alpha_\varepsilon, D_\xi : \xi \leq \zeta), (f_\alpha : \alpha \leq \alpha_\zeta)$, we try to choose for $\varepsilon = \zeta + 1$. So we try to choose f_α for $\alpha > \alpha_\zeta$ by induction on α satisfying the relevant conditions. Arriving to limit α_ζ let $\mathcal{A}_\alpha^1 := \{ Z \in \mathcal{A} : Z \notin \text{dual}(D_\zeta) \}$ and $\mathcal{A}_\alpha^2 := \{ Z \in \mathcal{A}_\alpha^1 : (f_\beta : \beta < \alpha) \text{ has a } < D_\zeta + Z \text{- upper bound in } \Pi \delta \}$. If $\mathcal{A}_\alpha^2 = \emptyset$ we are done. If $\mathcal{A}_\alpha^2 \neq \emptyset$ by $\S 1$ we can define $\langle f_{\alpha, Z} : Z \in \mathcal{A}_\alpha^2 \rangle$ such that $f_{\alpha, Z} \in \Pi \delta$ is an $< D_\zeta + Z$-upper bound of $\langle f_{\beta} : \beta < \alpha \rangle$ and let $f_\alpha \in \Pi \delta$ be defined by $f_\alpha(s) = \sup\{ f_{\alpha, Z}(s) : Z \in \mathcal{A}_\alpha^2 \}$ if $\langle \delta \rangle$ and zero otherwise. As $\vartheta \geq \text{hrtg}(\mathcal{A}_\mathcal{P}) \geq \text{hrtg}(\mathcal{A}_\alpha^2)$, clearly $\beta < \alpha \wedge Z \in \mathcal{A}_\alpha^2 \Rightarrow f_\beta < f_\alpha$ mod $(D_\zeta + Z)$. If $\mathcal{A}_\alpha^2 = \mathcal{A}_\alpha^1 \neq \emptyset$, then f_α is as required as we are assuming $D_\zeta = cf(D_\varepsilon)$. If $\mathcal{A}_\alpha^2 \neq \mathcal{A}_\alpha^1$, let $\alpha_{\varepsilon+1} = \alpha$ and f_α is as required. \(\square_{2.25}\)

\{true\}

$\S 2(C)$. True successor cardinals.

Contrary to our ZFC intuition, without full choice successor cardinals, may be singular. On history we may start with Levy proving $ZF + \"\aleph_1 \text{ is singular}\"$ is consistent and end with Gitik proving $ZF + (\forall \lambda)(cf(\lambda) = \aleph_0$ is consistent, using large cardinals. Note: for two successive cardinals are singular” has quite high consistency strength.

A major open question is whether $ZF + DC + (\forall \lambda)(cf(\lambda) \leq \aleph_1$ is consistent. But when $ZF + DC + \mathcal{A}_{4, 1}$ holds the situation is very different. Also contrary to our ZFC intuition, successor cardinals may be measurable.
For a cardinal to be at true successor is saying it fits our ZFC intuition. In particular, it avoid the two axiomalities mentioned above, and eventually it will enable us to carry various constructions; all this motivates Question 2.27.

We continue the investigation in [Sh:835] of successor of singulars, not relying on [Sh:835].

\textbf{Definition 2.26.} 1) We say λ is a true successor cardinal \textit{when} for some cardinal μ, $\lambda = \mu^+$ and we have a witness \bar{f}, which means $\bar{f} = \langle f_\alpha : \alpha \in [\mu, \lambda) \rangle$ and f_α is a one-to-one function from α into μ.

1A) We say \bar{f} is an onto-witness when each f_α is onto μ, see 2.28(1) below.

2) We say a set $\mathcal{U} \subseteq \text{Ord}$ is a smooth set \textit{when} there is a witness \bar{f} which means that $\bar{f} = \langle f_\alpha : \alpha \in \mathcal{U} \rangle$, f_α is a one-to-one function from α onto $|\alpha|$.

We may naturally ask

\textbf{Question 2.27.} 1) Is there a class of successor of regular cardinals which are true successor cardinal? See 2.28(2).

2) Assume μ is strong limit (i.e. $\alpha < \mu \Rightarrow \text{hrtg}(\mathcal{P}(\mu)) < \mu$) of cofinality \aleph_1, so μ^+ is regular, but assume in addition that μ^{++} is regular $< \text{pp}(\mu)$, see\footnote{generality with weak choice there is a choice to be made, but assuming Ax_4 or so and $\text{cf}(\mu) = \aleph_\gamma$, there is no problem} [Shig, Ch.II]. Is μ^{++} truly successor?

3) Assume μ is strong limit of cofinality \aleph_0 and μ^{+2} is singular, is μ^{-3} a true successor cardinal?

\textbf{Claim 2.28.} 1) If λ is true successor then λ is regular and has an onto-witness (computed uniformly from a witness).

2) $[\text{Ax}_4^{\mu^+}]$ or just $\text{Ax}_4^{\mu^+}$ Assume μ is singular and $(\forall \alpha < \mu)(\text{hrtg}(\langle [\alpha]^{\aleph_0} \times \partial \rangle) < \mu)$. Then μ^+ is a true successor cardinal.

3) $[\text{Ax}_4^\lambda \lor \text{just Ax}_4^\lambda, \beta]$ The set of ordinals $\alpha < \lambda$ such that $|\alpha|$ is singular and $(\forall \beta < |\alpha|)(\text{hrtg}(\mathcal{P}(\beta) \times \partial) \leq |\alpha|)$ is a smooth set of ordinals.

4) For every ordinal $\alpha_\ast, \beta_\ast \in \text{cf}(\partial \cap \mathcal{P}(\text{id}))^{\langle \text{cf}(\alpha_\ast) \rangle}$ (of cofinality \aleph_0):

\textbf{Proof.} Let \mathcal{P} be the classical one-to-one function from $\text{Ord} \times \text{Ord}$ onto Ord such that $\text{pr}(\alpha, \beta) < (\max(\alpha, \beta))^2$ and $\text{pr}(\alpha) = \text{pr}(\partial)$. Let α be the least one such that $\text{pr}(\alpha, \beta) < (\max(\alpha, \beta))$.

1) Let $\bar{f} = \langle f_\alpha : \alpha \in [\mu, \mu^+) \rangle$ witness λ is truly a successor. First define, for $\alpha \in [\mu, \mu^+]$ a function $f_\alpha : \alpha \to \mu$ by $f_\alpha(\beta) = \text{otp}(\text{Rang}(f_\alpha) \cap f_\alpha(\beta))$; obviously it is a one-to-one function from α into μ with range an initial segment; but $\text{Rang}(f_\alpha) = |\alpha| = \mu$ so $\text{Range}(f_\alpha) = \mu$. $\langle f_\alpha : \alpha \in [\mu, \mu^+) \rangle$ is as promised.

Second proving λ is true, by contradiction let \mathcal{U} be such that $\mathcal{U} \subseteq \lambda = \text{sup}(\mathcal{U})$ and $\text{otp}(\mathcal{U}) < \lambda$, so without loss of generality $\leq \mu$. Now we shall combine $\langle f_\alpha : \alpha \in \mathcal{U} \rangle$ to get $|\lambda| \leq \mu$ by getting a one to one function f from λ into $\mu \times \mu$; for $i < \lambda$ let $\alpha_i = \min(\alpha \in \mathcal{U} : \alpha > i)$ and define $f(\alpha) = \text{pr}(\text{otp}(\mathcal{U} \cap f_\alpha(\alpha)))$. So f exemplifies $|\lambda| \leq |\mu \times \mu|$ but the latter is μ, contradiction.

2) By part (3) applied to $\mathcal{U} = [\mu, \mu^+]$.

3) Let $\mathcal{U} \subseteq [\lambda]^{<\partial}$ witness $\text{Ax}_4^\lambda, \beta$ and $< \gamma$ a well ordering of \mathcal{U}. Let $\alpha_\ast = \cup \{\alpha + 1 : \alpha \in \mathcal{U}\}$ let $\mathcal{P} : [\alpha_\ast]^{\aleph_0} \to \alpha_\ast$ be as in 0.6, let $< \gamma$ be a well order \mathcal{U} and let u_β for $\beta < \alpha_\ast$ be defined by

\begin{itemize}
 \item if $\beta = 0$ then $u_0 = \emptyset$
 \item if $\beta = \gamma + 1$ then $u_\beta = \{\gamma\}$
\end{itemize}
• if cf(β) > ℵ₀ then u_β = ∩{cf(v) : v ∈ [u]^{ℵ₀}} : u a club of β
• if cf(β) = ℵ₀ the u_β = v_β ∩ β where v_β is the <_σ-first v ∈ 𝒪 such that β = sup(v ∩ β).

Now choose f_α for α ∈ ℰ_α ∩ α_σ by induction on α using pr_{[α]}.

4) By (star) in the proof of 1.5, in particular, (c)_2 there.

Claim 2.29. 1) If λ = µ⁺ then λ is a true successor iff λ ∈ cf – id_{<(µ⁺)}(λ),
(which means λ ∈ cf – id_{<(µ⁺)}{(α : α < λ)}) iff λ ∈ cf – id_{<γ}{(α : α < λ)} for some γ < λ.
2) When µ is singular, we can add: iff λ ∈ cf_{<µ}{(α : α < λ)}.

Proof. 1) First condition implies second condition:
So assume λ is a true successor, let ⟨f_α : α ∈ [µ, µ⁺)⟩ witness it. For each α < µ⁺ = λ we choose u_α as follows:

Case 1: u_α = α if α < µ

Case 2: α ≥ µ
For any j < µ let u_{α,j} = {β < α : f_α(β) < j}, so ⟨u_{α,j} : j < µ⟩ is ⊆-increasing with union α and [u_{α,j} : j < µ] is ⊆-bounded in α. So assume u_{α,j} is unbounded in α and let j(α) be the minimal such j and u_α = u_{α,j(α)}.
If for every j, u_{α,j} is bounded in α let u_α = sup(u_{α,j}) : j < µ), so easily otp(u_α) ≤ µ. So ⟨u_α : α < λ⟩ witness λ ∈ cf – id_{<(µ⁺)}(λ), i.e. the second condition holds.

Second condition implies third condition:
Trivial.

Third condition implies first condition:
Let γ < λ and let ⟨u_α : α < λ⟩ witness λ ∈ cf – id_{<γ}{(α : α < λ)}; let f_α : γ → µ be one-to-one. Defined a one-to-one function f_α : α → µ by induction on α ∈ [µ, λ), the induction step as in the proof of 2.28(1), the regularity.
2) Lastly, assume µ is singular; obviously the fourth condition implies the third.

Second condition implies the fourth condition:
Let ⟨u_α : α < λ⟩ witness λ ∈ cf – id_{<(µ⁺)}{(α : α < λ)}; let f_α be the unique order preserving function from u_α onto otp(u_α). Let u ≤ µ = sup(u) has order type cf(µ) or just < µ. Let u' be u_α if otp(u_α) < µ and be {β ∈ u_α : f_α(β) ∈ u} if otp(u_α) = u.

The next claim says that quite many partial squares on λ = µ⁺ exists.

Claim 2.30. [AX₄,0] Assume µ is the true successor of µ, θ ≤ κ = cf(µ), θ ≤ θ_1 < µ, θ < θ and α < µ ⇒ hrtg(θ^α) < µ and α < θ = hrtg([α]^θ < θ) < θ_1. Then we can find C = ⟨C_{ε,α} : ε < µ, α ∈ S_ε⟩ such that:
(a) S_ε ⊆ S^λ_{<θ_1} := {δ < λ : cf(δ) < θ}
(b) S^λ_{<θ} ⊆ ∪{S_ε : ε < µ}
(c) C_{ε,α} ⊆ α and C_{ε,α} is closed unbounded in α
(d) β ∈ C_{ε,α} ⇒ C_{ε,β} = C_{ε,α} ∩ β
(e) otp(C_{ε,α}) < θ_1.
Proof. Let $X \subseteq \lambda$ code:

- a witness to "λ is the true successor of μ"
- the set $S_0 := S_{<\theta}^\lambda, S_1 = S_{<\theta_1}^\lambda$
- a witness to $\text{cf}(\mu) = \kappa$
- $\langle e_\alpha : e < \lambda \rangle$ as in (*)$_4$ of the proof of 1.5 so $\alpha \in S_0 \Rightarrow |e_\alpha| < \theta_1$.

So $L[X] \models \text{"λ = μ⁺", }\text{cf}(\mu) = \kappa \geq \theta$ and $\chi < \mu \Rightarrow \chi^{<\theta} < \mu$. If $L[X] \models \text{"μ is singular"}$ by Dzamonja-Shelah [D] we get the result in $L[X]$ and the same \mathcal{C} works in V. $\square_{2.30}$

For more on successor, see [Sh:955, §(3A)] and in [Sh:F1303, 0x=Ls3].

§ 2(D). Covering number.

Definition 2.31. 1) Let $\text{cov}(\lambda, \theta, \leq Y, \sigma)$ be the minimal cardinal χ such that (if no such χ exists, it is ∞ (or not well defined)): there is a set \mathcal{P} of cardinality χ such that:

(a) $\mathcal{P} \subseteq [\lambda]^{<\theta}$

(b) if $f \in \mathcal{P}$ then there is $\mathcal{P}' \subseteq \mathcal{P}$ of cardinality $< \sigma$ such that $\text{Rang}(f) \subseteq \bigcup \{u : u \in \mathcal{P}'\}$.

1A) Writing κ instead "≤ Y" means $f \in \bigcup_{\alpha < \kappa} \alpha \lambda$.

2) If $\sigma = 2$ we may omit it.

3) Writing "≤ θ" instead of θ means θ^+, i.e. $\mathcal{P} \in [\lambda]^{<\theta}$. $\square_{2.32}$

Definition 2.32. 1) We say $([\gamma]^{\theta}, \subseteq)$ strongly9 has cofinality $\leq \chi$ when there is $f = (f_\alpha : \alpha < \alpha_\gamma)$ such that $|\alpha_\gamma| = \chi$ and $f_\alpha : \theta \to \mu$ and for every $u \in [\gamma]^{\theta}$ there is α such that $u \subseteq \text{Rang}(f_\alpha)$.

2) We replace "≤ χ by "χ" when in addition $([\gamma]^{\theta}, \subseteq)$ has cofinality χ. $\square_{2.35}$

Claim 2.33. If $([\gamma]^{\theta}, \subseteq)$ has cofinality χ and θ^{+} is a truly successor then $([\gamma]^{\theta}, \subseteq)$ strongly has cofinality χ. $\square_{2.38}$

Proof. Easy. $\square_{2.33}$

Theorem 2.34. Assume $\text{Ax}_{4,0}, \partial < \theta_*, \theta_Y = \theta(Y) : Y \in \theta_*$ is such that (θ_Y, Y) satisfies the demands on (θ, Y) in 1.5 and $\theta_Y < \theta_*$ and so θ_* is strong limit in the sense $Y \in \theta_* \Rightarrow \text{htrg}(\text{Fil}_Y^\theta(Y)) < \theta_*$, equivalently $\kappa < \theta_* \Rightarrow \text{htrg}(\mathcal{P}(\mathcal{P}(\kappa))) < \theta_*$ (and $\theta_* > \partial$; see 0.17).

1) For all cardinals $\lambda \geq \theta_*$ we have $\text{cov}(\lambda, \leq \theta_*, < \theta_*; 2)$ is well defined (i.e. $< \infty$).

2) Even ∂-uniformly and in some inner model $L[X], X \subseteq \text{Ord}$ we have witness for those covering numbers.

Proof. Let $\lambda_* = \bigcup \{\text{htrg}(\kappa : \kappa < \theta_*\}$

1 (a) let $\langle \mathcal{J}_s, <_s \rangle$ be such that $\mathcal{J}_s \subseteq [\lambda_*]^{<\theta}$ satisfy $(\forall u \in [\lambda_*]^{\aleph_0})$

$(\exists v \in \mathcal{J}_s)[u \subseteq v]$ and $<_*\text{ is a well ordering of } \mathcal{J}_s$.

9without "strongly" we have only $f_\alpha : \gamma_\alpha \to \mu$ where $\gamma_\alpha < \theta^+$
(b) we define cf and $\mathcal{P}_{\lambda_n} \subseteq [\lambda_n]^{<\delta}$, $\langle w^*_n, i < \text{otp}(\mathcal{P}_{\lambda_n}, <\omega) \rangle, \Omega_n$, ε_n as in (3.1) in the proof of 1.5 with κ here standing for Y

there, from $(\mathcal{P}_\kappa, <\omega)$.

So we can choose $F = \langle F^1_\kappa : \kappa < \theta_* \rangle$ where

\[\Box_2 \begin{array}{l}
(a) \ F^1_\kappa \ \text{is a function} \\
(b) \ \text{Dom}(F^2_\kappa) = \{f : f \in \kappa(\lambda + 1) \text{ and } i < \kappa \Rightarrow \text{cf}(f(i)) \geq \theta_\kappa \}
\end{array} \]

\[\Box_3 \begin{array}{l}
\text{for } \kappa < \theta_*, \text{ let } \theta_0(\kappa) = \theta_\kappa \text{ and } \theta_{n+1}(\kappa) := \min\{\sigma : \text{if } \langle u_i : i < \kappa \rangle \text{ is a sequence of sets of ordinals each of cardinality } < \theta_\kappa(\kappa) \text{ then } \sigma > \bigcup_{i<\kappa} u_i\}.
\end{array} \]

\[\begin{array}{l}
\text{Choose } \langle (\mathcal{P}^2_{\kappa,n}, <^2_{\kappa,n}) : \kappa < \theta_* \rangle \text{ by induction on } n, \text{ so } \langle (\mathcal{P}^2_{\kappa,n}, <^2_{\kappa,n}) : n < \omega \text{ and } \kappa < \theta_* \rangle \text{ exists, such that}
\end{array} \]

\[\Box_4 \begin{array}{l}
(a) \text{ if } n = 0 \text{ then } \mathcal{P}^2_{\kappa,n} = \{f^1_\kappa, f^2_\kappa \in \kappa(\lambda + 1) \text{ is constantly } \lambda\}
(b) \text{ if } f \in \mathcal{P}^2_{\kappa,n} \text{ then } f \text{ is a function from } \kappa \text{ into } \{u \subseteq \lambda + 1 : |u| \leq \theta_\kappa(\kappa)\}
\end{array} \]

\[\begin{array}{l}
\text{(c) } <^2_{\kappa,n} \text{ well orders } \mathcal{P}^2_{\kappa,n}
\end{array} \]

\[\begin{array}{l}
\text{(d) if } f \in \mathcal{P}^2_{\kappa,n} \text{ then for } \ell < 4 \text{ we let } g^f_\ell \text{ be the following function;}
\text{its domain is } \kappa \text{ and for } i < \kappa \text{ we let:}
\ell = 0: g^f_\ell(i) = \{\alpha \in f(i) : \alpha = 0\}
\ell = 1: g^f_\ell(i) = \{\alpha \in f(i) : \alpha \text{ is a successor ordinal}\}
\ell = 2: g^f_\ell(i) = \{\alpha \in f(i) : \alpha \text{ is a limit ordinal of cofinality } < \theta_\kappa\}
\ell = 3: g^f_\ell(i) = \{\alpha \in f(i) : \text{cf}(\alpha) \geq \theta_\kappa\}
\end{array} \]

\[\begin{array}{l}
\text{(d)(a) if } f_1, f_2 \in \mathcal{P}^2_{\kappa,n+1}, f_2(i) = \langle \beta : \beta + 1 \in g^i_1 \rangle
\text{(b) if } f_1, f_2 \in \mathcal{P}^2_{\kappa,n} \text{ then for some } f_2 \in \mathcal{P}^2_{\kappa,n+1} \text{ we have } f_2(i) = \bigcup\{\varepsilon : \varepsilon < \alpha, \alpha \in g^i_1 \text{ and } \text{cf}(\alpha) < \theta_\kappa\},
\end{array} \]

\[\begin{array}{l}
\text{(c) if } f_1 \in \mathcal{P}^2_{\kappa,n} \text{ letting } u := \text{otp}(\bigcup\{g^i_1(i) : i < \kappa\}), \text{ i.e. } \zeta = f = \text{otp}(u) < \theta_\kappa, \delta_{f_1} = \langle \delta_{f_1,i} : i < \zeta \rangle \text{ increasing } \delta_{f_1,i} \in u \text{ and } \text{otp}(\delta_{f_1,i} \cap u) = i \text{ then } F^1_{\text{ otp}(u)}(\delta_{f_1}) \subseteq \mathcal{P}^2_{\kappa,n}
\text{(d)(a) } \mathcal{P}^2_{\kappa,n+1} \text{ is minimal under the conditions above}
\text{(b) } <^2_{\kappa,n+1} \text{ is chosen naturally.}
\end{array} \]

We can choose a set X_2 of ordinals such that $\langle \mathcal{P}^2_{\kappa,n} : \kappa < \theta_*, n < \omega \rangle$ belongs to $\mathcal{L}[X_2]$ hence a list $\langle w^*_n : \alpha < \alpha_2(*) \rangle \in \mathcal{L}[X_2]$ of $\text{Rang}(f) : f \in \mathcal{P}^2_{\kappa,n}$ for some $\kappa < \theta_*, n < \omega$ and a list $\bar{u} = \langle u_\alpha : \alpha < \alpha_3(*) \rangle$ of a cofinal subset of $[\alpha_2(*)]^{\delta_0}$ and X_3 such that $X_2, \bar{u} \in \mathcal{L}[X_3]$.
Now for any ordinal $\kappa < \theta_*$ and $f \in {}^\kappa \lambda$ we can choose finite $v_n \subseteq \alpha_2(*)$ by induction on n such that:

\[(*)_n \begin{array}{l}
 (a) \quad \lambda \in \cup\{w^*_\alpha : \alpha \in v_n\} \text{ for } n = 0 \\
 (b) \quad \text{if } i < \kappa, f(i) \notin \cup\{w^*_\alpha : \alpha \in v_n\} \text{ then } \min(\cup\{w^*_\alpha \setminus f(i) : \alpha \in v_n\}) > \min(\cup\{w^*_\alpha \setminus f(i) : \alpha \in v_n\}).
\end{array} \]

So $\langle v_n : n < \omega \rangle$ exists hence $v = \bigcup_n v_n \in L[X_3]$, hence $w = \bigcup_{\alpha \in v} w^*_\alpha \in L[X_3]$ has cardinality $\leq \theta_*$ and includes $\text{Rang}(f)$ because if $i < \kappa \land f(i) \notin \cup\{w^*_\alpha : \alpha \in v\}$ then $\min(\bigcup_{\alpha \in v} w^*_\alpha \setminus f(i)) : n < \omega$ is a strictly decreasing sequence of ordinals. So we should just let $P = \{u \subseteq \lambda : u \in L[X_3] \text{ and } L[X_3] \models \{u\} \leq \theta_* \}$ witness the desired conclusion. $\square_{2.34}$

Conclusion 2.35. Assume Ax_4. If μ is a singular cardinal such that $\kappa < \mu \Rightarrow \theta_* := h\text{rg}(P(\kappa))^+ < \mu$ and $\lambda \leq \kappa$ then for some $\kappa < \mu$ we have: $\text{cov}(\lambda, \mu, \mu, \kappa) = \lambda$.

Proof. Use [Sh:460] in $L[X]$ where $X \subseteq \text{Ord}$ is as in 2.34(2). $\square_{2.35}$

Discussion 2.36. 0) From 2.34, 2.35 we can get also smooth closed generating sequence (see [Sh:430, §6], [Sh:E69] (an earlier version is [Sh:E29]).

1) We would like to get better bounds. A natural way is to fix κ, consider $\theta_1 > \kappa$ and $f : \kappa \to [\lambda]^{<\theta_1}$ and ask for $\mathcal{F} \subseteq \{f : \kappa \to [\lambda]^{<\theta_2} \}$ such that for every $g \in \prod f(i) \cup \{1\} \setminus \{0\}$ and $g_i \in \prod g(i)$ there is $f \in \mathcal{F}$ such that $(\forall i < \kappa)(f(i) \cap [g_i(i), g_n(i)) \neq 0).

2) We can get also strong covering, see [Sh:g, Ch.VII].

3) Can we get something better on μ singular strong limit? a BB?, (BB means black box, see [Sh:309] and in §3, possibly see more in [Sh:F1200].

4) We like to improve 2.34, in particular §(2C), for this we have to improve §(2A).

We would like to replace $\text{Fil}^4_{\kappa_1}(Y)$, i.e. $h\text{rg}((\text{Fil}^4_{\kappa_1}(Y)))$ by $h\text{rg}(P(Y))$ and even $h\text{rg}(Y)$, as done in ZFC in [Sh:345]. We do not know to do this but we try a more modest aim: suppose we deal only with $[Y]^{<\kappa}$ or so. So hopefully in [Sh:F1303], we still have $h\text{rg}((\text{Fil}^4_{\kappa_1}(\kappa)))$ but $h\text{rg}(P(Y))$ only.
§ 3. Black Boxes

There are many proofs in ZFC using diagonalization of various kinds so they seem to depend heavily on choice. Using Ax_4 we succeed to generalize one such method - one of the black boxes from [Sh:309], it seems particularly helpful in constructing abelian groups and modules; see on applications in the books Eklof-Mekler [EM02] and Göbel-Trlifaj [GT12].

The proof specifically uses countable models and Ax_4. Naturally we would like to assume we have only $\text{Ax}_{4,\theta}$. But existing versions implies $\mathcal{P}(\mathbb{N})$ is well ordered and more, whereas $\text{Ax}_{4,\theta}$ does not imply this.

§ 3(A). Existence proof.

Hypothesis 3.1. ZF + DC + Ax_4 [so $\theta = \aleph_1$]

The following is like [Sh:309, 3.24(3)], the relevant cardinals provably exists but may be less common than there: conceivably true successor are only successor of singular strong limit cardinals.

Theorem 3.2. If (A) then (B) where:

(A) (a) $\lambda = \mu^+$ is a true successor
 (b) $\mu = \aleph_\omega$
 (c) $S = \{\delta < \lambda : \text{cf}(\delta) = \aleph_0$ and μ divides $\delta\}$ or just S is a stationary subset of λ such that $\delta \in S \Rightarrow \text{cf}(\delta) = \aleph_0 \wedge \mu < \delta \wedge (\mu|\delta)$
 (d) $\vec{\gamma}^* = (\vec{\gamma}_\delta^* : \delta \in S)$ with $\vec{\gamma}_\delta^* = (\vec{\gamma}_\delta^*_n : n < \omega)$ an increasing ω-sequence of ordinals with limit δ

(B) we can find $w = (\alpha, W, \zeta, h, k) = (\alpha_w, W_w, \zeta_w, h_w, k_w)$ such that (we may denote α_w by $\ell_0(w)$ and may omit it):

(a) $W = (\vec{N}_\alpha) : \alpha < \alpha_w$
 (b) $\vec{N}_\alpha = (N_{\alpha,n} : n < \omega)$ is \prec-increasing sequence of models
 (c) $\tau(N_{\alpha,n}) \subseteq \mathcal{H}(N_\alpha)$ and $\tau(N_{\alpha,n}) \subseteq \tau(N_{\alpha,n+1})$
 (d) $k = (k_\alpha : \alpha < \alpha_w), \bar{k}_\alpha = (k_{\alpha,n} : n < \omega)$ is increasing, let $k_w(\alpha,n) = k(\alpha,n) = k_{\alpha,n}$
 (e) $|N_{\alpha,n}| = |N_{\alpha,n+1}| \cap \gamma_{k(\alpha,n)}$ but $N_{\alpha,n} \neq N_{\alpha,n+1}$
 (f) let $N_\alpha = N_{\alpha,\omega} = \lim(N_\alpha)$, that is, $\tau(N_\alpha,\omega)$ = $\cup\{\tau(N_{\alpha,n}) : n < \omega\}$ and $(N_\alpha,\omega|\tau(N_\alpha)) \supseteq N_\alpha$
 (g) the universe of $N_{\alpha,n}$ is a countable subset of λ

(b) (a) ζ is a function from α_w into S, non-decreasing
 (b) if $\zeta(\alpha) = \delta$ then $\delta = \sup\{\gamma^*_\delta,n : n < \omega\} = \sup(N_\alpha)$
 (c) if $\alpha < \alpha_w$ and $\zeta(\alpha) = \delta \in S$ and $n < \omega$ then $N_{\alpha,n+1}\setminus N_{\alpha,n} \subseteq (\gamma^*_\delta,k(\alpha,n),\gamma^*_\delta,k(\alpha,n)+1)$

(c) if M is a model with universe λ and vocabulary $\subseteq \mathcal{H}(N_\alpha)$ then for stationarily many $\delta \in S$, there is α such that $\zeta(\alpha) = \delta, N_\alpha \prec M$.

Remark 3.3. 1) The existence proof is uniform (that is, \(w \) can be defined from \((\prec_\ast,f) \) where: \(\prec_\ast \) is a well ordering of \([\chi]^{\aleph_0} \) for \(\chi \) large enough and \(f \) is a witness for \(\lambda \) being a true successor. Moreover, also \(\bar{\gamma}^* \) can be chosen uniformly (as well as the witness for \(\lambda \)-being a true successor).

2) We would like to add (A)(e) to the assumption and add (B)(c) to the conclusion of 3.2 where:

\[(A)(e) \quad (\alpha) \quad \bar{C} = \{C_\delta : \delta \in S\} \quad (\beta) \quad C_\delta \subseteq \delta = \text{sup}(C_\delta) \quad (\gamma) \quad \text{otp}(C_\delta) = \omega \quad (\delta) \quad \bar{C} \text{ weakly guess clubs, } \quad \epsilon \quad \{S_\varepsilon : \varepsilon < \lambda\} \quad \text{is a partition of } S \text{ such that } \bar{C} \upharpoonright S_\varepsilon \text{ weakly guess clubs for each } \varepsilon \]

\[(B) \quad (e) \quad N_{\alpha,n+1} \setminus N_{\alpha,n} \text{ is included in } [\gamma^*_{\delta,n} : \gamma^*_{\delta,n+1}], \text{ that is } k_w(\alpha,n) = n. \]

But not clear if (A), is provable in our context. Still, repeating the ZFC proof works in ZF + DC, and gives even “\(\bar{C} \) guess clubs”, i.e. “\(\{\gamma^*_{\delta,n} : n < \omega\} \subseteq C_\delta \)”.

But we ask only for “weakly guess”, see 3.3(2), (A)(e)(\(\delta \)) so using Ax4 just adding AC\(\prec_\ast(N) \) suffice. However, clause (B)(d)(\(\beta \)) is a reasonable substitute.

2) We may strengthen clause (B)(d) by adding:

\[(\gamma) \quad \text{if } \bar{\gamma}(\alpha) = \delta = \bar{\gamma}(\beta) \quad \text{then } N_\alpha \cap \gamma(\delta,0) = N_\beta \cap \gamma(\delta,0) \quad \text{call it } u_\delta. \]

For this in \((\ast)_6\) the partition should be \(\{S_\varepsilon : \varepsilon < \lambda\} \) as \(\varepsilon \) should determine also \(N_\delta \), etc.

3) The use of \(\kappa \) possibly > \(\aleph_1 \) in 3.4 is not necessary for 3.2.

4) Note that in proof we need \(\mu = \mu^{\omega_0} \) for proving \((\ast)_3\). Note that for \((\ast)_6(\alpha),(b),(c)\) we need just “\(\lambda \) is truly successor of \(\mu \)”. To get clause (d) too, it suffices to have \(\mu = \mu^{\aleph_0} \).

5) We may prove also 3.7 inside the proof of 3.2.

Proof. Now

\[\exists_1 \text{ there are } g^0, g^1 \text{ such that } \]

\[(a) \quad g^0, g^1 \text{ are two-place functions from } \lambda \text{ to } \lambda \text{ which are zero on } \mu \]

\[10\text{That is, having } S = \{S_\varepsilon : \varepsilon < \mu\} \text{ for each } \varepsilon \text{ choose the first increasing function } f \in {\omega_\ast \omega} \text{ such that } \langle \gamma^*_{\delta,f(\varepsilon)} : \delta \in S_\varepsilon \rangle \text{ weakly guess clubs.} \]
(b) \((\alpha)\) if \(\alpha \in [\mu, \lambda)\) then \(\langle g^0(\alpha, i) : i < \mu \rangle\) enumerate
\([j : j < \alpha]\) without repetitions

(\(\beta\)) if \(\alpha, i < \lambda\) and \(\alpha < \mu \lor i \geq \mu\) then \(g^0(\alpha, i) = 0\)

(c) \((\alpha)\) \(g^1(\alpha, g^0(\alpha, i)) = i\) when \(i < \mu \leq \alpha < \lambda\)

(\(\beta\)) if \(\alpha < \mu\) and \(i < \lambda\) then \(g^1(\alpha, i) = 0\)

(d) there is \(\gamma_* \in (\mu, \lambda)\) such that for every countable \(u \subseteq \lambda\) closed under
\(g^0, g^1\) there is \(v\) such that:

(\(\alpha\)) \(v \subseteq \gamma_*\) is countable

(\(\beta\)) \(\text{otp}(v) = \text{otp}(u)\)

(\(\gamma\)) \(v \cap \mu = u \cap \mu\)

(\(\delta\)) \(v\) is closed under \(g^0, g^1\)

(\(\varepsilon\)) the (unique) order preserving function from \(u\) onto \(v\) commute
with \(g^0, g^1\)

(\(\zeta\)) we can arrange that \(\gamma_* = \mu + \mu\).

[Why? As \(\lambda\) is truly successor there is no problem to choose \(g^0, g^1\) satisfying clauses \((a), (b), (c)\). On \(\mathcal{U} = \{u \subseteq \mu^+ : u\) countable closed under \(g^0, g^1\}\) we define
an equivalence relation \(E\) by \((d)(\beta), (\gamma), (\varepsilon)\). Now as \(\mu = \mu^\aleph_0, \mathcal{U} / E\) has cardinality \(\mu\) hence recalling \(\lambda\) is regular we can prove that \(\gamma_*\) is as required in \((d)(\alpha) - (\varepsilon)\) exists. In fact, \(\partial\)-uniformly we have a well ordering \(<_\mathcal{U}; \text{without loss of generality} u_1 <_\mathcal{U} u_2 \Rightarrow \sup(u_1) \leq \sup(u_2)\).

To have \(\gamma_* = \mu + \mu\), let \(\tau_*\) be the vocabulary \(\{F_0, F_1\}\) with \(F_0, F_2\) binary function
and let \(M = \{M : M\) is a \(\tau_*\)-model with universe \(|M|\) a countable subset of \(\mu + \mu\)
such that \(\alpha, \beta \in M \cap \mu \Rightarrow F_0(\alpha, \beta) = 0 = F_1(\alpha, \beta)\) and the functions \(F_0^M, F_1^M\)
satisfies the relevant cases of the demands \((a), (b), (c)\) on \(\langle g^0, g^1\rangle\}.

Clearly \(M\) has cardinality \(\mu\) and moreover we can (uniformly) define a list \(\langle M_\varepsilon : \varepsilon < \mu \rangle\) of \(M\).

Let \(i_\varepsilon = \text{otp}(|M_\varepsilon|\setminus \mu)\) and by induction on \(\varepsilon < \mu\) we choose \((h_\varepsilon, \gamma_\varepsilon)\) such that:

\[\text{E1.2 (a)} \quad \gamma_0 = \mu\]

\[\text{E1.2 (b)} \quad \langle \gamma_\varepsilon : \varepsilon \leq \delta \rangle\) is increasing continuous

\[\text{(c)} \quad h_\varepsilon\) is an order preserving function from \(|M_\varepsilon|\setminus \mu\) onto \(|\gamma_\varepsilon, \gamma_{\varepsilon + 1}\rangle\).

Next let \(N_\varepsilon \in M\) be such that \(h_\varepsilon \cup \text{id}|M_\varepsilon|\cap \mu\) is an isomorphism from \(M_\varepsilon\) onto \(N_\varepsilon\).

Now we define the two-place function \(g_0^\varepsilon, g_1^\varepsilon\) from \(\lambda\) to \(\lambda\) as follows

\[\text{E1.3 (a)} \quad \text{if } \varepsilon < \mu \text{ and } \gamma_\varepsilon \leq \alpha < \gamma_{\varepsilon + 1} \text{ then}
\]

\(\text{• if } i \in \text{N}_\varepsilon \cap \mu \text{ then } g_0^\varepsilon(\alpha, i) = F_0^N(\alpha, i)\)

\(\text{• } (g_0^\varepsilon(\alpha, i) : i \in \mu\setminus \text{N}_\varepsilon)\) lists \(\alpha\setminus \text{N}_\varepsilon\) without repetition and is derived from
\((g^0(\alpha, i) : i < \mu)\) and \(N_\varepsilon\) as in the proof of the Cantor-Bendixson theorem (that \(|A| \leq |B| \lor |B| \leq |A| \Rightarrow |A| = |B|)\):

\[\text{(b)} \quad \text{if } \alpha \in [\mu + \mu, \lambda) \text{ then } i < \mu \Rightarrow g_0^\varepsilon(\alpha, i) = g^0(\alpha, i)\]

\[\text{(c)} \quad \text{if } \alpha \in [\mu, \lambda) \text{ and } j < \alpha \text{ then } g_1^\varepsilon(\alpha, j)\) is defined as the unique \(i < \mu\)
\text{such that } g_0^\varepsilon(\alpha, i) = j\)

\[\text{(d)} \quad \text{in all other cases the value is zero.}\]
Now g_0^1, g_1^1 are well defined, just recall $\Theta_1(a), (b), (c)$. So Θ_1 holds indeed.

Clearly

\[(*)_1 \text{ if } u_1, u_2 \subseteq \lambda \text{ are closed under } g^0, g^1 \text{ and } u_1 \cap \mu = u_2 \cap \mu \text{ then } u_1 \cap u_2 \text{ is an initial segment of } u_1 \text{ and of } u_2. \]

Let \mathcal{N} be the set of tuples $(\vec{N}, \vec{\gamma})$ satisfying

\[(*)_2 \]

\[(a) \quad \vec{N} = \langle N_n : n < \omega \rangle \]
\[(b) \quad N_n \text{ is a model with vocabulary } \tau(N_n) \subseteq H(R_0) \]
\[(c) \quad N := \{ N_n : n < \omega \} \text{ is countable with universe } \subseteq \gamma \]
\[(d) \quad \tau(N_n) \subseteq \tau(N_{n+1}) \text{ with } N_n \subseteq N_{n+1} | \tau_n \]
\[(e) \quad \vec{\gamma} = \langle \gamma_n : n < \omega \rangle \text{ is an increasing sequence of ordinals satisfying} \]
\[\cup \{ \gamma_n : n < \omega \} = \cup(\{ n+1 : \alpha \in \cup \{ N_n : n < \omega \} \}) < \gamma \]
\[(f) \quad N_n = (N_{n+1} | \tau(N_n))) | \gamma_n \]
\[(g) \quad \sup(N_n) < \gamma_n = \min(N_{n+1} \setminus N_n) \]
\[(h) \quad N_n \text{ is closed under } g_0, g_1. \]

Recalling $H_{<R_1}(\gamma) = \{ u : u \text{ a countable set such that } u \cap \text{Ord} \subseteq \gamma \text{ and } y \in u \Rightarrow (y) < \aleph_1 \}$. Clearly $\mathcal{N} \subseteq H_{<R_1}(\gamma_\lambda)$ so as $\mu^{\aleph_0} = \mu = |\gamma_\lambda|$, clearly \mathcal{N} is well orderable so (and using parameter witnessing, $Ax_\lambda^4 + \lambda \text{ is a true successor cardinal}$) to uniformize let

\[(*)_3 \]

\[(a) \quad (\vec{N}_\varepsilon, \vec{\gamma}_\varepsilon) : \varepsilon < \mu \) list \mathcal{N}
\[(b) \quad \vec{N}_\varepsilon = \langle N_{\varepsilon,n} : n < \omega \rangle, \vec{\gamma}_\varepsilon = \langle \gamma_{\varepsilon,n} : n < \omega \rangle \]
\[(c) \quad N_\varepsilon = N_{\varepsilon,\omega} := \cup \{ N_{\varepsilon,n} : n < \omega \}, \text{ i.e. } N_\varepsilon = \text{lim}(\vec{N}_\varepsilon). \]

Next

\[(*)_4 \text{ for each } \varepsilon < \mu \text{ let } \mathcal{N}_\varepsilon \text{ be the set of pairs } (\vec{N}, \vec{\gamma}) \text{ such that:} \]

\[(a) \quad \vec{N} = \langle N_n : n < \omega \rangle \]
\[(b) \quad N = \{ N_n : n < \omega \} \text{ is a } \tau(N_\varepsilon)-\text{model} \]
\[(c) \quad N_\varepsilon \text{ is a } \tau(N_{\varepsilon,n})-\text{model with universe } \subseteq \lambda \]
\[(d) \quad \text{there is } h, \text{ an order preserving function from } N_{\varepsilon,\omega} \text{ onto } N \]
\[\text{commuting with } g^0, g^1 \text{ mapping } N_{\varepsilon,n} \text{ onto } N_n, \]
\[\text{(i.e. } h|_{N_{\varepsilon,n}} \text{ is an isomorphism from } N_{\varepsilon,n} \text{ onto } N_n) \]
\[\text{and being the identity on } N_\varepsilon \cap \mu \text{ and mapping } \gamma_{\varepsilon,n} \]
\[\text{to } \gamma_n \]

\[(*)_5 \text{ for } \delta \in S \text{ and } \varepsilon < \mu \text{ let } \mathcal{N}_{\varepsilon,\delta} \text{ be the set of pairs } (N, \gamma) \in \mathcal{N}_\varepsilon \text{ such that} \]
\[\sup \{ \gamma_n : n < \omega \} = \delta \text{ and for clause } (B)(b)(\gamma) \text{ for every } n \text{ for some} \]
\[k, N_{n+1} \setminus N_n \subseteq (\gamma_{\delta,k}, \gamma_{\delta,k+1}) \]

\[(*)_6 \text{ there is a partition } S = \{ S_\varepsilon : \varepsilon < \mu \} \text{ of } S \text{ to stationary sets.} \]

[Why? By Larson-Shelah [LrSh:925].]

\[(*)_7 \text{ there is } \langle \gamma_{\delta}^* : \delta \in S \rangle \text{ such that each } \gamma_{\delta}^* \text{ is an increasing } \omega\text{-sequence with limit } \delta. \]

[Why? By Ax_4.]
there is, (in fact as in all cases in this proof) uniformly definable, a sequence
\((\tilde{N}_\alpha, \tilde{\gamma}_\alpha, u_\alpha) : \alpha < \alpha(*)\) and function \(\tilde{\zeta} : \alpha(*) \to S\) such that:

(a) \(\tilde{\zeta}\) is non-decreasing
(b) \((\tilde{N}_\alpha, \tilde{\gamma}_\alpha) \in N_{\varepsilon, \tilde{\zeta}(\alpha)}\) when \(\tilde{\zeta}(\alpha) \in S_\varepsilon\), moreover
(b') if \(\varepsilon < \mu\) and \(\delta \in S_\varepsilon\) then \{\((\tilde{N}_\alpha, \tilde{\gamma}_\alpha) : \alpha < \alpha(*)\) satisfies \(\tilde{\zeta}(\alpha) = \delta\) \} list \(N_{\varepsilon, \delta}\)

\((*)_9\) let \(N_{\alpha, \omega} = \cup\{N_{\alpha, n} : n < \omega\}\).

[Why? By \((*)_5, (*)_6\) and using a well ordering of \([\lambda]^{<\mu}\).

Now ignoring clause (c), clauses of (B) should be clear. Lastly, clause (c) holds
by the following Theorem 3.4, in our case \(\kappa = \aleph_1\). \(\Box_{3.2}\)

Theorem 3.4. If (A) then (B) where:

(A) (a)(\(\alpha\)) \(\lambda > \kappa\) are regular uncountable cardinals
(b) \(\alpha < \lambda \Rightarrow |\alpha|^{|\rho_0|} < \lambda\)
(b)(\(\alpha\)) if \(\alpha < \lambda\) then \(\text{cf}([\lambda]^{<\kappa}, \subseteq)\) is \(\lambda\) and \(\text{cf}(\kappa) > \aleph_0\)
(b) \(U_\alpha \subseteq [\lambda]^{<\kappa}\) is well orderable and cofinal (under \(\subseteq\))
(\(\gamma\)) \([U_\alpha \cap [\alpha]^{<\kappa}] < \lambda\) for \(\alpha < \lambda\)
(c) \(M\) is a model with universe \(\lambda\) and vocabulary \(\tau, \tau\) not necessarily
well orderable
(d) if \(\alpha < \kappa\) then \(\lambda > \text{hrtg}(\{N : N\ a\ \tau\text{-model with universe }\alpha;\ may\ add\ that\ some\ order\ preserving\ mapping\ is\ an\ elementary\ embedding\ of\ N\ into\ M\}\))

(B) there is \(\tilde{N}\), uniformly defined from witnesses to (A) such that:
(a) \(\tilde{N} = (N_\eta : \eta \in \omega^\alpha\lambda)\)
(b) \(\tau(N_\eta) = \tau\)
(c) \(N_\eta\ has\ cardinality\ < \kappa\) and \(N_\eta \cap \kappa\) is an ordinal < \(\kappa\)
(d) \(N_\eta\ is\ an\ elementary\ submodel\ of\ M\)
(e) if \(\nu \in \eta\) then \(N_\nu\ is\ a\ (proper)\ initial\ segment\ of\ N_\eta\)
(f) if \(n < \omega\) and \(\eta, \nu \in [\lambda]^{<\lambda}\) then there is an order preserving function
from \(N_\eta\ onto\ N_\nu\ which\ is\ an\ isomorphism\)
(g) if \(n < \omega, \eta \in [\lambda]^{<\lambda}\) and \(\gamma < \lambda\) then there is \(\nu\ such\ that\ \eta \cup \nu \in [n+1]^{<\lambda}\)
and \(\min(N_\nu \setminus N_\eta) > \gamma\).

Remark 3.5. 1) We may consider adding: \(N_\eta(\eta \in [\lambda]^{<\lambda})\ has\ \Sigma_1\text{-property} \) and use:
\(\text{hrtg}(\text{the set of expansions of } N^*) < \lambda\).
2) The ZFC version of 3.4 is from Rubin-Shelah [RuSh:117].
3) Note that in 3.4 the vocabulary is constant whereas in 3.2 it is not. But the differ-
ence is not serious as in 3.2 the vocabulary is \(\subseteq H(\aleph_0)\) so there is one vocabulary
which is enough to code any other.
4) We may continue in [Sh:F1303, 8.2=Lg19].

Proof. Now

\((*)_0\) without loss of generality \(U_\alpha \subseteq [\lambda]^{<\kappa}\) is closed under countable unions
and initial segments.
[Why? By (A)(a),(b), the point is that the closure retains the properties.]

\((*)_1\) let \(N\) be the set of \(\bar{N}\) such that

\(a\) \(\bar{N} = \langle N_n : n < \omega \rangle\)

\(b\) (\(a\)) \(N_n \prec M\) has cardinality \(\kappa\)

(\(\beta\)) moreover, \(|N_n| \in U_*.\)

\(c\) \(|N_n|\) is an initial segment of \(|N_{n+1}|\)

\(d\) \(N_n\) has cardinality \(\kappa\) and \(N_0 \cap \kappa\) is an ordinal \(\kappa\)

\(c\) \(\tau(N_n) = \tau\)

Now

\((*)_2\) \(N\) is well orderable

[Why? Recall \(U_\ast\) is well orderable so let \(\langle u_\alpha^* : \alpha < \alpha_\ast \rangle\) list it. Now \(N_n\) is determined by \(|N_n|\) (because \(N_n \prec M\) and \(|\alpha_\ast|^\mathbb{R_0}\) is well orderable so we are done.]

\((*)_3\) let \(\bar{N}_\alpha : \alpha < \alpha_\ast\) list \(N\) and let \(\langle u_\alpha^* : \alpha < \alpha_\ast \rangle\) list \(U_\ast.\)

[Why exists? By \((*)_2\) and (A)(b)(\(\beta\)) of the theorem assumption.]

\((*)_4\) (\(a\)) we say \(\bar{N}', \bar{N}'' \in N\) are equivalent and write \(\bar{N}' \cong \bar{N}''\) when

for every \(n\), \(\text{otp}(|N_n'|) = \text{otp}(|N_n''|)\) and \(\text{order preserving function from } |N_n'| \text{ onto } |N_n''|\) is an isomorphism and \(N_0' = N_0''\)

\(b\) let \(N' = \{ \bar{N} : \bar{N} = \langle N_\ell : \ell \leq n \rangle = \bar{N}^\ast(n+1) \text{ for some } \bar{N}^\ast \in N, n \in \mathbb{N}\}\)

\(c\) we define the equivalence relation \(\cong\) on \(N'\) by \(\bar{N}_1 \cong \bar{N}_2\) if \(\bar{N}_1, \bar{N}_2\) has the same length and the parallel of clause (\(a\)) holds

\(d\) \(\cong\) and \(\cong'\) have \(\leq \mu\) equivalence classes.

[Why? E.g. clause (\(d\)) by clause (A)(\(d\)) of the theorem’s assumption.]

\((*)_5\) \(E_1\) is a club of \(\lambda\) where \(E_1 := \{ \delta < \lambda : \delta\) is a limit ordinal such that \(M|\delta \prec M\) and if \(N \in N\) and \(\sup(N_0) < \delta\) then there is \(\bar{N} \in N\) which is \(\cong\)-equivalent to \(N\) with \(N_0' = N_0\) and \(\sup(\cup\{N_n' : n < \omega\}) < \delta\)\].

[Why? Think, noting that we can consider only \(\bar{N}_\alpha : \alpha < \alpha_\ast\) and \(\bar{N}_\alpha\) is not \(\cong\)-equivalent to \(\bar{N}_\beta\) when \(\beta < \alpha\)\].]

\((*)_6\) for \(\bar{N}^\ast \in N\) and \(\bar{N} \in N'\) such that \(N_0 = N_0'\) we define \(\text{rk}(\bar{N}, \bar{N}^\ast) \in \text{Ord} \cup \{-1, \infty\}\) by defining when \(\text{rk}(\bar{N}, \bar{N}^\ast) \geq \alpha\) by induction on the ordinal \(\alpha\) as follows:

\(a\) \(\alpha = 0\): \(\text{rk}(\bar{N}, \bar{N}^\ast) \geq \alpha\) iff \(\bar{N} \cong (\bar{N}^\ast|\ell g(\bar{N}))\)

\(b\) \(\alpha\) \(\text{limit}\): \(\text{rk}(\bar{N}, \bar{N}^\ast) \geq \alpha\) iff \(\beta < \alpha \Rightarrow \text{rk}(\bar{N}, \bar{N}^\ast) \geq \beta\)

\(c\) \(\alpha = \beta+1\): \(\text{rk}(\bar{N}, \bar{N}^\ast) \geq \alpha\) iff for every \(\gamma < \lambda\) there is \(\bar{N}^+\) such that

- \(\bar{N} \subset \bar{N}^+ \in N'\)
- \(\text{rk}(\bar{N}^+, \bar{N}^\ast) \geq \beta\)
- \(\ell g(\bar{N}^+) = \ell g(\bar{N}) + 1\)
- if \(n = \ell g(\bar{N})\) then \(\gamma < \min(\bar{N}_n^+ \setminus N_{n-1})\).

Consider the statement
for some \(\bar{N}^* \in \mathbb{N}, rk((N_0^*), \bar{N}^*) = \infty \).

Why enough? Reflect.

Why true? First

\(\exists_1 E_2 \) is a club of \(\lambda \) where

\[
E_2 = \{ \delta \in E_1 : \begin{array}{l}
\text{if } \bar{N}^* \in \mathbb{N}, \sup(\{ N_n^* : n < \omega \} < \delta, \bar{N} \in \mathbb{N}, \\
\sup(\{ N_\ell^* : \ell < \ell_0(\bar{N}) \} < \delta \text{ and } 0 \leq rk(\bar{N}, \bar{N}^*) < \infty, \text{ then there is no } \\
\bar{N}' \text{ such that } \bar{N} \in \mathbb{N}', \text{rk}(\bar{N}', \bar{N}^*) = rk(\bar{N}, \bar{N}^*) \text{ and } \ell_0(\bar{N}') = \ell_0(\bar{N}) + 1 \\
\text{such that letting } n = \ell_0(\bar{N}) \text{ we have } \min(N_n^* \setminus N_{n-1}) \geq \delta \}
\end{array} \}
\]

[Why? Reflect.]

Now choose

\(\exists_2 \) there is an increasing sequence \(\langle \delta_n : n < \omega \rangle \) of members of \(E_2 \) with limit \(\delta \in E_2 \) (in fact can do this uniformly; e.g. let \(\delta_n \) be the \(n \)-th member of \(E_2 \)).

Lastly, choose \(\langle u_{n, \ell} : n < \omega \rangle \) by induction on \(n \) such that

\[
\begin{array}{l}
(\ast) \ u_{n, \ell} \in U_\ast \cap [\delta_n]^{< \kappa} \\
(\ast\ast) \ u_{n, \ell+1} \text{ is } u_\alpha^* \text{ for the minimal } \alpha \text{ such that } u_\alpha^* \subseteq \delta_n \text{ and it includes } u_{n, \ell+1}^* \cap \delta_n \text{ where } u_{n, \ell+1}^* \text{ is the M-Skolem hull of the set} \\
\{ \bigcup \{ u_{m, k} \cup \{ \delta_m \} : m < \omega, k < \ell \} \cup \{ \alpha : \alpha \leq \sup(\{ u_{n, \ell} \cap \kappa \}) \}, \\
\text{(the Skolem function are just “the first example”; note that the sup(} u_{n, \ell} \cap \kappa \text{) may be zero).}
\end{array}
\]

Let \(u_n = \bigcup \{ u_{n, \ell} : \ell < \omega \} \), \(N_n^* = M \upharpoonright u_n \). Now we are done by \((\ast)(a) \) so \(\exists \) is indeed true and said above is enough.

\[\square_{3,4} \]

\[\text{Conclusion 3.6. Assume } \lambda = \mu^+ \text{ is a true successor and } \mu = \mu^{\aleph_0}. \text{ Then there is an } \aleph_1 \text{-free Abelian group of cardinality } \lambda \text{ such that Hom}(G, \mathbb{Z}) = \{ 0 \}. \]

\[\square_{3,6} \]

\[\text{Proof. Straight by Theorem 3.2 as in [Sh:172] or see in } \S(3B). \]

\[\text{Theorem 3.7. 1) We can strengthen the conclusion of 3.2 by replacing (B)(c) to } \]

\[(B) \ (c)^{+} \text{ if } (N_\eta^* : \eta \in \omega^\omega) \text{ is as in 3.4 (B)(a),(c)-(f) for } \kappa = \aleph_1, \text{ replacing } \\
(B)(b) \text{ by “} \rho(N_\eta) \subseteq H(N_\eta), |N_{n_0}^*| \in [\lambda]^{\leq \aleph_0} \text{” then for stationarily } \\
\text{many } \delta \in S \text{ for some } \alpha \text{ and } \eta \in \omega^\omega \text{ we have } \zeta(\alpha) = \delta \text{ and } \\
\text{ } N_\alpha = (N_{\eta})_n : n < \omega \). \]

\[\square_{3,7} \]

\[\text{2) In 3.2, if } \kappa < \lambda \text{ as in 3.4 and we can replace } (\bar{N}, \bar{\eta}) \text{ by } (N_\eta : \eta \in \omega^\omega) \text{.} \]

\[\text{Discussion 3.8. There is a recent BB helpful in constructing } \aleph_n \text{-free abelian groups, (usually is the product of } n \text{ BB’s); in [Sh:883] it is proved to exist, and using it } \aleph_n \text{-free Abelian group } G \text{ such that Hom}(G, \mathbb{Z}) = \{ 0 \}. \text{ This is continued, G"obel-Shelah [GbSh:920], G"obel-Shelah-Str"ungman [GbShSm:981] use it to deal with modules and in G"obel-Herden-Shelah [GbHeSh:970] use it to construct } \aleph_n \text{-free Abelian group with endomorphism ring isomorphic to a given suitable ring.} \]
We try to generalize a version of it but note that we cannot use BB for λ_{n+1} with $\|N_0\| = \lambda_n$ as in the ZFC-proof. But instead we can use 3.7! See §(3B) below and maybe more in [Sh:F1303].

§ 3(B). Black Boxes with No Choice.

Context 3.9. We assume ZF only (for this sub-section).

Here we try to deal with ZF-proofs.

We now define a black box, BB suitable without choice (even weak ones).

Definition 3.10. 1) For a natural number k we say x is a k-g.c.p. (general combinatorial parameter) when x consists of (so $Y = Y_x$, etc.):

(a) the set Y and the sets X_m for $m < k$ are pairwise disjoint
(b) $\Lambda \subseteq \{\bar{\eta} : \bar{\eta} = (\eta_m : m < k) \text{ and } \eta_m \in \omega(X_m) \text{ for } m < k\}$
(c) $|Y| \leq |X_0|$ and moreover
(c) $f_0 : Y \to X_0$ is one to one
(d) if $m \in (0, k)$ then $|X_m| \geq (\times m)Y$ where $X_m = \prod_{\ell < m} \omega(X_{\ell})$, moreover
(d) $f_m : \{t : t \text{ a function from } X_{c_m} \text{ to } Y\} \to X_m$ is one to one.

1A) We say a k-g.c.p. x is standard when $f_{x,m}$ is the identity for every $m < k$ and we fix $y_0 \in Y$.
2) For x a k-g.c.p. (as above) we say w is a x-BB, i.e. an x-black box when w consists of ($x = x_w$ and):

(a) $\Lambda = \Lambda_w \subseteq \Lambda_x$; (if $\Lambda = \Lambda_x$ we may omit it)
(b) $h : \Lambda \to (k+1) \times Y$, so we write $h(\bar{\eta}) = (h_{m,n}(\bar{\eta}) : m \leq k, n < \omega)$ so $h_{m,n}$ is a function from Λ into Y
(c) for every $g : \Omega \to Y$, see below for some $\bar{\eta} \in \Lambda$ we have
\[
(\forall m < k)(\forall n)(h_{m,n}(\bar{\eta}) = g(\bar{\eta} \restriction (m, n))
\]
(c) notation:
\[
(\alpha) \; \bar{v} = \bar{\eta} \restriction (m, n) \text{ when } \bar{v} = (\nu_{\ell} : \ell < k) \text{ and } \nu_{\ell} \text{ is } \eta_{\ell} \text{ if } \ell < k \text{ and } \ell \neq m \text{ and is } \eta_{\ell} | n \text{ if } \ell = m
\]
\[
(\beta) \; \Omega_m = \{\bar{\eta} \restriction (m, n) : n < \omega \text{ and } \bar{\eta} \in \Lambda_w\} \text{ so } \Omega_m \subseteq \{\bar{\eta} : \bar{\eta} = (\eta_{\ell} : \ell < k) \text{ and for } \ell < k, [\ell \neq m \Rightarrow \eta_{\ell} \in \omega(X_{\ell})] \text{ and } [\ell = m \Rightarrow \eta_{\ell} \in \omega(X_{\ell})]\}
\]
\[
(\gamma) \; \Omega = \bigcup_{m < k} \Omega_m.
\]
3) Above $k_x = k(x) = k, \Omega_w = \Omega, \Omega_{w,m} = \Omega_m$, etc.
4) In Claim 3.13 below we call x simple when it has the form $(a_{\eta,n} : \eta \in \Lambda_x, n < \omega)$ where $a_{\eta,n} \in Z$.

Claim 3.11. 1) For every $Y, y_0 \in Y$ and k there is, moreover we can define a standard k-g.c.p. x_k (with witnesses $f_{x_k,m} = \text{identity})$.
2) For every such x_k we can define an x-BB $w = w_{x_k}$.

\{little\}
\{k10\}
\{k11\}
\{k12\}
\{k11f\}
Why do we not choose $\Lambda_w = \Lambda_x$? We can have $\Lambda_w = \Lambda_x$ using a constant value $\in Y$ for the additional cases, so for definability choose a fixed $y_\ast \in Y$ in 3.10(1), see 3.10(2).

Proof. 1) By induction $m < k$ we define (X_m, f_m) by:

- $X_m = Y$ if $m = 0$
- $X_m = \{ t : t$ is a function from $X_{<m} = \prod_{\ell < m} (X_\ell)$ to $Y \}$ if $m > 0$
- $f_m = \text{id}_{X_m}$ (so is one to one onto).

Now check.

2) Case 1: $k = 1$

Let $\Lambda_w = \omega(Rang(f_0))$, so $\Omega_w = \Omega_{w,0} = \omega(Rang(f_0)), h_{w,n}$ or pedantically $h_{w,0,n}$ is a function from $\Omega_{w,0} = \Lambda_w = \{ \langle \eta : \eta \in \omega(Rang(f_0)) \rangle \}$ and $\Omega_w = \{ \langle \eta : \eta \in \omega(Rang(f_0)) \rangle \}$ and $\langle \eta \rangle \in \Lambda_w \Rightarrow \langle \eta \rangle | (0, n) = \eta|n \rangle$.

We now define $\Lambda_w = \{ \langle \eta \rangle \}$ $\in Y$ for $\eta \in \Lambda_w$.

Obviously clauses (a),(b),(α) of 3.10 holds but what about clause (b)(β) of 3.10?

Now for any $g : \Omega_w \rightarrow Y$ we choose $y_n \in Y$ by induction on n as follows: $y_n = g(\langle f_0(y_\ell) : \ell < n \rangle) = (y_\ell : \ell < n)$. So $\eta := (y_\ell : \ell < \omega) \in \omega(Rang(f_0))$as required.

Case 2: $k > 1$

Let $\Lambda_w = \{ \bar{\eta} : \bar{\eta} = \langle \eta_m : m < k \rangle \} \text{ and } \eta_m \in \omega(Rang(f_0)) \text{ for } m < k \}$ hence $\Omega_m = \Omega_{w,m}$ and $\Omega_\ast = \Omega_w$ are well defined.

We now define $h_{m,n} = h_{w,m,n}$ for $m < k, n < \omega$

\((*)_1 \text{ for } \bar{\eta} \in \Lambda_m = \{ \bar{\eta} | (m,n) : \bar{\eta} \in \Lambda_w \text{ and } n < \omega \} \text{ we let } h_{m,n}(\bar{\eta}) = (f^{-1}_m(\eta_m(n)))|\bar{\eta}|m \text{ if } m > 0 \text{ and } h_{m,n}(\bar{\eta}) = f^{-1}_m(\eta_m(n)) \text{ if } m = 0.\)

Why well defined and $\in Y$? Clearly if $m = 0$ then $h_{m,n}(\bar{\eta}) = f^{-1}_m(\eta_m(n)) \in Y$ as $\eta_m \in \omega(X_0) = Y$ and if $m > 0$ then $\eta_m(n) \in X_m$ hence $f^{-1}_m(\eta_m(n)) \in (X_{<m})Y$ so is a function from $X_{<m} := \prod_{\ell < m} \omega X_\ell$ into Y so $\bar{\eta}|m \in X_{<m}$

\((*)_2 \text{ if } m > 0 \text{ then } t_{m,n} \text{ is the following function from } \{ \bar{\eta}|m : \bar{\eta} \in \Lambda_w \} \times X_{<m} = \prod_{\ell < m} \omega(X_\ell) \text{ to } Y: \text{ if } \bar{\nu} = \langle \nu_\ell : \ell < m \rangle \in \text{ Dom}(t_{m,n}) \text{ then } t_{m,n}(\bar{\nu}) = g(\bar{\nu}) \in Y \text{ where } \bar{\nu} = (\nu_\ell : \ell < k) \text{ is defined by:}

- if $\ell > m$ then $\nu_\ell = \eta_\ell$, is well defined by the induction hypothesis on m
- if $\ell = m$ then $\nu_\ell = (f_m(t_{m,0}), \ldots, f_m(t_{m,n-1})), \text{ well defined by the induction hypothesis on } n$
• if \(\ell < m \) then \(\rho_\ell = \nu_\ell \), given

\((*)_3\) if \(m = 0 \) then \(t_{m,n} = g(\bar{\rho}) \) where \(\bar{\rho} \) is chosen as above except that there is no \(\nu \).

Now check. \(\square_{3.11} \)

Claim 3.13. Let \(x \) be a \(k \)-g.c.p. see 3.10(1) and \(w \) an \(x \)-BB, see 3.10(2) and \(\Lambda = \Lambda_w, \Omega = \Omega_w \), etc. Then \(G \in \mathcal{F}_x \Rightarrow G_{x,0} \subseteq G \subseteq \text{purely} \ G_{x,1} \) where \(\subseteq \text{purely} \) is from 3.16(0) and \(G \in \mathcal{F}_x \) iff some \(z, G = G_{x,z} \), which means:

\(\begin{align*}
(a) & \ G_0 = G_{x,0} = + \{ \mathbb{Z} \rho : \rho \in \Omega \} + \mathbb{Z} \\
(b) & \ G_1 = G_{x,1} = + \{ \mathbb{Q} \rho : \rho \in \Omega \} + \mathbb{Q} z + \{ \mathbb{Q} y : \bar{\eta} \in \Lambda_x \} \\
(c) & \ z = \langle z_{q,n} : q \in \Omega_w \rangle \text{ is a sequence of members of } G_{x,1} \\
(d) & \text{for } \bar{\eta} \in \Lambda \text{ we define } y_{\bar{\eta},n} = y_{z,\bar{\eta},n} \text{ by induction on } n: \quad \\
& \text{ } \bullet \ y_{\bar{\eta},0} = y_{\bar{\eta}} \\
& \text{ } \bullet \ n! y_{\bar{\eta},n+1} = y_{\bar{\eta},n} - \sum_{m=0}^{n} (x_{\bar{\eta}}(m,n+1) + z_{q,n}) \\
(e) & \ G \text{ is the (Abelian) subgroup of } G_1 \text{ generated by } \{ x_{q} : \bar{\eta} \in \Omega \} \cup \{ y_{\eta,m} : \bar{\eta} \in \Lambda, n < \omega \} \cup \{ z \}.
\end{align*}\)

Proof. Straightforward. \(\square_{3.13} \)

Claim 3.14. Let \(k, x, w, \bar{z} \) be as in 3.10, 3.10(2), 3.13.

1) \(G_{x,\bar{z}} \) is almost \(\aleph_k(x) \)-free (see below Definition 3.16 and 3.15) provided that \(\bar{z} \) has the form \(\langle a_{\eta,n} z : \bar{\eta} \in \Lambda_x, n < \omega \rangle \) where \(a_{\eta,n} z \in \mathbb{Z} \) (or less as in [Sh:883]).

2) In Claim 3.13 above, \(G_{x,\bar{z}} \) is definable (in \(ZF \)) from \((x, \bar{z}) \).

3) For \(x \) a \(k \)-g.c.p. and \(w \) an \(x \)-BB such that \(Z \subseteq Y_x \) we can define \(\bar{z} = \bar{z}_w \) such that \(G_{x,\bar{z}} \) (is well defined and) satisfies \(h \in \text{Hom}(G_{x,\bar{z}}, \mathbb{Z}) \Rightarrow h(z) = 0 \).

4) For \(x \) a \(k \)-g.c.p. and \(w \) an \(x \)-BB we can define an \(\aleph_k(x) \)-free Abelian group \(G \) such that \(\text{Hom}(G, \mathbb{Z}) = \{ 0 \} \).

Discussion 3.15. 1) Assume \(H \subseteq G = G_{x,\bar{z}} \) is a subgroup of cardinality \(\aleph_k(x) \)

For each \(t \in G \) let \(Y_t \) be the minimal \(Y_t \subseteq Y_x = \{ x_{\rho} : \rho \in \Omega_x \} \cup \{ z \} \cup \{ y_{\bar{\eta}} : \bar{\eta} \in \Lambda_x \} \)

such that \(t \in \langle \mathbb{Q} x : x \in Y \rangle \). If \(\Omega_x \cup \Lambda_x \) is linearly ordered then \(\cup \{ Y_t : t \in H \} \)

has cardinality \(\aleph_k(x) \) but in general this explains the “weakly” or “almost” in

3.14. However, it may occur that this holds for the “weak” reason say \(\aleph_0 < |A| \) in

Definition 3.16(2).

2) For proving 3.14(1) note that in the definition of \(\mathcal{F}_x \) in [Sh:883] there is a use of choice: dividing the stationary set \(S_m \subseteq \lambda_m \) to \(\lambda_m \) pairwise disjoint sets or just the choice of \(\bar{z} = \langle z_{\eta} : \bar{\eta} \in \Lambda_w \rangle \). However, we can just “glue together” copies of the \(G \) constructed above; i.e. start with \(G \) and for every non-zero pure \(z \in G \),\n
add \(G_z \) of \(h_z : G \rightarrow G_z \) identify \(x_{<z} \) with \(z \), etc.

Definition 3.16. Let \(G \) be a torsion free Abelian group (the torsion free means \(G \models "nx = 0", n \in \mathbb{Z}, x \in G \) implies \(n = 0 \land x = 0z \)).

0) \(H \subseteq G \) if \(H \) is a subgroup \(\subseteq \text{purely} \ G, H \) a pure subgroup of \(G \), means \(H \subseteq G \)

and \(n \in \mathbb{Z} \setminus \{ 0 \}, nx \in G, nx \in H \Rightarrow x \in H \).

1) We say \(G \) is a weakly \(\kappa \)-free when there is a set \(A \) such that the pair \((G, A) \) is \(\kappa \)-free, see part (2).
2) We say \((G, A)\) is \(\kappa\)-free when: \(A \subseteq G\) and \(\text{PC}_G(A) = \text{G}\) and if \(B \subseteq A\) has cardinality \(< \kappa\) then \(\text{PC}(A_2) \subseteq \text{G}\) is a free Abelian group recalling \(\text{PC}_G(A) = \text{g}\) the minimal pure subgroup of \(\text{G}\) which includes \(A\).

3) We say \(G\) is almost \(\kappa\)-free when there is a set \(A\) such that the pair \((G, A)\) is almost \(\kappa\)-free, see part (4).

4) The pair \((G, A)\) is almost \(\kappa\)-free when: \((G, A)\) is \(\kappa\)-free and \(A\) is independent in \(G\) (i.e. \(\sum_{\ell < \kappa} a_\ell x_\ell = 0 \Rightarrow \bigwedge_{\ell < \kappa} a_\ell = 0\) when \(x_0, \ldots, x_n \in A\) without repetition.

Proof. Proof of 3.14:

1) Let \(A = \{x_\rho : \rho \in \Omega_k\} \cup \{z\} \cup \{y_\eta : \eta \in \Lambda_\kappa\}\). It is easy to check that \(A\) is independent in \(G\) (see 3.16(4)) and \(\text{PC}_G(A) = \text{G}\) so for any \(t \in G\) there is a unique finite \(Y_t \subseteq A\) such that \(t \in \text{PC}_G(Y_t), Y_t\) of minimal cardinality.

Now if \(B \subseteq A\) has cardinality \(< \aleph_k\), then also \(Y_B := \{\rho : x_\rho \in B\} \cup \{\eta \mid (m, n) : y_\eta \in B, m < k(\xi)\} \cup \{\eta \mid m < \kappa\}\) has cardinality \(< \aleph_k\).

For some \(Y \subseteq \text{Ord}\) in \(L[Y]\) there is a \(k\)-c.p. \(x_1\) and \(z_1\) such that \(G_{x_1, z_1} \in \text{L}[Y]\) is isomorphic (in \(V\)) to \(\text{PC}_G(B)\). So by [Sh:883] we are done.

2) Should be clear.

3) We shall define uniformly (in \(ZF\)) from \(k\)-g.c.p. \(x\) and \(w\) an \(x\)-BB a sequence \(\bar{z}\) such that the Abelian group \(G = G_{x, \bar{z}}\) satisfies \(h \in \text{Hom}(G, Z) \Rightarrow h(z) = 0\).

For each \(\eta \in \Lambda\) let \(a_\eta = (a_{\bar{w}, \bar{z}, n} : n < \omega) \in "Z\) be defined by:

\[
\begin{align*}
(a) & \quad a_{\bar{w}, \bar{z}, n} \text{ is} \\
& \quad \sum_{m < k} h_{m,n+1}(\eta) \text{ when } \{h_{m,n}(\eta) : m < k\} \subseteq Z \\
& \quad 0 \text{ when otherwise.}
\end{align*}
\]

We shall choose \(b_{\bar{w}, \bar{z}, n} \in Z\) for \(n < \omega\) such that

\[
\text{(*) if } a_{\bar{w}, \bar{z}, n} \neq 0 \text{ then there are no } t_n \in Z\text{ for } n < \omega \text{ such that for every } n(\text{eqn}) n!t_n+1 = t_n - a_{\bar{w}, \bar{z}, n+1} = b_{\bar{w}, \bar{z}, n} - a_{\bar{w}, \bar{z}, n}.
\]

Why then can we choose? We choose \(b_{\bar{w}, \bar{z}, n} \in \mathbb{N} \subseteq Z\) as minimal such that we cannot find \(t_0, \ldots, t_n \in Z\) such that \(t_0 = \{-n, -n-1, \ldots, 0, 1, m, \ldots, n\}\) and for every \(m < n+1\) we have \(Z \models "n!t_{m+1} = t_n - a_{\bar{w}, \bar{z}, m+1} = b_{\bar{w}, \bar{z}, m} - a_{\bar{w}, \bar{z}, n}\).

Now we define

\[
\text{(*) } \bar{z} = \bar{z}_w = \{b_{\bar{w}, \bar{z}, n} : n < \omega\}.
\]

So

\[
\text{(*) (a) } G_{x, z} \text{ is well defined}
\]

\[
\text{(*) (b) if } g \in H(G_{x, z}, Z) \text{ then } h(z) = 0.Z.
\]

[Why? Clause (a) is obvious. For clause (b) if \(g\) is a counterexample by the choice of \(w\) there is \(\bar{z} \in \Lambda_w\) such that \(m < k \wedge n < \omega \Rightarrow g(x_\rho(m, n)) = h_{m,n}(\eta)\) that is \(n < \omega \Rightarrow \sum_{m < k} g(x_\rho(m, n+1)) = a_{\bar{w}, \bar{z}, n}\). Now use the choice of \(b_{\bar{w}, \bar{z}, n} : n < \omega\) to get a contradiction.]

4) We derive an example from \(G_w\) from part (3).

Let \(\Omega' = \Omega'_w = \{\rho : \rho \text{ a finite sequence of members of } \Omega\}\) and for \(\rho \in \Omega'\) let

\[
\text{(*) (a) } X_{\rho} = X_{x, \rho} = \{x_{\rho, \eta} : \eta \in \Omega_w\}
\]
\[\begin{align*}
& (b) \quad Y_\rho = Y_{x, \rho} = \{ y_{\rho, q} : \bar{\eta} \in \Lambda_w \} \\
& (\ast) \quad (a) \quad G'_0 = G'_{x, 0} = G_{0, 0} \oplus G_{0, 1}' \quad \text{where} \\
& (b) \quad G'_{0, 0} = O'_{x, 0, 0} = \bigoplus \{ Z_{\rho, \bar{\eta}} : \rho \in \Omega'_x, \bar{\eta} \in \Omega_w \} \\
& (c) \quad G'_{0, 1} = G'_{x, 0, 1} = \mathbb{Z}^z \\
& (\ast) \quad (a) \quad G'_1 = G'_{x, 1} \oplus G_{w, 2, 1} \oplus G_{w, 2, 1} \oplus G_{w, 1, 2} \quad \text{where} \\
& (b) \quad G'_{1, 0} = G'_{w, 1, 0} = \bigoplus \{ Q_{\rho, \bar{\eta}} : \rho \in \Omega'_x \text{ and } \bar{\eta} \in \Omega_x \} \supseteq G'_{0, 1} \\
& (c) \quad G'_{1, 1} = G'_{w, 1, 1} = \mathbb{Q}^z \supseteq G'_{0, 1} \\
& (d) \quad G'_{1, 2} = G'_{w, 1, 2} = \bigoplus \{ Q_{\rho, \bar{\eta}} : \rho \in \Omega'_x \text{ and } \bar{\eta} \in \Lambda_x \}. \\
\end{align*}\]

Let

\[\begin{align*}
& (\ast) \quad (a) \quad z_\rho \text{ be } z \text{ if } \rho = \emptyset \text{ and } x_{\rho | t, \rho(t)} \text{ if } \beta \in \Omega'_x \setminus \{ < > \} \\
& (b) \quad \text{let } y_{\rho, 0, 0} = y_{\rho, 0} \\
& (c) \quad \text{for } \rho \in \Omega'_w \text{ and } \bar{\eta} \in \Lambda_x \text{ we define } y_{\rho, q, n} \text{ by induction on } n > 0 \\
& \quad \quad \bullet \quad y_{\rho, q, n+1} = (y_{\rho, q, n} + \sum_{m \leq k} x_{\rho | q}(m, n) + \bar{a}_{q, n} z_\rho) \text{ where} \\
& \quad \quad \quad \quad \langle a_{q, n} : n < \omega \rangle \in \mathbb{Z}^z \text{ was defined above using } h(\bar{\eta}) \\
& (\ast) \quad (a) \quad \text{for every } t \in G'_1 \text{ let } \text{supp}(x) \text{ be the minimal subset } X_t \text{ of } X_w = \{ x_{\rho, q} : \\
& \quad \quad \rho \in \Omega'_x, \bar{\eta} \in \Omega_x \} \cup \{ y_{\rho, q} : \rho \in \Omega'_w, \bar{\eta} \in \Lambda_w \} \text{ such that:} \\
& \quad \quad t \in \Sigma\{ Q x : x \in X_t \}; \text{ used in part (2)} \\
& (\ast) \quad \text{for } \rho \in \Omega' \text{ we define an embedding } h_\rho \text{ from } G_w \text{ into } G'_1 \text{ by (see } \exists_4 \text{ below):} \\
& (a) \quad h_\rho(z) = z_\rho \\
& (b) \quad h_\rho(x_{\rho, \bar{\eta}}) = x_{\rho, \bar{\eta}} \text{ for } \bar{\eta} \in \Omega_w \\
& (c) \quad h_\rho(y_{\rho, q, n}) = y_{\rho, q, n}. \\
\end{align*}\]

Now

\[\begin{align*}
& \exists_1 \text{ let } G'_w = \text{ the subgroup of } G'_{w, 1} \text{ generated by } \{ X_{\rho, q} : \rho \in \Omega'_w \text{ and } \bar{\eta} \in \\
& \quad \Omega_w \} \cup \{ z \} \cup \{ y_{\rho, q, n} : \rho \in \Omega'_w, \bar{\eta} \in \Lambda_w \text{ and } n < \omega \} \\
& \exists_2 \quad G'_{w, 0} \subseteq G'_x \text{ is dense in the } \mathbb{Z} \text{-adic topology.} \\
\end{align*}\]

[Why? Just look at each \(y_{\rho, q, n}\).]

\[\begin{align*}
\exists_3 \text{ for } \rho \in \Omega'_x \\
& (a) \quad h_\rho \text{ is a well defined homomorphism} \\
& (b) \quad h_\rho \text{ is indeed an embedding} \\
& (c) \quad \text{Rang}(h_\rho) \subseteq G'_x \\
& (d) \quad \text{Rang}(h_\rho) \text{ is a pure subgroup of } G'_x \\
& (e) \quad h_{<>} \text{ is ?} \\
\end{align*}\]

[Why? For clause (a) note the definition of \(y_{\rho, q, n}\), also the other clauses are obvious.]

\[\begin{align*}
\exists_4 \quad \text{Hom}(G'_w, \mathbb{Z}) = 0. \\
\end{align*}\]
[Why? Let \(g \in \text{Hom}(G'_w, \mathbb{Z}) \). For each \(\rho \in \Omega'_x \), the function \(g \circ h_\rho \) is a homomorphism from \(G_x \) into \(\mathbb{Z} \) hence by the previous claim 3.14, \((G \circ h_\rho)(z) = 0 \). This means that \(0 = (g \circ h_\rho)(z) = g(h_\rho(z)) = g(z_\rho) \) hence \(g(z) = 0 \), using \(\rho = \langle \rangle \) and \(g(x_\rho, \bar{\eta}) = 0 \) for \(\rho \in \Omega'_x, \bar{\eta} \in \Omega_x \) using \(z_\rho'(z) = X_{\rho, \bar{\eta}} \). By the choice of \(G'_{w,0} \) this implies \(g|G'_{x,0} \) is zero and by \(\Box_3 \) this implies \(g|G'_w \) is zero, as promised.] \(\Box_{3.14} \)
Moved 2014.10.15 from Sub-Case C2 of the proof of 1.7, pg.26:
By (+)2 without loss of generality for some \(\ell = \ell_{\xi,T}(A) \in \{1, 2\} \) we have \(A \in J_{\xi,T} \)
so by (+)2(b) we have \(A' \subseteq A \land A' \in (D_{\xi}^*)^+ \Rightarrow A' \in J_{\xi,T} \). By the “second” in the proof of Sub-case C1, necessary \(\ell = 1 \). Moreover, by the “second” we can (uniformly) choose \(f^* \in \Pi \delta \) such that \(A \in J_{\xi,2} \land \beta < \alpha \Rightarrow f_{\beta} < f^* \mod (D_{\xi}^* + A) \).
Also as in the proof of 1.5 we let \(\alpha(s) < \alpha \) be minimal such that \(\alpha(s) \leq \beta < \alpha \Rightarrow \{ s \in Y : f^*(s) \leq f_{\alpha}(s) \} = A^1 \mod D_{\xi}^* \) where \(A^1 = \{ s \in Y : f^*(s) \leq f_{\alpha(s)}(s) \} \).
Now clearly \(D_{\xi}^* + A^1 \) is \(A \in J_{\xi,2} \Rightarrow A^* \cap A = \emptyset \mod D_{\xi}^* \), hence \(D_{\xi}^* + A^* \) is \(\aleph_1 \)-complete.
As in the proof of 1.5 looking at \(f^* \) and \(D_{\xi}^* + A^1 \) necessarily \(\text{cf}(\alpha) \geq \theta \) and we can choose \(A^2(\ell)(D_{\xi}^* + A^1), f_{\alpha}^2 \) as there hence we choose \(D_{\xi}^* \) as \(D_{\xi}^* \lor (A^1 \cap A^2) \) and let \(g_{\alpha+1+\beta} = f_{\beta} \) for \(\beta < \alpha \) and \(f_{\alpha+1+\alpha} = \max\{f_{\alpha}, f_{\alpha+1}^2\} \) so \(\alpha^* = \alpha^* + 1 + \alpha \).

Moved 2014.10.15 from the proof of 2.13, pgs.26-7:
Let \(R = \{(\alpha, \beta, \varepsilon, \zeta) : \alpha, \beta < \alpha(*) \) and for some \(s \in Y \) we have \(\varepsilon = g_{\alpha}(s) \land \zeta = g_{\beta}(s) \} \).
Now \(L[R] \) is a model of ZFC and \(\langle \text{Rang}(g_{\alpha}) : \alpha < \alpha(*) \rangle \in L[R] \) we can find in \(L[R] \) a pair \((I, \bar{h}) \) such that:
(a) \(I \) is a set of ordinals
(b) \(\bar{h} = \langle h_{\alpha} : \alpha < \alpha(*) \rangle \) is a sequence of functions
(c) \(h_{\alpha} : I \rightarrow \text{Rang}(g_{\alpha}) \) is onto
(d) for ordinals \(\alpha, \beta, \varepsilon, \zeta \) the following are equivalent:
(a) for some \(s \in Y \) we have \(\alpha, \beta < \alpha(*) \), \(s \in Y \) and \(g_{\alpha}(s) = \varepsilon \land g_{\beta}(s) = \zeta \), i.e. \((\alpha, \beta, \varepsilon, \zeta) \in R \)
(b) for some \(i \in I, h_{\alpha}(i) = \varepsilon \land h_{\beta}(i) = \zeta \)
(c) if \(i_1 \neq i_2 \in I \) then for some \(\alpha, h_{\alpha}(i_1) \neq h_{\alpha}(i_2) \).
Now we can define the function \(h : Y \rightarrow I \) such that \(h(s) = i \iff (s \in Y, i \in I) \) and \((\forall \alpha < \alpha(*))(g_{\alpha}(s) = h_{\alpha}(i)) \).
Now
+ (a) \(h \) is a well defined function from \(Y \) onto \(I \)
(b) \(e = \{(s, t) : s, t \in I \land h(s) = h(t)\} \) is an equivalence relation
(c) \(\mathcal{F} \) = \(\{ f : f \in \Pi \delta \text{ for every } e \text{-equivalent } s, t \in I \text{ we have } f(s) = f(t) \} \) is cofinal in \((\Pi \delta, <_D) \).
So by Case 1 we can finish.

Conclusion 3.17. Assume \(\Pi \delta \) of 2.11 and \(\delta = \langle \delta_s : s \in Y \rangle : D \sqsubseteq \text{cf} - \text{filp}(\delta) \) and there is a well orderable \(\mathcal{F} \subseteq \Pi \delta \text{ cofinal in } (\Pi \delta, <_D) \).
1) There is an equivalence relation \(E \) on \(Y \) refining \(e(\delta) \) such that \((\Pi \delta)^{ZF} := \{ f \in \Pi \delta : f \text{ is cofinal in } (\Pi \delta, <_D) \text{ and } Y/E \text{ is well orderable.} \}
2) \(E \), a well ordering \(<_\alpha \text{ of } Y/E \) and \(a <_D \text{-increasing cofinal sequence in } (\Pi \delta^{ZF}, <_D) \)
are uniformly from a well orderable subset of \((\Pi \delta, <_D) \).

Proof. Implicit in the proof of 2.13. \(\square \)
Moved from pg.28:

Remark 3.18. 1) Originally it seems that we may need AC$_\kappa$, in order to define for $<_D$-increasing $f = \{ f_\alpha : \alpha < \delta \}$ as canonical upper bound when cf(δ) \geq hrtg(Y), but this was not necessary.

2) So if Y is countable, A_{X_4} is enough and we can choose $\vartheta = \aleph_2, \theta$ first regular $> \aleph_2$; we know there is a class of regular cardinals, but is there a reasonable bound.

Debts from [Sh:1023]

YOU SAID TO COPY ad16...only a16d in 1023

Remark 3.19. Moreover, (in ZF) if $A \subseteq P(\lambda), S_0 \leq |A| = |A|^{<\omega}$, then there is such an Abelian group of power $|A|$. We intend to elaborate in [Sh:1005, §3].

§ 3(C). Indecomposable Abelian Groups.

We continue [Sh:1023]. Our intention is to

Theorem 3.20. (ZF) Assume X is a transitive set such that $s, t \in x \Rightarrow \{ s, t \} \in X, R$ a ring.

We can find $M, \langle M_n : n \in \mathbb{N} \rangle$ such that

\[N_\alpha = \oplus \{ Rx_\alpha^n : t \in X, n \in \mathbb{N} \} \]

(b) M_α^n is a free sub-R-module of M

(c) if f is an automorphism of M mapping M_n onto itself for each n then f is $x \mapsto cx$ for some invertible $c \in R$

(d) moreover, every epimorphism of $(M, M_n)_n$ is one-to-one (hence an automorphism) check.

Proof. Let

\[\text{(a)} \quad M = \oplus \{ Rx_\alpha^n : t \in X \} \]

\[\text{(b)} \quad X_\alpha = \{ t \in X : \text{rk}(t) = \alpha \} \text{ for } \alpha < \alpha_\infty = \text{rk}(X) \]

\[\text{(c)} \quad N_\alpha^n = \oplus \{ Rx_\alpha^n : t \in X_\alpha \}. \]

Stage A: we can find $\bar{M}_\alpha^n = (M_\alpha^n : n \in I_0)$ as in (b) such that any automorphism of (M, M_0) such that

\[\text{(a)} \quad \text{every automorphism } f \text{ of } (M, \bar{M}_\alpha^n) \text{ maps each } M_\alpha^n \text{ onto itself } (\alpha < \alpha_\infty). \]

The proof is as in [Sh:1023], repeat?

Stage B: We choose $\langle \bar{n}_k = (n_1^k, n_2^k, n_3^k) : k \in I_1 \rangle$ such that

\[\text{(a)} \quad \text{every automorphism } f \text{ of } (M, \bar{M}_\alpha^n) \text{ maps each } M_\alpha^n \text{ onto itself } (\alpha < \alpha_\infty). \]

For $k \in I_2$ let $M_k^n = \oplus \{ Rx_\alpha^n(k) + x_s^n(k_2) + x_r^n(k_3), (s, t, r) \in J_k \}$ hence
\[(s, t, r) \in J_k \text{ iff for some } \alpha < \beta < \alpha_r, t \in X, s \in X, s \in t \text{ and}
\]
\[
\begin{align*}
\text{Case 1: } & \alpha \subseteq X, \alpha < \beta \Rightarrow \{\alpha, \beta\} \in X \\
& r = \{\alpha, \beta\}
\end{align*}
\[
\begin{align*}
\text{Case 2: } & X \text{ closed under pairs} \\
& r = \{s, t\}
\end{align*}
\[
\begin{align*}
\text{Case 3: } & (\forall x, t) (\exists x, y, r)(rk(s) = rk(t) = r \land r = \{x, y\})
\end{align*}
\]
\[r \text{ as above for } s, t \text{ as above}. \]

§1 The pcf Theorem

§1A) Large Cofinalities

1A1) In Definition 1.1, we define \(id - cf_{<\theta}(\bar{\delta}) \). {c2}

1A2) In 1.3, basic observations. {c10}

1A3) In 1.5, construct pcf systems for \(\aleph_1 \)-complete filter, full proof. {c13}

1A4) In 1.7, construct pcf \(f \) in all cases, \(\theta \geq hrtg(\text{Fil}_4(Y)) \), full proof. {c17}

1A5) In 2.3 - upper bound from a pcf system. {c24}

§2 More on the PCF theorem.

§2A) When the cofinalities are small.

2A1) In Definition 2.1, pcf system. {d2}

2A2) In Observation 2.3, obvious facts. {c24}

2A3) Discussion 2.3. {c24}

2A4) In 2.5 we define \(\text{id}(f, \bar{f}) \). {c41}

2A5) In claim 2.6, obvious. {c44}

2A6) In Notation 2.7, define \(h_{[u, \bar{\delta}]} \) {c45}

2A7) In 2.8, analyzing “\(\bar{f} \) is \(<_D \)-increasing not cofinal in (\(\Pi \bar{\delta}, <_D \))”. {c47}

Q: Restrict ourselves to \(\bar{f} \) obeying \(\bar{e} \), a club system, full proof.

2A9) In 2.10, no bound to \(\bar{f} \) in \(\Pi \bar{\delta} \) implies \(cl(tg(f)) \geq \theta \), small, 10 line proof, pg.

2A10) In 2.11, version of \(\text{Ax}_4 \) implies existence of cofinal well orderable sets in

(\(\Pi \Delta, <_D \)) implies a scale exist; in 2.13 we elaborate 2.8. {c54}

2A12) Conclude in 2.13, improve 1.7 weak assumption, 1 line proof. {c59}

2A15) In 3.18 remark. {c61}

§2B) Elaborations

2B7) 2.18 {d19}

2B16) 2.19 {d29}

§2C) True successor cardinal

§2D) Covering

§3 Black boxes

§3A) Existence Proof

3A1) In 3.2 from \(\text{Ax}_4 \) we deduce the existence of a BB \(w \) for \(\lambda = \mu^+, \mu^\lambda = \mu \), fully

proved, pgs.40-43, [compare with [Sh:F1303, k28]]. {g2}

3A2) In 3.4, similarly for models of cardinality \(< \kappa \) such that \(\kappa > hrtg(\{N: N \text{ a}

\tau\text{-model of cardinality } \kappa \}) \), fully proved. {g17}
3A3) In 3.6, an Abelian group consequence
3A4) In 3.7, improving 3.2
§(3B) Black boxes with no choice
{k11} 3A5) Definition 3.10, on general combinatorial parameters
{k11f} 3A6) Claim 3.11, existence of BB’s
3A7) Remarks
{k12} 3A8) Claim 3.13, the $G_{x,z}$ are as desired
{k13} 3A9) Claim 3.14, there are Abelian groups as desired
{k14} 3A10) Discussion 3.15
{k15} 3A11) Definition 3.16, on versions of being free
\section{Moved parts}

3A3) [here?] In ?? - 3.7 discussion + improvement of 3.4, \text{hrtg}(\mu|^{\aleph_0}) \leq \mu^+$, guessing \text{tress} of models, no proof.

NOTE: SHOULDN'T ABOVE NUMBERS START WITH "3" ?

* * *

Moved from pgs. 44, 45:

Recall \{a_{19}\}

\text{Observation 4.1. For every } k > 0 \text{ there is a function } h \text{ from }^{k+1}\omega \text{ to } k + 1 = \{0, \ldots, k\} \text{ and } b^0, \ldots, b^{k−1} \in \omega^\omega \text{ such that } (h, (b^0, \ldots, b^{k−1})) \text{ is definable and:}

\[\exists a \in \omega^\omega \text{ and } m \in \{0, \ldots, k\}\backslash \{h(b^0), \ldots, h(b^{k−1})\} \text{ then there are } a \in \omega \text{ and } c_n + \sum_{\ell < k} a^{n\ell} + b_n^m. \]

\text{Proof. Let } H_1 = \{\bar{b} \in \omega^\omega: \text{ there are } \bar{c} \in \omega^\omega \text{ and } a \in \omega \backslash \{0\} \text{ such that } n! c_{n+1} = c_n + b_n \cdot a \text{ for every } n < \omega}. \]

Clearly \(H_1\) is a subgroup of \(\omega^\omega\), even a pure subgroup and \(\neq \omega^\omega\). Let \(H_2\) be a pure subgroup of \(\omega^\omega\) such that \(H_1 \subseteq H_2\) and \(\omega^\omega/H_2\) has rank 1.

Let \(h_1: \omega^\omega \to \mathbb{Q}\) be non-zero with \(h_1(h) = 0\).

For every \(k\) let \(n_\ast > k\) such that we can find \(h_2: \mathbb{Q} \to \{0, \ldots, n_\ast - 1\}\) such that:

\(0 \subseteq \{0, \ldots, n_\ast - 1\}\) there is \(a \in \mathbb{Q}\) and even \(a \in \{0, \ldots, n_\ast - 1\}\) if \(\bigwedge_{\ell < k} (a_\ell \in \mathbb{Q} \land h_1(a_\ell) \in m_\ell) \Rightarrow \) then \(\sum_{\ell < k} a_\ell = a_\ell\) (and even \((a - \sum_{\ell < k} a_\ell) \geq 1\).

[Why? Define \(h_2\): by \(h_2(a) = M\) iff for some \(b \in \mathbb{Z}\) we have \(n, b \leq a < n_\ast b + 1\).]

For \(\ell \in \{0, \ldots, n_\ast - 1\}\) let \(a_\ell \in \omega^\omega\) be such that \(h_2(h_1(a_\ell)) = \ell\). Lastly, let \(h(b) := h_2(h_2(b))\).

\[\square_{4.1}\]

\textbf{References}

[GK] Moti Gitik and Peter Koepke, \textit{Violating the singular cardinals hypothesis without large cardinals}.

[Sh:E29] \textit{3 lectures on pcf}.

[Sh:E62] \textit{Combinatorial background for Non-structure}.

[Sh:E69] \textit{PCF: The Advanced PCF Theorems}.

[Sh:1200] ______, [Abelian groups, pcf and black boxes] Quite free complicated abelian group, pcf and BB.
[Sh:1308] ______, Indecomposable explicit abelian group, pcf and BB.

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA
E-mail address: shelah@math.huji.ac.il
URL: http://shelah.logic.at