ON INCOMPACTNESS FOR CHROMATIC NUMBER OF GRAPHS
SH1006

SAHARON SHELAH

Abstract. We deal with incompactness. Assume the existence of non-reflecting stationary subset of the regular cardinal \(\lambda \) of cofinality \(\kappa \). We prove that one can define a graph \(G \) whose chromatic number is \(> \kappa \), while the chromatic number of every subgraph \(G' \subseteq G, |G'| < \lambda \) is \(\leq \kappa \). The main case is \(\kappa = \aleph_0 \).

Date: January 31, 2014.

2010 Mathematics Subject Classification. Primary: 03E05; Secondary: 05C15.

Key words and phrases. set theory, graphs, chromatic number, compactness, non-reflecting stationary sets.

Anotated Content

§0 Introduction, pg.3
§(0A) The questions and results, pg.3
§(0AB) Preliminaries, pg.3

§1 From a non-reflecting stationary set, pg.5
[We show that “$S \subseteq S^\lambda_\kappa$ is stationary not reflecting” implies incompactness for length λ for “chromatic number = κ.”]

§2 From almost free, pg.8
[Here we weaken the assumption in §1 to “$\mathcal{A} \subseteq \text{Ord}$ is almost free.”]
§ 0. Introduction

The questions and results. During the Hajnal conference (June 2011) Magidor asked me on incompactness of “having chromatic number \aleph_0”; that is, there is a graph G with λ nodes, chromatic number $> \aleph_0$ but every subgraph with $< \lambda$ nodes has chromatic number \aleph_0 when:

$(\ast)_1$ λ is regular $> \aleph_1$ with a non-reflecting stationary $S \subseteq S_{\aleph_0}$, possibly though better not, assuming some version of GCH.

Subsequently also when:

$(\ast)_2$ $\lambda = \aleph_{\omega+1}$.

Such problems were first asked by Erdős-Hajnal, see [EH74]; we continue [Sh:347].

First answer was using BB, see [Sh:309, 3.24] so assuming

$\Box (a) \quad \lambda = \mu^+$

$\Box (b) \quad \mu^{\aleph_0} = \mu$

$\Box (c) \quad S \subseteq \{ \delta < \lambda : \text{cf}(\delta) = \aleph_0 \} \text{ is stationary not reflecting}$

or just

$\Box' (a) \quad \lambda = \text{cf}(\lambda)$

$\Box' (b) \quad \alpha < \lambda \Rightarrow |\alpha|^{\aleph_0} < \lambda$

$\Box' (c) \quad \text{as above.}$

However, eventually we get more: if $\lambda = \lambda^{\aleph_0} = \text{cf}(\lambda)$ and $S \subseteq S_{\aleph_0}$ is stationary non-reflective then we have λ-incompactness for \aleph_0-chromatic. In fact, we replace \aleph_0 by $\kappa = \text{cf}(\kappa) < \lambda$ using a suitable hypothesis.

Moreover, if $\lambda^\kappa > \lambda$ we still get $(\lambda^\kappa, \lambda)$-incompactness for κ-chromatic number. In §2 we use quite free family of countable sequences.

In subsequent work we shall solve also the parallel of the second question of Magidor, i.e.

$(\ast)_2$ for regular $\kappa \geq \aleph_0$ and $n < \omega$ there is a graph G of chromatic number $> \kappa$ but every sub-graph with $< \aleph_{\kappa+n+1}$ nodes has chromatic number $\leq \kappa$.

In fact, considerably is proved, see [Sh:F1240]. We thank Menachem Magidor for asking, Peter Komjath for stimulating discussion and Paul Larson, Shimoni Garti and the referee for some comments.

§ 0(B). Preliminaries.

Definition 0.1. For a graph G, let $\text{ch}(G)$, the chromatic number of G be the minimal cardinal χ such that there is colouring c of G with χ colours, that is c is a function from the set of nodes of G into χ or just a set of of cardinality $\leq \chi$ such that $c(x) = c(y) \Rightarrow \{x, y\} \notin \text{edge}(G)$.

{Preliminaries}
Definition 0.2. 1) We say “we have λ-incompactness for the $(< \chi)$-chromatic number” or $\text{INC}_{\text{chr}}(\lambda, < \chi)$ when: there is a graph G with λ nodes, chromatic number $\geq \chi$ but every subgraph with $< \lambda$ nodes has chromatic number $< \chi$.

2) If $\chi = \mu^+$ we may replace “$< \chi$” by μ; similarly in 0.3.

We also consider

Definition 0.3. 1) We say “we have (μ, λ)-incompactness for $(< \chi)$-chromatic number” or $\text{INC}_{\text{chr}}(\mu, \lambda, < \chi)$ when there is an increasing continuous sequence $\langle G_i : i \leq \lambda \rangle$ of graphs each with $\leq \mu$ nodes, G_i an induced subgraph of G_λ with $\text{ch}(G_\lambda) \geq \chi$ but $i < \lambda \Rightarrow \text{ch}(G_i) < \chi$.

2) Replacing (in part (1)) χ by $\bar{\chi} = (\chi_0, \chi_1)$ means $\text{ch}(G_\lambda) \geq \chi_1$ and $i < \lambda \Rightarrow \text{ch}(G_i) < \chi_0$; similarly in 0.2 and parts 3), 4) below.

3) We say we have incompactness for length λ for $(< \chi)$-chromatic (or $\bar{\chi}$-chromatic) number when we fail to have (μ, λ)-compactness for $(< \chi)$-chromatic (or $\bar{\chi}$-chromatic) number for some μ.

4) We say we have $[\mu, \lambda]$-incompactness for $(< \chi)$-chromatic number or $\text{INC}_{\text{chr}}[\mu, \lambda, < \chi]$ when there is a graph G with μ nodes, $\text{ch}(G) \geq \chi$ but $G^1 \subseteq G \land |G^1| < \lambda \Rightarrow \text{ch}(G^1) < \chi$.

5) Let $\text{INC}_{\text{chr}}^+([\mu, \lambda, < \chi])$ be as in part (1) but we add that even the $c\ell(G_i)$, the colouring number of G_i is $< \chi$ for $i < \lambda$, see below.

6) Let $\text{INC}_{\text{chr}}^+[\mu, \lambda, < \chi]$ be as in part (4) but we add $G^1 \subseteq G \land |G^1| < \lambda \Rightarrow c\ell(G^1) < \chi$.

7) If $\chi = \kappa^+$ we may write κ instead of “$< \chi$”.

Definition 0.4. 1) For regular $\lambda > \kappa$ let $S^\lambda_\kappa = \{ \delta < \lambda : \text{cf}(\delta) = \kappa \}$.

2) We say C is a $(\geq \theta)$-closed subset of a set B of ordinals when: if $\delta = \sup(\delta \cap B) \in B$, $\text{cf}(\delta) \geq \theta$ and $\delta = \sup(C \cap \delta)$ then $\delta \in C$.

Definition 0.5. For a graph G, the colouring number $c\ell(G)$ is the minimal κ such that there is a list $\langle a_\alpha : \alpha \in \alpha(*) \rangle$ of the nodes of G such that $\alpha < \alpha(*) \Rightarrow \kappa \geq |\{ \beta < \alpha : \{a_\beta, a_\alpha\} \in \text{edge}(G) \}|$.

{y6} {y8}
§ 1. FROM NON-REFLECTING STATIONARY IN COFINALITY \aleph_0}

Claim 1.1. There is a graph G with λ nodes and chromatic number $> \kappa$ but every subgraph with $< \lambda$ nodes have chromatic number $\leq \kappa$ when:

\[\begin{align*}
(\text{a}) & \quad \lambda, \kappa \text{ are regular cardinals} \\
(\text{b}) & \quad \kappa < \lambda < \lambda^\kappa \\
(\text{c}) & \quad S \subseteq S^\kappa_\kappa \text{ is stationary, not reflecting.}
\end{align*} \]

Proof. Stage A: Let $\vec{X} = \langle X_i : i < \lambda \rangle$ be a partition of λ to sets such that $|X_i| = \lambda$ or just $|X_i| = |i + 2|^\kappa$ and $\min(X_i) \geq i$ and let $X_{<i} = \bigcup\{X_j : j < i\}$ and $X_{\leq i} = X_{<i+1}$. For $\alpha < \lambda$ let $i(\alpha)$ be the unique ordinal $i < \lambda$ such that $\alpha \in X_i$. We choose the set of points = nodes of G as $Y = \langle \{\alpha, \beta \} : \alpha < \beta < \lambda, i(\beta) \in S \text{ and } \alpha < i(\beta) \rangle$ and let $Y_{<i} = \{\{\alpha, \beta \} \in Y : i(\beta) < i\}$.

Stage B: Note that if $\lambda = \kappa^+$, the complete graph with λ nodes is an example (no use of the further information in \vec{X}). So without loss of generality $\lambda > \kappa^+$.

Now choose a sequence satisfying the following properties, exists by [Sh:63, Ch.III]:

\[\begin{align*}
(\text{a}) & \quad \vec{C} = \langle C_\delta : \delta \in S \rangle \\
(\text{b}) & \quad C_\delta \subseteq \delta = \sup(C_\delta) \\
(\text{c}) & \quad \text{otp}(C_\delta) = \kappa \text{ such that } (\forall \beta \in C_\delta)(\beta + 1, \beta + 2 \notin C_\delta) \\
(\text{d}) & \quad \vec{C} \text{ guesses } \vec{\text{ clubs.}}
\end{align*} \]

Let $\langle \alpha^*_{\delta, \varepsilon} : \varepsilon < \kappa \rangle$ list C_δ in increasing order.

For $\delta \in S$ let Γ_δ be the set of sequence $\vec{\beta}$ such that:

\[\begin{align*}
(\text{a}) & \quad \vec{\beta} \text{ has the form } \langle \beta_\varepsilon : \varepsilon < \kappa \rangle \\
(\text{b}) & \quad \vec{\beta} \text{ is increasing with limit } \delta \\
(\text{c}) & \quad \alpha^*_{\delta, \varepsilon} < \beta_{2\varepsilon + 1} < \alpha^*_{\delta, \varepsilon + 1} \text{ for } i < 2, \varepsilon < \kappa \\
(\text{d}) & \quad \beta_{2\varepsilon + 1} \in X_{<\alpha^*_{\delta, \varepsilon + 1}} \setminus X_{<\alpha^*_{\delta, \varepsilon}} \text{ for } i < 2, \varepsilon < \kappa \\
(\text{e}) & \quad (\beta_{2\varepsilon}, \beta_{2\varepsilon + 1}) \in Y \text{ hence } \epsilon \in Y_{<\alpha^*_{\delta, \varepsilon + 1}} \subseteq Y_{<\delta} \text{ for each } \varepsilon < \kappa
\end{align*} \]

(can ask less).

So $|\Gamma_\delta| \leq |\delta|^\kappa \leq |X_\delta| \leq \lambda$ hence we can choose a sequence $\langle \beta_\gamma : \gamma \in X_\delta \subseteq X_\delta \rangle$ listing Γ_δ.

Now we define the set of edges of G: $\text{edge}(G) = \{(\alpha_1, \alpha_2), (\min(C_\delta), \gamma) : \delta \in S, \gamma \in X_\delta \text{ hence the sequence } \beta_\gamma = \langle \beta_{\gamma, \varepsilon} : \varepsilon < \kappa \rangle \text{ is well defined and we demand } (\alpha_1, \alpha_2) \in \langle (\beta_{\gamma, 2\varepsilon}, \beta_{\gamma, 2\varepsilon + 1}) : \varepsilon < \kappa \rangle \}$.

Stage C: Every subgraph of G of cardinality $< \lambda$ has chromatic number $\leq \kappa$.

For this we shall prove that:

$\oplus_1 \chi(G|Y_{<i}) \leq \kappa$ for every $i < \lambda$.

This suffice as λ is regular, hence every subgraph with $< \lambda$ nodes is included in $Y_{<i}$ for some $i < \lambda$.

For this we shall prove more by induction on $j < \lambda$: $\oplus_1 \chi(G|Y_{<i}) \leq \kappa$ for every $i < \lambda$.

3the guessing clubs are used only in Stage D.
\(\oplus_{2,j} \) if \(i < j, i \notin S, c_1 \) a colouring of \(G \mid Y_{<i} \), Rang \((c_1) \subseteq \kappa \) and \(u \in [\kappa]^{\kappa} \) then there is a colouring \(c_2 \) of \(G \mid Y_{<j} \) extending \(c_1 \) such that Rang \((c_2 \mid (Y_{<j} \setminus Y_{<i})) \subseteq u \).

Case 1: \(j = 0 \)
Trivial.

Case 2: \(j \) successor, \(j - 1 \notin S \)
Let \(i \) be such that \(j = i + 1 \), but then every node from \(Y_j \setminus Y_i \) is an isolated node in \(G \mid Y_{<j} \), because if \(\{(\alpha, \beta), (\alpha', \beta')\} \) is an edge of \(G \mid Y_j \) then \(i(\beta), i(\beta') \in S \) hence necessarily \(i(\beta) \neq j - 1 = i, i(\beta') \neq j - 1 = i \) hence both \((\alpha, \beta), (\alpha', \beta') \) are from \(Y_i \).

Case 3: \(j \) successor, \(j - 1 \in S \)
Let \(j - 1 \) be called \(\delta \) so \(\delta \in S \). But \(i \notin S \) by the assumption in \(\oplus_{2,j} \) hence \(i < \delta \). Let \(\varepsilon(\ast) < \kappa \) be such that \(\alpha^\varepsilon(\ast) > i \).
Let \(\langle u : \varepsilon \leq \kappa \rangle \) be a sequence of subsets of \(u \), a partition of \(u \) to sets each of cardinality \(\kappa \); actually the only disjointness used is that \(u_\kappa \cap \bigcup_{\varepsilon < \kappa} u_\varepsilon = \emptyset \).

We let \(i_0 = i, i_1 + \varepsilon = \bigcup \{\alpha^\varepsilon(\ast) + 1 + \varepsilon : \varepsilon < 1 + \varepsilon \} \) for \(\varepsilon < \kappa, i_\kappa = \delta \) and \(i_{\kappa + 1} = \delta + 1 = j \).
Note that:

- \(\varepsilon < \kappa \Rightarrow i_\varepsilon \notin S_j \).

[Why? For \(\varepsilon = 0 \) by the assumption on \(i \), for \(\varepsilon \) successor \(i_\varepsilon \) is a successor ordinal and for \(i \) limit clearly \(\text{cf}(i_\varepsilon) = \text{cf}(\varepsilon) < \kappa \) and \(S \subseteq S^\kappa \).]

We now choose \(c_{2,\zeta} \) by induction on \(\zeta \leq \kappa + 1 \) such that:

- \(c_{2,0} = c_1 \)
- \(c_{2,\zeta} \) is a colouring of \(G \mid Y_{<i_\zeta} \)
- \(c_{2,\zeta} \) is increasing with \(\zeta \)
- \(\text{Rang}(c_{2,\zeta} \mid (Y_{<i_{\zeta + 1}} \setminus Y_{<i_\zeta})) \subseteq u_\zeta \) for every \(\zeta < \zeta \).

For \(\zeta = 0, c_{2,0} = c_1 \) so is given.

For \(\zeta = \varepsilon + 1 < \kappa \): use the induction hypothesis, possible as necessarily \(i_\varepsilon \notin S \).
For \(\zeta \leq \kappa \) limit: take union.

For \(\zeta = \kappa + 1, \) note that each node \(b \) of \(Y_{<i_\kappa} \setminus Y_{<i_\kappa} \) is not connected to any other such node and if the node \(b \) is connected to a node from \(Y_{<i_\kappa} \) then the node \(b \) necessarily has the form \((\min(C_\delta), \gamma) \in X^l \), hence \(\beta_\gamma \) is well defined, so the node \(b = (\min(C_\delta), \gamma) \) is connected in \(G \), more exactly in \(G \mid Y_{<\delta} \) exactly to the \(\kappa \) nodes \(\{\langle \gamma, 2\xi, \beta_\gamma, 2\xi + 1 \rangle : \varepsilon < \kappa \} \), but for every \(\varepsilon < \kappa \) large enough, \(c_{2,\kappa} (\langle \gamma, 2\xi, \beta_\gamma, 2\xi + 1 \rangle) \in u_\varepsilon \) hence \(\notin u_\kappa \) and \(|u_\kappa| = \kappa \) so we can choose a colour.

Case 4: \(j \) limit
By the assumption of the claim there is a club \(e \) of \(j \) disjoint to \(S \) and without loss of generality \(\min(e) = i \). Now choose \(c_{2,\xi} \) a colouring of \(Y_{<\xi} \) by induction on \(\xi \in e \cup \{j\} \), increasing with \(\xi \) such that \(\text{Rang}(c_{2,\xi} \mid (Y_{<\xi} \setminus Y_{<i})) \subseteq u \) and \(c_{2,0} = c_1 \)

- For \(\xi = \min(e) = i \) the colouring \(c_{2,i} = c_{2,i} = c_1 \) is given,
for \(\xi \) successor in \(e \), i.e. \(\in \text{nacc}(e) \setminus \{i\} \), use the induction hypothesis with \(\xi, \max(e \cap \xi) \) here playing the role of \(j \), \(i \) there recalling \(\max(e \cap \xi) \in e, e \cap S = \emptyset \).

- for \(\xi = \sup(e \cap \xi) \) take union.

Lastly, for \(\xi = j \) we are done.

Stage D: \(\text{ch}(G) > \kappa \).

Why? Toward a contradiction, assume \(c \) is a colouring of \(G \) with set of colours \(\subseteq \kappa \). For each \(\gamma < \lambda \) let \(u_\gamma = \{c((\alpha, \beta)) : \gamma < \alpha < \beta < \lambda \text{ and } (\alpha, \beta) \in Y\} \). So \(\langle u_\gamma : \gamma < \lambda \rangle \) is a decreasing sequence of subsets of \(\kappa \) and \(\kappa < \lambda = \text{cf}(\lambda) \), hence for some \(\gamma(*) < \lambda \) and \(u_* \subseteq \kappa \) we have \(\gamma \in (\gamma(*), \lambda) \Rightarrow u_\gamma = u_* \).

Hence \(E = \{\delta < \lambda : \delta \text{ is a limit ordinal } > (\gamma(\delta)) \text{ and } (\forall \alpha < \delta)((i(\alpha) < \delta) \text{ and } c((\alpha, \beta)) = i) \text{ is a club of } \lambda \} \).

Now recall that \(\bar{C} \) guesses clubs hence for some \(\delta \in S \) we have \(C_\delta \subseteq E \), so for every \(\varepsilon < \kappa \) we can choose \(\bar{\beta}_c < \beta_{2c+1} \) from \((\alpha_{3,0}, 0) \) such that \(\bar{\beta}_c \subseteq \kappa \) and \(\beta_{2c} \subseteq \kappa \) we have \(\gamma \in (\gamma(\delta), \lambda) \Rightarrow u_{\gamma} = u_* \).

Similarly Claim 1.2. There is an increasing continuous sequence \(\langle G_i : i \leq \lambda \rangle \) of graphs each of cardinality \(\lambda^\kappa \) such that \(\text{ch}(G_\lambda) > \kappa \) and \(i < \lambda \) implies \(\text{ch}(G_i) \leq \kappa \) and even \(c_\ell(G_i) \leq \kappa \).

Proof. Like 1.1 but the \(X_i \) are not necessarily \(\subseteq \lambda \) or use 2.2.

\[\square_{1.2} \]
§ 2. From almost free

{Fromalmostfree}

Definition 2.1. Suppose $\eta_\beta \in {}^\kappa \text{Ord}$ for every $\beta < \alpha(*)$ and $u \subseteq \alpha(*)$, and $\alpha < \beta < \alpha(*) \Rightarrow \eta_\alpha \neq \eta_\beta$.

1) We say $\{ \eta_\alpha : \alpha \in u \}$ is free when there exists a function $h : u \to \kappa$ such that $\{ \eta_\alpha(\varepsilon) : \varepsilon \in [h(\alpha), \kappa) \} : \alpha \in u \}$ is a sequence of pairwise disjoint sets.

2) We say $\{ \eta_\alpha : \alpha \in u \}$ is weakly free when there exists a sequence $\langle \varepsilon, \zeta < \kappa \rangle$ of subsets of u with union u, such that the function $\eta_\alpha \mapsto \eta_\alpha(\varepsilon)$ is a one-to-one function on $u_{\varepsilon, \zeta}$, for each $\varepsilon, \zeta < \kappa$.

{c3}

Claim 2.2. 1) We have $\text{INC}_{\chi\mu}(\mu, \lambda, \kappa)$ and even $\text{INC}^+_{\chi\mu}(\mu, \lambda, \kappa)$, see Definition 0.3(1),(5) when:

- (a) $\alpha(*) \notin [\mu, \mu^+]$ and λ is regular $\leq \mu$ and $\mu = \mu^\kappa$
- (b) $\bar{\eta} = \langle \eta_\alpha : \alpha < \alpha(*) \rangle$
- (c) $\eta_\alpha \in {}^{\kappa}\mu$
- (d) $\langle u_i : i \leq \lambda \rangle$ is an increasing continuous sequence of subsets of $\alpha(*)$
- $\lambda \subseteq \alpha(*)$
- (e) $\bar{\eta}|u_\alpha$ is free if $\alpha < \lambda$ iff $\bar{\eta}|u_\alpha$ is weakly free.

{c3}

2) We have $\text{INC}_{\chi\mu}(\mu, \lambda, \kappa)$ and even $\text{INC}^+_{\chi\mu}(\mu, \lambda, \kappa)$, see Definition 0.3(4) when:

- $(a), (b), (c)$ as in (a) from 2.2
- (d) $\bar{\eta}$ is not free
- (e) $\bar{\eta}|u$ is free when $u \in [\alpha(*)]^{<\lambda}$.

Proof. We concentrate on proving part (1) the chromatic number case; the proof of part (2) and of the colouring number are similar. For $\mathcal{A} \subseteq {}^\kappa \text{Ord}$, we define $\tau_\mathcal{A}$ as the vocabulary $\{ P_\eta : \eta \in \mathcal{A} \} \cup \{ F_\varepsilon : \varepsilon < \kappa \}$ where P_η is a unary predicate, F_ε a unary function (will be interpreted as possibly partial).

Without loss of generality for each $i < \lambda$, u_i is an initial segment of $\alpha(*)$ and let $\mathcal{A} = \{ \eta_\alpha : \alpha < \alpha(*) \}$ and let $\prec_\mathcal{A}$ be the well ordering $\{ (\eta_\alpha, \eta_\beta) : \alpha < \beta < \alpha(*) \}$ of \mathcal{A}.

We further let $K_\mathcal{A}$ be the class of structures M such that (pedantically, $K_\mathcal{A}$ depend also on the sequence $\langle \eta_\alpha : \alpha < \alpha(*) \rangle$):

- (a) $M = (|M|, F^M_\varepsilon, P^M_\eta)_{\varepsilon < \kappa, \eta \in \mathcal{A}}$
- (b) $\langle P^M_\eta : \eta \in \mathcal{A} \rangle$ is a partition of $|M|$, so for $a \in M$ let $\eta_a = \eta_a^M$ be the unique $\eta \in \mathcal{A}$ such that $a \in P^M_\eta$
- (c) if $a_\ell \in P^M_\eta$ for $\ell = 1, 2$ and $F^M_\varepsilon(a_1) = a_2$ then $\eta_1(\varepsilon) = \eta_2(\varepsilon)$ and $\eta_1 <_\mathcal{A} \eta_2$.

Let $K^\prime_\mathcal{A}$ be the class of M such that

- (a) $M \in K_\mathcal{A}$
- (b) $|M| = \mu$
- (c) if $\eta \in \mathcal{A}$, $u \subseteq \kappa$ and $\eta_\varepsilon <_\mathcal{A} \eta$, $\eta_\varepsilon(\varepsilon) = \eta(\varepsilon)$ and $a_\varepsilon \in P^M_\eta$ for $\varepsilon \in u$ then $\eta \in u$ we have $\varepsilon \in u \Rightarrow F^M_\varepsilon(a) = a_\varepsilon$ and $\varepsilon \in \kappa \setminus u \Rightarrow F^M_\varepsilon(a)$ not defined.
Clearly

\[\exists \alpha \text{ there is } M \in K_{\mathcal{A}}. \]

[Why? As } \mu = \mu^\kappa \text{ and } |\mathcal{A}| = \mu.]

\[\exists \beta \text{ for } M \in K_{\mathcal{A}} \text{ let } G_M \text{ be the graph with:} \]

\begin{itemize}
 \item set of nodes \(|M|\)
 \item set of edges \(\{\{a, F^M_\varepsilon(a)\} : a \in |M|, \varepsilon < \kappa \text{ when } F^M_\varepsilon(a) \text{ is defined}\}\).
\end{itemize}

Now

\[\exists \gamma \text{ if } \mu \subseteq \alpha(*) \land \mathcal{A}_\alpha = \{\eta_\alpha : \alpha \in u\} \subseteq \mathcal{A} \text{ and } \eta_\mu |u \text{ is free, and } M \in K_{\mathcal{A}} \text{ then} \]

\[G_{M, \mathcal{A}_\alpha} := G_M |(\cup \{P^M_\eta : \eta \in \mathcal{A}_\alpha\}) \text{ has chromatic number } \leq \kappa \text{; moreover has colouring number } \subseteq \kappa. \]

[Why? Let } h : u \rightarrow \kappa \text{ witness that } \eta_\mu |u \text{ is free and for } \varepsilon < \kappa \text{ let } \mathcal{B}_\varepsilon := \{\eta_\alpha : \alpha \in u \text{ and } h(\alpha) = \varepsilon\}, \text{ so } \mathcal{B} = \cup \{\mathcal{B}_\varepsilon : \varepsilon < \kappa\}, \text{ hence it is enough to prove for each } \varepsilon < \kappa \text{ that } G_{M, \mathcal{B}_\varepsilon} \text{ has chromatic number } \leq \kappa. \text{ To prove this, by induction on } \alpha \leq \alpha(*) \text{ we choose } c_\alpha \text{ such that:} \]

\begin{enumerate}
 \item[(a)] \(c_\alpha^\varepsilon\) is a function
 \item[(b)] \(\langle c_\beta : \beta \leq \alpha \rangle\) is increasing continuous
 \item[(c)] \(\operatorname{Dom}(c_\alpha^\varepsilon) = B_\alpha^\varepsilon := \cup \{P^M_\eta : \beta < \alpha \text{ and } \eta_\beta \in \mathcal{B}_\varepsilon\}\)
 \item[(d)] \(\operatorname{Rang}(c_\alpha^\varepsilon) \subseteq \kappa\)
 \item[(e)] if } a, b \in \operatorname{Dom}(c_\alpha) \text{ and } \{a, b\} \in \text{edge}(G_M) \text{ then } c_\alpha(a) \neq c_\alpha(b). \]
\end{enumerate}

Clearly this suffices. Why is this possible?

If } \alpha = 0 \text{ let } c_\alpha^\varepsilon \text{ be empty, if } \alpha \text{ is a limit ordinal let } c_\alpha^\varepsilon = \cup \{c_\beta^\varepsilon : \beta < \alpha\} \text{ and if } \alpha = \beta + 1 \land \alpha(\beta) \neq \varepsilon \text{ let } c_\alpha = c_\beta.

Lastly, if } \alpha = \beta + 1 \land h(\beta) = \varepsilon \text{ we define } c_\alpha^\varepsilon \text{ as follows for } a \in \operatorname{Dom}(c_\alpha^\varepsilon), c_\alpha^\varepsilon(a) \text{ is:} \]

Case 1: } a \in B_\beta^\varepsilon.

Then } c_\alpha^\varepsilon(a) = c_\beta^\varepsilon(a). \]

Case 2: } a \in B_\alpha^\varepsilon \setminus B_\beta^\varepsilon.

Then } c_\alpha^\varepsilon(a) = \min(\kappa \setminus \{c_\beta^\varepsilon(F^M_\zeta(a)) : \zeta < \varepsilon \text{ and } F^M_\zeta(a) \in \operatorname{Dom}(c_\beta^\varepsilon)\}). \]

This is well defined as:

\begin{enumerate}
 \item[(a)] } B_\alpha^\varepsilon = B_\beta^\varepsilon \cup P^M_{\eta_\alpha}
 \item[(b)] if } a \in B_\beta^\varepsilon \text{ then } c_\alpha^\varepsilon(a) \text{ is well defined (so case 1 is O.K.)}
 \item[(c)] if } \{a, b\} \in \text{edge}(G_M), a \in P^M_{\eta_\alpha} \text{ and } b \in B_\alpha^\varepsilon \text{ then } b \in B_\beta^\varepsilon \text{ and } \text{then } b \in \{F^M_\zeta(a) : \zeta < \varepsilon\}
 \item[(d)] } c_\alpha^\varepsilon(a) \text{ is well defined in Case 2, too}
 \item[(e)] } c_\alpha^\varepsilon \text{ is a function from } B_\alpha^\varepsilon \text{ to } \kappa
 \item[(f)] } c_\alpha^\varepsilon \text{ is a colouring.} \]
Why? Toward contradiction assume witnesses \(\bar{a}, b\) for some \(\varepsilon < \kappa\), contradiction to \(\varepsilon < \kappa\) in Case 2 above.

Next, clause (d) holds as

\[
\begin{align*}
B & = A \\
\varepsilon & < \kappa,
\end{align*}
\]

so indeed \(B\) is free iff \(A\) is free.

Proof. Clause (A): By 2.2 and [Sh:g, Ch.III], [Sh:g, Ch.IX, §1].

Clause (B): Follows from (A) by [Sh:g, Ch.VIII, §1].

Clause (C): Follows from (B) by [Sh:g, Ch.IX, §1]. □
ON INCOMPACTNESS FOR CHROMATIC NUMBER OF GRAPHS

REFERENCES

[Sh:F1240] ________, More on compactness of chromatic numbers.

E-mail address: shelah@math.huji.ac.il
URL: http://shelah.logic.at