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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELSOF DEPENDENT THEORIESARTEM CHERNIKOV AND SAHARON SHELAHAbstra
t. For an in�nite 
ardinal κ, let dedκ denote the supremum of the number of Dedekind
uts in linear orders of size κ. It is known that κ < ded κ ≤ 2κ for all κ and that dedκ < 2κ is
onsistent for any κ of un
ountable 
o�nality. We prove however that 2κ ≤ ded (ded (ded (ded κ)))always holds. Using this result we 
al
ulate the Hanf numbers for the existen
e of two-
ardinalmodels with arbitrarily large gaps and for the existen
e of arbitrarily large models omitting atype in the 
lass of 
ountable dependent �rst-order theories. Spe
i�
ally, we show that thesebounds are as large as in the 
lass of all 
ountable theories.1. Introdu
tionFor an in�nite 
ardinal κ, let
dedκ = sup {|I| : I is a linear order with a dense subset of size ≤ κ} .In general the supremum need not be attained. Let I be a linear order and let c = (I1, I2) be a
ut of I (i.e. I = I1 ∪ I2, I1 ∩ I2 = ∅ and i1 < i2 for all i1 ∈ I1, i2 ∈ I2). By 
o�nality of c from theleft (respe
tively, from the right) we mean the 
o�nality of the linear order indu
ed on I1 (resp.the 
o�nality of I∗2 , that is I2 with the order reversed).Fa
t 1.1. The following 
ardinalities are the same, see e.g. [CKS12, Proposition 6.5℄:(1) dedκ,(2) sup {λ : exists a linear order I of size ≤ κ with λ 
uts},(3) sup{λ : exists a regular µ and a linear order of size ≤ κ with λ 
uts of 
o�nality µ bothfrom the left and from the right},(4) sup {λ : exists a regular µ and a tree T of size ≤ κ with λ bran
hes of length µ}.It is well-known that κ < dedκ ≤ (dedκ)

ℵ0 ≤ 2κ (for the �rst inequality, let µ be minimalsu
h that 2µ > κ, and 
onsider the tree 2<µ) and that dedℵ0 = 2ℵ0 (as Q ⊆ R is dense). ThusKey words and phrases. Dedekind 
uts, linear orders, trees, 
ardinal arithmeti
, PCF, two-
ardinal models,omitting types, dependent theories, NIP.The �rst author has re
eived funding from the European Resear
h Coun
il under the European Union's SeventhFramework Programme [FP7/2007-2013℄ under grant agreement n° 238381 and from the ERC Grant AgreementNo. 291111.The se
ond author would like to thank the Israel S
ien
e Foundation for partial support of this resear
h (Grantno. 1053/11). Publi
ation 1035 on his list. 1
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 2
dedκ = (dedκ)

ℵ0 = 2κ for all κ in a model with GCH. Moreover, Baumgartner [Bau76℄ hadshown that if 2κ = κ+n (i.e. the nth su

essor of κ) for some n ∈ ω, then dedκ = 2κ. Onthe other hand, for any κ of un
ountable 
o�nality Mit
hell [Mit73℄ had proven that 
onsistently
ded (κ) < 2κ. Besides, in [CKS12, Se
tion 6℄ it is demonstrated that for some κ it is 
onsistentthat dedκ < (dedκ)ℵ0 (but it is still open if both inequalities dedκ ≤

(

dedκℵ0

)

≤ 2κ 
an be stri
tsimultaneously). The importan
e of the fun
tion dedκ from the model-theoreti
 point of view islargely due to the following fa
t:Fa
t 1.2. [Kei76, She90℄ Let T be a 
omplete �rst-order theory in a 
ountable language L. For amodel M of T , S1 (M) denotes the spa
e of 1-types over M (i.e. the spa
e of ultra�lters on theBoolean algebra of de�nable subsets of M). De�ne fT (κ) = sup {|ST (M)| : M |= T, |M | = κ}.Then for any 
ountable T , fT is one of the following fun
tions: κ, κ+ 2ℵ0 , κℵ0 , dedκ, (dedκ)ℵ0or 2κ (and ea
h of these fun
tions o

urs for some T ).In the �rst part of the paper we prove that 2κ ≤ ded (ded (ded (dedκ))) holds for any κ. Ourproof uses results from the PCF theory of the se
ond author. Optimality of this bound remainsopen. Moreover, with two extra iterations we 
an ensure that the supremums are attained. I.e.,for any 
ardinal κ there are linear orders I0, . . . , I6 su
h that |I0| ≤ κ, 2κ ≤ |I6| and for every
i < 6, the number of Dedekind 
uts in Ii is at least |Ii+1|.In the se
ond part of the paper we apply these results to questions about 
ardinal transfer. Fixa 
omplete �rst-order theory T in a 
ountable language L, with a distinguished predi
ate P (x)from L. Given two 
ardinals κ ≥ λ ≥ ℵ0 we say that M |= T is a (κ, λ)-model if |M | = κ and
|P (M)| = λ. A 
lassi
al question in model theory is to determine impli
ations between existen
eof two-
ardinal models for di�erent pairs of 
ardinals. It was studied by Vaught, Chang, Morley,Shelah and others.Fa
t 1.3. (Vaught) Assume that for some κ, T admits a (in (κ) , κ)-model for all n ∈ ω. Then
T admits a (κ′, λ′)-model for any κ′ ≥ λ′.Vaught's theorem is optimal:Example 1.4. Fix n ∈ ω, and 
onsider a stru
tureM in the language L = {P0 (x) , . . . , Pn (x) ,∈0

, . . . ,∈n−1} in whi
h P0 (M) = ω, Pi+1 (M) is the set of subsets of Pi (M), and ∈i⊆ Pi × Pi+1 isthe membership relation. Let T = Th (M). Then M is a (in,ℵ0)-model of T , but it is easy to seeby �extensionality� that for any M ′ |= T we have |M ′| ≤ in (|P0 (M
′)|).However, the theory in the example is wild from the model theoreti
 point of view, and strongertransfer prin
iples hold for tame 
lasses of theories.
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 3Fa
t 1.5. (1) [La
72℄ If T is stable and admits a (κ, λ)-model for some κ > λ, then it admitsa (κ′, λ′)-model for any κ′ ≥ λ′.(2) [Bay98℄ If T is o-minimal and admits a (κ, λ)-model for some κ > λ, then it admits a
(κ′, λ′)-model for any κ′ ≥ λ′.For further two-
ardinal results for stable theories see [She90, Ch. V, �6℄ and also [BS06℄.An important 
lass of theories 
ontaining both the stable and the o-minimal theories is the
lass of dependent theories (also 
alled NIP theories in the literature) introdu
ed by the se
ondauthor [She90℄. In the 
ountable 
ase, dependent theories 
an be de�ned as those theories forwhi
h fT (κ) ≤ (dedκ)

ℵ0 (see Fa
t 1.2, and see Se
tion 3 for a 
ombinatorial de�nition). Re
entlydependent theories have attra
ted a lot of attention both in purely model theoreti
 work ongeneralizing the ma
hinery of stable theories (e.g. [She09, She07, She12, CS13, CS℄), and due tothe analysis of some important algebrai
 examples [HP11, HHM08℄.It is easy to see that the theory in Example 1.4 is not dependent, but also that a 
ompleteanalogue of Fa
t 1.5 
annot hold for dependent theories: 
onsider the theory of (R, <) expandedby a predi
ate naming Q. In Se
tion 3 we show that in fa
t the situation for dependent theoriesis not better than for arbitrary theories, in 
ontrast to the stable and o-minimal 
ases. Namely,for every n < ω we 
onstru
t a dependent theory Tn whi
h has a (im,ℵ0)-model for all m < n,but does not have a (iω,ℵ0)-model. In Se
tion 4 we elaborate on this example and show thatthe Hanf number for omitting a type is again the same for 
ountable dependent theories as forarbitrary theories � unlike in the stable [HS91℄ and in the o-minimal [Mar86℄ 
ases. Exampleswhi
h we 
onstru
t add to the list of dependent theories [KS10b, KS10a℄ demonstrating that theprin
iple �dependent = stable + linear order� has only limited appli
ability.2. On the number of Dedekind 
uts2.1. On ppκ (λ). We summarize some fa
ts from the PCF theory of the se
ond author (see also[HSW99, Chapter 9℄ for an exposition).De�nition 2.1. Given a set of 
ardinals A and a 
ardinal λ, we will write sup+ (A) = min{µ :

∀ν ∈ A, ν < µ} and λ ≤+ sup (A) if either λ < sup (A), or λ = sup (A) and λ ∈ A.De�nition 2.2. [She94, II.�1℄ For cf λ ≤ κ < λ let
A =

{

cf
(

∏

a/F
)

: a ⊂ Reg∧ sup (a) = λ ∧ |a| ≤ κ ∧ F is an ultra�lter on a ∧ F ∩ Ib (a) = ∅
} ,where Reg is the 
lass of regular 
ardinals, and for a set B of ordinals with sup (B) /∈ B,

Ib (B) = {X ⊆ B : ∃β ∈ BX ⊆ β} denotes the ideal of bounded subsets of B. Then we de�ne
ppκ (λ) = sup (A) and pp+κ (λ) = sup+ (A) (where �pp� stands for �pseudo-power�).
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 4Equivalently (see e.g [HSW99, Lemma 9.1.1℄), for cf λ ≤ κ < λ one has
ppκ (λ) = sup

{

tcf

(

∏

i<κ

λi/I,<I

)

: λi = cf λi < λ = sup
i<κ

λi ∧ I is an ideal on κ ∧ Ib (κ) ⊆ I

} ,where <I is the lexi
ographi
 ordering modulo I and for a partial order P , tcf (P ) = κ when thereare 〈pi : i < κ〉 in P su
h that κ = cf κ and∧i<j (pi < pj) and ∀p ∈ P
(
∨

i<κ p ≤ pi
) (true 
o�nalitymay not exist). We re
all that Γ (θ, σ) = {I : for some 
ardinal θI < θ, I is a σ-
omplete ideal on θI}and Γ (θ) = Γ (θ+, θ). Then ppΓ(θ,σ) (λ) is de�ned in the same way as ppκ (λ) but the supremumis taken only over ideals from Γ (θ, σ).Fa
t 2.3. See e.g. [HSW99, Chapter 9℄:(1) λ < ppκ (λ) ≤ λκ and if cf λ = κ > ℵ0 and λ is κ-strong (i.e. ρκ < λ for all ρ < λ), then

ppκ (λ) = λκ. In parti
ular ppκ (λ) = λκ holds for any strong limit λ with un
ountable
o�nality κ.(2) For any θ we have ppΓ(θ) (λ) ≤ ppθ (λ) and ppΓ(θ+,2) (λ) = ppθ (λ).Fa
t 2.4. (1) [She93, 4.3℄ Assume:
• λ is regular, un
ountable,
• κ < λ implies 2κ < 2λ,
• for some regular χ ≤ 2λ there is no tree of 
ardinality λ with ≥ χ-many bran
hes oflength λ.Then 2<λ < 2≤λ, and for some µ ∈

(

λ, 2<λ
] with cf µ = λ:(a) for every regular χ in (2<λ, 2λ

] there is a linear order of 
ardinality χ with a densesubset of 
ardinality µ (the linear order is (Tχ, <lx), where Tχ ⊆ 2<µ has ≤ µ nodesand ≥ χ-many bran
hes of length λ),(b) ppΓ(λ) (µ) = 2λ,(
) µ is (λ, λ+, 2)-ina

essible, i.e. (see [She93, 3.2℄) for any µ′ su
h that λ < µ′ < µ ∧

cfµ′ ≤ λ we have ppΓ(λ+,2) (µ
′) < µ, whi
h in view of Fa
t 2.3 implies ppλ (µ

′) < µ.(2) [She96, Claim 3.4℄ Assume that θn+1 = min
{

θ : 2θ > 2θn
} for n < ω and ∑n<ω θn < 2θ0(so θn+1 is regular, θn+1 > θn). Then for in�nitely many n < ω, for some µn ∈ [θn, θn+1)(so 2µn = 2θn) we have: for every regular χ ≤ 2θn there is a tree of 
ardinality µn with

≥ χ-many bran
hes of length θn.(3) [She94, II.2.3(2)℄ If λ < µ are singulars of 
o�nality ≤ κ (and κ < λ) and ppκ (λ) ≥ µthen ppκ (µ) ≤
+ ppκ (λ).Remark 2.5. See [GS89℄ 
on
erning optimality of these results.2.2. Bounding exponent by iterated ded.
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 5De�nition 2.6. By indu
tion on the ordinal α we de�ne a stri
tly in
reasing sequen
e of ordinals
αג su
h that:

• If α = 0, then αג = ℵ0.
• If α = β + 1, then αג = min

{

ג : ג2 > βג2
}.

• If α is limit, then αג =
∑

βג} : β < α}.Lemma 2.7. For any ordinal α, α+1ג2 ≤+ ded
(

αג2
).Proof. α+1ג>2 is a tree with α+1ג2 bran
hes and ≤
∑
{

2|β| : β < α+1ג

} nodes. But if β < α+1,thenג 2β ≤ αג2 and α+1ג ≤ αג2 by the de�nition of ,s'ג so the number of nodes is bounded by
αג2 . �Proposition 2.8. Assume that α+kג ≤ αג2 for some k ∈ ω. Then for some m ≤ k:

• ded
(

αג2
)

≥ ,α+mג2
• ded

(

α+mג2
)

≥ α+kג2 .Proof. We follow the proof of [She96, Claim 3.4℄. Let θn = α+nג for n ≤ k. Note that θn+1 isregular and θn+1 > θn. We de�ne:
(∗)θn for every regular χ ≤ 2θn there is a tree of 
ardinality θn with ≥ χ-many bran
hes oflength θn.Let S0 =

{

0 < n ≤ k : (∗)θn fails}.By Fa
t 2.4(1) with λ = θn and the de�nitions of S0 and of the s'ג it follows that for ea
h
n ∈ S0 there is µn su
h that:
(α)n θn = cf µn < µn ≤ 2<θn = 2θn−1(as 2<θn ≤ θn × 2θn−1 ≤ 2θ0 × 2θn−1 ≤ 2θn−1).
(β)n ppθn (µn) = ppΓ(θn) (µn) = 2θn (as ppΓ(θn) (µn) = 2θn by Fa
t 2.4(1)(b), and ppΓ(θn) (µn) ≤

ppθn (µn) ≤ µθn
n ≤

(

2θn−1

)θn ≤ 2θn by Fa
t 2.3).
(γ)n For any µ′ we have that θn < µ′ < µn ∧ cfµ′ ≤ θn implies ppΓ(λ+,2) (µ

′) < µn (byFa
t 2.4(1)(
)).
(δ)n ded (µn) ≥ 2θn (as for any regular χ ≤ 2θn there is linear order of 
ardinality ≥ χ witha dense subset of size µn by Fa
t 2.4(1)(a)).Let S1 =

{

n ∈ S0 : µn ≥ αג2
}. Then we have the following 
laims.

(∗)1 If n ≤ k and n /∈ S0 then ded
(

αג2
)

≥ α+nג2 .Proof. By the de�nition of S0 and of θn it follows that ded (θn) ≥ α+nג2 (taking supremumover trees 
orresponding to regular χ's less or equal to 2θn), and θn ≤ αג2 by assumption. Thus
ded

(

αג2
)

≥ α+nג2 as wanted.
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 6
(∗)2 If n ≤ k and n ∈ S0 \ S1 then ded

(

αג2
)

≥ α+nג2 .Proof. By the de�nition of S1 we have µn < αג2 . On the other hand, as n ∈ S0, we have
ded (µn) ≥ 2θn by (δ)n. Combining we get ded (αג2) ≥ α+nג2 .
(∗)3 If n and n+ 1 are from S1 then µn > µn+1.Proof. By the assumption µn ≥ αג2 ≥ θn+1 = cf θn+1, and in fa
t µn > θn+1 as they are ofdi�erent 
o�nality.Assume that µn < µn+1. Then by Fa
t 2.4(3) with λ = µn, µ = µn+1 and κ = θn+1 (as
max {cf µn, cf µn+1} = max {θn, θn+1} < min {µn, µn+1} by (α)n and (α)n+1, and ppθn+1

(µn) ≥

ppΓ(θn) (µn) = 2θn ≥ µn+1) we would get ppθn+1
(µn+1) ≤+ ppθn+1

(µn).On the other hand by (γ)n+1 we would get that θn+1 < µn < µn+1 ∧ cfµn ≤ θn+1 implies
ppθn+1

(µn) < µn+1 ≤ 2θn+1 = ppθn+1
(µn+1) � a 
ontradi
tion. Thus we 
on
lude that µn ≥

µn+1, and in fa
t µn > µn+1 as they are of di�erent 
o�nalities.We try to de�ne m = max {0 < n ≤ k : n /∈ S1}.Case 1. m not de�ned. So S1 = {1, . . . , k} (and we may assume that k ≥ 2), hen
e µ1 > . . . > µkby (∗)3, hen
e µk < µ1 ≤ 2θ0 . But by the de�nition of S1 a
tually µk ≥ 2θ0 � a
ontradi
tion.Case 2. m is well-de�ned. So {m+ 1, . . . , k} ⊆ S1 hen
e as in Case 1 we have µk < µm+1 ≤ 2θmhen
e ded
(

α+mג2
)

≥ ded (µk) ≥ α+kג2 by (δ)k. Besides, ded (αג2) ≥ α+mג2 (by (∗)1 if
m /∈ S0 and by (∗)2 if m ∈ S1 \ S0) � so we are done.

�Proposition 2.9. Assume that α+kג ≤ αג2 for some k ∈ ω. Then for some m ≤ k:
• α+kג2 ≤+ ded

(

α+k−1ג2

),
• α+k−1ג2 ≤+ ded

(

α+mג2
),

• α+mג2 ≤+ ded
(

α+m−1ג2

),
• α+m−1ג2 ≤+ ded

(

αג2
).Proof. We modify the proof of Proposition 2.8. We have:

(∗)+1 If n+ 1 ≤ k and n+ 1 /∈ S0 then ded
(

αג2
)

+ ≥ α+nג2 .Proof. As α+nג2)
)+ is regular, α+nג2)

)+
≤ α+n+1ג2 and (∗)θn+1

holds by the de�nition of S0, itfollows that ded (θn+1)
+ ≥ α+nג2 , and θn+1 ≤ αג2 by assumption. Thus ded (αג2) + ≥ α+nג2 aswanted.

(∗)+2 If n+ 1 ≤ k and n+ 1 ∈ S0 \ S1 then ded
(

αג2
)

≥ α+nג2 .
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 7Proof. If n+ 1 ∈ S0 \ S1 then µn+1 < αג2 and ded (µn+1)
+ ≥ 2θn by (δ)n+1.Now in Case 1 we get a 
ontradi
tion in the same way as before, so we may assume that m iswell de�ned, i.e. {m+ 1, . . . , k} ⊆ S1. As before we get µk < µm+1 ≤ 2θm , hen
e ded

(

α+mג2
)

≥

ded (µk)
+ ≥ α+k−1ג2 by (δ)k. Besides, ded (αג2) + ≥ α+m−1ג2 (by (∗)+1 if m /∈ S0 and by (∗)+2 if

m ∈ S1 \ S0). We 
an 
on
lude by Lemma 2.7. �Although, as it was already mentioned, it is 
onsistent for κ of un
ountable 
o�nality that
dedκ < 2κ, we prove (in ZFC) that these values are not so far apart and that four iterations of
ded are su�
ient to get the exponent.Theorem 2.10. Let µ be an arbitrary 
ardinal. Then there are λ0, . . . , λ4 su
h that:(1) λ0 ≤ µ,(2) λi+1 ≤ ded (λi) for i < 4,(3) 2µ ≤ λ4.Proof. As the sequen
e of the s'ג is in
reasing, for some α we have αג ≤ µ < ,α+1ג so also α ≤ µ.First of all, for any ordinal β with β + ω ≤ α and βג2 > β+ωג we have (by Fa
t 2.4(2) taking
θ0 = βג and θn = :(β+nג
⊙1 For in�nitely many γ ∈ [β, β + ω) and arbitrary regular ג ≤ γג2 , there is a tree T with

|T | ∈ γג] , (γ+1ג and at least many-ג bran
hes of length γג .Let δ∗ be the largest non-su

essor ordinal ≤ α, so α = δ∗ + n∗ for some n∗ < ω. We have:
⊙2 There is a linear order I of 
ardinality ≤ µ with ≥

∑
{

βג2 : β < δ∗
} Dedekind 
uts.(Indeed, if ∗δג is a strong limit 
ardinal then∑{

βג2 : β < δ∗
}

≤ µ and this is trivial. Otherwise,the demand β+ωג ≤ βג2 < β+1ג2 holds for every large enough β < δ∗, so by ⊙1 and Fa
t 1.1 we
an 
on
lude by taking the sum of the 
orresponding linear orders and noting that δ∗ ≤ µ).Let λ0 = µ, λ1 =
∑
{

βג2 : β < δ∗
} and λ2+n = δ∗+nג2 for n ∈ {0, . . . , n∗}. Note that

λ2+n∗
= αג2 = 2µ.We have:
• λ1 ≤+ dedλ0 (by ⊙2).
• λ2 ≤+ dedλ1 (as ∗δג>2 is a tree with ∑ {2κ : κ < {∗δג =

∑
{

βג2 : β < δ∗
}

= λ1 nodesand ∗δג2 = λ2 bran
hes).
• λ2+n+1 ≤+ ded (λ2+n) for n < n∗ (by Lemma 2.7).If δ∗ = α then we are done as λ2 = αג2 = 2µ (as µ < α+1ג and α+1ג is smallest with αג2 < α+1),soג2 assume δ∗ = α∗ + n∗ and n∗ > 0.
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 8If ∗δ∗+nג
≤ ∗δג2 , then by Proposition 2.8 there is some m ≤ n∗ su
h that λ′

3 = ded
(

∗δג2
)

≥

δ∗+mג2 and λ′
4 = ded

(

δ∗+mג2
)

≥ ∗δ∗+nג2 = αג2 = 2µ. It then follows that λ0, λ1, λ2, λ
′
3, λ

′
4 are aswanted.Otherwise ∗δ∗+nג

> ∗δג2 , and let n be the biggest su
h that ∗δ∗+nג
> δ∗+nג2 , it follows that

n ≤ n∗ − 1. Then ∗δ∗+nג
≤ δ∗+n+1ג2 and again by Proposition 2.8 we get some m su
h that:

• λ′′
0 = δ∗+nג2 < ∗δ∗+nג

≤ µ,
• λ′′

1 = δ∗+n+1ג2 ≤+ ded
(

δ∗+nג2
) (by Lemma 2.7),

• λ′′
2 = δ∗+mג2 ≤ ded

(

δ∗+n+1ג2

),
• 2µ = ∗δ∗+nג2 ≤ λ′′

3 = ded
(

δ∗+mג2
).But then 〈λ′′

i 〉i≤3 are as wanted. �Similarly we have:Corollary 2.11. Let µ be an arbitrary 
ardinal. Then there are λ0, . . . , λ6 su
h that:(1) λ0 ≤ µ,(2) λi+1 ≤+ ded(λi) for all i < 6,(3) 2µ ≤ λ6.Proof. Follows from the proof of Theorem 2.10 using Proposition 2.9 instead of Proposition 2.8. �Problem 2.12. What is the smallest 1 < n ≤ 4 for whi
h Theorem 2.10 remains true? Can thebound be improved at least for 
ertain 
lasses of 
ardinals? Also, how might the required numberof iterations vary in di�erent models of ZFC?Corollary 2.13. For every 
ardinal µ and k < ω there is some n < ω and a sequen
e 〈λm : m ≤ n〉su
h that:
• λ0 ≤ µ,
• λ0 < ... < λn and ded(λm)+ ≥ λm+1,
• λn ≥ ik (µ).Proof. Follows by iterating Corollary 2.11. �3. On 2-
ardinal models for dependent TWe re
all that a formula ϕ (x, y) ∈ L is said to have the independen
e property (or IP) withrespe
t to a theory T if in some model of T there are elements 〈ai : i ∈ ω〉 and 〈bs : s ⊆ ω〉 su
hthat ϕ (ai, bs) holds if and only if i ∈ s. A 
omplete �rst-order theory is 
alled dependent (or NIP)if no formula has the independen
e property. The 
lass of dependent theories 
ontains both thestable and the o-minimal theories, but also for example the theory of algebrai
ally 
losed valued�elds.
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 9Fa
t 3.1. [She90, Theorem II.4.11℄ A 
ountable theory T is dependent if and only if |S1(M)| ≤

(ded |M |)ℵ0 for all M |= T .In this se
tion we show that when 
onsidering the two-
ardinal transfer to arbitrarily largegaps between the 
ardinals, the situation for dependent theories is not better than for arbitrarytheories. Namely, for every n < ω we 
onstru
t a dependent theory T whi
h has a (im,ℵ0)-modelfor all m < n, but does not have any (iω,ℵ0)-models.De�nition 3.2. For any n ∈ N, let Ln be the language 
onsisting of:(1) Pm, Qm are unary predi
ates for m < n.(2) fm is a unary fun
tion for m+ 1 < n.(3) <m is a binary relation for m < n.De�nition 3.3. We de�ne a universal theory T ∀
n in the language Ln saying:(1) 〈Qm : m < n〉 is a partition of the universe.(2) <m is a linear order on Qm.(3) Pm is a subset of Qm.(4) fm is a unary fun
tion su
h that:(a) It is 1-to-1 from Pm+1 into Qm \ Pm.(b) It is 1-to-1 from Qm \ Pm into Pm+1.(
) f(f(x)) = x.(d) It is the identity on {x : x /∈ Pm+1 ∪ (Qm \ Pm)}.Claim 3.4. (1) T ∀

n is a 
onsistent universal theory.(2) T ∀
n has JEP and AP.(3) If M |= T ∀

n and A ⊆ M is �nite, then the substru
ture generated by A is �nite, and infa
t of size at most 2× |A|.(4) T ∀
n has a model 
ompletion Tn whi
h is ℵ0-
ategori
al and eliminates quanti�ers.Proof. (1), (2) and (3) are easy to see, and (4) follows by e.g. [Hod93, Theorem 7.4.1℄. �Claim 3.5. In fa
t, Tn is axiomatized by:(1) T ∀
n(2) <m is a dense linear order without end-points.(3) Pm is both dense and 
o-dense in Qm.(4) fm is a 1-to-1 fun
tion from Pm+1 onto Qm \ Pm.(5) If a1 <m c1 and a2 <m+1 c2, then there are b1 ∈ Qm \ Pm and b2 ∈ Pm+1 su
h that:

a1 <m b1 <m c1, a2 <m+1 b2 <m+1 c2 and fm(b2) = b1.Proposition 3.6. Tn is dependent.



1
0
3
5
 
 
r
e
v
i
s
i
o
n
:
2
0
1
4
-
1
2
-
3
0
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
4
-
1
2
-
3
1
 
 

ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 10Proof. Let M |= Tn. Let p(x) ∈ S1(M) be a non-algebrai
 type. By quanti�er elimination it isdetermined by:
• Qm(x) for the 
orresponding m < n.
• Fixing the 
orresponding 
ut of x over M in the order <m.
• Saying if Pm(x) holds or not.
• If it doesn't hold, �xing the 
ut of fm (x) over M in the order <m+1.
• If it holds, �xing the 
ut fm (x) over M in the order <m−1.Then 
learly |S1(M)| ≤ ded |M |, so Tn is dependent. �Remark 3.7. In fa
t it is easy to 
he
k that Tn is strongly dependent (see [She05℄).Proposition 3.8. (1) If M |= Tn and ∣∣PM

0

∣

∣ = λ, then |M | ≤ in(λ).(2) Moreover: ∣∣PM
m+1

∣

∣ =
∣

∣QM
m \ PM

m

∣

∣ ≤
∣

∣QM
m

∣

∣ and ∣∣QM
m

∣

∣ ≤+ ded
∣

∣PM
m

∣

∣.Claim 3.9. Assume that λ0 < . . . < λn and λm+1 ≤+ dedλm. Then Tn has a model M su
h that
∣

∣PM
0

∣

∣ = λ0 and :(1) ∣∣PM
m

∣

∣ = λm.(2) ∣∣QM
m

∣

∣ = λm+1.Proof. By assumption, for every m < n we 
an �nd a linear order Jm of 
ardinality λm+1 with adense subset Im of 
ardinality λm. We may also assume that:(1) For every a < b in Jm, |(a, b)| = λm+1 and |(a, b) ∩ Im| = λm (so in parti
ular Im is also
o-dense in Jm).(2) Im and Jm are dense without end-points.Indeed, given an arbitrary in�nite linear order I and a dense subset J , let I∗ = I ×Q, J∗ = J ×Qand let I∗∗ be the lexi
ographi
 order on I<ω
∗ , J∗∗ = J<ω

∗ . It is easy to see that |I∗∗| = |I|,
|J∗∗| = |J |, J∗∗ is dense in I∗∗, both orders are dense without end-points, and that for any a < bin J∗∗, |(a, b)| = |I| and |(a, b) ∩ J∗∗| = |J |.We de�ne M by taking QM

m = Jm, PM
m = Im and <M

m=<Jm
. We may 
hoose fm satisfying3.5(4) by trans�nite indu
tion as all the relevant intervals have �full 
ardinality� by the assumption.By Claim 3.5, M |= Tn. �Theorem 3.10. For every n < ω there is a dependent 
ountable theory T whi
h has a (im,ℵ0)-model for all m < n, but does not have any (iω,ℵ0)-models.Proof. Follows by 
ombining Propositions 3.6, 3.8, Claim 3.9 and Corollary 2.13. �4. Hanf number for omitting typesNow we elaborate on the previous example, and for every 
ountable ordinal β < ω1 we �nd a
ountable ordinal α∗ < ω1, a 
ountable theory Tα∗

and a partial type p(x) su
h that:
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 11
• there is a model of Tα∗

omitting p (x) and of size ≥ iβ ,
• any model of Tα∗

omitting p (x) is of size at most iα∗
.De�nition 4.1. Fix an ordinal α∗ < ω1. We des
ribe our theory Tα∗

.(1) 〈Qα (x) : α ≤ α∗〉 are pairwise disjoint in�nite unary predi
ates.(2) <α is a dense linear order without end-points on Qα (x).(3) Pα (x) is a dense 
o-dense subset of Qα (x).(4) R (x) is a unary predi
ate disjoint from all Qα's.(5) 〈cn : n ∈ ω〉 are 
onstants and R (cn) for all n ∈ ω.(6) <R is a linear order onR (x), and (R,<R, 〈cn : n ∈ ω〉) is a model of Th (N, < , 〈n : n ∈ N〉).(7) sR (x) , s−1
R (x) are the su

essor and the prede
essor fun
tions on R (x).(8) 〈dr : r ∈ Q〉 are 
onstants and P0 (dr) for all r ∈ Q.(9) For every su

essor ordinal δ + 1 ≤ α∗:(a) fδ is a bije
tion from Pδ+1 onto Qδ \ Pδ, identity on {x : x /∈ Pδ+1 ∪ (Qδ \ Pδ)} andsu
h that fδ (fδ (x)) = x.(b) If a1 <δ c1 and a2 <δ+1 c2 for some a1, c1 ∈ Qδ \ Pδ and a2, c2 ∈ Pδ+1, then thereare b1 ∈ Qδ \ Pδ and b2 ∈ Pδ+1 su
h that: a1 <δ b1 <δ c1, a2 <δ+1 b2 <δ+1 c2 and

fδ(b2) = b1.(10) For every limit ordinal δ ≤ α∗:(a) We �x some listing 〈αδ,n : n < ω〉 with ∑n<ω αδ,n = δ, where for every n we havethat αδ,n is a su

essor ordinal larger than the su

essor of αδ,n−1 and larger thanany αδ′,m from a similar listing for a smaller limit ordinal δ′.(b) We have a fun
tion Gδ (x) su
h that:(i) Gδ is the identity on {x : x /∈ Pδ}.(ii) Gδ : Pδ (x) → R (x) is onto.(iii) for every y ∈ R (x), G−1
δ (y) is a dense linear order without end-points.(iv) If y1 <R y2, then G−1

δ (y1) is 
o-dense in G−1
δ (y2), and every 
ut of G−1

δ (y1)realized by some a ∈ Pδ is realized by some a′ ∈ G−1
δ (y2).(
) We have a relation Eδ (x1, x2, y) whi
h holds if and only if x1 and x2 are from Pδ \

G−1
δ (y) and realize the same 
ut over G−1

δ (y).(d) For ea
h n ∈ ω we have a fun
tion Fδ,n su
h that:(i) It is a bije
tion from G−1
δ (cn) \ G−1

δ (cn−1) onto Pαδ,n
(x), the identity on

{x : x /∈ Pαδ,n
∪G−1

δ (cn)} and su
h that Fδ,n (Fδ,n (x)) = x.(ii) For any n ∈ ω, if a1 <αδ,n
b1 with a1, b1 ∈ Pαδ,n

and a2 <δ d <δ b2 with
a2, b2 ∈ G−1

δ (cn), then there are e1 ∈ Pαδ,n
and e2 ∈ G−1

δ (cn) \ G−1
δ (cn−1)
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 12su
h that: a1 <δ e1 <δ b1, a2 <δ e2 <δ b2, Fδ,n(e2) = e1 and Eδ (d, e2, α) forall α < cn.Claim 4.2. Tα∗
is a 
omplete dependent theory.Proof. It it easy to 
he
k by ba
k-and-forth that T is a 
omplete theory eliminating quanti�ers.Let M |= Tα∗
and let p (x) ∈ S1 (M) be a non-algebrai
 type. We have the following options:(1) p (x) ⊢ Qα (x) for some su

essor α < α∗. Then p (x) is determined by:(a) Fixing the 
ut of x over M in the order <α.(b) If p (x) ⊢ ¬Pα(x):(i) Fixing the 
ut of fα (x) over M in the order <α+1.(ii) If α+1 o

urs as αδ,n for some limit δ < α∗, then �xing the 
ut of Fδ,n (fα (x))over M in the order <δ, and �xing the 
ut of Gδ (Fδ,n (fα (x))) in <R over M .(
) If p (x) ⊢ Pα(x):(i) �xing the 
ut fα−1 (x) over M in the order <α−1.(ii) If α o

urs as αδ,n for some limit δ < α∗, then �xing the 
ut of Fδ,n (x) over
M in the order <δ, and �xing the 
ut of Gδ (Fδ,n (x)) in <R over M .(2) p (x) ⊢ Qδ (x) for some limit δ. Then p (x) is determined by:(a) Fixing the 
ut of x over M in the order <δ.(b) If Pδ (x) does not hold, then similar to 2(b).(
) If Pδ (x) holds:(i) Fixing the 
ut of Gδ (x) over M in <R.(ii) If Gδ (x) = cn for some n ∈ ω also �xing the 
ut of Fδ,n (x) over M in <αδ,n

.(3) If p (x) ⊢ R (x), then �xing the 
ut of x in <R over M .(4) p (x) ⊢ {¬Qα (x) : α < α∗} ∪ {¬R (x)}. Then p (x) is a 
omplete type.Altogether it follows that |S1 (M)| ≤ (ded |M |)ℵ0 , thus T is dependent by Fa
t 3.1. �Consider the type p∗(x) = {¬Pα(x) : 0 < α ≤ α∗} ∪ {x 6= cn : n ∈ ω} ∪ {x 6= dr : r ∈ Q}.Claim 4.3. Let M be a model of Tα∗
omitting p∗ (x). Then |M | ≤ iα∗

.Proof. First of all, if M omits p∗ then ∣∣PM
0

∣

∣ = ℵ0 and ∣∣RM
∣

∣ = ℵ0. We show by indu
tion for
δ ≤ α∗ that ∣∣PM

δ

∣

∣ ≤ iδ. If δ = α+1 is a su

essor, then 
learly ∣∣PM
δ+1

∣

∣ ≤+ ded
∣

∣PM
δ

∣

∣, thus ≤ iδ+1by indu
tion. If δ is a limit, then by 
onstru
tion ∣∣PM
δ

∣

∣ ≤
∑

n<ω

(∣

∣

∣
PM
αδ,n

∣

∣

∣

)

≤
∑

n<ω iαδ,n
= iδ.The 
laim follows. �Claim 4.4. For every β < ω1 there is α∗ < ω1 su
h that Tα∗

has a model omitting p∗ (x) of size
≥ iβ .
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 13Proof. By Corollary 2.13 and indu
tion there is α∗ < β + ω su
h that we 
an 
hoose a stri
tlyin
reasing sequen
e of 
ardinals (λα)α<α∗

satisfying:
• λ0 = ℵ0.
• λα+1 ≤+ dedλα.
• For a limit α, λα =

∑

α′<α λα′ .
• λα∗

≥ iβ .We de�ne a model of Tα∗
omitting p∗ and su
h that ∣∣PM

α

∣

∣ = λα by indu
tion on α.(1) Let RM = (ω,<) with cn naming n. Let QM
0 = (R, <) and let PM

0 = Q, with dr naming
r.(2) For a su

essor δ = α+1: Similarly to Claim 3.9, we 
an �nd a linear order J of 
ardinality
λδ with a dense subset I of 
ardinality λα. We may also assume that for every a < b in J ,
|(a, b)| = λδ and |(a, b) ∩ I| = λα. We let QM

δ = J , PM
δ = I and <M

δ =<J . We may 
hoose
fδ satisfying De�nition 4.1 by trans�nite indu
tion as all the relevant intervals have �full
ardinality� by 
onstru
tion and the indu
tive assumption.(3) For a limit δ ≤ α∗:(a) First we 
onstru
t orders In, Jn by indu
tion on n < ω:(i) Let I0 ⊆ J0 be dense linear orders without end-points and su
h that I0 is dense-
odense in J0, |I0| = λαδ,0

, |J0| = λαδ,0+1, and su
h that for every a < b in J0,
|(a, b)| = λαδ,0+1 and |(a, b) ∩ I0| = λαδ,0

(
an be 
hosen by assumption on λαas in the proof of Claim 3.9).(ii) Let I ′n+1, J
′
n+1 be dense linear orders without end-points and su
h that I ′n+1is dense-
odense in J ′

n+1, ∣∣I ′n+1

∣

∣ = λαδ,n+1
, ∣∣J ′

n+1

∣

∣ = λαδ,n+1+1, and su
h thatfor every a < b in J ′
n+1, |(a, b)| = λαδ,n+1+1 and ∣∣(a, b) ∩ I ′n+1

∣

∣ = λαδ,n+1
(again
an be 
hosen by assumption on λα as in the proof of Claim 3.9). Let In+1extend In with a 
opy of I ′n+1 added in every 
ut, and similarly let Jn+1 extend

Jn with a 
opy of J ′
n+1 added in every 
ut. It follows that λδ,n+1 ≤ |In+1| ≤

λαδ,n+1 × λαδ,n+1
≤ λαδ,n+1

and |Jn+1| ≤ λαδ,n+2 × λαδ,n+1+1 ≤ λαδ,n+1+1, andthat In+1 is a dense-
odense subset of Jn+1.(iii) Finally, let I =
⋃

n<ω In and J =
⋃

n<ω Jn. In parti
ular I is dense-
odense in
J and both I, J are of size λδ.(b) We let PM

δ = I,QM
δ = J and de�ne GM

δ by sending In to cn. By 
onstru
tion of
In and PM

αδ,n
and trans�nite indu
tion we 
an �nd bije
tions FM

δ,n between GM
δ (cn) \

GM
δ (cn−1) = In \ In−1 and PM

αδ,n
satisfying the axioms of Tα∗

. We let E (x, y, cn)hold for x, y in In \ In−1 realizing the same 
ut over In−1.
�
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ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES 14Theorem 4.5. For every 
ountable ordinal β < ω1 there is a 
omplete 
ountable dependent theory
T and a partial type p(x) su
h that:

• T has a model omitting p of size ≥ iβ .
• Any model of T omitting p is of size < iω1

.Proof. Combining Claims 4.2, 4.3 and 4.4. �Referen
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