ATOMIC SATURATION OF REDUCED POWERS
SH1064

SAHARON SHELAH

Abstract. Our aim was to generalize some theorems about the saturation of ultra-powers to reduced powers. Naturally, we deal via saturation for types consisting of atomic formulas. We succeed to generalize “the theory of dense linear is maximal and so is any pair \((T, \Delta)\) which is SOP\(_3\), (where \(\Delta\) consists of atomic or conjunction of atomic formulas). However, SOP\(_2\) is not enough, so the \(p = t\) theorem cannot be generalized in this case. Similarly the unique dual cofinality fail in this context.

Date: January 22, 2019.

2010 Mathematics Subject Classification. Primary: 03C20; Secondary: 03C45, 03C75.

Key words and phrases. model theory, set theory, reduced power, saturation, classification theory, SOP\(_3\), SOP\(_2\).

The research of the author was partially supported by European Research Council, Grant No. 338821. The author thanks Alice Leonhardt for the beautiful typing. First typed February 26, 2014. References like [Sh:950, Th0.2=Ly5] means the label of Theorem 0.2 is y5. The reader should note that the version in my website is usually more updated than the one in the mathematical archive.
Anotated Content

§0 Introduction, (labels x,z), pg. intro

§1 Axiomatizing [She90, Ch.VI,2.6], (label h), pg. 1

[We phrase and prove a theorem which axiomatize [She90, Ch.VI,2.6]. The theorem there says that if D is a regular ultrafilter on I and for every model M of the theory of dense linear orders, the model M^I/D is λ^+-saturated, then D is λ^+-good and λ-regular.]

§2 Applying the axiomatized frame, (label c), pg. 2

[The axiomatization in §1 can be phrased as a set of sentences, surprisingly moreover Horn ones (first order if $\theta_r = \aleph_0$). Now in this case we can straightforwardly derive Sh:a [She78, Ch.VI,2.6]. But because the axiomatization being Horn, we can now deal also with the (λ^+,atomic)-saturation of reduced power. We then deal with infinitary logics and comments on models of Bounded Peano Arithmetic.]

§3 Criterion for atomic saturation of reduced powers, (label g), pg. 3

[For a complete first order T we characterize when a filter D on I is such that M^I/D is (λ,atomically)-saturated for every model M of T.]

§4 Counterexample, (label b), pg. 4

[We prove that for reduced powers, the parallel of $t \leq p$ in general fails, similarly the uniqueness of the dual cofinality.]

§5 The orders $\leq_{\lambda^+}^{RP}$, (label g,r), pg. 5

[We define and prove the results on morality from the ultra-filter case to the filter case. By this we prove that some SOP$_2$ pair are not $\leq_{\lambda^+}^{RP}$-maximal (unlike the ultra-filter cases, see §5.10).]
§ 0. Introduction

§ 0(A). Background, Questions and Answers.

We know much on saturation of ultrapowers, see Keisler \[30:65\] and later mainly works of Malliari and the author, e.g. \[30:65\] But we know considerably less on reduced powers. For transparency, let \(T \) denote a first order complete countable theory with elimination of quantifiers and \(M \) will denote a model of \(T \). For \(D \) a regular filter on \(\lambda > \aleph_0 \) we may ask: when \(M^\lambda/D \) is \(\lambda^+ \)-saturated? For \(D \) an ultrafilter, Keisler \[30:65\] proves that this holds for every \(T \) iff \(D \) is \(\lambda^+ \)-good iff this holds for \(T = \) theory of Boolean algebras, such \(T \) is called \(\preceq \lambda^+ \)-maximal. By \[30:65\] the maximality holds for \(T = \) theory of dense linear orders or just any \(T \) with the strict order property and by \[30:65\], any \(T \) with the SOP \(3 \) is \(\preceq \lambda^+ \)-maximal. What about reduced powers for \(\lambda \)-regular filter \(D \) on \(\lambda \)? By \[30:65\] \(M^\lambda/D \) is \(\lambda^+ \)-saturated for every \(T \) (of cardinality \(\leq \lambda \)) iff \(D \) is \(\lambda^+ \)-good and \(P(\lambda)/D \) is \(\lambda^+ \)-saturated Boolean Algebra. Parallel results hold when we replace \(\lambda^+ \)-saturated by \((\lambda^+,\Sigma^1_1,\Box(T)) \)-saturated. We shall concentrate on \((\lambda^+,\text{atomically}) \)-saturated and the related partial order \(\preceq \), see definitions below. Concerning ultra-powers, lately Malliaris-Shelah \[30:65\] proves that \(T \) being SOP \(2 \) suffice for \(\bowtie \)-maximality (and that \(t = p \)) and, in later work \[30:65\], that at least for a relative \(\bowtie^* \) (see \[30:65\]) this is “iff” assuming a case of G.C.H., relying also on works with Dzamonja \[30:65\], and with Usvyastov \[30:65\]. Part of the proof is axiomatized by Malliaris-Shelah \[30:65\].

Note also that \[30:65\] deals with saturation but only for ultra-powers by \(\theta \)-complete ultrafilters for \(\theta \) a compact cardinal; and also with \(\omega \)-ultra-limits.

Now what do we accomplish here?

First, in §1 we axiomatize the proof of \[30:65\], i.e. we define when \(r = (M,\Delta) \) is an RSP and for it prove that the relevant model \(N_r \) is \(\preceq \)-maximal (and that \(t = p \)) and, in later work \[30:65\], that at least for a relative \(\preceq^*_\lambda \) (see \[30:65\]) this is “iff” assuming a case of G.C.H., relying also on works with Dzamonja \[30:65\], and with Usvyastov \[30:65\]. Part of the proof is axiomatized by Malliaris-Shelah \[30:65\].

In §3 we try to sort out when for models of \(T \) we get the relevant atomic saturation. Can we generalize also results \[30:65\] to reduced powers? The main result of §4 says that no. We also sort out the parallel of goodness, excellency and morality for filters and atomic saturation for reduced powers. In hopeful continuation, we consider parallel statements for infinite logics (see \[30:65\]); also we consider non-maximality.

Note that by \[30:65\]

\textbf{Conclusion 0.1.} If \((T,\Delta) \) has the SOP \(3 \), then it is \(\preceq \lambda^+ \)-maximal.

\textbf{Question 0.2.} Do we have: if \(D \) is \((\lambda_2,T) \)-good and regular then \(D \) is \((\lambda_1,T) \)-good when \(\lambda_1 < \lambda_2 \) (or more).
§ 0(B). Further Questions.

Convention 0.3. 1) Let T be a theory with elimination of quantifiers if not said otherwise. Let Mod_T be the class of models of T.
2) The main case is for T is a countable complete first order theory with elimination of quantifiers, moreover, with every formula equivalent to an atomic one.

So it is natural to ask

Conjecture 0.4. The pair (T, Δ) is \leq_{rp}-maximal iff (T, Δ) has the SOP3.

So which T (with elimination of quantifiers) are maximal under \triangleleft_{λ}? That is, when for every regular filter D on λ, M^λ/D is $(\lambda^+, \text{atomically})$-saturated iff D is λ^+-good? Is T feq^+ maximal? As we have not proved this even for ultrafilters, the reasonable hope is that it will be easier to show non-maximality for \triangleleft_{λ}. Also in light of MiSh:1030 for simple theories we like to prove non-maximality with no large cardinals. We may hope to use just NSOP2, but still it would not settle the problem of characterizing the maximal ones as, e.g. SOP2 \subseteq SOP3 is open; for such T; for a pair $(T, \varphi(x, \bar{y}))$ they are different.

Note that for first order T, it makes sense to use μ^+-saturated models and D is μ^+-complete.

Also the “T stable” case should be resolved.

Conjecture 0.5. M^λ/D is $(\aleph_0^\lambda/D, \text{atomically})$-saturated when:

(a) T a theory as in 0.3
(b) T is stable without the fcp
(c) D is a (λ, \aleph_0)-regular filter on λ.

Remark 0.6. Maybe given a $1 - \varphi$-type $p \subseteq \{ \varphi(x, \bar{a}) : \bar{a} \in m(M^I/D) \}$ of cardinality $\leq \lambda$ in M^I/D, we try just to find a dense set of $A \in D^+$ such that in $M^I/(D + A)$ the $1 - \varphi$-type is realized. Then continue; opaque.

§ 0(C). Preliminaries.

Notation 0.7. 1) Let \mathfrak{B} denote a Boolean algebra, $\text{comp}(\mathfrak{B})$ its completion, $\mathfrak{B}^+ = \mathfrak{B} \setminus \{0_{\mathfrak{B}}\}$, $\text{uf}(\mathfrak{B})$ the set of ultrafilters on \mathfrak{B}, $\text{fil}(\mathfrak{B})$ the set of filters on \mathfrak{B}. For $a \in \mathfrak{B}$ let $a^{\text{if(true)}} = a^{\text{if(1)}}$ be a and let $a^{\text{if(false)}} = a^{\text{if(0)}}$ be $1_{\mathfrak{B}} - a$.
2) For a model M let $\tau_M = \tau(M)$ be its vocabulary.

Now about cuts (they are different than gaps, see MiSh:1069).

Definition 0.8. 1) For a partial order $\mathcal{T} = (\mathcal{T}, \leq_\mathcal{T})$, we say (C_1, C_2) is pre-cut when:
(a) $C_1 \cup C_2$ is a subset of \mathcal{T} linearly ordered by $\leq_\mathcal{T}$
(b) if $a_1 \in C_1, a_2 \in C_2$ then $a_1 \leq_\mathcal{T} a_2$
(c) for no $c \in \mathcal{T}$ do we have $a_1 \in C_1 \Rightarrow a_1 \leq_\mathcal{T} c$ and $a_2 \in C_2 \Rightarrow c \leq_\mathcal{T} a_2$.

2) Above we say (C_1, C_2) is a (κ_1, κ_2)-pre-cut when in addition:
(d) C_1 has cofinality κ_1
(e) C_1', the inverse of C_2, has cofinality κ_2
(f) so κ_1, κ_2 are regular or 0 or 1.

3) We may replace C_1' by a sequence \bar{a}_θ, if not said otherwise such that \bar{a}_1 is $\leq_\mathcal{F}$-increasing and \bar{a}_2 is $\leq_\mathcal{F}$-decreasing.
4) We say (C_1, C_2) is a (κ_1, κ_2)-linear-cut of \mathcal{F} when it is a (κ_1, κ_2)-pre-cut and $C_1 \cup C_2$ is downward closed, so natural for \mathcal{F} a tree.
5) We say (C_1, C_2) is a weak cut when (b),(c) of part (1) holds.
6) We may write cut instead of pre-cut.

\begin{remark}
If \mathcal{F} is a (model theoretic) tree, $\kappa_2 > 0$ and (C_1, C_2) is a (κ_1, κ_2)-pre-cut then it induces one and only one (κ_1, κ_2)-linear-cut (C_1', C_2'), i.e. one satisfying $C_1 \subseteq C_1', C_2 \subseteq C_2'$ such that $C_1 \cup C_2$ is cofinal in $C_1' \cup C_2'$.
\end{remark}

Definition 0.10. 1) We say M is fully $(\lambda, \theta, \sigma, L)$-saturated (may omit the fully); where $L \subseteq \mathcal{L}(\tau_M)$ and \mathcal{L} is a logic; we may write \mathcal{L} if $L = \mathcal{L}(\tau_M)$, when:

- if Γ is a set of $< \lambda$ formulas from L with parameters from M with $< 1 + \sigma$ free variables, and Γ is $< (\theta)$-satisfiable in M, then Γ is realized in M.

2) We say “locally” when using one $\varphi = \varphi(\bar{x}, \bar{y}) \in \mathcal{L}$ with $\mathcal{L}(\bar{x}) < 1 + \sigma$, i.e. all members of Γ have the form $\varphi(\bar{x}, \bar{b})$.

3) Saying “locally/fully (λ, \mathcal{L})-saturated” the default values (i.e. we may omit) of σ is $\sigma = \theta$, of (σ, θ) is $\theta = \aleph_0 \land \sigma = \aleph_0$ and of \mathcal{L} is \mathbb{L} (first order logic) and of L is \mathcal{L}. Omitting \mathcal{L} means $\mathcal{L}(\theta, \theta)$, omitting λ means $\lambda = ||M||$.

4) If $\varphi(\bar{x}, \bar{y}) \in \mathcal{L}(\tau_M)$ and $\bar{a} \in \mathcal{L}(\theta)M$ then $\varphi(M, \bar{a}) := \{\bar{b} \in \mathcal{L}(\theta)M : M \models \varphi(\bar{b}, \bar{a})\}$.

5) Let $x_{|u} = \{x_s : s \in u\}$.

Definition 0.11. Assume we are given a Boolean Algebra \mathfrak{B} usually complete and a model or a set M and D a filter on comp(\mathfrak{B}), the completion of \mathfrak{B}.

1) Let $M^{\mathfrak{B}}$ be the set of partial functions f from $\mathfrak{B}^+: = \mathfrak{B}\setminus\{\mathfrak{B}_0\}$ into M such that for some maximal antichain $\{a_i : i < i(*)\}$ of \mathfrak{B}, $\text{Dom}(f)$ includes $\{a_i : i < i(*)\}$ and is included in $\{a \in \mathfrak{B}^+ : \exists i(a \leq a_i)\}$ and f is a function into M and $f\{a \in \text{Dom}(f) : a \leq a_i\}$ is constant for each i.

1A) Naturally for $f_1, f_2 \in M^{\mathfrak{B}}$ we say f_1, f_2 are D-equivalent, or $f_1 = f_2 \mod D$ when for some $b \in D$ we have $a_1 \in \text{Dom}(f_1) \land a_2 \in \text{Dom}(f_2) \land a_1 \cap a_2 \cap b > 0 \Rightarrow f_1(a_1) = f_2(a_2)$.

2) We define $M^{\mathfrak{B}}/D$ naturally, as well as $\text{TV}(\varphi(f_0, \ldots, f_{n-1})) \in \text{comp}(\mathfrak{B})$ where $\varphi(x_0, \ldots, x_{n-1}) \in \mathcal{L}(\tau_M)$ and $f_0, \ldots, f_{n-1} \in M^{\mathfrak{B}}$ where TV stands for truth value and $M^{\mathfrak{B}}/D = \{\varphi[f_0/D, \ldots, f_{n-1}/D] : TV_M(\varphi(f_0, \ldots, f_{n-1})) \in D\}$.

2A) Abusing notation, not only $M^{\mathfrak{B}_1} \subseteq M^{\mathfrak{B}_2}$ but $M^{\mathfrak{B}_1}/D_1 \subseteq M^{\mathfrak{B}_2}/D_2$ when $\mathfrak{B}_1 < \mathfrak{B}_2$, $D_\ell \in \text{fil}(\mathfrak{B}_\ell)$ for $\ell = 1, 2$ and $D_1 = \mathfrak{B}_1 \cap D_2$. Also $[f_1, f_2 \in M^{\mathfrak{B}_1}] \Rightarrow f_1 = f_2 \mod D_1 \Rightarrow f_1 = f_2 \mod D_2$. So for $f \in M^{\mathfrak{B}_1}$ we identify f / D_1 and f / D_2.

\footnote{In [11(3)], we use $a \subseteq \mathcal{L}_\theta, \theta$ a compact cardinal and if $\sigma > \theta$ we use a slightly different version of the definition of local and of the default values of σ was θ.}

\footnote{for the $D_\ell \in \text{fil}(\mathfrak{B}_\ell)$ ultra-product, without loss of generality \mathfrak{B} is complete, then without loss of generality $f\{a_i : a_i < i(*)\}$ is one to one. But in general we allow $a_i = 0\mathfrak{B}$ those are redundant but natural in [11(3)].}
3) For complete \mathfrak{B}, we say $(a_n : n < \omega)$ represents $f \in \mathbb{N}^{\mathfrak{B}}$ when $(a_n : n < \omega)$ is a maximal antichain of \mathfrak{B} (so $a_n = 0_{\mathfrak{B}}$ is allowed) and for some $f' \in \mathbb{N}^{\mathfrak{B}}$ which is D-equivalent to f (see Definition 0.12) we have $f'(a_n) = n$.

4) We say $\langle (a_n, k_n) : n < \omega \rangle$ represent $f \in \mathbb{N}^{\mathfrak{B}}$ when:

(a) the k_n are natural numbers with no repetition
(b) $\langle a_n : n < \omega \rangle$ is a maximal antichain
(c) $f(a_n) = k_n$.

5) If \mathcal{I} is a maximal antichain of \mathfrak{B} and $\bar{M} = \langle M_a : a \in \mathcal{I} \rangle$ is a sequence of τ-models, then we define $M^{\mathfrak{B}}_\mathcal{I}$ be the set of partial functions f from \mathfrak{B}^+ to $\bigcup \{ M_a : a \in \mathcal{I} \}$ such that for some maximal antichain $(a_i : i < i^*)$ of \mathfrak{B} refining \mathcal{I} (i.e. $(\forall i < i^*) (\exists b \in \mathcal{I})(a_i \leq^\mathfrak{B} b)$) we have:

(a) $\{a_i : i < i^*\} \subseteq \text{dom}(f) \subseteq \{b \in \mathfrak{B}^+ : b \leq^\mathfrak{B} a_i \text{ for some } i < i^*\}$
(b) if $a \in \text{dom}(f)$ and $a \leq a_i$ then $f(a) = f(a_i)$
(c) if $a_i \leq^\mathfrak{B} b, b \in \mathcal{I}$ then $f(a_i) = f(a)$

6) For $\bar{M}, \mathfrak{B}, \mathcal{I}$ as above and a filter D on \mathfrak{B} we define $M^{\mathfrak{B}}_\mathcal{I}/D$ as in part (2) replacing $M^{\mathfrak{B}}_\mathcal{I}$ there by $M^{\mathfrak{B}}$ here.

7) For $\bar{M}, \mathfrak{B}, \mathcal{I}$ as above, $\varphi = \varphi(x) = \varphi(x_0, \ldots, x_{n-1}) \in \mathbb{L}(\tau_M)$ and $f = \langle f_\ell : \ell < n \rangle$ where $f_0, \ldots, f_{n-1} \in \mathfrak{B}^+$. Let $\text{TV}(\varphi[f]) = \text{TV}(\varphi[f], M^{\mathfrak{B}}_\mathcal{I})$ be sup$(a \in \mathfrak{B}^+ : \text{if } \ell < n \text{ then } a \in \text{dom}(f_\ell) \text{ and } a \leq b \in \mathcal{I} \text{ then } M_b \models \varphi[f_0(b), \ldots, f_{n-1}(b)]$.

8) We say \mathfrak{B} is θ-distributive when, if $\alpha < \theta$, \mathcal{I} is a maximal antichain of \mathfrak{B} for $\alpha < \alpha_\ast$ then there is a maximal antichain of \mathfrak{B} refining every $\mathcal{I}_\alpha (\alpha < \alpha_\ast)$; this holds, e.g. when $\mathfrak{B} = \mathcal{P}(\lambda)$ or just there is a dense $Y \subseteq \mathfrak{B}^+$ closed under intersection of $< \theta$. In this case, if $\alpha_\ast < \theta, M, \mathfrak{B}, \mathcal{I}$ as in part (7), $\varepsilon < \theta, \varphi(x_\ell) \in \mathbb{L}_{\omega, \theta}$ or any logic $f_\xi \in \mathfrak{B}^+$ for $\varepsilon < \xi \varepsilon$ the $\text{TV}(\varphi[f])$ is defined as in part (7).

Definition 0.12. Let \mathfrak{B} be a complete Boolean algebra and D a filter on \mathfrak{B}. We say that D is (μ, θ)-regular when for some $(\varepsilon, \mathcal{I}, \mathfrak{B})$ we have:

(a) $\varepsilon = (c_\alpha : \alpha < \alpha_\ast)$ is a maximal antichain of \mathfrak{B}
(b) $\varepsilon = (u_\alpha : \alpha < \alpha_\ast)$ with $u_\alpha \in \mu^{<\theta}$
(c) if $i < \mu$ then sup$(c_\alpha : \alpha$ satisfies $i \in u_\alpha) \in D$.

Claim 0.13. Assume \mathfrak{B} is a complete Boolean which is θ-distributive and D a filter on \mathfrak{B} and $\theta = \text{cf}(\theta)$.

1) The parallel of Los theorem holds for $\mathbb{L}_{\omega, \theta}$ and if D is λ-complete for $\mathbb{L}_{\lambda, \theta}$ which means: if $M = \langle M_b : b \in \mathcal{I} \rangle$ is a sequence of τ-models, \mathcal{I} is a maximal antichain of the complete Boolean Algebra \mathfrak{B} and $\varepsilon < \theta, \varphi = \varphi(x_\ell) \in \mathbb{L}_{\lambda, \theta}(\tau)$ and $f_\xi \in \mathfrak{B}^+$ for $\varepsilon < \xi$ then $M \models \varphi[(f_\xi/D : \varepsilon < \xi)]$ iff $\text{TV}(\varphi[(f_\xi/D : \varepsilon < \xi)])$ belongs to D.

2) If D is λ-regular and M, N are $\mathbb{L}_{\omega, \theta}$-equivalent then $M^{\mathfrak{B}}_\mathcal{I}/D, N^{\mathfrak{B}}_\mathcal{I}/D$ are $\mathbb{L}_{\lambda^\ast, \theta}$-equivalent.

Definition 0.14. 1) Assume Δ_ℓ is a of set atomic formulas in $\mathbb{L}(\tau_T)$. Then we say $(T_1, \Delta_1) \leq^{\mathfrak{B}}_{\theta/\lambda} (T_2, \Delta_2)$ when if D is a λ-regular filter on λ and M_ℓ is a $\langle \lambda^\ast$-saturated) model of T_ℓ for $\ell = 1, 2$ and $M_\ell^{\mathfrak{B}}/D$ is $(\lambda, \theta, \Delta_\ast)$-saturated then $M_\ell^{\mathfrak{B}}/D$ is $(\lambda, \theta, \Delta_\ast)$-saturated.
2) For general Δ_1, Δ_2 we define $(T_1, \Delta_1) \leq_{IP}^P (T_2, \Delta_2)$ as meaning $(T_1^+, \Delta_1^+) \leq_{IP}^P (T_2^+, \Delta_2^+)$ where (as Morley [Mor65] does):

- $T_1^+ = T_1 \cup \{(\forall \bar{x})(\varphi(\bar{x}) \equiv P(\bar{x})) : \varphi(\bar{x}) \in \Delta_1\}$ with $\langle P^\ell \varphi : \varphi \in \Delta_1 \rangle$ new pairwise distinct predicates with suitable number of places
- $\Delta_1^+ = \{P^\ell(\bar{x} \varphi) : \varphi \in \Delta_1\}$.

3) In (2), $T_1 \leq_{IP}^P T_2$ means $\Delta_1 = \text{the set of atomic } L_{\theta, \theta}(\tau_T)$-formulas.

Observation 0.15. Assume $\Delta \subseteq L(\tau_T)$ is closed under \exists and \land. A model M of T is (μ^+, μ^+, Δ)-saturated iff it is $(\mu^+, 1, \Delta)$-saturated.
§ 1. Axiomatizing [She90, Ch.VI.2.6]

Note that while the notation $t(\mathcal{T})$ is obviously natural the notation $p(\mathcal{T})$ is really justified by the results here.

Definition 1.1.
1) For partial order $\mathcal{T} = (\mathcal{T}, \leq \mathcal{T})$ let $p_\mathcal{T} = p(\mathcal{T})$ be the minimal $\kappa_1 + \kappa_2 : (\kappa_1, \kappa_2) \in \mathcal{C}$ and $p_\mathcal{T}(\mathcal{T}) = \min\{\kappa_1 + \kappa_2 : (\kappa_1, \kappa_2) \in \mathcal{C}\}$; where:
2) $\mathcal{C}_\mathcal{T} = \mathcal{C}(\mathcal{T}) = \mathcal{C}(\mathcal{T})$ where $\mathcal{C}_\mathcal{T}(\mathcal{T}) = \{1, \kappa_1, \kappa_2\}$: the partial order \mathcal{T}, $\kappa \geq \aleph_0$ has a $$(\kappa_1, \kappa_2)$$-cut and $\kappa_1 \geq \kappa_2 \geq \aleph_0$.
3) For a partial order \mathcal{T} let $t_\mathcal{T} = t(\mathcal{T})$ be the minimal $\kappa \geq \aleph_0$ such that there is a $<\mathcal{T}$-increasing sequence of length κ with no $<\mathcal{T}$-upper bound.
4) Let $p_\mathcal{T} = p(\mathcal{T})$ be the minimal $\kappa \geq \aleph_0$ such that there is a $<\mathcal{T}$-increasing sequence of length κ with no $<\mathcal{T}$-upper bound.
5) $p_\mathcal{T}(\mathcal{T}) = \min\{\kappa : (\kappa, \kappa) \in \mathcal{C}(\mathcal{T})\}$.
6) In Definition 1.2 below let $t_\mathcal{T} = t(\mathcal{T})$, $p_\mathcal{T} = p(\mathcal{T})$.

Definition 1.2.
1) For $\ell = 1, 2$ we say r or (θ, Δ) is a (θ, ℓ)-realization spectrum problem, in short $(\theta, \ell) - r$-SP or $(\theta, \ell) - 1$-SP when r consists of $(\ell = 2$ we may omit it, similarly if $\theta = \aleph_0$; we may omit Δ and write M when Δ is the set of atomic formulas in $L(\tau_{N_M})$, see below, so $M = M_r$, etc.):
(a) M a model
(b) for the relations $\mathcal{T} = \mathcal{T}_M$, $\leq \mathcal{T}_M$ of M (i.e. $\mathcal{T}, \leq \mathcal{T}$ are predicates from τ_{TM}) we have $\mathcal{T} = (\mathcal{T}, \leq \mathcal{T})$ a partial order (so definable in M) with root $c^M = t(\mathcal{T})$, so $c \in \tau_{TM}$ is an individual constant and $t \in \mathcal{T} \Rightarrow t(\mathcal{T}) \leq \mathcal{T} t$; as in other cases we may write \mathcal{T}_r, $\leq \mathcal{T}_r$, $\leq \mathcal{T}$; we do not require \mathcal{T} to be a tree; but do require $t \in \mathcal{T} \Rightarrow t \leq \mathcal{T} t$
(c) a model $N = N_M$ with universe P_M, $\tau(N) \subseteq \tau(M)$ such that
- $Q \in \tau_N \Rightarrow Q^M = Q_N$
- $F \in \tau_N \Rightarrow F^M = F^M$, (we understand F^M, F^N to be partial functions),

so every $\varphi \in \mathcal{L}(\tau_N)$ can be interpreted as $\varphi^M \in \mathcal{L}(\tau_M)$, all variables varying on P (include quantification); we may forget the *.
(d) the cardinal θ and $\Delta \subseteq \{\varphi : \varphi = \varphi(x, y) \in \mathcal{L}_{\theta, \theta}(\tau_N)\}$ which is closed under conjunctions meaning: if $\varphi(x, y) \in \Delta$ for $\ell = 1, 2$ then $\varphi(x, y) \wedge \varphi(x, y) = \varphi_1(x, y) \wedge \varphi_2(x, y) \in \Delta$
(e) $R^M \subseteq |N| \times \mathcal{T}$ is a two-place relation; and let $R^M_t = \{b : b R^M_t\}$ for $t \in \mathcal{T}
(f) |N| \times \{t \in \mathcal{T}\} \subseteq \mathcal{R}$, i.e. $R^M_{\mathcal{T}} = |N|$
(g) if $s \leq \mathcal{T}$ then $a \in N \wedge a R_t \Rightarrow a R_s$, i.e. $R^M_s \supseteq R^M_t$
(h) $t \in \mathcal{T} \Rightarrow R_t^M \neq 0$
(i) if $s \in \mathcal{T}$, $\varphi (x, a) \in \mathcal{L}(\Delta) := \{\varphi(x, a) : \varphi(x, a) \in \Delta \text{ and } a \in \ell(\theta) N\}$ and for some $b \in R^M_s$, $N \models \varphi[b, a]$ then there is $t \in \mathcal{T}$ such that $s \leq \mathcal{T} t$ and $R^M_s = \{b \in R^M_s : N \models \varphi[b, a]\}$
(i') if $\ell = 1$ like clause (i) but moreover $t = F^M_{\varphi_1}(s, a)$ where $F^M_{\varphi_1} : \mathcal{T} \times \ell(\theta) P^M \rightarrow \mathcal{T}_r$

3When P and τ_N (hence N) are understood from the context we may omit them.
4We may not add a function, maybe it matters when we try to build r with $\text{Th}(M_t)$-nice first order.
(j) if \(t \in \mathcal{T} \) and \(\varphi(x, \bar{a}) \in \Delta(N) \) and \(\varphi(N, \bar{a}) \neq \emptyset \) then
(a) \(s = F_{\varphi}^M(t, \bar{a}) \) is such that \(R_s^M \cap \varphi(N, \bar{a}) \neq \emptyset \) and \(s \leq \mathcal{T} t \)
(b) if \(s = F_{\varphi,2}^M(t, \bar{a}), s_1 \leq \mathcal{T} t \) and \(R_{s_1}^M \cap \varphi(N, \bar{a}) \neq \emptyset \) then \(s_1 \leq \mathcal{T} s \)
(k) if \(\theta > \aleph_0 \) then in \((\mathcal{T}, \leq \mathcal{T}) \) any increasing chain of length \(\theta \) which has an upper bound has a \(\leq \mathcal{T} \)-hub.

Remark 1.3. We may consider adding: \(S^M \) a being successor, (but this is not Horn), i.e.:

(l) if \(\iota = 1 \) we also have \(S^M = \{(a, b) : B \text{ is a } \leq \mathcal{T} \text{-successor of } a \text{ such that} \)
(a) if \(a \leq b \land a \neq b \) then for some \(c, S(a, c) \land c \leq b \)
(b) if \(b \in \mathcal{T} \setminus rt_{\mathcal{T}} \) then for some unique \(a \) we have \(S^M(a, b) \)
(\(\gamma \)) \(S(a, b) \Rightarrow a \leq b \)
(\(\delta \)) \(S(a, b_1) \land S(a, b_2) \land b_1 \neq b_2 \Rightarrow \neg(b_1 \leq b_2) \)
(\(\varepsilon \)) in clause (j) we can add \(S^M(s, t) \).

Remark 1.4. Presently, it may be that \(a \leq \mathcal{T} b \leq \mathcal{T} a \) but \(a \neq b \). Not a disaster to forbid but no reason.

How does this axiomatize realizations of types?

Claim/Definition 1.5. Let \(\iota = \{1, 2\}, \theta \) is \(\aleph_0 \) or just a regular cardinal.

1) For any model \(N \) and \(\Delta \subseteq \{\varphi = \varphi(x, \bar{y}) \in \mathbb{L}_{\theta, \theta}(\mathcal{T})\} \) closed under conjunctions of \(\theta \), the canonical \((\theta, \iota) \)-RSP, \(r = r_{N, \Delta}^\theta \) defined below is indeed a \(\theta \)-RSP.

2) \(r = r_{N, \Delta}^\theta \) (if \(\theta = \aleph_0 \) we may omit \(\theta \)) is defined by:

(a) \(\Delta_r = \Delta, N_r = N \) and \(\theta_r = \theta \)
(b) \(\mathcal{T}_r = \{\varphi_e(x, \bar{a}_e) : e < \zeta \} : \zeta < \theta \) and for every \(e < \zeta \) we have \(\varphi_e(x, \bar{a}_e) \in \Delta(N) \) and \(N \models (\exists x)(\bigwedge_{e < \zeta} \varphi_e(x, \bar{a}_e)) \)
(c) \(\leq_r \) being the initial segment relation on \(\mathcal{T}_r \)
(d) \(M = M_r \) is the model with universe \(\mathcal{T}_r \cap |N| \); without loss of generality \(\mathcal{T}_r \cap |N| = \emptyset \), with the relations and functions of \(N, \mathcal{T}_r, \leq_r \) and
- \(p^M = |N| \)
- \(e^M = \emptyset \in \mathcal{T}_r \)
- \(R^M = \{(b, t) : a \in N, t = \langle \varphi_{t, e}(x, \bar{a}_{t, e}) : e < \zeta \rangle \in \mathcal{T} \text{ and } N \models \varphi_{t, e}(b, \bar{a}_{t, e}) \text{ for every } e < \zeta \} \)
- \(F_{\varphi}^M_{\varphi,2} \) as in Definition \(\text{(4)(j)} \)
- \(\text{if } \iota = 1 \text{ then } F_{\varphi}^M_{\varphi,1} \text{ is as in Definition } \text{(4)(j)}^+ \).

Remark 1.6. If we adopt \(\text{(5)} \) it is natural to add:

(e) for \(\iota = 1, S^M = \{\langle \varphi_1, \varphi_2 \rangle : \varphi_2 = \varphi_1^{-1}(\varphi(x, \bar{a})) \in \mathcal{T}_r \text{ for some } \varphi(x, \bar{a}) \in \Delta(N)\} \).

Proof. Obvious.

Main Claim 1.7. 1) Assume \(r \) is an RSP. If \(\kappa = \min\{t_r, p_r\} \) then the model \(N \) is \((\kappa, 1, \Delta_r) \)-saturated, i.e.
Case 3

If we succeed, this is enough because if t is infinite and closed under conjunctions.

Definition

by induction on i when t is a θ-RSP satisfying $(k)^+$ below then N_r is $(t_r, 1, \Delta_r)$-saturated when:

$(k)^+$ in (\mathcal{T}, \preceq) any increasing chain which has an upper bound, has $a \leq \mathcal{T}$-lub.

Proof. This is an abstract version of [Shelah, Ch.VI,2.6] = [Shelah, Ch.VI,2.7]; recall that [Shelah, Ch.VI,2.7] translates trees to linear orders.

1) Let $N = N_r, \Delta = \Delta_r, \mathcal{T} = \mathcal{T}$, etc.

Let p be a $(\Delta, 1)$-type in N of cardinality $< \kappa$. Without loss of generality p is finite and closed under conjunctions.

So let

$$(*)_1 \alpha_\ast < \kappa, p = \{ \varphi_a(x, \bar{a}_\ast) : \alpha < \alpha_\ast \} \subseteq \Delta(N), p \text{ is finitely satisifiable in } N.$$

We shall try to choose t_α by induction on $\alpha \leq \alpha_\ast$ such that

$$(*)_2 (a) \ t_\alpha \in \mathcal{T} \text{ and } \beta < \alpha \Rightarrow t_\beta \preceq \mathcal{T} t_\alpha$$

$$(b) \text{ if } \beta < \alpha_\ast \text{ then there is } b \in R^M_{t_\alpha} \text{ such that } N \models \varphi_\beta[b, \bar{a}_\beta]$$

$$(c) \text{ if } \beta < \alpha \text{ then } b \in R^M_{t_\alpha} \Rightarrow N \models \varphi_\beta[b, \bar{a}_\beta].$$

If we succeed, this is enough because if $t = t_\alpha$ is well defined then $R^M_{t_\alpha} \neq \emptyset$ by Definition $(*)_2(h)$ and any $b \in R^M_{t_\alpha}$ realizes the type by $(*)_2(c)$ and Definition $(*)_2(h)$.

Why can we carry the definition?

Case 1: $\alpha = 0$

Let $t_\alpha = t_\mathcal{T}$, hence $R^M_{t_\alpha} = |N|$ by Definition $(*)_2(h)$. Now clause (a) of $(*)_2$ holds as $t_\alpha \in \mathcal{T}$ and there is no $\beta < \alpha_\ast$. Also clause (b) of $(*)_2$ holds because p is a type and $R^M_{t_\alpha} = |N_r|$ by Definition $(*)_2(h)$.

Lastly, clause (c) of $(*)_2$ holds trivially.

Case 2: $\alpha = \beta + 1$

If $i = 1$ let $t = F^M_{\varphi_\beta,1}(t_\beta, \bar{a}_\beta)$ and see clause $(i)^+$ of Definition $(*)_2(h)$. If $i = 2$ use clause (i) of the definition recalling p is closed under conjunctions.

Case 3: $\alpha \text{ a limit ordinal}$

As $t_\mathcal{T} \geq \kappa > \alpha_\ast$ by the claim’s assumption (on $t_\mathcal{T}$, see Definition $(*)_2(h)$) necessarily there is $s \in \mathcal{T}$ such that $\beta < \alpha \Rightarrow t_\alpha \preceq \mathcal{T} s$. We now try to choose s_i by induction on $i \leq \alpha_\ast$ such that

$$(*)_{2.1} (a) \ s_i \in \mathcal{T}$$

$$(b) \beta < \alpha \Rightarrow t_\beta \preceq \mathcal{T} s_i$$

$$(c) \ j < i \Rightarrow s_i \preceq \mathcal{T} s_j$$

$$(d) \text{ if } i = j + 1 \text{ then } R^M_{s_i} \text{ is disjoint to } \varphi_j(N, \bar{a}_j).$$

If we succeed, then s_α satisfies all the demands on t_α (e.g. $(*)_{2.1}(b)$ holds by Definition $(*)_{2.1}(a)$ and $(*)_{2.1}(d)$), so we have just to carry the induction for α. Now if $i = 0$ clearly $s_0 = s$ as required. If $i = j + 1$ let $s_i = F^M_{\varphi_\beta,2}(s_j, \bar{a}_j)$, by Definition
Hence \(\kappa \leq p \) so finish case 3.

So we succeed to carry the induction on \(\alpha \) hence (as said after \((*)_2\)) get the desired conclusion.

2) Similar, except concerning case 3. Note that without loss of generality \(\theta > \aleph_0 \) by part (1).

\textbf{Case 3A:} \(\alpha \) is a limit ordinal of cofinality \(\geq \theta \)

As in the proof of part (1).

\textbf{Case 3B:} \(\alpha \) is a limit ordinal of cofinality \(< \theta \)

Again there is an upper bound \(s \) of \(\{t_\beta : \beta < \alpha\} \). Now by clause (k) of Definition \(h^4 \), without loss of generality \(s \) is a \(\prec \)-lub of \(\{t_\beta : \beta < \alpha\} \). So easily for every \(i < \alpha _s, F_{\varphi,2}(s, a_i) \geq t_\beta \) for \(\beta < \alpha \) hence is equal to \(s \), so \(s_\alpha := s \) is as required.

3) Similarly. \(\square \)

\textbf{Discussion 1.8.} 1) What about \("(\lambda^+, n, \Delta)\)-saturation"? We can repeat the same analysis or we can change the models to code \(n \)-tuples. More generally, replacing \(\varphi(x[\varepsilon], y) \) by \(\varphi(F_\zeta(x) : \zeta < \varepsilon), y) \), using \(F_\zeta \in \tau_M \) (though not necessarily \(F_\zeta \in \tau_N \)), so we can allow infinite \(\varepsilon \).

2) Hence the same is true for \((\lambda^+, \aleph_0, \Delta)\)-saturation, e.g. \(\lambda^+ \)-saturated by an assumption.
§ 2. APPLYING THE AXIOMATIZED FRAME

2

Of course, (note that we do not require D to be regular); if it is λ-regular, then we can reduce μ if D is λ-regular, λ ≥ |τ_N| then we can replace (ω>μ, ϑ) by (ω>ω, ϑ), see §7.3(2).

Conclusion 2.1. 1) If D is an ultrafilter on a set I, N a model, μ = ||N|| + ||τ_N|| and (ω>μ, ϑ) is (λ^+, atomically)-saturated then N^+ / D is λ^+ -saturated. 2) Instead “(ω>μ, ϑ) is (λ^+, 1, atomically)-saturated” we can demand J^+ / D is (λ^+, 1, atomic)-saturated where J is the linear order with set of elements {−1, 1} x ω>μ ordered by (τ_1, η_1) < (τ_2, η_2) iff τ_1 < τ_2 or τ_1 = −1 = τ_2 ∧ η_1 < lex η_2 or τ_1 = −1 = τ_2 ∧ η_2 < lex η_1.

Proof. 1) Let N_1 = N. As D is an ultrafilter without loss of generality Th(N_1) has elimination of quantifiers. Let Δ = L(τ_N), by §6.5 r_1 := r_{N_1, Δ} is an RSP. Let N_2 = N_1^+ / D = M_1 = r_τ, M_2 = M_1^+ / D and let r_2 be the RSP(M_2, Δ). Clearly r_2 is an RSP as the demands in §7.2 are first order (see more in §7.2).

Now

(*)_1 τ_r_1 := (ω>μ, ϑ).

[Why? See §7.5(2).]

(*)_2 τ_r_2 = (τ_r_1)^+ / D is (λ^+, atomically)-saturated.

[Why? By an assumption.]

(*)_3 τ_r(τ_r_1), p(τ_r_2) ≥ λ^+.

[Why? Follows by (*).]

Hence by §7.6, r_2 is (λ^+, 1, Δ)-saturated which means N_2 = (N_1)^+ / D is λ^+ -saturated.

2) Easy (or see [Sh:78, Ch.VI,2.7] or see §7.6/2). □

To apply the criterion of the Main Claim §7.7 to reduced products we need:

Claim 2.2. If Δ is the set of conjunctions of atomic formulas (no negation!) in L(τ_0) and τ = {θ, ≤_θ, R, P, c} \{F_{\varphi,\ell} : \varphi \in Δ and \ell = 2 or \ell = 1 if relevant} \cup τ_0 (recall c is rt_θ), then there is set T of Horn sentences from L(τ) such that for every τ-model M

• (M, Δ) is a RSP (i.e. 2-RSP) iff M \models T.

Proof. Consider Definition §7.2. For each clause we consider the sentences expressing the clauses there.

Clause (a): Obvious

Clause (b): Clearly the following are Horn:

• x ≤_θ y \rightarrow Φ(x), x ≤_θ y \rightarrow Φ(y)
• x ≤_θ y \land y ≤_θ z \rightarrow x ≤_θ z,
• Φ(τrt_θ) and Φ(s) \rightarrow rt_θ ≤ s
• Φ(τ(x)) \rightarrow x ≤_θ x.
Note that \((\mathcal{T}, \leq \mathcal{T}) \) being a tree is not a Horn sentence but is not required.

Clause (c):
- \(Q(x_0, \ldots, x_{n(Q)-1}) \to P(x_\ell) \) when \(Q \) is an \(n(Q) \)-place predicate from \(\tau(N) \) and \(\ell < n(Q) \); clearly it is Horn
- for any \(n \)-place function symbol \(F \in \tau_0 \) the sentence: \(P(x_0) \land \ldots \land P(x_{n-1}) \to P(F(x_0, \ldots, x_{n-1})) \) and \(y = F(x_0, \ldots, x_{n-1}) \to P(x_\ell) \).

Clause (d): nothing to prove - see the present claim assumption on \(\Delta \).

Clause (e): \(yRs \to \mathcal{T}(s), yRs \to P(y) \) are Horn.

Clause (f): \(P(x) \to xRt(\mathcal{T}) \) is Horn.

Clause (g): \(s \leq \mathcal{T} t \land xRs \to \mathcal{T} Rs \) is Horn.

Clause (h): \((\forall t)(\exists x)(\mathcal{T}(t) \to xRt) \) is Horn.

Clause (i): Let \(\varphi(x, \vec{y}) \in \Delta \).

First assume \(\iota = 1 \). Note the following are Horn: for any \(\varphi(x, \vec{y}) \in \Delta \):
- \(\mathcal{T}(s) \land xRs \land \varphi(x, \vec{y}) \land \bigwedge_{t < \ell_{\varphi}(y)} P(y_t) \land t = F_{\varphi,1}(s, \vec{y}) \to \mathcal{T}(t) \land s \leq \mathcal{T} t \)
- \(\mathcal{T}(s) \land xRs \land \varphi(x, \vec{y}) \land \bigwedge_{t < \ell_{\varphi}(y)} P(y_t) \land t = F_{\varphi,1}(s, \vec{y}) \to xRt \)
- \(\mathcal{T}(s) \land xRs \land \varphi(x, \vec{y}) \land \bigwedge_{t < \ell_{\varphi}(y)} P(y_t) \land t = F_{\varphi,1}(s, \vec{y}) \to \varphi(x', \vec{y}) \).

This suffices. The proof when \(\iota = 2 \) is similar.

Clause (j): Similarly but we give details.

Let \(\varphi = \varphi(x, \vec{y}) \in \Delta \), so the following are Horn:
- \(\varphi(x_1, \vec{y}) \land P(x_1) \land \bigwedge_{t < \ell_{\varphi}(y)} P(y_t) \land s = F_{\varphi,2}(t, \vec{y}) \to s \leq \mathcal{T} t \)
- \(\varphi(x_1, \vec{y}) \land P(x_1) \land \bigwedge_{t < \ell_{\varphi}(y)} P(y_t) \land t = F_{\varphi,2}(t, \vec{y}) \to (\exists x)(xRs \land \varphi(x, \vec{y})) \)
- \(P(x) \land \bigwedge_{t < \ell_{\varphi}(y)} P(y_t) \land s = F_{\varphi,2}(t, \vec{y}) \land z \leq \mathcal{T} t \land xRz \land \varphi(x, \vec{y}) \to z \leq \mathcal{T} s \).

Clause (k): As \(\theta = \kappa_0 \) this is empty.

This suffices.

Claim 2.3. Also for \(\theta > \kappa_0 \) (see \(\text{Proposition 2}(2) \) Claim 2.2 holds but some of the formulas are in \(L_{\varphi, \theta} \).

Proof. Clause (k): When \(\theta > \kappa_0 \).

Should be clear because for each limit ordinal \(\delta < \kappa \), the sentences \(\psi_\delta = (\forall \langle x_0, \ldots, x_{\alpha}, \ldots, x_{\delta} \rangle)(\exists y)(\forall z)((\bigwedge_{\alpha < \beta < \delta} x_{\alpha} \leq \mathcal{T} x_B \leq \mathcal{T} y \leq \mathcal{T} x_{\delta}) \land (\bigwedge_{\alpha < \beta < \delta} x_{\alpha} \leq \mathcal{T} z \leq \mathcal{T} y \leq \mathcal{T} x_{\delta} \to y = z)) \) is a Horn sentence and it expresses “any \(\leq \mathcal{T} \) increasing chain of length \(\delta \) has a \(\leq \mathcal{T} \)-lub”.

Conclusion 2.4. 1) Assume
(a) \(D \) be a filter on \(I \)
(b) \(N \) a model, \(\lambda = ||N|| + |\tau_N|, \Delta \) the set of atomic formulas (in \(L(\tau_N) \))
(c) $\mathcal{T} = (\mathcal{T}, \le) := (\omega^2, \le)_I/D$
(d) $\kappa = p_{\mathcal{T}} = \min \{t_\mathcal{T}, p_{\mathcal{T}, \theta}\}$, see Definition c13.

Then the reduced power N^I/D is $(\kappa, 1, \Delta)$-saturated.

2) Assume
(a) D is a θ-complete filter on $I, \theta = cf(\theta) > \aleph_0$
(b) N is (θ, Δ)-saturated, Δ a set of atomic formulas
(c) $\mathcal{T}_1 := (\omega^2, \le)_I/D$
(d) $\kappa = \min \{t_{\mathcal{T}_1}, p_{\mathcal{T}_1, \theta}\}$.

Then N^I/D is κ-saturated.

3) We can above replace N^I/D by N^B/D where D is a filter on the complete Boolean Algebra B which has (∞, θ)-distributivity when $\theta > \aleph_0$.

Proof. 1) Let $\theta = \aleph_0$ and $r_0 = (M_0, \Delta)$ be $r^\theta_{N, \Delta}$ from c16, so $\theta r_0 = \theta$.

By Claim c16, M_0 is an RSP hence by Claim c13 also $M = M_0^I/D$ is an RSP. Now apply the Main Claim $\text{c17}(1)$.

2) Similarly using $\text{c18}(2)$.

3) Similarly. \hfill \square

Remark 2.5. 1) No harm in assuming $\Delta = \{Q(\bar{y}) : Q$ a predicate}. Note that allowing bigger Δ is problematic except in trivial cases (φ and $\neg \varphi$ are equivalent to Horn formulas), see proof of clauses (i),(j) of Definition c13.

2) Using $\text{c17}(1)$ above, if D is an ultrafilter, not surprisingly we get c19, i.e. the theory of dense linear orders is ω-maximal (well, using the translation from dense linear orders to trees in c4 equivalently c19). The new point is that we does this also for reduced powers, i.e. for D a filter.

3) So a natural question is can we replace the strict property by SOP$_2$. But in reduced power we have also non-peculiar cuts, see §4.

4) Why is the reduced power of a tree not necessarily a tree? Let $\eta_1 < \eta_2 < \eta_3 \in \omega^>\omega$ and let $A_1, A_2 \in I^+$ be disjoint and define $f_\ell : I \to \omega^>\omega$ for $\ell = 1, 2, 3$ by:

- $f_3(s) = \eta_3$ for $s \in I$
- $f_2(s)$ is η_2 if $s \in A_2$ and η_0 otherwise
- $f_1(s)$ is η_2 if $s \in A_1$ and η_0 otherwise.

Clearly in $N = M^I/D$ we have:

- $f_1/D < f_3/D$
- $f_2/D < f_3/D$
- $(f_1/D < f_2/D)$
- $(f_2/D < f_1/D)$
- $(f_1/D = f_2/D)$.

Conclusion 2.6. N^I/D is $(\kappa, 1, \Delta_1)$-saturated and $\kappa \ge \theta$ when:

(a) $D \in \mathfrak{il}(I)$, i.e. is a θ-complete filter on I
(b) $\Delta \subseteq \{\varphi : \varphi(x, \bar{y}) \in L_\theta(\tau_M) \text{ is atomic (hence } \in L(\tau_M))\}$
(c) $\Delta_1 = \ell_\theta(\Delta)$ = the closure of Δ under conjunction of $< \theta$ formulas
(d) \(N \) is \((\theta, \Delta)\)-saturated, i.e. if \(p(x) \subseteq \Delta(M) \) has cardinality \(< \theta \) and is finitely satisfiable in \(M \) then \(p \) is realized in \(N \).

(e) \(\kappa = \min(p, \tau, \zeta, \sigma) \) where \(\tau = (\theta^\alpha, \leq)^{I/D} \) and \(\lambda = \theta^\alpha(||M|| + |\Delta|) \).

Proof. Let \(r = N^\theta_{\Delta_1} \), recalling Definition 1.5 and \(M_0 = M_r \).

Now apply 1.7(2) noting that:

\((*)_1 \) \(M_1 = M_r/D \) satisfies: every set of \(< \theta \) formulas from \(\Delta(M) \) which is finitely satisfiable in \(N_1 \) is realized in \(N_1 \).

[Why? Let \(\langle \varphi_\alpha(x, f_{\alpha,0}/D), \ldots, f_{\alpha,n(\alpha)-1}/D \rangle : \alpha < \alpha_* \) be finitely satisfiable in \(N_1 \) and \(\alpha_* < \theta, \alpha < \alpha_* \Rightarrow \varphi_\alpha \in \Delta \). For every finite \(u \subseteq \alpha_* \) have \(N_1 = (\exists x)(\bigwedge \varphi_\alpha(x, f_{\alpha,0}/D), \ldots) \) hence the set

\[I_u := \{ s \in I : N_1 = (\exists x) \bigwedge_{\alpha \in u} \varphi_\alpha(x, f_{\alpha,0}(s), \ldots, f_{\alpha,n(\alpha)-1}(s)) \} \]

belongs to \(D \). But \(D \) is \(\theta \)-complete, hence \(I_* = \cap \{ I_u : u \subseteq \alpha_* \) is finite \} belongs to \(D \). Now for each \(s \in I_* \), the set \(p_s := \{ \varphi_\alpha(x, f_{\alpha,0}(s), \ldots, f_{\alpha,n(\alpha)-1}(s)) : \alpha < \alpha_* \} \) is finitely satisfiable in \(N \), hence is realized by some \(a_s \in N \). Let \(g \in I \) be such that \(s \in I_* \Rightarrow g(s) = a_s \); clearly \(g/D \) realizes \(p \), so we are done.]

Similarly

\((*)_2 \) \(I \in (\theta^\alpha, \leq)^{I/D} \) we have

\((a) \) every increasing sequence of length \(< \theta \) has an upper bound

\((b) \) any increasing sequence of length \(< \theta \) with an upper bound has a lub

\((c) \) there is no infinite decreasing sequence so \((\kappa_1, \kappa_2) \in \theta \Rightarrow \kappa_2 = 1 \).

[Why? For clause (a) note that \((\forall x_0, \ldots, x_{\alpha<\delta})(\exists y)(\bigwedge_{\alpha<\delta} x_\alpha \leq \forall y \rightarrow \bigwedge_{\alpha<\delta} x_\alpha \leq \forall y \) is a Horn sentence. For clause (b) see 1.10, i.e. proof of clause (k) in 1.10.]

\((*)_3 \) \(N_1 = N_r^I/D \) is a \(\theta - \text{RSP} \).

[Why? See above recalling 1.5, 1.10.]

\((*)_4 \) \(r \) satisfies \((k)^+ \) from 1.7(3).

[Why? Easily as \(D \) is a \(N_1 \)-complete ultrafilter.]

So we are done by 1.7(3). \(\square \)

It is natural to wonder

\textbf{Question 2.7.} 1) Is there \(D \in ruf\lambda_\theta(\lambda) \), (i.e. \(\theta \)-complete \((\lambda, \theta) \)-regular ultrafilter on \(\lambda \) such that \(\lambda < t((\theta^\alpha, \leq)^{I/D}) \)?

2) Similarly for filters.

3) Use \(\leq \tau = \leq \) or \(\leq \tau = \leq ? \)

4) If \(\lambda = \lambda^\theta \), \(D \) a fine normal ultrafilter on \(I = [\lambda]^{<\theta} \), we get \(\lambda \leq t((\theta^\alpha, \leq)^{I/D}) \).

\textbf{Remark 2.8.} Now \([\text{MS}16, \S 5] \) answers 2.7(1) positively for \(\theta \) a super compact cardinal.
Conclusion 2.9. Let ℬ be a complete Boolean Algebra and D a filter on ℬ.
1) For every model N, letting λ = ||N|| + |τN|, we have N^0/D \ is \ (μ^+, \ atomically)-saturated if μ^+ ≤ \min\{p((ω> λ, ≤)^B/D)\}, t((ω> λ, ≤)^B/D)\).
2) Assume ℬ is \((\infty, \theta) \)-distributive (e.g. that every decreasing sequence^5 in ℬ of elements from Y of length < θ has a positive lower bound, \(Y \subseteq \mathcal{B}^+ \) is dense) and D is a \(\theta \)-complete filter on ℬ. If N is \((\mu^+, \ \text{atomically}) \)-saturated then \(N^0/D \) is \(t(\omega> \lambda, \leq)^B/D \)-atomically saturated.

Proof. As, e.g. in §2.6 above or §2.12 below. □

Conclusion 2.10. Assume \((T, \varphi(x, \bar{y})) \) has SOP^4.
Then, recalling §2.14, \(T \) is \(\leq_{\lambda^+}^T \)-maximal for every \(\lambda \) and even \((T, \{ \varphi(b\bar{a}, \bar{y}) \}) \) is.

Proof. Should be clear. □

** * * *

On the connection to Peano arithmetic and to Pabion [Pab82], see Malliaris-Shelah [She]. We repeat some results of [MS17b] in the present context.

Definition 2.11. 1) BPA is Bounded Peano Arithmetic.
2) \(N \models \text{BPA} \) is boundedly \(\kappa \)-saturated up to \((c_1, c_2) \) where \(c_1, c_2, c \in N \) when; if \(p(x) \cup \{ x < c_1 \} \) is a type in N (= finitely satisfiable) of cardinality < \(\kappa \) consisting of bounded formulas but with parameters ≤ \(c_2 \), then \(p(x) \cup \{ x < c_1 \} \) is realized in N.
3) If above \(c_1 = c = c_2 \) we may write \(c \) instead of \((c_1, c_2) \). We say \(N \) is strongly boundedly \(\kappa \)-saturated up to \(c \) when it holds for \((c, c_2), c_2 = \infty \), i.e. we do not bound the parameters.
4) Omitting “up to \(c \)” in part (3) means for every \(c \in N \).

Conclusion 2.12. Assume \(N \) be a model of BPA.
1) Assume \(a_* \in N \) is non-standard and the power in the \(N \)-sense \(c^{a_*} \) exists for every \(c \in N \).

For any uncountable cardinal \(\kappa \) the following conditions are equivalent:

(a) \(N \) is boundedly \(\kappa \)-saturated up to \(c \) for any \(c \in N \)
(b) if \((C_1, C_2) \) is a cut of \(N \) of cofinality \((\kappa_1, \kappa_2) \) and \(\kappa_1, \kappa_2 \) are infinite (so \(C_1, C_2 \neq 0 \) \(\text{then} \) \(\kappa_1 + \kappa_2 \geq \kappa \).

2) We can weaken the assumption of part (1) by fixing \(c \), as well as \(N, a_* \). That is, assume \(N \models \text{“} n < a_* \text{ and } c_n = c^{a_*} \text{”} \) for every standard \(n \) from \(N \). For every uncountable cardinal \(\kappa \) the following are equivalent:

(a)' \(N \) is boundedly \(\kappa \)-saturated up to \(c_n \) for each \(n \)
(b)' if \((C_1, C_2) \) is a cut of \(N \) of cofinality \((\kappa_1, \kappa_2) \) with \(\kappa_1, \kappa_1 \) infinite such that \(c_n \in C_2 \) for some \(n \) \(\text{then} \) \(\kappa_1 + \kappa_2 \geq \kappa \).

3) Moreover we can add in part (2):

(c) \(N \) is strongly boundedly \(\kappa \)-saturated up to \(c \).

^5 can weaken the demand
Proof. 1) By (2).
2) (a) \(\Rightarrow\) (b)
 Trivial.
(b) \(\Rightarrow\) (a)
 Without loss of generality \(c\) is not standard (in \(N\)) and \(n = 0\). Let \(N^+ = (N, c, a_*)\) and \(\tau^+ = \tau(N^+) = \tau(N) \cup \{c, a_*\}\) and \(\Delta = \{\varphi(x, \bar{y}) \land x < c \land \bigwedge_t y_t < c:\varphi(x, \bar{y}) \in L(\tau_N)\}\). We define \(r\) naturally - the tree of sequences of length < \(a_*\) of members of \(\Delta(N_{<c})\) possibly non-standard but of length < \(a_*\). Now apply \(h^8_{1.7}\).
3) We just repeat the proof of \(h^8_{1.7}\) or see \(c^59_{2.16}\) below. \(\square\)

Question 2.13. Is \(a_*\) necessary in \(c^46_{2.12}(1)\)? We conjecture that yes.

A partial answer:

Fact 2.14. If \(N\) is a model of PA, then \(N\) is \(\kappa\)-saturated iff \(\text{cf}(|N|, <^N) \geq \kappa\) and \(N\) is boundedly \(\kappa\)-saturated.

Discussion 2.15. Assume \(N \vDash \text{BPA}, a^*_{1} <^N B < a^*_{2}\) and \(B\) is with no last element, we can let

\[A = A_{N, a_{*}, B} = \{b : \ b \text{ is } < b' \text{ for some } b' \in B \text{ for some } d, \bar{c} \subseteq B \text{ and } m \text{ and } b \text{ belongs to the range of a function definable in } ^m(N_{<a^*_{1}}) \text{ definable in } N_{<b} \text{ with parameters from } B\}.

Now above \((N|A)_{<b} \sim N_{<b}\) for \(b \in B\), hence \(N|A \vDash \text{BPA}\).

Claim 2.16. If (A) then (B) where:

(A) (a) \(r_\alpha\) is an RSP for \(\alpha < \delta\)
(b) \(\Delta_{r_\alpha} = \Delta\) is a set of quantifier free formulas
(c) \(T_{r_\alpha} = T_{r_0}\) and \(N_{r_\alpha}\) is increasing with \(\alpha\)
(d) \(Q \in \tau(N_{r_\alpha})\) and \(Q_{N_{r_\alpha}} = Q_{N_{r_0}}\)
(e) if \(\varphi(x, \bar{y}) \in \Delta_{r_\alpha}\) and \(b \in \ell^g_b(N_{r_\alpha})\) then \(\varphi(N_{r_\alpha}, \bar{b}) \subseteq Q_{N_{r_\alpha}}\)
(f) \(\kappa = \min\{p_\alpha(\mathcal{T}_{r_\alpha}), t(\mathcal{T}_{r_0})\}\)

(B) the model \(\cup\{N_{r_\alpha} : \alpha < \delta\}\) is \((\kappa, 1, \Delta)-\text{saturated.}\)

Proof. As in \(h^8_{1.7}\). \(\square\)
§ 3. Criterion for Atomic Saturation of Reduced Powers

Malliaris-Shelah dealt with such problem for ultrafilters (on sets). The main case here is \(\theta = \aleph_0 \).

Definition 3.1. Assume \(D \) is a filter on the complete Boolean Algebra \(\mathfrak{B} \), \(T \) an \(\mathcal{L}_{\theta, \varphi(\tau_T)} \)-theory, \(\Delta \subseteq \mathbb{L}(\tau_T) \) and \(\mu \geq |\Delta| \). We say \(D \) is a \((\mu, \theta, \varepsilon, \Delta, T)\)-moral filter on \(\mathfrak{B} \) (writing \(\varepsilon \) instead of \(\varepsilon' \)) means for every \(\varepsilon' < 1 + \varepsilon \); when \(\mathfrak{B} = \mathcal{P}(\lambda) \) we may say good instead of moral: when for every \(D - (\mu, \theta, \varepsilon, \Delta, T) \)-problem there is a \(D - (\mu, \theta, \varepsilon, \Delta, T) \)-solution where:

1. \(a \) is a \(D - (\mu, \theta, \varepsilon, \Delta, T)-\text{(moral)-problem} when:
 - \((\alpha) \) \(a = (a_u : u \in [\mu]^{< \theta}) \)
 - \((\beta) \) \(a \in D \) (hence \(\in \mathfrak{B}^+ \))
 - \((\gamma) \) \(a \) is \(\subseteq \)-decreasing, that is \(u \subseteq v \in [\mu]^{< \theta} \Rightarrow a_u \leq a_v \) and \(a_\emptyset = 1_\mathfrak{B} \)
 - \((\delta) \) for some sequence \(\langle \varphi_\alpha(x_{[\varepsilon]}), b_\alpha : : M \rangle \) and \(\mu \) of cardinality \(< \theta \) we can find \(M \models T \) and \(b_\alpha \in a^\mathfrak{B}(b_\alpha) \)
 - for every \(v \subseteq u \) we have \(a \leq a_v \Rightarrow M \models \langle \forall x_{[\varepsilon]} \rangle \bigwedge_{\alpha \in v} \varphi_\alpha(x_{[\varepsilon]}, b_\alpha) \)
 - \(a \leq 1 - a_v \Rightarrow M \models \langle \exists x_{[\varepsilon]} \rangle \bigwedge_{\alpha \in v} \varphi_\alpha(x_{[\varepsilon]}, b_\alpha) \)

2. \(b \) is a \(D - (\mu, \theta)-\text{(moral)-solution} of the \(D - (\mu, \theta, \varepsilon, \Delta, T)-\text{(moral)-problem} a \) when:
 - \((\alpha) \) \(b = (b_u : u \in [\mu]^{< \theta}) \)
 - \((\beta) \) \(b \in D \) and \(b_\emptyset = 1_\mathfrak{B} \)
 - \((\gamma) \) \(b \leq a \)
 - \((\delta) \) \(b \) is multiplicative, i.e. \(b = \bigcap \{ b_\alpha : \alpha \in u \} \).

Remark 3.2. 1) The \(\theta \) here means “a type is \((< \theta)\)-satisfiable”.

2) The use of “\(\varepsilon' \)” is to conform with Definition 7.10.

Recall (from §7.10)

Definition 3.3. Let \(\tau \) be a vocabulary and \(\Delta \subseteq \{ \varphi \in \mathbb{L}(\tau) : \varphi = \varphi(x, \bar{y}) \} \) but \(\varphi(x, \bar{y}) \in \Delta \) means we can add to \(x \) dummy variables. Let \(\lambda > \theta \) (dull otherwise). \(\lambda \) \(\tau \)-model \(M \) is \((\lambda, \theta, \varepsilon, \Delta) \)-saturated when:

- if \(p \subseteq \{ \varphi(x, \bar{a}) : \varphi(x, \bar{a}) \in \Delta, \bar{a} \in a^\mathfrak{B}(a) \} \) has cardinality \(\lambda < \lambda \) is \((< \theta)\) satisfiable in \(M \) then \(p \) is realized in \(M \).

Claim 3.4. 1) For a \((\mu, \theta)\)-regular \(\tau \)-complete ultra-filter \(D \) on a set \(I \) and \(\theta \)-saturated or just \((\theta, \aleph_0)\)-saturated model \(M \), a cardinality \(\mu \) and \(\Delta = \mathcal{L}_{\theta, \varphi(\tau_M)} \), the following conditions are equivalent:

- \((a) \) \(D \) is \((\mu, \theta, \varepsilon, \Delta, T)\)-moral ultrafilter on the Boolean Algebra \(\mathcal{P}(\tau_T) \)
- \((b) \) if \(M \in \text{Mod}_\tau \) then \(M / D \) is \((\mu, \theta, \varepsilon, \Delta, T)\)-saturated.

2) Similarly for \(D \) a filter on a \(\theta \)-distribution (see §7.11(8)) complete Boolean Algebra \(\mathfrak{B} \).
Claim 3.5. 1) If (A) then (B) \iff (C) where:

(A) (a) $\mathcal{B} = \mathcal{P}(I)$
(b) D is a θ-complete (μ, θ)-regular filter on \mathcal{B}
(c) $\mu = \mu^{<\theta} > \varepsilon$ or $\theta > \varepsilon$
(d) T is an $L_{\theta, \theta}(\tau)$-theory
(e) Δ is a set of conjunctions of $< \theta$ atomic formulas from $\mathcal{L}_{\theta, \theta}(\tau)$

(B) D is a $(\mu, \theta, e!, \Delta, T)$-normal filter on \mathcal{B}

(C) if M_s is a model of T for $s \in I$ then $\prod_{s \in I} M_s / D$ is $(\mu^+, \theta, e!, \Delta, T)$-saturated.

2) If (A)' then (B)' \iff (C)' where

(A)' (a) \mathcal{B} is a θ-distributive (see 10.11(8)) complete Boolean Algebra
(b) ~ 1 as above (on regularity see Definition 10.11(5)) but on
(d)' T is a complete $L_{\theta, \theta}(\tau)$-theory
(B)' \sim (B) above

(C)' (a) if M is a model of T then $M^\mathcal{B} / D$ is $(\mu^+, \theta, e!, \Delta)$-saturated
(b) if \mathcal{I} is a maximal antichain of \mathcal{B} and $\bar{M} = \langle b : b \in \mathcal{I} \rangle$ is a sequence of τ-models then $\bar{M}^\mathcal{B} / D$ is $(\mu^+, \theta, e!, \Delta)$-saturated.

Proof. 1) Proving (B) \Rightarrow (C): Let $N = \prod_{s \in I} M_s / D$ let $\bar{x} = \bar{x}_{[\varepsilon]}$, $\varphi_\alpha = \varphi_\alpha(\bar{x}, \bar{y}_s)$ and assume that $p(\bar{x}) = \{ \varphi_\alpha(\bar{x}, \bar{b}_s) : \alpha < \alpha_s \}$ is $(< \theta)$-satisfiable in N and $|\alpha_s| \leq \mu$, so without loss of generality $\alpha_s = \mu$; without loss of generality let $\varphi_\alpha = \varphi_\alpha(\bar{x}, \bar{y}_{\xi_s})$ so $\bar{b}_s \in \varepsilon_s(\prod_{s \in I} M_s)$.

Let $\bar{b}_\alpha = (f_{\alpha, \varepsilon} : \varepsilon < \xi_s)$ where $f_{\alpha, \varepsilon} \in \prod_{s \in I} M_s$ and for $s \in I$ let $\bar{b}_{\alpha, s} = (f_{\alpha, \varepsilon}(s) : \varepsilon < \xi_s)$; now for $u \in [\mu]^{<\theta}$ we let

$$(*)_0 \quad a_u := \{ s \in I : M_s \models (\exists \bar{x}) \bigvee_{\alpha \in u} \varphi(\bar{x}, \bar{b}_{\alpha, s}) \}.$$

Now

$$(*)_1 \quad a = (a_u : u \in [\mu]^{<\theta})$$

is a D-$(\mu, \theta, e!, \Delta, T)$-problem.

[Why? We should check Definition 10.11(5), clause (a): now (a)(a) is trivial: $a_u \subseteq I$ holds by the choice of a_u. Toward clause (a)(\beta) fix a set $u \in [\mu]^{<\theta}$; some $\varepsilon \in \varepsilon N$ realizes the type $p_u(\bar{x}_{[\varepsilon]}) = \{ \varphi_\alpha(\bar{x}, \bar{b}_u) : \alpha \in u \}$ in N, see Definition 10.11(5), so let $\bar{c} = (g_\varepsilon : \varepsilon < \varepsilon)$ for some $g_\varepsilon \in \prod_{s \in I} M_s$ for $\varepsilon < \varepsilon$ and let $\bar{c}_u = (g_\varepsilon(s) : \varepsilon < \varepsilon) \in \varepsilon(\varepsilon(M_s))$. So $a_u(\alpha) = \{ s \in I : M_s \models \varphi_\alpha(\bar{c}_u, \bar{b}_u) \}$ belong to D because $N \models \varphi_\alpha[\bar{c}, \bar{b}_u]$ by the definition of N if φ_α is atomic, but recalling D is θ-complete also for our φ_α, remembering clause (A)(a) of 10.11(5). As D is θ-complete clearly, $a_u = \cap \{ a_u(\alpha) : \alpha \in u \}$ belongs to D and by our choices, $a_u \subseteq \mathcal{B}$, hence $a_u \in D$ so subclause (a)(\beta) holds indeed.

By the choice of a_u, a_u is \subseteq-decreasing with u so subclause (a)(\gamma) holds.
Lastly, subclause $(a)(\delta)$ holds by the definition of a_u’s recalling $p(\bar{x})$ is $(< \theta)$-satisfiable.]

$(*)_2$ there is b, a $D - (\mu, \theta)$-solution of a in \mathfrak{B}.

[Why? Because we are presently assuming clause (B) of \mathfrak{B} which says that D is $(\mu, \theta, \varepsilon, \Delta, T)$-good, see Definition \mathfrak{B}]

$(*)_3$ without loss of generality $s \in I \Rightarrow \{\alpha < \mu : s \in b_{(\alpha)}\}$ has cardinality $< \theta$.

[Why? As D is (μ, θ)-regular.]

Next for $s \in I$ let $u_s = \{\alpha < \mu : s \in b_{(\alpha)}\}$ but b is multiplicative (see \mathfrak{B}) so $b_{u_s} = \bigcap\{b_{(\alpha)} : \alpha \in u\} = \bigcap\{b_{\alpha} : \alpha \in u_s\}$ hence $s \in b_{u_s}$ hence (see \mathfrak{B}) recalling that $|u_\alpha| < \theta$ by $(*)_2$ we have $s \in u \in b_{u_s}$ hence (by the choice of a_{u_s}) there is $\bar{a}_s \in \mathfrak{S}(M_s)$ realizing $\langle \varphi(\bar{x}_\varepsilon) ; (f_{\alpha,\varepsilon}(s) : \varepsilon < \varepsilon) ; \alpha \in u\rangle$.

Let $\bar{a}_s = (a_{s,\varepsilon} : \varepsilon < \varepsilon)$. Now for $\varepsilon < \varepsilon = \ell g(\bar{x})$ let $g_{\varepsilon} \in \prod_{s \in I} M_s$ be defined by $g_\varepsilon(s) = a_{s,\varepsilon} \in M_s$ and let $\bar{a} = (g_\varepsilon/D : \varepsilon < \varepsilon)$ noting $g_\varepsilon/D \in \prod_{s \in I} M_s/D = N$. Hence for every $\alpha < \mu$, $\{s \in I : M_s \models \varphi_{\alpha}(g_\varepsilon(s) : \varepsilon < \varepsilon) ; b_{\alpha,s}\} \supseteq b_{(\alpha)} \in D$ so $N \models \varphi[\bar{a} ; b_{\alpha}]$.

Hence \bar{a} realizes $p(\bar{x})$ in N as promised.

Proving $(C) \Rightarrow (B)$:

So let \bar{a} be a $D - (\mu, \theta, \varepsilon, \Delta, T)$-problem and let $\bar{\varphi} = \langle \varphi_{\alpha}(\bar{x}_\varepsilon) ; y_\alpha : \alpha < \mu\rangle$ be a sequence of formulas from Δ as in clause $(a)(\delta)$ of Definition \mathfrak{B}.

Let $u = \langle w_s : s \in I\rangle$ be a sequence of subsets of μ each of cardinality $< \theta$ such that $\alpha < \mu \Rightarrow \{s \in I : \alpha \in w_s\} \in D$. For $u \in [\mu]^{|<\theta}$ let $c_u = \{s \in I : u \subseteq w_s\}$, so clearly $c_u \in D$ and $\langle c_u : u \in [\lambda]^{|<\theta}\rangle$ is multiplicative.

For each $s \in I$ applying Definition $\mathfrak{B}(1)(a)(\delta)$ to $a = \{s\}$ and $u = w_s$ we can find a model M_s of T and $b_{s,\alpha} \in \ell \theta(\bar{y}_{\alpha})M_s$ for $\alpha \in w_s$ satisfying • there.

Now choose $b_{s,\alpha}$ also for $s \in I, \alpha \in \mu \setminus w_s$, as any sequence of members of M_s of length $\ell \theta(\bar{y}_{\alpha})$. Now for every $\alpha < \mu$ and $j < \ell g(\bar{y}_{\alpha})$ we define $g_{\alpha,j} \in \prod_{s \in I} M_s$ by $g_{\alpha,j}(s) = (b_{s,\alpha})_j$.

Hence $g_{\alpha,\varepsilon}/D \in \prod_{s \in I} M_s = N$ and $b_{\alpha} = \langle g_{\alpha,\varepsilon}/D : \varepsilon < \ell g(\bar{y}_{\alpha})\rangle \in \ell g(\bar{y}_{\alpha})N$ and consider the set $p = \langle \varphi_{\alpha}(\bar{x}, b_{\alpha}) : \alpha < \mu\rangle$. Is p a $(< \theta)$-satisfiable type in N? Yes, because if $u \in [\mu]^{|<\theta}$, then $c_u \in D$ and $s \in c_u \Rightarrow \varphi_{\alpha}(\bar{x}_c) ; b_{\alpha,s} : \alpha \in u\rangle$ is realized in M_s, say by $a_s = (a_{s,\varepsilon} : \varepsilon < \varepsilon)$; for $s \in I \cap c_x, \varepsilon < \varepsilon$ let $a_{s,j} \in M$ be arbitrary and let $f_{s,\varepsilon} \in \prod_{s \in I} M_s$ be $f_{s,\varepsilon}(s) = a_{s,j}$. Easily $(f_{a,j}/D : \varepsilon < \varepsilon)$ realizes p because $\alpha \cap c_u \in D$.

Next, we apply clause (c) we are assuming so $p(\bar{x}_c)$ is realized in N. So let $\bar{a} = (a_{s,\varepsilon} : \varepsilon < \varepsilon) \in N$ realize p and let $a_{s,\varepsilon} \in b_{s,\varepsilon}/D$ where $h_{\varepsilon} \in \prod_{s \in I} M_s$ and lastly let

$b_{u} = \{s \in I : M_s \models \varphi_{\alpha}(h_{\alpha}(s) : \varepsilon < \varepsilon) ; b_{s,\alpha}\}$ for every $\alpha \in u$ and $s \in c_u$.

Now check that $\langle b_{u} : u \in [\lambda]^{|<\theta}\rangle$ is as required, recalling $\langle c_u : u \in [\lambda]^{|<\theta}\rangle$ is multiplicative. So the desired conclusion of $\mathfrak{B}(1)(B)$ holds indeed so we are done proving $(C) \Rightarrow (B)$.

2) Similarly; e.g. for clause (a) let $p(\bar{x})$ be as there but
• \(f_{\alpha, \xi} \in M^{B} \) is supported by the maximal antichain \(\{ c_{\alpha, \xi, i} : i < i(\alpha, \xi) \} \)

\((*)_{0}\) \(a_{u} = \sup \{ c : \text{we have } \alpha \in u \wedge \xi < \xi_{\alpha} \Rightarrow (\exists \beta)(d \in \text{Dom}(f_{\alpha, \xi}) \wedge c \leq d) \) and \(M \models (\exists x_{[\alpha]} \wedge \varphi(\overline{x}_{[\xi]}), (f_{\alpha, \xi}(c) : \xi < \xi_{\alpha})) \)

\((*)_{1}\) \(\overline{a} = \langle a_{u} : u \in [\mu]<\theta \rangle \) is a \(D - (\mu, \theta, \varepsilon, !, \Delta, T) \)-problem.

[Why? As there.]

\((*)_{2}\) let \(b \) be a \(D - (\mu, \theta, \varepsilon, !, \Delta, T) \)-solution.

[Why exists? By \((B)'\) recalling Definition \[23\].]

Also the rest is as above. \(\square \)

\[\text{g22} \]

Remark 3.6. If \(\mathcal{F} \subseteq [\mu]<\theta \) is cofinal, \(u \in [\mu]<\theta \Rightarrow |\mathcal{P}(u) \cap \mathcal{F}| < \theta_{1} \) we may consistently replace \([\mu]<\theta \) by \(\mathcal{F} \) and \(2^{\theta_{1}} \) by \(\theta_{1} \).

\[\text{g13} \]

Definition 3.7. 1) A filter \(D \) on a complete Boolean Algebra \(B \) is \((\mu, \theta) \)-excellent when: if \(\overline{a} = \langle a_{u} : u \in [\mu]<\theta \rangle \) is a sequence of members of \(B \), (yes! not necessarily from \(D \)) then we can find \(b \) which is a multiplicative refinement of \(\overline{a} \) for \(D \), meaning:

\begin{align*}
(a) & \quad b = \langle b_{u} : u \in [\mu]<\theta \rangle \\
(b) & \quad b_{u} \leq a_{u} \text{ and } b_{u} = a_{u} \mod D \\
(c) & \quad \text{if } a_{u_{1}} \cap a_{u_{2}} = a_{u_{1} \cap u_{2}} \mod D \text{ then } b_{u_{1}} \cap b_{u_{2}} = b_{u_{1} \cap u_{2}}.
\end{align*}

2) For a Boolean algebra \(B \) and filter \(D \) on \(B \) we say \(\overline{a} \) is a \(D - (\mu, \theta) \)-problem when clauses \((a),(b),(c)\) of Definition \[23\] holds.

\[\text{g15} \]

Claim 3.8. 1) The filter \(D \) on \(I \) (i.e. on the Boolean Algebra \(\mathcal{P}(I) \)) is \((\mu, \theta, \varepsilon, !, \Delta, T) \)-moral if the filter \(D_{1} \) on the complete Boolean Algebra \(B_{1} \) is \((\mu, \theta, \varepsilon, !, \Delta, T) \)-moral when:

\begin{align*}
(a) & \quad j \text{ is a homomorphism from } \mathcal{P}(I) \text{ onto } B_{1} \\
(b) & \quad D_{0} = \{ A \subseteq I : j(A) = 1_{B_{1}} \} \text{ is a } (\mu, \theta) \text{-excellent filter on } I, \text{ moreover is } 2^{\theta_{1}}^{|I|}-\text{complete for every } \theta < \theta \\
(c) & \quad D = \{ A \subseteq I : j(A) \in D_{1} \}.
\end{align*}

2) We can replace \(\mathcal{P}(I) \) by a complete Boolean Algebra \(B_{2} \).

Proof. The “if” direction:

We assume \(D_{1} \) is \((\mu, \theta, \varepsilon, !, \Delta, T) \)-moral and should prove it for \(D \). So let \(\overline{A} = \langle A_{u} : u \in [\mu]<\theta \rangle \) be a \(D - (\mu, \theta, \varepsilon, !, \Delta, T) \)-problem and we should find a \(D - (\mu, \theta) \)-solution \(\overline{B} \) of it.

Clearly \(a_{u} := j(A_{u}) \in B_{1}^{+} \) and \(\overline{a} = \langle a_{u} : u \in [\mu]<\theta \rangle = \langle j(A_{u}) : u \in [\mu]<\theta \rangle \) is a \(D_{1} - (\mu, \theta, \varepsilon, !, \Delta, T) \)-problem.

Hence by our present assumption \((D_{1} \) is \((\mu, \theta, \varepsilon, !, \Delta, T) \)-moral) there is a \(D_{1} - (\mu, \theta) \)-solution \(\overline{b} \) of \(\overline{a} \), let \(\overline{b} = \langle b_{u} : u \in [\mu]<\theta \rangle \) so \(u \in [\mu]<\theta \Rightarrow b_{u} \in D_{1} \). For \(u \in [\mu]<\theta \) choose \(B_{1}^{u} \subseteq \lambda \) be such that \(j(B_{1}^{u}) = b_{u} \), possible because \(j \) is a homomorphism from \(\mathcal{P}(I) \) onto \(B_{1} \). So \(B_{1} = \{ B_{1}^{u} : u \in [\mu]<\theta \} \) is a multiplicative modulo \(D_{0} \), i.e. \(\langle B_{1}^{u} / D_{0} : u \in [\mu]<\theta \rangle \) is a multiplicative sequence of members of \(\mathcal{P}(I) / D_{0} \).

Let \(B_{2}^{u} = B_{1}^{u} \cap A_{u} \), so
Claim 3.9. \[B_1^1 \subseteq A_u \bmod D_0.\]

[Why? As \(j(B_1^1) = b_u \leq a_u = j(A_u).\)]

- \(B_2^2 \subseteq B_1^1\) and \(B_2^2 \subseteq A_u \bmod D_0\)
- \(B_2^2 \in D\)
- \(\langle B_2^2 : u \in [\mu]^{<\theta}\rangle\) is multiplicative for \(D_0\) (see \(k_{13}\)).

By Definition \(k_{13}\), applied to \(\langle B_2^2 : u \in [\mu]^{<\theta}\rangle\) recalling clause (b) of the assumption of the claim, we can find \(B = \langle B_u : u \in [\mu]^{<\theta}\rangle\) which is a multiplicative refinement of \(B^2\) for \(D_0\) and is multiplicative.

So we are done for the “if” direction.

The “only if” direction:

So we are assuming \(D\) is a \((\mu, \theta, \varepsilon, \Delta, T)\)-good filter on \(\lambda\) and we have to prove \(D_1\) is \((\mu, \theta, \varepsilon, \Delta, T)\)-moral.

So let \(\mathfrak{a}\) be a \(D_1 - (\mu, \theta, \varepsilon, \Delta, T)\)-moral problem on \(\mathfrak{B}_1\), we have to find a solution. For \(u \in [\mu]^{<\theta}\) choose \(A_u^1 \subseteq \lambda\) such that \(j(A_u^1) = a_u;\) by \(h_{13}\), i.e. clause (b) of the assumption of the claim there is \(A^2 = \langle A_u^2 : u \in [\mu]^{<\theta}\rangle\) such that \(A_2^2 \subseteq A_u^1, A_2^1 = A_u^1 \mod D_0\) hence \(A_u^1 \in D\) and \(A_2^2\) is \(\leq\)-decreasing with modulo \(D_0\). [Why? Because \(A\) is \(\leq\)-decreasing as \(\mathfrak{a}\) is \(\leq\)-decreasing hence \(A^2\) is \(\leq\)-decreasing modulo \(D_0\).]

As \(D\) is \((\mu, \theta, \varepsilon, \Delta, T)\)-good filter on \(I\) there is a \(D\)-multiplicative refinement \(\langle B_2^2 : u \in [\mu]^{<\theta}\rangle\). Let \(b_u = j(B_u^2)\), now \(\langle b_u : u \in [\mu]^{<\theta}\rangle\) is as required.

\(\square\)

Claim 3.10. 1) \(D\) is \((\mu, \theta, \varepsilon)\)-excellent implies \(D\) is \((\mu, \theta, \varepsilon)\)-good.

2) \(D\) is \((\mu, \theta, \varepsilon)\)-good implies \(D\) is \((\mu, \theta, \varepsilon, \Delta, T)\)-moral.

Proof. 1) So let \(\mathfrak{a} = (a_u : u \in [\mu]^{<\theta})\) be a \(D\)-problem and we should find a \(D-(\mu, \theta, \varepsilon)\)-solution \(b\) below \(\mathfrak{a}\). As \(D\) is \((\mu, \theta, \varepsilon)\)-excellent we apply this to \(\mathfrak{a}\) and \(b\) as in \(g_{17}(2)\).

Easily it is as required.

2) Just read the definitions: there are fewer problems. \(\square\)

Remark 3.10. We may wonder, e.g. in \(g_{17}(1)\), can we move the regularity demand on the filter \(D\) from clause (A) to clause (B) The answer is yes for most \(T\)’s.

Claim 3.11. The filter \(D\) is \((\lambda, \theta, \varepsilon)\)-regular when:

\((A)\) (a) \(\mathfrak{B} = \wp(I)\)

(b) \(D\) is a \(\sigma\)-complete ultrafilter on \(\mathfrak{B}\)

(c) \(\mu = \mu^{<\theta} > \varepsilon\) or \(\theta > \varepsilon\) (check!)

(d) \(T\) is a complete \(L_{\theta, \varepsilon}(\tau)\)-theory, e.g. \(T = \text{Th}_{L_{\theta, \varepsilon}}(M), M\ a \theta\)-\varepsilon-saturated model (note that \(T = T_{\theta, \varepsilon}^{\theta^0}\) where \(T_{\theta, \varepsilon}^{\theta^0} = \text{Th}_{L_{\theta, \varepsilon}}(\varepsilon^0), i.e. T is determined by \(T_0\) and \(\theta)\)

(B) \(T\) has a model \(M\) and \(p = \{\varphi_\alpha(x) : \alpha < \theta_1, \varphi_\alpha(x) \in L_{\theta, \varepsilon}, \bar{b}_\alpha \in \wp(M)\}\) such that: for every \(q \subseteq p\)

\(q\) is realized in \(M\) iff \(|q| < \theta\)

(C) if \(M_s\) is a model of \(T\) for \(s \in I\) then \(\prod_s M_s / D\) is \((\mu^+, \theta, \varepsilon, \Delta, T)\).

Proof. Should be clear. \(\square\)
§ 4. Counterexample

§ 4(A). On The parallel of \(p = t \)

In §2 we generalize [Sh90, Ch.VI,2.6] to filters, using the class of relevant RSP’s \(r \) being closed under reduced powers (being a Horn class, see 2). Can we generalize the result of Malliaris-Shelah [MiSh:998]? It seems that we can give a counter-example. For this we have to find

\((*)_1\) \(D \) a filter of \(\lambda \) such that the partial order \(N_1 = (\mathbb{Q}, \prec) /D \) satisfies \(p^*(N_1) = k_1 + k_2 < \mu^+ \leq p_{sym}(N_1), k_1 \neq k_2, (k_1, k_2) \in \mathcal{C}(N_1) \), so in fact \(N_1 \) have no \((\theta_1, \theta_2) \)-cut when \(\theta_1 = cf(\theta_1) = \theta_2 \leq \mu \) and when \(\theta_1 \geq \mu^+ \wedge \theta_2 \in \{0, 1\} \)

\((*)_2\) preferably: \(\lambda = \mu \)

\((*)_3\) or at least for some dense linear order \(M_0 \) there is a complete Boolean Algebra \(\mathfrak{B} \) and a filter \(D \) on \(\mathfrak{B} \) such that \(N_0 = M_0 /D \) is as above.

We presently deal with the (main) case \(\theta = \aleph_0 \) and carry this out. It seems reasonable that we can prove, e.g. \(T_{loq} \not \models T_{ord} \) but we have not arrived to it. Later we intend to say more; we can control the set of non-symmetric pre-cuts.

Convention 4.1. \(T_{ord} \) is the first order theory of \((\mathbb{Q}, \leq)\), see \textsection 4.4(1)(d).

Definition 4.2. Let \(\kappa \) be a regular cardinal.
1) Let \(K_{\kappa}^{ba} \) be the class of \(m \) such that:
 (a) \(m = (\mathfrak{B}, D) = (\mathfrak{B}_m, D_m) \)
 (b) \(\mathfrak{B} \) is a complete Boolean Algebra satisfying the \(\kappa \)-c.c.
 (c) \(D \) is a filter on \(\mathfrak{B} \).
2) Let \(\leq_{\kappa}^{ba} \) be the following two-place relation on \(K_{\kappa}^{ba} : m \leq_{\kappa}^{ba} n \) iff
 (a) \(m, n \in K_{\kappa}^{ba} \)
 (b) \(\mathfrak{B}_m \leq \mathfrak{B}_n \)
 (c) \(D_m = D_n \cap \mathfrak{B}_m \).
3) Let \(S_{\kappa}^{ba} \) be the class of \(\leq_{\kappa}^{ba} \)-increasing continuous sequences \(\tilde{m} \) which means:
 (a) \(\tilde{m} = (m_\alpha : \alpha < \ell g(\tilde{m})) \)
 (b) \(m_\alpha \in K_{\kappa}^{ba} \)
 (c) if \(\alpha < \beta < \ell g(\mathfrak{B}) \) then \(m_\alpha \leq_{\kappa}^{ba} m_\beta \)
 (d) if \(\beta < \ell g(\tilde{m}) \) is a limit ordinal then:
 (a) \(\mathfrak{B}_{m_\beta} \) is the completion of \(\cup \{ \mathfrak{B}_{m_\alpha} : \alpha < \beta \} \)
 (b) \(D_{m_\beta} \) is generated (as a filter) by \(\cup \{ D_{m_\alpha} : \alpha < \beta \} \).
4) If \(\kappa = \aleph_1 \) we may write \(K_{ba}, \leq_{ba}, S_{ba} \).
5) We say \(m \) is of cardinality when \(\mathfrak{B}_m \) is \(\lambda \).

Claim 4.3. 1) For every \(\lambda \) there is \(m \in K_{\kappa}^{ba} \) of cardinality \(\lambda^{\aleph_0} \).
2) \(\leq_{\kappa}^{ba} \) is a partial order on \(K_{\kappa}^{ba} \).
3) If \(\tilde{m} = (m_\alpha : \alpha < \delta) \) is a \(\leq_{\kappa}^{ba} \)-increasing continuous sequence, then for some \(m_\delta \), the sequence \(\tilde{m} \upharpoonright m_\delta \) is \(\leq_{\kappa}^{ba} \)-increasing continuous.
Proof. 1) E.g. \(\mathfrak{B}_m \) is the completion of a free Boolean algebra generated by \(\lambda \) elements.
2) Easy.
3) If \(\text{cf}(\delta) \geq \kappa \), then \(\mathfrak{B}_{m_\delta} = \bigcup_{\alpha < \delta} \mathfrak{B}_{m_\alpha} \), if \(\text{cf}(\delta) < \kappa \) it is the (pendantically) completion of the union. \(D_{m_\delta} \) is the filter generated by \(\bigcup \{ D_{m_\alpha} : \alpha < \delta \} \). Classically is \(\kappa \)-c.c. preserved.

Definition 4.4. Let \(m \in K_{ba} \).
1) We say \(\bar{a} \) is a \(T_{ord} - (\kappa_1, \kappa_2) \)-moral problem in \(m \)
when:

 \(a \)
 \(m \in K_{ba} \)
 \((b) \quad I = I(\kappa_1, \kappa_2) \) is the linear order \(I_1 + I_2 \) where
 \(I_1 = I_1(\kappa_1) = \{ 1 \} \) \(\times \) \(\kappa_1 \),
 \(I_2 = I_2(\kappa_2) = \{ 2 \} \) \(\times \) \(\kappa_2 \)
 \((c) \quad \bar{a} = \langle a_{s,t} : s < I(\kappa_1, \kappa_2) \rangle \) t is a sequence of members of \(D_m \)
 \((d) \quad \text{if } u \subseteq I \text{ is finite, } t : u \times u \rightarrow \{ 0, 1 \} \text{ and } \cap \{ a_{s,t}^{if(t,s,t)} : s, t \in u \} > 0 \text{ then}
 \(a \)
 \(\text{there is a function } f : u \rightarrow \{ 0, \ldots, |u| - 1 \} \) such that:
 \((e) \quad \text{hence } s_1 < t_1 s_2 < t_2 \Rightarrow a_{s_1,s_2} \cap a_{s_2,s_3} \leq a_{s_1,s_3} \text{ and we stipulate } a_{s,t} = 1_{\mathfrak{B}}, a_{t,s} = a_{s,t} \text{ when } s < t t. \)
2) We say \(\bar{b} \) is a solution of \(\bar{a} \) in \(m \) where \(\bar{a} \) is as above when:

 \(\bar{b} = \langle b_s : s \in I \rangle \)
 \(b_s \in D_m \)
 \((c) \quad \text{if } s_1 \in I_1, s_2 \in I_2 \text{ then } b_{s_1} \cap b_{s_2} \leq b_{s_1,s_2} \).
3) \(S \) is the class of tuples \(s = (I, D_0, j, \mathfrak{B}, D_1, D) \) such that

 \((a) \quad j \) is a homomorphism from \(\mathfrak{B}(I) \) onto the complete Boolean \(\mathfrak{B} \)
 \((b) \quad D_1 \) is a filter on \(\mathfrak{B} \)
 \((c) \quad D_0 = \{ A \subseteq I : j(A) = 1_\mathfrak{B} \} \) (or see §3)
 \((d) \quad D = \{ A \subseteq I : j(A) \in D_1 \} \).
3A) For \(s \in S \) let \(m_s = (\mathfrak{B}_s, D_s) \).
4) We say \(s \in S \) is \((\mu, \theta) \)-excellent (if \(\theta = \aleph_0 \) may omit when \(D_0 \) is an excellent filter on \(I \), see Definition 2.1(2)).
5) We say \(s \in S \) is \((\mu, \theta) \)-regular (if \(\theta = \aleph_0 \) may omit \(\theta \) when \(D_0 \) is a \((\mu, \theta) \)-regular filter).
6) Let \(S_{\mu, \theta} \) be the class of \((\mu, \theta) \)-excellent \((\mu, \theta) \)-regular \(s \in S \); we may omit \(\theta \) if \(\theta = \aleph_0 \).
7) Convention: if \(\bar{a} \) as above is given, let \(I_1, I_2 \) be as above.

Claim 4.5. 1) For \(m = (\mathfrak{B}, D) \in K_{ba} \) and \(\kappa_1, \kappa_2 \) are infinite and regular cardinals we have: for some \(M \in \text{Mod}_{T_{ord}} M^{\mathfrak{B}} / D \) has a \((\kappa_1, \kappa_2) \)-pre-cut iff some \(T_{ord} - (\kappa_1, \kappa_2) \)-moral problem in \(m \) has no solution.
2) If \(s \in S_{\mu, \theta} \) so is \(\mu \)-excellent and \(\mu \)-regular and \(\kappa_1, \kappa_2 \geq \aleph_0 \) are regular and \(\kappa_1 + \kappa_2 \leq \mu \) then the following conditions are equivalent:
Claim 4.7.

(a) for some linear order $M, M^I(D)/D_s$ has a (κ_1, κ_2)-pre-cut
(b) for every infinite linear order, $M^I(D)/D_s$ has a (κ_1, κ_2)-pre-cut
(c) every $T_{ord} - (\kappa_1, \kappa_2)$-moral problem in m_s has a solution.

Proof. As in (13) and (14) recalling

- if M'_s for $s \in I, t \in \{1, 2\}$ are τ-models, $|\tau| \leq \mu, D$ a μ-regular filter on I and M'_s, M'_t are elementarily equivalent, then $N_1 = \prod_{s \in I} M'_s/D, N_2 = \prod_{t \in I} M'_t/D$
- are $\mathbb{L}_{\mu, \mu^{-1}}$-equivalent (and more, see Kennedy-Shelah [KSh:769], [KSh:768], Kennedy-Shelah-Vaananen [KSh:912] on the subject).

Observation 4.6. Assume \bar{a} is a $T_{ord} - (\kappa_1, \kappa_1)$-moral problem for m so $b_1^{\bar{a}}(\tau)(6))$ $I_t = I_t(\kappa_3)$ for $t = 1, 2$.

1) If $I'_1 \subseteq I_1$ is cofinal in I_1 and $I'_2 \subseteq I_2$ is co-initial in I_2 then \bar{a} has a solution in m if $\bar{a}' = \bar{a} \upharpoonright (I'_1 + I'_2) = \langle a_{s,t} : s <_I t \rangle$ and $s, t \in I'_1 + I'_2$ has a solution in m.

1A) Also, above, if b is a solution of \bar{a} in m, then $b'(I'_1 + I'_2)$ is a solution of \bar{a}'.

1B) Also above, if b' is a solution of \bar{a}', then b is a solution of \bar{a} when:

(a) if $s \in I_1$ and $t \in I'_1$ is minimal such that $s \subseteq t$, then $b_s = b'_t \cap a_{s,t}$ if $s \subseteq t$

(b) like (a) replacing $I_1, I'_1, s \subseteq t, a_{s,t}$ by $I_2, I'_2, t \subseteq s, a_{t,s}$.

2) If b is a solution of \bar{a} in m and $b'_s \in D \cap b'_s \leq b_s$ for $s \in I_1 + I_2$ then $\langle b'_s : s \in I \rangle$ is a solution of \bar{a} for m.

Proof. 1) Easy using the proofs of (13), (14) or using (1A), (1B).

1A), 1B, 2) Check.

A key point in the inductive construction is:

Claim 4.7. There is no solution to \bar{a} in m_s when:

(a) $m = \langle m_\alpha : \alpha \leq \delta \rangle$ in S_{ba}

(b) \bar{a} is a $T_{ord} - (\kappa_1, \kappa_2)$-moral problem in m_0

(c) if $\alpha < \delta$ then \bar{a} has no solution in m_α

(d) $cf(\delta) \neq \kappa_1$ or $cf(\delta) \neq \kappa_2$.

Proof. Let $m_\gamma = \langle \mathfrak{B}_\gamma, D_\gamma \rangle$ for $\gamma \leq \delta$; by symmetry without loss of generality $cf(\delta) \neq \kappa_1$ and toward contradiction assume $b = \langle b_s : s \in I_1 + I_2 \rangle$ is a solution of \bar{a} in m_s.

Hence $b_s \in D$. Now D_δ is not necessarily equal to $\bigcup_{\gamma \leq \delta} D_\gamma$ but recalling $b_1^{\bar{a}}(\tau)(d)(\beta)$ and $\langle D_\gamma : \gamma < \delta \rangle$ being increasing, clearly every member of D_δ is above some member of $\bigcup_{\gamma < \delta} D_\gamma$. So by Observation $b_1^{\bar{a}}(\tau)(a)$ without loss of generality $s \in I_1 + I_2 \Rightarrow b_s \in \bigcup_{\gamma < \delta} D_\gamma \subseteq \bigcup_{\gamma < \delta} b_\gamma$. As $cf(\delta) \neq \kappa_1$, for some $\gamma < \delta$ we have $g_1 = \sup\{\alpha < \kappa_1 : b_{(1, \alpha)} \in \mathfrak{B}_\gamma\}$, i.e. $\{s \in I_1 : b_s \in \mathfrak{B}_\gamma\}$ is co-final in I_1. So by $b_1^{\bar{a}}(\tau)(b)$ without loss of generality
Definition 4.8. Assume $m \in K_{ba}^\kappa$ and \bar{a} is a (κ_1, κ_2)-moral problem in m. We say n is a simple \bar{a}-solving extension of m when:

(a) $s \in I_1 \Rightarrow b_s \in \mathfrak{B}_n$.

As $D_\gamma = D_\delta \cap \mathfrak{B}_\gamma$, by (2)(c) clearly

(b) $s \in I_1 \Rightarrow b_s \in D_\gamma$.

For $t \in I_2$ let $b'_t = \min\{b \in \mathfrak{B}_\gamma : \mathfrak{B}_\delta \models b_t \leq b\}$, well defined because \mathfrak{B}_γ is complete.

Now

(c) $b'_t \in D_\gamma$ for $t \in I_2$.

[Why? Clearly $b_t \in \mathfrak{B}_\delta$ as b is a solution of \bar{a} in m and $b_t \leq b'_t$, $b'_t \in \mathfrak{B}_\gamma$ by its choice. Also $b'_t \in D_\delta$ because $b_t \leq b'_t \land b_t \in D_\delta$ and D_δ is a filter on \mathfrak{B}_δ and lastly $b'_t \in D_\gamma$ as $D_\gamma = D_\delta \cap \mathfrak{B}_\gamma$.]

(d) if $s \in I_1, t \in I_2$ then $b_s \cap b'_t \leq a_{s,t}$.

[Why? Note $\mathfrak{B}_\delta \models \{b_s \cap b_t \leq a_{s,t}\}$ because b is a solution of a in \mathfrak{B}_δ hence $b_t \leq a_{s,t} \cup (1 - b_s)$ and the later $\in \mathfrak{B}_\gamma$. So by the choice of $b'_t, b'_t \leq a_{s,t} \cup (1 - b_s)$ hence $b_s \cap b'_t \leq a_{s,t}$.]

(e) $\langle b_s : s \in I_1 \rangle^{-1} \langle b'_t : t \in I_2 \rangle$ solves \bar{a} in \mathfrak{B}_γ.

[Why? By (a) + (b) + (c) + (d).]

But this contradicts an assumption. □

b17 Definition 4.8. Assume $m \in K_{ba}^\kappa$ and \bar{a} is a (κ_1, κ_2)-moral problem in m. We say n is a simple \bar{a}-solving extension of m when:

(a) \mathfrak{B}_n is the completion of \mathfrak{B}_m where

(b) \mathfrak{B}_m is generated by $\mathfrak{B}_m \cup \{y_s : s \in I(\kappa_1, \kappa_2)\}$ freely except the equations which holds in \mathfrak{B}_m and $\Gamma_{\bar{a}} = \{y_{s_1} \cap y_{s_2} \leq a_{s_1,s_2} : s_1 \in I_1(\kappa_1) \text{ and } s_2 \in I_2(\kappa_2)\}$

(c) D_n is the filter on \mathfrak{B}_n generated by $D_m \cup \{y_s : s \in I(\kappa_1, \kappa_2)\}$.

Remark 4.9. We return to this more generally in §5.

b20 Claim 4.10. Assume \bar{a} is a $T_{ord} - (\kappa_1, \kappa_2)$-moral problem in $m \in K_{ba}^\kappa$ and $\kappa = cf(\kappa) > \kappa_1 + \kappa_2$.

1) There is $n \in K_{ba}$ which is a simple \bar{a}-solving extension of m, unique up to isomorphism over \mathfrak{B}_m.

2) Above $m \preceq_{ba} n$ (so $n \in K_{ba}^\kappa$).

3) If $\bar{a}^* \in T_{ord} - (\theta_1, \theta_2)$-moral problem of m with no solution in m and $\theta_1 \notin \{\kappa_1, \kappa_2\}$ or $\theta_2 \notin \{\kappa_1, \kappa_2\}$ then \bar{a}^* has no solution in n.

Proof. 1) Let $I_\ell = I(\ell \kappa_2)$ for $\ell = 1, 2$ and $I = I_1 + I_2$.

First

\[(*)_1 \] the set of equations $\Gamma_{\bar{a}}$ is finitely satisfiable in \mathfrak{B}_m.

Why? Let $0 = \exists_\mathfrak{B}_m$. We prove two stronger statements (each implying $(*)_1$).

\[(*)_1 \] if $t_1 \in I_1$ then we can find $\langle b'_s : s \in I \rangle \in \mathfrak{B}$ such that:

\[6\text{It seems that } \min\{\kappa_1, \kappa_2\} < \kappa \text{ suffice; the only difference in the proof is in proving } (*)_c. \]
(a) \(b'_s \in D_m \subseteq \mathfrak{B}_m \) if \((s <_I t_1) \lor (s \in I_2)\)
(b) if \(s_1 \in I_1, s_2 \in I_2\) then \(b'_{s_1} \cap b'_{s_2} \leq a_{s_1,s_2} \).

[Why? Let \(b'_s \) be:

- \(a_{s,t_1} \) if \(s < t_1 \) (so \(s \in I_1 \))
- \(a_{s_1,s} \) if \(s \in I_2 \)
- \(a_0 \) if \(t_1 \leq t \) \(s \in I_1 \).

Now clause (a) is obvious and as for clause (b), let \(s_1 \in I_1, s_2 \in I_2 \), now if \(t_1 \leq t \) \(s_1 \in I_2 \) then \(b'_{s_1} \cap b'_{s_2} = 0 \lor b'_{s_2} = 0 \leq a_{s_1,s_2} \) and if \(s < t_1 \) then \(b'_{s_1} \cap b'_{s_2} = a_{s_1,t} \cap a_{t,s_2} \) which is \(\leq a_{s_1,s_2} \) by \((\ast) \) 1.d.

\((\ast)_1 \) if \(t_2 \in I_2 \) then we can find \(b'_s : s \in I \in I \mathfrak{B} \) such that

(a) \(b'_s \in D_m \subseteq \mathfrak{B}_m \) if \(s \in I_1 \) or \(t_2 < t_2 \) \(s \)
(b) if \(s_1 \in I_2, s_2 \in I_2 \) then \(b'_{s_1} \cap b'_{s_2} \leq a_{s_1,s_2} \).

[Why? Similarly.]

Now \((\ast)_1 \) is easy: if \(\Gamma' \subseteq \Gamma_0 \) is finite let \(t_* \in I_1 \) be such that: if \(t \in I_1 \) and \(y_t \) appears in \(\Gamma' \) then \(t \leq t_* \). Choose \(\langle b'_s : s \in I \rangle \) as in \((\ast)_1 \) for \(t_* \) and \(h \) be the function \(y_t \mapsto b'_s \) for \(s \in I \). Now think.

Clearly it follows by \((\ast)_1 \) that

\((\ast)_2 \) (a) there is a Boolean Algebra \(\mathfrak{B}'_n \) extending \(\mathfrak{B}_m \) as described in clause (b) of Definition \(\mathfrak{B}'_n \)
(b) there is a Boolean Algebra \(\mathfrak{B}_n \) as described in (a) of Definition \(\mathfrak{B}'_n \)
(c) \(D_n \) is chosen as the filter on \(\mathfrak{B}_n \) generated by \(D_m \cup \{ y_s : s \in I \} \) satisfies \(D_m = D_n \cap \mathfrak{B}_m \), in particular \(0 \notin D_n \)
(d) \(\mathfrak{B}_n \) satisfies the \(\kappa \)-c.c.

[Why? Clauses (a),(b) follows by \((\ast)_1 \) and for clauses (c),(d) see \((\ast)_4 \) and \((\ast)_5 \) in the proof of \((2) \), respectively; in particular \(0 \notin D_n \).]

Together we have \(n = (\mathfrak{B}_n, D_n) \in K_{ba} \), as for \(m \in K_{ba} n \), see part \((2) \).

2) Now (by part \((1) \) we have \(\mathfrak{B}_m \subseteq \mathfrak{B}_n \), but moreover)

\((\ast)_3 \) \(\mathfrak{B}_m \subseteq \mathfrak{B}_n \).

[Why? If not, then some \(\mathfrak{B} \in \mathfrak{B}_m \setminus \{ 0 \} \) is disjoint to \(\mathfrak{B} \) for a dense subset of \(\mathfrak{B} \in \mathfrak{B}_m \setminus \{ 0 \} \). Let \(\mathfrak{B} = \sigma(y_{s_0}, \ldots, y_{s_{n-1}}, \bar{c}) \) where \(\sigma \) is a Boolean term, \(s_0 < t \ldots < t s_{n-1} \) and \(\bar{c} \) is from \(\mathfrak{B}_m \). We may replace \(\mathfrak{B} \) by any \(\mathfrak{B}' \in \mathfrak{B} \) satisfying \(\mathfrak{B}' \subseteq \mathfrak{B} \). Hence without loss of generality \(\mathfrak{B} = \bigcap \{ \gamma_{s_{\ell}}(\mathfrak{B}) : \mathfrak{B} < n \} \cap c > 0 \) where \(c \in \mathfrak{B}_m, \eta(\ell) \in \{ 0, 1 \} \) for \(\ell < n \) and without loss of generality for every \(\ell, k < n \) we have \(s_\ell \in I_1 \land s_k \in I_2 \Rightarrow (c \leq a_{s_\ell,s_k}) \lor (c \cap a_{s_\ell,s_k} = 0). \)

We now define a function \(h \) from \(\{ y_s : s \in I \} \) into \(\mathfrak{B}_m \) as follows: \(h(y_s) \) is:

- \(1 \) \(c \) if \(s = s_\ell \land \eta(\ell) = 1 \)
- \(0 \) if otherwise.

Now

\(\ast_3 \) if \(t_1 \in I_1, t_2 \in I_2 \) then \(\mathfrak{B}_m \models h(y_{t_1}) \cap h(y_{t_2}) \leq a_{t_1,t_2} \).
3) Let a_i continue as before.

[Why? Otherwise there are c, h, t such that $B_n = \{y_{s_t} \cap c = 0\}$ contradicting to our current assumption $B_n = d > 0$; so $(*)_3$ holds indeed.]

By the choice of B_n recalling B_m is complete, by the choice of h and \bullet_3 there is a projection \hat{h} from B_n onto B_m extending h, so clearly $h(d) = c$ and this implies $c_1 \in B_m \land 0 < c_1 \leq c \Rightarrow B_n = c_1 \cap d > 0$ contradicting the choice of d. So indeed $(*)_3$ holds.]

$(*)_4$ $D_m = D_n \cap B_m$.

[Why? Otherwise there are $c_1 < D_m, c_2 \in B_m \setminus D_m$ and $s_0 < \cdots < s_{n-1}$ such that $B_n = \{y_{s_t} \cap c_1 \leq c_2\}$. As $a_{i_1, t_2} \in D_m$ for $t_1 < t_2$, without loss of generality $c_1 \leq a_{i_1, s_t}$ for $\ell < k < n$.

Now letting $c = c_1 - c_2$ we continue as in the proof of $(*)_3$ defining h, \hat{h} and apply the projection \hat{h} to $\{y_{s_t} \cap c_1 \leq c_2\}$.

$(*)_5$ B_n satisfies the κ-c.c.

[Why? If not, then there are pairwise disjoint, positive $d_i \in B_n$ for $i < \kappa$. So as in the proof of $(*)_3$, without loss of generality $d_i = \cap \{y_{s_j} : j < n(i)\} \cap c_i$ where $c_i \in B_m, D_n, I < I_1 < \cdots < I_s < I_{n(i)} - 1$.

Again as there, without loss of generality for every $\ell < k < n(i)$ we have $a_{s(i), s(i, j)} \leq c_i \lor a_{s(i, j), s(i, k)} \cap c_i = 0$ so $s(i, j) = 1 = s(t, k) \land \ell < k \Rightarrow c_i \leq a_{s(i), s(i, k)}$.

As $\kappa = \text{cf}(\kappa) > \kappa_i + \kappa_2$ by an assumption of $(*)_2$, without loss of generality $n(i) = n, t(i, j) = t(j)$ and $s(i, j) = s_l$ for $i < \kappa, \ell < n$ and as B_m satisfies the κ-c.c. we can find $i < j < \kappa$ such that $B_m = \{0 \cap c_i \cap c_j\}$ and we continue as before.]

So together by $(*)_3, (*)_4, (*)_5$ we have $m \leq_{ba} n \in K_{\kappa}^{ba}$ as promised.

3) Let $I' = (I_1, I_2, I_3, I_4, I_5)$ and recall $a^* = (a^*_1 \vdots s : s < I_1, t)$ is a $T_{\omega_1} = (\emptyset, \emptyset)$-moral problem in m. Toward contradiction assume that the sequence $b = (b_1 : t \in I^*)$ solve the problem a^* in n so let $b_1 = \sigma_1(y_{s_k(t, 0)}, \ldots, y_{s_k(t, n(t) - 1)}, c_{t, 0}, \ldots, c_{t, m(t) - 1})$ with $c_{t, k} \in B_m, s(t, k) \in I$ and without loss of generality $s(t, k) < I, s(t, k + 1)$ for $\ell < n(t) - 1$ so $s(t, k) \in I$ for $k < n(t)$.

By symmetry without loss of generality $\emptyset \in \{c_{1}, c_{2}\}$.

Recomposing \emptyset^2, we can replace b_1 by any $b'_1 \leq b_1$ which is from D_n, so as $\cap I = y_{s_{I(t, \ell)}} \in D_n$, without loss of generality $t < n(t) \Rightarrow b_1 \leq y_{s_{I(t, \ell)}}$, so without loss of generality $b_1 = \cap \{y_{s_t} : t < n(t)\} \cap c_i$ for some $c_i \in D_m$ recalling $D_m = D_n \cap B_m$.

By the Δ-system lemma (recomposing $\emptyset^2(1)$) without loss of generality

\triangleright if $\theta_1 > \theta_0$ then

(a) $t \in I'^*_1 \Rightarrow n(t) = n(*)$

(b) if $t \in I'^*_1$ then $s(t, \ell) \in I'^*_1 \Leftrightarrow \ell < \ell(*)$
(c) \(\langle s(t, \ell) : \ell < n(s) \rangle : t \in I_1^* \) is an indiscernible sequence in the linear order \(I \), for quantifier free formulas.

But we shall not use \(\oplus \). As \(\theta_1 \neq \kappa_1, \kappa_2 \) it follows that for some \(s_1^s, s_2^s \) we have:

\[(*7) \quad s_1^s \in I_1, s_2^s \in I_2 \text{ and } s(t, \ell) \notin [s_1^s, s_2^s] \text{ for every } t \in I_1^*, \ell < n(t). \]

Again by \(\text{(1.5.12)} \) without loss of generality

\[(*8) \quad \text{if } t \in I_2^* \text{ then } b_t \leq y_{s_1^s} \cap y_{s_2^s}. \]

We now define a function \(h \) from \(\{ y_s : s \in I \} \) into \(B_n \), (yes! not \(B_m \)) by:

\[(*9) \quad h(y_s) =: \]

\[\quad \begin{align*}
& \quad \mathbf{a}_{s,s_1^s} \cap a_{s_1^s,s_2^s} \text{ if } s < t s_1^s \\
& \quad a_{s_1^s,s} \cap y_s \cap a_{s,s_2^s} \text{ if } s \in I, s_1^s \leq t \leq s_2^s \\
& \quad a_{s_1^s,s_2^s} \cap a_{s_2^s,s} \text{ if } s_2^s < t.
\end{align*} \]

Note

\[(*10) \quad h(y_s) \in D_n \text{ for } s \in I. \]

[Why? Because \(a_{s,t} \in D \) for \(s <_j t \) and \(y_s \in D \) for \(s \in I \).]

\[(*11) \quad h(y_{s_1}) \cap h(y_{s_2}) \leq a_{s_1,s_2} \text{ for } s_1 \in I_1, s_2 \in I_2. \]

[Why? If \(s_1, s_2 \in [s_1^s, s_2^s] \) this holds by the definition of \(B_n \), i.e. \(h(s_1) \leq y_{s_1}, b(s_2) \leq y_{s_2} \) and \(B_n \models "y_{s_1} \cap y_{s_2} \leq a_{s_1,s_2}"." \]

\[\text{If } s_1 < t, s_2 \in [s_1^s, s_2^s] \text{ then } (*)_{11} \text{ says: } a_{s_1^s,s} \cap a_{s,s_2^s} \cap a_{s_1,s_2^s} \leq a_{s_1,s_2} \text{ which obviously holds (as } a \text{ is a } T_{\text{ord}} \text{-morality problem).} \]

\[\text{If } s_1 < t, s_2 \in [s_2^s] \text{ then this means: } (a_{s_1^s,s} \cap a_{s,s_2^s}) \cap (a_{s_1^s,s_2^s}) \cap y_{s_1} \cap a_{s_2^s} \leq a_{s_1,s_2} \text{ which holds for similar reasons. So } (*)_{11} \text{ holds indeed.} \]

By the choice of \(B_0^s \) and \(B_n \) there is a homomorphism \(\hat{h} \) from \(B_n \) into \(B_m \), extending \(\text{id}_{B_m} \) and extending \(h \). Now easily \(h(b_t) \in D \) for \(t \in I^* \) because \(b_t = \cap \{ y_{s(t, \ell)} : \ell < n(t) \} \cap c_t \in D_m \text{ hence } h(c_t) = c_t \in D_m \text{ and by } (*)_{10} \text{ we have } \]

\[h(y_{s(t, \ell)}) \in D_m \text{ hence without loss of generality:} \]

\[(*12) \quad t \in I_1^* \Rightarrow b_t \in B_m. \]

Now define \(b'_t \) for \(t \in I^* \) by: \(b'_t \) is:

\[\text{if } t \in I_1^* \text{ then } b'_t = b_t \]

\[\text{if } t \in I_2^* \text{ then } b'_t = c_t. \]

It suffices to prove that \(\langle b'_t : t \in I^* \rangle \) solves \(\alpha^* \) in \(m \). Clearly \(t \in I^* \Rightarrow b'_t \in D_m \), so let \(t_1 \in I_1^*, t_2 \in I_2^* \). We have to prove that \(b'_{t_1} \cap b'_{t_2} \leq a_{t_1,t_2} \) but we know only \(b_{t_1} \cap b_{t_2} \leq a_{t_1,t_2} \) which means \(a_{t_1,t_2} \geq b_{t_1} \cap \bigcap_{t \leq n(t_2)} y_{s(t_2, \ell)} \cap c_{t_2} = (b_{t_1} \cap b_{t_2}) \cap \bigcap_{t \leq n(t_2)} y_{s(t, \ell)} \cap c_{t_2} \).
Let \(h_{t_2} \) be a projection from \(\mathfrak{B}_m \) onto \(\mathfrak{B}_n \) such that \(h_{t_2}(y_{(s,t_2)}) = c_t \) if \(\ell < n(t) \) and \(h_{t_2}(y_{s(t_2)}) = 0 \) if \(s \in I \{ s(t_2, \ell) : \ell < n(t_2) \} \), as earlier it exists and applying it we get the desired inequality.

Theorem 4.11. For any \(\lambda \) and regular \(\theta_1, \theta_2 \leq \lambda \) such that \(\theta_1 + \theta_2 > \aleph_0 \) there is a regular filter \(D \) on \(\lambda \) such that:

(a) for every dense linear order \(M \), in \(M^\lambda/D \) there is a \((\theta_1, \theta_2) \)-pre-cut but no \((\kappa_1, \kappa_2) \)-pre-cut when \(\kappa_1, \kappa_2 \) are regular \(\leq \lambda \) and \(\{ \theta_1, \theta_2 \} \not\subseteq \{ \kappa_1, \kappa_2 \} \)

(b) if \(M \) is \((\omega^+2, \omega^+)/D \) then \(\ell(M) \geq \lambda^+ \).

Remark 4.12. 1) Why do we need \(\theta_1 + \theta_2 > \aleph_0 \)? To prove \((*)_1\).

2) In fact, this demand is necessary, see \[4.14\] below.

Proof. Let \(\kappa = \lambda^+ \).

\((*)_1\) there are \(\mathfrak{m}_0, \mathfrak{a} \) such that:

(a) \(\mathfrak{m}_0 \in K^{ba}_\kappa \)

(b) \(\mathfrak{a} \) is a \(T_{ord} - (\theta_1, \theta_2) \)-moral problem in \(\mathfrak{m}_0 \) not solved in it.

[Why? By \[90, \text{Ch.II,§}3\] there is an ultrafilter \(D \) on \(\lambda \) such that in \((\mathbb{Q} < \lambda)/D \) there is a \((\theta_1, \theta_2) \)-cut. Define \(\mathfrak{m} \) by \(\mathfrak{B}_m = \mathcal{P}(\lambda), D_m = D \).]

Let \((W_\alpha : \alpha < 2^\lambda) \) be a partition of \(2^\lambda \) to sets each of cardinality \(2^\lambda \) such that \(W_\alpha \cap \alpha = \emptyset \).

\((*)_2\) we can choose \(\mathfrak{m}_\alpha \) and \((\bar{a}_\gamma : \gamma \in W_\alpha) \) by induction on \(\alpha \leq 2^\lambda \) such that:

(a) \(\mathfrak{m}_\alpha \in K^{ba}_\kappa \) has cardinality \(\leq 2^\lambda \)

(b) \(\langle m_\beta : \beta \leq \alpha \rangle \in S^{ba}_\kappa \)

(c) \(\mathfrak{m}_0 \) as in \((*)_1\)

(d) \((\bar{a}_\gamma : \gamma \in W_\alpha) \) be such that \(\bar{a}_\gamma \) is a \(T_{ord} - (\kappa_{\gamma,1}, \kappa_{\gamma,2}) \)-moral problem in \(\mathfrak{m}_\alpha \) and \(\kappa_{\gamma,1}, \kappa_{\gamma,2} \) are regular \(\leq \lambda \) and \(\{ \theta_1, \theta_2 \} \not\subseteq \{ \kappa_{\gamma,1}, \kappa_{\gamma,2} \} \) and any such \(\bar{a} \) appears in the sequence

(e) if \(\alpha = \gamma + 1 \) then \(\gamma \in W_\gamma \) for some \(\beta \leq \alpha \) and in \(\mathfrak{m}_\alpha \) there is a solution for \(\bar{a}_\gamma \)

(f) in \(\mathfrak{m}_\alpha \) there is no solution to \(\bar{a}_\gamma \).

[Why we can?]

Now for \(\alpha = 0 \) use \((*)_1\), for \(\alpha \) limits use \[13\] and for \(\alpha \) successor use \[20, 0\].

\((*)_4\) letting \(\mathfrak{m} = \mathfrak{m}_{2^\lambda} \) we have \(\mathfrak{B}_m = \cup \{ \mathfrak{B}_{m_\alpha} : \alpha < 2^\lambda \} \) and \(D_m = \cup \{ D_{m_\alpha} : \alpha < 2^\lambda \} \).

[Why? Because \(\langle m_\alpha : \alpha \leq 2^\lambda \rangle \in S^{ba}_\kappa \) and \(\text{cf}(2^\lambda) \geq \kappa \).]

\((*)_5\) there is a regular excellent filter \(D_0 \) on \(\lambda \) and homomorphism \(j \) from \(\mathcal{P}(\lambda) \) onto \(\mathfrak{B}_m \)

[Why? See \[997\].]

\((*)_6\) let \(D = j^{-1}(D_m) \).

So \(D \) is a filter on \(\lambda \), and by \[15, 8\] for \(\theta = \aleph_0 \) (or Malliaris-Shelah \[14\]) we are done.
Conclusion 4.13. If $\lambda \geq \aleph_2$ the results of Malliaris-Shelah [MiSh:998] cannot be generalized to reduced powers (atomic types, of course).

Proof. Choose in the pair (θ_1, θ_2) as (\aleph_1, \aleph_2).

Observation 4.14. If $m \in K^{\text{ba}}_\kappa$, then any $T_{\text{ord}} - (\aleph_0, \aleph_0)$-morality problem a has a solution.

Proof. Let $b_{(1,n)} = b_{(2,n)} = b_n := \bigcap \{ a_{(1,\ell),(2,k)} : \ell, k \leq n \}$, clearly $s \in I(\aleph_0, \aleph_0) \Rightarrow b_s \in D$ and $(s, t) \in I(1, \aleph_0) \times I(2, \aleph_0) \Rightarrow b_s \cap b_t \leq a_{s,t}$.

Claim 4.15. In $M^{\mathbb{B}}_\alpha / D$, any increasing sequence of length $< \kappa^+$ has an upper bound when (A) or (B) holds, where:

(A) (a) $M_\alpha = (\mathbb{S}, \leq)$

(b) \mathbb{S} is a complete Boolean Algebra which is (θ, \leq)-distributive

(c) D is a (μ, θ)-regular, θ-complete filter on \mathbb{S}

(d) $(\mathbb{Q}, \leq)^\mathbb{B}/D$ has no (σ, σ)-pre-cut for any regular $\sigma \leq \kappa$

(B) (a) $\neg (c)$ as above

(d) every $T_{\text{tr}} - (\sigma, \sigma)$-moral problem in $m(\mathbb{B}, D)$ has a $T_{\text{tr}} - (\sigma, \sigma)$-moral solution in $m(\mathbb{S}, D)$ where:

(\alpha) \bar{a} is a T_{tr}-moral problem when:

- $\bar{a} = (a_{\alpha, \beta} : \alpha < \beta < \sigma)$
- $a_{\alpha, \beta} \in D$
- if $u \subseteq \sigma$ is finite and $c \in \mathbb{B}$ then for some $\eta = \langle \eta_\alpha : \alpha \in u \rangle$ we have $\eta_\alpha \in [u]^{\|u\|}$ for $\alpha \in u$ and $c \leq a_{\alpha, \beta} \Rightarrow \eta_\alpha \leq \eta_\beta$ and $c \cap a_{\alpha, \beta} = 0_\mathbb{B} \Rightarrow (\neg \eta_\alpha \leq \eta_\beta)$ for $\alpha < \beta$ from u

(\beta) $\bar{b} = (b_\alpha : \alpha < \sigma)$ is a $T_{\text{tr}} - \sigma$-solution of \bar{a} when $b_\alpha \in D$ and $b_\alpha \cap b_\beta \leq a_{\alpha, \beta}$ for $\alpha < \beta < \sigma$.

Proof. If clause (A), as in [Sh:78, Ch.VI,2.7] or [MiSh:16b]. If clause (B), as above.

§ 4(B). On T_{fuc}.

We like to show that T_{fuc} is not \leq^{D}-maximal. For $\mu = \lambda$ or just $\mu \leq \lambda$ we intend to build a filter D on λ exemplifying T_{fuc} is not $\Delta^{\text{D},\mu}$-maximal like line order. Will restriction to atomic types make what were minor changes to significant? So we better add predicates to all definable relations. To simplify, we move to T_{fuc}, see Definition 5.7 below and restrict ourselves to types of the form $\{ F(x, b_\alpha) : \mu = e_\alpha : \alpha < \mu \}$ which seems the heart of the matter and intend to sort out is this sufficient later. Now via 5.7 this is translated to solving $T_{\text{fuc}} - \mu$-moral problem in $m \in K^{\text{ba}}_\kappa$. Those problems are presented as $\bar{a} = (a_{s,t} : s \neq t \in I)$ satisfying strong conditions. Now there is a canonical extension of m solving such a problem. So we have to assume $\{ m_\alpha : \alpha \leq 2^\lambda \}$ is increasingly continuous, m_1 trivial, $m_{\alpha+1}$ a canonical extension of $m_{\alpha+1}$ solving a $T_{\text{fuc}} - \mu$-moral problem. The question is can we preserve a possible strong version of non-solvability of a $T_{\text{ord}} - \mu$-moral problem.
Definition 4.16. Let $m \in K_{K,\theta}^{gba}$.
1) We say \bar{a} is a μ-moral problem, when:
 (a) $\bar{a} = \langle a_{s,t} : s, t \in I \rangle$
 (b) I a set of cardinality $\leq \mu$
 (c) $a_{s,t} \in D \cap B_m$.

 1A) We add above $T_{fuc} - \mu$-moral problem when in addition:
 (d) if $s_1, s_2, s_3 \in J$ are distinct then
 - $a_{s_1,s_3} \leq a_{s_1,s_2} \cup a_{s_2,s_3}$
 - $a_{s_1,s_2} = a_{s_2,s_1}$.

2) We say \bar{b} is a solution of \bar{a} in m where \bar{a} is as above when:
 (a) $\bar{b} = \langle b_s : s \in I \rangle$
 (b) $b_s \in D_m$
 (c) if $s_1 \neq s_2 \in I$ then $b_{s_1} \cap b_{s_2} \leq a_{s_1,s_2}$.
 (d) $b_s \in B_m$.

Observation 4.17. If $m \leq_{ba}^{gba} n$ and $M \subseteq N$, then M^{Ba}/D_m is a submodel of N^{Ba}/D_n.

Remark 4.18. The reader may wonder in Definition 4.19 is R not redundant by clause (b). But for reduced products it helps to make clause (a) a Horn sentence.

Definition 4.19. Let T_{fuc} be the first order theory in the vocabulary $\tau = \{ F, P, \theta, E, R \}$ with $\text{arity}(F) = 2 = \text{arity}(R)$ such that for an $\{ F, R \}$-model $M, M \models T_{fuc}$ if
 (e) for every $a \ell, e \ell \in P^M$ such that $a \ell E^M e \ell$ for $\ell < n$ such that $\ell \neq k < n \Rightarrow R(a \ell, a_k)$ there is c such that $\ell < n \Rightarrow F^M(a \ell, c) = b_\ell$.

So T_{fuc} is like T_{fuc} giving name to R.

Claim 4.20. If (A) then (B) where:

(A) (a) $m \in K_{K,\theta}^{gba}$
(b) M is a model of T_{fuc}
(c) $N = M^{Ba}/D_m$
(d) I a set of cardinality $\leq \mu$
(e) $b_s \in P^N, c_s \in P_N$ for $s \in I$
(f) if $s_1 \neq s_2 \in I$ then $(b_{s_1}, b_{s_2}) \in R^N$
(g) $p(x) = \{ F(x, b_s) = c_s : s \in I \}$ is a type in N

(B) there is a $T_{fuc} - \mu$-moral problem \bar{a} over m such that:
(a) if $m \leq_{ba}^{gba} n$ so $n \in K_{K,\theta}^{gba}$, then \bar{a} has a solution in m, then the type $p(x)$ is realized in N^{Ba}/D_n.

Proof. For $s \neq t \in I$ let $a_{s,t} = TV(R(b_{s_1}, b_{s_2}))$.
Clearly $a_{s,t} \in D_m$ hence:
(s) $\bar{a} = \langle a_{s,t} : s \neq t \in I \rangle$ is a $T_{fuc} - \mu$-moral problem. Fix $n \in K_{K,\theta}^{gba}$ such that $m \leq_{ba}^{gba} n$.
By \[\text{Claim } 4.21 \text{.} \]

Claim 4.21. 1) If (A) then (B) where:

(A)

(a) \(E \) is a \(\mu \)-regular, \(\mu^+ \)-excellent filter on \(\lambda \)

(b) \(m \in K_{\kappa,\theta}^{\text{ba}} \)

(c) \(j \) is a homomorphism from \(\mathcal{P}(\lambda) \) onto \(\mathfrak{B}_m \)

(d) \(E = j^{-1}\{1_{\mathfrak{B}_m}\} \)

(e) \(M \) is a model of \(\mathcal{T}_{\text{eq}} \) and \(N = M^\lambda/E \)

(f) \(I \) is a set of cardinality \(< N \)

(g) \(f_s, g_s \in \lambda M \) hence \(f_s/E, g_s/E \in N \) for \(s \in I \)

(h) \(p(x) = \{ F(x, f_s/E) = g_s/E : s \in I \} \) is a type in \(N \)

(i) \(A = \langle A_{s,t} : s \neq t \in I \rangle \) where \(A_{s,t} = \{ \alpha < \lambda : f_s(\alpha)R^M f_t(\alpha) \} \)

(j) \(\mathfrak{a} = \langle a_{s,t} : s \neq t \in I \rangle \) where \(a_{s,t} = j(A_{s,t}) \in N \)

(B)

(a) \(\mathfrak{a} \) is a \(T_{\text{eq}} - \mu \)-moral problem in \(m \)

(b) \(p(x) \) is realized in \(N \) iff \(\mathfrak{a} \) is solved in \(m \).

2) If (A) then (B) where

(A)

(a) \(\text{from (A) above} \)

(B) if \(\mathfrak{a}' = \langle a_{s,t} : s \neq t \in I \rangle \) is a pseudo \(T_{\text{eq}} - \mu \)-moral problem in \(m \), then for some \(f_s, g_s (s \in A) \) we have \(s \neq t \in I \) \(\Rightarrow \) \(\text{boldj}(\{ \alpha < \lambda : f_s(\alpha)R^M f_t(\alpha) \}) \).

Proof. As in \[\text{Claim } 4.21 \text{.} \]

Claim 4.22. If \(m \in K_{\kappa}^{\text{ba}} \) and \(\mathfrak{a} \) is a \(T_{\text{eq}} - \mu \)-moral problem and \(\mu < \kappa \), then there is \(n \in K_{\kappa}^{\text{ba}} \) such that \(m \leq n \) and \(\mathfrak{a} \) is solved in \(n \).

Proof.

\(\ast \) Let \(\mathfrak{B}_1 \) be a Boolean Algebra generated by \(\mathfrak{B}_m^* \cup \{ g_s : s \in I \} \) freely except
(a) the equation which B satisfies
(b) $y_s \cap y_s \leq a_{s,t}$ for $s \neq t \in I$.

Now

$(\ast)_2$ if $I_0 \subseteq I$ is finite, then there is a homomorphism $h = h_{I_0}$ from B_1 into B_m such that:

(a) $a \in B_m$ \Rightarrow $h(a) = a$
(b) $s \in I_0 \Rightarrow h(y_s) = \bigcap \{a_{s_1,s_2} : s_1 \neq s_2 \in I_0\}$
(c) $s \in I \setminus I_0 \Rightarrow h(y_s) = 0_{B_m}$.

[Why? Just check the choice of B_1.]

Hence

$(\ast)_3$ (a) B_0 extends B_m
(b) $B_m \preceq B_0$.

[Why? Clause (a) follows by $(\ast)_2$. As for clause (b) let $\langle b_\zeta : \beta < \zeta \rangle$ be a maximal antichain $f B_m$ and $c \in B_1^+$ and we should find $\zeta < \zeta_0$ such that $c \cap b_\zeta > 0_{B_1}$. Without loss of generality c has the form $\bigcap_{s \in u} y_s \cap \bigcap_{s \in v} (-y_s)$ for some $d_\zeta \in B_m$ and u, v are disjoint subsets of I. Without loss of generality $s \neq t \in u \cup v \Rightarrow a_{s,t} \leq c_1 \lor a_{s,t} \cap c_1 = 0_{B_m}$. As $c_1 > 0$, necessarily $s \neq t \in u \Rightarrow c_1 \leq a_{s,t}$. Now apply $(\ast)_2$ for $J_0 = u$.]

$(\ast)_4$ (a) let D_1 be the filter on B_1 generated by $B_m \cup \{y_s : s \in I\}$
(b) without loss of generality let B_1 be the completion of B_0
(c) hence $B_m \preceq B_1$
(d) let D_1 be the filter on B_1 generated by $D_0 \cup D_m$

$(\ast)_5$ (a) B_1 satisfies the κ-c.c..

Why? Let $c_\zeta \in B_1^+$ for $\zeta < \kappa$ and we should find $\zeta < \zeta_0$ such that $c_\zeta \cap c_\zeta \in B_1^+$. Without loss of generality $c_\zeta = d_\zeta \cap \bigcap_{s \in u_\zeta} y_s \cap \bigcap_{s \in v_\zeta} (-y_s)$ for some $d_\zeta \in B_m$ and finite disjoint $u_\zeta, v_\zeta \subseteq I$. Without loss of generality $(u_\zeta, v_\zeta) = (u_\ast, v_\ast)$ and apply $(\ast)_2$. \hfill \Box
§ 5. The order $\leq_{\lambda}^{\text{rp}}$

§ 5(A). On $\leq_{\lambda}^{\text{rp}}$.

Convention 5.1.
T denotes a complete first order theory and, if not said otherwise with elimination of quantifiers.
Recall (from §5.10).

Definition 5.2.
1) Let $T_1 \leq_{\lambda,\mu}^{\text{rp}} T_2$ means: if D is a regular filter on λ and M_ℓ is a model of T_ℓ for $\ell = 1, 2$ and $(M_2)^\lambda/D$ is (μ^+, atomic)-saturated, then so is $(M_1)^\lambda/D$.

1A) Writing \prec instead of \leq means that $(T_1 \leq_{\lambda,\mu}^{\text{rp}} T_2) \land \neg(T_2 \leq_{\lambda,\mu}^{\text{rp}} T_1)$.

2) Omitting μ means $\mu = \lambda$.

3) Omitting λ, μ means for every λ, one may write \leq_{rp}.

4) Similarly for $(T_1, \Delta_1) \leq_{\lambda,\mu}^{\text{rp}} (T_2, \Delta_2)$.

5) Let $(T_2,*) \leq_{\lambda,\mu}^{\text{rp}} (T_2,*)$ means that for every finite set Δ_2 of atomic formulas of $L(T_2)$, there is a finite set Δ_1 of atomic formulas from $L(T_2)$ such that $(T_1, \Delta_1) \leq_{\lambda,\mu}^{\text{rp}} (T_2, \Delta_2)$.

Of course

Fact 5.3.
1) In §5.2 the choices of M_1, M_2 does not matter.

2) $\leq_{\lambda,\mu}^{\text{rp}}, \leq_{\lambda}^{\text{rp}}, \leq_{\text{rp}}$ are quasi order.

3) Assume $M_2 = M_{\text{eq}}^{\text{fp}}$, see [She90, Ch.III] and $T_\ell = \text{Th}(M_\ell)$ for $\ell = 1, 2$ and T_1 with elimination of quantifiers, then T_1, T_2 are \leq_{rp}-equivalent.

Proof. 1) Because in §5.2 the filter D is regular (see in §5.3).

2) Should be clear. \[\square\]

Claim 5.4.
If T has SOP$_3$ for quantifier free formulas then T is $\leq_{\lambda}^{\text{rp}}$-maximal.

Proof. By §1.3.\[\square\]

Definition 5.5.
Assume $m \in K_{\text{ba}}$ and \bar{a} is a μ-morality problem (see §5.7(2); we omit θ as $\theta = \kappa_0$).
We say n is a simple \bar{a}-solving extension of m when:

- (a) \mathfrak{B}_n is the completion of \mathfrak{B}_m^0, where
- (b) \mathfrak{B}_m^0 is a Boolean Algebra generated by $\mathfrak{B}_m \cup \{ y_\alpha : \alpha < \mu \}$ freely except
- (a) the equations satisfied in \mathfrak{B}_m
- (b) $\Gamma_\bar{a} = \{ \bigcap_{\alpha \in u \mu} \leq a_\alpha : u \subseteq \mu$ is of cardinality $< \theta \}$.
- (c) $D_\bar{a}$ is the filter of \mathfrak{B}_m generated by $\{ y_\alpha : \alpha < \mu \} \cup D_\bar{a}$.

Claim 5.6.
Assume $m \in K_{\text{ba}}^\kappa$.
If (A) then (B) where:

- (A) (a) \bar{a} is a $T_{\text{ord}} - (\kappa_1, \kappa_2)$-normal problem in m
- (b) $I = I(\kappa_1, \kappa_2)$ and $\mu = \kappa_1 + \kappa_2 > \theta$
- (c) we define $\bar{a}' = (a'_u : u \in [I(\kappa_1, \kappa_2)]^{<\theta})$ by $\mathfrak{B} \models a'_u = \cap(a_{s,t} : s \in I(\kappa_1) \cap u \text{ and } t \in I_2(\kappa_1))$ problem in m
Claim 5.7. 1) In 17, n is well defined, $\in K_{ba}$ and $m \leq n$.
2) Moreover, if $m \in K_{ba}$, $\kappa > \mu$ then $n \in K_{ba}$ and $m \leq_{K_{ba}} n$.

Proof. 1) The point

(*)$_1$ if $u \subseteq \mu$ is finite then there is a function $h = h_u$ from $\{y_\alpha : \alpha < \mu\}$ into \mathfrak{B}_m such that:

(\alpha) if $v \subseteq \mu$ is finite then $\mathfrak{B}_m \models \bigcap_{\alpha \in v} h(y_{\alpha}) \leq a_u$

(\beta) if $\alpha \in u$ then $h(y_{\alpha}) \in D$.

[Why? Define h by: $h(y_{\alpha})$]

\begin{itemize}
 \item a_u if $\alpha \in u$
 \item $0_{\mathfrak{B}_m}$ if $\alpha \in \mu \setminus u$.
\end{itemize}

Now continue as in the proof of 17.\hfill \blacksquare

We like to prove $\neg (T_1 \leq_{T_2} T_2)$ for some pairs.

Claim 5.8. Assume $\lambda > \aleph_0$ and T_1, T_2 are complete first order theories with elimination of quantifiers.

1) We have $\neg (T_1 \leq_{T_2} T_2)$ iff for some m, \bar{a}^*

\begin{itemize}
 \item[(*)$_{\lambda,m,T_1,T_2}$] $m \in K_{ba}$
 \item[(a)] \mathfrak{B}_m has cardinality $\leq 2^\lambda$
 \item[(b)] \mathfrak{B}_m satisfies the λ^+-c.c. (or just enough to be represented)
 \item[(c)] \bar{a}^* is a $(\lambda, \aleph_0, 1, L(\tau_{T_1}), T_1)$-moral problem in m with no solution in m
 \item[(d)] every $(\lambda, \aleph_0, 1, L(\tau_{T_2}), T_2)$-moral problem has a solution.
\end{itemize}

2) A sufficient condition for $\neg (T_1 \leq_{T_2} T_2)$:

\begin{itemize}
 \item[(**)$_{T_1,T_2,\lambda}$] m_\ast, \bar{a}_\ast satisfying (a), (b), (c), (d) of part (1)
 \item[(b)] if $m_\ast : \alpha \leq \delta$ is \leq_{ba}-increasing continuous (so D_{m_\ast} generated by $\cup \{D_{m_\ast} : \alpha < \delta\}$, as a filter on \mathfrak{B}_m, δ a limit ordinal), \bar{a}_\ast is a $(\lambda, \aleph_0, 1, L(\tau_{T_1}), T_1)$-moral problem in m_\ast, with no solution in m_\ast for $\alpha < \delta$ has no solution in m_\ast
 \item[(c)] if $m \in K_{ba}$, $(m_\ast, \bar{a}_\ast$ are from clause (a)) $m_\ast \leq_{ba} m, \bar{a}$ is a $(\lambda, \aleph_0, 1, L(\tau_{T_2}), T_2)$-moral problem (and \mathfrak{B}_m has cardinality $\leq 2^\lambda$) and n is a simple \bar{a}_\ast-solving extension of m then \bar{a}_\ast is not solvable in n.
\end{itemize}

Proof. Should be clear, as in the proof of 17.\hfill \blacksquare
Discussion 5.9. For $T_2 = T_\text{ord}$ and $\mu \geq \aleph_0$ by §4 we know there are $\mathfrak{m}, \mathfrak{a}_*$ satisfying clauses (a) + (b) of 5.8(2). So this is a natural starting point for trying to characterize “T_2 is not $\leq^\lambda_{\mathfrak{a}}$-maximal”, or at least proved this for some non-trivial cases.

The following shows that dealing with pairs (T, δ) and using filters the Theorem of Malliaris-Shelah [MiSh:998] fails.

Claim 5.10. 1) There is a complete first order T and $\Delta = \{ \varphi(x, y) \}$ where $\varphi(x, y)$ is an atomic formula in $\mathbb{L}(\tau_T)$ such that (T, Δ) has SOP$_2$ and NSOP$_3$.

2) Assume D is a regular filter on λ and $\mu \leq \lambda$ and M is a model of T from part (1).

Then the following conditions are equivalent:

(a) the filter D is a $(\mu, \aleph_0, 1, \Delta, T)$-moral filter

(b) $(Q, \leq)/D$ has no (κ, κ)-pre-cut for any regular $\kappa = \text{cf}(\kappa) \leq \mu$

(c) in $(\omega^2, \omega^\lambda)/D$ every increasing chain of length $\leq \lambda$ has an upper bound.

3) (T, Δ) is not $\leq^\lambda_{\mathfrak{a}}$-maximal if (T, Δ) is the pair constructed in part (1).

Proof. 1) The $T = \text{Th}(M), \varphi(x, y) = (xR_\ell y)$ where:

(A) $\tau = \{ P, Q, R \}$ where P, Q are unary predicates, R a binary predicate

(B) M is the following τ-model:

(a) the universe ω^2

(b) $P^M = \omega^2, Q^M = \omega^2$

(c) $R^M = \{(a, b) : a \in Q^M, b \in P^M \text{ and } b < a \}$.

2) As in earlier sections.

3) By Theorem 5.11.
References

Mor65 Michael Morley, Categoricity in power, Transaction of the American Mathematical Society 114 (1965), 514–538.

MiSh:1069 [MS17b] Open problems on ultrafilters and some connections to the continuum, Contemporary Mathematics 690 (2017), 145–159.

Sheb Model-theoretic applications of cofinality spectrum problems.

She72b Saturation of ultrapowers and Keisler’s order, Annals of Mathematical Logic 4 (1972), 75–114.

