
THE ABELIANIZATION OF INVERSE LIMITS OF GROUPS

ILAN BARNEA AND SAHARON SHELAH

Abstract. The abelianization is a functor from groups to abelian groups, which is left adjoint
to the inclusion functor. Being a left adjoint, the abelianization functor commutes with all small

colimits. In this paper we investigate the relation between the abelianization of a limit of groups

and the limit of their abelianizations. We show that if T is a countable directed poset and
G : T −→ Grp is a diagram of groups that satisfies the Mittag-Leffler condition, then the natural

map
Ab(lim

t∈T
Gt) −→ lim

t∈T
Ab(Gt)

is surjective, and its kernel is a cotorsion group. In the special case of a countable product of

groups, we show that the Ulm length of the kernel does not exceed ℵ1.
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Introduction

The abelianization functor is a very fundamental and widely used construction in group theory
and other mathematical fields. This is a functor

Ab : Grp −→ Ab,

from the category of groups to the category of abelian groups, equipped with a natural projection
map

πG : G −→ Ab(G),

for every group G. This construction is universal in the sense that for any group G, any abelian
group A and any morphism of groups f : G→ A, there is a unique morphism of (abelian) groups

Key words and phrases. perfect groups, abelian groups, inverse limits, abelianization, commutator subgroup,
cotorsion groups.
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f : Ab(G) −→ A such that the following diagram commutes:

G
πG //

f ""

Ab(G)

f

��
A.

Expressed in the language of category theory, the above universal property implies that the
functor Ab : Grp −→ Ab is left adjoint to the inclusion functor inc : Ab −→ Grp. Being a left
adjoint, the functor Ab commutes with all small colimits. That is, given any small category D,
and any functor (diagram) F : D −→ Grp, the natural morphism

colim
d∈D

Ab(Fd) −→ Ab(colim
d∈D

Fd)

is an isomorphism. However, the abelianization functor certainly does not commute with all small
limits. That is, given a small category D and a diagram G : D −→ Grp, the natural morphism

Ab( lim
d∈D

Gd) −→ lim
d∈D

Ab(Gd).

need not be an isomorphism. Since this is a morphism of abelian groups, a natural way to “measure”
how far it is from being an isomorphism is to consider its kernel an cokernel. Thus, a natural
question is whether the kernel and cokernel of the natural map above can be any abelian groups,
or are there limitations?

In this paper we consider the case where the diagram category D is a countable directed poset,
considered as a category which has a single morphism t→ s whenever t ≥ s. We show

Theorem 0.0.1 (see Theorem 2.0.6). Let T be a countable directed poset and let G : T −→ Grp be
a diagram of groups that satisfies the Mittag-Leffler condition. Then the natural map

Ab(lim
t∈T

Gt) −→ lim
t∈T

Ab(Gt)

is surjective, and its kernel is a cotorsion group.

Recall that G satisfies the Mittag-Leffler condition if for every t ∈ T there exists s ≥ t such that
for every r ≥ s we have

Im(Gs → Gt) = Im(Gr → Gt).

If G has surjective connecting homomorphisms or G is diagram of finite groups then G satisfies
Mittag-Leffler condition.

Remark 0.0.2. A generalization of Theorem 0.0.1 to arbitrary directed posets, as well as the
question of which cotorsion groups can appear as the kernel of a map as in Theorem 0.0.1, will be
addressed in future papers.

Recall that a group G is called perfect if Ab(G) = 0. We thus obtain the following corollary:

Corollary 0.0.3. Let T be a countable directed poset and let G : T −→ Grp be a diagram of perfect
groups that satisfies the Mittag-Leffler condition. Then Ab(limt∈T Gt) is a cotorsion group.

Cotorsion groups are abelian groups A that satisfy Ext(Q, A) = 0 (or, equivalently, Ext(F,A) =
0 for any torsion free abelian group). That is, an abelian group A is cotorsion iff for every group
B, containing A as a subgroup, and satisfying B/A ∼= Q, we have that A is a direct summand in
B. This is a very important and extensively studied class of abelian groups. There is a structure
theorem, due to Harrison [Har], which classifies cotorsion groups in terms of a countable collection
of cardinals together with a reduced torsion group.
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Now suppose that we are given a countable collection of groups (Hn)n∈N. Then we can construct
from them a diagram G : N −→ Grp by letting Gn be the product H1 × · · · ×Hn, for every n ∈ N,
and Gm → Gn be the natural projection, for every m ≥ n. Since for every n ∈ N we have

Ab(
∏
i≤n

Hi) ∼=
∏
i≤n

Ab(Hi),

we see that the natural map in Theorem 0.0.1 is the natural map

Ab(
∏
i∈N

Hi) −→
∏
i∈N

Ab(Hi).

Clearly all the structure maps in the diagram G are surjective, so by Theorem 0.0.1 we have
that the natural map is surjective, and its kernel is a cotorsion group. But in this case we are able
to say more about the kernel of the natural map. Namely, we show

Theorem 0.0.4 (see Theorem 3.0.8). Let (Hn)n∈N be a countable collection of groups. Then the
natural map

Ab(
∏
i∈N

Hi) −→
∏
i∈N

Ab(Hi)

is surjective, and its kernel is a cotorsion group of Ulm length that does not exceed ℵ1.

For a definition of the Ulm length of an abelian group see Definition 1.3.2.

Remark 0.0.5. A generalization of Theorem 0.0.4 to arbitrary products, as well as the question of
whether our bound on the Ulm length of the kernel of the map in Theorem 0.0.4 is strict or can
be improved, will be addressed in future papers.

Again, we obtain the immediate corollary:

Corollary 0.0.6. The abelianization of a countable product of perfect groups is a cotorsion group
of Ulm length that does not exceed ℵ1.

This paper originated from a question posed to the second author by Emmanuel Farjoun, from
the field of algebraic topology. For the following discussion, the word space will mean a compactly
generated Hausdorff topological space. It is known, that the homology groups of a homotopy
colimit of spaces are computable from the homology groups of the individual spaces, by means of
a spectral sequence, while this is not true for the homology groups of a homotopy limit. Farjoun
asked what can be said about the natural map from the homology of a homotopy limit to the
limit of homologies. Since the homotopy groups of a homotopy limit are computable from the
homotopy groups of the individual spaces, by means of a spectral sequence, and we have a natural
isomorphism

H1(X) ∼= Ab(π1X),

for every pointed connected space X (see [GJ, Corollary 3.6]), a good place to start seems to be the
investigation of the behaviour of the abelianization functor under limits. And indeed, using our
results, we can say something also about Farjoun’s question as the following corollary demonstrates:

Corollary 0.0.7.

(1) Let X : N −→ Top∗ be a diagram of pointed connected spaces. Suppose that for every
n ∈ N the structure map Xn+1 → Xn is a Serre fibration and both π1X and π2X satisfy
the Mittag-Leffler condition. Then the natural map

H1(lim
n∈N

Xn) −→ lim
n∈N

H1(Xn)

is surjective, and its kernel is a cotorsion group.
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(2) Let (Yn)n∈N be a countable collection of connected spaces. Then the natural map

H1(
∏
i∈N

Yi) −→
∏
i∈N

H1(Yi)

is surjective, and its kernel is a cotorsion group of Ulm length that does not exceed ℵ1.

Proof. We begin with (1). Since X is a tower of pointed fibrations, we have for every i ≥ 0 an
exact sequence (see, for instance, [GJ, VI Proposition 2.15])

∗ −→ lim1
n∈Nπi+1Xn −→ πi lim

n∈N
Xn −→ lim

n∈N
πiXn −→ ∗.

Since π1X and π2X satisfy the Mittag-Leffler condition, we have that

lim1
n∈Nπ1Xn

∼= lim1
n∈Nπ2Xn

∼= ∗.

Thus, from the exact sequence in the case i = 0 we can deduce that limn∈NXn is connected, so we
have a natural isomorphism

H1(lim
n∈N

Xn) ∼= Ab(π1 lim
n∈N

Xn),

while from the exact sequence in the case i = 1 we obtain a natural isomorphism

π1 lim
n∈N

Xn
∼= lim
n∈N

π1Xn.

It is not hard to see that these isomorphisms fit into a commutative diagram

H1(limn∈NXn)
∼= //

��

Ab(limn∈N π1Xn)

��
limn∈NH1(Xn)

∼= // limn∈N Ab(π1Xn),

where the vertical maps are the natural ones. Now the result follows from Theorem 0.0.1.
The proof of (2) is identical to (1), but we use Theorem 0.0.4 instead of Theorem 0.0.1. �

0.1. Organization of the paper. In Section 1 we recall some necessary background from the
theory of groups and abelian groups. In Section 2 we prove Theorem 0.0.1 and in Section 3 we
prove Theorem 0.0.4.

0.2. Notations and conventions. We denote by N the set of natural numbers (including 0), by
Z the ring of integers and by Q the field of rational numbers. We denote by P the set of prime
natural numbers and enumerate it as

P = {p0, p1, · · · }.

If p ∈ P, we denote by Qp the field of p-adic numbers, and by Zp its subring of p-adic integers.
Note that in [Fu1] the ring Zp is denoted by Jp. Whenever we treat a ring as an abelian group we
mean its underlying additive group.

If G is a group, we denote its unit element by eG or just by e if the group is understood.
If T is a small partially ordered set, we view T as a small category which has a single morphism

u→ v whenever u ≥ v.

0.3. Acknowledgments. We would like to thank Emmanuel Dror-Farjoun for suggesting the
problem and for his useful comments on the paper. We also thank Manfred Dugas, Brendan
Goldsmith, Daniel W. Herden and Lutz Strüngmann for helpful correspondences.
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1. Preliminaries

In this section we recall some necessary background from the theory of groups and abelian
groups. The material is taken mainly from [Fu1], [GJ] and [Wei]. We assume basic familiarity with
category theory [ML].

1.1. The abelianization functor. Let G be a group. Recall that the commutator of two elements
x and y of G is

[x, y] := x−1y−1xy ∈ G.
The commutator subgroup of G, denoted C(G), is the subgroup of G generated by the commutators.
It is easily seen that C(G) is a normal subgroup of G and we have

C(G) = {[x1, y1] · · · [xn, yn] | n ∈ N, xi, yi ∈ G}.
If f : G→ H is a group homomorphism, then

f |C(G) : C(G) −→ C(H),

so C can be naturally extended to a functor from the category of groups to itself

C : Grp −→ Grp .

The abelianization of G is defined to be the quotient group

Ab(G) := G/C(G).

Clearly Ab(G) is an abelian group and if f : G→ H is a group homomorphism, we have an induced
map

Ab(f) : Ab(G) −→ Ab(H).

This turns Ab into a functor from the category of groups to the category of abelian groups

Ab : Grp −→ Ab .

We have a projection map
πG : G −→ Ab(G),

and this map is natural in G in the sense that it defines a natural transformation of functors from
groups to groups

π : IdGrp −→ Ab .

1.2. The Mittag-Leffler condition and lim1. Let T be a poset. Recall that according to our
convention (see Section 0.2), we view T as a small category which has a single morphism t → s
whenever t ≥ s. Recall also that T is called directed if for every t, s ∈ T there exists r ∈ T such
that r ≥ t and r ≥ s.

Definition 1.2.1. Let T be a directed poset and let G : T −→ Grp be a diagram of groups. Then
G is said to satisfy the Mittag-Leffler condition if for every t ∈ T there exists s ≥ t such that for
every r ≥ s we have

Im(Gs → Gt) = Im(Gr → Gt).

Clearly every directed diagram of groups with surjective connecting homomorphisms satisfies
Mittag-Leffler condition, as does every directed diagram of finite groups.

Let G : T −→ Grp be a directed diagram of groups. For every t ∈ T we define

G′t :=
⋂
s≥t

Im(Gs → Gt) < Gt.

Clearly, by restriction of the structure maps, we can lift G′ into a diagram G′ : T −→ Grp. It is not
hard to see that we have a natural isomorphism limG′ ∼= limG. If G satisfies the Mittag-Leffler
condition then all the structure maps of G′ are surjective.
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Let G : N −→ Grp be a diagram of shape N in the category of groups. Such a diagram will be
called a tower of groups. For every n ∈ N we have a unique morphism n + 1 → n in N, and we
define

gn+1 := G(n+ 1→ n) : Gn+1 → Gn.

Let limG denote the following subgroup of the product group:

limG := {(xn) ∈
∞∏
n=0

Gn | ∀n ∈ N . gn+1(xn+1) = xn}.

Restricting the natural projections
∞∏
m=0

Gm −→ Gn,

we obtain maps limG −→ Gn, for every n ∈ N. Then limG, together with the maps limG −→ Gn,
is a limit of the diagram G in the category of groups Grp.

If for every n ∈ N the group Gn is abelian, that is, if G : N −→ Ab, then clearly limG is also
abelian. In fact, limG, together with the maps limG −→ Gn, is a limit of G in the category of
abelian groups Ab.

Definition 1.2.2. We define an equivalence relation ∼ on the pointed set
∏∞
n=0Gn by letting

(xn) ∼ (yn) iff there exist (an) ∈
∏∞
n=0Gn such that

(yn) = (anxngn+1(an+1)−1).

We now define lim1G to be the quotient pointed set

lim1G :=

∞∏
n=0

Gn/ ∼ .

It is not hard to see that lim1 can be lifted to a functor from the category of towers of groups
to the category of pointed sets.

Remark 1.2.3. If for every n ∈ N the group Gn is abelian, that is, if G : N −→ Ab, then limG and
lim1G are naturally identified with the kernel and cokernel of the homomorphism

∞∏
n=0

Gn
∂−→
∞∏
n=0

Gn,

defined by
(an) 7→ (an − gn+1(an+1)).

In particular, in this case lim1G is an abelian group (and not just a pointed set). Furthermore,
lim1 is a functor from the category of towers of abelian groups to the category of abelian groups.

Theorem 1.2.4. The functor lim1 has the following properties:

(1) If 0→ G1 → G2 → G3 → 0 is a short exact sequence of towers of groups, then we have an
exact sequence

0→ limG1 → limG2 → limG3 → lim1G1 → lim1G2 → lim1G3 → 0,

where the morphisms (except the middle one) are the ones induced by the functors lim and
lim1.

(2) If G is a tower of groups that satisfies the Mittag-Leffler condition, then lim1G = 0.

Remark 1.2.5. Exactness of the sequence appearing in the conclusion of Theorem 1.2.4 (1) just
means that the image of every map equals the inverse image of the next map at the special point.
If 0→ G1 → G2 → G3 → 0 is a short exact sequence of towers of abelian groups, then this exact
sequence becomes an exact sequence of abelian groups.
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1.3. Divisibility and the Ulm length.

Definition 1.3.1. Let A be an abelian group.

(1) If n ∈ Z, we denote nA := {na | a ∈ A}.
(2) If a ∈ A and n ∈ Z, we denote by n|a the statement that a ∈ nA.
(3) We say that A is divisible if

∞⋂
n=1

nA = A,

that is, if for every a ∈ A and every n ≥ 1 we have n|a.

Definition 1.3.2. Let A be an abelian group. We define, recursively, for every ordinal λ, a
subgroup Aλ ⊆ A, called the λth Ulm subgroup of A, by:

(1) A0 := A.
(2) For every ordinal λ we define Aλ+1 :=

⋂∞
n=1 nA

λ.
(3) For every limit ordinal δ we define Aδ :=

⋂
λ<δ A

λ.

Clearly we have defined a function A(−) from ordinals to sets, that is monotone decreasing and
continuous. In particular, A(−) stabilizes, that is, there exists an ordinal λ such that Aλ+1 = Aλ.
The smallest such ordinal is called the Ulm length of A, and is denoted by u(A). We always have
u(A) ≤ |A|.

Clearly, for every ordinal λ, we have that Aλ is divisible iff u(A) ≤ λ. We also have that pu(A)A
is the biggest divisible subgroup of A, and we denote DA := pu(A)A.

Theorem 1.3.3 ([Fu1, Theorem 24.5]). Let A be an abelian group. Then the following conditions
are equivalent:

(1) A is divisible.
(2) A is an injective Z-module.
(3) A is a direct summand of every group containing A.

Definition 1.3.4. Let A be an abelian group. Then A is called reduced if A has no divisible
subgroups other then 0.

An easy consequence of Definition 1.3.2 and Theorem 1.3.3 is:

Theorem 1.3.5. Let A be an abelian group. Then there exists a reduced subgroup RA of A, unique
up to isomorphism, such that

A = DA ⊕RA.

The discussion on divisibility and the Ulm length can also be done for every prime separately.

Definition 1.3.6. Let A be an abelian group and p a prime number. We say that A is p-divisible
if pA = A, that is, if for every a ∈ A we have p|a.

Definition 1.3.7. Let A be an abelian group and p a prime number. We define, recursively, for
every ordinal λ, a subgroup pλA ⊆ A, by:

(1) p0A := A.
(2) For every ordinal λ we define pλ+1A := p(pλA).
(3) For every limit ordinal δ we define pδA :=

⋂
λ<δ p

λA.

Clearly we have defined a function p(−)A from ordinals to sets, that is monotone decreasing and
continuous. In particular, p(−)A stabilizes, that is, there exists an ordinal λ such that pλ+1A = pλA.
The smallest such ordinal is called the p-length of A, and is denoted lp(A).

Clearly, for every ordinal λ, we have that pλA is p-divisible iff lp(A) ≤ λ. We also have that

plp(A)A is the biggest p-divisible subgroup of A.
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1.4. The Ext functor and cotorsion groups.

Definition 1.4.1. Let A and C be abelian groups. We denote by Ext(C,A) the set of equivalence
classes of short exact sequences of the form

0→ A→ B → C → 0,

where an exact sequence as above is called equivalent to an exact sequence

0→ A→ B′ → C → 0,

if there exists an isomorphism B → B′ such that the following diagram commutes:

0 // A // B //

��

C // 0

0 // A // B // C // 0.

The set Ext(C,A) can be given the structure of an abelian group by defining

[0→ A
f−→ B

g−→ C → 0] + [0→ A
f ′−→ B′

g′−→ C → 0],

to be

[0→ A
f
∏
f ′−−−−→ B ⊕B′ g

∐
g′−−−−→ C → 0].

The zero element in Ext(C,A) is the splitting short exact sequence

[0→ A→ A⊕ C → C → 0].

It is also possible to lift the above construction to a functor

Ext : Abop×Ab→ Ab,

using pullbacks and pushouts in the category of abelian groups.

Theorem 1.4.2 ([Wei, Application 3.5.10]). Let B be an abelian group and A : Nop → Ab a
diagram of injections of abelian groups:

A0 ↪→ A1 ↪→ · · · .
Then there is a short exact sequence

0 −→ lim1
n Hom(An, B) −→ Ext(colim

n
An, B) −→ lim

n
Ext(An, B) −→ 0.

Definition 1.4.3. An abelian group G is called cotorsion if Ext(Q, G) = 0.

In other words, an abelian group G is cotorsion iff for every abelian group H, that contains G
as a subgroup, such that H/G ∼= Q, we have that G is a direct summand of H.

2. Countable directed limits

The purpose of this section is to prove Theorem 0.0.1. We begin with a few preliminary defini-
tions and propositions.

In [Fu1, Section 22], Fuchs defines the notion of a system of equations over an abelian group.
There is an equation for every i ∈ I, with unknowns (xj)j∈J , where I and J can be arbitrary sets.
We will only be using this notion with I = J = N.

Definition 2.0.1. Let H be an abelian group. A system of equations over H is the following data:

(1) An N× N matrix with entries in Z, denoted (ln,m), such that for every n ∈ N the set

{m ∈ N | ln,m 6= 0}
is finite.
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(2) An object (vector) (an) in HN.

Note that for every n ∈ N we have an equation
∞∑
m=0

ln,mxm = an,

with unknowns (xm).
A solution, in H, to the system of equations is a vector (gn) in HN such that substituting

(xm) = (gm) in the system above yields correct statements.

Proposition 2.0.2. Let H be an abelian group. Then the following conditions are equivalent:

(1) The group H is cotorsion.
(2) Every system of equations over H, with matrix

1 −1 0 0 · · ·

1 −2 0 · · ·

1 −3 · · ·

1 · · ·

· · ·
has a solution in H.

(3) Every system of equations over H, with a matrix that is upper triangular and has identities
in its diagonal, has a solution in H.

Proof. (2)⇒ (1). It is not hard to see that

Q := colim(Z 1−→ Z 2−→ Z 3−→ · · · ),
where n denotes multiplication by n. So, by Theorem 1.4.2, there is a short exact sequence

0 −→ lim1
n Hom(Z, H) −→ Ext(colim

n
Z, H) −→ lim

n
Ext(Z, H) −→ 0.

There is a natural isomorphism Hom(Z,−) ∼= idAb and, since Z is a free abelian group, we know
that Ext(Z, H) ∼= 0. Thus we obtain an isomorphism

lim1(· · · 3−→ H
2−→ H

1−→ H) ∼= Ext(Q, H).

By implementing condition (2) above, we see that for every (an) ∈ HN there exists (bn) ∈ HN such
that for every n ∈ N we have bn = an + (n+ 1)bn+1. By Remark 1.2.3, it follows that

lim1(· · · 3−→ H
2−→ H

1−→ H) ∼= 0.

Thus, Ext(Q, H) ∼= 0 so H is cotorsion (see Definition 1.4.3).
(1) ⇒ (3). Let (ln,m), (bn) be a system of equations over H, and suppose that ln,n = 1 and

ln,m = 0 if n > m. Let us recall from [Fu1] the notion of an algebraically compact group. By [Fu1,
Theorem 38.1], an algebraically compact group can be defined as an abelian group G such that
every system of equations over G, for which every finite subsystem has a solution in G, also has a
global solution in G. Since H is cotorsion, we know, by [Fu1, Proposition 54.1], that there exists
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an algebraically compact group G and a surjective homomorphism p : G → H. For every n ∈ N
let us choose cn ∈ G, such that p(cn) = bn. Then (ln,m), (cn) is a system of equations over G,
and it is easy to see that every finite subsystem of it has a solution in G. (If N ∈ N we can find
a solution to the first N equations as follows: First define xN+1, xN+2, · · · to be any elements in
G. Now define xN ∈ G according to the N ’th equation. Then define xN−1 ∈ G according to the
(N − 1)’th equation, and so on.) Thus, we have a solution (gn) to this system of equations in G.
Now it is easily seen that (p(gn)) is a solution to our original system of equations in H.

(3)⇒ (2) is obvious so we are done. �

Let H : N −→ Grp be a tower of groups. If m ≤ n, then we have a unique morphism n→ m in
N. We define

φm,n := H(n→ m) : Hn → Hm.

We denote by Hω the limit

Hω = lim
n∈N

Hn

and by

φn : Hω → Hn

the natural map, for every n ∈ N (see Section 1.2).

Lemma 2.0.3. Suppose that F < Hω is a subgroup and for every n ∈ N we have

Im(φn|F ) = Im(φn).

Then for every f ∈ Hω and every n ∈ N, there exists f̄ ∈ Hω, such that:

(1) F f̄ = Ff .
(2) For every i < n we have φi(f̄) = eHi .

Proof. Let f ∈ Hω and let n ∈ N. If n = 0 let us choose f̄ := f . Suppose n > 0. By the hypothesis
of the lemma we know that

Im(φn−1|F ) = Im(φn−1).

Since φn−1(f) ∈ Im(φn−1), we obtain that there exists f ′′ ∈ F such that

φn−1(f ′′) = φn−1(f).

We now define

f̄ := (f ′′)−1f ∈ Hω,

so clearly F f̄ = Ff .
Now let i < n. The following diagram commutes

Hω

φn−1 //

φi ""

Hn−1

φi,n−1

��
Hi.

It follows that

φi(f
′′) = φi,n−1(φn−1(f ′′)) = φi,n−1(φn−1(f)) = φi(f),

so we have

φi(f̄) = (φi(f
′′))−1φi(f) = eHi ,

which finishes the proof of our lemma. �
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Theorem 2.0.4. Suppose that F / Hω is a normal subgroup such that T := Hω/F is abelian and
for every n ∈ N we have

Im(φn|F ) = Im(φn).

Then the abelian group T is cotorsion.

Proof. Let (fn) be an object in TN. By Proposition 2.0.2, we need to show that there exists an
object (gn) in TN such that for every n ∈ N we have

gn = fn + (n+ 1)gn+1.

Let n ∈ N. We have

fn ∈ T = Hω/F,

so we can choose f ′n ∈ Hω such that

[f ′n] := Ff ′n = fn.

By Lemma 2.0.3, there exists f̄n ∈ Hω, such that:

(1) [f̄n] = [f ′n] = fn.
(2) For every l < n we have φl(f̄n) = eHl .

For every n > l we define ḡn,l := eHl .
Now, let l ≥ 0 be fixed. We have defined ḡn,l ∈ Hl for every n > l. Let us now define ḡn,l ∈ Hl

for every n ≤ l recursively, using the formula

ḡn,l = φl(f̄n)ḡn+1
n+1,l.

That is, we define

ḡl,l = φl(f̄l)ḡ
l+1
l+1,l = φl(f̄l),

ḡl−1,l = φl(f̄l−1)ḡll,l = φl(f̄l−1)φl(f̄l)
l,

and so on.
We have now defined ḡn,l ∈ Hl for every n, l ∈ N, and clearly the formula

ḡn,l = φl(f̄n)ḡn+1
n+1,l

is now satisfied for every n, l ∈ N. (Note that whenever n > l we have φl(f̄n) = eHl by (2) above.)
For every n ∈ N we now define

ḡn := (ḡn,l)l∈N ∈
∏
l∈N

Hl.

Recall from Section 1.2, that

Hω
∼= {(xl)l∈N ∈

∏
l∈N

Hl | ∀l ∈ N . φl,l+1(xl+1) = xl}.

We want to show that for every n ∈ N we actually have ḡn ∈ Hω, that is, that for every n, l ∈ N
we have

φl,l+1(ḡn,l+1) = ḡn,l.

Clearly, this follows from the following lemma, taking i = l + 2:

Lemma 2.0.5. Let l ∈ N be fixed. Then for every i ≤ l + 2 and every n > l − i+ 1 we have

φl,l+1(ḡn,l+1) = ḡn,l.
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Proof. We prove the lemma by induction on i. When i = 0 then n > l + 1 so we have

ḡn,l+1 = eHl+1
, ḡn,l = eHl

and the lemma is clear. Now suppose we have proven the lemma for some i < l + 2, and let us
prove it for i+ 1. Let n > l − i. We know that

ḡn,l+1 = φl+1(f̄n)ḡn+1
n+1,l+1.

It follows that
φl,l+1(ḡn,l+1) = φl,l+1(φl+1(f̄n))φl,l+1(ḡn+1,l+1)n+1.

Since n+ 1 > l − i+ 1, we can use the induction hypothesis to obtain

φl,l+1(ḡn,l+1) = φl(f̄n)ḡn+1
n+1,l = ḡn,l,

which proves our lemma. �

Let n ∈ N. We have shown that ḡn ∈ Hω. We define

gn := [ḡn] ∈ Hω/F = T.

For every l ∈ N we have an equality in Hl

ḡn,l = φl(f̄n)ḡn+1
n+1,l.

Thus in Hω we have
ḡn = f̄nḡ

n+1
n+1 .

Passing to equivalence classes we obtain the following equality in T = Hω/F :

[ḡn] = [f̄n][ḡn+1]n+1.

But T is abelian, so in additive notation we obtain

gn = fn + (n+ 1)gn+1.

which finishes the proof of our theorem. �

We now turn to the main result of this section.

Theorem 2.0.6. Let T be a countable directed poset and let G : T −→ Grp be a diagram of groups
that satisfies the Mittag-Leffler condition. Then the natural map

ρ : Ab(lim
t∈T

Gt) −→ lim
t∈T

Ab(Gt)

is surjective and its kernel is cotorsion.

Proof. Since T is a countable directed poset, there exists a cofinal functor N −→ T. Thus we can
assume that T = N.

We have the following short exact sequence of towers of groups:

0→ C(G)→ G→ Ab(G)→ 0.

Thus, by Theorem 1.2.4, we have an exact sequence

0→ lim C(G)→ limG→ lim Ab(G)→ lim1C(G)→ lim1G→ lim1 Ab(G)→ 0.

Since G satisfies the Mittag-Leffler condition, it is not hard to see that C(G) also satisfies the
Mittag-Leffler condition. (Note that for every structure map φ : Gn → Gm we have φ(C(Gn)) =
C(φ(Gn)).) Thus, by Theorem 1.2.4, we have lim1 C(G) = 0 so we obtain a short exact sequence
of groups

0→ lim C(G)→ limG→ lim Ab(G)→ 0.

In particular, limG → lim Ab(G) is surjective, so the map it induces ρ : Ab(limG) → lim Ab(G)
is also surjective.
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Moreover, we have a natural inclusion lim C(G) ⊆ limG and a natural isomorphism

limG/ lim C(G) ∼= lim Ab(G).

Under this isomorphism, ρ is becomes the obvious map

limG/C(limG) −→ limG/ lim C(G),

so we have a natural isomorphism

ker(ρ) ∼= lim C(G)/C(limG).

We know that C(limG) is a normal subgroup of limG and thus it is also a normal subgroup of
lim C(G).

We define G′ : N −→ Grp and C(G)′ : N −→ Grp as in the beginning of Section 1.2. Since for
every structure map φ : Gn → Gm we have φ(C(Gn)) = C(φ(Gn)), it is not hard to see that

C(G)′ = C(G′).

Let n ∈ N. Since all the structure maps G′m+1 → G′m are surjective, it follows that the map
φn : limG ∼= limG′ → G′n is surjective. Thus

φn|C(limG) : C(limG)→ C(G′n)

is also surjective and

Im(φn|C(limG)) = C(G′n).

Since all the structure maps C(G′m+1)→ C(G′m) are surjective, it follows that the map

φn|limC(G) : lim C(G) ∼= lim C(G′)→ C(G′n)

is surjective and

Im(φn|limC(G)) = C(G′n).

Thus, for every n ∈ N we have

Im(φn|C(limG)) = Im(φn|limC(G)).

Using Theorem 2.0.4 with H := C ◦G : N −→ Grp, we see that ker(ρ) ∼= lim C(G)/C(limG) is
cotorsion. �

3. Countable products

Let (Hn)n∈N be a countable collection of groups. We can construct from this collection a diagram
G : N −→ Grp by letting Gn be the product H1× · · · ×Hn, for every n ∈ N, and Gm → Gn be the
natural projection, for every m ≥ n. Since for every n ∈ N we have

Ab(
∏
i≤n

Hi) ∼=
∏
i≤n

Ab(Hi),

we see that the natural map in Theorem 2.0.6 becomes

ρ : Ab(
∏
i∈N

Hi) −→
∏
i∈N

Ab(Hi).

Clearly all the structure maps are surjective so, by Theorem 2.0.6, ρ is surjective and ker(ρ) is
cotorsion. The purpose of this section is to show that ker(ρ) cannot be any cotorsion group in
this case. Namely, by Harrison’s structure theorem for cotorsion groups [Har], we know that any
torsion group is the torsion part of some cotorsion group. Since a torsion group can have arbitrary
large Ulm length, it follows that the same is true for a cotorsion group. However, we show in
Theorem 3.0.8 that u(ker(ρ)) ≤ ℵ1.

We begin with a few preliminary definitions and propositions.
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Proposition 3.0.1. Let A be an abelian group and p a prime number. Suppose that (ym)m∈N is
an object in AN such that for every m ∈ N we have ym = pym+1. Then y0 ∈ plp(A)A.

Proof. Clearly it is enough to show that for every ordinal λ we have y0 ∈ pλA. We show this by
induction on λ.

Clearly y0 ∈ p0A = A. Let λ be an ordinal and suppose we have shown that y0 ∈ pβA, for every
β ≤ λ. Applying what we have shown to (ym)m≥1 we see that y1 ∈ pλA. Thus we obtain

y0 = py1 ∈ p(pλA) = pλ+1A.

Now suppose that λ is a limit ordinal and we have shown that y0 ∈ pβA for every β < λ. Then

y0 ∈
⋂
β<λ

pβA = pλA,

which finishes the proof by induction. �

Definition 3.0.2. Let λ be an ordinal. We define

des(λ) := {(µ1, ..., µn) | n ≥ 0 and λ > µ1 > · · · > µn}.

Note that des(λ) contains also the empty string φ, corresponding to n = 0.
Let µ = (µ1, ..., µn) ∈ des(λ). We define

l(λ) := n ≥ 0,

min(µ) :=

{
λ if µ = φ,

µn if µ 6= φ,

and if n ≥ m ≥ 0 we define µ|m := (µ1, ..., µm).

Proposition 3.0.3. Let N be an infinite set and κ a cardinal such that κ > |N |. Suppose we are
given kµ ∈ N , for every µ ∈ des(κ). Then for every n ∈ N there exists a triple (kn, Sn, µ(n)), such
that:

(1) kn ∈ N .
(2) Sn ⊆ κ and |Sn| = κ.
(3) µ(n) = (µ(n)α)α∈Sn and for every α ∈ Sn we have

(a) µ(n)α ∈ des(κ).
(b) l(µ(n)α) = n+ 1.
(c) min(µ(n)α) = α.
(d) For every l ≤ n we have kµ(n)α|l+1

= kl.

Proof. We define the triple (kn, Sn, µ(n)) recursively with n.
We begin with n = 0. For every α < κ we have (α) ∈ des(κ), so k(α) ∈ N . Since κ is a cardinal

and κ > |N |, there exists k0 ∈ N such that

|{α < κ | k(α) = k0}| = κ.

We define

S0 := {α < κ | k(α) = k0},
and for every α ∈ S0 we define

µ(0)α := (α) ∈ des(κ).

Clearly, for every α ∈ S0 we have

(1) l(µ(0)α) = 1.
(2) min(µ(0)α) = α.
(3) kµ(0)α|1 = k(α) = k0.
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Now let m ∈ N and suppose we have defined a triple (kn, Sn, µ(n)) for every n ≤ m such that
the conditions in the proposition are satisfied where they are defined. Let us define the triple
(km+1, Sm+1, µ(m+ 1)).

First we define recursively a strictly increasing function fm : κ→ Sm such that for every α < κ
we have α < fm(α).

We define

fm(0) := min(Sm \ {min(Sm)}).
Clearly 0 < fm(0).

Let β < κ and suppose we have defined fm(α) ∈ Sm for every α ≤ β. Let us now define
fm(β + 1) ∈ Sm. We have fm(β) < κ. Since κ is a cardinal, it follows that |fm(β)| < κ and thus

|Sm \ fm(β)| = |{λ ∈ Sm | λ ≥ fm(β)}| = κ.

In particular

{λ ∈ Sm | λ > fm(β)} 6= φ

and we can define

fm(β + 1) := min{λ ∈ Sm | λ > fm(β)} ∈ Sm.
Clearly we have

fm(β + 1) > fm(β) ≥ β + 1.

Suppose that β < κ is a limit ordinal and we have defined fm(α) ∈ Sm for every α < β. Since
κ is a cardinal, we have that |fm(α)| < κ for every α < β, and also |β| < κ. Thus

|
⋃
α<β

fm(α)| < κ,

so

|Sm \
⋃
α<β

fm(α)| = |{λ ∈ Sm | ∀α < β.λ ≥ fm(α)}| = κ.

Since |β| < κ we obtain in particular that

{λ ∈ Sm | ∀α < β.λ > fm(α)} \ {β} 6= φ

and we can define

fm(β) := min({λ ∈ Sm | ∀α < β.λ > fm(α)} \ {β}) ∈ Sm.

For every α < β we thus have

fm(β) > fm(α) > α,

so fm(β) ≥ β. But fm(β) 6= β so we obtain fm(β) > β. This finishes our recursive definition of
fm : κ→ Sm.

For every α < κ we have (µ(m)fm(α), α) ∈ des(κ), so k(µ(m)fm(α),α) ∈ N . Since κ is a cardinal

and κ > |N |, there exists km+1 ∈ N such that

|{α < κ | k(µ(m)fm(α),α) = km+1}| = κ.

We define

Sm+1 := {α < κ | k(µ(m)fm(α),α) = km+1},
and for every α ∈ Sm+1 we define

µ(m+ 1)α := (µ(m)fm(α), α) ∈ des(κ).

Let α ∈ Sm+1. Using the induction hypothesis, we have:

(1) l(µ(m+ 1)α) = l(µ(m)fm(α)) + 1 = m+ 2.
(2) min(µ(m+ 1)α) = α.
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Let l ≤ m+ 1. If l = m+ 1 we have

kµ(m+1)α|l+1
= kµ(m+1)α = km+1 = kl,

while if l ≤ m we have, using the induction hypothesis,

kµ(m+1)α|l+1
= kµ(m)f′m(α)|l+1

= kl,

which finishes the proof of our proposition. �

Proposition 3.0.4. Let H be an abelian group and let λ be an ordinal. Then for every x ∈ pλH
there exist

x̄ = (xµ)µ∈des(λ) ∈
∏

µ∈des(λ)

pmin(µ)H,

such that the following hold:

(1) xφ = x.
(2) If µ ∈ des(λ) and l(µ) = n > 0, then pxµ = xµ|n−1

.

Proof. We define xµ ∈ pmin(µ)H for every µ ∈ des(λ) recursively, relative to l(µ).
Suppose first that l(µ) = 0. Then µ = φ and we define

xφ := x ∈ pmin(φ)H = pλH.

Let n ≥ 0 and suppose that we have defined xµ ∈ pmin(µ)H for every µ ∈ des(λ) with l(µ) ≤ n,
in such a way that condition (2) above holds where it is defined.

Now let µ ∈ des(λ) such that l(µ) = n+1. Clearly min(µ) < min(µ|n) so min(µ)+1 ≤ min(µ|n)
and we have

xµ|n ∈ pmin(µ|n)H ⊆ pmin(µ)+1H = p(pmin(µ)H).

Thus there exist xµ ∈ pmin(µ)H such that pxµ = xµ|n. �

Theorem 3.0.5. The natural map

ρ : Ab(
∏
i∈N

Hi) −→
∏
i∈N

Ab(Hi)

is surjective and ker(ρ) is cotorsion and satisfies lp(ker(ρ)) ≤ ℵ1 or every prime p.

Proof. By Theorem 2.0.6, ρ is surjective and ker(ρ) is cotorsion.
Now let p ∈ P. For convenience of notation let us denote S := ker(ρ). Recall from the proof of

Theorem 2.0.6 that

S ∼= lim
n∈N

C(Gn)/C(lim
n∈N

Gn).

Since for every n ∈ N we have

C(Gn) ∼= C(H1 × · · · ×Hn) ∼= C(H1)× · · · × C(Hn),

we see that

S ∼=
∏
n∈N

C(Hn)/C(
∏
n∈N

Hn).

We need to show that pℵ1S is p-divisible. It is clearly enough to show pℵ1S ⊆ plp(S)S.
So let x ∈ pℵ1S. We define

x̄ = (xµ)µ∈des(ℵ1) ∈
∏

µ∈des(ℵ1)

pmin(µ)S,

as in Proposition 3.0.4.
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For every µ ∈ des(ℵ1) we have

xµ ∈ pmin(µ)S ⊆ S =
∏
n∈N

C(Hn)/C(
∏
n∈N

Hn),

so let us choose a representative

fµ = (fµ(n))n∈N ∈
∏
n∈N

C(Hn)

such that [fµ] = xµ.
Let µ ∈ des(ℵ1) with l(µ) = n > 0. Then by Proposition 3.0.4 we have (in multiplicative

notation)

xpµ = xµ|n−1
.

Thus

x−1µ|n−1
xpµ = e ∈ S,

so

f−1µ|n−1
fpµ ∈ C(

∏
n∈N

Hn).

It follows that there exist kµ ∈ N and

gµ,t = (gµ,t(n))n∈N ∈
∏
n∈N

Hn

for every t < 2kµ such that

f−1µ|n−1
fpµ =

∏
l<kµ

[gµ,2l, gµ,2l+1].

Let us define kφ := 0. By Proposition 3.0.3, applied for the set N = N, the cardinal κ = ℵ1,
and (kµ)µ∈des(ℵ1) defined above, we see that for every n ∈ N there exists a triple (kn, Sn, µ(n)),
such that for every n ∈ N we have:

(1) kn ∈ N.
(2) Sn ⊆ ℵ1 and |Sn| = ℵ1.
(3) µ(n) = (µ(n)α)α∈Sn and for every α ∈ Sn we have

(a) µ(n)α ∈ des(ℵ1).
(b) l(µ(n)α) = n+ 1.
(c) min(µ(n)α) = α.
(d) For every l ≤ n we have kµ(n)α|l+1

= kl.

For every m ∈ N we define αm := min(Sm), and we define

hm = (hm(n))n∈N ∈
∏
n∈N

C(Hn)

by

hm(n) :=

{
eHn if n < m,

fµ(n)αn |m(n) if n ≥ m.

For every m > 0 and t < 2km we define

dm,t = (dm,t(n))n∈N ∈
∏
n∈N

Hn

by

dm,t(n) :=

{
eHn if n < m,

gµ(n)αn |m,t(n) if n ≥ m.
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Let n > m ≥ 0. Since µ(n)αn |m+1 ∈ des(ℵ1) \ {φ}, we have as above

f−1µ(n)αn |m
fpµ(n)αn |m+1

=
∏

l<kµ(n)αn |m+1

[gµ(n)αn |m+1,2l, gµ(n)αn |m+1,2l+1].

In particular, we get an equality in Hn:

fµ(n)αn |m(n)−1fµ(n)αn |m+1
(n)p =

∏
l<kµ(n)αn |m+1

[gµ(n)αn |m+1,2l(n), gµ(n)αn |m+1,2l+1(n)].

But n ≥ m+ 1 so we obtain

hm(n)−1hm+1(n)p =
∏
l<km

[dm+1,2l(n), dm+1,2l+1(n)].

For every fixed m ∈ N, the equality above holds for almost all n ∈ N. Passing to equivalence
classes in

S =
∏
n∈N

C(Hn)/C(
∏
n∈N

Hn)

we thus obtain

[h−1m hpm+1] = [
∏
l<km

[dm+1,2l, dm+1,2l+1]] = e,

or

[hm] = [hm+1]p.

By Proposition 3.0.1 we obtain

[h0] ∈ plp(S)S.
But for every n ∈ N we have h0(n) = fφ(n) so h0 = fφ and

x = xφ = [fφ] = [h0] ∈ plp(S)S,

as required. �

We now wish to prove a variant of Theorem 3.0.5 which uses the Ulm length instead of the
p-length.

Proposition 3.0.6. Let p be a prime number and let G be an abelian group that is a module over
the p-adic integers. Then for every ordinal λ we have u(G) ≤ λ iff lp(G) ≤ ωλ.

Proof. It is shown in [Fu1, on page 154] that

Gλ =
⋂
p∈P

pωλG.

Since G be a module over the p-adic integers we know that G is q-divisible for every prime q 6= p,
so we otain

Gλ = pωλG.

Using transfinite induction it is easily seen that Gλ is a sub Zp-module of G, so Gλ is q-divisible
for every prime q 6= p. Thus, Gλ is divisible, iff it is p-divisible. We now see that the following
statements are equivalent:

(1) u(G) ≤ λ.
(2) pωλG = Gλ is divisible.
(3) pωλG = Gλ is p-divisible.
(4) lp(G) ≤ ωλ.

�
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Proposition 3.0.7. Let G be a cotorsion group and let λ be an ordinal. Then u(G) ≤ λ iff
lp(G) ≤ ωλ for every p ∈ P.

Proof. By decomposing G into its divisible part and reduced part, as in Theorem 1.3.5, we may
assume that G is reduced.

Since G is reduced and cotorsion, G can be written as a product of the form G ∼=
∏
p∈PGp, where

every Gp is a module over the p-adic integers (see [Fu1, on page 234]). Thus, using Proposition
3.0.6, we see that the following statements are equivalent:

(1) u(G) ≤ λ.
(2) Gλ is divisible.
(3) Gλp is divisible for every prime p.
(4) u(Gp) ≤ λ for every prime p.
(5) lp(G) ≤ ωλ for every prime p.

�

We now turn to the main result of this section.

Theorem 3.0.8. The natural map

ρ : Ab(
∏
i∈N

Hi) −→
∏
i∈N

Ab(Hi)

is surjective and ker(ρ) is cotorsion and satisfies u(ker(ρ)) ≤ ℵ1.

Proof. By Theorem 3.0.5 ρ is surjective and ker(ρ) is cotorsion. By Proposition 3.0.7, applied for
the ordinal λ := ℵ1, we see that u(ker(ρ)) ≤ ℵ1 iff lp(ker(ρ)) ≤ ωℵ1 = ℵ1 for every p ∈ P. Thus
the result follows from Theorem 3.0.5. �
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