A NOTE ON SMALL SETS OF REALS

TOMEK BARTOSZYNSKI AND SAHARON SHELAH

Abstract. We construct an example of a combinatorially large measure zero set.

1. Introduction.

We will work in the space 2^ω equipped with standard topology and measure. More specifically, the topology is generated by basic open sets of form $[s] = \{x \in 2^\omega : s \subseteq x\}$ for $s \in 2^a$, $a \in \omega^{<\omega}$. The measure is the standard product measure such that $\mu([s]) = 2^{-|\text{dom}(s)|}$ and let \mathcal{N} be the collection of all measure zero sets.

Measure zero sets in 2^ω admit the following representation (see lemma 4):

$X \in \mathcal{N}$ iff and only if there exists a sequence $\{F_n : n \in \omega\}$ such that

1. $F_n \subseteq 2^n$ for $n \in \omega$,
2. $\sum_{n \in \omega} \frac{|F_n|}{2^n} < \infty$,
3. $X \subseteq \{x \in 2^\omega : \exists \infty n \ x|n \in F_n\}$.

The main drawback of this representation is that sets F_n have overlapping do-

1. Small sets are useful because of their combinatorial simplicity. To test that $x \in X \in \mathcal{S}$ the real x must pass infinitely many independent tests as in Borel-Cantelli lemma. In section 3 we will show that various structurally simple measure zero sets are small.

Definition 2. For families of sets \mathcal{A}, \mathcal{B} let $\mathcal{A} \oplus \mathcal{B}$ be

$\{X : \exists a \in \mathcal{A} \exists b \in \mathcal{B} (X \subseteq a \cup b)\}$

Second author was partially supported by NSF grants DMS-1101597 and DMS-136974, publication 1139.
Clearly, if \mathcal{J} is an ideal then $\mathcal{J} \oplus \mathcal{J} = \mathcal{J}$. Likewise, $\mathcal{A} \oplus (\mathcal{A} \oplus \mathcal{A}) \cup (\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}) \cup \ldots$ is an ideal for any \mathcal{A}.

Theorem 3. [1]
$S^* \oplus S^* = S \oplus S = N = N + N$.

The main result of this paper is to show that the above result is best possible, that is $S^* \subsetneq S \subsetneq N$. It was known ([1]) that $S^* \subsetneq N$.

2. Preliminaries

To make the paper complete and self contained we present a review of known results.

Lemma 4. Suppose that $X \subset 2^\omega$. X has measure zero iff and only if there exists a sequence $\{F_n : n \in \omega\}$ such that

1. $F_n \subset 2^n$ for $n \in \omega$,
2. $\sum_{n \in \omega} \frac{|F_n|}{2^n} < \infty$,
3. $X \subset \{ x \in 2^\omega : \exists^{\infty} n x|n \in F_n\}$.

Proof. Note that $\{ x \in 2^\omega : \exists^{\infty} n x|n \in F_n\} = \bigcap_{m \in \omega} \bigcup_{n \geq m} \{ x \in 2^\omega : x|n \in F_n\}$. Now,

$$\mu \left(\bigcup_{n \geq m} \{ x \in 2^\omega : x|n \in F_n\} \right) \leq \sum_{n \geq m} \mu (\{ x \in 2^\omega : x|n \in F_n\}) \leq \sum_{n \geq m} \frac{|F_n|}{2^n} \rightarrow 0.$$

If X has measure zero then there exists a sequence of open sets $\{ U_n : n \in \omega\}$ such that

1. $\mu(U_n) \leq 2^{-n}$, for each n,
2. $X \subset \bigcap_{n \in \omega} U_n$.

Find a sequence of $\{ s_m : n, m \in \omega\}$ such that

1. $s_m \in 2^{<\omega}$,
2. $\{ s_m \} \cap \{ s_n \} = \emptyset$ when $k \neq m$,
3. $U_n = \bigcup_{m \in \omega} \{ s_m \}$.

For $k \in \omega$ let $F_k = \{ s_m : n, m \in \omega, |s_m| = k\}$. Note that $X \subset \{ x \in 2^\omega : \exists^{\infty} k x|k \in F_k\}$ and that $\sum_{k \in \omega} \frac{|F_k|}{2^k} \leq \sum_{n \in \omega} \mu(U_n) \leq 1$. □

Theorem 5. [1] $S^* \oplus S^* = S \oplus S = N$.

Proof. Since \mathcal{N} is an ideal, $\mathcal{N} \oplus \mathcal{N} = \mathcal{N}$. Consequently, it suffices to show that $S^* \oplus S^* = \mathcal{N}$. The following theorem gives the required decomposition.

Theorem 6 ([1]). Suppose that $X \subset 2^\omega$ is a measure zero set. Then there exist sequences $(n_k, m_k : k \in \omega)$ and $(J_k, J'_k : k \in \omega)$ such that

1. $n_k < m_k < n_{k+1}$ for all $k \in \omega$,
2. $J_k \subset 2^{\langle n_k, n_{k+1}\rangle}$, $J'_k \subset 2^{\langle m_k, m_{k+1}\rangle}$ for $k \in \omega$,
3. the sets $(\{ n_k, n_{k+1}\}, J_k)_{k \in \omega}$ and $(\{ m_k, m_{k+1}\}, J'_k)_{k \in \omega}$ are small* and
4. $X \subset \bigcup_{k \in \omega} (\{ n_k, n_{k+1}\}, J_k)_{k \in \omega} \cup (\{ m_k, m_{k+1}\}, J'_k)_{k \in \omega}$.

In particular, every null set is a union of two small* sets.
Proof. Let $X \subseteq 2^\omega$ be a null set.

We can assume that $X \subseteq \{x \in 2^\omega : \exists n x|n \in F_n\}$ for some sequence $(F_n : n \in \omega)$ satisfying conditions of Lemma 4.

Fix a sequence of positive reals $(\varepsilon_k : k \in \omega)$ such that $\sum_{k=0}^{\infty} \varepsilon_k < \infty$.

Define two sequences $(n_k, m_k : k \in \omega)$ as follows: $n_0 = 0,

\begin{align*}
m_k &= \min \left\{ j > n_k : 2^{n_k} \cdot \sum_{i=j}^{\infty} \frac{|F_i|}{2^i} < \varepsilon_k \right\},
\end{align*}

and

\begin{align*}
n_{k+1} &= \min \left\{ j > m_k : 2^{m_k} \cdot \sum_{i=j}^{\infty} \frac{|F_i|}{2^i} < \varepsilon_k \right\} \text{ for } k \in \omega.
\end{align*}

Let $I_k = [n_k, n_{k+1})$ and $I'_k = [m_k, m_{k+1})$ for $k \in \omega$. Define

\begin{align*}
s \in J_k \iff s \in 2^{I_k} & \land \exists i \in [n_k, n_{k+1}) \exists t \in F_i s|\text{dom}(t) \cap \text{dom}(s) =
\end{align*}

\begin{align*}
t \cap \text{dom}(t) \cap \text{dom}(s).
\end{align*}

Similarly

\begin{align*}
s \in J'_k \iff s \in 2^{I'_k} & \land \exists i \in [n_{k+1}, m_{k+1}) \exists t \in F_i s|\text{dom}(t) \cap \text{dom}(s) =
\end{align*}

\begin{align*}
t \cap \text{dom}(t) \cap \text{dom}(s).
\end{align*}

It remains to show that $(I_k, J_k)_{k \in \omega}$ and $(I'_k, J'_k)_{k \in \omega}$ are small sets and that their union covers X.

Consider the set $(I_k, J_k)_{k \in \omega}$. Notice that for $k \in \omega$

\begin{align*}
\frac{|J_k|}{2^{I_k}} &\leq 2^{m_k} \cdot \sum_{i=m_k}^{\infty} \frac{|F_i|}{2^i} \leq \varepsilon_k.
\end{align*}

Since $\sum_{n=1}^{\infty} \varepsilon_n < \infty$ this shows that the set $(I_n, J_n)_{n \in \omega}$ is null. An analogous argument shows that $(I'_k, J'_k)_{k \in \omega}$ is null. Finally, we show that

\begin{align*}
X \subseteq (I_n, J_n)_{n \in \omega} \cup (I'_n, J'_n)_{n \in \omega}.
\end{align*}

Suppose that $x \in X$ and let $Z = \{n \in \omega : x|n \in F_n\}$. By the choice of F_n’s set Z is infinite. Therefore, one of the sets,

\begin{align*}
Z \cap \bigcup_{k \in \omega} [m_k, n_{k+1}) \text{ or } Z \cap \bigcup_{k \in \omega} [n_{k+1}, m_{k+1}),
\end{align*}

is infinite. Without loss of generality we can assume that it is the first set. It follows that $x \in (I_n, J_n)_{n \in \omega}$ because if $x|n \in F_n$ and $n \in [m_k, n_{k+1})$, then by the definition there is $t \in J_k$ such that $x|n_k, n_{k+1}) = t$. \qed

Now let’s turn attention to the family of small sets \mathcal{S}. Observe that the representation used in the definition of small sets is not unique. In particular, it is easy to see that

Lemma 7. Suppose that $(I_n, J_n)_{n \in \omega}$ is a small set and $\{a_k : k \in \omega\}$ is a partition of ω into finite sets. For $n \in \omega$ define $I'_n = \bigcup_{l \in a_n} I_l$ and $J'_n = \{s \in 2^{I'_n} : \exists l \in a_n \exists t \in J_l \ s|I_l = t|I_l\}$. Then $(I_n, J_n)_{n \in \omega} = (I'_n, J'_n)_{n \in \omega}$. \qed
Lemma 8. Suppose that \((I_n, J_n)_{n \in \omega}\) and \((I'_n, J'_n)_{n \in \omega}\) are two small sets. If \(\{I_n : n \in \omega\}\) is a finer partition than \(\{I'_n : n \in \omega\}\), then \((I_n, J_n)_{n \in \omega} \cup (I'_n, J'_n)_{n \in \omega}\) is a small set.

Proof. Define \(I''_n = I'_n\) for \(n \in \omega\) and let
\[
J''_n = J'_n \cup \left\{ s \in 2^{I''_n} : \exists k \exists s \in J_k (I_k \subseteq I'_n \& s|I_k \in J_k) \right\}.
\]
It is easy to see that \((I_n, J_n)_{n \in \omega} \cup (I_n, J_n)_{n \in \omega} = (I''_n, J''_n)_{n \in \omega}\).

Since members of \(S\) do not seem to form an ideal we are interested in characterizing instances when a union of two sets in \(S\) is in \(S\).

Theorem 9. Suppose that \((I_n, J_n)_{n \in \omega}\) and \((I'_n, J'_n)_{n \in \omega}\) are two small sets and \((I_n, J_n)_{n \in \omega} \subseteq (I'_n, J'_n)_{n \in \omega}\). Then there exists a set \((I''_n, J''_n)_{n \in \omega}\) such that \((I_n, J_n)_{n \in \omega} \subseteq (I''_n, J''_n)_{n \in \omega}\) and partition \(\{I'_n : n \in \omega\}\) is finer than both \(\{I_n : n \in \omega\}\) and \(\{I'_n : n \in \omega\}\).

Proof. Let us consider the following:

Lemma 10. Suppose that \((I_n, J_n)_{n \in \omega}\) and \((I'_n, J'_n)_{n \in \omega}\) are two small sets. The following conditions are equivalent:

(1) \((I_n, J_n)_{n \in \omega} \subseteq (I'_n, J'_n)_{n \in \omega}\),
(2) for all but finitely many \(n \in \omega\) and for every \(s \in J_n\) there exists \(m \in \omega\) and \(t \in J'_m\) such that
(a) \(I_n \cap I'_m \neq \emptyset\),
(b) \(s|I_n \cap I'_m) = t|I_n \cap I'_m)\),
(c) \(\forall u \in 2^{I'_m} \setminus I'_m\) \(t|I_n \cap I'_m) \setminus u \in J'_m\).

Proof. (2) \(\Rightarrow\) (1) Suppose that \(x \in (I_n, J_n)_{n \in \omega}\). Then for infinitely many \(n\), \(x|I_n \in J_n\). For all but finitely many of those \(n\)'s, conditions (b) and (c) of clause (2) guarantee that for some \(m\) such that \(I_n \cap I'_m \neq \emptyset\), \(x|I_n \cap I'_m) \setminus x|I'_m \setminus I_n \in J'_m\). Consequently, \(x \in (I'_n, J'_n)_{n \in \omega}\).

(2) \(\Rightarrow\) (1) Suppose that condition (2) fails. Then there exists an infinite set \(Z \subseteq \omega\) such that for each \(n \in Z\) there is \(s_n \in J_n\) such that for every \(m\) such that \(I_n \cap I'_m \neq \emptyset\) exactly one of the following conditions holds:

(1) \(s_n|I_n \cap I'_m) \neq t|I_n \cap I'_m)\) for every \(t \in J'_m\),
(2) there is \(t \in J'_m\) such that \(s_n|I_n \cap I'_m) = t|I_n \cap I'_m)\) but for some \(u = u_{n,m} \in 2^{I'_m} \setminus I'_m\) \(t|I_n \cap I'_m) \setminus u_{n,m} \notin J'_m\).

By thinning out the set \(Z\) we can assume that no set \(I'_m\) intersects two distinct sets \(I_n\) for \(n \in Z\). Also for each \(m \in \omega\) fix \(t^m \in 2^{I'_m}\) such that \(t^m \notin J'_m\).

Let \(x(l)\) be defined as follows:
\[
x(l) = \begin{cases}
s_n(l) & n \in Z \text{ and } l \in I_n \text{ and } u_{n,m} \text{ is not defined} \\
0 & n \in Z \text{ and } l \notin I'_m \setminus I_n \text{ and } I_n \cap I'_m \neq \emptyset \text{ and } u_{n,m} \text{ is not defined} \\
s_n(l) & n \in Z \text{ and } l \in I'_m \setminus I_n \text{ and } u_{n,m} \text{ is defined} \\
u_{n,m}(l) & n \in Z \text{ and } l \notin I'_m \setminus I_n \text{ and } I_n \cap I'_m \neq \emptyset \text{ and } u_{n,m} \text{ is defined} \\
t^m(l) & l \notin I_m \text{ and } I_n \cap I'_m = \emptyset \text{ for all } n \in Z \end{cases}
\]

Observe that the first two clauses define \(x|I'_m\) when \(I_n \cap I'_m \neq \emptyset\) for some \(n \in Z\) and \(u_{n,m}\) is undefined, the next two clauses define \(x|I'_m\) when \(I'_m \cap I_n \neq \emptyset\) for some \(n \in Z\) and \(u_{n,m}\) is defined, and finally the last clause defines \(x|I'_m\) when \(I'_m \cap I_n = \emptyset\).
for all \(n \in \mathbb{Z} \). It is easy to see that these cases are mutually exclusive and that \(x \in (I_n, J_n) \cap \omega \) since \(x \cap I_n = s_n \in J_n \) for \(n \in \mathbb{Z} \). Finally note that \(x \notin (I_n, J_n) \cap \omega \) since by the choice of \(u_{n,m} \) (or property of \(s_n \)) \(x \cap I_n \notin J_n \) for all \(m \).

Suppose that \((I_n, J_n) \cap \omega \) and \((I_n', J_n') \cap \omega \) are two small sets and \((I_n, J_n) \cap \omega \subseteq \omega \). Consider the partition consisting of sets \(\{I_n \cap J'_n : n, m \in \omega \} \). For each non-empty set \(I_n \cap J'_n \) we define \(J''_{n,m} \subseteq 2^{I_n \cap J'_n} \) as follows:

\[
J''_{n,m} = \{ s \cap (I_n \cap J'_n) = t \cap (I_n \cap J'_n) \text{ and for all } u \in 2^{I_n \cap J'_n} t \cap (I_n \cap J'_n) \cap u \in J'_n \}.
\]

Observe that the definition of \(J''_{n,m} \) does not depend on \(J_n \).

Note that

\[
\sum_{m, n \in \omega, I_n \cap J'_n \neq \emptyset} \frac{|J''_{n,m}|}{2^{|I_n \cap J'_n|}} = \sum_{m, n \in \omega, I_n \cap J'_n \neq \emptyset} \sum_{m, n \in \omega} \frac{|J''_{n,m}|}{2^{|I_n \cap J'_n|}} = \sum_{m, n \in \omega, I_n \cap J'_n \neq \emptyset} \sum_{m, n \in \omega} |J''_{n,m}| \cdot \frac{2^{|I_n \cap J'_n|}}{2^{|I_n \cap J'_n|}} \leq \sum_{m, n \in \omega} \frac{|J''_{n,m}|}{2^{|I_n \cap J'_n|}} < \infty.
\]

To finish the proof observe that for \(x \in 2^\omega \), whenever \(x \cap (I_n \cap J'_n) = J''_{n,m} \) then \(x \cap I_n \in J''_{n,m} \). Similarly, if \(x \cap I_n = J'_n \) then by Lemma 10 there is \(m \) such that \(x \cap (I_n \cap J'_n) \subseteq (I_n, J_n) \cap \omega \). It follows that \((I_n, J_n) \cap \omega \subseteq (I_{n,m}, J_{n,m}) \cap \omega \subseteq \omega \). \(\square \)

3. When Null Sets are Small?

Small sets are combinatorially simple and this is main motivation to study them and investigating when measure zero sets are small.

Theorem 11

Suppose that \(X \subseteq 2^\omega \) is a measure zero set. Then \(X \) is small if

1. \(|X| < 2^{\aleph_0} \),
2. \(X \) can be covered by a countable family of compact measure zero sets,
3. \(X \) is a Menger set, that is no continuous image of \(X \) into \(\omega^\omega \) is a dominating family.

Proof. Suppose that \(X \) has measure zero and use Theorem 6 to find small sets \((I_k, J_k)_{k\in\omega}\) and \((I'_k, J'_k)_{k\in\omega}\) such that

1. \(X \subseteq (I_k, J_k)_{k\in\omega} \cup (I'_k, J'_k)_{k\in\omega} \),
2. \(I_k \subseteq I_{k-1} \cup I'_k \) and \(I'_k \subseteq I_k \cup I_{k+1} \), for each \(k > 0 \).

For each \(x \in X \) let \(Z_x = \{ k : x \cap I_k \in J_k \} \). Note that \(x \mapsto Z_x \) is a continuous mapping from \(X \) into \([\omega]^\omega \) (which is homeomorphic to \(\omega^\omega \)).

Definition 12

A family \(A \subseteq [\omega]^\omega \) has property \(Q \) if

\[\forall Z \in [\omega]^\omega \exists A \in A \ A \subseteq Z. \]

Lemma 13

If \(\{ Z_x : x \in X \} \) does not have property \(Q \) then \(X \) is small.

Proof. Suppose that \(Z \) witnesses that \(\{ Z_x : x \in X \} \) does not have property \(Q \), that is that \(Z_x \setminus Z \in [\omega]^\omega \) for every \(x \in X \). Let \(z_0 < z_1 < z_2 < \ldots \) be an increasing enumeration of \(Z \). Note that for every \(x \in X \), if \(x \in (I_k, J_k)_{k\in\omega} \) then \(x \in (I_k, J_k)_{k\notin Z} \). Consequently, \(X \subseteq (I_k, J_k)_{k\in\omega} \cup (I'_k, J'_k)_{k\in\omega} \). We will show this set is small.

Let \(I'_k \cup \bigcup_{j \in [z_k, z_{k+1})} I'_j \), and use Lemma 7 to find \(\{ J'_k : k \in \omega \} \) be such that \((I'_k, J'_k)_{k\in\omega} = (I''_k, J''_k)_{k\in\omega} \). Now Lemma 8 completes the proof as the partition \(\{ I_k : k \notin Z \} \) is finer than partition \(\{ I'_k : k \in \omega \} \). \(\square \)
To finish the proof note that no family of size $< 2^{\aleph_0}$ has property Q because there is an almost disjoint family of size continuum. The remaining two cases follow from the fact that that every family of subsets of ω with property Q is dominating. □

Theorem 14. Let F be a filter on ω. Then if F is a measurable then F can be covered by a small set.

Proof. Let F be a measurable filter on ω identified with a subset of 2^ω via characteristic functions of its elements. By virtue of 0-1 law this means that F is of measure zero (measure one case is clearly impossible). Fix a sequence $\{\varepsilon_n : n \in \omega\}$ of positive reals such that $\sum_{k=1}^{\infty} 2^k \varepsilon_k < \infty$.

Since F has measure zero we can find sequences $\langle n_k, m_k : k \in \omega\rangle$ and $\langle J_k, J'_k : k \in \omega\rangle$ as in Theorem 6 such that $F \subseteq \bigcup \{ [n_k, n_{k+1}), J_k) \}_{k \in \omega} \cup \{ [m_k, m_{k+1}), J'_k) \}_{k \in \omega}$.

If $F \subset (\{n_k, n_{k+1}\}, J_k)_{k \in \omega}$ or if $F \subset (\{m_k, m_{k+1}\}, J'_k)_{k \in \omega}$ then we are done since both sets are small. Therefore assume that neither set covers F.

Define for $k \in \omega$

$$S_k = \{ s \in 2^{[n_k,m_k)} : s \text{ has at least } 2^{n_k+1-m_k-k} \text{ extensions inside } J_k \} .$$

It is easy to check that

$$\frac{|S_n|}{2^{m_k-n_k}} \leq 2^k \varepsilon_k$$

holds for $k \in \omega$.

Similarly if we define

$$S'_k = \{ s \in 2^{[n_k,m_m)} : s \text{ has at least } 2^{n_k-m_k-1-k} \text{ extensions inside } J'_k \}$$

then by the same argument we have that

$$\frac{|S'_k|}{2^{m_k-n_k}} \leq 2^k \varepsilon_k$$

for all $k \in \omega$.

Consider the set $\{ [n_k, m_k), S_k \cup S'_k \}_{k \in \omega}$. This set is small since $\sum_{k=1}^{\infty} |S_k \cup S'_k| 2^{n_k-m_k} \leq \sum_{k=1}^{\infty} 2^k \varepsilon_k < \infty$.

Now we have three small sets

(1) $H_1 = (\{n_k, n_{k+1}\), $J_k)_{k \in \omega}$,

(2) $H_2 = (\{m_k, m_{k+1}\), $J'_k)_{k \in \omega}$,

(3) $H_3 = (\{n_k, m_k\), $S_k \cup S'_k)_{k \in \omega}$.

If $F \subset H_2 \cup H_3$ we are done since by Lemma 8, $H_2 \cup H_3$ is a small set. Therefore assume that there exists $X \in F$ such that $X \notin H_2 \cup H_3$. Since $F \subset H_1 \cup H_2$ we get that $X \in H_1$. Let $\{k_u : u \in \omega\}$ be an increasing sequence enumerating set

$$\{ k \in \omega : X|_{[n_k, n_{k+1})} \in J_k \} .$$

Define for $u \in \omega$

$$\bar{I}_u = [m_{k_u+1}, n_{k_u+1}) \text{ and}$$

$$\bar{J}_u = \{ s \in 2^{I_u} : X|_{[n_{k_u}, m_{k_u+1})} \text{ or } s \cap X|_{[n_{k_u+1}, m_{k_u+1})} \in J_{k_{u+1}} \} .$$

By the choice of X, $X|_{[n_{k_u}, n_{k_u+1})} \in \bar{J}_u$, but $X|_{[n_{k_u}, n_{k_u+1})} \notin S_{k_u} \cup S'_{k_u}$ for sufficiently large $u \in \omega$. Thus $|J_u| 2^{-|J_u|} \leq 2^{-u}$ for all but finitely many $u \in \omega$. Hence the set $H_4 = (\bar{I}_u, \bar{J}_u)_{u \in \omega}$ is small.

Lemma 15. $F \subseteq H_4$.

Proof. Suppose that \mathcal{F} is not contained in H_4 and let $Y \in \mathcal{F} \setminus H_4$.

Define $Z \in 2^\omega$ as follows

$$Z(n) = \begin{cases} Y(n) & \text{if } n \in \bigcup_{u \in \omega} I_u \\ X(n) & \text{otherwise} \end{cases} \quad \text{for } n \in \omega.$$

Notice that $Z \in \mathcal{F}$ since $X \cap Y \subseteq Z$. We will show that $Z \notin H_1 \cup H_2$ which gives a contradiction.

Consider an interval $I_m = [n_{m-1}, n_{m+1})$. It suffices to show that $Z|I_m \notin J_m$ when m is large enough.

If $m \neq k_u$ for every $u \in \omega$ then $I_m \cap \bigcup_{u \in \omega} I_u = \emptyset$ and $Z|I_m = X|I_m \notin J_m$.

On the other hand if $m = k_u$ for some $u \in \omega$ then $X|I_m \in J_m$ but by the choice of X, $Z|[n_{k_u}, n_{k_u}) = X|[n_{k_u}, n_{k_u})$ has only few extensions inside J_{k_u} (since $X \notin H_3$). More specifically, if $Z|I_m \in J_m$ then $Z|I_u$ has to be an element of J_u. But this is impossible since $Z|I_u = Y|I_u \notin J_u$ for sufficiently large $u \in \omega$. The proof that $Z \notin H_2$ is the same and uses the second clause in the definition of set H_4.

4. Small sets versus measure zero sets

In this section we will prove the main result.

Theorem 16. There exists a null set which is not small, that is $\mathcal{S} \subsetneq \mathcal{N}$.

Proof. We will use the following:

Lemma 17. For every $\varepsilon > 0$ and sufficiently large $n \in \omega$ there exists a set $A \subset 2^n$ such that $|A| < 2^n - \varepsilon$ and for every $u \subset n$ such that $\frac{n}{4} \leq |u| \leq \frac{3n}{4}$, and $B_0 \subset 2^u$ and $B_1 \subset 2^n \setminus u$ such that $|B_0| \geq \frac{1}{2}$ and $|B_1| \geq \frac{1}{2}$ we have $(B_0 \times B_1) \cap A \neq \emptyset$.

Proof. The key case is when ε is very small and sets B_0, B_1 have relative measure approximately $\frac{1}{2}$. In such case $B_0 \times B_2$ has relative measure $\frac{1}{4}$ yet it intersects A. Fix large $n \in \omega$ and choose $A \subset 2^n$ randomly. That is, for each $s \in 2^n$, the probability $\text{Prob}(s \in A) = \varepsilon$ and for $s, s' \in 2^n$, events $s \in A$ and $s' \in A$ are independent. It is well known that for a large enough n the set constructed this way will have measure ε (with negligible error).

Fix $n/4 \leq |u| \leq 3n/4$ and let

$$B_u = \left\{ (B_0, B_1) : B_0 \subset 2^n, \ B_1 \subset 2^n \setminus u \text{ and } \frac{|B_0|}{2^{|u|}}, \frac{|B_1|}{2^{|n\setminus u|}} \geq \frac{1}{2} \right\}.$$

Note that $|B_u| \leq 2^{|u|} + 2^{|n\setminus u|} \leq 2^{2^{n-1}}$.

For $(B_0, B_1) \in B_u$, $\text{Prob}((B_0 \times B_1) \cap A = \emptyset) = (1 - \varepsilon)^{|B_0 \times B_1|} \leq (1 - \varepsilon)^{2^{n-2}}$. Consequently,

$$\text{Prob}(\exists (B_0, B_1) \in B_u \ (B_0 \times B_1) \cap A = \emptyset) \leq |B_u|(1 - \varepsilon)^{2^{n-2}} \leq 2^{2^{n-1}}(1 - \varepsilon)^{2^{n-2}}.$$
Finally, since we have at most \(2^n\) possible sets \(u\),

\[
\text{Prob}(\exists u \exists (B_0, B_1) \in \mathcal{B}_n \ (B_0 \times B_1) \cap A = \emptyset) \leq 2^n|\mathcal{B}_n|(1 - \varepsilon)^{2n-2} \leq 2^{\frac{3n}{2} + n + 1} (1 - \varepsilon)^{2n-2} \leq 2^{2n} (1 - \varepsilon)^{2n-2} \leq 2^{2n} (1 - \varepsilon)^{\frac{1}{2} + 2^{n-2}} \to 0 \text{ as } n \to \infty.
\]

Therefore there is a non-zero probability that a randomly chosen set \(A\) has the required properties. In particular, such a set must exist.

Let \(\{k_n^0, k_n^1 : n \in \omega\}\) be two sequences defined as \(k_n^0 = n(n + 1)\) and \(k_n^1 = n^2\) for \(n > 0\).

Let \(I_n^0 = [k_n^0, k_n^1]_{n+1}\) and \(I_n^1 = [k_n^1, k_n^1]_{n+1}\) for \(n \in \omega\). Observe that the sequences are selected such that

1. \(|I_n^0| = 2n + 2\) and \(|I_n^1| = 2n + 1\) for \(n \in \omega\),
2. \(I_n^0 \subset I_{n-1}^1 \cup I_{n+1}^0\) for \(n > 0\),
3. \(I_n^1 \subset I_{n-1}^0 \cup I_n^0\) for \(n > 1\),
4. \(|I_0^0 \cap I_n^1| = |I_0^1 \cap I_n^0| = n\) for \(n > 1\),
5. \(|I_0^1 \cap I_n^1| = |I_0^0 \cap I_n^0| = n + 1\) for \(n > 1\).

Finally, for \(n > 0\) let \(J_n^0 \subset 2^{I_n^0}\) and \(J_n^1 \subset 2^{I_n^1}\) be selected as in Lemma 17 for \(\varepsilon_n = \frac{1}{n^2}\). Easy calculation shows that for \(n \geq 140\) the sets \(J_n^0\) and \(J_n^1\) are defined and have the required properties.

Suppose that \((I_n^0, J_n^0)_{n \in \omega} \cup (I_n^1, J_n^1)_{n \in \omega} \subset (I_n^2, J_n^2)_{n \in \omega}\).

CASE 1 There exists \(i \in \{0, 1\}\) and infinitely many \(n, m \in \omega\) such that

\[
\frac{|I_n^i|}{4} \leq |I_n^i \cap I_m^i| \leq \frac{3|I_n^i|}{4}.
\]

Without loss of generality \(i = 0\). Let \(\{a_k : k \in \omega\}\) be a partition of \(\omega\) into finite sets. For \(n \in \omega\) define \(I_n = \bigcup_{k \in a_n} I_k^2\) and \(J_n = \{s \in 2^{I_n} : \exists k \in a_n \exists \ell \in J_k^2 \ s |I_k^2 = t |I_k^2\}.\) By Lemma 7, we know that \((I_n, J_n)_{n \in \omega} = (I_n^2, J_n^2)_{n \in \omega}\) no matter what is the choice of the partition \(\{a_k : k \in \omega\}\).

Consequently, let us choose \(\{a_k : k \in \omega\}\) and an infinite set \(Z \subset \omega\) such that

1. for every \(m \in Z\) there is \(n \in \omega\) such that \(\frac{|I_n^0|}{4} \leq |I_n^0 \cap I_m^0| \leq \frac{3|I_n^0|}{4}\),
2. for every \(m \in Z\) there exists \(n \in \omega\) such that \(I_n^0 \subset I_m^0 \cup I_m^1\),
3. for every \(n \in \omega\) there is at most one \(m \in Z\) such that \(I_n^0 \cap I_m^0 \neq \emptyset\).

To construct the required partition \(\{a_k : k \in \omega\}\) we inductively glue together sets \(I_n^2\) as follows: suppose that \(m\) is such that there is \(n\) such that \(\frac{|I_n^0|}{4} \leq |I_n^0 \cap I_m^0| \leq \frac{3|I_n^0|}{4}\). Then we define \(a_n = \{n\}\) and \(a_{n+1} = \{u : I_m^0 \cap I_u^0 \neq \emptyset\ \text{and } u \neq n\}\). Let \(Z\) be the subset of the collection of \(m\)’s selected as above that is thin enough to satisfy condition (3).

Recall that \((I_n^0, J_n^0)_{n \in \omega} \subset (I_n^2, J_n^2)_{n \in \omega} = (I_n^0, J_n^0)_{n \in \omega}\).

Working towards contradiction fix \(m \in Z\), and let \(I_m^0 \subset I_m^0 \cup I_m^1\) (in this case \(I_n^0 = I_n^2\)). By Lemma 10 it follows that if \(m\) is large enough then for every \(s \in J_m^0\) either
(1) for every \(u \in 2^{|m^0|} \setminus m^0 \) we have \(s^m(I^0_n \cap I^0_\omega) \ni u \in J^0_n \), or
(2) for every \(u \in 2^{|m^0+1|} \setminus m^0 \) we have \(s^m(I^0_n \cap I^0_n+1) \ni u \in J^0_n+1 \).

Let \(J_n'' = \{ s \in 2^{|m^0|} \cap I^0_n : \forall u \in 2^{|m^0|} \setminus m^0 \ s \ni u \in J^0_n \} \) and \(J_n''+1 = \{ s \in 2^{|m^0|} \cap I^0_n+1 : \forall u \in 2^{|m^0+1|} \setminus m^0 \ s \ni u \in J^0_n+1 \} \).

Clearly \(\frac{|J_n''|}{2^{|m^0|}} \leq \frac{|J_n'|}{2^{|m^0|}} \leq \frac{1}{2} \) and \(\frac{|J_n''|}{2^{|m^0+1|} \cap I^0_n} \leq \frac{|J_n''|}{2^{|m^0+1|}} \leq \frac{1}{2} \).

Let \(B_n = 2^{|m^0|} \setminus I^0_n \cup J^0_n \) and \(B_n+1 = 2^{|m^0+1|} \setminus I^0_n \cup J'' \).

It follows that \(\frac{|B_n|}{2^{|m^0|}} \cap I^0_n \setminus I^0_n+1 \geq \frac{|B_n|}{2^{|m^0+1|}} \). By Lemma 17 and the definition of set \((I^0_n, J^0_n)_{m \in \omega} \) there is \(s_m \in (B_n \times B_n+1) \cap J^0_n \). Consequently there is \(t_m \in 2^{|m^0|} \) such that \(t_m |I^0_n| = s_m \in J^0_n \) but \(t_m |I^0_n| \notin J'' \) and \(t_m |I'_n+1| \notin J'' \). For each \(n \in \omega \) choose \(r_n \in 2^{|n^0|} \setminus J^0_n \). Define \(x \in 2^{|n^0|} \) as
\[
 x |I^0_n = \begin{cases}
 t_m |I^0_n| & \text{if } I^0_n \cap I^0_n \neq \emptyset \\
 r_n & \text{if } I^0_n \cap I^0_n = \emptyset
\end{cases} \text{ for all } m \in Z.
\]

It follows that \(x \in (I^0_n, J^0_n)_{n \in \omega} \) but \(x \notin (I^0_n, J''_n)_{n \in \omega} = (I^0_n, J''_n)_{n \in \omega}, \) contradiction.

Case 2 For every \(i \in \{0, 1\} \), almost every \(n \in \omega \) and every \(m \in \omega \),
\[
|I^0_n \cap I^0_i| \leq \frac{|I^0_i|}{4}.
\]

This is quite similar to the previous case.

We inductively choose \(\{a_k : k \in \omega\} \) and define \(I^i_n \)'s and \(J^i_n \)'s as before. Next construct an infinite set \(Z \subseteq \omega \) such that

(1) for every \(m \in Z \) there exists \(n \in \omega \) such that \(I^0_m \subseteq I^i_n \cup I^i_n+1 \) and \(\frac{|I^0_m|}{4} \leq \frac{|I^i_n \cap I^i_n|}{4} \leq \frac{3|I^0_m|}{4} \),
(2) for every \(n \in \omega \) there is at most one \(m \in Z \) such that \(I^0_m \cap I^i_n \neq \emptyset \).

Since \(|I^i_k \cap I^i_m| \leq \frac{|I^i_i|}{4} \) for each \(k, m \) we can get (1) by careful splitting \(\{k : I^0_m \cap I^i_k \neq \emptyset \} \) into two sets.

The rest of the proof is exactly as before.

To conclude the proof it suffices to show that these two cases exhaust all possibilities. To this end we check that if for some \(i \in \{0, 1\} \), \(m, n \in \omega \), \(|I^0_n \cap I^0_m| > \frac{3|I^0_m|}{4} \) then for some \(j \in \{0, 1\} \) and \(k \in \omega \),
\[
\frac{3|I^0_k|}{4} \leq |I^0_n \cap I^i_k| \leq \frac{3|I^i_k|}{4}.
\]

This will show that potential remaining cases are already included in the Case 1.

Fix \(i = 0 \) and \(n \in \omega \) (the case \(i = 1 \) is analogous.)

By the choice of intervals \(I^0_m \) and \(I^i_m \), it follows that if \(|I^0_n \cap I^0_m| > \frac{3|I^0_m|}{4} \) then \(|I^0_n \cap I^0_m| > \frac{|I^0_i|}{4} \). If \(|I^0_n \cap I^0_m| \leq \frac{3|I^0_m|}{4} \) then we are in CASE 1. Otherwise \(|I^0_n \cap I^0_m| > \frac{3|I^0_m|}{4} \) and so \(|I^0_n \cap I^0_m| > \frac{|I^0_i|}{4} \). Continue inductively until the construction terminates after finitely many steps settling on \(j \) and \(k \).
Theorem 18. Not every small set is small*, that is $S^* \not\subseteq S$.

Proof. The proof is a modification of the previous argument.

Let I_n^0, I_n^1 and J_n^0 for $n \in \omega$ be like in the proof of 16. Let $I_n^0 = \{2k : k \in I_n^0\}$ and $I_n^1 = \{2k + 1 : k \in I_n^0\}$ for $n \in \omega$ and let $J_n^0 \subset 2I_n^0, J_n^1 \subset 2I_n^1$ for $n \in \omega$ be the induced sets. Note that $((I_n^0, I_n^1), (J_n^0, J_n^1))_{n \in \omega}$ is a small set. We will show that this set is not small*. Suppose that $((I_n^0, I_n^1), (J_n^0, J_n^1))_{n \in \omega} \subseteq (I_n, J_n)_{n \in \omega}$, where $I_n = [k_n, k_n+1)$ for an increasing sequence $\{k_n : n \in \omega\}$.

Without loss of generality we can assume that for every $n \in \omega$ there exists $i \in \{0, 1\}$ and $m \in \omega$ such that

1. $I_m^i \subseteq I_n \cup I_{n+1}$,
2. $\frac{|I_n|}{4} \leq |I_n \cap I_m^i| \leq \frac{3|I_n|}{4}$,
3. $\frac{|I_m^i|}{4} \leq |I_{n+1} \cap I_m^i| \leq \frac{3|I_m^i|}{4}$.

To get (1) we combine consecutive intervals I_n to make sure that each I_m^i belongs to at most two of them. Points (2) and (3) are a consequence of the properties of the original sequences $\{I_n^0, I_n^1 : n \in \omega\}$, namely that each integer belongs to exactly two of these intervals and that intersecting intervals cut each other approximately in half. The following example illustrates the procedure for finding i and m: If k_n is even then $k_n/2$ belongs to $I_j \cap I_k^i$ with $k - j$ equal to 0 or 1. The value of i and m depend on whether $k_n/2$ belongs to the lower or upper half of the said interval. The case when k_n is odd is similar.

The rest of the proof is exactly like Case 1 of Theorem 16. □

References

National Science Foundation, Division of Mathematical Sciences, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA
E-mail address: tbartosz@nsf.gov

Department of Mathematics, Hebrew University, Jerusalem, Israel
E-mail address: shelah@math.huji.ac.il, http://math.rutgers.edu/~shelah/