COMPACTNESS OF CHROMATIC NUMBER II SH1018

SAHARON SHELAH

Abstract

We try to look again at results of the form. There is a graph with chromatic number $>\aleph_{0}$ but every subgraph of cardinality $<\mu$ has chromatic number $\leq \aleph_{0}$.

[^0]
§ 0. Introduction

This continues [She13a] but does not rely on it.
In [She13a] we prove that if there is $\mathscr{F} \subseteq{ }^{\kappa}$ Ord of cardinality μ, λ-free not free then we can get a failure of λ-compactness for the chromatic number being κ. This gives (using [She94, Ch.II]) that if μ is strong limit singular of cofinality κ and $2^{\mu}>\mu^{+}$then we get the above for $\lambda=\mu^{+}$(and more).

Our original objective is to answer a problem of Magidor: \aleph_{ω}-compactness fails for being \aleph_{0}-chromatic, however lately Magidor prove the consistency. An earlier version was wrong and a new proof will be presented in a version under preparation.

We thank Komjath and Kojman for pointing out a terminal error in a previous attempt. Komjath also asked on the case $\mu=\lambda>\chi=\aleph_{0}$ when λ singular. Definition 0.2 tries to have a more general frame.

We intend to continue in $\left[S^{+} \mathrm{a}\right]$.
Another problem on incompactness is about the existence of λ-free Abelian groups G which with no non-trivial homomorphism to \mathbb{Z}, in [She07], for $\lambda=\aleph_{n}$ using $n-B B$. In [She13b] we get more λ 's, almost in ZFC by 1-BB (black box). This proof suffices here (but not in ZFC). This is continued in $\left[\mathrm{S}^{+} \mathrm{b}\right]$ which originally we use here, but presently is not connected.

Definition 0.1. 1) Assume $\mu \geq \lambda=\operatorname{cf}(\lambda) \geq \chi$. We say "we have (μ, λ) incompactness for the $(<\chi)$-chromatic number" or $\operatorname{INC}_{\text {chr }}(\mu, \lambda,<\chi)$ when there is an increasing continuous sequence $\left\langle G_{i}: i \leq \lambda\right\rangle$ of graphs each with $\leq \mu$ nodes, G_{i} an induced subgraph of G_{λ} with $\operatorname{ch}\left(G_{\lambda}\right) \geq \chi$ but $i<\lambda \Rightarrow \operatorname{ch}\left(G_{i}\right)<\chi$.
2) Replacing (in part (1)) χ by $\bar{\chi}=\left(<\chi_{0}, \chi_{1}\right)$ means $\left.\operatorname{ch}\left(G_{\lambda}\right)\right) \geq \chi_{1}$ and $i<\lambda \rightarrow$ $\operatorname{ch}\left(G_{i}\right)<\chi_{0}$; similarly in parts 3),4) below.
3) We say we have incompactness for length λ for $(<\chi)$-chromatic (or $\bar{\chi}$-chromatic) number when we fail to have (μ, λ)-compactness for $(<\chi)$-chromatic (or $\bar{\chi}$-chromatic) number for some μ.
4) We say we have $[\mu, \lambda]$-incompactness for $(<\chi)$-chromatic number or $\operatorname{INC}_{\text {chr }}[\mu, \lambda,<$ $\chi]$ when there is a graph G with μ nodes, $\operatorname{ch}(G) \geq \chi$ but $G^{1} \subseteq G \wedge\left|G^{1}\right|<\lambda \Rightarrow$ $\operatorname{ch}\left(G^{1}\right)<\chi$.
5) Let $\mathrm{INC}_{\text {chr }}^{+}(\mu, \lambda,<\chi)$ be as in part (1) but we add that there is a partition $\left\langle A_{1, \varepsilon}: \varepsilon<\kappa\right\rangle$ of the set of nodes of G_{i} such that $c \ell\left(G_{i} \upharpoonright A_{i, \varepsilon}\right)$, the colouring number of $G_{i} \upharpoonright A_{i, \varepsilon}$ is $<\chi$ for $i<\lambda$, see below.
6) Let $\mathrm{INC}_{\text {chr }}^{+}[\mu, \lambda,<\chi]$ be as in part (4) but we add: if $G^{1} \subseteq G$ and $\left|G^{1}\right|<\lambda$ then there is a partition $\left\langle A_{\varepsilon}: \varepsilon<\varepsilon_{*}\right\rangle$ of the nodes of G^{1} to $\varepsilon_{*}<\chi$ sets such that $\varepsilon<\varepsilon_{*} \Rightarrow c \ell\left(G^{1} \mid A_{\varepsilon}\right)<\chi$.
7) If $\chi=\kappa^{+}$we may write κ instead of " $<\chi$ ".
8) Let $\operatorname{INC}(\lambda,<\chi)$ means $\operatorname{INC}(\lambda, \lambda,<\chi)$, and similarly in the other cases.

Definition 0.2. In Definition 0.1 we allow λ similar when we replace \bar{G} by $(G, \bar{A}), G$ a graph with $\leq \mu$ nodes, $\bar{A}=\left\langle A_{i}: i<\lambda\right\rangle$ a partition of the set of nodes, $\operatorname{Ch}\left(G_{u}\right) \leq \chi$ for $u \in[\lambda]^{<\lambda}$ where $G_{\eta}=G \upharpoonright \bigcup_{i \in u} A_{i}$.

§ 1. A sufficient criterion and relations to transversals

Definition 1.1. 1) Let $\operatorname{Inc}[\mu, \lambda, \kappa]$ mean that we can find $\mathbf{a}=(\mathscr{A}, \bar{R})$ witnessing it which means that:
(a) $|\mathscr{A}|=\mu$
(b) $\bar{R}=\left\langle R_{\varepsilon}: \varepsilon<\kappa\right\rangle$
(c) R_{ε} is a two-place relation on \mathscr{A}, so we may write $\nu R_{\varepsilon} \eta$
(d) \mathscr{A} is not free (for \mathbf{a}), see $(*)_{1}$ below or just not strongly free, see $(*)_{2}$ below
(e) $\mathbf{a}=(\mathscr{A}, \bar{R})$ is λ-free which means $\mathscr{B} \subseteq \mathscr{A} \wedge|\mathscr{B}|<\lambda \Rightarrow \mathscr{B}$ is a-free
where
$(*)_{1}$ if $\mathscr{B} \subseteq \mathscr{A}$ then \mathscr{B} is a-free means that there is a witness $\left(h,<_{*}\right)$ which means
$(\alpha) \quad<_{*}$ a well ordering of \mathscr{B}
(β) h is a function from \mathscr{B} to κ
(γ) if $h(\eta)=h(\nu)$ and $\nu R_{\zeta} \eta$ for some ζ then $\nu<_{*} \eta$ (so really only $<_{*} \upharpoonright\{\eta \in \mathscr{B}: h(\eta)=\varepsilon\}$ for $\varepsilon<\kappa$ count); so it is reasonable to assume each R_{ε} is irreflexive
(δ) for any $\eta \in \mathscr{B}$ the $\operatorname{set}^{1} \exp \left(\eta, h,<_{*}\right)$ has cardinality $<\kappa$ where (recall that $\mathscr{B}=\operatorname{Dom}(h)$)

- $\exp \left(\eta, h,<_{*}\right)=\exp \left(\eta, h,<_{*}, \mathbf{a}\right)=\left\{\zeta<\kappa\right.$: there is $\nu<_{*} \eta$ such that $\nu R_{\zeta} \eta$ and $\left.h(\nu)=h(\eta)\right\}$
$(*)_{2}$ if $\mathscr{B} \subseteq \mathscr{A}$ then \mathscr{B} is strongly a-free means that for every well ordering $<_{*}$ of \mathscr{B} there is a function $h: \mathscr{B} \rightarrow \kappa$ such that $\left(h,<_{*}\lceil\mathscr{B})\right.$ witness \mathscr{B} is a-free
$(*)_{3}$ if $\mathscr{B} \subseteq \mathscr{A}$ then \mathscr{B} is weakly free means that there is a witness h which means
(α) $\quad h$ is a function from \mathscr{B} to κ
(β) for every $\eta \in \mathscr{B}$ the set $\exp (\eta, h)$ has cardinality $<\kappa$ where
- $\exp (\eta, h)=\exp (\eta, h, \mathbf{a})=\left\{\zeta<\kappa\right.$: there is $\nu \in \mathscr{B}$ such that $\nu R_{\zeta} \eta$ and $h(\nu)=h(\eta)\}$.

2) Let $\operatorname{Inc}(\mu, \lambda, \kappa)$ mean that we can find $(\mathscr{A}, \overline{\mathscr{A}}, \bar{R})$ witnessing it which means that:
(a) $-(d)$ as above
$(e)^{\prime} \overline{\mathscr{A}}=\left\langle\mathscr{A}_{\alpha}: \alpha<\lambda\right\rangle$ is a partition ${ }^{2}$ of union \mathscr{A} such that for each $u \in[\lambda]^{<\lambda}$ the set $\cup\left\{\mathscr{A}_{\alpha}: \alpha \in u\right\}$ is free (i.e. for $\left.(\mathscr{A}, \bar{R})\right)$.
3) We call $\mathbf{a}=(\mathscr{A}, \bar{R})$ a pre-witness for $[\mu, \lambda, \kappa]$ or $[\mu, \kappa)$ when it satisfies clauses (a),(b),(c) of part (1). For such a let $G_{\mathbf{a}}$ be the graph with set of notes \mathscr{A} and set of edges $\left\{\{\eta, \nu\}: \eta R_{\varepsilon} \nu\right.$ for some $\left.\varepsilon<\kappa\right\}$.
[^1]Claim 1.2. We have $\operatorname{INC}_{\mathrm{chr}}(\mu, \lambda, \kappa)$ or $\mathrm{INC}_{\mathrm{chr}}[\mu, \lambda, \kappa]$, see Definition 0.1(4) when:
$\boxplus(a) \operatorname{Inc}(\chi, \lambda, \kappa)$ or $\operatorname{Inc}[\chi, \lambda, \kappa]$ respectively
(b) $\chi \leq \mu=\mu^{\kappa}$.

Proof. Fix $\mathbf{a}=(\mathscr{A}, \overline{\mathscr{A}}, \bar{R})$ or $\mathbf{a}=(\mathscr{A}, \bar{R})$ witnessing $\operatorname{Inc}(\mu, \lambda, \kappa)$ or $\operatorname{Inc}[\mu, \lambda, \kappa]$ respectively. Now we define $\tau_{\mathscr{A}}$ as the vocabulary $\left\{P_{\eta}: \eta \in \mathscr{A}\right\} \cup\left\{F_{\varepsilon}: \varepsilon<\kappa\right\}$ where P_{η} is a unary predicate, F_{ε} a unary function (but it may be interpreted as a partial function).

We further let $K_{\mathbf{a}}$ be the class of structures M such that:
(a) $\quad M=\left(|M|, F_{\varepsilon}^{M}, P_{\eta}^{M}\right)_{\varepsilon<\kappa, \eta \in \mathscr{A}}$
(b) $\left\langle P_{\eta}^{M}: \eta \in \mathscr{A}\right\rangle$ is a partition of $|M|$, so for $a \in M$ let $\eta[a]$
$=\eta_{a}^{M}$ be the unique $\eta \in \mathscr{A}$ such that $a \in P_{\eta}^{M}$
(c) if $a_{\ell} \in P_{\eta_{\ell}}^{M}$ for $\ell=1,2$ and $F_{\zeta}^{M}\left(a_{2}\right)=a_{1}$ then $\eta_{1} R_{\zeta} \eta_{2}$.

Let $K_{\mathbf{a}}^{*}$ be the class of M such that:
$\boxplus_{2} \quad(a) \quad M \in K_{\mathbf{a}}$
(b) $\|M\|=\mu$
(c) if $\eta \in \mathscr{A}, u \subseteq \kappa$ and for $\zeta \in u$ we have $\nu_{\zeta} \in \mathscr{A}, \nu_{\zeta} R_{\zeta} \eta$ and $a_{\zeta} \in P_{\nu_{\zeta}}^{M}$ then for some $a \in P_{\eta}^{M}$ we have $\zeta \in u \Rightarrow F_{\zeta}^{M}(a)=a_{\zeta}$ and $\zeta \in \kappa \backslash u \Rightarrow F_{\zeta}^{M}(a)$ not defined.

Clearly
\boxplus_{3} there is $M \in K_{\mathbf{a}}^{*}$.
[Why? Obvious as we are assuming $|\mathscr{A}|=\chi \leq \mu=\mu^{\kappa}$.]
\boxplus_{4} for $M \in K_{\mathbf{a}}$ let G_{M} be the graph with:

- set of nodes $|M|$
- set of edges $\left\{\left\{a, F_{\varepsilon}^{M}(a)\right\}: a \in|M|, \varepsilon<\kappa\right.$ when $F_{\varepsilon}^{M}(a)$ is defined $\}$.

We shall show that the graph G_{M} is as required in Definition 0.1(1) or 0.1(4) (recalling κ^{+}here stands for χ there, see $0.1(7)$). Clearly G_{M} is a graph with μ nodes so recalling Definition 1.1(2) or 1.1(1) it suffices to prove \boxplus_{5} and \boxplus_{7} below.
\boxplus_{5} if $\mathscr{B} \subseteq \mathscr{A}$ is free, and $M \in K_{\mathbf{a}}$ then $G_{M, \mathscr{B}}:=G_{M} \upharpoonright\left(\cup\left\{P_{\eta}^{M}: \eta \in \mathscr{B}\right\}\right)$ has chromatic number $\leq \kappa$.
[Why? Let the pair $\left(h,<_{*}\right)$ witness that \mathscr{B} is free (for $\mathbf{a}=(\mathscr{A}, \bar{R})$, see $\left.1.1(1)(*)_{1}\right)$ so $h: \mathscr{B} \rightarrow \kappa$ and let $\mathscr{B}_{\varepsilon}=\{\eta \in \mathscr{B}: h(\eta)=\varepsilon\}$ for $\varepsilon<\kappa$.

Clearly
$\boxplus_{5.1}$ it suffices for each $\varepsilon<\kappa$ to prove that $G_{M, \mathscr{B}_{\varepsilon}}$ has chromatic number $\leq \kappa$.

Let $\left\langle\eta_{\alpha}: \alpha<\alpha(*)\right\rangle$ list \mathscr{B} in $<_{*}$-increasing order. We define $\mathbf{c}_{\varepsilon}: G_{M, \mathscr{B}_{\varepsilon}} \rightarrow \kappa$ by defining a colouring $\mathbf{c}_{\varepsilon, \alpha}: G_{M,\left\{\eta_{\beta}: \beta<\alpha\right\} \cap \mathscr{B}_{\varepsilon}} \rightarrow \kappa$ by induction on $\alpha \leq \alpha(*)$ such that $\mathbf{c}_{\varepsilon, \alpha}$ is increasing continuous with α. For $\alpha=0$, let $\mathbf{c}_{\varepsilon, \alpha}=\emptyset$, and for α limit take union. If $\alpha=\beta+1$ and $\eta_{\beta} \notin \mathscr{B}_{\varepsilon}$ then we let $\mathbf{c}_{\alpha}=\mathbf{c}_{\beta}$.

Lastly, assume $\alpha=\beta+1, \eta_{\beta} \in \mathscr{B}_{\varepsilon}$ then note that the set $u_{\varepsilon, \beta}=\{\zeta<\kappa$: there is $\nu<_{*} \eta_{\beta}$ such that $\nu \in \mathscr{B}_{\varepsilon}$ and $\left.\nu R_{\zeta} \eta\right\}$ has cardinality $<\kappa$ because the pair $\left(<_{*}, h\right)$ witness " \mathscr{B} is free". Hence, recalling $M \in K_{\mathbf{a}}$, for each $a \in P_{\eta_{\beta}}^{M}$, the set $u_{\varepsilon, \beta, a}:=\left\{\zeta<\kappa_{\varepsilon}: F_{\zeta}^{M}(a) \in\left\{P_{\nu}^{M}: \nu<_{*} \eta_{\beta}\right.\right.$ and $\left.\left.\nu \in \mathscr{B}_{\varepsilon}\right\}\right\}$ is $\subseteq u_{\varepsilon, \beta}$ hence has cardinality $\leq\left|u_{\varepsilon, \beta}\right|<\kappa$. But by $(*)_{1}(\gamma)$ of 1.1 and the definition of $K_{\mathbf{a}}, A_{a}:=\left\{b \in G_{M,\left\{\eta_{\gamma}: \gamma<\beta \cap \mathscr{B}_{\varepsilon}\right\}}:\{b, a\}\right.$ is an edge of $\left.G_{M}\right\}$ is $\subseteq\left\{F_{\zeta}^{M}(a): \zeta \in u_{\varepsilon, \beta, a}\right\}$ hence the set A_{a} has cardinality $\leq\left|u_{\varepsilon, \beta, a}\right|<\kappa$. So define $\mathbf{c}_{\varepsilon, \alpha}$ extending $\mathbf{c}_{\varepsilon, \beta}$ by, for $a \in P_{\eta_{\beta}}^{M}$ letting $\mathbf{c}_{\varepsilon, \alpha}(a)=\min \left(\kappa \backslash\left\{\mathbf{c}_{\varepsilon, \beta}(b): b \in P_{\nu}^{M}\right.\right.$ for some $\nu<_{*} \eta_{\beta}$ from $\mathscr{B}_{\varepsilon}$ and $\{b, a\}$ is an edge of $\left.\left.G_{M}\right\}\right)$. Recalling there is no edge $\subseteq P_{\eta_{\beta}}$ this is a colouring.

So we can carry the induction. So indeed \boxplus_{5} holds.]
\boxplus_{6} if $\mathscr{B} \subseteq \mathscr{A}$ is free and $M \in K_{\mathbf{a}}$ then $G_{M, \mathscr{B}}$ is the union of $\leq \kappa$ sets each with colouring number $\leq \kappa$ hence also chromatic number $\leq \kappa$.
[Why? By the proof of \boxplus_{5}.]

$$
\boxplus_{7} \operatorname{chr}\left(G_{M}\right)>\kappa \text { if } M \in K_{\mathbf{a}}^{*}
$$

Why? Toward contradiction assume $\mathbf{c}: G_{M} \rightarrow \kappa$ is a colouring and let $<_{*}$ be a well ordering of \mathscr{A}. For each $\eta \in \mathscr{A}$ and $\varepsilon, \zeta<\kappa$ let $\Lambda_{\eta, \varepsilon, \zeta}=\left\{\nu: \nu \in \mathscr{A}, \nu<_{*} \eta, \nu R_{\zeta} \eta\right.$ and $\left.\varepsilon \in \mathscr{H}_{\nu}\right\}$ where for $\nu \in \mathscr{A}$ we define $\mathscr{H}_{\nu}=\left\{\varepsilon\right.$: for some $a \in P_{\nu}^{M}$ we have $\mathbf{c}(a)=\varepsilon\}$.
Case 1: There is $\eta \in \mathscr{A}$ such that $\left(\forall \varepsilon \in \mathscr{H}_{\eta}\right)\left(\exists^{\kappa} \zeta<\kappa\right)\left[\Lambda_{\eta, \varepsilon, \zeta} \neq \emptyset\right]$.
So we can find a one-to-one function $g: \mathscr{H}_{\eta} \rightarrow \kappa$ such that $\Lambda_{\eta, \varepsilon, g(\varepsilon)} \neq \emptyset$ for every $\varepsilon \in \mathscr{H}_{\eta} \subseteq \kappa$. For each $\varepsilon \in \mathscr{H}_{\eta} \subseteq \kappa$ choose $\nu_{\varepsilon} \in \Lambda_{\eta, \varepsilon, g(\varepsilon)}$; possible as $\Lambda_{\eta, \varepsilon, g(\varepsilon)} \neq \emptyset$ by the choice of the function g. By the definition of " $\nu_{\varepsilon} \in \Lambda_{\eta, \varepsilon, g(\varepsilon)}$ " there is $a_{\varepsilon} \in P_{\nu_{\varepsilon}}^{M}$ such that $\mathbf{c}\left(\nu_{\varepsilon}\right)=\varepsilon$; recalling $\nu_{\varepsilon} \in \Lambda_{\eta, \varepsilon, \zeta}$ we have $\nu_{\varepsilon} R_{\zeta} \eta$ holds. So as $M \in K_{\mathbf{a}}^{*}$ there is $a \in P_{\eta}^{M}$ such that $\varepsilon \in \mathscr{H}_{\eta} \subseteq \kappa \Rightarrow F_{g(\varepsilon)}^{M}(a)=a_{\varepsilon}$, but then $\left\{a, a_{\varepsilon}\right\} \in \operatorname{edge}\left(G_{M}\right)$ hence $\mathbf{c}(a) \neq \mathbf{c}\left(a_{\varepsilon}\right)=\varepsilon$ for every $\varepsilon \in \mathscr{H}_{\eta} \subseteq \kappa$, contradiction to the definition of \mathscr{H}_{η}.

Case 2: Not Case 1

So for every $\eta \in \mathscr{A}$ there is $\varepsilon \in \mathscr{H}_{\eta} \subseteq \kappa$ such that there are $<\kappa$ ordinals $\zeta<\kappa$ such that $\Lambda_{\eta, \varepsilon, \zeta} \neq \emptyset$. This means that there is $h: \mathscr{A} \rightarrow \kappa$ such that:
$\bullet_{1} \eta \in \mathscr{A} \Rightarrow h(\eta) \in \mathscr{H}_{\eta}$ and
$\bullet_{2} \eta \in \mathscr{A} \Rightarrow \kappa>\left|\left\{\zeta<\kappa: \Lambda_{\eta, h(\eta), \zeta} \neq \emptyset\right\}\right|$.
This implies that:
$\bullet_{3} \eta \in \mathscr{A} \Rightarrow \kappa>\left|\exp \left(\eta, h, \mathbf{a},<_{*}\right)\right|$
because (we have \bullet_{2} and):
\bullet_{4} if $\eta \in \mathscr{A}$ and $\varepsilon=h(\eta)$ then $\exp \left(\eta, h,<_{*}, \mathbf{a}\right) \subseteq\left\{\zeta<\kappa: \Lambda_{\eta, \varepsilon, \zeta} \neq \emptyset\right\}$.
[Why? As $h: \mathscr{A} \rightarrow \kappa$ and if $\zeta \in \exp \left(\eta, h,<_{*}, \mathbf{a}\right)$ let ν exemplify this, that is, $\nu<_{*} \eta, \nu R_{\zeta} \eta$ and $h(\nu)=h(\eta)=\varepsilon$ and recall $h(\nu)=\varepsilon$ implies $\varepsilon \in \mathscr{H}_{\nu}$ by \bullet_{1}. But this means that $\nu \in \Lambda_{\eta, \varepsilon, \zeta}$ hence $\Lambda_{\eta, \varepsilon, \eta} \neq \emptyset$ as required.]

As $<_{*}$ was any well ordering of \mathscr{A}, this means, see $1.1(*)_{2}$ holds, that \mathscr{A} is strongly free, contradiction to $1.1(\mathrm{~d})$.

We can now reprove a result from [She13a].
Conclusion 1.3. 1) We have $\operatorname{Inc}(\mu, \lambda, \kappa)$ when
$(*)$ for some \mathscr{F} and natural number $\mathbf{k}>0$ we have
(a) $\mathscr{F} \subseteq{ }^{\kappa} \mu$ has cardinality μ and is tree like (i.e. $f_{1}(\bar{d})=f_{2}(j) \wedge$ $\left\{f_{1}, f_{2}\right\} \subseteq \mathscr{F} \Rightarrow f_{1} \upharpoonright i=f_{2} \upharpoonright j$
(b) \mathscr{F} is not free where

- $\mathscr{F}^{\prime} \subseteq \mathscr{F}$ is free means:
- there is a sequence $\left\langle\mathscr{F}_{i}^{\prime}: i<\kappa\right\rangle$ such that $\mathscr{F}^{\prime}=\cup\left\{\mathscr{F}_{i}^{\prime}: i<\kappa\right\}$
and for each $i, \mathscr{F}_{i}^{\prime}$ has a transversal which means that
$\left\{\operatorname{Rang}(\eta): \eta \in \mathscr{F}_{i}^{\prime}\right\}$ has a transversal
(= one-to-one choice function)
(c) \mathscr{F} is the increasing union of $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ such that each \mathscr{F}_{α} is free.

2) We have $\operatorname{Inc}[\mu, \lambda, \kappa]$ when
(*) as above but replacing clause (c) by:
$(c)^{\prime} \quad$ every $\mathscr{F}^{\prime} \subseteq \mathscr{F}$ of cardinality $<\lambda$ has a transversal.
Proof. 1), 2) We define a by choosing (for our \mathscr{F}):

- $\mathscr{A}_{\mathbf{a}}=\mathscr{F}$
- $<_{\mathscr{A}}$ any well ordering of \mathscr{F}; not part of a
- R_{ε} is defined by: $f R_{\varepsilon} g$ iff $f<_{\mathscr{A}} g \wedge f(\varepsilon)=g(\varepsilon)$
- for part (1) let $\overline{\mathscr{A}}$ be a sequence witnessing clause (c).

So it suffices to prove $\operatorname{Inc}(\mu, \lambda, \kappa)$ or $\operatorname{Inc}[\mu, \lambda, \kappa]$; hence it suffices to prove that a witness it.

Now in Definition 1.1, clauses (a),(b),(c) are obvious. For clause (e), assume $\mathscr{F}_{2} \subseteq \mathscr{F}$ is free in the sense of $1.3(1)(\mathrm{b})$, and we shall prove that \mathscr{F}_{2} is a-free, this suffices for clause (e). By the assumption on \mathscr{F}_{2}, clearly \mathscr{F}_{2} is the union of $\left\langle\mathscr{F}_{2, \zeta}\right.$: $\zeta<\kappa\rangle, \mathscr{F}_{2, \zeta}$ has a transversal \mathbf{h}_{ζ}. Now we define $h: \mathscr{F}_{2} \rightarrow \kappa$ by: $h(f)=\operatorname{pr}(\zeta, \varepsilon)$ where $\zeta=\min \left\{\xi: f \in \mathscr{F}_{2, \xi}\right\}$ and ε is minimal such that $\mathbf{h}_{\zeta}(\operatorname{Rang}(f))=f(\varepsilon)$, now the pairs $\left(h,<_{\mathscr{A}} \backslash \mathscr{F}_{2}\right)$ witness that \mathscr{F}_{2} is free (for \mathbf{a}).

For clause (d) toward contradiction assume that $h: \mathscr{F} \rightarrow \kappa$ and well ordering $<_{*}$ of \mathscr{A} witness \mathscr{F} is free for a, hence $\overline{\mathscr{B}}=\left\langle\mathscr{B}_{\varepsilon}: \varepsilon<\kappa\right\rangle$ is a partition of \mathscr{F} when we let $\mathscr{B}_{\varepsilon}=\{f \in \mathscr{F}: h(f)=\varepsilon\}$.

By Definition 1.1, for each $\varepsilon<\kappa$ and $f \in \mathscr{B}_{\varepsilon}$ the set $u_{f}=\{\zeta<\kappa$: for some $g \in \mathscr{B}_{\varepsilon}$ we have $\left.g R_{\zeta} f\right\}$ has cardinality $<\kappa$ and let $\zeta_{f} \in \kappa \backslash u_{f}$. For $\varepsilon, \zeta<\kappa$ let $\mathscr{B}_{\varepsilon, \zeta}=\left\{f \in \mathscr{B}_{\varepsilon}: \zeta_{f}=\zeta\right\}$ so $\left\langle\mathscr{B}_{\varepsilon, \zeta}: \varepsilon, \zeta<\kappa\right\rangle$ is a partition of \mathscr{A}. Now for each $\varepsilon, \zeta<\kappa$, if $f \neq g \in \mathscr{B}_{\varepsilon, \zeta}$ then $f(\zeta) \neq g(\zeta)$. Why? By symmetry we can assume $g<\mathscr{A} f$ now $\zeta=\zeta_{f} \in \kappa \backslash u_{f}$, so g cannot witness $\zeta \in u_{f}$. So $\left\langle\mathscr{B}_{\varepsilon, \zeta}: \varepsilon, \zeta<\kappa\right\rangle$ contradicts clause (b) of the claim's assumption.

Claim 1.4. If $\operatorname{INC}[\mu, \lambda, \kappa]$ or $\operatorname{INC}(\mu, \lambda, \kappa)$ then $\operatorname{Inc}[\mu, \lambda, \kappa]$ or $\operatorname{Inc}(\mu, \lambda, \kappa)$ respectively.
Proof. As the two cases are similar we do the $\operatorname{INC}(\mu, \lambda, \kappa)$ case, so let $G,\left\langle G_{i}: i<\lambda\right\rangle$ witness it.

Let $<_{*}$ be a well ordering of the set of nodes of G. Define $\mathbf{a}=(\mathscr{A}, \overline{\mathscr{A}}, \bar{R})$ by:

- \mathscr{A} is the set of nodes of G
- $\overline{\mathscr{A}}=\left\langle\mathscr{A}_{i}: i<\lambda\right\rangle$ with \mathscr{A}_{i} the set of nodes of G_{i}
- $R_{\varepsilon}=\left\{(\nu, \eta):\{\nu, \eta\}\right.$ an edge of G and $\left.\nu<_{*} \eta\right\}$.

Now check, noting when checking, that e.g. in $(*)_{1}$ of Definition 1.1, $\exp \left(\eta, \alpha,<_{*}\right)$ is equal to κ or to \emptyset as $\bigwedge_{\varepsilon} R_{\varepsilon}=R_{0}$.
$\square_{1.4}$

References

$\left[\mathrm{S}^{+} \mathrm{a}\right] \quad \mathrm{S}$. Shelah et al., Tba, In preparation. Preliminary number: Sh:F1296.
[$\left.\mathrm{S}^{+} \mathrm{b}\right]$ \qquad , Tba, In preparation. Preliminary number: Sh:F1200.
[She94] Saharon Shelah, Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She07] , \aleph_{n}-free abelian group with no non-zero homomorphism to \mathbb{Z}, Cubo 9 (2007), no. 2, 59-79, arXiv: math/0609634. MR 2354353
[She13a] , On incompactness for chromatic number of graphs, Acta Math. Hungar. 139 (2013), no. 4, 363-371, arXiv: 1205.0064. MR 3061483
[She13b] , Pcf and abelian groups, Forum Math. 25 (2013), no. 5, 967-1038, arXiv: 0710.0157. MR 3100959

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: August 7, 2013.
 2010 Mathematics Subject Classification. Primary: 03E05; Secondary: 05C15.
 Key words and phrases. set theory, graphs, chromatic number, compactness, almost free Abelian groups, non-reflecting stationary sets.

 The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 1053/11). The author thanks Alice Leonhardt for the beautiful typing. First typed July 3, 2011.

[^1]: ${ }^{1}$ exp stands for exceptional
 ${ }^{2}$ If λ is regular we can use $\left\langle\bigcup_{\alpha<\beta} \mathscr{A}_{\alpha}: \beta<\lambda\right\rangle$, so an increasing sequence of length λ with union \mathscr{A} each set is free.

