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ABSTRACT. The following statement is shown to be independent of set theory
with the Continuum Hypothesis: There is an automorphism of (!1)∕[!1]<ℵ0
whose restriction to (�)∕[�]<ℵ0 is induced by a bijection for every � ∈ !1,
but the automorphism itself is not induced by any bijection on !1.

1. INTRODUCTION

For any set X let (X)∕ in represent the Boolean algebra of all subsets of
X modulo the ideal of finite subsets of X. Let A ≡∗ B denote that A△ B, the
symmetric difference of A and B, is finite and, for A ⊆ X, let [A] denote the
equivalence class {B ⊆ X | A ≡∗ B}. A homomorphism

Ψ ∶ (X)∕ in→ (Y )∕ in

is called trivial if there is a function  ∶ Y → X such that [Ψ(A)] = [ −1A]. Let
AUT � denote the set of all automorphisms of(�)∕ in. ForΨ ∈ AUT � let  (Ψ)
denote, as in §2 of [8], the ideal of all subsetsX ⊆ � such that Ψ ↾ (X)∕ in is
trivial.

The study of AUT ! was initiated by W. Rudin in [5, 6] who showed that
the Continuum Hypothesis can be used to construct non-trivial autohomeomor-
phisms of �ℕ ⧵ℕ, in other words, using Stone duality, homeomorphisms �ℕ ⧵ℕ
such that the automorphism of (ℕ)∕ in they induce is not trivial. A further
advance was provided by S. Shelah in [7] who showed that it is consistent with
set theory that  (Ψ) is not proper — in other words, ! ∈  (Ψ) — for every
Ψ ∈ AUT !; in more conventional terminology, every Ψ ∈ AUT ! is trivial. B.
Velickovic later showed in [11] that the conjunction of OCA andMA implies that
the same is true for every Ψ ∈ AUT !1 and, assuming PFA, the same is true for
everyΨ ∈ AUT � . It was later shown in [9] that it is consistent that  (Ψ) contains
an infinite set for every Ψ ∈ AUT ! yet there are Ψ such that  (Ψ) is proper.

However, finding extensions of Rudin’s result on the existence on non-trivial
automorphisms of (�)∕ in has proven to be much harder. In [10] it is shown
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2 S. SHELAH AND J. STEPRĀNS

that if � > 2ℵ0 and � is less than the first inaccessible cardinal then for every
Ψ ∈ AUT � there is a set X ∈  (Ψ) such that |� ⧵ X| ≤ 2ℵ0 . On the other
hand, it has been shown by P. Larson and P. McKenney in [4] that if � ≤ 2ℵ0
and Ψ ∈ AUT � and [�]ℵ1 ⊆  (Ψ) then Ψ is trivial. It follows that if � is an
uncountable cardinal less than the first inaccessible andΨ ∈ AUT � is non-trivial
then there is X ∈ [�]ℵ1 such that Ψ ↾ (X)∕ in is also non-trivial.

These results leave open the question of whether or not it is consistent that
there is someΨ ∈ AUT !1 such that  (Ψ) is proper. Of course, this question must
be formulated properly because an easy solution is to use Rudin’s result under
the Continuum Hypothesis and find a Ψ ∈ AUT !1 such that ! ∉  (Ψ). Hence
the proper formulation is Question 7.2 of [10]: Is it consistent that there is some
Ψ ∈ AUT !1 such that [!1]ℵ0 ⊆  (Ψ) and  (Ψ) is proper? A positive answer
will be provided by Theorem 1.1. On the other hand, Theorem 4.2 will provide
the following companion to Velickovic’s result from [11] under the conjunction
of OCA and MA: It is even consistent with the Continuum Hypothesis that  (Ψ)
is not proper for anyΨ ∈ AUT !1 such that  (Ψ) ⊇ [!1]

ℵ0 . The following are the
main results to be proved:

Theorem 1.1. Assuming ◊+
!1

(see Definition 2.1) there is Ψ ∈ AUT !1 such that
 (Ψ) ⊇ [!1]ℵ0 yet Ψ is not trivial.

Theorem 1.2. The Continuum Hypothesis, and even ◊!1 , does not imply that
there is Ψ ∈ AUT !1 such that  (Ψ) is a proper ideal containing [!1]ℵ0 .

In §3 the methods of §2 are modified to obtain results givingmore information
on the possible structure of  (Ψ).

2. PROOF OF THEOREM 1.1

Definition 2.1. LetH<ℵ0(X) be the hereditarily finite sets with the elements ofX
considered as atoms — in other words,H<ℵ0(X) =

⋃

n∈!An(X) where A0(X) =
X and An+1(X) = [An(X)]<ℵ0 . Following the proof of R. Jensen and K. Kunen
in [1] that there is a Kurepa family if V = L, a family {D�}�∈!1 will be said to be
a ◊+

!1
sequence if:
∙ each D� is a countable model of set theory without the power set axiom
∙ � + 1 ⊆ D�

∙ for eachX ⊆ H<ℵ0(!1) there is a clubC ⊆ !1 such thatX∩H<ℵ0(�) ∈ D�

and C ∩ � ∈ D� for every � ∈ C
∙ ∅ = D�+1 = D�+! for each � ∈ !1.

The last clause is not part of the usual definition, but will avoid technical dif-
ficulties that would complicate the proof of Theorem 1.1. The use of H<ℵ0(!1)
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instead of !1 avoids having to make remarks about coding when trapping more
complicated sets, such as functions, instead of just subsets of !1.

The following theorem was first proved by R. Jensen and is documented in
hand written notes in [2]. A proof can also be found in [3].

Theorem 2.2 (R. Jensen). There is a◊+
!1

sequence in the constructible universe.

Definition 2.3. Suppose that ⊏ is a tree ordering on !1 × ! whose �th level is
{�} × !. If t ∈ {�} × ! then � will be denoted by ht(t). If � ∈ ht(t) then t[�]
will denote the unique element of {�} × ! such that t[�] ⊏ t.

Letℜ denote the set of all functionsR such that there is some C(R) such that:

(2.1) C(R) ⊆ !1 is closed

(2.2) (∀�) {� + 1, � + !} ∩ C(R) = ∅

(2.3) domain(R) = C(R) × !

(2.4) (∀t ∈ domain(R)) R(t) ⊆ ht(t)

(2.5) (∀t ⊏ s) R(t) = R(s) ∩ ht(t).

If R ∈ ℜ and � ∈ C(R) then define R⊥� = R ↾ (C(R) ∩ (� + 1)) × ! and note
that R⊥� ∈ ℜ. Let

ℜ� =
{

R ∈ ℜ |

|

|

sup(C(R)) ≤ � and (∀� ∈ C(R) ∩ � + 1) a ↾ � ∈ D�

}

noting that the dependence on ⊏ has been suppressed in the notation. Note also
that it may happen thatℜ� ≠ ∅ even when D� = ∅.

Notation 2.4. For any function F and A a subset of the domain of F let F ⟨A⟩
denote the image of A under F .

The main part of the proof will be to construct the tree order ⊏ as well as
mappings �t for t ∈ !1 × ! and  � ∶ ℜ� → ℜ� for each � ∈ !1. This will
be accomplished constructing tree orderings ⊏� on � × !, �t for t ∈ � × ! and
 � ∶ ℜ� → ℜ� by induction on � so that the following hold:

(1) if � ∈ � then ⊏� = ⊏� ∩ [� × !]2

(2) �t is an involution of ht(t) such that �t ⟨�⟩ = � for every limit ordinal
� ∈ ht(t)

(3) if � + ! ∈ ht(t) then �t(� + i) = � + i for all but finitely many i ∈ !
(4) if t ⊏� s then �t ⊆∗ �s
(5) if � ∈ � then  � ⊆  �
(6) if R ∈ ℜ� (to be precise, it must be specified thatℜ� is defined using the

tree ordering ⊏� in (2.5) of Definition 2.3) then
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4 S. SHELAH AND J. STEPRĀNS

∙ C(R) = C( �(R))
∙ �t ⟨R(t)⟩ ≡∗  �(R)(t)

for all t ∈ T� such that ht(t) ≥ sup(C(R))
(7) if R ∈ ℜ� and � ∈ C(R) then  �(R)⊥� =  �(R⊥�).

It will, furthermore be assumed that if � is a limit ordinal then the following
conditions will also hold.

(8) if  ∈ D� is a maximal antichain in ⊏� then for all t ∈ {�} × ! there is
some � ∈ � such that t[� ] ∈ 

(9) if g ∈ D� is a function with domain � ×! such that g(t) ∶ ht(t)→ � and1

for each t ∈ � × ! there is s such that ht(s) = � and t ⊏�+1 s then for
every � ∈ � there is some � such that
∙ � > � > �
∙ g(s[� + !])(�) ≠ �t(�)

(10) if ∈ [ℜ�]<ℵ0 and t ∈ � × ! then there is t∗ such that
∙ ht(t∗) = �
∙ t ⊏�+1 t∗

∙ �t∗ ⟨R(t∗)⟩ =  (R)(t∗)
for all R ∈ .

If this induction can be completed, then let the tree order ⊏ be defined to be
⋃

�∈!1
⊏� and note that condition (8) implies that S = (!1×!,⊏) is a Suslin tree.

Let  ∶ ℜ → ℜ be defined by

 (R) =
⋃

�∈!1

 �(R⊥�)

using (2) and (7) to conclude that  is a well defined function fromℜ to itself .
Observe that if Ȧ is an S-name for a subset of !1 then, since S is a Suslin

tree, it is possible to find a club C ⊆ !1 and R with domain C × ! such that if
t ∈ C × ! then R(t) ⊆ ht(t) and for each � ∈ C and each t ∈ {�} × !

t ⊩S “Ȧ ∩ � = R(t)”.

Given R ∈ ℜ and letting Ġ be a name for the generic set on S define

R(Ġ) =
⋃

�∈!1

R(Ġ�)

where Ġ� is a name for the element of {�} × ! satisfying

1 ⊩S “{Ġ�} = Ġ ∩ {�} × !”.

Hence every subset A ⊆ !1 in an S generic extension is equal to R(Ġ) for some
R ∈ ℜ. Given a generic set G ⊆ S let Ψ be the function from (!1)∕ in to

1In applications it will always be the case that if t ⊏ s then g(t) ⊆ g(s) but there is no need to
assume this at this stage.
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(!1)∕ in defined by Ψ([R(Ġ)]) = [ (R)(Ġ)] for R ∈ ℜ. Furthermore, in
V [G] let �� be defined to be �Ġ� .

Claim 2.5.

(2.6) 1 ⊩S “Ψ̇ is a well defined automorphism of (!1)∕ in such that

(∀� ∈ !1) Ψ̇ ↾ (�)∕ in is induced by �̇�”.

Moreover, 1 ⊩S “Ψ̇ is non-trivial”.

Proof. Since it has already been established that if G ⊆ S is generic over V then
in V [G]

(!1) =
{

R(Ġ) | R ∈ ℜ ∩ V
}

the first point to establish is that Ψ is well defined. So suppose that R and R′ are
in ℜ and that

(2.7) t ⊩S “R(Ġ) ≡∗ R′(Ġ)”

but that
t ⊩S “ (R)(Ġ) ≢∗  (R′(Ġ))”.

By extending t if necessary, it may be assumed that there is some � ∈ !1 such
that t ⊩S “ (R)(Ġ) ∩ � ≢∗  (R′)(Ġ) ∩ �” and, hence, that there is some � ∈ !1
such that t ⊩S “( (R)⊥�)(Ġ) ≢∗ ( (R′)⊥�)(Ġ)”. By condition (7) it follows
that t ⊩S “ (R⊥�)(Ġ) ≢∗  (R′⊥�)(Ġ)”. By condition (6) it follows that

t ⊩S “�t
⟨

(R⊥�)(Ġ)
⟩

≢∗ �t
⟨

(R⊥�)(Ġ)
⟩

”

and, hence, that t ⊩S “(R⊥�)(Ġ) ≢∗ (R⊥�)(Ġ)” contradicting condition (4) and
(2.7). The fact that Ψ is one-to-one has a similar proof.

To see that Ψ is an automorphism suppose that t ⊩S “R(Ġ) ⊆∗ R′(Ġ)” but
that t ⊩S “ (R(Ġ)) ⊈∗  (R′(Ġ))”. As in the argument for well definedness,
it can be assumed that there is some � ∈ !1 such that t ⊩S “( (R)⊥�)(Ġ) ⊈∗

( (R′)⊥�)(Ġ)”. But condition (7) then yields the contradiction that

t ⊩S “ (R⊥�)(Ġ) ⊈∗  (R′⊥�)(Ġ)”.

Since each �t is an involution it follows easily that so isΨ. From this it follows
that Ψ is a surjection. To see that Ψ is not trivial, it suffices to show that there is
no g ∶ !1 → !1 in V [G] such that �� ⊆ g for all � ∈ !1. To this end suppose
that s ⊩S “ġ ∶ !1 → !1” and note that since S is Suslin, there is a club B ⊆ !1
such that for each � ∈ B and t ∈ {�} × ! there is some ḡ(t) ∶ � → � such that

t ⊩S “ġ ↾ � = ḡ(t)”.
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6 S. SHELAH AND J. STEPRĀNS

Let g with domain !1 × ! be defined by

g(t) =

{

ḡ(t) if ht(t) ∈ B
ḡ(t[sup(B ∩ ht(t))]) otherwise.

Then use ◊+
!1

to find � ∈ !1 and s∗ ∈ {�} × ! such that

∙ � ∈ B ⧵ ht(s)
∙ B ∩ � is cofinal in �
∙ g ↾ (B × !) ∈ D�

∙ s ⊏� s∗.

Then apply condition (9) to get that there are infinitely many  ∈ � such that

�s∗() ≠ g(s∗[ + !])() = g(s∗)().

Since s∗ ⊩S “ġ ↾ � = g(s∗)” it follows that s∗ ⊩S “ġ ⊉∗ �s∗ = ��” as required.
�

To begin the induction let⊏!+1 be an arbitrary tree order on (!+1)×! and let
�t(k) = k for each k ∈ ht(t). Let  !+1(R) = R for each R ∈ ℜ!. It is immediate
that conditions (1) to (7) and 10 all hold. Since ! is not a limit of limit ordinals,
(8) and (9) are not relevant at this stage.

A very similar argument works if � is a limit ordinal and ⊏�+1,  �+1 and
{�t}ht(t)≤� have been constructed. In this case let ⊏�+!+1 be an arbitrary tree order
extending ⊏�+1. If � < ht(t) < � + ! let �t be defined by

�t() =

{

�t[�]() if  ≤ �
 if  > �.

Let  �+!+1 =  � noting that D�+! = ∅ and, hence, there are no further require-
ments on  �+!+1 since (� + ! + 1) ∩ C(R) ⊆ � + 1 for all R ∈ ℜ. It is again
immediate that conditions (1) to (7) all hold. Note that (8) and (9) are again not
relevant at this stage since D�+! = ∅. In order for (10) to hold it is necessary to
define �t appropriately for t ∈ {� + !} × !.

To do this, let {Rj}j∈! enumerateℜ� = ℜ�+! and let

f ∶ (� + !) × !→ {� + !} × !

be a one-to-one function such that t ⊏�+!+1 f (t, k) for each t and k. Let �− be the
largest ordinal that is a limit of limit ordinals and �− ≤ �. From Definition 2.3 it
follows that

(2.8) (∀R ∈ ℜ�) sup(C(R)) ≤ �−.
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Now fix t ∈ (� + !) × ! and k ∈ !. Let � ∈ �− be a limit ordinal larger than the
maximal element of the finite set of all  ∈ �− such that

(2.9) (∃j ≤ k) �−1t[�]() ∈ Rj(t[�]) if and only if  ∉  �(Rj)(t[�]).

It follows that the following two equalities hold:

(2.10) Rj(t[�]) ∩ � = R∗j (t[�])

(2.11)  �(Rj)(t[�]) ∩ � =  �(R∗j )(t[�])

where R∗j = Rj⊥ sup(C(Rj) ∩ �). Then apply (10) and the induction hypotheses
to find t∗∗ such that ht(t∗∗) = � and t[�] ⊏� t∗∗ such that

(2.12) �t∗∗
⟨

Rj(t∗∗)
⟩

=  �(Rj)(t∗∗)

for each j ≤ k. Then define �f (t,k) by

�f (t,k)() =

⎧

⎪

⎨

⎪

⎩

 if � ≤  < � + !
�t[�]() if � ≤  < �
�t∗∗() if  ∈ �.

It must first be established that �f (t,k) is an involution. This follows from the fact
both

(2.13) �t[�] ↾ [�, �) and �t∗∗ ↾ �

are involutions of their domains since � is a limit ordinal and (2) holds.
Then, by (3) and the fact that � = �− + ! ⋅ m for some m ∈ !, it follows that

�f (t,k)() = �t() for all but finitely many  ∈ ht(t); so (4) holds. Next, observe
that

(2.14) �t∗∗
⟨

Rj(t[�])
⟩

∩ � = �t∗∗
⟨

Rj(t[�]) ∩ �
⟩

= �t∗∗
⟨

R∗j (t[�])
⟩

= �t∗∗
⟨

Rj(t∗∗)
⟩

∩ � =  �(Rj)(t∗∗) ∩ � =  �(R∗j )(t[�]) ∩ � =  �(R
∗
j )(t[�]) ∩ �.

The first, second, fourth and last equalities follow from (2), (2.10), (2.12) and
(2.11) respectively. The others follow from the definition of t∗∗ and �. It now
follows that f (t, k) witnesses that (10) holds for t and  = {Rj}j≤k. In order to
see this keep in mind that (2.8) holds and note that (2.14) implies that

(2.15)
�f (t,k)

⟨

Rj(f (t, k))
⟩

=
(

�t[�]
⟨

Rj(t[�])
⟩

∩ [�, �)
)

∪
(

�t∗∗
⟨

Rj(t[�])
⟩

∩ �
)

=
(

 �(Rj)(t[�]) ∩ [�, �)
)

∪ ( �(R∗j )(t[�]) ∩ �) =  �(Rj)(f (t, k))

for each j ≤ k.
So now suppose that � ∈ !1 is an arbitrary limit of limit ordinals such that all

of the induction hypotheses hold for all � ∈ �. First, let

ℜ∗ =
{

R ∈ ℜ� | C(R) ∩ � is cofinal in � or sup(C(R)) < �
}
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or, in other words, C(R) ∉ ℜ∗ if � ∈ C(R) and � has an immediate predecessor
in C(R). The first step will be to find ⊏�+1, {�t}t∈{�}×! and  �+1 ↾ ℜ∗ such that

(11) (1), (2), (3), (4), (8) and (9) all hold
(12)  � ⊆  �+1 ↾ ℜ∗ for each � ≤ �
(13) the versions of (6), (7) and (10) in whichℜ� is replaced by ℜ∗ all hold.

In order to do this begin by letting

∙ �n ∈ � be such that limn→∞ �n = �
∙ {tn}n∈! enumerate infinitely often � × !
∙ {Rn}n∈! enumerateℜ∗

∙ {n}n∈! enumerate the antichains of ⊏� belonging to D�

∙ {gn}n∈! enumerate infinitely often all the functions g belonging to D�

such that g(t) ∶ ht(t)→ � for each t ∈ � × !.

Now fix n and construct a sequence {bn(j)}j∈! ⊆ � × ! and involutions {�j}j∈!
such that (denoting bn(i) by b(i) to simplify notation)

(14) tn ⊏� b(0)
(15) b(i) ⊏� b(i + 1)
(16) ht(b(j)) is a limit ordinal at least as large as �j
(17) there is some s ∈ j such that s ⊏∗ b(j + 1)
(18) �0 = �b(0) and the domain of �i+1 is [ht(b(i)),ht(b(i + 1)) and

∙ �i+1() = �b(i+1)() for all  such that ht(b(i)) +! ≤  < ht(b(i+1))
∙ �i+1() = �b(i+1)() for all but finitely many  such that ht(b(i)) ≤
 < ht(b(i)) + !

(19) for all j ∈ ! there is k ∈ ! such that

�j+1(ht(b(j)) + k) ≠ gj(b(j + 1)[ht(b(j)) + !])(ht(b(j) + k).

Furthermore, letting Rj,i = Rj⊥ sup(C(Rj) ∩ b(i)), the following hold:

(20) �b(i)
⟨

Rj,i(b(i))
⟩

=
⋃

k≤i �k
⟨

Rj,i(b(i))
⟩

=  �(Rj,i)(b(i)) for all i and j ≤
n

(21) �b(i+1)
⟨

Rj,i+1(b(i + 1)) ⧵ ht(b(i))
⟩

= �i+1
⟨

Rj,i+1(b(i + 1)) ⧵ ht(b(i))
⟩

=
 �(Rj,i+1)(b(i + 1)) ⧵ ht(b(i)) for all j ≤ i.

If this can be done, then define t ⊏�+1 (�, n) if and only if there is some j such
that t ⊏� b(j). Then define �(�,n) =

⋃

j∈! �j . Conditions (1) to (4) are immediate.
Conditions (8) and (9) follow from (17) and (19) respectively and so (11) holds.
Then for R ∈ ℜ∗ define

 �+1(R) =

{

⋃

�∈�  �(R⊥�) if sup(C(R) ∩ �) = �
 �(R) if sup(C(R) ∩ �) < �.
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It is immediate that C(R) =  �+1(C(R)) and that (12) holds. To see that (13)
holds observe that (7) follows directly from the construction, (6) follows from
condition (21) and (10) follows from condition (20). Then choose {bm(i)} simi-
larly for all m ∈ !.

In order to construct {b(i)}i∈! use (10) to let b(0) be such that tn ⊏� b(0)
and �b(0)

⟨

Rj,0(b(0))
⟩

=  �(Rj,0)(b(0)) for j ≤ n. Let �0 = �b(0). It follows that
conditions (14) to (16) all hold. Conditions (17), (19) and (21) do not apply in
this case. Conditions (18) and (20) are immediate.

Now suppose that b(i) is given. First find s ∈ i such that either s ⊏� b(i)
or b(i) ⊏� s. Let s∗ = max⊏� (s, b(i)). Then find a limit ordinal Ξ ≥ �i such that
ht(s∗) + ! < Ξ. Using (10) of the induction hypothesis let b(i + 1) be such that

∙ ht(b(i + 1)) = Ξ
∙ s∗ ⊏� b(i + 1)
∙ �b(i+1)

⟨

Rj,i+1(b(i + 1))
⟩

=  �(Rj,i+1)(b(i + 1)) for j ≤ max(i, n).

It follows that conditions (15) and (16) both hold and condition (14) is no longer
relevant. The choice of s guarantees that condition (17) holds. Let um denote
ht(b(i)) + m. Using (3) let K ∈ ! be such that �b(i+1)(um) = um for m > K .
Find2 l1 > l0 > K such that ul0 ∈ Rj(b(i + 1)) if and only if ul1 ∈ Rj(b(i + 1))
for all j ≤ max(i, n). Then let

�i+1 = �b(i+1) ↾ [ht(b(i)),ht(b(i + 1))

if either gi(b(i + 1))(ul0) ≠ ul0 or gi(b(i + 1))(ul1) ≠ ul1 . Otherwise define �i+1
with domain [ht(b(i)),ht(b(i + 1)) by

�i+1(�) =

⎧

⎪

⎨

⎪

⎩

�b(i+1)(�) if � ∉ {ul0 , ul1}
ul1 if � = ul0
ul0 if � = ul1 .

Observe that

�i+1
⟨

Rj,i+1(b(i + 1))
⟩

=  �(Rj,i+1)(b(i + 1)) ∩ [ht(b(i)),ht(b(i + 1))

for each j ≤ max(i, n). Therefore (18), (19), (20) and (21) all hold. This completes
the induction.

All that remains to be done is to define �(R) forR ∈ ℜ�⧵ℜ∗. In other words,
 �(R) must be defined when R ∈ ℜ� , � ∈ C(R) but �(R) = sup(C(R) ∩ �) < �.
In this case  �(R)(t) must be defined for each t ∈ {�} × !. Note however, that

2The reader wondering why the argument presented here does not apply to !2 assuming ◊+!2 ,
thereby contradicting the results of [10], will note that this the key point that does not extend
beyond !1.

Paper Sh:1114, version 2017-11-06 11. See https://shelah.logic.at/papers/1114/ for possible updates.



10 S. SHELAH AND J. STEPRĀNS

 (R)(t) ∩ �(R) must be equal to  (R⊥�(R))(�(R)) in order for (2.5) to hold.
Hence it suffices to define,

 (R)(t) =  (R⊥�(R))(�(R)) ∪
(

[�(R), �) ∩ �t(R)
)

.

Observe that

(2.16) (∀t ∈ {�} × !) �t ⟨R(t)⟩ ⧵ �(R) =  �(R)(t) ⧵ �(R)

and hence (6) holds. Conditions (5) and (7) are immediate. To see that (10) holds
let ∈ [ℜ�]<ℵ0 and t ∈ T� such that ht(t) < �. Let

∗ = ( ∩ℜ∗) ∪ {R⊥�(R) | R ∈  ⧵ ℜ∗}

and note that ∗ ⊆ ℜ∗. It is therefore possible to use the version of (10) for ℜ∗

to find t∗ ⊐�+1 t such that ht(t∗) = � and �t∗ ⟨R(t∗)⟩ =  (R)(t∗) for all R ∈ ∗.
Then applying (2.16) yields that �t∗ ⟨R(t∗)⟩ =  (R)(t∗) for allR ∈  as required.

3. OTHER RESULTS ON  (Ψ)

The methods of §2 can be modified to exert more control over  (Ψ). This
section sketches arguments exhibiting two extreme possibilities for  (Ψ).

Theorem 3.1. It is consistent that there is Ψ ∈ AUT !1 such that  (Ψ) is a
proper ideal, [!1]≤ℵ0 ⊆  (Ψ) but  (Ψ) is not a �-ideal — in other words, !1 can
be covered by countably many elements from  (Ψ).

Proof. The only change needed to the proof of §2 is to choose disjoint sets Bn
such that !1 =

⋃

n∈!Bn such that Bn ∩ [�, � + !) is infinite for every � ∈ !1
and then to add to (2) the requirement that for every n ∈ ! and for all but finitely
many � ∈ Bn ∩ ht(t) the equality �t(�) = � holds. This will guarantee that each
Bn belongs to  (Ψ) but requires modifying (10) of §2 to the following:

(10) if ∈ [ℜ�]<ℵ0 and m ∈ ! and t ∈ � ×! then there is t∗ ⊐�+1 t such that
ht(t∗) = � and �t∗ ⟨R(t∗)⟩ =  (R)(t∗) for all R ∈  and �t∗(�) = � for
each � ∈

⋃

j≤mBj ⧵ ht(t).
In choosing the uli required to satisfy (19) it will be required that the uli come
from

⋃

j>mBj where m is now an additional parameter in the enumeration fol-
lowing (13). �

Theorem 3.2. It is consistent that there isΨ ∈ AUT !1 such that [!1]
≤ℵ0 =  (Ψ).

Proof. In order to establish Theorem 3.2 it will be necessary to use ◊+
!1

to trap
uncountable partial functions from !1 to !1 and not just bijections. This will,
of course, require weakening (2) because it cannot be expected that any interval
of the form [�, � + !) will contain more than one member of the domain of the
trapped function, as is necessary in choosing the uli to satisfy (19). On the other
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hand, dispensing with (2) entirely might create problems in finding the limit �
to satisfy (2.9) because satisfying (2.13) would no longer be automatic. Never-
theless, the following modification of (10) of §2 allows requirement (2) to be
removed from the construction:

(10) if  ∈ [ℜ�]<ℵ0 and t ∈ � × ! then there is t∗ ⊐�+1 t such that ht(t∗) = �
and �t∗ ⟨R(t∗)⟩ =  (R)(t∗) for all R ∈  and, furthermore, � = �t∗ ⟨�⟩.

It is easy to check that the construction of §2 actually does yield this stronger
induction hypothesis.

Next modify (9) of §2 to the following:
(9) if g ∈ D� is a function with domain Γ × ! for some Γ a cofinal subset of

� and, if g(t) ∶ Δt →  with Δt a cofinal subset of  for each  ∈ Γ and
t ∈ {} × ! then for each t ∈ {�} × ! the following holds:

(∀� ∈ �)(∃ ∈ Γ)(∃� ∈ Δt[]) � < � and g(t[])(�) ≠ �t(�)

In choosing the uli required to satisfy (19) it can no longer be expected that they
will come from [ht(b(j),ht(b(j) + !). However, if it is only required that they
belong to Δbn(j+1) the construction can proceed as before. �

4. PROOF OF COROLLARY 1.2

Notation 4.1. Let ℂ(X) denote the partial order of countable partial functions
from X to 2 ordered by inclusion.

Theorem 4.2. Given bijections �� ∶ � → � for each � ∈ !1 such that
(1) if � ∈ � then �� ≡∗ �� ↾ �
(2) there is no � ∶ !1 → !1 such that �� ≡∗ � ↾ � for all � ∈ !1
(3) G ⊆ ℂ(!1) generic

there is no set B ⊆ !1 such that

�−1� (B) ≡
∗
⋃

g∈G
g−1{1} ∩ �

for each � ∈ !1.

Proof. Suppose that Ḃ is a ℂ(!1) name such that

1 ⊩ℂ(!1) “(∀� ∈ !1) Ḃ ∩ � ≡
∗
⋃

g∈Ġ

��
⟨

g−1{1}
⟩

”

where Ġ is a name for the generic set. Let M = (M, Ḃ, {��}�∈!1 ,∈) be a count-
able elementary submodel of (H(ℵ2), Ḃ, {��}�∈!1 ,∈) and let � =M ∩ !1.

Claim 4.3. For all g ∈ ℂ(!1) ∩M there is ℎ ∈ ℂ(!1) ∩M such that g ⊆ ℎ and

(4.1) ℎ ⊩ℂ(!1) “Ḃ ∩ domain(ℎ ⧵ g) ≠ ��
⟨

(ℎ ⧵ g)−1{1}
⟩

”.
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Proof. Suppose that g ∈ ℂ(!1) ∩M is a counterexample to the claim. Without
loss of generality there is � ∈ � such that domain(g) = �. If � ∈ � ∈ � and
X ⊆ [�, �) then define FX,� ∈ ℂ(!1) to be the function extending g with domain
� such that if � ∈ � ∈ � then FX,�(�) = 1 if and only if � ∈ X. It follows from
the failure of (4.1) that if � ≤ � < � then

F{�},� ⊩ℂ(!1) “Ḃ ∩ [�, �) = {��(�)}”

and hence it is possible to define inM a function � by letting �(�) be the unique
ordinal such that

F{�},� ⊩ℂ(!1) “Ḃ ∩ [�, �) = {�(�)}”
for all � > � and noting that �(�) is defined for each � ≥ �. Then

(4.2) M ⊧ � ∶ [�, !1)→ [�, !1) and (∀� > �)(∀� > �)

F{�},� ⊩ℂ(!1) “Ḃ ∩ [�, �) = {�(�)}”.

By Hypothesis 2 of the theorem, there must be � such that

(4.3) M ⊧ �� ≢∗ � ↾ �

and since � ⊆ �� it follows �� ≢∗ �� ↾ � contradicting Hypothesis 1. �

Using Claim 4.3 it is easy to find a sequence {ℎn}n∈! of conditions in ℂ(!1)∩
M such that ℎn ⊆ ℎn+1 and

ℎn+1 ⊩ℂ(!1) “Ḃ ∩ domain(ℎn+1 ⧵ ℎn) ≠ ��
⟨

(ℎn+1 ⧵ ℎn)−1{1}
⟩

”

and then to let ℎ =
⋃

n ℎn. It follows that ℎ ⊩ℂ(!1) “Ḃ ∩ � ≢∗ ��
⟨

ℎ−1{1}
⟩

” as
required. �

Theorem 1.2 can now be established with the following argument.

Proof. Let V be a model of the Continuum Hypothesis and let G be a subset
of ℂ(!2) that is generic over V . Then ◊!1 holds in V [G]. Given Ψ ∈ AUT !1
such that  (Ψ) ⊇ [!1]ℵ0 let X ∈ [!2]ℵ1 be such that for each � ∈ !1 there is
�� ∈ V [G ∩ ℂ(X)] such that Ψ ↾ (�)∕ in is induced by ��. If  (Ψ) is not a
proper ideal in V [G ∩ ℂ(X)] then it is also not a proper ideal in V [G ∩ ℂ(!2)]
so assume that  (Ψ) is a proper ideal in V [G ∩ℂ(X)]. Then let � = sup(X) + 1
and apply Theorem 4.2 to conclude that if

B ∈ Ψ([
{

� ∈ !1 | ∃g ∈ G g(� + �) = 1
}

])

then there is some � ∈ !1 such that �−1� (B) ≢
∗ g−1{1}∩� for all g ∈ G∩ℂ(�+!1).

A standard argument shows that no countably closed forcing can add a set Z
such that for every � ∈ !1 there is g ∈ G ∩ ℂ(� + !1) such that �−1� (Z) ≡

∗

g−1{1} ∩ �. Hence [
{

� ∈ !1 | ∃g ∈ G g(� + �) = 1
}

] has no image under Ψ in
V [G] contradicting that Ψ ∈ AUT !1 . �
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5. OPEN QUESTIONS

An examination of the Velickovic’s proof of Theorem 3.1 from [11] reveals
that it shows that it is consistent that there is some Ψ ∈ AUT ! such that  (Ψ)
is an ultrafilter. His proof does not generalize to answer the following question
though.

Question 5.1. Is it consistent that there is Ψ ∈ AUT !1 such that  (Ψ) is an
ultrafilter? Can the question be answered when !1 is replaced by some other un-
countable cardinal?

It was mentioned in the introduction that it is shown in [10] that if � > 2ℵ0
and � is less than the first inaccessible cardinal then for every Ψ ∈ AUT � there
is a setX ∈  (Ψ) such that |� ⧵X| ≤ 2ℵ0 . The following question remains open
though.

Question 5.2. Is it consistent that � is at least as large as the first inaccessible
cardinal and there is Ψ ∈ AUT � such that T (Ψ) is a proper ideal and [�]<� ⊆
 (Ψ)?

However, it will be noted that the remark following Question 7.4 in [10] is
strengthened by the following. Recall that if � is weakly compact then every tree
of height � whose levels all have size less than � has a branch of length �.

Proposition 5.3. If � is a weakly compact cardinal then everyΨ such that [�]<� ⊆
 (Ψ) is trivial.

Proof. If Ψ ∈ AUT � is a counterexample to the proposition then note first that
there is an unbounded set S ⊆ � and a finite F ⊆ � such that for each � ∈ S there
is a one-to-one function �� ∶ � ⧵ F → � such that �� induces Ψ ↾ (�)∕ in. To
see this simply choose a continuous sequence {M�}�∈� of elementary submodels
of (H(�+),Ψ,∈) such that the set of elements of � in the universe of M� is an
ordinal �� ∈ � and, if � has uncountable cofinality, then the universe of M� is
closed under countable subsets. Note that since [�]<� ⊆  (Ψ), for each � ∈ �
there is some � ∶ �� → � that induces Ψ ↾ (��)∕ in. Note also that if �
has uncountable cofinality and �−1(� ⧵ ��) is infinite then there is some infinite
Z ⊆ �−1(� ⧵ ��) such that Z ∈ M� . By elementarity there are � and � in M�

such that

M� ⊧ Z ⊆ � and � induces Ψ ↾ (�)∕ in.

But then � ⟨Z⟩ ⊆ �� contradicting the fact that � ↾ � ≡∗ � ↾ �. Therefore
F� = �−1(� ⧵ ��) is finite and �� can be defined to be � ↾ � ⧵ F� . There is then
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some fixed F such that

S =
{

��
|

|

|

F� = F and � ∈ � and cof (�) ≥ !1
}

satisfies the requirement.
Let {��}�∈� be an increasing enumeration of S and let

L� =
{

� ∶ �� ⧵ F → ��
|

|

|

� ≡∗ ���
}

and note3 that |L�| ≤ 2|�� | < �. Then let T =
(
⋃

�∈� L� , ⊆
)

.
Note that L� ≠ ∅ since ��� ∈ L�� and that distinct elements of L� are incom-

parable under ⊆. Hence it suffices to check that if � ∈ � ∈ � then

(5.1) (∀� ∈ L�)(∃� ∈ L�) � ⊆ �

since this will establish that L� is precisely the �th level of T . But (5.1) is imme-
diate since � = � ↾ �� ⧵ F ∈ L� . T is therefore a tree of height � with levels of
cardinality less than � and no branches of length �, contradicting that � is weakly
compact. �
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