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Abstract. Suppose for simplicity that T is first order with Skolem functions
in strong enough sense. We prove, in ZFC, that is has a model B in which for

any two atomless Boolean algebras definable in it, any isomorphism or even

complete embedding from one to the other is definable in the model. This has
consequences on the compactness of logics gotten by extending first order logic

by quantifying over such isomorphisms and even embeddings, this is discussed

in reasonable details in the introduction. The we use black boxes given count-
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2 SAHARON SHELAH

§ 0. Introduction

Why and how are we looking for logics?
One motive (and way) is in order to find examples in “soft” model theory; there

we look for logics with prescribed properties, better with nice definitions, immaterial
if they can express really interesting things. Another is looking for logics which have
significant expressive power on the one hand while having good model theoretic
properties which we can use on the other hand: this is interesting in its own right
and is desirable if we hope to find applications. Among “good model theoretic
properties” compactness is very natural a priori (and has been prominent so far in
applications). Other motive is the naturality of the example and, of course, there
are other reasons as well.

Concerning applications, we may have a specific application in mind, but we
may first have discussed logics which look natural (or our ability to prove indicate
them), they were investigated and later an application was found.

After Mostowski [Mos57] suggestion, cardinality quantifiers were a center of in-
terest, in particular the quantifier ∃≥ℵ1 received much attention (see on them Kauf-
man [Kau85] and Schmerl [Sch85]). In particular after works of Furhken, Vaught
and Keisler we know that the logic L(∃≥ℵ1) is ℵ0-compact and has a complete-
ness theorem for finitely many (very nice) axiom schemes. Among the exten-
sions considered, many of them ℵ0-compact, we mention L(aa), stationary logic
— introduced in [She75] from general considerations, and then throughly investi-
gated (mainly proved to have the good properties of L(∃≥ℵ1)) by Barwise Kaufman
Makkai [BKM78]. It was used in [She86] to prove in ZFC the existence of uni-serial
rings R which are domains with non-standard uni-serial R-modules (we use com-
pleteness theorem of L(aa), hence absoluteness of consistency). We shall from now
on concentrate on fully compact logics.

The logic L(Qcf
≤λ) is good as an example; the first fully compact logic (stronger

than first order, answering a question of Keisler; [She72]) this quantifier says that a

given linear order has cofinality ≤ λ. Moreover the logic [L(Q̇cf
≤2ℵ0

)]Beth (the Beth

closure) may be considered even better — has the Beth property, (see [She85]). Both
exemplify the first way but their expressive powers are not impressive. Compact
logics stronger than first order even on countable models were found in [She75]
— but the proof uses weakly compact cardinal (or diamonds), and it has weak
expressive power and not so nicely defined.
L(Q̇br) (the quantifier: there is a branch in a leveled tree) was introduced in

[She78c] and proved to be compact and complete (and stronger than first order
even on countable models, all properties provable in ZFC, first in this sense), thus
fully answering a question of H. Friedman. In Fuchs Shelah [FS89] it was used to
disprove a conjecture of Kaplansky (see more Eklof [Ekl92]). Later Osofsky [Oso92],
[Oso91] worked quite hard to give “logic free” proofs.

Let us go back to a more direct predecessor. Rubin (see [?]) proved various results
on the ability to reconstruct the Boolean algebra B in AUT(B) (the automorphism
group of a Boolean algebra B), by first order interpretations; he reconstruct not
just B but even higher order logics on it (he has continued to develop this — see his
exposition in [Rub89]). This lead to the question whether various restrictions on B
were necessary. This question was largely answered in Rubin Shelah [RS80]; proving
mainly, consistency of, Downward Lowenheim-Skolem to ℵ1 and ℵ0-compactness
results, i.e.
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COMPACT LOGICS IN ZFC: . . . 3

1) Assume ♦ℵ1 , for any Boolean algebra B there is a Boolean algebra B′ of cardi-
nality ℵ1 such that (B,AUT(B)) ≡ (B′,AUT(B′)) (i.e. elementarily equivalent in
first order logic).
2) Assume ♦ℵ1 for any first order sentence ψ speaking on models of the form

(B,AUT(B)) let Q̇ψ be the quantifier: (Qψx, y)ϕ(x, y) say that {(x, y) : ϕ(x, y)} is
the partial order of a Boolean algebra on its domain which satisfies ψ. The result is:
adding to first order logic the countably many quantifiers Qψ gives an ℵ0-compact
logic. This gives ℵ0-compact logic stronger than first order logic even on finite
structures (partially answering a question of H. Friedman). Those quantifiers are
characteristic Lindstrom quantifiers (see definition in 0.1(1) below).
3) Assume ♦ℵ1 ; for any atomic, non-meagre Boolean algebra B and sentence ψ ∈
Lω1,ω there is an atomic non-meagre Boolean algebra B′ of cardinality ℵ1 with
(B,AUT(B)) |= ψ ⇒ (B′,AUT(B′)) |= ψ. If B has ℵ0 atoms (B is possibly in
another universe), ♦ℵ1 can be replaced by CH.

In [She78b] this was continued; but

(a)′ we have changed the question to a stronger one: does any first order T has
model M in which every, say, automorphism between Boolean Algebras
which are definable in M , is definable (so we are not allowed to add Skolem
functions!)

(b)′ point the interest in compactness of logics where we extend the syntax by
adding a quantifier on automorphism of Boolean algebras (such quantifiers
look to me more natural ones). Note that now (i.e. in [She78b]) we have a
fully compact logic stronger than first order even on finite structures rather
than ℵ0-compact; (for example we can say that an atomic Boolean algebra
has an automorphism of order two mapping no atom to itself, on finite
Boolean algebras this says that it has an even number of atoms). Still
also here the proof was not in ZFC; there was a set theoretic assumption
needed: λ strongly inaccessible and ♦{δ<λ+:cf(δ)=λ} holds, subsequently we
have used less — see [She83]

(c)′ deal with higher cardinals

(d)′ point out that for any unstable theory we have such constructions, hence
suggest dealing also with other quantifiers and structures. Specifically we
have dealt with the strong independence property (prototype is random
enough bipartite graph) and (this really appears only in [She83]) ordered
fields.

If we look at the proofs, a major problem was how to build a λ-compact models
of cardinality λ+ by λ+ successive approximations with omitting types (of size λ,
which have no “support” of cardinality < λ), using, when necessary, ♦{δ<λ+:cf(δ)=λ}
and, of course, λ = λ<λ. Parallel difficulties had been encountered in Chang two
cardinal theorem. The problem was in limits of cofinality < λ.

The solution in [She78b], [She78c] was dealing with special types (we shall return
to this in Chapter XI).

In [She81] we succeed with a very reasonable set theoretic assumption on λ to
prove that such constructions generally work ( the price was ♦λ which holds for
λ successor 6= ℵ1 if GCH holds by works of Gregory and the author. Lately, in
[She00], we proved that for λ > iω, for λ successor ♦λ iff λ<λ, and for λ regular
(D`)λ iff λ<λ, and really (D`)λ suffice — see [She81], [HLS93]).
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4 SAHARON SHELAH

In [She83] we have dealt with those constructions more generally, got the or-
dered fields case, and got the strong independence property case (which include
the Boolean Algebra case). For the ordered field case we use ♦λ +♦{δ<λ+:cf(δ)=λ};
for the strong independence cases (and Boolean algebras) we use just instances of
GCH.

The next stage was carried out in Mekler and Shelah [MS93]. The construction
of a λ-saturated model in λ+ using diamonds is replaced by using a black box
(introduced in [She84a], [She84b], extracting general construction principles from
[She78a, VIII 2.6]), which had been used mainly for constructing abelian groups
and modules; see systematic treatment in Chapter IV which include the black
boxes needed in [MS93] and here. So the construction is in ZFC, the types omitted
are of small cardinality, and diagonalization on λ is replaced by “being definable
over a small set”; so non-splitting (see [She78a, §2,Ch.I]) or finite satisfiability
([She78a, §4,Ch.VII]) are natural to be used (in abelian groups this is automatic
as their theory is stable). For inherent reasons we could not “kill” undesirable
automorphisms of structures considered finite, and the results on Boolean Algebras
were not satisfactory — we have to add a special monadic predicate. However,
for automorphisms of ordered fields (or isomorphisms onto) the results were as fine
as we can want: compactness in ZFC. We also improve the result on “trees with
no undefinable branches” (to all uncountable cardinals rather then just for λ+, λ
regular).

Here we get by a similar construction compactness for L ceab = L(Qceab) —
quantifying over complete embeddings of one atomless Boolean ring into another.
Our motivation was the problem on “can the automorphism groups of a 1-homogeneous1

Boolean algebra be non-simple2”? Much is known on this group and, in particular,
that it is “almost” simple — see Rubin and Stepanek [RŠ89]. It was known that
there may exist such Boolean Algebras as by [She82, Ch.IV] in some generic ex-
tension, all automorphisms of P(ω)/finite are trivial and van Dowen note that the
group of trivial automorphisms of P(ω)/finite is not simple (see the proof of 3.9).

Alternatively, Koppelberg [Kop85] has directly constructed such Boolean Al-
gebras of cardinality ℵ1 assuming (the more natural assumption) CH. So by the
completeness theorem here (which is absolute), as the relevant facts are expressible
in L(Qceab), the existence is proved in ZFC. Some may want to derive a direct
proof. It almost certainly will give more specific desirable information.

∗ ∗ ∗

We now explain what are the logics we use; here they are always extensions of
first order logic by some generalized quantifiers in the sense explained below.

First recall the classical:

Definition 0.1. 1) A Lindstrom quantifier has the form QK , where for some
n = n(K) < ω, K is a class of models of the form (A,R) with R an n-place relation,
closed under isomorphism; for notational simplicity we identify (A,R) with R when
A = ∪{a1, . . . , an} : 〈a1, . . . , an〉 ∈ R and we can without loss of generality restrict
ourselves to clauses where this holds. So actually K is a class of n-place relations.

1A Boolean algebra is 1-homogeneous if it is atomless for every a, b ∈ B \ {0B} we have

B � a
∼
=B � b (equivalently for a, b ∈ B \ {0B , 1B} for some automorphism f of B, f(a) = b)

2That is has no normal subgroup which is not trivial
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COMPACT LOGICS IN ZFC: . . . 5

2) The logic Lω,ω(. . . ,QKi , . . .)i∈I is defined as follows: Lω,ω(. . . ,QKi , . . .)[τ ] for a
vocabulary τ is the following set of formulas: it is the closure of the set of atomic
formulas by the usual f.o. (= first order) operations and if ϕ is a formula, so is
ψ = (QKix1, . . . , xn(Ki))ϕ and FVar(ψ), the set of free variable of ψ, is FVar(ϕ) \
{x1, . . . , xn(K)}.

Defining satisfactionM |= (QKix1, . . . , xn(Ki))ϕ(x1, . . . , xnKi , b̄) iff {〈a1, . . . , an(Ki)〉 :

M |= ϕ(a1, . . . , an(Ki), b̄)} ∈ Ki.

This is sufficient to get all logics with finite occurence number, which is natural
in our context as the full compactness implies it.

But we prefer to add quantifiers which are restricted second order ones, so the
syntax is similar to the one of second order logic, but quantification is restricted.
We can reinterpret this as adding many Lindstrom quantifiers but in a way hiding
the point; in particular adding a quantifier below entails adding infinitely many
Lindstrom quantifiers to the logic, moreover adding two such quantifiers is more
than adding Lindstrom quantifier capturing each of them.

Definition 0.2. Consider a first order sentence ψ, ψ = ψ(P, Q̄), which means
Q̄ = 〈Q` : ` < lg(Q̄)〉, where Q` is an n(Q`)-place predicate, P is n(P )-place predi-
cate (and no more non-logical symbols occurs in ψ), we write P = Pψ, Q̄ = Q̄ψ. We
treat function symbols similarly (preferably partial) and we use symbols not occur-
ring in the usual vocabularies, for predicate symbols used as variables P

˜
, Q
˜

, writing

ψ(P
˜
, Q̄
˜

). For a vocabulary τ , we define the language Lω,ω[. . . ,Q∗ψi , . . .]i∈I [τ ], as
we define first order language but we have also second order variables: we have
variables over3 n-place relations iff

∨
i

n(Pψi) = n. Defining the formulas of the

language Lω,ω[. . . ,Q∗ψi , . . .]i∈I [τ ], it is the closure of the set of atomic formulas

(including P
˜

(x1, . . . , xn), P
˜

a variable on n-place predicates, x1, ..., xn are vari-
able over elements or are terms if we have function symbols e.g. individual con-
stants), under the usual first order operations, and (Q∗

ψ(P
˜
,Q̄
˜

)
P
˜
, x̄1, . . . , x̄n)[ϑ̄, ϕ],

where ϑ̄ = 〈ϑ` : ` < `gQ̄
˜
〉, ϑ` = ϑ`(x̄

`), x̄` is a sequence of individual variables with

not repetitions not occurring in x̄k, (for k 6= `), and not occurring in ϕ and P
˜

is a
variable on n(P

˜
)-place relations, P

˜
does not occur freely in any ϑ` and ϕ, but ϕ

may have other individual variables or predicate variables or members of τ .
Defining satisfaction, let M |= (Q∗

ψ(P
˜
,Q̄
˜

)
P
˜
, x̄1, . . . , x̄m)[ϑ̄, ϕ] iff there is an n(P

˜
)-

place relation P ∗ on |M |, for which

(a) ϕ is satisfied when we substitute P ∗ for P
˜

and

(b) letting Q` = {ā` : M |= ϑ`(ā
`)} we have (P ∗, Q0, . . .) |= ψ (again we

identify a model with a sequence of relations).

Remark 0.3. We can translate the problem on the logic L[. . . ,Q∗
ψ(P

˜
,Q̄
˜

)
, . . .] to one

on f.o. logic, see 3. More elaborately
1) We can replace in Definition 0.2 M by M [∗] as in the proof of 3, so apply f.o.
logic to this derived model (there — specific for our quantifier).

3We can use different variables for each Q∗
ψi
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6 SAHARON SHELAH

2) We can repeat this closure operation ω times (each time every new sort comes
from finitely many previous sorts) getting 〈M [α] : α ≤ ω〉; we can allow our vari-
ables each on one of those sorts, so we get a corresponding stronger language
L+[. . . ,Q∗ψi , . . .][τ ]. In this case we look for P

˜
not only among the n(P

˜
)-place

relations on the elements of the original models but also on the set P ′’s satisfying
some “earlier” formula.

∗ ∗ ∗

Concluding Remarks 0.4. 1) Why have we restricted in the quantifier embedings of
Boolean algebras to complete embedding? Suppose h is an embedding of an atomic
Boolean ring B1 (see Definition 2.17) into a Boolean ring B2 and a ∈ B2 \ {0B2

}
satisfies

∧
x∈B1

h(x) ∩ a = 0B2
; let J be any maximal ideal (= complement of as

ultrafilter) on B1 and define the embedding the g = gh,J : B1 → B2 by

g(x) = {h(x) if x ∈ B1, x ∈J , h(x) ∪ a if x ∈ B1, x ∈J }.

(This is a very reasonable assumption and the use of Boolean ring and not Boolean
algebras is just for notational convenience.)

Now if B1 has an independent subset of cardinality µ, 2µ > ‖M‖, then there are
too many J ′s hence too many g’s (i.e. not all of them can be f.o. definable in M).
So we can express many second order properties and so can prove the compactness
theorem fails.
2) Note that we shall use freely

⊗ “the following property of (B1,B2, f) is first order: B1,B2 are Boolean
algebras (or just Boolean rings), f an embedding of B1 into B2 which is a
complete embedding”.

(Many people notice that ⊗ is expressed in a non-first order way: every maximal
antichain is mapped to one hence think that it is a second order property; however it
can also be expressed by: “for no y ∈ B2 \{0B2

} is {x ∈ B1 : x 6= 0B1
}, {f(x)∩y =

0B2
} dense in B1”, this is first order).

Definition 0.5. A Boolean ring B is defined like a Boolean algebra but it has no
distinguish element 1B (still a — b is well defined).

∗ ∗ ∗

We thank J. Baldwin and A. Siton for helping to clarify this work. See more
[S+]. On f.s. (finitely satisfiable) amalgamation (see 2.4(3)(a) and on non splitting
(2.4(3)(b) see here [She90, §4,Ch.VII],[MS93]).
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COMPACT LOGICS IN ZFC: . . . 7

§ 1. The Construction

We first give a quite general model theoretic context (in the next section we
make it more specific). Second, we give the set theoretic assumption (those are
cases in which a suitable black box from Third, we state the theorem of the section:
a construction of a model; in its proof we phrase the relevant black box. We finish
discussing some variants.

Let me stress: this section deals with the abstract construction; readers who
would like to have something more concrete can start with §2, taking on themselves
to believe at least temporarily in 2.8 (which is based on §1). The reader can also read
this section with the following interpretation (which is enough for §1) in mind: K is
the class of models of a fixed first order countable theory T ∗ with Skolem functions,
M ≤ N (i.e. M ≤K N) means M ≺ N,M1

⋃
M0

MM3
2 means rtp(M2,M1,M3) does

not split over M0 (see Definition 2.4(3)(b) and of course M0 ≺ M` ≺ M3) and
c`M (A) is the Skolem hull of A in M . So it is natural in 2.8 to demand somewhat
more.

Explanation 1.1. Concerning the set theory the case we are mainly thinking of
(see Theorem 1.11 (and for its context 1.7)) is λ = (2µ)+, µ large enough, Θ =
{ℵ0}, α∗ = 1, Dℵ0 the filter of compounded subsets of ω,Υ0 = ω. E.g. the case
λ = (2µ)+, µ = ℵ1, κ = ℵ0 is not really harder — we still have the right black box
(with Υ0 = ω2, θ0 = ℵ0, α

∗ = 1; see below) but we have to be more careful in the
bookkeeping, in some clauses. Also in the construction of the models “|K sat| ≤ λ”
suffice, |K sat| < λ being not necessary but in the application we have in mind the
later case is better (if you prefer the first, change < to ≤ in 1.2(C)(3), 1.7(B)).

Definition 1.2. 1) We say that s is a model theoretical context ifs = (λ, µ, κ,K ,≤K

,K sat, c`, gen) satisfies:

(A) κ < µ < λ are regular cardinals

(B) K almost is an a.e.c. which means that Ķ is a class of models (of, fixed
vocabulary τ = τ(K )) closed under isomorphism, |τ(K )| < µ.

2) ≤=≤K is a partial order on K ,M ≤ N implies M ⊆ N and depends just on
the isomorphism type of (M,N), (so f is a K -embedding of M into N if f is an
isomorphism from M onto M ′ for some M ′ ≤K N).
3) M1 ≤ N,M2 ≤ N,M1 ⊆M2 implies M1 ≤M2.
4) If 〈Mi : i < δ〉 is ≤-increasing (in K ) then

⋃
i<δ

Mi ∈ K and j < δ ⇒ Mj ≤⋃
i<δ

Mi.

5) If 〈Mi : i ≤ δ〉 is ≤-increasing (in K ) then
⋃
i<δ

Mi ≤Mδ.

6) If A ⊆ M ∈ K and |A| < κ then for some N ∈ K we have A ⊆ N ≤ M and
‖N‖ < µ.

(C) K sat ⊆ {(N,M) : N ≤ M} is closed under isomorphism and K at = {N :
(N,M) ∈ Ksat}.

7) (N,M) ∈ K sat ⇒ ‖M‖ < µ.
8) If (N,M) ∈ K sat and M∗ ∈ K , ‖M∗‖ < λ then |{f : f is a K -embedding of
N into M∗}| < λ; this follows from (D)(7) when:
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8 SAHARON SHELAH

(i) [α < λ⇒ |α|<κ < λ)], and

(ii) if N = c`N (A) (see below) and |A| < κ then f : N → M∗ is determined
by f�A, i.e. if f` is a ≤K -embedding of N into M∗ for ` = 1, 2 and
f1�A = f2 ∩A then f1 = f2; will be used for M∗ of cardinality λ.

(D) For A ⊆M ∈ K , c`M (A) is a subset of M .

9) If A ⊆ N ≤M then c`M (A) = c`N (A).
10) If A ⊆ B ⊆M ∈ K then A ⊆ c`M (A) ⊆ c`M (B).
11) If A ⊆M then c`M [c`M (A)] = c`M (A).
12) For A ⊆M, genMA =: Min{|B| : B ⊆ A ⊆ c`M (B)}.
13) For A ⊆M, gen′MA =: Min{|B| : A ⊆ c`M (B)}.
14) If (N,M) ∈ K sat then genM (N) < κ.
15) The operation c` is preserved by isomorphism.

We may omit M in c`M (A) and genM (A), gen′M (A) if clear from the context.
We may also write c`(A,M), gen(A,M), gen′(A,M) and let gen(M) = gen(M,M).

(E)
⋃

is a 4-place relation on the set of members of K preserved under iso-

morphism written M1

⋃
M0

MM3
2 or

⋃
(M0,M1,M2,M3).

16) M1

⋃
M0

MM3
2 implies M0 ≤M` ≤M3 for ` = 1, 2.

17) [Monotonicity] If M1

⋃
M0

MM3
2 ,M0 ≤M ′` ≤M`,M` ≤M ′3 ≤M ′′3 and M3 ≤M ′′3

for ` = 1, 2 then M ′1

M ′3⋃
M0

M ′2.

18) [Base enlargement] If M1

⋃
M0

MM3
2 ,M0 ≤ M ′0 ≤ M1,M

′
2 = c`(M2 ∪M ′0) then

M ′2 ∈ K and M1

M3⋃
M ′0

M ′2.

19) [Existence] If M0 ≤M1,M2 then for some M3 and g we have M1 ≤M3, g is a

≤K -embedding of M2 into M3,M1

M3⋃
M0

g(M2) and M3 = c`(M1 ∪ g(M2)).

20) If M1

M3⋃
M0

M2 and ‖M1‖+ ‖M2‖ < µ then ‖c`M3
(M1 ∪M2)‖ < µ.

21) [Transitivity] If 〈M`,α : α ≤ α(∗)〉 is increasing continuous for ` = 0, 1 and

M1,α

⋃
M0,α

M
M1,α+1

0,α+1 for α < α(∗) then M1,0

⋃
M0,0

M
M1,α(∗)
0,α(∗) .

22) [Continuity] If Mα

Nα⋃
M

N0 for α < δ, 〈Mα : α ≤ δ〉 is increasing continuous

〈Nα : α ≤ δ〉 is increasing continuous then Mδ

Nδ⋃
M

N .
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COMPACT LOGICS IN ZFC: . . . 9

Remark 1.3. Used only when genM (M0)<κ, gen(M2) < µ so we can add parallel
restriction in the other clauses, e.g. in (E)(7) we add gen(M0,α(∗)) < µ we write
(E)′ for this version the rephrase ??. Then revise 1.6(2).

Convention 1.4. s is a fixed model theoretic context.

Definition 1.5. 1) A construction A (for the model theoretic context s) is a
sequence A = 〈Mj , N

−
i , Ni, wi : i < α, j ≤ α〉 such that:

(a) 〈Mi : i ≤ α〉 is ≤-increasing continuous chain in K ,

(b) Mi

Mi+1⋃
N−i

Ni and Mi+1 = c`(Mi ∪Ni)

(c) wi ⊆ i is closed for A (see clause (2)(a) below) and |wi| < µ

(d) N−i ⊆Mwi (see below)

(e) ||M0|| < µ,

(f) (N−i , Ni) belongs to K sat.

2) For a construction A = 〈Mj , N
−
i , Ni, wi : i < α, j ≤ α〉:

(a) u is A -closed (or just closed) ifu ⊆ α and [i ∈ u⇒ wi ⊆ u]

(b) Mw = Mw[A ] is defined by induction on sup(w) for any A -closed w as
follows:

(i) if w = ∅ then Mw = M0

(ii) if w = u ∪ {j} and u ⊆ j (hence u is A -closed) then

Mw = c`Mα
(Mu ∪Nj)

(iii) if w has no last element then Mw =
⋃
i∈w

Mw∩i

(note that w ∩ i is A -closed and sup(w ∩ i) ≤ i < sup(w)).
3) Let α = `g(A ) and for β ≤ α we let A � β = 〈Mj , N

−
i , Ni, wi : i < β, j ≤ β〉

and lastly let MA = Mα.
Note: the construction has local character so, e.g. Mδ =

⋃
α<δ

Mα and not just

Mδ = c`Mδ
(
⋃
α<δ

Mα).

Fact 1.6. Let A be a construction.
1) If u ⊆ `g(A ) is closed for the construction A then Mu ≤MA and Mu ∈ K of
course.
2) If u0 ⊆ u1, u0 ⊆ u2, and u0, u1, u2 are A -closed

∧
i∈u1

∧
j∈u2\u0

i < j then

Mu1

⋃
u2

MMA
Mu0

.

3) If I is a directed partial order and w is A -closed and ut ⊆ w is A -closed for
t ∈ I and s <I t⇒ us ⊆ ut then u =

⋃
t∈I

ut is A -closed and

Mu =
⋃
t∈I

Mut ≤Mw ≤Mα∗

4) If u is A -closed and |u| < µ then ||Mu|| < µ.
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5) The ordinal `g(A ) is A -closed, and for β ≤ `g(A ), also A � β is a construction
and β is A -closed.

Proof. By induction on the length of the construction. �1.6

Definition 1.7. sett is a set theoretic context if sett = (λ, µ, κ,Θ, S, S̄, Ῡ, D̄∗, S̄∗, S−, S̄−, τ̄ , N̄, Ῡ, ρ̄)
satisfies:
(A) λ > µ > κ are regular, Θ ⊆ [κ, µ) is a non-empty set of regular cardinals such
that ∧

θ∈Θ

∧
α<λ

|α|θ + |α|<κ < λ

(B) λ > 2µ or at least λ > |K sat|.
(C) S ⊆ {δ < λ : cf(δ) ∈ Θ} is a stationary subset of λ, S̄ = 〈Sζ : ζ < α∗〉 is
a sequence of pairwise disjoint stationary subsets of S, Ῡ = 〈Υζ : ζ < α∗〉,Υζ <
µ,

∧
δ∈Sζ

cf(δ) = cf(Υζ), D̄
∗ = 〈D∗ζ : ζ < α∗〉, D∗ζ a κ-complete filter on Υζ containing

all co-bounded subsets of Υζ .
Note that necessarily cf(Υζ) ∈ Θ, we call it θζ .

(D) S− a stationary subset of λ, S ∩ S− = ∅, S̄− = 〈S−ζ : ζ < λ〉 is a sequence

of pairwise disjoint stationary subsets of S− such that [δ ∈ S− ⇒ cf(δ) ≥ κ]. Also
S̄∗ = 〈S∗ζ : ζ < α∗〉 is a sequence of stationary subsets of λ such that [δ ∈ S∗ζ ⇒
cf(δ) = κ];S∗ζ appear in clauses (I)1,ζ(δ), (I)2,ζ(δ).

(E) For each ζ < α∗,
⋃
ε 6=ζ

Sε ∪ S− does not reflect in Sζ .

(F ) τ̄ is 〈τζ : ζ < α∗〉, N̄ = 〈N̄ζ : ζ < α∗〉, Ῡ = 〈Ῡζ : ζ < α∗〉 and for ζ < α∗, τζ is

a vocabulary of cardinality ≤ κ, N̄ζ = 〈N̄ζ
δ : δ ∈ Sζ〉 and Ῡζ = 〈Υζ

δ : δ ∈ Sζ〉 for ζ <

α∗ are such that Υζ
δ ⊆ (θζ)δ and for every η ∈ Υζ

δ we have: η is strictly increasing

with limit δ,T ζ
δ = {η�i : i ≤ θζ , η ∈ Υζ

δ}, N̄
ζ
δ = 〈Nζ

δ,η : η ∈ T ζ
δ 〉, N

ζ
δ,η is a τζ-model

with universe ∈H<µ(λ), [η / ν ∈ T ζ
δ ⇒ Nζ

δ,η ⊆ Nζ
δ,ν ], i < `g(η)⇒ η�(i+ 1) ∈ Nζ

δ,η

and Nζ
δ,η is ⊆-increasing continuous with η, 〈〉 C η ∈ T ζ

δ ⇒ Nζ
δ,η =

⋃
{Nζ

δ,η�(i+1) :

i < `g(η)} and `g(η) < θζ and η ∈ T ζ
δ ⇒ (∃α < δ)(Nζ

δ,η ∈H<µ(α))).

(G) We have4 ρ̄ = 〈ρη : η ∈
⋃
{Υζ

δ : delta ∈ Sζ , ζ < α∗}〉 such that for η ∈
Υζ
δ , rhoη is a strictly increasing sequence of ordinals < δ with limit δ, `g(ρη) = Υζ

and i < Υζ ⇒ ρη�i ∈ Nζ
δ,η.

(H) For η 6= ν from Υζ
δ we have {i < Υζ : [ρη(5i+ 1), ρη(5i+ 4))∩Nν = ∅} ∈ D∗ζ

(I) For ζ < α∗ clause (α) of (I)1,ζ or clause (α) of (I)2,ζ holds and we have (I)1,ζ +
(I)2,ζ where I1,ζ ] [the guess]

Assume:

(α) ζ < α∗, θ = θζ = Υζ

(β) T ⊆ θ>λ, 〈〉 ∈ T ,T closed under initial segments

(γ) T is (< θ)-closed, which means: if η ∈ jλ, j < θ is a limit ordinal, and∧
i<j

η� ∈ T then η ∈ T

4note that the Υζ
δ -s are pairwise disjoint as from η ∈ Υζ

δ we can reconstruct δ as sup Rang(η)

and ζ can be reconstructed from δ as 〈Sζ : ζ < α∗〉 is a sequence of pairwise disjoint sets.
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(δ) for every η ∈ T , for some club E of λ, [α ∈ E ∩ S∗ζ ⇒ ηˆ〈α〉 ∈ T ]

(ε) for η ∈ T , Nη is a model of cardinality < µ with vocabulary τζ , |τζ | ≤ κ,
universe; note:Recall that H<µ(λ) is the family of sets of hereditary cardi-
nality< µ considering the ordinals< λ as atoms, i.e. x ∈H<µ(λ)iff (∃y)[x ⊆
y and |y| < µ and (∀t)[t ∈ y and t not an ordinal ⇒ t ⊆ y] ∈ H<µ(λ),∧
i<`g(η)

η�(i+ 1) ∈ Nη and ν / η ⇒ Nν ⊆ Nη and: if η has limit length then

Nη =
⋃
{Nη�i : i < `g(η)}.

Then for stationarily many δ ∈ Sζ for some η ∈ Υζ
δ we have∧

i<θ

η�i ∈ T

∧
i<θ

Nη�i = Nζ
δ,η�i

ρη = η

moreover, for every club E of λ there are such ζ, δ with rang(η) ⊆ E ∩ S∗ζ .

(I)2,ζ

Assume:

(α) θ = θζ , θ
2 divides Υζ , 〈γεζ : ε < θ〉 a strictly increasing sequence of ordinals

with limit Υζ , a ⊆ θ = sup(a) such that {δ ∈ S∗ζ : cf(δ) = cf(γεζ)} is

stationary (for each ε < θ) and A ⊆ Υζ and (∀∗ε ∈ a)(∀∗ξ < γεζ)(ξ ∈ A)⇒
A ∈ Dζ . (Recall that (∀∗ε ∈ a) means for every large enough ε ∈ a.

(β) T ⊆ θ>λ, 〈〉 ∈ T ,T closed under initial segments

(γ) T is (< θ)-closed i.e. for j limit ordinal < θ, if η ∈ jλ and
∧
i<j

η�i ∈ T

then η ∈ T

(δ) for every η ∈ T , for some club E of λ we have [α ∈ E ∩ S∗ζ ⇒ ηˆ〈α〉 ∈ T

(ε) for η ∈ T , Nη is a model of cardinality < µ with vocabulary τζ , universe
∈ H<µ(λ),

∧
i<`g(η)

η�(i + 1) ∈ Nη, and i < `g(η) ⇒ ρη�(i+1) ∈ Nη, [ν / η ⇒

Nν ⊆ Nη] and if η has limit length then Nη =
⋃
{Nη�i : i < `g(η)}

(ζ) for η ∈ T , ρη ∈ Υζ>λ is strictly increasing `g(ρη) = sup{γε : ε ∈ a ∩ `g(η)}
and [ε ∈ a ∩ `g(η) ⇒ η(ε) =

⋃
j<`g(ρη)

ρη(j)], ρη is /-increasing and for some

ε < θ we have η / ν ∈ T ∩ ελ⇒ ρη ∈ Nν .

Then for stationarily many δ ∈ T for some η ∈ Υζ
δ we have5∧

i<θ

η�i ∈ T

∧
i<θ

Nη�i = Nζ
δ,η�i

ρη =
⋃
j<θ

ρη�j .

5normally, we also get rang(ρη) ⊆ E we thus require choosing the “right” Nη , ρη .
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12 SAHARON SHELAH

Moreover, for a given club E of λ we can demand

rang(η) ⊆ S∗ζ ∩ E.

Remark 1.8. 1) A natural case is α∗ = 1, θ0 = θ = Υ0 = ℵ0.
2) We can replace τζ by 〈τζ,ε : ε ≤ θ〉, increasing continuous sequence of vocabularies
and Nδ

ζ,η is a τζ,`g(χ)-model in clause (F) and Nη is a τζ,`g(η)-model in subclause

(ε) of (I)1,aζ , (I)2,ζ .

Definition 1.9. We say that (s, sett) is an m+ s context if s is a model theoretic
context, sett is a set theoretic context and (λs, µs, κs) = (λsett, µsett, κsett).

Claim 1.10. 1) If λ, µ, κ,Θ, 〈Υζ , D
∗
ζ : ζ < α∗〉 satisfy ⊗ below then there is a

set theoretic context sett with λsett = λ, µsett = µ, κsett = κ,Θsett = Θ, α∗,sett =
α∗, (Υsett

ζ , Dsett
ζ ) = (Υζ , Dζ) and τ sett

ζ , e.g. is τℵ0,ℵ0

⊗ (a) λ > µ > κ are regular cardinals

(b) Θ ⊆ [κ, µ) a non-empty set of regular cardinals

(c) (λ−)<µ = λ− where λ− is the predecessor of λ that is λ = (λ−)+

(d) for each ζ < α∗ at least one of the following:

(α) θζ = ℵ0,Υζ < µ is divisible by θζ × θζ , and cf(Υζ) = θζ ,

(β) λ− = 2χ, χ strong limit singular > µ and θζ = Υζ = cf(χ)

(γ) inducting from (β) (see

2) We can add the following demand on sett: if ζ < α∗, θζ = ℵ0 then for η, ν ∈ Υζ
δ ,

Nζ
δ,η is isomorphic to Nζ

δ,ν by an isomorphism preserving ∈, (so being an ordinal

and their order) mapping ρη�i to ρν�i for i < Υζ
δ and map Nζ

δ,η�i onto Nζ
δ,ν�i for

i < θζ and Nζ
δ,η ∩N

ζ
δ,ν = Nζ

δ,η∩ν for η, ν ∈ Υζ
δ .

Proof. See [Shea, 3.xx]. �

Theorem 1.11. Assume that (s, sett) is an m+s context, that is K ,≤K ,K sat,
⋃

,

λ, µ, κ are as in 1.2 and λ, µ, κ, Θ, S, 〈θζ ,Υζ , D
∗
ζ , N̄

ζ : ζ < α∗〉, S, 〈Sζ : ζ < α∗〉,
〈S−ζ : ζ < λ〉S̄∗, 〈ρη : η ∈ ∪{Υζ

δ : ζ < α∗, δ ∈ Sζ}〉 are as in 1.7.

Then there are I, B̄ = 〈Bα : α ≤ λ〉 (and we let B = Bλ) such that:

(a) B̄ is a ≤K -increasing continuous sequence of members of K

(b) for α < λ, the universe of Bα is an ordinal γα, α ≤ γα < λ

(c) I is a directed subfamily of {N : N ≤K B and ‖N‖ < µ} such that
(∀ā ∈ κ>B)(∃N ∈ I)[ā ∈ κ>N ] and I is closed under unions of increasing
chains of length < κ, so I is (< κ)-directed

(d) if N ∈ I, (N,M) ∈ K sat and ζ < λ then for stationarily many δ ∈ S−ζ ,
there is a ≤K -embedding g of M into Bδ+1 satisfying g�N = idN and
Bδ

⋃
N
g(M) (you can add c`B(Bδ ∪M) = Bδ+1)

(e) if α ∈ S− or α is a successor N ordinal and ā ∈ κ>B then for some N−,
N ∈ I we have N− ≤K N ≤K B,N− ≤K Bα, ā ∈ κ>N and Bα

⋃
N−

N

(f) Assume
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(α) ζ < α∗, θ = θζ ,D = D∗ζ ,Dom(D) = Υ = Υζ so cf(Υ) = θ

(β) T ≤ γ>λ, 〈〉 ∈ T ,T closed under initial segments and for every η ∈
T for some club E of λ, [α ∈ E ∩ S∗ζ ]⇒ [ηˆ〈α〉 ∈ T ] and each η ∈ T
strictly increasing

(γ) T lim = {η : η ∈ θλ \T and
∧
α<θ

η�α ∈ T }

(δ) 〈N̄η, ρη : η ∈ T ∪T lim〉 is such that:

(i) Nη ∈ I,

(ii) for η ∈ T lim we have 〈Nη�i : i ≤ `g(η)〉 is ≤K -increasing
continuous and 〈ρη�i : i ≤ `g(η)〉 is /-increasing continuous,

(iii) for η ∈ T lim∩Υλ and i < `g(η) we have Nη∩Bη(5i+4) ⊆
Nη ∩Bη(5i+1) and

Bη(5i+4)

⋃
Nη ∩Bη(5i+1)

Nη

(ε) we have B+,B ≤K B+ and 〈N+
η : η ∈ T lim〉 such that: Nη ≤K

N+
η ≤K B+, ‖N+

η ‖ < µ and N+
η computable continuously from

Nη�i,Bη(i) (for i < `g(η)), that is: 〈N+
η,i : i < θ〉 is increasing with

union N+
η and for every i < θ for some j ∈ (i, θ), for every ν ∈ T lim

such that η � j = ν � j we have: there is an isomorphism g from
c`(Bη(i) ∪ N+

η,i) onto c`(N+
η ∪ Bδ) =

⋃
i<θ

c`(N+
η,i ∪ Bη(i)). Then for

every club E of λ, for some δ ∈ S, there are η ∈ T lim, g such that:

(ζ) i < `g(η)⇒ η(i) ∈ E
(η) g is a ≤K -embedding of N+

η into Bδ+1 over Nη

(θ) Bδ

⋃
Nη

g(N+
η )

(g) If ζ < α∗, δ ∈ Sζ and η ∈ Υζ
δ then for every M1 ∈ I there is M2 ∈ I such

that M1 ≤M2 and g(N+
η ) ⊆M2 and the following set belongs to D∗ζ :

{i < θ : Bη(5i+4)

⋃
c`(M2 ∪Bη(5i+1)) ∪ (Nη�(5i+1))

M2}.

Proof. Straightforward. �1.11

Claim 1.12. 1) In 1.11 we can have instead K sat a family F = {fα : α <
α∗}, α∗ < λ, the domain of each f ∈ F is ⊆ {(N,N+) : N ∈ K }, and for every
M ∈ K of cardinality < λ the number of ≤K -embeddings of N into M is < λ,
N ≤ N+, N+ has universe an ordinal < λ and N+ ≤ f(N,N+) ∈ K<λ. So the
change is in clause (d) of 1.11.
2) We can add in 1.11

(h) there is a construction A = 〈Mi, Ni, N
−
i , wi : i < λ〉,MA = B = Bλ,Bα =

Miα , if δ ∈ Sζ , ζ < α∗

(α) Υζ
δ ,T

ζ
δ , N̄

ζ
δ , ρ̄ = 〈ρη : η ∈ Υζ

δ〉 are as in clauses (F ), (G) of 1.7,

T ′ = {η ∈ T ζ
δ : (Nζ

δ,η�τ)�(|Nζ
δ,η| ∩ λ)} has the form Mw[ζ,δ,n] where

w[ζ, η, δ] is closed for the construction A .
Either the conclusion of clause (e) holds or
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(β) for some list 〈ηζδ,i : i < i∗〉 of some Υ ⊆ (lim(T )) ∩ T ζ
δ and Bδ,i(i ≤

i∗, i∗ zero or limit) we have: Bδ,0 = Bδ,Bδ,i∗ = Bδ+1,Bδ,i increasing
continuous Bδ,j = Mαδ+j,
Bδ,i+1 = c`(Bδ,i ∪N+

ηζδ,i
)

Bδ,i

⋃
Nηζδ,i

N+

ηζδ,i
(in fact N−αδ+j = Nηζδ,i

, N+
αδ+j

= Nηζδ,i
)

(γ) For every M ∈ I, for some w ⊆ `∗, |w| < θζ and M ′,M ≤ M ′ ∈ I we
have:

(i) Bδ+1

⋃
M ′ ∩Bδ+1

M ′

) (ii) N+

ηζδ,i
⊆M for i ∈ w

(iii) for every large enough successor α < δ

Bδ+1

⋃
c`(Bα ∪

⋃
i∈w

N+

ηζδ,i
)

M ′.

Remark 1.13. 1) Note 1.14(1) will cover the existence of 22(N+|T |)
-type definition

over a model N .
2) In 1.14 we can even waive closure under isomorphism choosing Fα together with
Bα by induction on α.

Claim 1.14. 1) We can weaken the black box in 1.7 by replacing clause (H) by:

(H)′ if η 6= ν are from Υζ
δ , δ ∈ Sζ then

{i < θ : [η(5i+ 1), η(5i+ 4)) ∩
⋃
j<θ

[ν(5j + 1), ν(5j + 4)) = ∅} ∈ Dζ .

The results are:

(A) in clause (f) of 1.11 we have to strengthen in the assumption (δ) the state-
ment (∗) to

(∗)+ Nη�i ≤K Bη(i+1) and Bη(5i+1)

⋃⋃
j<i

Nη�(5j+3)

Nη

(B) We have a stronger existence theorem: in 1.10(d) we can add the cases:
code by 〈h(η(i)) : i < `g(η)〉, where for x ∈ H<µ(λ), {β < λ : cf(β) =
θ, β ∈ S−, h(β) = x} is stationary.

2) For 4) this weakened the version of the set theoretic context (called it 1.7−) in
1.10(d)(β) the case θζ = ℵ0 can be omitted [use [Shea, 3.17]].

Claim 1.15. Assume that we add to the assumptions in 1.11

(∗) if N− ≤ N ∈ K<λ, N
− ≤ M ∈ K<λ then there are < λ pairs in

{(M+, g) : M ≤ M+, g a ≤K -embedding from N into M+ over N− such

that M
M+⋃
N−

g(N) up isomorphism over M (i.e. (M+
1 , g1) ∼= (M+

2 , g2) iff
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there are M ′1,M2 such that M+
1 ≤K M ′1,M

+
2 ≤K M ′2, f1 an isomorphism

from M ′1 onto M ′2 over M with g2 = f ◦ g).

Then in 1.11 we can add:

(a) if N− ∈ I,N− ≤K N ∈ K<µ then for some α < λ we have: if for
` = 1, 2, g` is a ≤K -embedding of N into B over N−,Bα

⋃
N−

g`(N) then

for some β < λ and M,f we have Bβ ≤M ∈ K<λ, f an automorphism of
M over Bα such that g2 = f ◦ g1.

(b) Suppose g is a function from the set of (N−, N, α) as above, into λ, depend-
ing only on (N, c)c∈N−/ ∼= and α then for some club E of λ : δ ∈ E ∩ S−
we have:

(∗) if N− ∈ I,N− ≤ Bδ and N− ≤ N ∈ K<µ then for some α < δ we
have (N−, N, α) ∈ Dom(g) and g(N−, N, α) < δ

(∗∗) for every ā ∈ κ>B for some (N−, N, α) ∈ Dom(g), α < δ, ā ∈ κ>N ,
so g(N−, N, α) < δ.

Proof: See Stage C of the proof of 2.16.

Remark: This is O.K. when λ− = (λ−)
<µ

; |τK | < µ; when we want otherwise our
bookkeeping should be more careful.

Claim 1.16. We can add in 1.11 the condition (∗) provided we make the other
changes listed below:

(∗) if δ ∈ S−, ā ∈ κ>B then for some N− ≤ N ≤ B, gen(N) < κ, gen(N−) <
κ,N ≤ Bδ and Bδ

⋃
N−

N but

(a) µ = κ+,Θ = {κ}
(b) in clause (f) we add: for if η ∈ T lim, gen(N−η ) < κ and δ = ∪{η(i)+1 :

i < `g(η)} is a limit ordinal, then for arbitrarily large successor α < δ
we have gen(Nη ∩B) < κ.

Remark 1.17. 1) We have sometimes to consider not just N ≤ N ′; say that a free

extension N ′

N is realized stationarily often but also in the cases that there are quite a
few but boundedly many such extensions; we may, for example, consider all triples

N ≤ N1 ≤ N2, N1
⋃
N
N2 and extend N2

N1 .

2) The construction should be such that (c)(∗∗) of 2.7 can be deduced — better,
but not necessary here.
3) We may reconsider [§4,Ch.VII]Sh:c, we use there almost symmetric cases of

⋃
nsp

(see Definition 2.4).
4) We may consider constructions A where the index set is not in an ordinal and is
not well ordered. In particular for the B we construct we may consider, for δ ∈ S
limit, adding 〈N+

η : η ∈ T ζ
δ 〉 in a natural lexicographic order. It may be useful.
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§ 2. Analyzing the Complete Embeddings of Boolean Rings

In this section we specify our construction (in 2.1–2.9). Then we investigate the
properties of the model B, till we conclude our main result: in B all complete
embeddings of one atomless Boolean ring to another (both are considered as “sets”
by B) are definable.

Context 2.1. 1) Let χ∗ be a strong limit cardinal, D∗ an ultrafilter on H (χ∗) such
that for every x ∈H (χ∗), the set {w : w a finite subset of H (χ∗), (so w ∈H (χ∗))
and x ∈ w} belongs to D∗.
2) Let C∗ be a model with countable vocabulary expanding (H (χ∗),∈, <∗χ∗), <∗χ∗
a well ordering of H (χ∗), (notice that it follows that C∗ has definable Skolem
functions) such that every definable relation/function is equal to a relation/function
of the model; even allowing the quantifier “for the D∗-majority of x′s”; i.e.

(∗)0 for every formula ϕ(x, ȳ) for some predicate Rϕ(ȳ) for any ā ∈ `g(ȳ)(C∗) we
have: C∗ |= Rϕ[ā] iff {x ∈H (χ∗) : C∗ |= ϕ[x, ā]} ∈ D∗.

Let T ∗0 = Th(C∗).
Let T ∗1 denote an expansion of T ∗0 such that τT1) \ τ(T ) consist of individual

constants only. Let T ∗ be our fixed T ∗1 . For M |= T ∗, A ⊆ M , let SkM (A) be the
Skolem Hull of A in M . We assume for simplicity (on T1 see 2.2(2)):

(∗)1 |Sk(∅)| = |T ∗| ≥ ℵ0.

3) To avoid confusion, the predicate of T ∗ corresponding to ∈ will be E .
4) Let genMA = Min{|B| : B ⊆ A ⊆ SkM (B)}, gen′MA = min{|B| : B ⊆ M,A ⊆
SkM (B)}. (If M is clear or its choice among the reasonable candidates immaterial,
we may omit it).
5) In a model M of T ∗, w ∈M is pseudo finite if M “thinks” it is finite (so we may
say w and mean {a ∈M : M |= aEw}). We may forget to say “in the sense of M”
when clear from the context.

Fact 2.2. There are such C∗, T ∗ with countable vocabularies.

Remark 2.3. 1) Of course, we shall use the syntactical properties of T ∗ only, but
thinking on H (χ∗) is supposed to clarify.
2) In particular C∗ (and H (χ∗)) may be chosen in another universe of set theory
(e.g. one obtained by forcing) with the same sets of natural numbers, hence T ∗ ∈ V.
We can even just use “ T ∗ is any completion of a theory T ′ such that:

(a) every finite subset of T , has in some generic extension of V such a model
(but ϕ(x, ȳ) 7→ Rϕ(ȳ) is constant)

(b) T ′ is “rich” enough i.e. satisfies all what we shall use.

3) Note that because of (∗)1 from 2.1(2): if M is a θ-saturated model of T ∗, A ⊆
M, |A| < θ, |A| ≤ |T ∗| then gen′M (A) < ℵ0.

Note: if M is a θ-saturated model of T ∗0 , A ⊆M, |A| < θ, |A| ≤ |T1| and |τ(T ∗)| ≤
θ then M can be expanded to a model of T ∗.

Again for this section
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Definition 2.4. 1) For x ∈ {fs,nsp} and regular cardinals λ > µ > κ (and T ∗

as above) we define s = sxT∗(λ, µ, κ) with the intension that it is a model theoretic
context:

(a) (λs, µs, κs), is (λ, µ, κ)

(b) Let K = KT∗ be the class of models of T ∗ and M ≤K N iff M ≺ N (and
are in K )

(c) c`s(A,M) is SkM (A), the Skolem hull of A inside M

(d)
s⋃

is
x⋃

(among model of T ∗), as defined in part (3) below

(e) K at = K at
κ = K at

T∗,κ be the class of models of T ∗ generated by < κ

elements. Let K sat = {(N,M) : N ≺M are both in K at
T∗,κ}.

2) We use only one of the following choices of
⋃

:

[recall that tp(A,B,M) = {ϕ(xa1 , ..., xan , b̄) : a1, ..., an ∈ A, b̄ ∈ B} and M |=
ϕ[a1, ..., an, b̄] (so A,B ⊆M)

(a)
⋃

=
⋃
fs

means: M1

⋃
M0

MM3
2 if and only ifM0 ≺ M1 ≺ M3, M0 ≺ M2 ≺

M3, all of them models of T ∗ and tp(M2,M1,M3) is finitely satisfiable in
M0

(b)
⋃

=
⋃

nsp
means M1

⋃
M0

MM3
2 if and only if M0 ≺ M1 ≺ M3,M0 ≺ M2 ≺

M3, all of them models of T ∗ and tp(M2,M1,M3) does not split over M0

which means: if ā ∈ n(M2) and b̄0, b̄1 ∈ m(M1) and tp(b̄0,M0,M1) =
tp(b̄1,M0,M1) then for any formula ϕ = ϕ(x0, . . . , xn−1; y0, . . . , ym1) we
have M3 |= “ϕ(ā, b̄0) ≡ ϕ(ā, b̄1)”.

We use
⋃

=
⋃

nsp
except in 2.5. For x ∈ {fs,nsp} the extension to A1

M3⋃
M0

A2

(M0 ≺M3, A1 ⊆M3, A2 ⊆M3) is natural.

We could have extend those definitions to the case B
M4⋃
A
C but if M4 has Skolem

functions, M0 = Sk(A) we abuse our notation by letting B
M4⋃
A
C mean B

M4⋃
M0

C

(note B
M4⋃
M0

C iff M0 ∪B
M4⋃
M0

M0 ∪ C).

4) We say p is a type-definition over N (speaking on types with the α variables,
〈xi : i < α〉), if:

(a)
⋃

=
⋃
fs

and p is an ultrafilter on αN , and if N ⊆ A ⊆ M , or just N ≺ M

and A ⊆M then pA = {ϕ(x̄, ā) : ā ∈ ω>A} and {b̄ ∈ αN : M |= ϕ[b̄, ā]} ∈ p
or
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18 SAHARON SHELAH

(b)
⋃

=
⋃

nsp
and p is a function from {〈ϕ(x̄, ȳ), q(ȳ)〉 : ϕ} a formula, q(ȳ)

a complete type over N to {truth, false} and if A ⊆ M,N ≺ M then
pA = {ϕ(x̄, ā) : ā ∈ ω>A} and p(〈ϕ(x̄, ȳ), tp(ā, N,M)〉) = truth}.

We may write p = P(x̄, c̄) if x̄ = 〈xi : i < α〉 and ā ⊆ N and: in Case (a), for
every u ≤ α the set {b̄ ∈ αN : b̄�u ∈ u(Rang(c̄)} belongs to p and in case (b), ā list
N (or we demand 〈ϕ(x̄ȳ), q(ȳ)〉 ∈ Dom(p)⇒ q(ȳ) ∈ S `gȳ(Rang(c̄), N).

We say p is of kind
⋃
fs

or of kind
⋃

nsp
respectively. So we should have written

pA,M in both cases.

Claim 2.5. 1)
⋃
fs
, (M0,M1,M2,M3) implies

⋃
nsp

, (M0,M1,M2,M3).

2) B
M4⋃
A
C iff Sk(B)

M4⋃
Sk(A)

Sk(C) (recalling that we are assuming the existence of

Skolem functions).

3) [finite character] B
M4⋃
A
C if and only iffor every b̄ ∈ ω>B, c̄ ∈ ω>C we have

b̄
M4⋃
A
c̄; this implies continuity, see 1.2(8).

4) [monotonicity] if B
M4⋃
A
C,B′ ⊆ B,C ′ ⊆ C,A∪B∪C ⊆M4 ≺M ′4 then B′

M4⋃
A
C ′.

5) [monotonicity] if B
M4⋃
A
C,A ∪B ∪ C ⊆M ′4 ≺M4 then B

M ′4⋃
A
C.

6) [transitivity] if B0

M⋃
A0

A1, B1

M⋃
A1

A2, A0 ⊆ A1 ⊆ A2, B0 ⊆ B1 then B0

M⋃
A0

A2.

7) If Aα ⊆ M(α < δ) increases with α, āα ∈ Aα+1, tp(āα, Aα,M) does not split
over A0 and is increasing with α then 〈āα : α < δ〉 is an indiscernible sequence
over A0.

8) [base enlargement] If M1

M3⋃
M0

M2 and M0 ≺M ′0 ≺M1 and M ′2 = SkM3
(M ′0∪M2)

then M1

M3⋃
M ′0

M ′2.

9) [existence] if M0 ≺M` for ` = 1, 2 then we can find M3, f such that M1 ≺M3, f
is an elementary embedding of M2 into M3 and

⋃
fs

(M0,M1, f(M2),M3).

Proof. Straightforward. �2.4

We now become more specific.

Claim 2.6. If λ > µ > κ are regular and (∀α < µ)(|α|<κ < λ) and x ∈ {fs,nsp},
then s = sxT∗(λ, µ, κ) is a model theoretic context, see Definition 1.2.

Proof. The non-trivial part is clause (E) of 1.2 which follows from 2.5. �2.6

So by 1.11
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Theorem 2.7. Assume (s, sett) is an m+s context, s = snsp
T∗ (λ, µ, κ) and α∗,sett = 1

(and6 ∂ < κ⇒ 22∂+|T
∗| ≤ λ, λ, θ, κ,Υ, D∗θ , S, S− are as in 1.7 (and cf(Υ) = θ) and

T ∗ as in 2.1.
Then we can find 〈Bα : α ≤ λ〉,B = Bλ as in 1.11 for (s, sett).
Actually the properties we shall use are:

(I) the set theoretic properties:

(A) λ = cf(λ),Υ an ordinal, cf(Υ) = |Υ| = κ = θ, λ > 22|T
∗|

+
∑
β<κ

22|β|

and [α < λ⇒ |α|<κ < λ]

(B) S ⊆ {δ : δ < λ and cf(δ) = θ} is stationary, S− ⊆ {δ < λ : cf(δ) ≥ θ}
is stationary and disjoint to S

(C) T ∗ is as in 2.1

(D) D∗θ is a filter on Υ containing the co-bounded subsets, there are ≥ 2
disjoint sets of successors 6= ∅ mod D∗θ

(II) the model theoretic properties:

(a) 〈Bα : α ≤ λ〉 is an increasing continuous elementary chain of models
of T ∗, [α < λ⇒ ‖Bα‖ < λ],B = Bλ

(b) B is κ-saturated; moreover if p is a type-definition over N ≺ B,
gen(N) < κ then for stationarily many δ ∈ S−, some ā ∈ Bδ+1

realizes pBδ and Bδ+1 = Sk(Bδ ∪ ā) and for some b̄ ∈ κ>B we have

Bα

B⋃̄
b
ā

(c) if ā ∈ κ>B, α ∈ S− then some ā, b̄ are as in clause (b)

(d) This is for the case Υ = θ = κ.

Assume that we have M, 〈Nη, αη, βη : η ∈ θ≥λ〉, 〈N+
η : η ∈ θλ〉 such that:

(i) η ∈ θ>λ ⇒ Nη ≺ Bβη and gen(Nη) < θ and η ∈ θλ ⇒ 〈Nη�i : i ≤ θ〉 is
increasing continuous

(ii) η / ν ⇒ Nη ≺ Nν , and if η ∈ θλ then Nη ≺ N+
η ≺M

(iii) for η ∈ θλ, 〈αη�i : i < θ〉 is increasing continuous and for i limit βη�i = αη�i

(iv) η / ν ⇒ αη < αν and αη ≤ βη < αν ≤ βν
(v) B ≺M,

∧
η
N+
η ≺M, gen(N+

η ) ≤ θ

(vi) for η ∈ (i+1)λ, i ≤ θ we have Bαη�i

M⋃
Nη�i

Nη

(vii) for each η ∈ θ>λ the sequence 〈αηˆ〈γ〉 : γ satisfies sup Rang(η) < γ < λ〉 is
strictly increasing

(viii) for η ∈ θλ and i < θ we have Bαη�i

M⋃
Nη�i

Nη

6we omit this if in (II)(b) for each N we restrict the family of p we use to be of cardinality ≤ λ
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(ix) N+
η =

⋃
i<θ

N+
η,i, N

+
η,i increasing continuous and the isomorphism type of N+

η,i

over Nη is computed continuously which means: for every i < θ for some
j ∈ (i, θ) we have η � j C ν ∈ 0λ⇒ tp(N+

η,i,Bαη�i ,M) = tp(N+
ν,i,Bαν�i ,M)

and nonforkinBαη�iN
+
ηi

M

Nηi
.

Then for stationarily many δ ∈ S, for some η ∈ θλ such that 〈η(i) : i < θ〉 strictly
increasing with limit δ, there is an elementary embedding g : SkM (Bδ ∪ N+

η ) →
Bδ+1, g�Bδ the identity, and

(∗) for every ā ∈ θ>B, for some N ≺ B we have gen(N) ≤ θ,Nη ∪ ā ⊆ N and
the following set belongs to D∗θ

{i < θ : we have (Bβη�i)
B⋃

(N ∩Bαη�i) ∪Nη�i
ā and gen(N ∩Bαη�i) < θ} ∈

(e) Assume

(α) 〈Ni : i ≤ θ+1〉 is an elementary increasing continuous chain of models
of T ∗, āi ∈ κ>(Ni+1), Ni = SkNθ+1

(
⋃
j<i

āj), for i ≤ j ≤ θ + 1, pi,j =

pi,j(
⋃

ε∈[i,j)

x̄ε, . . . , āζ , . . .)ζ<i is a type-definition, and tp(
⋃

ε∈[i,j)

āε, Ni, Ni+1) =

pNii,j , and for i < θ the sequence 〈pi,j : i < j ≤ θ + 1〉 commute which
means: if i0 < i1 < i2, and N0 ≺ N1 ≺ N2 ≺ N3, and āε ∈ N0 for
ε < i0, āε ∈ N1 for ε ∈ [i0, i1), āε ∈ N2 for ε ∈ [i1, i2) and 〈āε : ε ∈
[i`, i`+1)〉 realizes (pi`,i`+1

(
⋃

ε∈[i`,i`+1)

x̄ε, . . . , āε, . . .)ε<i`)
N0 for ` = 0, 1

then 〈āε : ε ∈ [i0, i2)〉 realizes (pi0,i2(
⋃

ε∈[i0,i2)

x̄ε, . . . , āε, . . .)ε<i0)N0

(β) T ⊆ θ≥λ is non-empty, closed under initial segments

(γ) 〈aη, βη : η ∈ T ∩ θ>λ〉 satisfies

(i) for η / ν ∈ T , αη < βη ≤ ν(`g(η)) < αν < βν

(ii) for η ∈ T ∩ θ>λ 〈αη�i : i < `g(η)〉 is increasing continuous

(δ) 〈āη : η ∈ T 〉,B+ satisfies

(i) B ≺ B+

(ii) āη ∈ Bβη when η ∈ T ∩ θ>λ
(iii) for η ∈ T ∩ iλ : i < θ, āη realizes pi,i+1(x̄i, ..., āη�j , ...)j<i

(iv) for η ∈ T ∩ θλ, āη ∈ B+ and
⋃

ε∈[i,θ+1)

āη�ε realizes pBα

i,θ+1.

Then:

(ε) for every club E of λ, for some strictly increasing continuous sequence
〈αε : ε ≤ θ〉 of ordinals7 from E (in fact listing the set Cαθ from 1.5C):
if ζ ≤ θ is limit and η ∈ ζλ we have:

∧
ε<ζ

η�ε ∈ T ,
∧
ε<ζ

αε ≤ η(ε) < αε+1

7if we add x̄ζ is empty for limit ζ < 0 the phrasing is simplified
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then there is ā ∈ Bαζ+1 realizing over Bαζ the type required from āη and
ζ < θ, η /∈ T and if ζ = θ then

(∗) for every b̄ ∈ κ>B for some A ∈ κ>(Bδ) the following set belongs to
D∗θ :

{i < θ : we have Bαη�i

⋃⋃
j<i

aη�j ∪ (A ∩Bα�i)
(A ∪ b̄ ∪ ā)

B
and

|A ∩Bαη�i | < kappa (or at least gen(SkB(A ∩Bαη�i)) < κ).

We now further specialize the theorem stating the properties we shall subsequently
use.

Theorem 2.8. Assume

(α) θ = cf(θ), λ = cf(λ) = λθ, cf(Υ) ≡ θ,D a filter on Υ containing the co-

bounded subsets of Υ and the black box from IV 3.x exist, λ > 22θ and
[α < λ⇒ |α|<θ < λ]

(β) T ∗ = Th(C∗) is as in 2.1.

Then there are B, B̄ = 〈Bα : α ≤ λ〉, S such that:

(a) B is a θ-saturated model of T ∗

(b) B̄ is an ≺ -increasing continuous chain of models of T ∗, [α < λ⇒ ‖Bα‖ <
λ],Bλ = B

(c) S ⊆ {δ < λ : cf(δ) = θ} is stationary and S− = {δ < λ : cf(δ) = θ, δ /∈ S}
is stationary disjoint to S

(d) if δ ∈ S−, ā ∈ θ>B then for some b̄ ∈ θ>(Bδ) the type tp(ā,Bδ,B) does
not split over b̄

(e) if ā ∈ θ>B, p is a type-definition over SkB(ā) then for stationarily many
δ ∈ S−,Bδ+1 = SkB(Bδ ∪ b̄δ), b̄δ realizes pBδ and ā ∈ θ>(Bδ),

(f) if ā, p are as in clause (e) and

(α) b̄α ∈ θ>B realizes pBα for α ∈ W,W a stationary subset of λ, b̄α ∈
θ>(Bβ) when β = Min(W \ (α+ 1)) and ā ∈ θ>BMin(W )

(β) B′ is as elementary extension of B, α0
i ∈ W for i < θ,

∧
i<j

α0
i < α0

j

and c̄ ∈ θ>(B′) are such that for i < θ, tp(c̄,Bα0
i
) does not split over

ā ∪
⋃
j<i

b̄α0
j

then we can find δ ∈ S, αi < α′i < β′i < βi for i < Υ from W satisfying∧
i<j

βi < αj and δ = ∪{αi : i < Υθ} and c̄′ ∈ ω>(B) such that:

(α) āˆ . . . ˆb̄α0
i
ˆ . . . ˆc̄ and ā . . . ˆb̄α′iˆ . . . ˆc̄

′ realizes the same type

(β) for i < θ, tp(ā ∪
⋃
j<Υ

b̄α′j ∪ c̄,Bα′i
,B) does not split over ā ∪

⋃
j≤i

bαj

(γ) for every d̄ ∈ θ>B, for every j < Υ large enough tp(d̄,Bβ′j
,B) does

not split over Bα′j
∪ b̄α′j .

Proof. By 2.7, choose µ = κ. �2.8
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Remark 2.9. 1) If we say “in B, a structure B is definable” we mean defined by
a first order formula with parameters in B, necessarily finitely many. I.e. the set
of elements, relations and functions of B are definable. We can assume the set of
elements of B is a subset of B as using Ceq (see [She90]) add no generality.
2) We say “b is a structure in B” or “b representable in B”, if B “think” it is such
a structure.
3) In clause (c) of 2.8 only the strictly increasing η’s count so we may ignore the
rest.

∗ ∗ ∗

The rest of this section is dedicated to investigating properties of B where

Hypothesis 2.10. For clause (a) of 2.8 holds and B is as in the conclusion 2.7
or 2.8 (if it matters we are in the context of 2.7 or 2.8, we shall say; so in 2.8 let
κ = θ) and for simplicity Υ = θ; so λ, θ, T ∗,C∗,D∗ and S, S′ ⊆ {δ < λ : cf(δ) = θ}
are fixed.

Claim 2.11. For some stationary S1 ⊆ S− there is wα ∈ Bα+1 for α ∈ S1 such
that:

(a) Bα+1 |= “wα is finite”

(b) Bα+1 |= “aε̇wα” for every a ∈ Bα

(c) Bα+1 |= “w ⊆ wα” iff Bα |= “w is a finite set”

(d) Bα+1 is the Skolem Hull of Bα ∪ {wα}

(e) Bα

Bα+1⋃
Sk(∅)

{wα}

(f) if in Bα, ϕ(x, y, ā) define a partial order (on {x : (∃y)ϕ(x, y, ā)}) which is
directed (i.e. every pseudo finite subset has an upper bound) then for some
b ∈ Bα+1, b is an upper bound of {x ∈ Bα : (∃y)ϕ(x, y, ā)} by the partial

order ϕ(x, y, ā) and Bα

Bα+1⋃
〈ā〉
〈b〉 (really b ∈ 〈ā, wα〉)

(g) there is a type definition puf over Sk(∅), such that α ∈ S ⇒
tp(wα,Bα,B) = pBα

uf .

Proof. Use the ultrafilter D∗ and (∗)0 of 2.1(2) to define puf . �2.11

Observation 2.12. 1) If S1 ⊆ S− is stationary, for each δ ∈ S1 we have āδ ∈ κ>B
then for some stationary S2 ⊆ S1 and N ≺ B, satisfying gen(N) < θ and type
definition p over N , we have for every δ ∈ S2, tp(āδ,Bδ,B) = pBδ .
2) If above, a property ϑ is such that for every δ ∈ S1 for some ā ∈ κ>B, ϑ(āδ,Bδ,B)
and α < β < λ and ϑ(āβ ,Bβ ,B) ⇒ ϑ(āβ ,Bα,B) then for some type definition
p over some N ≺ B, gen(N) < κ, for every α < λ such that N ≺ Bα, there is
b̄α ∈ ϑ>B realizing pBα for which ϑ(b̄α,Bα,B) holds.

Proof. By Fodor’s Lemma. �2.12
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Claim 2.13. Suppose M is a model of T ∗, N ≺M and I is a dense (infinite) linear
order 〈as : s ∈ I〉 is an indiscernible sequence in M over N such that i < δ ⇒/∈ N .

Then there are M∗, w, u such that:

(a) M ≺M∗

(b) w, u ∈M∗

(c) M∗ |= “w and u are disjoint finite sets”

(d) M∗ |= “asε̇w” for s ∈ I
(e) M∗ |= “b ⊆ u” if M |= “b is a finite set” and M |= “¬asε̇b” for s ∈ I
(f) 〈as : s ∈ I〉 is an indiscernible sequence over N ∪ {w, u}
(g) tp(〈w〉,M,M∗) is fs (finitely satisfiable) in SkM ({as : s ∈ I} ∪N)

(h) tp(〈w, u〉,M,M∗) does not split over SkM ({as : s ∈ I} ∪N).

Proof. We shall show below that by transitivity of “does not split”, by 2.11, as⋃
fs
⇒

⋃
nsp

and as the existence of difference (among “finite” members of B)8 that

it suffices to show that

� Λ is finitely satisfiable in M , where λ is the union of the following: (the
subscript is according to the clause of the claim this set of sentences is
concerned with):

Λc := {“x is a finite set”}
Λd := {“asε̇x” : s ∈ I}
Λe := {‘b ∩ x = ∅” : b ∈ M,M |= “b a finite set” and M |= “¬asε̇b” for
s ∈ I}
Λf := {ϕ(x, as1 , . . . , asn , d̄) ≡ ϕ(x, at1 , . . . , atn , d̄) : d̄ ∈ ω>N, s1 < . . . <
sn < δ and t1 < . . . < tn < δ}
Λg := {¬ψ(x, c̄) : c̄ ∈ M,ψ(x, c̄) not realized by any member of SkM ({as :
s ∈ I})}.

[Why� suffice? Let M∗ be an elementary extension of M which is ‖M‖+-saturated.

So some w ∈M∗ realizes Λ, and some u∗ ∈M∗ realizes p
Sk(M+w)
uf where puf is from

clause (g) of 2.11. By the choice of T ∗ there is u ∈M∗ such that M∗ |= “u = u∗\w”.
Now clause (a) holds by the choice of M∗, clause (b) holds by the choices of w, u∗, u.
Also M∗ |= “w is finite” as w realizes Λc ⊆ Λ,M∗ |= “u∗ is finite” by the definition
of puf , and M∗ |= “u is finite disjoint to w” by the choice of u, so clause (c) holds.
Clause (d) holds as w realizes Λd ⊆ Λ. Clause (e) holds as if M |= “b is finite, ¬asε̇b”
for s ∈ I then M∗ |= “b ∩ w = ∅ as w realizes Λe ⊆ Λ and M∗ |= “b ⊆ u∗” by the
definition of puf ; now as M∗ |= “u = u∗ \w” combining the last two statements we
have, we are done. As for clause (f), the sequence 〈as : s ∈ I〉 is indiscernible over
N ∪{w} as w realizes Λf ⊆ Λ, and as tp(u∗,M ∪{w},M∗) does not split over ∅ (by
the definition of puf) clearly 〈as : s ∈ I〉 is indiscernible also over N ∪ {w} ∪ {u∗}
hence over Sk(N ∪{w, u∗}) hence over N ∪{w, u} as required in clause (f). Clause
(g) holds as w realizes Λg ⊆ Λ.

Lastly tp(w,M,M∗) does not split over SkM ({ai : i < δ} ∪ N) because it is
finitely satisfiable in it (by clause (g), using 2.5) and tp(u∗,M + w,M∗) does not

8Note: tp(w,M,M∗) is not fs in N by clauses (c)+(b)+(e) if some a ∈ M \ N \ {ai : i < δ}
realizes tp(a0, N,M).
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split over SkM (∅) hence it does not split over N∪{ai : i < δ} so as u ∈ SkM∗(M+w)
we can deduce clause (h).]

So it is enough to show that Λ =: Λc ∪Λd ∪Λe ∪Λf ∪Λg is finitely satisfiable in
M . Let ā∗ = 〈ai : i < δ〉 and Λx = Λx[M, ā∗] for x = c, d, e, f, g.

First note that Λc ∪Λd ∪Λe is finitely satisfiable in M : if ∆ is a finite subset of
the union we let C1 be the set of as such that “asε̇x” ∈ Λd ∩∆.

Let w be the unique w ∈ Sk(N ∪ {as : s ∈ I}) satisfying M |= “w = {as : as ∈
C1}”. Clearly w realizes ∆, so Λc ∪ Λd ∪ Λe is really finitely satisfiable in M .

Secondly, even Λc ∪ Λd ∪ Λe ∪ Λg is finitely satisfiable in M as the element we
have chosen above is in Sk({ai : i < δ}).

Thirdly, we shall show that Λc ∪ Λd ∪ Λe ∪ Λf ∪ Λg is finitely satisfiable with
M ; let ∆ be a finite subset of the union. Let ∆1 = {ϕ(x, z1, . . . , zn, d̄): some
ϕ(x, as1 , . . . , asn , d̄) ≡ ϕ(x, at1 , . . . , atn , d̄) belongs to ∆ ∩ Γf for some s1 < . . . <
sn ∈ I, t1 < . . . < tn ∈ I, and ϕ, d̄}.

There is a homogeneous linear order J (i.e. any finite partial order preserving
function f from J to J can be extended to an automorphism of J) and an order
preserving. Let δ = ωα∗, so 1 ≤ α∗ ≤ δI → J such that J is of cardinality |δ|+ ℵ0

and I ∩ J = ∅ for notational simplicity. We can find M1, M ≺M1 and at ∈M1 for
t ∈ I such that:

(∗)1 at = ah(i) for i < δ

(∗)2 〈at : t ∈ I〉 indiscernible over N in M1 (by the order I)

(∗)3 M1 is strongly ‖M‖+-saturated

(∗)4 if M |= “v is a finite set and ¬(ai · ε̇v)” for i < δ then M1 |= “¬(at · ε̇v)”
for t ∈ I.

The Λ’s were defined for M and 〈as : s ∈ I〉, but the previous argument can be
applied with M1 and ā1 := 〈at : t ∈ J〉 replacing M and 〈as : s ∈ I〉, so Λx is
replaced by Λx[M1, ā

1] so there is M∗,M1 ≺ M∗ and w∗ ∈ M∗ which realized
Λc[M1, ā

1]∪Λd[M1, ā
1]∪Λe[M1, ā

1]∪Λg[M1, ā
1]. Without loss of generality M∗ is

strongly ‖M1‖+-saturated. Now trivially w∗ is O.K. also for M, 〈as : s ∈ I〉, i.e. w∗

realizes Λc∪Λd∪Λe∪Λg. Let ∆+ = {ϕ(w∗, z1, . . . , zn, d̄) : ϕ(x, z1, . . . , zn, d̄) ∈ ∆1}.
By Ramsey theorem for some infinite U ⊆ δ, 〈as : s ∈ U〉 is an ∆+-indiscernible
sequence. As J is homogeneous linear order extending δ there is an automorphism
f of J which maps {s ∈ I : as appear in ∆} into U . Because “〈at : t ∈ J〉 is an
indiscernible sequence over N ′′, (∗)3 and the definitions of Λc,Λd,Λe,Λf ,Λg we see
that some automorphism h of M1 over N , maps at to af(t) for t ∈ I. Hence h map
{as : as appear in ∆} into a subset of {at : t ∈ U} and map {at : t ∈ J} onto itself.
We can extend h to an automorphism g of M∗ as M∗ is strongly ‖M1‖+-saturated.
Clearly g (and g−1) maps Λx[M1, ā

1] onto itself for x = c, d, e, f , g. So g−1(w∗)
realizes ∆ (i.e. for x ∈ {c, d, e, g},∆ ∩ Λx ⊆ g−1(Λx[M1, ā]) = Λx[M1, ā] and for
∆∩Λf we use the choice of h). Hence Λc ∪Λd ∪Λe ∪Λf ∪Λg is consistent with M
as required. �2.13

Observation 2.14. Assume M ≺ N are models of T ∗. Assume I is a dense
(infinite) linear order, and 〈ās = (a1

s, a
2
s) : s ∈ I〉 is an indiscernible sequence in

M over N and a`s /∈ N . Assume further that p = p(x) (or p(. . . , x, . . .)) is a type
definition over N . Then we can have (a)-(c),(f)-(h) from 2.13 (omitting (d),(e))
and then there are M∗, ω`, u` for ` = 1, 2 such that:
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(a) M ≺M∗

(b)` ω`, u1 ∈M∗

(c)` M
∗ |= “ω`, u` are disjoint finite sets”

(d)` M
∗ |= “a`sε̇ω`” for s ∈ I, ` = 1, 2

(e)` M
∗ |= “b ⊆ u`” if M |=′′ b is a finite set, and ¬(a`sε̇b)” for s ∈ I

(f)` 〈(a1
s, a

2
s) : s ∈ I〉 is an indiscernible sequence in M over N ∪{ω1, ω2, u1, u2}

(g) tp(〈ω1, ω2〉,M,M∗) is fs in Skm({a1
s, a

2
s : s ∈ I} ∪N) in fact is Skm({a1

s :
s ∈ I} ∪N)× SkM ({a2

s : s ∈ I} ∪N)

(h) tp(〈ω1, ω2, u1, u1〉,M,M∗) does not split over SkM ({a1
s, a

2
s : s ∈ I} ∪N}

(i)` tp(ω`, u`〉,M,M∗) does not split over SkM ({a`s : s ∈ I} ∪N).

Proof. Similar to the proof of 2.13.
Let bs = as,0, cs = as,1, so 〈< cs, bs >: s ∈ I〉 is an indiscernible sequence over

N (and bs 6= ct, s 6= t ⇒ bs 6= bt and s 6= t ⇒ cs 6= ct), and repeating the proof of
2.13 we can get M∗, u, v, w such that:

(a) M ≺M∗

(b) u, v, w ∈M∗

(c) M∗ |= “u, v, w are pairwise disjoint finite sets”

(d) M∗ |= “bsε̇v and csε̇w” for s ∈ I
(e) M∗ |= “bε̇u” for b ∈M \ {bs, cs : s ∈ I} moreover, if M |= “b is finite” then∧

s
¬bsε̇b⇒M∗ |= b ⊆ (u ∪ w)” and

∧
s
¬csε̇b⇒M∗ |= “b ⊆ (u ∪ v)”

(f) < 〈bs, cs〉 : s ∈ I > is an indiscernible sequence over N ∪ {u, v, w}
(g) tp(〈v, w〉,M,M∗) is finitely satisfiable in SkM ({bs : s ∈ I} ∪N)

(h) tp(〈u, v, w〉,M,M∗) does not split over SkM ({bs : s ∈ I} ∪N).

Clearly “xε̇w” ∈ pM
∗

or “¬(xε̇w)” ∈ pM
∗
, and similarly for xε̇v. It is impossible

that “xε̇v” and “xε̇w” both belongs to pM
∗

as M∗ |= “v, w are disjoint”. Now if
“xε̇v” /∈ pM

∗
we let u′ = u∪w (i.e. M∗ satisfies this) and w′ = v, so for ` = 0 they

are as required; and if “xε̇w” /∈ pM
∗

then we let u′ = u ∪ v, w′ = w, they are as
required. �2.14

Observation 2.15. As in 2.13 without loss of generality M is strongly (‖N‖+|δ|)+-
saturated, so in 2.14 we can replace (d−) + (e∗) by (d) + (e).

Proof. Trivial. �2.15

Our main lemma is (see Definition below):

Main Lemma 2.16. Assume

(a) b1 is an atomic Boolean ring in B, i.e. b1 ∈ B,B |= “b1 an atomic
Boolean ring” (see 2.17(1) below)

(b) b2 is a Boolean ring in B (as above)

(c) f is a complete embedding (see 2.17(2),(3) below) of b1 into b2.

Then for some x ∈ b1[B]:

(α) B |= “x is a finite member of b1, i.e. a finite union of atoms”
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(β) f�{y ∈ bat
1 : b1 |= “y ∩ x = 0”} is definable with parameters in B.

Definition 2.17. 1) A Boolean ring is just an ideal of a Boolean algebra (so the
operations are x ∩ y, x ∪ y, x − y, and we have the individual constant 0 (but not
1)).
2) An embedding f of b1 into b2 is an isomorphism from b1 onto a subalgebra of
b2 (so h(0B1

) = h(0B2
)).

3) Such an embedding is called complete iff it maps maximal antichains of b1 to
maximal antichains of b2.
4) For a Boolean ring B, the derived Boolean algebra ba(B) is the unique derived
(up to isomorphisms) Boolean algebra B′ whose set of elements is B×{0, 1} with the
order (b1, `1) ≤ (b2, `2) iff b1 ≤B1

b2 and `1 = `2 = 0 or b2 ≤B1
b1 and `1 = `2 = 1

or b1 ∩B1
b2 = 0B1

`1 = 0 and `2 = 1. We identify b and (b, 0) for b ∈ B.
5) I is a maximal ideal of B the Boolean ring B If for some uf D of ba(B),I =
B \D.

Proof. We may below write b` for b`[B].
A Stage: Assume

(a) N ≺ B, gen(N) < κ,b1 and b2 belongs to N ,p a type-definition over N and
“x an atom of b1” “∈ pB, we may add9” ¬xε̇Eb” belongs to pM whenever
N ≺M,M |= “b is a finite set”.

Then for some α = αp < λ,

(∗) for every x ∈ B realizing pBα and y ∈ B we have:
tp(y,Bα ∪ {x},B) = tp(h(x),Bα ∪ {x},B)⇒ y = h(x).

Assume the conclusion of stage A fails. Choose α0 < λ such that N ⊆ Bα0
.

As we are assuming that the conclusion of stage A fails, for every α < λ, α ≥ α0

there is aα ∈ B realizing pBα such that tp(f(aα),Bα∪{aα},B) is realized not only
by h(aα) but also say by bα ∈ B, bα 6= h(aα).

(Note: if we agree to restrict ourselves to onto isomorphisms we can somewhat
simplify the proof).

By 2.11 we can for δ < λ choose cδ a member of B, such that B |= “cδ is a finite
member of b1, x ≤b1

cδ” for any x such that Bδ |= “x is finite member of b1” and
Bδ

⋃
N
cδ.

Without loss of generality

Bα

⋃
Bα0

〈aα, f(aα), bα, cα, f(cα)〉

moreover, for some type definition p1 over some N1 ≺ Bα0 , gen(N1) < κ we have
tp(〈aα, f(aα), bα, cα, f(cα)〉,Bα,B) = p1

Bα (see 2.12(2)).
Let E = {δ < λ : δ > α0 a limit ordinal and (∃α < δ)[N ∪ N1 ⊆ Bα] and

[α < δ ⇒ aα, bα, cα ∈ Bδ] and (Bδ, f) ≺ (B, f) and [for every α < δ,N ′ ≺ Bδ

satisfying gen(N ′) < κ and gr a type definition over N ′, for some β ∈ (α, δ) we
have grBβ is realized in Bβ+1]}.

Let u ∈ D∗θ . u a set of successor ordinals with no two successor members. Let
the linear order I = Σ{Ii : i < θ} be such that: i ∈ u⇒ Ii = {si}, i ∈ θ \ u⇒ Ii is

9why we may add? otherwise the conclusion is trivial
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isomorphic to the rationals but may have Ii = ∅ for i limits and let I<j =
∑
{Ii :

i < θ} (instead using u we can act as in stage B).
We shall use 2.7 though we could just as well use 2.8. So E is a club of λ by

the assumptions and we can define Nη, αη, βη and a∗η,s(s ∈ I`g(η)) (let aη,s = aη�i,s
if i ≤ `g(η) and s ∈ Ii) for η ∈ θ>λ by induction on `g(η) as in (d) of 2.7 such
that αη, βη ∈ E, 〈Nη�i : i ≤ j〉 is increasing continuous, N<> = N and for η of
length i = j + 1, Nη = Sk(Nη�j ∪ {aη,s : s ∈ Ii}) and j ∈ u ⇒ asi = aα∗η�i and

αη < α∗η < β∗η < βη and also α∗η, β
∗
η ∈ E.

such that: if `g(η) = i = j+ 1, t ∈ Ij then for some B,B ≺ B′ and b̄ from B the
sequence 〈at〉 a b̄ realizes (p1)B′′ where B′′ = SkB(Bαη�j ∪ {aη,s : s <I t}. Note:

if η ∈ θλ then 〈aη,s : s ∈ I〉 is an indiscernible sequence in B.
For η ∈ θλ let Nη =

⋃
i<θ

Nη�i, let αη =
⋃
i<θ

αη�i and M∗ be λ+-saturated extension

of B, and N+
η = SkM∗(Nη, wη, uη) be as guaranteed by 2.13 (with 〈aη,s : s ∈

I〉, N,Bαη here standing for 〈ai : i < δ〉, N,M there). Now wη can be interpreted
as a member of b1. More exactly there is w∗η ∈ B definable from wη and the
parameters defining b1, (⊆ N) such that B |= “w∗η ∈ b1, is finite and x ≤b1

w∗η =⇒
xε̇wη” for every x ∈ Bα such that Bα |= “xε̇b1 is a finite union of atoms of b1”.
Note that for every i < θ the type tp(〈wη, w∗η〉 a 〈aα∗η�(j+1)

: j ∈ [i, θ),Bαη ,Bαη+1〉
does not split over N ∪ {aη,s : s ∈ I}) (easy manipulation).

By clause II(d) of 2.7 we can find δ ∈ S, increasing η ∈ θδ and elementary
embedding h : N+

η → Bδ+1 as guaranteed there. So v∗η := h(w∗η) is a member of
b2[B], so there is N∗ ≺ Bδ, gen(N∗) ≤ θ as guaranteed by (∗) of II(d) of 2.7 for
ā := 〈w∗η, v∗η〉, so

W := {i < θ : i is a succcessor ordinal and

(Bβη�i)
⋃

(Bαη�i ∩N∗) ∪Nη�i
ā} ∈ D∗θ

hence

W ′ := {i < θ : i is a succcessor ordinal, i ∈ u and

(Bβ∗η�i
)

⋃
(Bα∗η�i

∩N) ∪Nη�i
ā} ∈ D∗θ .

Let i = j + 1 ∈ W ′. Now as bα∗η�i ∈ Bβ∗η�i
realizes (recalling that the bα’s were

chosen in the beginning of the proof)

q = tp(f(aα∗η�i),Sk(Bα∗η�i
+ aα∗ηresti),B)

clearly

(∗)1 〈bα∗η�i , aα∗η�i〉, 〈f(aα∗η�i), aα∗η�i〉 realize the same type over Bα∗η�i
.

But cαη�i , f(cαη�i) ∈ Bα∗η�i
, αη�i < α∗η�i, hence from (∗)1 we deduce:

(∗)2 〈bα∗η�i , aα∗η�i , cαη�i , f(cαη�i)〉 and 〈f(aα∗η�i), aα∗η�i , cαη�i , f(cαη�i)〉 realize the same

type over Bαη�i .
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But Bβ∗η�i

⋃
Bα0

〈cβ∗η�i , f(cβ∗η�i)〉 and the two sequences in (∗)2 are ⊆ Bβ∗η�i
, hence:

(∗)3 the sequence 〈bα∗η�i , aα∗η�i , cαη�i , f(cαη�i), cβ∗η�i , f(cβ∗η�i)〉, and the sequence

〈f(aα∗η�i), aα∗η�i , cαη�i , f(cαη�i), cβ∗η�i , f(cβ∗η�i)〉 realize the same type over Bαη�i .

As i ∈W ′, by (∗)3 and as the two sequences above are from Bβη�i :

(∗)4 the sequence 〈bα∗η�i , aα∗η�i , cαη�i , f(cαη�i), cβ∗η�i , f(cβ∗η�i), w
∗
η, v
∗
η〉, and the se-

quence 〈f(aα∗η�i), aα∗η�i , cαη�i , f(cαη�i), cβ∗η�i , f(cβ∗η�i), w
∗
η, v
∗
η〉 realize the same

type over Bαη�i .

By the various choices, b1[B] |= “w∗η∩cβ∗η�i−cαη�i = aα∗η�i”, so as h is an embedding

of Boolean rings we have b2[B] |= “v∗η ∩ f(cβ∗η�i) − f(cαη�i) = f(aα∗η�i)” so by (∗)4

above b2[B] |= “v∗η ∩ f(cβ∗η�i) − f(cαη�i) = bα∗η�i”, contradicting the choice of bα∗η�i
as 6= f(aα∗η�i).

B Stage: Under the assumption of Stage A, there are αp < λ,N∗ ≺ Bαp
, gen(N∗) <

κ,N ≺ N∗ and q a 2-type definition over N∗ such that for some club Ep of λ for
every α ∈ Ep and x ∈ B realizing pBα the pair 〈x, f(x)〉 realizes qBα . �2.17

Proof. Let W ⊆ λ be the set of α < λ such that: N ≺ Bα and for some qα ∈
S2(Bα), we have: x ∈ B realizes pBα ⇒ 〈x, f(x)〉 realizes qα. Clearly if N ≺
Bα, α < β < λ, α ∈ W and β ∈ W , then qα ⊆ qβ (as if x realizes pBβ it realizes
pBα too). Also W is a closed subset of λ. So if λ = sup(W ) then W is a club of
λ and by 2.12 we can get q such that {α ∈ W : qα = qBα} is stationary, and as
qα (for α ∈ W ) increases with α, we get the desired conclusion. So assume N ≺
Bα(∗), sup(W ) < α(∗) < λ. Now for α ∈ [α(∗), λ) choose xα, yα ∈ B realizing pBα

such that tp(〈xα, f(xα)〉,Bα,B) 6= tp(〈yα, f(yα)〉,Bα,B). So by 2.12 for some N∗

and type definition p0 over N∗, N∗ ≺ B, we have gen(N∗) < κ and for stationarily
many α ∈ S−, cf(α) ≥ κ and

(∗)α tp(〈xα, f(xα), yα, f(yα)〉,Bα,B) = pBα
0 .

Note that for limit ordinal α, 〈xα, yα〉 can serve as 〈xβ , yβ〉 for every large enough
β < α. So without loss of generality, by Fodor lemma, possibly increasing α(∗), for
every [α ∈ (α(∗), λ], the assertion (∗)α holds.

So without loss of generality for some N∗ ≺ Bα(∗), N ≺ N∗, gen(N∗) < θ and

α ∈ [α(∗), λ)⇒ tp(〈xα, f(xα)〉, N∗,B) 6= tp(〈yα, f(yα)〉, N∗,B).

We can find a 3-type definition p1 such that:

~ for every α ∈ [α(∗), λ) any (equivalently some) triple (a1, a2, a3) realizing p1

we have: tp(〈a1, a2〉,Bα,B) = tp(〈xα, f(xα)〉,Bα,B) and tp(〈a1, a3〉,Bα,B) =
tp(〈yα, f(yα)〉,Bα,B). (exists by ??!!)
[exists by the existence of amalgamation of types and of non-splitting.]

Let p2 be a type definition over N such that for every α, if c realizes pBα
2 then

B |= “cε̇b1, c a finite union of atoms of b1”, and if Bα |= “xε̇b1 is a finite union
of atoms of b1” then B |= “[b1 |= x ≤ c]” (use 2.11, used also in stage (A)). Now
possibly increasing N∗ we can find a type definition gr over N∗ such that for every
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α > α(∗) there is cα realizing pBα
2 such that 〈cα, f(cα)〉 realizes grBα . Let E be thin

enough club of λ. In particular for α ∈ [α(∗), λ) we have cα, f(cα) ∈ BMin[E\(α+1)].
Let I = Σ{Ii : i < θ}, for non-limit iIi is a countable dense linear order with a

first element s1,isi, no last element and s1,i < s ∈ Ii. We choose by induction on
i < θ for η ∈ θ>λ,Nη, αη, < α∗η < β∗η < βη and βη and ⊗ 01

η,s0
2
η,s for s ∈ I`g(η), but

01
η,s = 01

η�i,s, 0
2
η,s = 02

η�i,s, if `g(η) ≥ i, s ∈ Ii) if i = 0, α<> = α(∗) + 1, N<> = N∗,

if i = j + 1, η ∈ jλ, we choose Nηˆ<ε>,and αηa〈ε〉 < α∗ηa〈ε〉 < β∗ηa〈ε〉 < βηa〈ε〉 and

a`ηa〈ε〉,t(t ∈ Ij) by induction on ε: arriving to ε let αηˆ<ε> be the minimal ordinal

α such that:
α ∈ E \ sup[{α`ηˆ<ζ> + 1 : ζ < ε and ` < ω} ∪ {αη, sup rang(η)}].
Next choose α∗ηa〈ε〉 < α1

ηa〈ε〉 < α2
ηa〈ε〉 < α3

ηa〈ε〉 < α4
ηa〈ε〉 < α5

ηa〈ε〉 < β∗ηa〈ε〉 <

βηa〈ε〉 from E and a1
ηa〈ε〉,sa

2
ηa〈ε〉,s, a

3
ηa〈ε〉,s (for s ∈ Ij) be such that:

(∗)
(a) αηa〈ε〉 < α∗ηa〈ε〉 ∈ E
(b) a1

ηa〈ε〉,s1,j = xα1
ηa〈ε〉

and a2
ηa〈ε〉,s1,j = h(xα1

ηa〈ε〉
) and 〈a1

ηa〈ε〉,s1,j , a
2
ηa〈ε〉,s1,j , a

3
ηa〈ε〉,s1〉

is from Bα2
ηa〈ε〉

and realizes p
B
α1
ηa〈ε〉

2

(c) for t ∈ (s1,j , s2,j)Ij the triple 〈a1
ηa〈ε〉,t, a

2
ηa〈ε〉,t, a

3
ηa〈ε〉,t〉 is from Bα3

ηa〈ε〉

and realizes pB
′

2 where B′ = Sk(Bα2
ηa〈ε〉

∪ {a`ηa〈ε〉,s : s < t, s ∈ Ij and

` = 1, 2, 3})
(d) a1

ηa〈ε〉,s2,j = yα3
ηa〈ε〉

, a2
ηa〈ε〉,s2,j = h(yα3

ηa〈ε〉
) the triple

〈a1
ηa〈ε〉,s2,j , a

2
ηa〈ε〉,s2,j , a

3
ηa〈ε〉,s2,j〉 is from Bα4

ηa〈ε〉
and realizes p

B
α3
ηa〈ε〉

2

(e) for t ∈ Ij , above s2,j as in (c) replaces (α2
ηa〈ε〉, α

3
ηa〈ε〉) by (α4

ηa〈ε〉, α
5
ηa〈ε〉)

(f) Nηa〈ε〉 = SkB(Nη ∪ {a`ηa〈ε〉,s : s ∈ Ij) and ` = 1, 2, 3}.

Lastly for i limit, η ∈ iλ,Nη :=
⋃
j<i

Nη�j , αη =
⋃
j<i

αη�j and βη = αη + 1.

Let M∗ be a λ+-saturated elementary extension of B. For any increasing se-
quence η ∈ θλ let δη = ∪{η(i) : i < θ} and let ζ̄s = 〈a1

η,s, a
2
η,s, a

3
η,s〉 for t ∈ I

(recalling a`η,s = a`η�j,s if s ∈ Ij).
Now by 2.14 realizing the pair (a2

η,s, a
3
η,s) as an element, for some (wη, uη) from

M∗ we have:

~
(a) M∗ |= “wη is finite set of atoms of b1 and a1

η,tε̇wη” for t ∈ I
(b) M∗ |= “uη is finite, b ⊆ uη” whenever Bδη |= “b is finite”

(c) M∗ |= “uη ∩ wη = ∅”
(d) 〈(a1

η,s, a
2
η,s, a

3
η,s) : s ∈ I〉 is indiscernible in M over Bα(∗) ∪ {uη, wη}.

Let N∗η = SkM∗(Nη∪{uη, wη}) ≺M . So by 2.7II(d) there are δ ∈ S, η ∈ θδ increas-

ing, such that δ = sup rang(η) and g : SkM∗(Bδ ∪ N+
η ) → Bδ+1, an elementary

embedding, g�Bδ = the identity.
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We can consider wη as a “member” of b1 so f(wη) is well defined. Clearly for some
every large enough i < θ, the sequence 〈(a1

η,s, a
2
η,s, a

3
η,s) : s ∈ Ii〉 is indiscernible

inside B over Bαη�i ∪ {wη, f(wη), cαη�i , f(cαη�i), cβ∗η�i , f(cβ∗η�i)}. As in the proof of

stage A this gives a contradiction ?? (using [Sheb, 2.7(e)].

C Stage: For some w∗:

(a) B |= “w∗ is a finite set”

(b) if n < ω, ȳ = 〈y0, . . . , yn−1〉 then: if a, b, c ∈ bat
1 and

∧
ϕ

(b, c)∅0ϕ(a, h(a)) then

c = h(b) where letting for all (first order) formula and ϕ = ϕ(ȳ; z1, ..., znϕ),

ȳ1∅nϕȳ2 := (∀z1 . . . znϕ)[
nϕ∧
`=1

z`ε̇w
∗ → ϕ(ȳ1, z1, . . . , znϕ)

≡ ϕ(ȳ2, z1, . . . , znϕ)]

so ∅nϕ is ∅nϕ(ȳ∗1 , ȳ
2, w∗).

�

Proof. By stage B if N∗ ≺ B, gen(N) < κ, p a type definition over N∗, (so
“[xε̇bat

1 ]” ∈ pN
∗
) then there is αp as there.

So as

[α < λ⇒ |α|<κ + 22|T |
∗

+
∑
∂<κ

22∂ < λ]

the set E0 is a club of λ when we let E0 = {δ < λ : δ is a limit ordinal and if
α < δ,N∗ ≺ Bα, gen(N∗) < κ, p 1-type definition over N∗ such that “xε̇bat

1 ” ∈ pN
∗

and the parameters in the definition of bat
1 are in Bδ then δ > αp}.

Choose δ(∗) ∈ E0 \ S such that cf(δ(∗)) = κ.
Easily: if a ∈ bat

1 [B] then

(∗)1 y realizes in B the type tp(f(a),Bδ(∗) ∪ {a},B)⇒ y = f(a)

(∗)2 〈b, c〉 realizes in B the type tp(〈a, f(a)〉,Bδ(∗),B)⇒ c = f(b).

Let w∗ ∈ B be a pseudo finite member of b1 “including” all pseudo finite members
of Bδ(∗) (see 2.11); check it is as required.

noindent D Stage: There is a member e0 of B such that:

(α) B |= “e0 is an equivalence relation over bat
1 , the set of atoms of b1, with

finitely many equivalence classes”
and

(β) for each (first order) formula ϕ = ϕ(y, z̄) in B, e0 refines the equivalence
relation ∅1ϕ (for the parameter w∗ from stage C) recalling that ∅′ϕ is defined
as:

a ∅1ϕb := (∀z̄ ⊆ w∗)[ϕ(a, z̄) ≡ ϕ(b, z̄)].

�
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Proof. By stage C.
As B is κ-saturated hence ℵ0-saturated (and as b1 is represented in B not just

definable there).

E Stage: There is s∗,B |= “ṁ∗ a natural number” and a member ḟ of B such that:

B |= “ḟ is a function, Dom(ḟ) = bat
1 , ḟ(x) = 〈ḟṁ(x) : ṁ < ṁ∗〉 and xe0y → ḟ(x) =

ḟ(y)”, and for each xe0, (where x ∈ bat
1 [B], of course) there is an ṁ = ṁx/e0

such
that:

~ if B |= “xe0y and ḟṁ(y) = z” then z = h(y).

[Note: we did not say yet that we can find in B such a choice function 〈ṁx/e0
:

xε̇bat
1 〉, a pseudo finite sequence]. �

Proof. There is e2 ∈ B, considered by B as an equivalence relation over bat
1 × b2

with finitely many equivalence classes, refining each ∅2ϕ for ϕ = ϕ(x, y, z̄) where:

(x1, y1)∅2ϕ(x2, y2)⇔ (∀z̄, . . .)[
∧

`<`g(z̄)

z
˙̀
ε̇w∗ → ϕ(x1, y1, z

1, . . .) ≡ ϕ(x2, y2, z̄, . . .)]

(exists as in Stage D). Now each e2-equivalence class A defines a function ḟA:

ḟA(x) = y : if possible (x, y) ∈ A and (∀y′)[(x, y)e2(x, y′)→ y = y′]
if not possible y = 0.

Now clearly ḟ exists in B and ḟ is as required.

F Stage: First there is e1 ∈ B,B |= “e1 an equivalence relation on bat
1 refining e0

with finitely many equivalence classes” such that B |= “xe1y” implies x, y realizes

same type over w∗ ∪ {k̇ : B |= k̇ < ṁ∗} ∪ {v : B |= “v ⊆ {k̇ : k̇ < ṁ∗}”} ∪ {ḟ}
(those sets — in the sense of B and are considered by it finite).

Hence if x, y ∈ bat
1 [B], xe1y then∧

ṁ1,ṁ2<ṁ∗

[ḟṁ1
(x) = ḟṁ2

(x)⇔ ḟṁ1
(y) = ḟṁ2

(y)]

and ∧
ṁ<ṁ∗

[f(x) = ḋṁ(x)⇔ f(y) = ḟṁ(y)]

(remember the choice of w∗ in stage D) and more generally

~ for every w ⊆ {ṁ : ṁ < ṁ∗}, in B’s sense, we have:

xε̇1y ⇒ [
⋂
ṁε̇w

ḟṁ(x)−
⋃

ṁ<ṁ∗,¬ṁε̇w
ḟṁ(x) = 0b2

if and only if⋂
ṁdotεw

ḟṁ(y)−
⋃

ṁ<ṁ∗,¬ṁε̇w
ḟṁ(y) = 0b2

].
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Let A = {x ∈ bat
1 : B |= “(x/e1) has > [bat

1 /e1]!!! members10”}; so A is definable in
B hence is represented in B, so we consider it a member of B, clearly B considers
bat

1 \ A a finite set. Let in B the sequence 〈Aṅ : ṅ < ṅ∗〉 be a list of the e1-
equivalence classes ⊆ A.

Let in B, x∗ be the union of the atoms from bat
1 \ A, (it is pseudo finite). So it

suffices for proving 2.16 to find in B a definition of h�{x ∈ bat
1 [B] : x ∩ x∗ = 0},

as required. So it suffice to prove that the following sequence is in B: find in B a
sequence 〈ṁṅ : ṅ < ṅ∗〉, where ṁṅ < ṁ∗ and: for every x ∈ Aṅ, h(xṅ) = ḟṁṅ(x).
We already know that for each ṅ < ṅ∗ there is such ṁṅ. This is done in stage G.

G Stage: We shall reconstruct in B a sequence 〈ṁṅ : ṅ < ṅ∗〉 as above (hence

h�AB is definable.)

We can find in B, w̄, k̇∗ and a function ġ,Dom(ġ) = bat
1 [B] such that

B |= “for x ∈ bat
1 : ġ(x) is 〈ax

k̇
: k̇ < k̇∗〉,

k̇∗ the natural number 2ṁ
∗ − 1,

w̄ = 〈wk̇ : k̇ < k̇∗〉 list the non-empty subsets of {ṁ : ṁ < ṁ∗}
and ax

k̇
ε̇b2 is ∩ {ḟṁ(x) : ṁε̇wk̇} \ ∪{ḟṁ(x) : ṁ < ṅ∗

and ¬(ṁε̇wk̇)}” in b2’s sense.

As each Aṅ is large enough (i.e. B |= “|Aṅ| > |bat
1 /e1|!!!”) there is in B a sequence

〈x(ṅ, ˙̀) : ṅ < ṅ∗, ˙̀ < ˙̀∗〉 such that (B satisfies):

(α) x(ṅ, ˙̀)ε̇Aṅ ⊆ bat
1 ,

˙̀∗ natural number

(β) ṅ < ṅ∗ and ˙̀
1 < ˙̀

2 < ˙̀∗ ⇒ b1 |= “x(ṅ, `1) 6= x(ṅ, `2)” (hence they are
disjoint as members of b1)

(γ) if ṅ1, ṅ2 < ṅ∗ and k̇1, k̇2 < k̇∗ and there are x1, x2 satisfying “x1ε̇Aṅ1
\

{x(ṅ1, ˙̀) : ˙̀ < ˙̀∗} and x2ε̇Aṅ2
\ {x(ṅ2, ˙̀) : ˙̀ < ˙̀∗}”, and b2 |= “ax

1

k̇1
∩

ax
2

k̇2
6= 0b2

”, then for some “even” ˙̀ < ˙̀∗ (in B’s sense) b2 |= “a
x(ṅ1, ˙̀)
ṅ1

∩

a
x(ṅ2, ˙̀+1)

k̇2
6= 0b2”.

Note: by (α) + (β) : x(ṅ1, ˙̀
1) = x(ṅ2, ˙̀

2)⇒ ṅ1 = ṅ2 and ˙̀
1 = ˙̀

2; so the x(ṅ, ˙̀) are
pairwise disjoint in b1’s sense.

We can find in B elements y0, y1 such that: B |= “y0ε̇b1, y0 = ∪{x(ṅ, ˙̀) : ṅ < ṅ∗

and ˙̀ < ˙̀∗ even}, y1 ∈ b1, y1 = ∪{x(ṅ, ˙̀) : ṅ < ṅ∗ and ˙̀ < ˙̀∗ is odd}”.
Let zm = h(ym) for m = 0, 1 (note: h is not assumed to be definable in B, but

we can use z0, z1).
Hence

⊗1 in B for ˙̀ < ˙̀∗,m < 2 and ˙̀ = m mod 2 we have x(ṅ, ˙̀) ≤ ym; hence:

f�Aṅ = ḟṁ[B]�Aṅ ⇒ B |= “ḟṁ(x(ṅ, ˙̀)) ≤ zm ⇒
∧

k̇<k̇∗,ṁε̇wk̇

a
x(ṅ, ˙̀)

k̇
≤ zm”.

But b1[B] |= “y0 ∩ y1 = 0b1
” hence b2[B] |= “f(y0) ∩ f(y1) = 0b1

” hence b2 |=
“z0 ∩ z1 = 0b2

” hence

10Note: ! is factorial; we could just as well say “finite large enough” and did not bother to
make the exact computation.
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⊗2 in B, for ˙̀ < ˙̀∗,m < 2, ˙̀ 6= m mod 2 we have x(ṅ, ˙̀) ∩ ym = 0b1
; hence:

f�Aṅ = ḟṁ[B]�Aṅ ⇒ B |= ḟṁ(x(ṅ, ˙̀)) ∩ zm = 0b1

⇒ B |= “if k̇ < k̇∗,¬ṁε̇wk̇ then a
x(ṅ, ˙̀)

k̇
∩ zm = 0b2”.

Note also

⊗3 h�Aṅ = ḟṁ�Aṅ implies:

(a) for every x ∈ Aṅ, ḟṁ(x) 6= 0b2

(b) for every x 6= y ∈ Aṅ,b2[B] |= “ḟṁ(x) ∩ ḟṁ(y) = 0”

(c) for every x ∈ Aṅ,b2[B] |= “ḟṁ(x) ∩ f(x∗) = 0b2
”.

Now the conclusions of ⊗1,⊗2,⊗3 can be viewed as properties of (ṅ, ṁ) which

follows from “h�Aṅ = ḟṁ�Aṅ”, they can be expressed by first order formulas in B.
Hence

Y = {(ṅ, ṁ) : ṅ < ṅ∗ and ṁ < ṁ∗ and (ṅ, ṁ) satisfies the conclusions of
⊗1,⊗2,⊗3}

is a pseudo finite set in B, and so we can define in B, ḟ ′ ∈ B such that B |= “ḟ ′

is the function ḟ ′ : A → b2 defined by ḟ ′(x) = ∪{ḟṁ(x) : xε̇Aṅ and (ṅ, ṁ) ∈ Y }”
(union in B’s sense). If for every x ∈ A[B] (⊆ bat

1 [B]), we have ḟ ′(x) ≤ f(x)
then by ⊗1,⊗2,⊗3 themselves equality holds and we finish. So it is enough to
assume (ṅ, ṁ) satisfies those three properties but (∃x ∈ Aṅ)(

∧
˙̀< ˙̀∗

x 6= x(ṅ, ˙̀) and

ḟṁ(x) �b1
f(x) and eventually get contradiction.

Let x ∈ Aṅ[B]\{x(ṅ, ˙̀) : ˙̀ < e∗} and ḟṁ(x) �b1
f(x). As A∪{x∗} is a maximal

antichain of b1, clearly {f(x) : B |= “xε̇A ⊆ bat
1 } ∪ {f(x∗)} is a maximal antichain

of b2, and x ∈ A[B]⇒ f(x) 6= 0b2
. Now for every x ∈ Aṅ[B], ḟṁ(x) ∈ b2[B]\{0b2

}
(by ⊗3(a)) and ḟṁ(x)∩ f(x∗) = 0b2 (by ⊗3(c)) and as f is a complete embedding of
b1[B] into b2[B], by the previous sentence necessarily for some y ∈ A[B],b2[B] |=
“(ḟṁ(x)− f(x)) ∩ f(y) 6= 0b2

” so y 6= x.
Lastly, let ṅ1 < ṅ∗ be such that y ∈ Aṅ1 [B]. Let ṁ1 be such that x ∈ Aṅ1 [B]⇒

f(x) = ḟṁ1
(x).

By the choice of w̄ and of 〈az
k̇

: k̇ < k̇∗〉 (for z ∈ bat
1 [B]) there are k̇, k̇1 < k̇∗

such that B |= “b2 |= “ḟṁ(x) ∩ f(y) ≥ ax
k̇
∩ ay

k̇1
− f(x) 6= 0b2

”. By the choice of

w̄ and of 〈az
k̇

: k̇ < k̇∗〉 necessarily b2 |= “ḟṁ(x) ≥ ax
k̇
> 0b2

”; also f(y) is ḟṁ1
(y)

and as for x we get f(y) = ḟṁ1(y) ≥ ay
k̇1
> 0b2 . Clearly ḟṁ(x) ≥ ax

k̇
> 0b2 implies

B |= ṁε̇wk̇; and f(y) = ḟṁ1
(y) ≥ ay

k̇1
> 0 implies B |= ṁ1ε̇wk̇1 .

By clause (γ) in the choice of the x(ṅ, ˙̀)’s, we know there are ˙̀, ˙̀1 < ˙̀∗ such

that B |= “ ˙̀ 6= ˙̀1 mod 2” and b2[B] |= “a
x(ṅ,`)

k̇
∩ ax(ṅ1, ˙̀1)

k̇1
6= 0b2

”.

Let m < 2 be such that m = ˙̀ mod 2, then by the conclusion of ⊗1 (for ˙̀, ṅ, ṁ)

as B |= “ṁε̇wk̇” we have b2[B] |= “a
x(ṁ, ˙̀)

k̇
≤ zm”. By ⊗2 applied to ṅ1, ˙̀1, ṁ1,
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we have ⊕3 we have b2[B] |= “a
x(ṅ1, ˙̀1)

k̇1
∩ zm = 0b2

” hence by the last sentence

B2 |= a
x(ṅ, ˙̀)

k̇
∩ ax(ṅ1, ˙̀1) = 0b2

.

This contradicts the previous paragraph so we are done. �

Observation 2.18. Assume B |= “b1 is an atomic Boolean ring and b2 is a
Boolean ring” and f is a complete embedding of b1[B] into b2[B].
1) If f�bat

1 [B] is definable in B then so is f .
2) If x∗1 ∈ b1[B], x∗2 and f�{x ∈ bat

1 [B] : x disjoint to x∗1 (in b1[B])} is definable in
B then so is f�{x ∈ b1[B] : x disjoint to x∗1 (in b1[B])}.

Proof. Easy. �2.18

Claim 2.19. Assume

(a) b1 is a Boolean ring in B (as in 2.16(a)) i.e. B |= “b1 is a Boolean ring”

(b) b2 is a Boolean ring in B

(c) f is a complete embedding of b1[B] into b2[B].

Then for some x ∈ b1[B]:

(α) B |= “x is finite i.e. finite union of atoms (of b1) or is zero” (so if b1 is
atomless then x = 0B1

)

(β) f�(bB
1 �{y : y ∩ x = 0b1

}) is definable in B.

Proof. Without loss of generality b1 is atomless.
[Why? Otherwise apply the proof below to b′1 = {x ∈ b1 : x atomless} and
2.16+2.18 to

b′′1 = {ε̇b1 : x is atomic (i.e. below every non-zero y ≤b1
x

there is an atom of b1)}.

Now from definition of f�b′1[B] and of f�b′′1 [B] we can define f ].
In B let P = {Ξ : Ξ is a maximal antichain of b1 (in particular 0b1

/∈ Ξ)}. Now P
is partially ordered by: Ξ1 ≤P Ξ2 iff (∀x ∈ Ξ2)(∃y ∈ Ξ1)(x ≤ y) (i.e. Ξ2 is “finer”).
Clearly (P,≤P) is a directed set definable in B so by 2.11 for every α < λ there is
Ξα ∈ P[B], which is in (P,≤P)[B] an upper bound of Bα ∩ P. In B, for each Ξε̇P
let b1

Ξ = {xε̇b1: for every yε̇Ξ, y ≤ x∨y∩x = 0}. So b1
Ξ[B] is a Boolean subring of

b1[B], even a complete subring, hence f�b1
Ξ[B] is a complete embedding of b1

Ξ[B]
into b2[B]. So by 2.16 there are aΞ and ϕ(x, y, c̄Ξ) such that B |= “aΞ is a finite
union of members of Ξ” and ϕΞ(−,−, c̄Ξ) define f�{xε̇Ξ : x ∩ aΞ = 0}. Hence by
2.18 f�b1

Ξ[B] being a complete embedding is defined too outside aΞ so without loss
of generality ϕ(−,−, c̄Ξ) defined f�{xε̇b1

Ξ : x ∩ aΞ = 0}.
For α ∈ S− satisfying cf(α) ≥ κ, we have Ξα as above (i.e. an upper bound of Bα∩
P) hence we have aΞα , ϕΞα(−,−, c̄Ξα) as above, so for some Nα ≺ Bα, gen(Nα) < κ,

we have Bα

B⋃
N
〈aΞα〉ˆc̄Ξα , and so by 2.12 for some model N∗ ≺ B, gen(N∗) < κ,

formula ϕ and type definition p over N∗ we have:

S′ = {α : α < λ, α /∈ S, cf(α) ≥ θ,Nα = N∗, ϕΞα = ϕ and
tp(aΞαˆc̄Ξα ,Bα,B) = pBα}

is stationary.
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Now if a ∈ b1[B], b = f(a) and α ∈ S′ is large enough then

(∗)αa,b B |= “a ε̇b1
1Ξα

ϕ(a− aΞα , b− f(aΞα), c̄Ξα)”

so we can read this from p; i.e. this can be determined from tp(〈a, b〉, N∗,B).
On the other hand assume a ∈ b1[B], b ∈ b2[B], b 6= f(a) and (∗)αa,b holds for α
sufficiently large and we shall get a contradiction.

Note:

(a) any non-zero member x of b1[Bα] is not included is any finite (even in B
sense) union of members of Ξα in particular in aΞα .

[Why? By our assumptions on T ∗ and b1 as b1[B] is atomless, there is Ξ ∈ Bα

such that Bα |=“Ξ is a maximal antichain of b1, every member of Ξ is below x or
is disjoint to x in b1, and x is not a finite union of members of Ξ”. By the choice
of Ξα we have B |= “Ξ ≤ Ξα”, so we are done.]

(b) if (Bα, f�Bα) ≺ (B, f), d ∈ (b2)[Bα] \ {0b2
} then d is not included in any

member of Ξ′α := {f(c) : c ∈ Ξα or is just a pseudo finite union of members
of Ξα in B and c ∩ aΞα = 0b1

} ∪ {f(aΞα)}.

[Why clause (b)? As f is complete embeddings of b1[B] into b2[B] there is a
c∗ ∈ (b1)[Bα] \ {0b2} such that:

0b1
< c′ ≤ c∗ ⇒ b1[B] |= f(c′) ∩ d 6= 0b2

.

Now B |= “there are infinitely many c ∈ Ξα which are ≤ c∗ and d′ ∈ Ξα ⇒
d′ ∩ f(c∗) ∈ {d′, 0b2}”, and so B |= “cε̇Ξα, c∩ aα = 0b1 , f(c)∩ d 6= 0b2 for infinitely
many c”.]

So via p we get a definition of f , but not first order, just according to type over
N .

The desired conclusion follows by the following claim 2.20. �2.19

Claim 2.20. Assume B is a κ-saturated model of a complete first order theory
T,b1,b2 are Boolean rings definable in B, and f is a complete embedding of b1[B]
into b2[B] definable in B by an L∞,κ-formula with < κ parameters (equivalently,
for some c̄ ∈ κ>M, tp(〈a1, b1〉, c̄,B) = tp(〈a2, b2〉, c̄,B) f(a1) = b2 ⇒ f(a2) = b2).
Then f is definable in B.

Remark 2.21. 1) Similar to [She78b, 1.9.1], [She83, 4.10].
2) For the purposes of this chapter alone we can assume b1 is atomless, so the
reader can read the proof this way, simplifying somewhat. Still our theorem 2.19
seemingly is weaken compared to [She78b, 107]: the use of T ∗, i.e. the expansion
of the theory, but see [S+]; for such generalization see 3.5 we shall need 2.20.
3) This claim is more than needed in 2.19.

Proof. Without loss of generality B is µ-saturated, µ > 2|T |+κ, κ > |T |, and let
c̄ ∈ κ>B be as required in the claim. So without loss of generality rang(c̄) is the
universe of some N∗ ≺ B and f maps N∗ onto N∗.

If a type q over C ⊆ B, |C| < κ is realized by a unique element in B then some
ϕ(x) ∈ q define the element; hence we have 〈ϕp : p ∈ P∗〉, where P∗ := {p ∈
S1(c̄) : “xε̇b1” ∈ p} such that: if a ∈ b1[B] realizes p ∈ P∗ then ϕp(a, y) defines
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f(a) in B [i.e. B |= ϕ[a, f(a)] and (∀y)(ϕ[a, y]) ≡ y = f(a)]. Let ϕp = ϕp(x, y, c̄p)
so c̄p ⊆ Rang(c̄).

Let

J := {c : c ∈ b1[B] is in SkB(c̄), c a real finite union of
members of bat

1 [B]}.

Note that possibly bat
1 [B] = ∅.

Let

P− = {p ∈P∗ : p is not realized by any c ∈J and if x realizes p,
y ∈ b1[B] \J and 0 < y ≤ x then for some z ∈ b1[B],
z realizes p and 0 < z ≤ y}.

Now P− ⊆P∗ ⊆ S1(c̄) is closed (hence compact) in the natural topology on S1(c̄).
[Why? Because if p ∈ S1(c̄) \ P− then ϕ′(x)~ = ¬(xε̇b1) ∈ p or ϕ′(x) =

(x = 0b1) ∈ p or for some ϕ(x) ∈ p also ϕ′(x) = (xε̇b1) and (x 6= 0b1) and ϕ(x)
and (∃y)(0 < y ≤ x and (∀z)(0 < z ≤ x → ¬ϕ(x))) belong to p; and in cases
ϕ′(x) ∈ p′ ∈ S1(c̄) ⇒ p′ /∈ P−.] Also {x ∈ b1[B] : tp(x,N,B) ∈ P−} is a
downward closed dense subset of b1[B] \J .

[Why? Let a ≤b1
b be from b1[B]\J and b realizes p ∈P−, and c ≤b1[B] a be

such that c ∈ b1[B] \J . Now there is b′ ∈ b1[B] \J such that b′ ≤b1[B] c and b′

realizes p (because c ≤b1[B] a, c /∈ J , and p ∈ P−), so there is a′ ∈ B such that
(a′, b′), (a, b) realizes the same type over N , so a′ ≤b1

b′ ≤b1
, c hence a′ ≤b1[B] c

and a′ realizes tp(a,N,B) so we are done]. �

We shall later prove:

Observation 2.22. There is p ∈ S1(c̄) = S1(c̄,B) such that p ∈P and:

(∗)0 {x1 ∩ x2 : x1, x2 realizes p} ∪J is a dense subset of b1[B] (and c ∈ B
realizes p, b ∈J ⇒ b1[B] |= b ∩ c = 0b1).

Now we shall show that this suffices. Letting ϕ = ϕp, without loss of generality

B |= (∀x, y, z̄)[ϕ(x, y, z̄)→ (∃!t)ϕ(x, t, z̄) and xε̇b1 and yε̇b2)];

let ψ0
p(x) := (∃y)ϕ(x, y, c̄p) and so there is in B a definition of a function ḣp from

ψ0
p[B] into b2[B] such that:

(∗)1 d realizes p implies f(d) = ḣp(d).

Note (the meaning of ∩ is clear from the context, ` is inside B):

(∗)2 p(x1) ∪ p(x2) ∪ p(x3) ∪ p(x4) ` [(x1 ∩ x2) ∩ (x3 ∩ x3) = 0b1 ] ≡
[(ḣp(x1) ∩ ḣp(x2)) ∩ (ḣp(x2) ∩ ḣp(x4)) = 0b2

]

(∗)3 p(x1) ∪ p(x2) ∪ p(x3) ∪ p(x4) ` [x1 ∩ x2 ≤b1 x3 ∩ x4] ≡
[ḣp(x1) ∩ ḣp(x2) ≤b2

ḣp(x3) ∩ ḣp(x4)].

So by compactness there is ψp(x) ∈ p(x) such that in (∗)2, (∗)3 we can replace p(x`)
by ψp(x`) (and ψp(x) ` ψ0

p(x)).
Now

Paper Sh:384, version 2016-02-29 12. See https://shelah.logic.at/papers/384/ for possible updates.



COMPACT LOGICS IN ZFC: . . . 37

(∗)4 f induces a complete embedding f/J of b1/J into b2/idf(J ) where idf(J ) =
{d ∈ b2[B] : (∃a ∈J )d ≤ f(a)}, it is an ideal of b2[B].

[Why? Being embedding is trivial so let us prove completeness of the embedding.
Let b ∈ b2[B] \ idf(J ), as idf(J ) is generated by < |T |+ + κ = κ elements, there
is b′ ∈ b2[B] satisfying 0b2

< b′ ≤ b and
∧

a∈J

b′ ∩ f(a) = 0b2
. As f is a complete

embedding, there is c ∈ b1 \ {0} such that [0b1
< c′ ≤ c⇒ f(c′) ∩ b′ 6= 0b2

]. So we
are done (see the proof of 0.4(2))]].

Next we claim

(∗)5 if c ∈ b1[B] (and
∧

a∈J

a∩c = 0b1
) and ψp(c) then fp(c) ≤ f(c) mod f(J )

in b2[B].

[Why? If not, ḣp(c) − f(c) 6= 0b2
and even /∈ f(J ), so as f idf(J ) is a complete

embedding, for some d ∈ b1[B] we have f(d) ∩ (ḣp(c) − f(c)) /∈ J , moreover,
[0b1 < d′ ≤ d⇒ f(d′) ∩ (fp(c)− f(c)) /∈J ]. So without loss of generality d ∩ c =
0b1 and a ∈ J ⇒ d ∩ a = 0b1 , recalling |J | ≤ |T | < κ. By (∗)0 possibly
decreasing d (legitimate by the previous sentence), we find d1, d2 realizing p(x) such
that b1[B] |= d1 ∩ d2 = d. Let d3 = d4 = c so d1 ∩ d2 ≤ d, c = d1 ∩ d2, so
(d1 ∩ d2) ∩ (d3 ∩ d4) ≤ d ∩ c = 0b1

so by the version of (∗)2, for ψp, we know

(ḣp(d1) ∩ ḣp(d2)) ∩ (ḣp(d3) ∩ ḣp(d4)) = 0b2 ; now the right side is ḣp(c) ∩ ḣp(c) =

ḣp(c), the left side is (as d1, d2 realizes p) f(d1) ∩ f(d2) = f(d1 ∩ d2) = f(d) so
f(d) ∩ fp(c) = 0b2

; contradiction].

(∗)6 if c ∈ b1[B] \J and B |= ψp(c) then ḣp(c) ≥ f(c) mod f(J ) in b2[B].

[Why? If not f(c) − ḣp(c) /∈ f(J ) so as f/J is a complete embedding for some

d ∈ b1 \J we have [d′ /∈J and d′ ≤ d⇒ f(d′) ∩ (f(c)− ḣp(c)) /∈ f(J )].
As f(d) ∩ f(c) /∈ f(J ) necessarily d ∩ c /∈ J and without loss of generality

below d there is no member of J \ {0b1}. By (∗)0 we can find d1, d2 realizing p(x)
such that 0 < d1 ∩ d2 ≤ d ∩ c. Let d3 = d4 = c so d1 ∩ d2 ≤ d3 ∩ d4 hence by
the version of (∗)3 with ψp we know ḣp(d1) ∩ ḣp(d2) ≤b2[B] ḣp(d3) ∩ ḣp(d4). Now

the right side is ḣp(c) ∩ ḣp(c) = ḣp(c) and the left side is (as d1, d2 realize p) just

f(d1) ∩ f(d2) = f(d1 ∩ d2); so ḣ(d1 ∩ d2) ≤b2[B] ḣp(c). But 0 < d1 ∩ d2 ≤ d, so by

the choice of d we have f(d1 ∩ d2) ∩ (f(c)− ḣp(c)) 6= 0b1
contradicting the previous

sentence].
By (∗)5 + (∗)6 without loss of generality

(∗)7 if c ∈ b1[B] \ {0b1}, ψp(c) and
∧

d∈J

c ∩ d = 0b1 then f(c) = fp(c).

[Why? If not, this fail even if we strengthen ψp, (note the without loss of general-
ity],) so by (∗)5 + (∗)6 for every ψ(x) ∈ p there is cψ ∈ b1[B] satisfying ψ(cψ) and

ψp(cψ) and
∧

d∈J

d∩cψ = 0b1 and ḣp(cψ) 6= f(cψ). Now by (∗)5 +(∗)6 for some dψ ∈

J , fp(cψ)−f(dψ) = f(cψ)−f(dψ); however f(cψ)∩f(dψ) = 0b2
as cψ∩dψ = 0b2

by

the definition of J hence ḣp(cψ)− ḣ(dψ) = ḣ(cψ)− f(dψ) = f(cψ) 6= ḣp(cψ). So as

ḣp(cψ) 6= f(cψ) necessarily there is d′ψ ∈J ∩bat
1 [B] such that f(d′ψ)∩ḣp(cψ) 6= 0b2

.

By saturation we can find c ∈ b1[B], satisfying
∧
ψ∈p

c ∩ cψ = 0b1
but

∧
d∈J

d ≤b1
c
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(the finite satisfaction is exemplified by members of J ). So
∧
ψ∈p

ḣp(cψ)∩f(c) 6= 0b1
;

by saturation for some c′ ∈ b1[B] realizing p, c′ ∩ c = 0b1 and ḣp(c
′) ∩ f(c) 6= 0b2

(the finite satisfaction is exemplified by the cψ’s) but ḣp(c
′) = f(c′), hpc) = h(c)

and f an embedding, contradiction.]

Now we can, in B, define a partial function ḣ+
p : b1[B] → b2[B] as follows:

h+
p (x) is the ≤b2-minimal element y of b2[B] such that:

ψp(z1) and ψp(z2) and z1 ∩ z2 ≤b1 x⇒ ḣp(z1) ∩ ḣp(z2) ≤b2
y.

Let J ∗ = {a ∈ b1[B] : f+
p �{b ∈ b1[B] : b ≤ a} is a complete embedding into

b2[B]}. This set is definable into B by 0.4(2) and by (∗)7 (and (∗)0) it include
every a ∈ b1[B] such that

∧
b∈J

b ∩ a = 0, so by saturation there is b∗ ∈ J such

that a∗ ∈ b1[B] and a∗ ∩ b∗ = 0b1
⇒ a∗ ∈J ∗.

Now

(∗)8 J ′ = {a ∈J : a ∈ bat
1 , a ∩ b∗ = 0b1

, f(a) 6= ḣp(a)} is really finite.

[Why? If an (n < ω) are distinct members; thinning the sequence 〈an : n < ω〉
by Ramsey theorem without loss of generality if for some n, fp(an) − f(an) 6= 0b2

then ḣp(an) �b2[B]

⋃
`<k

ḣp(a`) for any n, k hence there are non-zero d1
n ≤b2[B]

fp(an) disjoint in b2[B] to f(ak) for any n, k otherwise d1
f = 0b1

, Similarly if
f(am)−??hp(am) 6= 0b2

for some m, then there are non-zero d2
m ≤ f(an) disjoint

to hp(ak) for n, k < ω. Now we get a contradiction by saturation so (∗)8 hold].
So without loss of generality (possibly increasing b∗) J ′ = ∅, so we can finish

as f(x) = y ⇔ (x ∈ b1 and y ∈ b2 and f∗p (x− b∗) = y− (f(B∗) and
∧

b≤b1
b∗

(x∩ b∗ =

b→ y ∩ f(b∗) = f(b)).

Proof of the Observation 2.22: For each p ∈P− let Ip be the ideal of b1[B] which
{d ∈ b1[B] : d realizes p} generates. Let {pi : i < i∗} ⊆P− be maximal such that
i 6= j ⇒ Ipi 6= Ipj (equivalently i 6= j ⇒ Ipi ∩ Ipj = {0b1} and also equivalently,
there are ci ≤b1 cj with ci realizing pi, cj realizing pj). We can find, for i < i∗ and
n < ω an element di,n of B realizing pi such that [(i, n) 6= (j,m) ⇒ di,n ∩ dj,n =
0b1

]. By partition theorems and compactness (i.e. B quite saturated) without
loss of generality: for each i, 〈di,n : n < ω〉 is an indiscernible sequence over
c̄ ∪

⋃
j 6=i
{dj,m : m < ω, j < i∗ and j 6= i}.

Let us define Λ

Λ = {ϕ(xi,`) ≡ ϕ(xj,m) : i, j < i∗ and `,m < 2 and ϕ a formula over c̄}
∪{xi,`ε̇b1 : i < i∗} ∪ {xi,0 ∩ xi,1 = di,0 : i < i∗}.

If Λ is realized in B by an assignment xi,` 7→ ci,`, then p := tp(ci,`, c̄,B) (which
does not depend on i, `) is a type as required. So it suffices to show any finite
Λ′ ⊆ Λ is realized in B, so let w be the set of i < i∗ such that xi,` appears in Λ′

(clearly it is finite).
We choose the following assignment xi,` 7→ ci,` where:
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ci,` =
⋃
{dj,m : j = i and j ∈ w and m = 0 or j 6= and j ∈ w and m = `}

(it is a really finite union in b1).

∗ ∗ ∗
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§ 3. Compactness for the Boolean Ring Complete Embedding
Quantifiers

We present here the compactness results (we can add more quantifiers; see §4).

Theorem 3.1. 1) Adding to first order logic quantification on complete embeddings
of an atomless Boolean ring to a Boolean ring getting L ceab (see 3.3(1) below) result
in a compact logic.
2) If every finite subset of T ⊆ L ceab (see 3.3(1) below) has a model in some
generic extension of V (or any model of set theory with the same natural numbers)
and λ, θ, κ are as in 2.7, then T has a κ-saturated model of cardinality λ.

Remark 3.2. Note that by 3.7(1) we have a completeness theorem for L (Q̇ceab):
a sentence ψ has model iff ψ ∪ {the reasonable axioms for C∗ (of 2.1) in suitably
expanded vocabulary} is consistent (first order) — see 3.7(1). If we would like to
have a nice set of axiom schemes, we need 3.5, below see 3.7(2).

Definition 3.3. The logic L ceab is gotten from first order logic by allowing free
variables on partial unary functions, and allowing the quantifier (Q̇ceabf, x, y)[ψ1(x, y), ψ2(x, y), ϕ(f)]
where ψ1, ψ2 are formulas (with parameters) in which f does not appear freely and
is a variable on partial unary functions, the individual variable x, y does not appear
freely in ϕ, the free variables of this formula are those of ψ1, ψ2, except x, y and
those of ϕ except f .

Lastly, M |= (Q̇ceabf, x, y)[ψ1, ψ2, ϕ] if ψ1(x, y), ψ2(x, y) define Boolean rings,
the first atomless (i.e. the ψ` define the corresponding partial orders) and there
is a complete embedding f from the Boolean ring which ψ1 defines (in M) to the
Boolean ring which ψ2 defines (in M) which satisfies ϕ when we substitute f for f

˜
.

Remark 3.4. Note the “f is a complete embedding of the Boolean ring B1 into the
Boolean ring B2” is a first order property (see 0.4(2)).

Proof. 1) Let T be a theory in L ceab, let M∆ be a model of ∆ for any finite subset
∆ of T . Let χ∗ be strong limit cardinal to which 〈M∆ : ∆ ⊆ T finite〉 belongs.
Expand H (χ) as in 2.1 and get C∗, T ∗ such that each M∆ is an individual constant
as well as T . Now get B by 2.7. For some M,B |= “M is a model of a finite set of
sentences t”, such that for every ψ ∈ T we have M |= “ψε̇t”. By 2.19 the quantifier

Q̇ceab has the same interpretation in the universe and in B, so we are done.
2) Same proof. �3.1

The following is not in our main line, but helps in axiomatization.

Lemma 3.5. 1) In the theorems [She83, 4.9] and [She83, 5.2(2)] (for every P , Q,
R definable with parameter) we can add complete embeddings of Boolean rings. I.e.
let T be a complete first order theory. Assume (D`)λ, |T | < λ+ and ♦{δ<λ+:cf(δ)=λ}.

Then if an λ-saturated model M of T of cardinality λ+ is constructed in the game
([She83, 2.8, 2.12]) the second player can guarantee in addition that:

(A) If b1, b2 are Boolean rings definable M (no atomlessness assumed), f a
complete embedding of b1 into b2 then f is first order definable with pa-
rameters from M .

(B) If ψ`(x, y, c̄`) define in M a dense linear order I` for ` = 1, 2 and f is
an isomorphism from I1 onto I2 then every interval I ′1 of I1 contains a
subinterval I ′′1 such that f � I ′′1 is definable in M with parameters.
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(C) Similarly for the strong independence property.

(D) In clause (B) we can weaken the demand on f to “f : I1 → I2 is order
preserving with dense range (in I2)”.

Proof. Follows by [She83] and 2.20 (and degenerate version of the proof of 2.16,
2.20). �3.5

Remark 3.6. 1) Player II has time enough for all such assignments.
2) We can weaken the set theoretic demands (but no real need here).

Lemma 3.7. 1) L(Q̇ceab) is complete, i.e. the set of sentences have no models is
recursively enumerable and is absolute.
2) In fact the natural axioms schemes suffice (in addition to the first order ones).
3) If you have a definition ϕ(x, y) of a complete embedding from the atomless
Boolean ring defined by ψ1(x, y) to the atomless Boolean ring defined by ψ2, then

(Q̇ceabf, x, y)[ψ1(x, y), ψ1(x, y)(∀x, y)[f(x) = y ↔ ϕ(x, y)]].

4) (Q̇ceabf, x, y)[ψ1(x, y), ψ2(x, y), ϕ(f)] → [ψ1(x, y) defines an atomless Boolean

Ring and ψ2(x, y) defines a Boolean ring and (Q̇ceabf, x, y)[ψ1(x, y), ψ2(x, y), ϕ′(f)]
where ϕ′(f) = ϕ(f) and “(f is a complete embedding from the Boolean ring which
ψ1(−,−) defines into the one which ψ2(−,−) defines)].

5) (Q̇ceabx, y, f)[ψ1(x, y), ψ2(x, y), ϕ(f)]→ (Q̇ceabx1, y1, f1)[ψ′1(x1, y1), ψ′2(x1, y1), ϕ′(f1)]
when:
“f is a complete embedding of the atomless Boolean ring which ψ1(x, y) defines to
the atomless Boolean ring which ψ2(x, y) defines” and ϕ(f) and ψ′1(−,−) define
an atomless Boolean ring and ψ′2(−,−) defines a Boolean ring ` (∃f ′)[ϕ′(f ′) and
f ′ is a complete embedding from the Boolean ring which ψ′1(−,−) defines into the
Boolean ring which ψ′2(−,−) defines”].

Proof. 1) By the proof of 3.1.

2) For a sentence ψ in our logic L(Q̇ceab) for applying 2.11 we need essentially
Skolem function. How this relate to our axioms? Proof theoretists has done such
things but we prefer other ways. So we have to use another proof.

We need to pass to the theory T⊗ which is T+ the axiom used from 2.1 i.e. with
“Skolem functions” for (Q̇ceabf) (which is described below). So we shall prove the
consistency of this relevant theory by supplying a model of ψ by 3.5. However, in
our universe V there may be no cardinal to which it applies. Choose λ > |T⊗|
suitable to 3.5. Choose A ⊆ i2(λ)+ such that T ∈ L[A] and even H (λ+) ∈ L[A].
Now 3.5 apply in L[A] as for µ > (i2(λ)2)V, µ a regular cardinal of L[A] we have
2µ = µ+, µ = µ<µ,♦µ and ♦∗{δ<µ+:cf(δ)=µ}; so T has a model by 3.5. Apply 2.1 in

L[A] to get the consistency of the first order T⊗ ∈ L[A] and apply 2.7, 2.19 to get
a model in λ, so it belongs to V. �3.7

Discussion 3.8. However we may like to allow applying the new quantifier not
just to Boolean rings defined on a set of elements but also to ones defined on sets
of triples of elements, or even to triples consisting of elements, complete embedding
of one definable atomless Boolean rings etc. The definition of the logic should be
clear, but we can translate the model.

Formal Description of the Translation Let the vocabulary of ψ be ⊆ τ ; for every

τ -model M we construct a model M [∗]. We define by induction on n,M [n],M [0] =

Paper Sh:384, version 2016-02-29 12. See https://shelah.logic.at/papers/384/ for possible updates.



42 SAHARON SHELAH

M . For each n, let {(ϕnk (x, y, z̄1), ψnk (x, y, z̄2)) : k < ω} is a list of the pairs of the

first order formulas for the vocabulary of M [n], of the indicated form in Definition
3.3.

Let Snk (k < ω) be new sorts, the universes of M [n+1] are: for sorts of M [n] the

same as before, for Snk , {(f , c̄1, c̄2) : ϕnk (x, y, c̄1) define in M [n] an atomless Boolean

ring, ψnk (x, y, c̄2) define in M [n] an atomless Boolean ring, f is a complete embedding
of the first Boolean ring into the second}.

Relations:

(a) the old one:

(b) for each k unary functions mapping (f , c̄1, c̄2) to c̄1ˆc̄2

(c) binary function mapping ((f , c̄1, c̄2), b) to ff(b).

Let T ∗τ be the set of first order sentences describing the construction of M [∗] from M ,
except that we replace the definition of the universe Snk , by demanding the scheme

saying: if a formula with parameters in M [∗] defining a complete embedding of
the atomless Boolean ring defined by ϕnk (x, y, c̄1) into the Boolean ring defined by
ψnk (x, y, c̄2), then for some (f , c̄1, c̄2) in the interpretation of Snk , f is the complete
embedding mentioned above.

Note that models M∗ of T ∗τ gives in general non-standard interpretation of Q̇ceab.
Now if ψ is consistent according to the axiom scheme described above then there is
a model M∗ of T ∗τ (in the vocabulary of T ∗τ ) such that in the interpretation of Q̇ceab

in this model M∗ (which in general is non-standard), ψ holds. Now we would like
to use 3.5 (multisortness does not matter) to get there is a standard model of the

first a model M⊗ of the first order theory T⊗ of M∗, which is standard for Q̇ceab.

Conclusion 3.9. There is a 1-homogeneous atomless Boolean Algebra B, such that
Aut(B) is not simple, where

Definition 3.10. 1) A Boolean Algebra B is 1-homogeneous if whenever in B, 0 <
x < 1, 0 < y < 1, then there is an automorphism f of B such that f(x) = y.
2) A group G is not simple if it has a normal subgroup 6= G, with at least two
elements.

Proof. Clearly there is ψ ∈ L(Q̇ceab) which has a model iff there is a 1-homogeneous
atomless Boolean Algebra. So by 3.7 (or directly by 3.1(2)) it suffices to have some
generic entension of V (or just a model of set theory with the same natural numbers)
in which ψ has a model.

Now from this we can just quote one of the following:
It is proved in [She82, Ch.IV], that in some generic extension any automorphism

f of (P(ω)/finite) is trivial; this means that some one to one function f with domain
and range cofinite subsets of ω, induced f = [f ], i.e. f (A/finite) = {f(n) : n ∈
A ∩ Dom(f)}/finite (this involves detailed analysis that this Boolean Algebra has
no automorphism which are “simply defined”). Van Dowen notes that this group
is not simple11

11The subgroup is G := {f : f is induced by a permutation of ω}. More fully if f , g are as above

and induce the same f , i.e. [f ] = [g] then |ω\Dom(f)|−|ω\Rang(f)| = |ω\Dom(g)|−|ω\Rang(g)|
(those numbers are integers) so n([f ]) =: |ω \Dom(f)|− |ω \Rang(f)| is well defined and f 7→ n(f)

is a homomorphism from Aut(P(ω)/finite) into Z; the kernel is a normal group as required.
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By [She83] we can replace mere consistency by GCH; the proof is very indirect.
However, S. Koppelberg [Kop85] proved the existence of such Boolean Algebra A
if CH holds (this involves detailed analysis of the specifics of the case).

The sentence ψ can be:

(i) (P,≤) is an atomless Boolean Algebra

(ii) (Q, ◦, e) is a group

(iii) F (−,−) is such that for x ∈ Q,F (x,−) is a permutation of P which is an
automorphism of (P,<)

(iv) x 7→ F (x,−) is an embedding of (Q, ◦, e) into the group of permutations of
P

(v) Q′ is a proper normal subgroup of (Q, ◦, e), |Q′| > 1

(vi) if x, y ∈ P are neither the maximal element of P nor the minimal element
of P then for some z ∈ Q, F (z, x) = y

(vii) every automorphism of (P,≤) has the form F (x,−) for some x ∈ Q.

�3.9
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§ 4. Adding More Quantifiers

We show here for completeness that we can ncorporate the results of [MS93] for
trees and for ordered fields but we somewhat strengthen the statement: we can
quantify over embedding of one order field Ḟ1 onto some dense subfield of another
Ḟ2 (rather than onto isomorphism).

Claim 4.1. Assume (T ∗,B as in 2.7 and)

(a) (I,P,≤I ,≤P, h) is a leveled partial order; i.e.

(i) (I,≤I) is a partial order

(ii) (P,≤P) is a directed partial order (with no maximal element)

(iii) h : I → P satisfies: x <I y ⇒ h(x) <P h(y)

(iv) if x ∈ I, t <P h(x) then for some unique y ∈ I, y < x, h(y) = t

(b) (I,P,≤I ,≤P, h) is first order definable in B with (finitely many) parameters
so without loss of generality I,P are subsets of B

(c) B ⊆ I is a full branch, i.e. (B,<I �B) is directed and h�B is one to one
onto P.

Then B is first order definable in B (with parameters).

Remark 4.2. Clearly h is a homomorphism from (B,≤I �B) onto (P, <P).

Proof. For each α ∈ S− let bα ∈ PB be such that [b ∈ P[Bα] ⇒ b <P bα] (exists
by 2.11(g)), and let tα ∈ B(⊆ I) be such that h(tα) = bα. For some Nα ≺

Bα, gen(Nα) < κ and Bα

B⋃
Nα

〈Nα, tα〉. As {δ < λ : cf(δ) = θ, δ /∈ S} is stationary,

λ regular and (∀α < λ)[α<κ < λ], clearly for some N ,

SN := {δ ∈ S− : Nδ = N} is stationary and even for some p ∈ S(N)

SpN := {δ ∈ SN : tp(tδ, N,B) = p} is stationary.

Without loss of generality the parameters defining (I,P,≤I ,≤P, h) are in N . Now
if α < β are in SpN , then tα <I tβ (as h is an isomorphism from (B,≤I , �B) onto
(P, <P)), but tp(tβ ,Bβ ,B) does not split over N , hence if t ∈ I∩Bβ realizes p then
t <I tβ . As this holds for any β ∈ SpN \{Min(SpN )}, clearly p(x)∪p(y)∪{¬(∃z)[x ≤I
z and y ≤I z]} is not realized in B.

But N is generated by < κ elements and B is κ-saturated so the type is not
finitely satisfiable in B, so for some ψ(x) ∈ p

B |= (∀x, y) [ψ(x) & ψ(y)⇒ (∃z) [x ≤I z & y ≤I z]}

m and without loss of generality ψ(B) ⊆ I. So ψ′(x) = (∃y)(x ≤I y&ψ(y))
defines the branch B. �ref4.1

Conclusion 4.3. In 3.1, 3.5 we can add to the logic quantification over full branches
of leveled partial orders, Q̇br (see 4.6(2)). Also adding the reasonable axiom schema,
we can add this quantifier in 3.7.
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Claim 4.4. Assume B as in 2.7, b1, b2 are Boolean rings representable (or just
first order definable with parameters) in B, h : b1 → b2 is a homomorphism and
ai ∈ b1[B] for i < λ are pairwise disjoint.

Then for some α < λ for every i ∈ [α, λ), f(ai) is the unique member of B
realizing tp(f(aα),Bα ∪ {ai},B).

Proof. Similar to 2.16 (but we have to replace the use of the cα’s by poorer means:
which x ∈ Bβi \Bαi is below f(aδ,η,θ)). �4.4

Claim 4.5. In 3.1, 3.5 (and 3.7) we can add to the logic the quantifiers Q̇ofde and

Q̇br.

where

Definition 4.6. 1) (Q̇ofdef, x̄, ȳ)[ψ1(x̄), ψ2(ȳ), ϕ(f)] (defined syntactically as in

3.3) means: M |= (Q̇ofdef, x̄, ȳ)[ψ1(x̄), ψ2(ȳ), ϕ(f)] iff ψ1(x̄), ψ2(ȳ) defines ordered
field F1,F2 respectively such that there is an embedding f of F1 into F2 with dense
range satisfying ϕ[h].

2) [Q̇bry, x][ψ(x), ϕ(y)] (defined syntactically as in 3.3) means: M |= (Q̇bry, x̄)[ψ(x̄), ϕ(y)]
iff ψ(x̄) defines a leveled partial order (as in 4.1(a)) and there is a full branch of it
y (see 4.1(c)) such that M |= ϕ[y].

Proof. By 3.5. �4.5

Concluding Remarks 4.7. For ordered field we cannot prove the theorem for em-
bedding, but we can for dense embedding; i.e. the range is dense.

Why not? Suppose we have an ordered field F1, an ordered real closed field
ḟ2 and an embedding f : F1 → F2 such that the interval (−ε,+ε)F2

is disjoint to
Rang(f)(ε ∈ F2, ε > 0). Let {ai : i < i∗} ⊆ F1 be a maximal family of algebraically
independent elements, 〈bi : i < a∗〉 be such that bi ∈ F2,−ε < bi < ε. We “correct”
f by letting f ′(ai) = f(ai) + bi, and completing f(a)(a ∈ F) by algebraicity.
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§ 5. Continuing [She15]

In [She15] assuming ♦ℵ1 , for any countable model M of PA we find N such that:

(∗)M,N (a) M ≺ N
(b) for a, b ∈ N the linear orders N<a, N<b are isomorphic iff aE3

Nb.

Discussion 5.1. We wonder: (see [She15, xxx]): can we deal with larger cardinal?
i.e.

Question 5.2. : 1) Assume µ strong limit of cofinality ℵ1, λ = µ+ = 2µ,�µ holds,
♦∗λ or so.

Can we find N as above:

(∗)1 (a) so let µ =
∑
n
µn, 2

µn < µn+1 when µ−n =
∑
`<n

µ` + ℵ0.

We consider

(∗)2 K is the set of (M̄,Γ) such that:

(a) M̄ = 〈Mn : n < ω〉
(b) Mn ≺Mn+1

(c) Mn is a µ+
n -saturated model of T of cardinality 2µn

(d) Γ is a set of countable type omitting by ∪Mn

• p = {apn < x < aq,n : n < ω} where

• Mn+1 |= ap,n < ap,n+1 < ap(n)

• [ap,n, bp,n]Mn+1
∩Mn = ∅.

So our problem is (T countable for transparency)

(∗)3 a problem x consists of:

(a) a term σ(x, y)

(b) n(∗) and a∗, b∗ ∈Mn(∗), a∗ > b∗, b∗/E
3
µ/E

3
µ

(c) ϕ̄′ = (ϕ1(x), ϕ2(x)) ∈ ΦMn(∗) is as in?

(∗)4 a solution is ϕ̄′, a1, a2

(a) ϕ̄ ≤AP ϕ̄
′ ∈ ΦMn(∗)+1

(b) if d ∈Mn(∗), then ϕ′ 
 “a1 < x < a2”

• if b ∈Mn(∗) then ϕ′(x) ` σ(x, b) /∈ [F (a1), F (a2)).

Naturally

(∗)5 we can find w ∈Mn(∗)+1 such that:

(a) Mn(∗)+1 |= “w is a very small set”

(b) d ∈Mn(∗) = Mn(∗)+1 |= “d ∈ w”.

So in (∗)4 we shall try to replace “b ∈Mn(∗)+1” by Mn(∗)+1 |= “b ∈ w”. So now we
can hopefully repeat the proof of [She15, 3.7=Ld31=pg.4.7].
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Second Way: discussion
1) Question: The first way assume “RM = R” is compatible with 3-rigidity. Is this
so?
2) Try to force a model of T generated by a perfect set 〈λη : η ∈ ω2〉, with the set
of AP of approximations being ϕ(x̄n), x̄n = 〈xη : η ∈ n2〉. Even find a∗ > b∗ (so a
weaker result, just fixing the complete 2-type), e.g.

(∗) ϕ(x̄n) `
∧
η
xη < a∗

• CT |= “ϕ(CT )/a
2(n)
∗ is > 1m for some m or is ≥ 1

d , d ∈ CT standard
small enough

(∗) we have (ϕ̄1, ϕ̄2) parallel to [She15, §3].
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