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Abstract. We introduce a general method of constructing locally compact

scattered spaces from certain families of sets and then, with the help of this
method, we prove that if κ<κ = κ then there is such a space of height κ+

with only κ many isolated points. This implies that there is a locally compact

scattered space of height ω2 with ω1 isolated points in ZFC, solving an old
problem of the first author.

1. Introduction

Let us start by recalling that a topological space X is called scattered if ev-
ery non-empty subspace of X has an isolated point and that such a space has a
natural decomposition into levels, the so called Cantor-Bendixson levels. The αth

Cantor-Bendixson level of X will be denoted by Iα(X). We shall write I<λ(X) =⋃
α<λ Iα(X). The height of X, ht(X), is the least α with Iα(X) = ∅. The sequence
〈|Iα(X)| : α ∈ ht(X)〉 is said to be the cardinal sequence of X. The width of X,
wd(X), is defined by wd(X) = sup{ | Iα(X)| : α < ht(X)}.

The cardinality of a T3 , in particular of a locally compact, scattered (in short:
LCS) space X is at most 2 | I(X)|, hence clearly ht(X) < (2| I(X)|)+. Therefore under
CH there is no LCS space of height ω2 with only countably many isolated points.
On the other hand, I. Juhász and W. Weiss, [3, theorem 4], proved in ZFC that for
every α < ω2 there is a LCS space X with ht(X) = α and wd(X) = ω. The natural
question if the existence of an LCS space of height ω2 with countable width follows
from ¬CH was answered in the negative by W. Just, who proved, [4, theorem 2.13
], that if one adds Cohen reals to a model of CH then in the generic extension there
are no LCS spaces of height ω2 and wd(X) = ω. On the other hand, Baumgartner
and Shelah proved it consistent (with ¬CH) that such an LCS space exists.

The above mentioned estimate ht(X) < (2|I(X)|)+ is sharp for LCS spaces with
countably many isolated points : it is easy to construct an LCS space with countable
”bottom” and of height α for each α < (2ω)+ (see theorem 2.20). Much less is
known about LCS spaces with ω1 isolated points, for example it is a long standing
open problem whether there is, in ZFC, an LCS space of height ω2 and width ω1. In
fact, as was noticed by Juhász in the mid eighties, even the much simpler question
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if there is a ZFC example of an LCS space of height ω2 with only ω1 isolated points,
turned out to be surprisingly difficult. On the other hand, Mart́ınez, [6, theorem 1]
proved that it is consistent that for each α < ω3 there is a LCS space of height α
and width ω1. As the main result of the present paper, we shall give an affirmative
answer to the above question of Juhász: in section 2 we construct, in ZFC, an LCS
space of height ω2 with ω1 isolated points. Since this space we construct in theorem
2.21 has width ω2, the following question remains:

Problem 1. Is there an LCS space X of height ω2 and width ω1 in ZFC?

The methods used in the proof of theorem 2.21 do not seem to suffice to get LCS
spaces with ω1 isolated points of arbitrary height < ω3. Thus we have the following
problem:

Problem 2. Is there, in ZFC, an LCS space with ω1 isolated points and of height
α for each α < ω3?

Although one of our main results, theorem 2.19, generalizes to higher cardinals,
it does not seem to suffice to get the analogous result e.g. for ω3 instead of ω2. If
2ω ≤ ω2 but 2ω1 > ω2 then neither theorem 2.20 nor theorem 2.19 can be applied
to get an LCS space of height ω3 with only ω2 many isolated points. Thus the
following version of Juhász’ problem remains open:

Problem 3. Is there, in ZFC, an LCS space X of height ω3 having ω2 isolated
points?

Let us mention here that the problem of the existence of (λ+, λ)-thin-tall spaces,
i. e. LCS spaces of width λ and height λ+, is mentioned in [9, Problem 6.4, p.53].
However, it is erroneously stated there that the existence of a (λ+, λ)-thin-tall space
follows from λ<λ = λ or from the existence of a λ+-tree.

2. A space of height ω2 and with ω1 isolated points

Definition 2.1. Given a family of sets A we define the topological space X(A) =
〈A, τA〉 as follows: τA is the coarsest topology in which the sets UA(A) = A∩P(A)
are clopen for each A ∈ A, in other words: {UA(A),A \ UA(A) : A ∈ A} is a
subbase for τA.

We shall write U(A) instead of UA(A) if A is clear from the context.

Clearly X(A) is a 0-dimensional T2-space. A family A is called well-founded iff
〈A,⊂〉 is well-founded. In this case we can define the rank-function rk : A −→ On
as usual:

rk(A) = sup{rk(B) + 1 : B ( A},
and write Rα(A) = {A ∈ A : rk(A) = α}.

The family A is said to be ∩-closed iff A ∩B ∈ A ∪ {∅} whenever A,B ∈ A.
It is easy to see that if A is ∩-closed, then a neighbourhood base in X(A) of

A ∈ A is formed by the sets

W(A;B1, . . . , Bn) = U(A) \
n⋃
1

U(Bi),

where n ∈ ω and Bi ( A for i = 1, . . . , n. ( For n = 0 we have W(A) = U(A).)
The following simple result enables us to obtain LCS spaces from certain families

of sets. Let us point out, however, that not every LCS space is obtainable in this
manner, but we do not dwell upon this because we will not need it.
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Lemma 2.2. Assume that A is both ∩-closed and well-founded. Then X(A) is an
LCS space.

Proof. Given a non-empty subset Y of A let A be a ⊂-minimal element of Y. Then
U(A) ∩ Y = {A}, i.e. A is isolated in Y. Thus X(A) is scattered.

Next we prove that every U(A) is compact by well-founded induction on 〈A,⊂〉.
Assume that U(B) is compact for each B ( A. By Alexander’s subbase lemma it
is enough to prove that any cover of U(A) with subbase elements contains a finite
subcover. So let B, C ⊂ A be such that

U(A) ⊂
⋃
B∈B

U(B) ∪
⋃
C∈C

(A \U(C)).

If A ∈ U(B) for some B ∈ B then A ⊂ B and so U(A) ⊂ U(B).
Hence we can assume that A ∈ A \ U(C), i.e. A 6⊂ C for some C ∈ C. If

A ∩ C = ∅ then U(A) \ {∅} ⊂ A \ U(C), and we are clearly done. So we can
assume that A ∩ C 6= ∅, and consequently A ∩ C ∈ A. Then U(A) \ (A \ U(C)) =
U(A) ∩ U(C) = U(A ∩ C). Since A ∩ C 6= A the set U(A ∩ C) is compact by
the induction hypothesis, hence U(A ∩ C) is covered by a finite subfamily F of
{U(B) : B ∈ B} ∪ {A \U(D) : D ∈ C}. Therefore F ∪ {A \U(C)} is a finite cover
of U(A). Consequently U(A) is compact. �

To simplify notation, if X(A) is scattered then we write Iα(A) = Iα(X(A)).
Clearly each minimal element of A ∈ A is isolated in X(A); more generally we

have α ≤ rk(A) if A ∈ Iα(A), as is shown by an easy induction on rk(A).

Example 2.3. Assume that 〈T,≺〉 is a well-ordering, tp 〈T,≺〉 = α, and let A be
the family of all initial segments of 〈T,≺〉, i. e. A = {T} ∪ {Tx : x ∈ T}, where
Tx = {t ∈ T : t ≺ x}. Then A is well-founded, ∩-closed and it is easy to see that
X(A) ∼= α+ 1, i.e. the space X(A) is homeomorphic to the space of ordinals up to
and including α.

Example 2.3 above shows that, in general, Rα(A) and Iα(A) may differ even for
α = 0. Indeed, if x is the successor of y in 〈T,≺〉 then Tx is isolated in X(A)
because {Tx} = W (Tx;Ty) = UA(Tx) \ UA(Ty) is open, but rk(x) = tp(Tx) > 0.
However, for a wide class of families, the two kinds of levels do agree. Let us call a
well-founded family A rk-good iff the following condition is satisfied:

∀A ∈ A ∀α < rk(A) |{A′ ∈ A : A′ ⊂ A ∧ rk(A′) = α}| ≥ ω.
Then we have the following result.

Lemma 2.4. If A is well-founded, ∩-closed and rk-good then Iα(A) = Rα(A) for
each α.

Proof. We prove this by induction on α. Assume that Iξ(A) = Rξ(A) for all ξ < α.
If A ∈ Rα(A) then U(A) \ {A} ⊂

⋃
ξ<α Rξ(A) =

⋃
ξ<α Iξ(A) and so A is an

isolated point of A \
⋃
ξ<α Iξ(A), i.e. A ∈ Iα(A). Thus we have Rα(A) ⊂ Iα(A).

Now assume that A ∈ Iα(A) \ Rα(A). Then by our above remark α < rk(A),
moreover there are B1, . . . Bn ∈ UA(A) \ {A} such that

(?) W(A;B1, . . . , Bn) \ {A} ⊂ I<α(A) = R<α(A).

Let η = max{α,maxi=1,...,n rkBi}. Then η < rk(A), moreover we have UA(A) ∩
Rη(A) ⊂ {B1, . . . Bn} by (?), contradicting |UA(A) ∩ Rη(A)| ≥ ω. Note that this
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argument is valid for n = 0 as well. Indeed, in this case we have UA(A) \ {A} ⊂
I<α(A), moreover η = α. Thus we have concluded that Iα(A) = Rα(A). �

Example 2.5. For a fixed cardinal κ and any ordinal γ < κ+ we define the family
Eγ ⊂ P(κγ) as follows:

Eγ =
{[
κ1+α · ξ, κ1+α · (ξ + 1)

)
: α ≤ γ, κ1+α · ξ < κγ

}
.

Of course, throughout this definition exponentiation means ordinal exponentia-
tion.

Eγ is clearly well-founded, ∩-closed, moreover rk
([
κ1+α · ξ, κ1+α · (ξ+ 1)

))
= α,

hence Eγ is also rk-good. Consequently X(Eγ) is an LCS space of height γ + 1 in

which the αth level is
{[
κ1+α · ξ, κ1+α · (ξ + 1)

)
: κ1+α · ξ < κγ

}
, i. e. all levels

except the top one are of size κ.

To get an LCS space of height κ+ with “few” isolated points, our plan is to
amalgamate the spaces {X(Eγ) : γ < κ+} into one LCS space X in such a way
that | I0(X)| ≤ κ<κ. The following definition describes a situation in which such
an amalgamation can be done.

Definition 2.6. A system of families {Ai : i ∈ I} is called coherent iff A ∩ B ∈
Ai ∪ {∅} whenever {i, j} ∈

[
I
]2

, A ∈ Ai and B ∈ Aj .

To simplify notation, we introduce the following convention. Whenever the sys-
tem of families {Ai : i ∈ I} is given, we will write Ui(A) for UAi(A), and τi for τAi .
If the family A is defined then we will write U(A) for UA(A), and τ for τA.

Lemma 2.7. Assume that {Ai : i ∈ I} is a coherent system of well-founded, ∩-
closed families and A = ∪{Ai : i ∈ I}. Then for each i ∈ I and A ∈ Ai we have
U(A) = Ui(A), A is also well-founded and ∩-closed, moreover τi |̀ U(A) = τ |̀ U(A).
Consequently each X(Ai) is an open subspace of X(A) and thus {X(Ai) : i ∈ I}
forms an open cover of X(A).

Proof. Let A ∈ Ai. Then it is clear from coherence that

Ui(A) ⊆ U(A) =
⋃
j∈I
{B : B ∈ Aj ∧B ⊂ A} ⊆ Ui(A),

hence Ui(A) = U(A).
Next let B ∈ Aj . If A ∩ B = ∅ then U(A) ∩ U(B) ⊂ {∅}. Now assume that

A ∩B 6= ∅. Then, again by coherence, A ∩B ∈ Ai and we have

U(A) ∩U(B) = Ui(A) ∩U(B) = {C ∈ Ai : C ⊂ A ∧ C ⊂ B}
= {C ∈ Ai : C ⊂ A ∩B} = Ui(A ∩B).

In both cases U(A)∩U(B) is τi-open. Similarly we can see that U(A) \U(B) =
Ui(A) \U(B) is τi-open, hence the topologies τi |̀ U(A) and τ |̀ U(A) coincide.

To show that A is well-founded, assume that {An : n ∈ ω} ⊂ A and A0 ⊇ A1 ⊇
. . . . If A0 ∈ Ai then {An : n ∈ ω} ⊂ Ai because U(A0) = Ui(A0). Thus there is
n ∈ ω with Am = An for each m ≥ n because Ai is well-founded. Finally, that A
is ∩-closed is an easy consequence of coherence and the ∩-closednessof the families
Ai. �
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Given a system of families {Ai : i ∈ I} we would like to construct a coherent

system of families {Âi : i ∈ I} such that Ai and Âi are isomorphic for all i ∈ I. A
sufficient condition for when this can be done will be given in lemma 2.9 below.

First, however, we need a definition. While reading it, one should remember
that an ordinal is identified with the family of its proper initial segments.

Definition 2.8. Given a limit ordinal ρ and a family A with ρ ⊂ A ⊂ P(ρ), let us

define the family Â as follows. Consider first the function kA on ρ determined by
the formula kA(η) = UA(η + 1) for η ∈ ρ and put

Â = {k′′AA : A ∈ A}.
Since ρ ⊂ A, for each η ∈ ρ we clearly have ∪UA(η) = η and so kA(η) =

UA(η + 1) 6= UA(ξ + 1) = kA(ξ) whenever {η, ξ} ∈
[
ρ
]2

. Consequently, kA is a

bijection that yields an isomorphism between A and Â (and so the spaces X(A)

and X(Â) are homeomorphic).
If the system of families {Ai : i ∈ I} is given, then we write ki for kAi for each

i ∈ I.

If A ⊂ P(ρ) and ξ ≤ ρ then we let

A |̀ ξ = {A ∩ ξ : A ∈ A}.
For A0 6= A1 ⊂ P(ρ) we let

∆(A0,A1) = min{δ : A0 |̀ δ 6= A1 |̀ δ}.
Clearly we always have ∆(A0,A1) ≤ ρ. If, in addition, ρ+1 ⊂ A0∩A1, moreover

both A0 and A1 are ∩-closed then we also have

∆(A0,A1) = min{δ : U0(δ) 6= U1(δ)},
because then Ai |̀ δ = Ui(δ) whenever i ∈ 2 and δ ≤ ρ.

Lemma 2.9. Assume that κ is a cardinal, {Ai : i ∈ I} ⊂ PP(κ) are ∩-closed
families, κ+ 1 ⊂ Ai for each i ∈ I, and ∆(Ai,Aj) is a successor ordinal whenever

{i, j} ∈
[
I
]2

. Then the system {Âi : i ∈ I} is coherent.

Proof. Let A ∈ Ai and B ∈ Aj , where ∆(Ai,Aj) = ρ + 1. Then B ∩ ρ ∈ Uj(ρ) =
Ui(ρ) by the choice of ρ and so A ∩ B ∩ ρ ∈ Ai ∪ {∅} because Ai is ∩-closed.
Consequently we have

k′′i A ∩ k′′j B ={
Ui(η + 1) : η ∈ A ∩B ∧ Ui(η + 1) = Uj(η + 1)

}
={

Ui(η + 1) : η ∈ A ∩B ∧ η < ρ
}

= k′′i (A ∩B ∩ ρ) ∈ Âi ∪ {∅},
as required by the definition of coherence. �

More is needed still if we want the ”amalgamated” family to provide us a space
with a small base, i.e. having not too many isolated points. This will be made clear
by the following lemma.

Lemma 2.10. Let κ be a cardinal and {Ai : i ∈ I} ⊂ PP(κ) be a system of families
such that

(i) κ
.
+ 1 ⊂ Ai and Ai is well-founded and ∩-closed for each i ∈ I,

(ii) ∆(Ai,Aj) is a successor ordinal for each {i, j} ∈
[
I
]2

.
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Then

(a) the system {Âi : i ∈ I} is coherent and thus A =
⋃
{Âi : i ∈ I} is well-founded,

∩-closed and X(A) is covered by its open subspaces {X(Âi) : i ∈ I}.
If, in addition, we also have

(iii) I0(Ai) ⊂
[
κ
]<κ

for each i ∈ I,

and

(iv) |Ui(η)| < κ for each i ∈ I and η ∈ κ,

then

(b) I0(A)| ⊂
[[

[κ]<κ
]<κ]<κ

.

Proof of lemma 2.10. The system {Âi : i ∈ I} is coherent by lemma 2.9, thus (a)
holds by lemma 2.7.

Consequently we have

I0(A) =
⋃
{I0(Âi) : i ∈ I}.

Now if A ∈ I0(Ai) and η ∈ κ then |A| < κ by (iii) and Ui(η) ∈
[[
κ
]<κ]<κ

by

(iv), hence

k′′i A = {Ui(η + 1) : η ∈ A} ∈
[[[

κ
]<κ]<κ]<κ

.

This, by I0(Âi) = {k′′i A : A ∈ I0(Ai)}, proves (b). �

Before we could apply this result to the families Eγ , however, we need some
further preparation.

Definition 2.11. A family A is called tree-like iff A ∩A′ 6= ∅ implies that A ⊂ A′
or A′ ⊂ A, whenever A,A′ ∈ A.

Definition 2.12. A family A is called chain-closed if for each non-empty B ⊂ A
if B is ordered by ⊂ (i.e. if B is a chain) then ∪B ∈ A.

It is easy to see that the families Eγ given in example 2.5 are both tree-like and
chain-closed. Also, tree-like families are clearly ∩-closed.

Lemma 2.13. If δ is an ordinal and A ⊂ P(δ) is tree-like, well-founded and chain-
closed then so is A |̀ ξ for each ξ ≤ δ.
Proof of lemma 2.13. It is obvious that A |̀ ξ is tree-like. To show that A |̀ ξ is
chain-closed, let ∅ 6= B ⊂ A |̀ ξ be ordered by ⊂ . If B = {∅} then ∪B = ∅ ∈ A |̀ ξ.
If, however, B 6= {∅} then put B̃ = {A ∈ A : A ∩ ξ ∈ B \ {∅}}. Since A is tree-like,

B̃ is also ordered by ⊂ and clearly B̃ 6= ∅. So ∪B̃ ∈ A and ∪B = ∪B̃ ∩ ξ ∈ A |̀ ξ,
which was to be shown.

To show that A |̀ ξ is well-founded assume that A0 ∩ ξ ⊇ A1 ∩ ξ ⊇ . . . , where
each An ∈ A. If An ∩ ξ = ∅ for some n, then we are done. Otherwise for each
n ∈ ω we have An ∩ ξ = (∩m≤nAm) ∩ ξ 6= ∅, hence as A is ∩-closed we can assume
that A0 ⊇ A1 ⊇ . . . . Since A is well-founded, there is n such that Am = An, and
so Am ∩ ξ = An ∩ ξ as well, for each m ≥ n. �

Definition 2.14. Given a family A ⊂ P(δ) and α, β ∈ δ let us put

SA(α, β) = ∪{A ∈ A : α ∈ A and β /∈ A}.
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Lemma 2.15. Assume that δ is an infinite ordinal and A ⊂ P(δ) is a tree-like,
well-founded and chain-closed family with δ ∈ A. Then

A \ {∅} = {δ} ∪ {SA(α, β) : α, β ∈ δ} \ {∅}.
Consequently, |A| ≤ |δ|.

Proof of lemma 2.15. Given α, β ∈ δ, the family S = {A ∈ A : α ∈ A, β /∈ A} is

ordered by ⊂ because A is tree-like. Thus either S = ∅ and so SA(α, β) = ∪S = ∅,
or if S 6= ∅ then SA(α, β) = ∪S ∈ A, for A is chain-closed.

Assume now that A ∈ A \ {∅, δ} and let D = {D ∈ A : A ( D}. Clearly
δ ∈ D. Since A is tree-like, D is ordered by ⊂ , so it has a ⊂-least element, say
D, because 〈A,⊂〉 is also well-founded. Pick β ∈ D \ A and let α ∈ A. We claim

that A = SA(α, β). Clearly A ⊂ SA(α, β) because α ∈ A and β /∈ A. On the other
hand, if A′ ∈ A, α ∈ A′ and β /∈ A′ then either A′ ⊂ A or A ⊂ A′ because A is
tree-like. But β /∈ A′ implies that A′ /∈ D, i.e. A ( A′ can not hold. Thus A′ ⊂ A
and so SA(α, β) = A is proved. �

Definition 2.16. If ρ is an ordinal and A ⊂ P(ρ) let us put

A∗ = {A ∩ ξ : A ∈ A ∧ ξ ≤ ρ} = A ∪ {A ∩ ξ : A ∈ A ∧ ξ < ρ}.

Lemma 2.17. If ρ is an ordinal and A0,A1 ⊂ P(ρ) are chain-closed, ∩-closed and
well-founded families such that A0

∗ 6= A1
∗ then ∆(A0

∗,A1
∗) is a successor ordinal.

Proof. Assume that δ is a limit ordinal and A0
∗ |̀ γ = A1

∗ |̀ γ for all γ < δ. We
want to show that A0

∗ |̀ δ = A1
∗ |̀ δ. Since Ai∗ |̀ δ =

⋃
ξ≤δ Ai |̀ ξ and

⋃
ξ<δ Ai |̀ ξ =⋃

ξ<δ Ai
∗ |̀ ξ, moreover ∅ ∈ A0

∗ ∩ A1
∗, it is enough to show that (A0 |̀ δ) \ {∅} =

(A1 |̀ δ) \ {∅}.
So assume that A ∈ A0 with A ∩ δ 6= ∅ and verify that then A ∩ δ ∈ A1 |̀ δ.
Fix ζ ∈ A ∩ δ. For each γ with ζ < γ < δ let Bγ be the ⊂-minimal element of

A1 with Bγ ∩ γ = A ∩ γ 6= ∅. Then {Bγ : γ < δ} is a chain because Bγ ⊂ Bγ′ for
γ < γ′ by the minimality of Bγ and because A1 is ∩-closed. Thus B = ∪{Bγ : ζ <
γ < δ} ∈ A1 and clearly A ∩ δ = B ∩ δ. �

The last result shows us that the operation * is useful because its application
yields us families that satisfy condition (ii) of lemma 2.10. On the other hand, the
following result tells us that the LCS spaces associated with the families modified by
* do not differ significantly from the spaces given by the original families, moreover
they also satisfy condition (iii) of lemma 2.10.

Lemma 2.18. Let κ be a cardinal and A ⊂
[
κ
]κ

be well-founded and ∩-closed.
Then so is A∗, moreover

(a) X(A) is a closed subspace of X(A∗),
(b) I0(A) ⊆ Iκ(A∗).
(c) ht(A∗) ≥ κ

.
+ ht(A),

(d) I0(A∗) ⊂
[
κ
]<κ

.

Proof of lemma 2.18. We shall write U(A) for UA(A), and U∗(A) for UA∗(A).
First observe that because

U∗(A) ∩ A =

{
U(A) if A ∈ A,
∅ if A ∈ A∗ \ A,

X(A) is a closed subspace of X(A∗), hence (a) holds.
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Now let A ∈ I0(A). Then there are B1, . . . , Bn ∈ U(A) \ {A} such that

{A} = W(A;B1, . . . , Bn) = U(A) \
n⋃
i=1

U(Bi).

Since here Bi ( A and |A| = κ, we can fix η ∈ A such that (A ∩ η) 6⊂ Bi for every
i = 1, . . . , n.

Now consider the basic neighbourhood

Z = W∗(A;A ∩ η,B1, . . . , Bn) = U∗(A) \U∗(A ∩ η) \
n⋃
i=1

U∗(Bi)

of A in X(A∗). We claim that Z = {A ∩ ξ : η < ξ ≤ κ}. The inclusion ⊃ is clear
from the choice of η. On the other hand, if C ∩ ξ ∈ Z with C ∈ A and ξ ≤ κ, then
C ∩ ξ ⊂ A hence C ∩ ξ = A∩C ∩ ξ, so as A is ∩-closed we can assume that C ⊆ A.
If we had C 6= A then {A} = W(A;B1, . . . , Bn) would imply C ⊂ Bi for some i,
hence C ∩ ξ ∈ U∗(Bi) and so C ∩ ξ /∈ Z, a contradiction, thus we must have C = A.
Moreover, since U∗(A ∩ η) ⊃ {A ∩ ν : ν ≤ η}, we must also have ξ > η.

By example 2.3 we have X(Z) ∼= κ+ 1. Moreover, the topologies τZ and τA∗ |̀ Z
coincide because the above argument also shows that for each C ∈ A and ζ ≤ κ we
have

U∗(C ∩ ζ) ∩ Z = U∗(A ∩ C ∩ ζ) ∩ Z =

{
UZ(A ∩ ζ) if A ⊂ C and ζ > η;
∅ otherwise.

Hence X(Z) ∼= κ
.
+ 1 is a clopen subspace of X(A∗) and so {A} = Iκ(Z) =

Iκ(A∗) ∩ Z, what proves (b).
(c) follows immediately from (a) and (b).

Finally, I0(A∗) ⊂ I<κ(A∗) ⊂ (A∗ \A) ⊂
[
κ
]<κ

, as follows immediately from (b),
proving (d). �

Now we are ready to collect the fruits of all the preparatory work.

Theorem 2.19. If κ<κ = κ then there is an LCS space X of height κ+ with
| I0(X)| = κ.

Proof of theorem 2.19. For each γ < κ+ consider the well-founded, ∩-closed, rk-
good family Eγ constructed in example 2.5:

Eγ =
{[
κ1+α · ξ, κ1+α · (ξ + 1)

)
: α ≤ γ, κ1+α · ξ < κγ

}
.

Fix a bijection fγ : κγ −→ κ, and let Fγ = {fγ ′′E : E ∈ Eγ}, i.e. Fγ is simply
an isomorphic copy of Eγ on the underlying set κ. As Eγ is also chain-closed and
tree-like, hence so is Fγ .

We shall now show that the *-modified families {Fγ∗ : γ < κ+} satisfy conditions

(i)-(iv) of lemma 2.10. Since κ ∈ Fγ it follows that κ
.
+ 1 ⊂ Fγ∗ and so (i) is true.

For {γ, δ} ∈
[
κ+
]2

, the height of X(Eγ) is γ + 1 and the height of X(Eδ) is δ + 1,

hence Eγ and Eδ are not isomorphic. Thus Fγ 6= Fδ and so Fγ∗ 6= Fδ∗ because

Fγ = Fγ∗ ∩
[
κ
]κ

and Fδ = Fδ∗ ∩
[
κ
]κ

. Hence ∆(Fγ∗,Fδ∗) is a successor ordinal
by lemma 2.17, i.e. (ii) is satisfied.

(iii) holds by 2.18.(d.)
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To show (iv), let us fix ξ < κ. Then UFγ∗(ξ) = Fγ∗ |̀ ξ = ∪{Fγ |̀ ζ : ζ ≤ ξ} where

|Fγ |̀ ζ| ≤ |ζ|2 for all ζ ≤ ξ by lemmas 2.13 and 2.15, consequently |Fγ∗ |̀ ξ| ≤ |ξ|3 <
κ.

Thus we may apply lemma 2.10 to the family F = ∪{F̂γ∗ : γ < κ+} and

conclude that the space X = X(F) is LCS, | I0(X)| ≤
(
(κ<κ)<κ

)<κ
= κ, moreover

since for every γ ∈ κ+ the space X(Fγ∗) is an open subspace of X, we have
ht(X) ≥ ht(X(Fγ∗)) > γ, consequently ht(X) ≥ κ+. �

In particular, if 2ω = ω1 then the above result yields an LCS space X with
ht(X) = ω2 and | I0(X)| = ω1. That such a space also exist under ¬CH, hence in
ZFC, follows from the following result.

Theorem 2.20. For each α < (2ω)+ there is a locally compact, scattered space Xα

with |Xα| ≤ |α|+ ω, ht(Xα) = α and | I0(Xα)| = ω.

Proof. We do induction on α. If α = β+ 1 then we let Xα be the 1-point compact-
ification of the disjoint topological sum of countably many copies of Xβ .

If α is limit then we first fix an almost disjoint family {Aβ : β < α} ⊂
[
ω
]ω

, for
|α| ≤ 2ω. Applying the inductive hypothesis for each β < α we also fix a locally
compact scattered space Xβ of height β such that I0(Xβ) = Aβ and Xβ ∩ Xγ =

Aβ ∩Aγ for {β, γ} ∈
[
α
]2

. Now amalgamate the spaces Xβ as follows: consider the
topological space X = 〈∪β<αXβ , τ〉 where τ is the topology generated by ∪β<ατXβ .
Since Aβ ∩Aγ is a finite and open subspace of both Xβ and Xγ it follows that each
Xβ is an open subspace of X. Consequently, X is LCS with countably many isolated
points, and ht(X) = supβ<α htXβ = α. �

Corollary 2.21. There is a locally compact, scattered space of height ω2 and having
ω1 isolated points.

Proof. If 2ω = ω1, then theorem 2.19 gives such a space.
If 2ω > ω1 then (2ω)+ ≥ ω3 and so according to theorem 2.20 for each α < ω3

there is locally compact, scattered space of height α and countably many isolated
points. �
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