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Abstract. We show that the reduced cofinality of the nonstationary ideal

NSκ on a regular uncountable cardinal κ may be less than its cofinality, where

the reduced cofinality of NSκ is the least cardinality of any family F of nonsta-
tionary subsets of κ such that every nonstationary subset of κ can be covered

by less than κ many members of F . For this we investigate connections of

the various cofinalities of NSκ with other cardinal characteristics of κκ and
we also give a property of forcing notions (called manageability) which is pre-

served in <κ–support iterations and which implies that the forcing notion

preserves non-meagerness of subsets of κκ (and does not collapse cardinals
nor changes cofinalities).

0. Introduction

Let κ be a regular uncountable cardinal. For C ⊆ κ and γ ≤ κ, we say that γ is a
limit point of C if

⋃
(C ∩ γ) = γ > 0. C is closed unbounded if C is a cofinal subset

of κ containing all its limit points less than κ. A set A ⊆ κ is nonstationary if A
is disjoint from some closed unbounded subset C of κ. The nonstationary subsets
of κ form an ideal on κ denoted by NSκ. The cofinality of this ideal, cof(NSκ),
is the least cardinality of a family F of nonstationary subsets of κ such that every
nonstationary subset of κ is contained in a member of F . The reduced cofinality
of NSκ, cof(NSκ), is the least cardinality of a family F ⊆ NSκ such that every
nonstationary subset of κ can be covered by less than κ many members of F . This
paper addresses the question whether cof(NSκ) = cof(NSκ). Note that

κ+ ≤ cof(NSκ) ≤ cof(NSκ) ≤ 2κ,

so under GCH we have cof(NSκ) = cof(NSκ).
Let κ2 be endowed with the κ–box product topology, 2 itself considered discrete.

We say that a set W ⊆ κ2 is κ–meager if there is a sequence 〈Uα : α < κ〉 of dense
open subsets of κ2 such that W ∩

⋂
α<κ

Uα = ∅. The covering number for the category

of the space κ2, denoted cov(Mκ,κ), is the least cardinality of any collection X of
κ–meager subsets of κ2 such that

⋃
X = κ2. It is not hard to verify that

cov(Mκ,κ) ≤ cof(NSκ) ≤
(
cof(NSκ)

)<κ
.
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It follows that if cof(NSκ) < cov(Mκ,κ) and the Singular Cardinals Hypothesis

holds true, then cf(cof(NSκ)) < κ and cof(NSκ) = (cof(NSκ))+. We prove:

Theorem 0.1. Assume GCH. Then there is a κ–complete, κ+–cc forcing notion
P such that


P “ cof(NSκ) = κ+ω and cof(NSκ) = κ+(ω+1) ”.

What about the consistency of “cof(NSκ) is regular and cof(NSκ) < cof(NSκ)”?
We establish:

Theorem 0.2. It is consistent, relative to the existence of a cardinal ν such that
o(ν) = ν++, that cof(NSω1

) = ℵω+1 and cov(Mℵ1,ℵ1) = ℵω+2.

The structure of the paper is as follows. In Section 1, for each infinite cardinal
µ ≤ κ we introduce the <µ–cofinality cof<µ(NSκ) and the <µ–dominating number
d<µκ , and we show that these two numbers are equal. Section 2 is concerned with
a variant of d<µκ denoted by dcl,<µ

κ (where cl stands for “club”). We establish that
d<µκ = dcl,<µ

κ if µ > ω.
NSκ is the smallest normal ideal on κ. Section 3 deals with NSκκ,λ, the small-

est κ–normal ideal on Pκ(λ). We compute cof<µ(NSκκ,λ) and give examples of

situations when cof<µ(NSκκ,λ) < cof(NSκκ,λ).
In the following section we present some basic facts regarding the ideal of κ–

meager subsets of κ2 and its covering number.
The final three sections of the paper present the consistency results mentioned in

Theorems 0.1, 0.2 above. First, in Section 5 we introduce manageability, a property
of <κ–complete κ+–cc forcing notions which implies preservation of non-meagerness
of subsets of κκ and which can be iterated. Next, in Section 6, we define one-step
forcing and verify that it has all required properties. The final section gives the
applications obtained by iterating this forcing notion.

Notation 0.3. Our notation is rather standard and compatible with that of classical
textbooks (like Jech [Jec03]). In forcing we keep the older (Cohen’s) convention
that a stronger condition is the larger one. Some of our conventions are listed
below.

(1) For a forcing notion P, ΓP stands for the canonical P–name for the generic
filter in P. With this one exception, all P–names for objects in the extension
via P will be denoted with a dot above (e.g. τ̇ , Ẋ). The weakest element
of P will be denoted by ∅P (and we will always assume that there is one,
and that there is no other condition equivalent to it). In iterations, if

Q̄ = 〈Pζ , Q̇ζ : ζ < ζ∗〉 and p ∈ lim(Q̄), then we keep convention that

p(α) = ∅̇Q̇α for α ∈ ζ∗ \Dom(p).

(2) Ordinal numbers will be denoted by α, β, γ, δ, ε, ζ, ξ and also by i, j (with
possible sub- and superscripts).
Infinite cardinal numbers will be called θ, ι, µ, ν, τ (with possible sub- and
superscripts); κ is our fixed regular uncountable cardinal, λ will
denote a fixed cardinal > κ (in Section 3).

(3) By χ we will denote a sufficiently large regular cardinal and by H(χ) the
family of all sets hereditarily of size less than χ. Moreover, we fix a well
ordering <∗χ of H(χ).
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(4) A bar above a letter denotes that the object considered is a sequence;
usually X̄ will be 〈Xi : i < ζ〉, where ζ denotes the length of X̄. For a set
A and a cardinal µ, the set of all sequences of members of A of length µ
(length < µ, respectively), will be denoted by µA (<µA, respectively).

1. cof<µ(NSκ)

Definition 1.1. (1) For a set A and a cardinal µ, Pµ(A) = {a ⊆ A : |a| < µ}.
(2) Given two infinite cardinals µ ≤ τ , u(µ, τ) is the least cardinality of a

collection A ⊆ Pµ(τ) such that Pµ(τ) =
⋃
a∈A
P(a).

Definition 1.2. Let S be an infinite set and J be an ideal on S (containing all
singletons).

(1) cof(J ) is the least cardinality of any X ⊆ J such that for every A ∈ J ,
there is B ∈ X with A ⊆ B.

(2) add(J ) is the least cardinality of any X ⊆ J such that
⋃
X /∈ J .

(3) For an infinite cardinal µ ≤ add(J ), cof<µ(J ) is the least cardinality of a
family X ⊆ J such that for every A ∈ J , there is Y ∈ Pµ(X ) such that
A ⊆

⋃
Y.

(4) We let cof(J ) = cof<add(J )(J ).

The following proposition collects some trivialities.

Proposition 1.3. Let S be an infinite set and J be an ideal on S that contains
all singletons. Then:

(i) cof<ω(J ) = cof(J ).
(ii) If µ, ν are two infinite cardinals with µ ≤ ν ≤ add(J ),

then cof<ν(J ) ≤ cof<µ(J ).
(iii) cof(J ) ≤ u(µ, cof<µ(J )) for every infinite cardinal µ ≤ add(J ).
(iv) add(J ) ≤ cof(J ).

The following is well-known (see, e.g., Matet, Péan and Shelah [MPS16]):

Lemma 1.4. Let µ be a regular infinite cardinal. Then u(µ, µ+n) = µ+n for every
n < ω.

Proposition 1.5. Let S be an infinite set and J be an ideal on S such that(
add(J )

)+ω ≤ cof(J ). Then
(
add(J )

)+ω ≤ cof(J ).

Proof. Use Lemma 1.4. �

With these preliminaries out of the way, we can concentrate on ideals on κ. If
there is a family of size κ+ω of pairwise almost disjoint cofinal subsets of κ, then
there is a κ–complete ideal J on κ such that cof(J ) < cof(J ) (see Matet and
Pawlikowski [MP03]).

Proposition 1.6. Suppose J is a normal ideal on κ and κ is a limit cardinal.
Then cof(J ) = cof<µ(J ) for some infinite cardinal µ < κ.

Proof. Assume that the conclusion fails. Fix X ⊆ J such that |X | = cof(J ) and

J =
⋃
{P(

⋃
X) : X ∈ Pκ(X )}.

Set Y = {A ∪ β : A ∈ X & β ∈ κ}. Note that |Y| = cof(J ). For each infinite
cardinal µ < κ we may select a set Bµ ∈ J so that Bµ *

⋃
Y for any Y ∈ Pµ(Y).
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Now let B be the set of all α < κ such that α ∈ Bµ for some infinite cardinal µ < α.
Since B ∈ J (by normality of J ), there must be X ∈ Pκ(X ) such that B ⊆

⋃
X.

Let τ be any infinite cardinal such that |X| < τ < κ. Then Bτ ⊆
⋃
A∈X

(A∪ (τ + 1)),

which is a contradiction. �

Arguing as in Proposition 1.6, we get:

Proposition 1.7. Suppose J is a κ–complete ideal on κ and ν is an uncountable
limit cardinal < κ. Then there is an infinite cardinal µ < ν such that cof<ν(J ) =
cof<µ(J ). Moreover, the least such µ is either ω, or a successor cardinal.

The remainder of this section is concerned with cof<µ(NSκ). Let us recall the
definition of the bounding number bκ:

Definition 1.8. The bounding number bκ is the least cardinality of any F ⊆ κκ
with the property that for every g ∈ κκ, there is f ∈ F such that

|{α < κ : g(α) ≤ f(α)}| = κ.

The following is proved in Matet and Pawlikowski [MP03]:

Proposition 1.9. (i) cof(NSκ) ≥ bκ.
(ii) If cof(NSκ) = bκ, then cof(NSκ) = cof(NSκ).

Proposition 1.10. Let µ be an infinite cardinal ≤ κ. Then

either cf(cof<µ(NSκ)) < µ, or cf(cof<µ(NSκ)) ≥ bκ.

Proof. Suppose to the contrary that µ ≤ cf(cof<µ(NSκ)) = τ < bκ. For α < τ
select Xα ⊆ NSκ so that

(i) |Xα| < cof<µ(NSκ),
(ii) Xβ ⊆ Xα for β < α,
(iii) NSκ =

⋃
{P(

⋃
X) : X ∈ Pµ(

⋃
α<τ
Xα)}.

For α < τ , set Yα = {A ∪ β : A ∈ Xα & β ∈ κ} and pick Bα ∈ NSκ so that
Bα *

⋃
Y for any Y ∈ Pµ(Yα). By a result of Balcar and Simon (see [BS89,

Theorem 5.25]), there is B ∈ NSκ such that |Bα \ B| < κ for every α < τ . Select
X ∈ Pµ(

⋃
α<τ
Xα) so that B ⊆

⋃
X. There is γ < τ such that X ⊆ Xγ . Then

Bγ ⊆
⋃
A∈X

(A ∪ β) for some β ∈ κ, which is a contradiction. �

Definition 1.11. Let τ ≤ κ. A family F ⊆ κκ is called

• a dominating family if

(∀h ∈ κκ)(∃f ∈ F)(∀j < κ)(h(j) < f(j)),

• a <τ–dominating family if

(∀h ∈ κκ)(∃F ∈ Pτ (F))(∀j < κ)(h(j) < sup{f(j) : f ∈ F}).

We define dominating numbers dκ, d
<τ
κ by:

dκ = min{|F| : F ⊆ κκ is a dominating family },
d<τκ = min{|F| : F ⊆ κκ is a <τ–dominating family }.

We let d̄κ = d<κκ and for an infinite cardinal µ < κ we put dµκ = d<µ
+

κ .
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Note that d<ωκ = dκ. Landver [Lan90] established that cof(NSκ) = dκ. His
result can be generalized as follows:

Theorem 1.12. Let µ be an infinite cardinal ≤ κ. Then cof<µ(NSκ) = d<µκ .

Proof. Set τ = cof<µ(NSκ). First we will argue that d<µκ ≤ τ . Select a family
C of size τ of closed unbounded subsets of κ so that for every closed unbounded
subset D of κ, there is X ∈ Pµ(C) \ {∅} with

⋂
X ⊆ D. For U ∈ Pω(C) \ {∅} define

fU ∈ κκ by fU (α) = min
(⋂

U \ (α + 1)
)
. Note that fV (α) ≤ fU (α) whenever

V ∈ P(U) \ {∅}. Now given g ∈ κκ, let D be the set of all limit ordinals δ < κ such
that g(α) < δ for every α < δ. Pick X ∈ Pµ(C) \ {∅} so that

⋂
X ⊆ D. Define

h ∈ κκ by

h(α) = sup
{
fU (α) : U ∈ Pω(X) \ {∅}

}
.

We are going to show that g < h. Let α < κ and C ∈ X. First, suppose that there
is W ∈ Pω(X) \ {∅} such that h(α) = fW (α). Then h(α) = fW∪{C}(α) and hence
h(α) ∈ C. Next suppose that fU (α) < h(α) for all U ∈ Pω(X) \ {∅}. Then h(α)
is a limit ordinal. Set ι = cf(h(α)) and pick an increasing sequence 〈γβ : β < ι〉
cofinal in h(α). For β < ι, select Tβ ∈ Pω(X) \ {∅} with γβ < fTβ (α), and set
δβ = fTβ∪{C}(α). Note that δβ ∈ C. Obviously, the sequence 〈δβ : β < ι〉 is cofinal
in h(α), and consequently h(α) ∈ C. Thus for each α < κ, h(α) belongs to

⋂
X

and therefore to D. Since clearly h(α) > α, it follows that h(α) > g(α).
It remains to show that d<µκ ≥ τ . Let F be the set of all strictly increasing

functions from κ to κ. Select F ⊆ F so that

(a) |F| = d<µκ , and
(b) given g ∈ κκ, there is Fg ∈ Pµ(F) such that

(∀α < κ)(g(α) < sup{f(α) : f ∈ Fg}).

For f ∈ F, let Cf be the set of all limit ordinals α < κ such that f(β) < α for every
β < α. Easily

NSκ = {A ⊆ κ : (∃g ∈ F)(A ∩ Cg = ∅)}
(see, e.g., [MP03]) and (as

⋂
f∈Fg

Cf ⊆ Cg for every g ∈ F) it follows that τ ≤ |F|. �

It follows from Propositions 1.6 and 1.7 and Theorem 1.12 that to determine the
value of cof<µ(NSκ) for every infinite cardinal µ ≤ κ, it suffices to compute dκ and
dτκ for every infinite cardinal τ < κ.

2. dcl,<µ
κ

It is straightforward to check that d<µκ is the least cardinality of a family F ⊆ κκ
such that

(∀g ∈ κκ)(∃F ∈ Pµ(F))(|
{
α ∈ κ : g(α) ≥ sup{f(α) : f ∈ F}

}
| < κ).

In this section we discuss the variant that arises if we replace “has cardinality <κ”
by “is nonstationary”.

Definition 2.1. (1) dcl
κ is the least cardinality of a family F ⊆ κκ with the

property that for every g ∈ κκ, there is f ∈ F such that

{α ∈ κ : g(α) ≥ f(α)} ∈ NSκ.
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(2) For an infinite cardinal µ ≤ κ, dcl,<µ
κ is the least cardinality of a family

F ⊆ κκ with the property that for every g ∈ κκ, there is F ∈ Pµ(F) such
that {

α ∈ κ : g(α) ≥ sup{f(α) : f ∈ F}
}
∈ NSκ.

Note that dcl,<ω
κ = dcl

κ . It is simple to check that cf(dcl
κ ) ≥ bκ.

Theorem 2.2. For every uncountable cardinal µ ≤ κ,

dcl,<µ
κ = d<µκ .

Theorem 2.2 easily follows from the next two lemmas.

Lemma 2.3. Let µ be an uncountable limit cardinal ≤ κ. Then dcl,<µ
κ = dcl,<τ

κ for
some infinite cardinal τ < µ.

Proof. The proof is similar to that of Proposition 1.7. Suppose that the conclusion
fails. Fix a family F ⊆ κκ such that |F| = dcl,<µ

κ and

(∀g ∈ κκ)(∃F ∈ Pµ(F))(
{
α ∈ κ : g(α) ≥ sup{f(α) : f ∈ F}

}
∈ NSκ).

For each infinite cardinal τ < µ we may select gτ ∈ κκ so that for every F ∈ Pτ (F)
we have {

α ∈ κ : gτ (α) ≥ sup{f(α) : f ∈ F}
}
/∈ NSκ.

Define g ∈ κκ so that g(α) ≥ gτ (α) for every infinite cardinal τ < µ such that
τ < α. Now pick F ∈ Pµ(F) such that{

α ∈ κ : g(α) ≥ sup{f(α) : f ∈ F}
}
∈ NSκ.

Let τ be any infinite cardinal with |F | < τ < µ. Obviously, F ∈ Pτ (F) and{
α ∈ κ : gτ (α) ≥ sup{f(α) : f ∈ F}

}
∈ NSκ,

a contradiction. �

To establish the following lemma, we adapt the proof of Theorem 5 in Cummings
and Shelah [CS95].

Lemma 2.4. Let µ be a regular uncountable cardinal ≤ κ. Then d<µκ = dcl,<µ
κ .

Proof. Select a family F ⊆ κκ such that

(a) every member of F is increasing,
(b) |F| = dcl,<µ

κ , and
(c) for each g ∈ κκ, there is F ∈ Pµ(F) such that{

α ∈ κ : g(α) ≥ sup{f(α) : f ∈ F}
}
∈ NSκ.

We claim that the family

F∗ def
=
{
f ∈ κκ :

(
∃α, β < κ

)(
∃g ∈ F

)(
f�β ≡ α & f�[β, κ) = g�[β, κ)

)}
is <µ–dominating. So let g ∈ κκ. Stipulate that g−1 = g. By induction on n ∈ ω
choose a closed unbounded subset Cn of κ, gn, hn ∈ κκ and Fn ∈ Pµ(F) so that

(i) Cn+1 ⊆ Cn,
(ii) gn−1(α) < sup{f(α) : f ∈ Fn} for all α ∈ Cn,

(iii) hn(β) = min(Cn \ (β + 1)),
(iv) gn(β) = sup

(
Rng(gn−1�(hn(β) + 1))

)
.
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Note that, by (iii) and (iv), g(β) ≤ g0(β) ≤ g1(β) ≤ . . . for all β ∈ κ. Set
F =

⋃
n∈ω

Fn and ζ = sup{min(Cn) : n ∈ ω}. We are going to show that g(γ) <

sup{f(γ) : f ∈ F} whenever ζ < γ < κ. To this end suppose that ζ < γ < κ. By
(i), there are m ∈ ω and ξ ∈ κ such that ξ = sup(γ ∩ Cn) whenever m ≤ n < ω.
By (iii), hm(ξ) ≥ γ and so (by (iv)) g(γ) ≤ gm−1(γ) ≤ gm(ξ). Since γ > ζ we also
have γ ∩ Cm+1 6= ∅. Hence ξ ∈ Cm+1 and consequently, by (ii),

g(γ) ≤ gm(ξ) < sup{f(ξ) : f ∈Fm+1} ≤ sup{f(γ) : f ∈Fm+1} ≤ sup{f(γ) : f ∈ F}.
�

Theorem 2.2 implies that dωκ ≤ dcl
κ ≤ dκ. We mention that it was shown in

Cummings and Shelah [CS95] that dcl
κ = dκ if κ > iω.

3. cof<µ(NSκκ,λ)

Throughout this section λ denotes a fixed cardinal > κ. Our object of study will
be the ideal NSκκ,λ, a Pκ(λ) version of NSκ.

Definition 3.1. For a regular uncountable cardinal ν and a cardinal τ ≥ ν, Jν,τ is
the set of all A ⊆ Pν(τ) such that for some a ∈ Pν(τ) we have {b ∈ A : a ⊆ b} = ∅.

It is straightforward to check that Jν,τ is a ν–complete ideal on Pν(τ).

Definition 3.2. (1) An ideal J of Pκ(λ) is κ–normal if given A ∈ J + and
f : A −→ κ such that f(a) ∈ a ∩ κ for all a ∈ A, there is B ∈ J + ∩ P(A)
such that f is constant on B.

(2) The smallest κ–normal ideal on Pκ(λ) containing Jκ,λ is denoted by NSκκ,λ.
(3) For f ∈ κ(Pκ(λ)) we let

Cf
def
= {a ∈ Pκ(λ) : a ∩ κ 6= ∅ and

⋃
α∈a∩κ

f(α) ⊆ a}.

The following lemma is due to Abe.

Lemma 3.3 (Abe [Abe97]). Let A ⊆ Pκ(λ). Then

A ∈ NSκκ,λ if and only if (∃f ∈ κ(Pκ(λ)))(A ∩ Cf = ∅).

Our purpose in this section is to compute the value of cof<µ(NSκκ,λ). We will
need an analogue of d<µκ defined in 3.4(1) below.

Definition 3.4. Let µ ≤ κ be an infinite cardinal.

(1) dκ,<µκ,λ is the least cardinality of a family X of functions from κ to Pκ(λ)
with the property that(

∀g ∈ κ(Pκ(λ))
)(
∃X ∈ Pµ(X )

)(
∀α ∈ κ

)(
g(α) ⊆

⋃
f∈X

f(α)
)
.

(2) cov(λ, κ+, κ+, µ) is the least cardinality of a family X ⊆ Pκ+(λ) such that(
∀B ∈ Pκ+(λ)

)(
∃X ∈ Pµ(X )

)(
B ⊆

⋃
X
)
.

Theorem 3.5. Let µ be an infinite cardinal ≤ κ. Then

cof<µ(NSκκ,λ) = dκ,<µκ,λ = max{d<µκ , cov(λ, κ+, κ+, µ)}.

Theorem 3.5 is an immediate consequence of Lemmas 3.6–3.9 below.
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Lemma 3.6. Let µ be an infinite cardinal ≤ κ. Then

cov(λ, κ+, κ+, µ) ≤ cof<µ(NSκκ,λ).

Proof. By 3.3 we may pick a family X ⊆ κ(Pκ(λ)) with the property that |X | =
cof<µ(NSκκ,λ) and for every function g : κ −→ Pκ(λ) there is X ∈ Pµ(X ) such that⋂
f∈X

Cf ⊆ Cg. For f ∈ X , let Bf = κ ∪
⋃
α<κ

f(α) ∈ Pκ+(λ).

Suppose now that B ∈ Pκ+(λ). Pick a function g : κ −→ Pκ(λ) such that
B ⊆

⋃
α<κ

g(α). There is X ∈ Pµ(X ) such that
⋂
f∈X

Cf ⊆ Cg. We are going to show

that B ⊆
⋃
f∈X

Bf . To this end suppose α < κ and let us argue that g(α) ⊆
⋃
f∈X

Bf .

For n < ω let an ∈ Pκ(
⋃
f∈X

Bf ) be defined by

a0 = {α}, and an+1 = an ∪
⋃
f∈X

⋃
β∈an∩κ

f(β),

and let a =
⋃
n<ω

an. Then α ∈ a ∈
⋂
f∈X

Cf ⊆ Cg and consequently g(α) ⊆ a ⊆⋃
f∈X

Bf . �

Lemma 3.7. Let µ be an infinite cardinal ≤ κ. Then d<µκ ≤ cof<µ(NSκκ,λ).

Proof. By Theorem 1.12, it suffices to establish that cof<µ(NSκ) ≤ cof<µ(NSκκ,λ).

Let a family X ⊆ κ(Pκ(λ)) be such that |X | = cof<µ(NSκκ,λ) and(
∀B ∈ NSκκ,λ

)(
∃X ∈ Pµ(X ) \ {∅}

)(
B ∩

⋂
f∈X

Cf = ∅
)
.

For f ∈ X , let Zf be the set of all limit ordinals α < κ such that

(∀β < α)(f(β) ∩ κ ⊆ α).

Plainly, Zf is a closed unbounded subset of κ. Now given a closed unbounded
subset T of κ, set BT = {a ∈ Pκ(λ) : a ∩ κ /∈ T}. A simple argument (see, e.g.,
[MPS16]) shows that BT ∈ NSκκ,λ. Hence there is XT ∈ Pµ(X ) \ {∅} such that
BT ∩

⋂
f∈XT

Cf = ∅. We will show that
⋂

f∈XT
Zf ⊆ T . Thus let α ∈

⋂
f∈XT

Zf . Setting

a = α ∪
⋃

f∈XT

⋃
β<α

f(β), it is easy to see that a∩ κ = α and a ∈
⋂

f∈XT
Cf . It follows

that α = a ∩ κ ∈ T . �

Lemma 3.8. Let µ be an infinite cardinal ≤ κ. Then cof<µ(NSκκ,λ) ≤ dκ,<µκ,λ .

Proof. The inequality easily follows from the following observation.
Suppose h : κ −→ Pκ(λ) and X ∈ Pµ

(
κ(Pκ(λ))

)
are such that(

∀α < κ
)(
h(α) ⊆

⋃
f∈X

f(α)
)
.

Then
⋂
f∈X

Cf ⊆ Ch. �

Lemma 3.9. Let µ be an infinite cardinal ≤ κ. Then

dκ,<µκ,λ ≤ max{d<µκ , cov(λ, κ+, κ+, µ)}.
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Proof. Fix F ⊆ κκ so that |F| = d<µκ and(
∀h ∈ κκ

)(
∃F ∈ Pµ(F)

)(
∀α < κ

)(
h(α) ≤ sup{f(α) : f ∈ F}

)
.

Also, fix X ⊆ Pκ+(λ) such that |X | = cov(λ, κ+, κ+, µ) and

Pκ+(λ) =
⋃
{P(

⋃
X) : X ∈ Pµ(X )}.

For each a ∈ X , select a mapping ϕa : κ
onto−→ a. Now for f ∈ F and a ∈ X define

gf,a : κ −→ Pκ(λ) by

gf,a(α) = {ϕa(δ) : δ < f(α)}.
Suppose now that g : κ −→ Pκ(λ). By the choice of X , there is X ∈ Pµ(X ) such
that

⋃
α<κ

g(α) ⊆
⋃
X. Choose h ∈ κκ such that(
∀α < κ

)(
g(α) ⊆

⋃
a∈X
{ϕa(ξ) : ξ < h(α)}

)
.

Next pick F ∈ Pµ(F) such that (∀α < κ)(h(α) ≤ sup{f(α) : f ∈ F}). Then(
∀α < κ

)(
g(α) ⊆

⋃
f∈F

⋃
a∈X

gf,a(α)
)
.

�

Another formula worth noting is:

cof<µ(NSκκ,λ) = max{cof<µ(NSκ), cof<µ(Jκ+,λ)}.
This identity follows from Theorems 1.12 and 3.5 and the next proposition.

Proposition 3.10. Let µ be an infinite cardinal ≤ κ. Then cov(λ, κ+, κ+, µ) =
cof<µ(Jκ+,λ).

Proof. The result easily follows from the following observation.
Suppose that X ⊆ Pκ+(λ) and X ∈ Pµ(X ) \ {∅}. Then⋂

a∈X
{c ∈ Pκ+(λ) : a ⊆ c} = {c ∈ Pκ+(λ) :

⋃
X ⊆ c},

and therefore for each b ∈ Pκ+(λ)

b ⊆
⋃
X if and only if

⋂
a∈X
{c ∈ Pκ+(λ) : a ⊆ c} ⊆ {c ∈ Pκ+(λ) : b ⊆ c}.

�

We next consider special cases when cof<µ(NSκκ,λ) < cof(NSκκ,λ).

Lemma 3.11. Let µ be an infinite cardinal ≤ κ. Then cov(λ, κ+, κ+, µ) ≥ λ.

Proof. It is shown in Matet, Péan and Shelah [MPS05] that cof(Jκ+,λ) ≥ λ. Now

observe that (by Proposition 3.10) cov(λ, κ+, κ+, µ) ≥ cof(Jκ+,λ). �

Lemma 3.12. Suppose λ is singular and µ is a cardinal such that cf(λ) < µ ≤ κ.
Then cov(λ, κ+, κ+, µ) ≤ sup{u(κ+, ν) : κ < ν < λ}.

Proof. Let 〈λξ : ξ < cf(λ)〉 be an increasing sequence of cardinals cofinal in λ.
Then, for every a ∈ Pκ+(λ), a =

⋃
ξ<cf(λ)

a ∩ λξ. The desired inequality follows. �
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Proposition 3.13. Let µ be an uncountable cardinal ≤ κ. Then

cof<µ
(
NSκκ,κ+ω

)
= max{d<µκ , κ+ω}.

Proof. By Lemmas 1.4, 3.11 and 3.12 we have

cov(κ+ω, κ+, κ+, µ) = κ+ω,

so the result follows from Theorem 3.5. �

Thus, if d<ω1
κ ≤ κ+ω, then

cof<ω1(NSκκ,κ+ω ) < cof(NSκκ,κ+ω ).

Lemma 3.14. Assume the Singular Cardinals Hypothesis. If λ ≥ 2κ, then

u(κ+, λ) =

{
λ+ if cf(λ) ≤ κ,
λ otherwise.

Proof. Plainly, λ ≤ u(κ+, λ) ≤ λκ. It follows immediately that u(κ+, λ) = λ if
cf(λ) > κ. For the other case, use the well–known fact (see, e.g., [MPS16]) that
cf(u(κ+, λ)) ≥ κ+. �

Proposition 3.15. Assume the Singular Cardinals Hypothesis. If λ ≥ 2κ and
ℵ0 ≤ µ ≤ κ, then

cof<µ(NSκκ,λ) =

{
λ+ if µ ≤ cf(λ) ≤ κ,
λ otherwise.

Proof. By Lemma 3.11, cov(λ, κ+, κ+, µ) ≥ λ ≥ dκ ≥ d<µκ , so by Theorem 3.5

cof<µ(NSκκ,λ) = cov(λ, κ+, κ+, µ).

Case: cf(λ) > κ.
By Lemmas 3.11 and 3.14 we have λ ≤ cov(λ, κ+, κ+, µ) ≤ u(κ+, λ) ≤ λ, and hence
cov(λ, κ+, κ+, µ) = λ.

Case: µ ≤ cf(λ) ≤ κ.
By Lemma 3.14 we know that

cov(λ, κ+, κ+, µ) ≤ u(κ+, λ) ≤ λ+ and λ+ ≤ u(κ+, λ) ≤
(
cov(λ, κ+, κ+, µ)

)<µ
.

Since λ<µ = λ, it follows that cov(λ, κ+, κ+, µ) = λ+.

Case: cf(λ) < µ.
By Lemmas 3.11, 3.12 and 3.14 we have

λ ≤ cov(λ, κ+, κ+, µ) ≤ sup{u(κ+, ν) : κ < ν < λ} ≤ λ,

and consequently cov(λ, κ+, κ+, µ) = λ. �

Thus, if the Singular Cardinals Hypothesis holds, µ ≤ κ and λ ≥ 2κ, then

cof<µ(NSκκ,λ) < cof(NSκκ,λ) if and only if cf(λ) < µ.
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4. cov(Mκ,κ)

Let us recall some basic facts and definitions related to the combinatorics of the
κ–meager ideal Mκ,κ on κ2.

Definition 4.1. (1) The Baire number n(X) of a topological space X (also
called the Novak number of X) is the least number of nowhere dense subsets
of X needed to cover X.

(2) For a topological space X and a cardinal µ, the (<µ)–complete ideal of sub-
sets of X generated by nowhere dense subsets of X is denoted by M<µ(X);
M<µ+(X) will be also denoted by Mµ(X). The ideal Mµ(X) is the ideal
of µ–meager subsets of X.

(3) The space κκ (respectively κ2) is endowed with the topology obtained by

taking as basic open sets ∅ and Os for s ∈ <κκ (respectively s ∈ <κ2),
where Os = {f ∈ κκ : s ⊆ f} (respectively Os = {f ∈ κ2 : s ⊆ f}).

(4) The ideals of κ–meager subsets of κκ, κ2 are denoted by Mκ
κ,κ and Mκ,κ,

respectively.

Remark 4.2. (1) Clearly, for a topological space X, n(X) is the least number
of open dense subsets of X with empty intersection. If µ ≤ n(X), then
M<µ(X) is a proper ideal (i.e., X /∈M<µ(X)).

(2) Following the tradition of the set theory of the reals, we may consider the
covering number cov(M<µ(X)) of the ideal M<µ(X):

cov(M<µ(X)) = min{|A| : A ⊆M<µ(X) &
⋃
A = X}.

By the definition, n(X) = cov(M<ℵ0(X)). But also for every µ < n(X) we
have cov(M<µ(X)) = n(X); also cov(M<n(X)(X)) = cf(n(X)).

(3) Plainly, n(κκ) > κ and n(κ2) > κ (remember, κ is assumed to be regular).

Lemma 4.3. Suppose that X is a topological space, µ < n(X), and Yα are open
subsets of X (for α < µ). Assume also that Y =

⋂
α<µ

Yα is dense in X. Then, if Y

is equipped with the subspace topology, n(Y ) = n(X).

Proof. Let Uβ (for β < n(X)) be open dense subsets of X such that
⋂

β<n(X)

Uβ = ∅.

Then Uβ ∩ Y are open dense subsets of Y (remember Y is dense) and
⋂

β<n(X)

(Uβ ∩

Y ) = ∅. This shows that n(Y ) ≤ n(X).
Now, let Vβ ⊆ Y (for β < n(Y )) be open dense subsets of Y such that

⋂
β<n(Y )

Vβ =

∅. Take open subsets Uβ of X such that Vβ = Uβ ∩ Y – clearly Uβ ’s are dense in
X (as Y is so). Then ∅ =

⋂
β<n(Y )

(Uβ ∩ Y ) =
⋂

β<n(Y )

Uβ ∩
⋂
α<µ

Yα, and hence

n(X) ≤ n(Y ) + µ and therefore n(X) ≤ n(Y ). �

Proposition 4.4. cov(Mκ
κ,κ) = n(κκ) = n(κ2) = cov(Mκ,κ).

Proof. For s ∈ <κ2 and α < κ let F (s, α) ∈ <κ2 be such that lh(F (s, α)) =
lh(s) + α+ 1 and

F (s, α)�lh(s) = s, F (s, α)�[lh(s), lh(s) + α) ≡ 1, and F (s, α)(lh(s) + α) = 0.

Now, let π : <κκ −→ <κ2 be such that
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• π(〈〉) = 〈〉, π(s_〈α〉) = F (π(s), α) for s ∈ <κκ, and

• if 〈sζ : ζ < ξ〉 ⊆ <κκ is C–increasing, ξ < κ, s =
⋃
ζ<ξ

sζ ,

then π(s) =
⋃
ζ<ξ

π(sζ).

Then π induces a one-to-one mapping π∗ : κκ −→ κ2 : η 7→
⋃
ζ<κ

π(η�ζ). The range

of π∗ is

Rng(π∗) = {ρ ∈ κ2 : (∀α < κ)(∃β < κ)(α < β & ρ(β) = 0)}.

Plainly, Rng(π∗) is the intersection of κ many open dense subsets of κ2. Moreover,
π∗ is a homeomorphism from κκ onto Rng(π∗). Therefore, using Lemma 4.3, we
get n(κκ) = n(Rng(π∗)) = n(κ2). The rest should be clear (remember Remark
4.2(2,3)). �

Proposition 4.5. cov(Mκ,κ) ≤ dκ.

Definition 4.6. Cµ,κ is the forcing notion for adding µ Cohen functions in κκ with
<κ–support. Thus a condition in Cµ,κ is a function q such that

Dom(q) ⊆ µ× κ, Rng(q) ⊆ κ and |q| < κ.

The order of Cµ,κ is the inclusion.

Proposition 4.7. Assume 2<κ = κ < µ. Then 
Cµ,κ“ cov(Mκ,κ) ≥ µ ”.

5. Manageable forcing notions

In this section we introduce a property of forcing notions which is crucial for
the consistency results presented later: (θ, µ, κ)–manageability. This property has
three ingredients: an iterable variant of κ+–cc (see Definition 5.1), κ–completeness
and a special property implying preservation of non-meagerness of subsets of κκ
(see Proposition 5.9). Since later we will work with <κ–support iterations, we also
prove a suitable preservation theorem (see Theorem 5.11).

Throughout the section we will assume that our fixed (uncountable)
regular cardinal κ satisfies 2<κ = κ (so also κ<κ = κ).

Definition 5.1 (See Shelah [She92, Definition 1.1] and [She00, Definition 7]). Let
P be a forcing notion, and ε < κ be a limit ordinal.

(1) We define a game acc
ε,κ(P) of two players, Player I and Player II. A play

lasts ε steps, and at each stage α < ε of the play q̄α, p̄α, ϕα are chosen so
that:
• q̄0 = 〈∅P : i < κ+〉, ϕ0 : κ+ −→ κ+ : i 7→ 0;
• If α > 0, then Player I picks q̄α, ϕα such that

(i) q̄α = 〈qαi : i < κ+〉 ⊆ P satisfies

(∀β < α)(∀i < κ+)(pβi ≤ q
α
i ),

(ii) ϕα : κ+ −→ κ+ is regressive, i.e., (∀i < κ+)(ϕα(i) < 1 + i);
• Player II answers choosing a sequence p̄α = 〈pαi : i < κ+〉 ⊆ P such

that (∀i < κ+)(qαi ≤ pαi ).
If at some stage of the game Player I does not have any legal move, then he
loses. If the game lasted ε steps, Player I wins a play 〈q̄α, p̄α, ϕα : α < ε〉
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if there is a club C of κ+ such that for each distinct members i, j of C
satisfying cf(i) = cf(j) = κ and (∀α < ε)(ϕα(i) = ϕα(j)), the set

{pαi : α < ε} ∪ {pαj : α < ε}

has an upper bound in P.
(2) The forcing notion P satisfies condition (∗)εκ if Player I has a winning strat-

egy in the game acc
ε,κ(P).

Remark 5.2. Condition (∗)εκ is a strong version of κ+–cc (easily, if ε < κ is limit,
κε = κ, and P satisfies (∗)εκ, then P satisfies κ+–cc). This condition was used
in a number of papers, e.g., to obtain a series of consistency results on partition
relations; see Shelah and Stanley [SS82], [SS86], Shelah [She78], [She92], [She00].
Its primary use comes from the fact that it is preserved in <κ–support iterations.

Proposition 5.3 (See Shelah [She92, Iteration Lemma 1.3] and [She00, Theorem

35]). Let ε < κ be a limit ordinal, κ = κ<κ. Suppose that Q̄ = 〈Pξ, Q̇ξ : ξ < γ〉 is a
<κ–support iteration such that for each ξ < γ


Pξ “ Q̇ξ satisfies (∗)εκ ”.

Then Pγ satisfies (∗)εκ.

Definition 5.4. A forcing notion P is <θ–complete if every ≤P–increasing chain
of length less than θ has an upper bound in P. It is <θ–lub–complete if every
≤P–increasing chain of length less than θ has a least upper bound in P.

Definition 5.5. Let θ and µ be cardinals such that θ < κ and µ<κ = µ. Let P be
a <θ+–lub–complete forcing notion.

(1) A model N ≺ (H(χ),∈, <∗χ) is (P, κ, µ)–relevant if P, µ ∈ N , µ ⊆ N ,

|N | = µ and <κN ⊆ N .
(2) For a (P, κ, µ)–relevant model N we define a game am(N, θ,P) of two play-

ers, He and She, as follows. A play lasts θ moves, and in the ith move
conditions pi, qi ∈ P are chosen so that:
• qi ∈ N ∩ P, qi ≤ pi,
• (∀j < i)(qj ≤ qi & pj ≤ pi),
• She chooses pi, qi if i is odd, He picks pi, qi if i is even.

She wins the play 〈qi, pi : i < θ〉 whenever
if pθ is a least upper bound of 〈pi : i < θ〉, and qθ is a least upper

bound of 〈qi : i < θ〉,
then (∀q ∈ N ∩ P)(qθ ≤ q ⇒ q, pθ are compatible ).

(3) The forcing notion P is weakly (θ, µ, κ)–manageable if (it is<θ+–lub–complete
and) there is an x ∈ H(χ) (called a witness) such that for every (P, κ, µ)–
relevant model N ≺ H(χ) with x ∈ N , She has a winning strategy in the
game am(N, θ,P).

(4) The forcing notion P is (θ, µ, κ)–manageable if it is <κ–complete, weakly
(θ, µ, κ)–manageable, and satisfies the condition (∗)θκ.

Remark 5.6. Suppose that P is<θ+–lub–complete andN is (P, κ, µ)–relevant. Then
both players have always legal moves in the game am(N, θ,P). Moreover, if 〈qi, pi :
i < θ〉 is a (legal) play of am(N, θ,P), then there are least upper bounds qθ ∈ N ∩P
of 〈qi : i < θ〉, and pθ ∈ P of 〈pi : i < θ〉 (and qθ ≤ pθ).
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Definition 5.7. Let N be a (P, κ, µ)–relevant model, and let q ∈ N ∩ P, p ∈ P be
such that q ≤ p. We say that a pair (q∗, p∗) is an N–cover for (q, p), if

• q ≤ q∗ ∈ N ∩ P, p ≤ p∗ ∈ P, q∗ ≤ p∗, and
• every condition q′ ∈ N ∩ P stronger than q∗ is compatible with p∗.

Lemma 5.8. Suppose that P is a <θ+–lub–complete forcing notion, N is a (P, κ, µ)–
relevant model, and She has a winning strategy in the game am(N, θ,P). Then:

(1) For all conditions q ∈ N ∩P and p ∈ P such that q ≤ p, there is an N–cover
(q∗, p∗) for (q, p).

(2) N ∩ P <◦ P.

Proof. 1) Consider a play 〈qi, pi : i < θ〉 of am(N, θ,P) in which He starts with
q0 = q, p0 = p, and then he always plays the <∗χ–first legal moves, and She uses
her winning strategy. Let q∗ ∈ N ∩ P, p∗ ∈ P be least upper bounds of 〈qi : i < θ〉,
〈pi : i < θ〉, respectively. Plainly, as She won the play, the pair (q∗, p∗) is an
N–cover for (q, p).
2) Suppose that A ⊆ N ∩ P is a maximal antichain in N ∩ P, but p ∈ P is
incompatible with all members of A. Let (q∗, p∗) be an N–cover for (∅P, p). The
condition q∗ is compatible with some q ∈ A, so let q+ ∈ N∩P be such that q+ ≥ q∗,
q+ ≥ q ∈ A. By the choice of (q∗, p∗) we know that the conditions q+ and p∗ are
compatible, and hence q and p are compatible, a contradiction.

The rest follows from the elementarity of N . �

Proposition 5.9. Assume θ < κ ≤ µ = µ<κ < τ . Suppose that a set Y ⊆ κκ
cannot be covered by the union of less than τ nowhere dense subsets of κκ, and P
is a weakly (θ, µ, κ)–manageable forcing notion not collapsing cardinals. Then


P “ Y is not the union of < τ nowhere dense subsets of κκ ”.

Proof. Let P be weakly (θ, µ, κ)–manageable with a witness x ∈ H(χ). Suppose
toward contradiction that a condition q ∈ P is such that

q 
 “ Y is the union of < τ nowhere dense subsets of κκ ”.

Passing to a stronger condition if needed, we may assume that for some ι < τ and
P–names Ȧξ (for ξ < ι) we have:

• q 
 “ Ȧξ ⊆ <κκ & (∀s ∈ <κκ)(∃t ∈ Ȧξ)(s ⊆ t) ” and

• q 
 “ (∀y ∈ Y )(∃ξ < ι)(∀t ∈ Ȧξ)(t * y) ”.

For each ζ < ι pick a (P, κ, µ)–relevant model Nζ ≺ (H(χ),∈, <∗χ) such that q, 〈Ȧξ :
ξ < ι〉, x, ζ ∈ Nζ . Then |

⋃
ζ<ι

Nζ | = ι · µ < τ , so we may pick a y ∈ Y such that

y ∈ O for all open dense subsets O of κκ from
⋃
ζ<ι

Nζ . By our assumptions, there

are ξ < ι and p ≥ q such that

p 
 “ (∀t ∈ Ȧξ)(t * y) ”.

Let (q∗, p∗) be an Nξ–cover for (q, p) (there is one by Lemma 5.8(1)). Put

A = {s ∈ <κκ : (∃q′ ≥ q∗)(q′ 
 s ∈ Ȧξ)}.

Clearly A ∈ Nξ, A ⊆ Nξ, and O =
⋃
s∈A

Os ∈ Nξ is an open dense subset of κκ.

Hence s ⊆ y for some s ∈ A. Let q′ ∈ Nξ ∩ P be a condition stronger than q∗ and
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such that q′ 
 s ∈ Ȧξ. The condition q′ is compatible with p∗, and so with p. Take
a condition q+ stronger than both q′ and p. Then

q+ 
 “ s ∈ Ȧξ & s ⊆ y ” and q+ 
 “ (∀t ∈ Ȧξ)(t * y) ”,

a contradiction. �

Corollary 5.10. Suppose that θ < κ ≤ µ = µ<κ and cov(Mκ,κ) > µ. Let P be a
(θ, µ, κ)–manageable forcing notion. Then


P “
(
cov(Mκ,κ)

)V ≤ cov(Mκ,κ) ”.

Proof. Remembering Proposition 4.4, apply Proposition 5.9 to τ = cov(Mκ,κ) =
cov(Mκ

κ,κ) and Y = κκ to get


P “ (κκ)V is not the union of < τ nowhere dense sets ”.

But this clearly implies 
P “ τ ≤ cov(Mκ,κ) = cov(Mκ
κ,κ) ”. �

Theorem 5.11. Assume that θ < κ ≤ µ = µ<κ. Let Q̄ = 〈Pξ, Q̇ξ : ξ < γ〉 be
<κ–support iteration such that for each ξ < γ


Pξ “ Q̇ξ is (θ, µ, κ)–manageable ”.

Then Pγ is (θ, µ, κ)–manageable.

Proof. Let θ, κ, µ and Q̄ be as in the assumptions of the theorem.
First note that the limits of <κ–support iterations of <κ–complete forcing no-

tions satisfying the condition (∗)θκ are <κ–complete κ+–cc (as κ<κ = κ; remember
Proposition 5.3). Therefore no such iteration collapses cardinals nor changes cofi-
nalities nor adds sequences of ordinals of length < κ. Hence the assumed properties
of θ, κ and µ hold in all intermediate extensions VPξ and our assumption on Q̇ξ’s
is meaningful.

Plainly, Pγ is <κ–complete, <θ+–lub–complete and satisfies condition (∗)θκ. We
have to show that Pγ is weakly (θ, µ, κ)–manageable.

For ξ < γ let ẋξ be a Pξ–name for a witness for Q̇ξ being weakly manageable
and let x̄ = 〈ẋξ : ξ < γ〉. Suppose that N ≺ (H(χ),∈, <∗χ) is a (Pγ , κ, µ)–relevant

model such that (x̄, Q̄) ∈ N .
Since each Pξ is <κ–complete and satisfies the κ+–cc (and κ+ 1 ⊆ N) we know

that if ξ ∈ N ∩ γ and Gξ ⊆ Pξ is generic over V, then in V[Gξ] we have:

N [Gξ] ∩V = N and N [Gξ] ≺ (H(χ),∈, <∗χ)V[Gξ] and <κN [Gξ] ⊆ N [Gξ].

Since clearly Q̇Gξξ ∈ N [Gξ], we conclude that N [Gξ] is (Q̇Gξξ , κ, µ)–relevant, and

ẋ
Gξ
ξ ∈ N [Gξ]. Therefore, She has a winning strategy in the game am(N [Gξ], θ, Q̇

Gξ
ξ ).

Let ṡtξ be a Pξ–name for such a strategy. We may assume that the strategy ṡtξ is
such that

(∗) if i < θ is even and qi = pi = ∅̇Q̇ξ ,
then ṡtξ instructs Her to play qi+1 = pi+1 = ∅̇Q̇ξ .

We define a strategy st for Her in the game am(N, θ,Pγ) as follows. At an odd stage
i < θ of the game, the strategy st first instructs Her to choose (side) conditions
q−i , p

−
i ∈ Pγ and only then pick conditions qi ∈ N ∩ Pγ and pi ∈ Pγ which are to

be played. These conditions will be chosen so that if 〈qj , pj : j < i〉 is a legal play
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of am(N, θ,Pγ) in which She uses st, and q−j , p
−
j are the side conditions picked by

her (for odd j ≤ i), then

(α)i Dom(qi) = Dom(q−i ) = Dom(pi−1) ∩N , Dom(p−i ) = Dom(pi−1),
(β)i pi−1 ≤ p−i ≤ pi, qi−1 ≤ q−i ≤ p

−
i , qi−1 ≤ qi ≤ pi,

(γ)i letting (q∗j , p
∗
j ) be (q−j , p

−
j ) if j ≤ i is odd and (qj , pj) if j < i is even, for

every ξ ∈ Dom(qi) we have

pi�ξ 
Pξ “ qi(ξ) = q−i (ξ) and
the sequence 〈q∗j (ξ), p∗j (ξ) : j ≤ i〉 is a legal play of

am(N [ΓPξ ], θ, Q̇ξ) in which She uses the strategy ṡtξ ”.

So suppose that i < θ is odd, 〈qj , pj : j < i〉 is a partial play of am(N, θ,Pγ) in
which She uses st (and the side conditions for odd j < i are q−j , p

−
j ), and the clauses

(α)j–(γ)j hold for all odd j < i. Let (q∗j , p
∗
j ) be (q−j , p

−
j ) if j < i is odd and (qj , pj)

if j < i is even.
We first declare that Dom(q−i ) = Dom(pi−1) ∩ N , Dom(p−i ) = Dom(pi−1) and

p−i (ζ) = pi−1(ζ) for all ζ ∈ Dom(p−i ) \ N . Next, by induction on ξ ∈ Dom(q−i )
we define q−i (ξ), p−i (ξ). So suppose that ξ ∈ Dom(q−i ) and q−i �ξ, p

−
i �ξ have been

defined so that qi−1�ξ ≤ q−i �ξ ≤ p
−
i �ξ and pi−1�ξ ≤ p−i �ξ. Then, by clauses (γ)j ,

p−i �ξ 
Pξ “ the sequence 〈q∗j (ξ), p∗j (ξ) : j < i〉 is a legal play of

am(N [ΓPξ ], θ, Q̇ξ) in which She uses the strategy ṡtξ ”.

(Remember our assumption (∗) on ṡtξ and our convention regarding ∅P stated in

Notation 0.3(1).) Let q−i (ξ) and p−i (ξ) be Pξ–names for members of Q̇ξ such that

q−i �ξ 
Pξ “ q−i (ξ) ∈ N [ΓPξ ] & qi−1(ξ) ≤ q−i (ξ) ”,

and
p−i �ξ 
Pξ “ (q−i (ξ), p−i (ξ)) is what ṡtξ tells Her to play

as the answer to 〈q∗j (ξ), p∗j (ξ) : j < i〉 ”.

(So q−i (ξ) is a name for a member of N [ΓPξ ], but it does not have to be from

N .) This completes the definition of q−i , p
−
i ∈ Pγ . Now we use the fact that Pγ

is <κ–complete and |Dom(q−i )| < κ to pick a condition pi ∈ Pγ stronger than p−i
and names τ̇ξ ∈ N (for ξ ∈ Dom(q−i )) such that pi�ξ 
Pξ“ q−i (ξ) = τ̇ξ ”. Since
<κN ⊆ N , the sequence 〈τ̇ξ : ξ ∈ Dom(q−i )〉 is in N . Hence we may find a condition
qi ∈ N ∩ Pγ such that

• Dom(qi) = Dom(q−i ), and
• for each ξ ∈ Dom(qi),


Pξ “ if τ̇ξ ≥ qi−1(ξ), then qi(ξ) = τ̇ξ, otherwise qi(ξ) = qi−1(ξ) ”.

(For definiteness we pick the <∗χ–first pi, qi as above.) It should be clear that

q−i , qi, p
−
i , pi satisfy conditions (α)i–(γ)i. This finishes the description of the strat-

egy st. Let us argue that it is a winning strategy for Her.
To this end suppose that 〈qi, pi : i < θ〉 is the result of a play of am(N, θ,Pγ) in

which She uses st. Let qθ, pθ ∈ Pγ be least upper bounds of 〈qi : i < θ〉, 〈pi : i < θ〉,
respectively. Then for every ξ ∈ Dom(pθ) we have

pθ�ξ 
Pξ “ pθ(ξ) is a least upper bound of 〈pi(ξ) : i < θ〉 ”.

We may also assume that Dom(qθ) =
⋃
i<θ

Dom(qi) = Dom(pθ) ∩N .
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Let q ∈ N ∩Pγ be a condition stronger than qθ (and thus stronger than all qi for
i < θ). We define a condition p ∈ Pγ as follows. First, we declare that Dom(p) =
Dom(q)∪Dom(pθ), and p(ξ) = q(ξ) for ξ ∈ Dom(q)\Dom(pθ), and p(ξ) = pθ(ξ) for
ξ ∈ Dom(pθ) \ Dom(q) = Dom(pθ) \N . Now suppose that ξ ∈ Dom(q) ∩Dom(pθ)
and we have already defined p�ξ so that q�ξ ≤ p�ξ and pθ�ξ ≤ p�ξ. Then, by our
choices,

p�ξ 
Pξ “ the sequence 〈qj(ξ), p∗j (ξ) : j < θ〉 is a legal play of

am(N [ΓPξ ], θ, Q̇ξ) in which She uses the strategy ṡtξ, and
q(ξ) ∈ N [ΓPξ ] is stronger than all qj(ξ) for j < θ ”.

(Above, p∗j are as in the definition of st: either pj or p−j , depending on the parity

of j.) Consequently,

p�ξ 
 “ q(ξ) and pθ(ξ) are compatible ”,

so we may pick a Pξ–name p(ξ) for a condition in Q̇ξ such that

p�ξ 
 “ q(ξ) ≤ p(ξ) and pθ(ξ) ≤ p(ξ) ”.

This completes the choice of p ∈ Pγ . Plainly, p is an upper bound of q and pθ
showing that they are compatible. �

Remark 5.12. Note that

if P is weakly (θ, µ, κ)–manageable,
then it satisfies the µ+–cc.

Hence we may use a slight modification of the proof of 5.11 to show (by induction
on γ) that

if θ < κ = κ<κ, Q̄ = 〈Pξ, Q̇ξ : ξ < γ〉 is a (<κ)–support iteration
of <κ–complete weakly (θ, κ, κ)–manageable forcing notions,
then Pγ is weakly (θ, κ, κ)–manageable and κ–complete (and thus
also κ+–cc).

6. The one-step forcing

In this section we introduce a forcing notion Q for adding a small family of
functions in κκ which τ–dominates κκ ∩V. Iterating this type of forcing notions
we will get models with dτκ small. Our forcing is (of course) manageable for suitable
parameters, and thus it preserves non-meagerness of subsets of κ. Throughout this
section we assume the following.

Context 6.1. (i) τ = cf(τ) < cf(κ) = κ = 2<κ,
(ii) µ̄ = 〈µα : α < τ〉 is an increasing sequence of regular cardinals, κ ≤ µ0,

(iii) |
∏
α<τ

µα| = 2κ and π :
∏
α<τ

µα −→ κκ is a bijection.

We will write πη for π(η). Also for a set u ⊆
∏
α<τ

µα we let

T (u)
def
= {η�α : α < τ & η ∈ u}

Definition 6.2. (1) We define a forcing notion Q = Q(π, µ̄, κ) as follows.
A condition in Q is a tuple p = (i, u, f̄ , g) = (ip, up, f̄p, gp) such that
(a) i < κ, u ∈ Pκ

( ∏
α<τ

µα
)
,

(b) f̄ = 〈fσ : σ ∈ T (u)〉 and fσ : i −→ κ for σ ∈ T (u),
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(c) g : u −→ i+ 1, and if η ∈ u, g(η) ≤ j < i, then

πη(j) < sup{fη�α(j) : α < τ}.
The order of Q is such that for p, q ∈ Q we have
p ≤ q if and only if
ip ≤ iq, up ⊆ uq, gp ⊆ gq and fpσ ⊆ fqσ for σ ∈ T (up).

(2) For a set U ⊆
∏
α<τ

µα we let Q�U = {p ∈ Q : up ⊆ U}, and for a condition

q ∈ Q we put

q�U =
(
iq, uq ∩ U, f̄q�T (uq ∩ U), gq�(uq ∩ U)

)
.

Proposition 6.3. (1) Q is a <κ–lub–complete forcing notion of size 2κ.
(2) Let U ⊆

∏
α<τ

µα be of size ≤ κ. Then |Q�U | ≤ κ.

Proof. 1) Plainly, (Q,≤) is a partial order of size 2κ. To prove the completeness
suppose that 〈pξ : ξ < ξ∗〉 is an ≤–increasing sequence of members of Q and ξ∗ < κ.
Put

iq = sup
ξ<ξ∗

ipξ , uq =
⋃
ξ<ξ∗

upξ , gq =
⋃
ξ<ξ∗

gpξ

and fqσ =
⋃
{fpξσ : ξ < ξ∗ & σ ∈ T (upξ)} for σ ∈ T (uq). Clearly q = (iq, uq, f̄q, gq) ∈

Q is the least upper bound of 〈pξ : ξ < ξ∗〉.
2) Should be clear. �

Proposition 6.4. The forcing notion Q satisfies the condition (∗)εκ (see 5.1(2))
for any limit ordinal ε < κ.

Proof. Let ε < κ be a limit ordinal. To give the winning strategy for Player I in
the game acc

ε,κ(Q) we need two technical observations.

Claim 6.4.1. If p, q ∈ Q are such that ip = iq and gp�(up ∩uq) = gq�(up ∩uq) and
fpσ = fqσ for σ ∈ T (up) ∩ T (uq), then the conditions p, q have a least upper bound.

Proof of the Claim. Let ir = ip = iq, ur = up ∪ uq, gr = gp ∪ gq and

frσ =

{
fpσ if σ ∈ T (up)
fqσ if σ ∈ T (uq).

Then r = (ir, ur, f̄r, gr) ∈ Q is the least upper bound of p, q. �

Claim 6.4.2. Suppose q̄ = 〈qj : j < κ+〉 ⊆ Q. Then there is a regressive function
ϕq̄ : κ+ −→ κ+ such that
if j < j′ < κ+, cf(j) = cf(j′) = κ and ϕq̄(j) = ϕq̄(j

′),

then iqj = iqj′ , and gqj �(uqj ∩ uqj′ ) = gqj′ �(uqj ∩ uqj′ ), and f
qj
σ = f

qj′
σ for σ ∈

T (uqj ) ∩ T (uqj′ ).

Proof of the Claim. Take a sequence 〈ηξ : ξ < κ+〉 ⊆
∏
α<τ

µα such that for each j <

κ+ of cofinality κ and an α < j we have uqα ⊆ {ηξ : ξ < j}. Let U = {ηξ : ξ < κ+}
and Uj = {ηξ : ξ < j} for j < κ+. By 6.3(2) we know that |Q�Uj | ≤ κ (for j < κ+)
and |Q�U | ≤ κ+, and hence we may pick a mapping ψ0 : κ+ −→ Q�U such that(

∀j < κ+
)(

cf(j) = κ ⇒ Rng(ψ0�j) = Q�Uj
)
.

Also, for j < κ+, let F (Uj) be the set{
f̄ = 〈fσ : σ ∈ Dom(f̄)〉 : Dom(f̄) ∈ Pκ

(
T (Uj)

)
& (∀σ ∈ Dom(f̄))(fσ ∈ <κκ)

}
,
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and F (U) =
⋃

j<κ+

F (Uj). Note that |F (Uj)| ≤ κ and |F (U)| ≤ κ+. Choose a

function ψ1 : κ+ −→ F (U) such that(
∀j < κ+

)(
cf(j) = κ ⇒ Rng(ψ1�j) = F (Uj)

)
.

Finally, let c : κ+ × κ+ −→ κ+ be a bijection such that(
∀j < κ+

)(
cf(j) = κ ⇒ Rng(c�(j × j)) = j

)
.

Now let ϕq̄ : κ+ −→ κ+ be a regressive function such that for j < κ+ of cofinality
κ we have

ϕq̄(j) = c(min{α < κ+ : ψ0(α) = qj�Uj},min{α < κ+ : ψ1(α) = f̄qj �T (Uj)}).

Easily, ϕq̄ is as required. �

Now we may complete the proof of Proposition 6.4. Consider the following
strategy st for Player I in the game acc

ε,κ(Q). Suppose that the players arrived at

stage α > 0 of the play and they have already constructed a sequence 〈q̄β , p̄β , ϕβ :

β < α〉. Then, for each j < κ+, the sequence 〈pβj : β < α〉 is increasing, so Player
I can take its least upper bound qαj . This determines q̄α played by Player I; the
function ϕα played at this stage is the ϕq̄α given by Claim 6.4.2.

One easily verifies that the strategy st is a winning one (remember Claim 6.4.1).
�

Theorem 6.5. Suppose θ and ι are cardinals such that θ = cf(θ) < κ ≤ ι = ι<κ.
Then the forcing notion Q is (θ, ι, κ)–manageable.

Proof. For each σ ∈
⋃
α<τ

∏
β<α

µβ fix a sequence ησ ∈
∏
α<τ

µα such that σ ⊆ ησ. Let

η̄ = 〈ησ : σ ∈
⋃
α<τ

∏
β<α

µβ〉.

Suppose that N is a (Q, κ, ι)–relevant model such that (η̄, µ̄, π) ∈ N .
For a condition p ∈ Q we define conditions cl+N (p) = q and cl−N (p) = r by

• ir = iq = ip,
• ur = (up ∩N) ∪ {ησ : σ ∈ T (up) ∩N}, uq = up ∪ {ησ : σ ∈ T (up) ∩N},
• frσ = fpσ for σ ∈ T (up) ∩N , fqσ = fpσ for σ ∈ T (up), and fqσ(j) = frσ(j) = ip

for σ ∈ T (uq) \ T (up), j < ip,
• gr(η) = gp(η) for η ∈ up ∩N and gr(η) = ip for η ∈ ur \ up;
gq(η) = gp(η) for η ∈ up and gq(η) = ip for η ∈ uq \ up.

Plainly, cl+N (p), cl−N (p) are conditions in Q and cl−N (p) belongs to N (remember
<κN ⊆ N). If p ∈ N then also cl+N (p) ∈ N .

Claim 6.5.1. Suppose that p ∈ Q, q ∈ N ∩Q are such that q ≤ p. Then

(1) cl+N (q) = cl−N (q), q ≤ cl−N (p) ≤ cl+N (p), and p ≤ cl+N (p),

(2) if q′ ∈ N ∩Q is stronger than cl−N (p), then q′ and p are compatible,

(3) if p′ ∈ P is stronger than cl+N (p), then cl−N (p) ≤ cl−N (p′).

Proof of the Claim. 1) Just check.

2) Suppose cl−N (p) ≤ q′ ∈ N ∩Q. Put

ir = iq
′
, ur = uq

′
∪ up, gr(η) =

{
gq
′
(η) if η ∈ uq′ ,

gp(η) if η ∈ up \ uq′
and:
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if σ ∈ T (uq
′
), then frσ = fq

′

σ , and if σ ∈ T (up) \ T (uq
′
), then

fpσ ⊆ frσ and frσ(j) = sup{πη(j) : σ ⊆ η ∈ up}+ 1 for ip ≤ j < iq
′
.

Note that if η ∈ up \ uq′ , then for some α < τ we have η�α /∈ N (so η�α /∈ T (uq
′
)).

Hence we may easily verify that r = (ir, ur, f̄r, gr) ∈ Q and clearly r is stronger
than q′. To check that it is also stronger than p it is enough to note that:

if η ∈ up ∩ uq′ , then (η ∈ ucl−N (p) and hence) gq
′
(η) = gcl−N (p)(η) = gp(η), and

if σ ∈ T (up) ∩ T (uq
′
), then (σ ∈ T (ucl−N (p)) and hence) fpσ = f

cl−N (p)
σ ⊆ fq′σ .

3) Note that if cl+N (p) ≤ p′, then

(up ∩N) ∪ {ησ : σ ∈ T (up) ∩N} ⊆ up
′
∩N,

so checking the conditions for cl−N (p) ≤ cl−N (p′) is pretty straightforward. �

Claim 6.5.2. Suppose that a sequence 〈pζ : ζ < ζ∗〉 ⊆ Q is increasing, ζ∗ < κ is

a limit ordinal, and cl+N (pζ) = pζ+1 for all even ζ < ζ∗. Let p∗ be the least upper

bound of 〈pζ : ζ < ζ∗〉. Then cl−N (p∗) is the least upper bound of 〈cl−N (pζ) : ζ < ζ∗〉.

Proof of the Claim. It follows from Claim 6.5.1(3) that cl−N (pζ) ≤ cl−N (p∗) (for ζ <

ζ∗). To show that cl−N (p∗) is actually the least upper bound it is enough to note
that

icl−N (p∗) = ip
∗

= sup{ipζ : ζ < ζ∗} = sup{icl−N (pζ) : ζ < ζ∗},
and

up
∗ ∩N =

⋃
{upζ+1 ∩N : ζ < ζ∗ & ζ even} =

⋃
{ucl−N (pζ) : ζ < ζ∗ & ζ even},

{ησ : σ ∈ T (up
∗
) ∩N} = {ησ : σ ∈ T (upζ ) ∩N & ζ < ζ∗} ⊆

⋃
{ucl−N (pζ) : ζ < ζ∗},

so ucl−N (p∗) = up
∗ ∩N =

⋃
{ucl−N (pζ) : ζ < ζ∗}. �

Now we may describe a strategy st for Her in the game am(N, θ,Q). Suppose
that i < θ is even and (qi, pi) is His move at this stage of the play (so qi ∈ N ∩ P,
qi ≤ pi ∈ P). Then st instructs Her to play qi+1 = cl−N (pi) and pi+1 = cl+N (pi). It
follows from Claim 6.5.1(1) that (qi+1, pi+1) is a legal move. It follows from Claims
6.5.2 and 6.5.1(2) that the strategy st is a winning one.

Thus we have shown that Q is weakly (θ, ι, κ)–manageable (remember 6.3(1)).
The rest follows from Propositions 6.3 and 6.4. �

Definition 6.6. We define Q–names ḟσ (for σ ∈
⋃
α<τ

∏
β<α

µβ) and ġ by


Q “ ḟσ =
⋃
{fpσ : p ∈ ΓQ & σ ∈ T (up)} ”,


Q “ ġ =
⋃
{gp : p ∈ ΓQ} ”.

Proposition 6.7. (1) 
Q “ ġ :
∏
α<τ

µα −→ κ ”.

(2) For each σ ∈
⋃
α<τ

∏
β<α

µβ we have 
Q “ ḟσ : κ −→ κ ”.

(3) For each η ∈
∏
α<τ

µα,


Q “
(
∀j < κ

)(
ġ(η) ≤ j ⇒ πη(j) < sup{ḟη�α(j) : α < τ}

)
.
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Proof. For η ∈
∏
α<τ

µα and i < κ let

Iη = {p ∈ Q : η ∈ up} and Ii = {p ∈ Q : i < ip}.

We claim that these are open dense subsets of Q. First, suppose η /∈ up, p ∈ Q
and let ir = ip, ur = up ∪ {η}, gp ⊆ gr, gr(η) = ir, frσ = fpσ for σ ∈ T (up) and
frη�α(j) = 1 if η�α /∈ T (up), α < τ . Then r ∈ Iη is stronger than p. (Thus the sets

Iη are dense.)
Now suppose that p ∈ P is such that ip ≤ i < κ. Put ir = i+1, ur = up, gr = gp

and for σ ∈ T (ur) let frσ ⊇ fpσ be such that (Dom(frσ) = ir and) for j ∈ ir \ ip we
have frσ(j) = sup{πη(j) : η ∈ ur}+ 1. This way we have defined a condition r ∈ Q
stronger than p and such that r ∈ Ii. (Thus the sets Ii are dense.)

Using the above observation and the definition of the order of Q one easily
justifies (1) and (2). (Note also that, as Q is <κ–complete, 
Q “

∏
α<τ

µα =( ∏
α<τ

µα
)V

”.) Then (3) follows immediately once you note that

p 
 “ gp ⊆ ġ & fpσ ⊆ ḟσ ”,

(for σ ∈ T (up), p ∈ Q); remember Definition 6.2(1)(c). �

7. The models

Theorem 7.1. Assume that

(a) κ = 2<κ,
(b) µ is a cardinal such that cf(µ) < κ < µ < µcf(µ) = 2κ,
(c) there is an increasing sequence µ̄ = 〈µα : α < cf(µ)〉 of regular cardinals

such that

(∀α < cf(µ))(κ ≤ µα ≤ (µα)cf(µ) ≤ µα+1) and µ = sup{µα : α < cf(µ)}.

Then there is a forcing notion P such that:

(i) P has a dense subset of size 2κ,
(ii) P is (θ, ι, κ)–manageable for all cardinals θ, ι satisfying cf(θ) = θ < κ ≤ ι =

ι<κ,

(iii) 
P “ d
cf(µ)
κ ≤ µ ”,

(iv) if cov(Mκ,κ) > µ, then 
P “ d
cf(µ)
κ = µ <

(
cov(Mκ,κ)

)V ≤ cov(Mκ,κ) ”.

Proof. Assume κ, µ, µ̄ = 〈µα : α < cf(µ)〉 are as in the assumptions (a)–(c). Note
that then also

∏
α<cf(µ)

µα = 2κ (by Tarski’s theorem).

The forcing notion P is built as the limit of a <κ–support iteration Q̄ = 〈Pξ, Q̇ξ :

ξ < κ+〉. The names Q̇ξ are defined by induction on ξ < κ+ so that

(α) Pξ has a dense subset of size 2κ,

and for all cardinals θ, ι satisfying cf(θ) = θ < κ ≤ ι = ι<κ,

(β) the forcing notion Pξ is (θ, ι, κ)–manageable and

(γ) 
Pξ “ Q̇ξ is (θ, ι, κ)–manageable ”.

So suppose that Pξ is already defined (and clauses (α), (β) hold). Then Pξ is <κ–
complete κ+–cc, and hence the properties of κ, µ and µ̄ stated in (a)–(c) hold in
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VPξ . Take a Pξ–name π̇ξ such that


Pξ “ π̇ξ :
∏

α<cf(µ)

µα −→ κκ is a bijection ”,

and let Q̇ξ be a Pξ–name for the forcing notion Q(π̇ξ, µ̄, κ). Then clause (γ) holds
(remember Theorem 6.5).

It follows from Proposition 6.3(1) that the demand (α) is preserved at successor
stages and it is preserved at limits ≤ κ+ by the support we use. By Theorem 5.11,
the clause (β) holds for each Pξ (ξ ≤ κ+). So our P = Pκ+ satisfies (i)+(ii).

For ξ < κ+ let ḟξσ (for σ ∈
⋃

α<cf(µ)

∏
β<α

µβ) and ġξ be Pξ+1–names for functions

added by Q(π̇ξ, µ̄, κ) (see Definition 6.6). Then the family

F = {ḟξσ : ξ < κ+ & σ ∈
⋃

α<cf(µ)

∏
β<α

µβ}

is of size µ. Since P is κ+–cc, for each P–name ḣ for a member of κκ there are
ξ < κ+ and a Pξ–name ḣ∗ such that 
P “ ḣ = ḣ∗ ”. Thus using Proposition 6.7(3)
we get


P “ (∃j∗ < κ)(∃F ∈ Pcf(µ)+(F))(∀j < κ)(j∗ ≤ j ⇒ ḣ(j) < sup{f(j) : f ∈ F}) ”.

Now we easily conclude that demand (iii) holds.
To show (iv) let us assume cov(Mκ,κ) > µ. The forcing notion P is (ℵ0, κ, κ)–

manageable, so by Corollary 5.10 and Proposition 4.5 we have


P “ µ <
(
cov(Mκ,κ)

)V ≤ cov(Mκ,κ) ≤ dκ ”.

By (iii) we know 
P “ d
cf(µ)
κ ≤ µ ”, but as for each α < cf(µ):


P “ (µα)cf(µ) ≤ µα+1 < µ < dκ ”,

we immediately get that 
P “ d
cf(µ)
κ = µ ” (remember dκ ≤ (d

cf(µ)
κ )cf(µ)). �

Corollary 7.2. Assume GCH. Then there a κ–complete κ+–cc forcing notion P∗
such that


P∗ “ d̄κ = dℵ0κ = κ+ω and cov(Mκ,κ) = 2κ = κ+(ω+1) ”.

Proof. Let P0 = Cκ+(ω+1),κ be the forcing adding κ+(ω+1) many Cohen functions in
κκ (with <κ–support). Note that


P0 “ κ, µ = κ+ω and µ̄ = 〈κ+n : n < ω〉 are as in Theorem 7.1(a)–(c) ”.

Therefore we have a P0–name Ṗ for a forcing notion satisfying 7.1(i)–(iv). (Note
that 
P0

“ cov(Mκ,κ) = κ+(ω+1) ”, so the assumption of 7.1(iv) holds.) Let P∗ =

P0 ∗ Ṗ. �

Note that Theorem 0.1 follows from Corollary 7.2, Theorem 1.12, and the fact
that cov(Mκ,κ) ≤ cof(NSκ).

Theorem 7.3. Assume that (a)–(c) of Theorem 7.1 hold and

(d) ν is a regular cardinal such that µ < ν < 2κ.

Then there is a forcing notion Pν satisfying (i)+(ii) of Theorem 7.1 and

(iii)+
ν 
Pν “ dτκ = ν for every cardinal τ satisfying cf(µ) ≤ τ < κ ”,

(iv)− 
Pν “
(
cov(Mκ,κ)

)V ≤ cov(Mκ,κ) ”.

Paper Sh:799, version 2005-02-28 11. See https://shelah.logic.at/papers/799/ for possible updates.



COFINALITY OF THE NONSTATIONARY IDEAL 23

Proof. The forcing notion Pν is the limit of <κ–support iteration Q̄ = 〈Pξ, Q̇ξ : ξ <

ν〉, where Q̇ξ are defined as in the proof of Theorem 7.1 (so the only difference is the

length of the iteration). As there, Pν satisfies (i)+(ii) and 
Pν “ d
cf(µ)
κ ≤ ν ”. Since

cov(Mκ,κ) > κ and Pν is (ℵ0, κ, κ)–manageable, we get (iv)− (by Corollary 5.10).

To show that (iii)+
ν holds, suppose that Ḟ is a Pν–name for a family of functions

in κκ of size < ν. Then Ḟ is essentially a Pξ–name for some ξ < ν. Since Pξ+κ
adds a subset of κ which is Cohen over VPξ , (κκ)V

Pξ
is not a dominating family in

(κκ)V
Pν

, and hence for any τ < κ


Pν “ Ḟ is not τ–dominating ”

(remember that Pν is <κ–complete). �

Now, Theorem 0.2 follows from Theorem 1.12 and the following corollary.

Corollary 7.4. It is consistent, relative to the existence of a cardinal ν such that
o(ν) = ν++, that d̄ℵ1 = ℵω+1 and cov(Mℵ1,ℵ1) = ℵω+2.

Proof. Gitik and Woodin (see Gitik [Git89] also Gitik and Merimovich [GM97])
constructed a model of “ 2ℵn < ℵω for every n < ω, 2ℵ0 = ℵ1 and 2ℵω = ℵω+2 ”
from o(ν) = ν++. Add ℵω+2 Cohen subsets of ℵ1 (with countable support) to that
model and then apply Theorem 7.3 (with κ = ℵ1, µ = ℵω and ν = ℵω+1). �

Theorem 7.5. Assume that

(a) κ = cf(κ) = 2<κ, n < ω
(b) µ0, µ1, . . . , µn are cardinals such that

µ0 > µ1 > . . . > µn > κ and cf(µ0) < cf(µ1) < . . . < cf(µn) < κ,

(c) (µ`)
cf(µ`) = 2κ for ` = 0, . . . , n,

(d) for ` = 0, . . . , n, there is an increasing sequence µ̄` = 〈µ`α : α < cf(µ`)〉 of
regular cardinals such that

(∀α < cf(µ`))(κ ≤ µ`α = (µ`α)cf(µ`)) and µ` = sup{µ`α : α < cf(µ`)}.

(e) cov(Mκ,κ) = 2κ.

Then there is a forcing notion P such that

(i) P has a dense subset of size 2κ,
(ii) P is (θ, ι, κ)–manageable for all cardinals θ, ι satisfying cf(θ) = θ < κ ≤ ι =

ι<κ,

(iii) 
P “ d
cf(µ`)
κ = µ` for ` = 0, . . . , n and cov(Mκ,κ) = 2κ ”.

Proof. Let A0, . . . , An be a partition of κ+ into sets of size κ+. The forcing notion
P is the limit of a <κ–support iteration Q̄ = 〈Pξ, Q̇ξ : ξ < κ+〉 defined like in the
proof of Theorem 7.1, but

• if ξ ∈ A`, then π̇ξ is a Pξ–name for a bijection from
∏
α<τ`

µ`α onto κκ, and

Q̇ξ is Q(π̇ξ, µ̄
`, κ).

We argue that P has the required properties similarly as in Theorem 7.1. �

Remark 7.6. Of course the assumption (e) in Theorem 7.5 is not very important:
we may start with adding 2κ many Cohen subsets of κ.
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Corollary 7.7. It is consistent, relative to the existence of a strong cardinal, that

dℵ1ℵ2 = ℵω1 , dℵ0ℵ2 = ℵω1+ω and cov(Mℵ2,ℵ2) = ℵω1+ω+1.

Proof. As was pointed out to us by Moti Gitik, by work of Magidor [Mag77],
Merimovich [Mer03], and Segal [Seg96], it is consistent relative to a strong cardinal
that

(a) 2ℵ1 = ℵ2, ℵℵ0ω1
= ℵω1 , and

(b) for every α < ω1,

ℵℵ1α+ω+1 = ℵα+ω+1 and 2ℵα+ω+1 = ℵα+ω+2,

and
(c) ℵℵ1ω1

= ℵℵ0ω1+ω = ℵω1+ω+1.

After adding ℵω1+ω+1 Cohen subsets of ℵ2 (with <ℵ2 support) to a model of (a)–
(c) we will get a model in which the assumptions of Theorem 7.5 are satisfied for
κ = ℵ2, n = 2, µ0 = ℵω1+ω, µ1 = ℵω1

. �
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