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COFINALITY OF THE NONSTATIONARY IDEAL

PIERRE MATET, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH

ABSTRACT. We show that the reduced cofinality of the nonstationary ideal
NS\ on aregular uncountable cardinal x may be less than its cofinality, where
the reduced cofinality of NS is the least cardinality of any family F of nonsta-
tionary subsets of x such that every nonstationary subset of k can be covered
by less than x many members of F. For this we investigate connections of
the various cofinalities of NS, with other cardinal characteristics of "« and
we also give a property of forcing notions (called manageability) which is pre-
served in <k-support iterations and which implies that the forcing notion
preserves non-meagerness of subsets of “x (and does not collapse cardinals
nor changes cofinalities).

0. INTRODUCTION

Let & be a regular uncountable cardinal. For C C k and v < &k, we say that v is a
limit point of C if | J(CN~v) =~ > 0. C is closed unbounded if C is a cofinal subset
of k containing all its limit points less than k. A set A C «k is nonstationary if A
is disjoint from some closed unbounded subset C' of k. The nonstationary subsets
of x form an ideal on x denoted by NS,.. The cofinality of this ideal, cof (NS.),
is the least cardinality of a family F of nonstationary subsets of x such that every
nonstationary subset of x is contained in a member of F. The reduced cofinality
of NS, cof(NS,), is the least cardinality of a family F C NS, such that every
nonstationary subset of k can be covered by less than x many members of F. This
paper addresses the question whether cof(NS,) = cof(NVS,). Note that

k1 < cof (NS,) < cof (NS,,) < 27,

so under GCH we have cof(NS,,) = cof (NS,).

Let 2 be endowed with the xk-box product topology, 2 itself considered discrete.
We say that a set W C 2 is k—meager if there is a sequence (U, : o < k) of dense
open subsets of 72 such that WnN (| U, = 0. The covering number for the category

a<k
of the space 2, denoted cov(M,, ,;), is the least cardinality of any collection X' of
k—meager subsets of #2 such that | J X = #2. It is not hard to verify that

cov(My, ;) < cof(NS,,) < (E(NSK))Q{.
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It follows that if cof(NS,) < cov(M,, ) and the Singular Cardinals Hypothesis
holds true, then cf(cof(NS,)) < k and cof(NS,) = (cof (NS,))*. We prove:

Theorem 0.1. Assume GCH. Then there is a k—complete, k' —cc forcing notion
P such that

lFp “cof(NS.) = k1 and cof(NS,) = kT 7,

What about the consistency of “cof(NS,) is regular and cof (NS,) < cof(NS,)"?
We establish:

Theorem 0.2. It is consistent, relative to the existence of a cardinal v such that
o(v) = v, that cof(NSy,) = Nyt1 and cov(My, x,) = Ry 2.

The structure of the paper is as follows. In Section 1, for each infinite cardinal
p < k we introduce the <p—cofinality cof <#(NS,) and the <yu-dominating number
05# and we show that these two numbers are equal. Section 2 is concerned with
a variant of 05# denoted by 0¢<# (where cl stands for “club”). We establish that
OH =<k if > w.

NS, is the smallest normal ideal on k. Section 3 deals with NS} , the small-
est k-normal ideal on P.(A). We compute cof *(NS% ;) and give examples of
situations when cof “* (NS} ) < cof (NS}, ).

In the following section we present some basic facts regarding the ideal of k-
meager subsets of #2 and its covering number.

The final three sections of the paper present the consistency results mentioned in
Theorems 0.1, 0.2 above. First, in Section 5 we introduce manageability, a property
of <x—complete xT—cc forcing notions which implies preservation of non-meagerness
of subsets of ®x and which can be iterated. Next, in Section 6, we define one-step
forcing and verify that it has all required properties. The final section gives the
applications obtained by iterating this forcing notion.

Notation 0.3. Our notation is rather standard and compatible with that of classical
textbooks (like Jech [Jec03]). In forcing we keep the older (Cohen’s) convention
that a stronger condition is the larger one. Some of our conventions are listed
below.

(1) For a forcing notion P, T'p stands for the canonical P-name for the generic
filter in P. With this one exception, all P-names for objects in the extension
via P will be denoted with a dot above (e.g. 7, X). The weakest element
of P will be denoted by @p (and we will always assume that there is one,
and that there is no other condition equivalent to it). In iterations, if
Q = (]P’C,Q< : ¢ < ¢*) and p € lim(Q), then we keep convention that
p(a) =0y, for a € ¢*\ Dom(p).

(2) Ordinal numbers will be denoted by «, 8,7, 9d,¢,¢,£ and also by 4,5 (with
possible sub- and superscripts).

Infinite cardinal numbers will be called 0, ¢, ui, v, 7 (with possible sub- and
superscripts); x is our fixed regular uncountable cardinal, A will
denote a fixed cardinal > x (in Section 3).

(3) By x we will denote a sufficiently large regular cardinal and by H(x) the
family of all sets hereditarily of size less than y. Moreover, we fix a well
ordering <} of H(x).

See https://shelah.logic.at/papers/799/ for possible updates.
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(4) A bar above a letter denotes that the object considered is a sequence;
usually X will be (X; : i < ¢), where ¢ denotes the length of X. For a set
A and a cardinal pu, the set of all sequences of members of A of length p
(length <y, respectively), will be denoted by #A (<H A, respectively).

1. cof S*(NS,)

Definition 1.1. (1) For a set A and a cardinal p, P,(A) ={a C A:|a| < u}.

(2) Given two infinite cardinals p < 7, u(u,7) is the least cardinality of a
collection A C P, (7) such that P,(7) = J P(a).

acA
Definition 1.2. Let S be an infinite set and J be an ideal on S (containing all
singletons).

(1) cof(J) is the least cardinality of any X C J such that for every A € J,
there is B € X with A C B.

(2) add(J) is the least cardinality of any X C J such that (JX ¢ J.

(3) For an infinite cardinal y < add(7), cof #(7) is the least cardinality of a
family X C J such that for every A € J, there is Y € P,(X) such that
ACU.

(4) We let cof(J) = cof <24 (7).

The following proposition collects some trivialities.

Proposition 1.3. Let S be an infinite set and J be an ideal on S that contains
all singletons. Then:
(i) cof <“(J) = cof(J).
(ii) If p,v are two infinite cardinals with p < v < add(J),
then cof <¥(J) < cof <*(T).
(iii) cof (J) < u(p,cof *(J)) for every infinite cardinal p < add(J).

(iv) add(J) < cof(J).
The following is well-known (see, e.g., Matet, Péan and Shelah [MPS16]):

Lemma 1.4. Let p be a reqular infinite cardinal. Then u(p, u™™) = p*™ for every
n<w.

Proposition 1.5. Let S be an infinite set and J be an ideal on S such that
(add(7)) ™ < cof (). Then (add(JT))"™ < cof (7).

Proof. Use Lemma 1.4. (I

With these preliminaries out of the way, we can concentrate on ideals on k. If
there is a family of size k1 of pairwise almost disjoint cofinal subsets of x, then
there is a x—complete ideal J on  such that cof(J) < cof(J) (see Matet and
Pawlikowski [MPO03]).

Proposition 1.6. Suppose J is a normal ideal on r and k is a limit cardinal.
Then cof (J) = cof “*(J) for some infinite cardinal pu < k.

Proof. Assume that the conclusion fails. Fix X C J such that |X| = cof(J) and
J = J{PUX) : X € P.(X)}.

Set ¥ = {AUpB:Aec X & B €k} Note that |Y| = cof(J). For each infinite
cardinal 4 < x we may select a set B, € J so that B, € JY for any Y € P,()).
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Now let B be the set of all @ < & such that o € B,, for some infinite cardinal ;1 < a.
Since B € J (by normality of ), there must be X € P.(X) such that B C |J X.

Let 7 be any infinite cardinal such that |X| < 7 < x. Then B, C |J (AU(T7+1)),
AeX
which is a contradiction. O

Arguing as in Proposition 1.6, we get:

Proposition 1.7. Suppose J is a k—complete ideal on k and v is an uncountable
limit cardinal < r. Then there is an infinite cardinal pn < v such that cof <" (J) =
cof <H (J). Moreover, the least such u is either w, or a successor cardinal.

The remainder of this section is concerned with cof <#(NS,). Let us recall the
definition of the bounding number b,:

Definition 1.8. The bounding number b, is the least cardinality of any F C "k
with the property that for every g € Fx, there is f € F such that
{a <r:gla) < fla)}] = -
The following is proved in Matet and Pawlikowski [MP03]:

Proposition 1.9. (i) cof(NS,) > by.

(ii) If cof(NSy) = by, then cof(NS,;) = cof (NS,,).
Proposition 1.10. Let p be an infinite cardinal < k. Then

either cf(cof S*(NS,)) < u, or cf(cof *(NS,)) > b,.

Proof. Suppose to the contrary that u < cf(cof “*(NS,)) = 7 < b,. For a < 7
select X, C NS, so that

(i) |Xa| < cof SH(NS.,.),

(i) X5 C X, for B < a,

(iif) NS = U{PUX): X e Pu( U Xa)}

a<lT
For a < 7, 8¢t Yo = {AUB: A€ X, & B € x} and pick B, € NS, so that
B, ¢ UY for any Y € P,(V,). By a result of Balcar and Simon (see [BS89,
Theorem 5.25]), there is B € NS,; such that |B, \ B| < k for every a < 7. Select
X € Pu(U A,) so that B C |JX. There is v < 7 such that X C &X,. Then

a<T

B, C |J (AU p) for some 8 € k, which is a contradiction. O
AeX

Definition 1.11. Let 7 < k. A family F C "k is called
e a dominating family if
(Yh € "r)(3f € F)(V5 < w)(h(5) < F(5)),
e o <T-dominating family if
(Vh € Fx)(3F € Pr(F)(V) < 0)(h(j) < sl f () : f € F}).
We define dominating numbers 0,057 by:
0, = min{|F| : F C ¥k is a dominating family },
057 = min{|F| : F C "k is a <7-dominating family }.

We let 9, = 0<% and for an infinite cardinal 1 < x we put o = 0/
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Note that 95 = 0,. Landver [Lan90] established that cof(NS,) = 0,. His
result can be generalized as follows:

Theorem 1.12. Let u be an infinite cardinal < k. Then cof “*(NS,) = 0+,

Proof. Set 7 = cof *(NS,). First we will argue that 9°# < 7. Select a family
C of size T of closed unbounded subsets of x so that for every closed unbounded
subset D of &, there is X € P,(C) \ {0} with X C D. For U € P,(C) \ {0} define
fu € "k by fu(a) = min (U \ (a+ 1)). Note that fy(a) < fu(a) whenever
V e P(U)\ {0}. Now given g € ©r, let D be the set of all limit ordinals § < k such
that g(a) < ¢ for every a < 6. Pick X € P,(C) \ {0} so that (X C D. Define
h € Fk by
h(a) = sup { fu(a) : U € Pu(X)\ {0}}.

We are going to show that g < h. Let @ < k and C € X. First, suppose that there
is W e P,(X) \ {0} such that h(a) = fw(a). Then h(a) = fwugcy (o) and hence
h(a) € C. Next suppose that fy(a) < h(a) for all U € P,(X) \ {0}. Then h(«)
is a limit ordinal. Set ¢ = cf(h(a)) and pick an increasing sequence (yg : 8 < ¢)
cofinal in h(c). For 8 < «, select T € Pyu(X) \ {0} with v3 < fr,(c), and set
6p = fryuqcy (). Note that §5 € C. Obviously, the sequence (05 : 3 < ) is cofinal
in h(a), and consequently h(a) € C. Thus for each o < &, h(a) belongs to (X
and therefore to D. Since clearly h(«) > «, it follows that h(a) > g(a).

It remains to show that 05# > 7. Let § be the set of all strictly increasing
functions from k to k. Select F C § so that

(a) |F|] =0o5H, and
(b) given g € Fk, there is F, € P, (F) such that

(Va < k)(g(a) < sup{f(c) : f € Fy}).

For f € §, let C be the set of all limit ordinals o < k such that f(5) < « for every
B < a. Easily

NS.={ACr:(FgeF)(ANC, =0)}

(see, e.g., [MPO03]) and (as (| Cy C C, for every g € §) it follows that 7 < |F|. O
fEF,

It follows from Propositions 1.6 and 1.7 and Theorem 1.12 that to determine the
value of cof “*(NS,,) for every infinite cardinal u < k, it suffices to compute 9, and
o], for every infinite cardinal 7 < &.

cl,<
2. och<n

It is straightforward to check that d5# is the least cardinality of a family F C Fk
such that

(Vg € "k)(3F € 73#(]:))(|{04 €r:gla)>sup{f(a): f€ F}}| < K).

In this section we discuss the variant that arises if we replace “has cardinality <x”
by “is nonstationary”.

Definition 2.1. (1) ¢ is the least cardinality of a family F C "k with the
property that for every g € ®x, there is f € F such that

{a€r:gla) > f(a)} € NS..
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(2) For an infinite cardinal u < k, 0<+<F is the least cardinality of a family
F C Pk with the property that for every g € ©x, there is F' € P,(F) such
that

{a€r:gla) >sup{f(a): f € F}} €NS,.
Note that 9¢-<« = ¢l It is simple to check that cf(dS') > b,.
Theorem 2.2. For every uncountable cardinal p < K,
oeh<H =<k,
Theorem 2.2 easily follows from the next two lemmas.

Lemma 2.3. Let i be an uncountable limit cardinal < r. Then 3H<H = 9H<T for
some infinite cardinal T < .

Proof. The proof is similar to that of Proposition 1.7. Suppose that the conclusion
fails. Fix a family F C "k such that |F| = 0¢b<# and

(Vg € "k)(3F € Pu(F))({a € k: ga) > sup{f(a): f € F}} € NS,).

For each infinite cardinal 7 < p we may select g, € "k so that for every F € P, (F)
we have

{a€r:gr(a) =sup{f(a): fe€F}} ¢NS,.
Define g € "k so that g(a) > g(«) for every infinite cardinal 7 < u such that
7 < a. Now pick F' € P,(F) such that

{aer:g(a)>sup{f(a): f€F}} €NS,.

Let 7 be any infinite cardinal with |F| < 7 < p. Obviously, F' € P.(F) and
{a€r:gr(a) =sup{f(a): f e F}} eNS,,

a contradiction. O

To establish the following lemma, we adapt the proof of Theorem 5 in Cummings
and Shelah [CS95].

Lemma 2.4. Let pi be a reqular uncountable cardinal < k. Then d0°H = dSh<r,

Proof. Select a family F C ¥k such that
(a) every member of F is increasing,
(b) |F| =0h<# and
(c) for each g € Mk, there is F' € P, (F) such that

{aer:g(a)>sup{f(a): f€F}} €NS,.
We claim that the family

Frodef {fe’%/sz (Ela,ﬂ</€)(f|g€f)(f[5504&f”ﬁﬂf):gr[ﬁv"i))}

is <p—dominating. So let g € k. Stipulate that g_; = ¢g. By induction on n € w

choose a closed unbounded subset C,, of , g, h, € ¥k and F,, € P.(F) so that
(1> CnJrl C Cna

(il) gn—1(a) <sup{f(a): f € F,} for all « € C,,

(it}) hn(8) = min(Cy \ (8+ 1)),

(iv) gn(8) = sup (Rng(gn—11(hn(8) + 1))).
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Note that, by (iii) and (iv), g(8) < ¢go(8) < ¢1(B) < ... for all B € k. Set
F = |J F, and ¢ = sup{min(C,) : n € w}. We are going to show that g(vy) <

new

sup{f(vy) : f € F} whenever ¢ < v < k. To this end suppose that ( < v < k. By
(i), there are m € w and £ €  such that £ = sup(y N C,,) whenever m < n < w.

By (iii), hm(€) > v and so (by (iv)) 9(7) < gm-1(7) < gm(&). Since v > ¢ we also
have v N Cypt1 # 0. Hence € € Cy,11 and consequently, by (ii),

9(7) < gm(§) <sup{f(§): fE€Fmi1} <sup{f(7): f€Fn1} <sup{f(v): f € F}.
0

Theorem 2.2 implies that 2% < 021 < 0,,. We mention that it was shown in
Cummings and Shelah [CS95] that ¢! = 0, if x > J,,.

3. cof SH(NSTE )

Throughout this section A denotes a fixed cardinal > k. Our object of study will
be the ideal NS}, y, a P (A) version of NS,.

Definition 3.1. For a regular uncountable cardinal v and a cardinal 7 > v, 7, , is
the set of all A C P, (7) such that for some a € P,(7) we have {b € A:a C b} = 0.

It is straightforward to check that 7, ; is a v—complete ideal on P, (7).

Definition 3.2. (1) An ideal J of P.()) is k—normal if given A € J* and
f: A — Kk such that f(a) € ank for all a € A, there is B € JT NP(A)
such that f is constant on B.
(2) The smallest x—normal ideal on P, ()) containing Jy,x is denoted by NS}, ;.
(3) For f € "(P.(N)) we let

C’fdéf{aep,g()\):aﬂm#@ and U f(a) Ca}.
acanNk
The following lemma is due to Abe.
Lemma 3.3 (Abe [Abe97]). Let A C P.(\). Then
AcNSL, ifand onlyif  (3f € "(Pc(N\)(ANCy =0).

Our purpose in this section is to compute the value of cof “*(NS7 ;). We will
need an analogue of 05+ defined in 3.4(1) below.

Definition 3.4. Let p < k be an infinite cardinal.

(1) 95H is the least cardinality of a family X of functions from  to Py ()
with the property that

(Vg € "(P<(\)) (3X € Pu(X)) (Vo € 1) (9(a) € | f(a)).

fex
(2) cov(A, kT, kT, u) is the least cardinality of a family X C P+ () such that

(VB € P (V) (3X € Pu(X)) (B C | X).
Theorem 3.5. Let p be an infinite cardinal < k. Then
cof H(NSE ) = D::;“ = max{0 -, cov(\, kT, kT, 1)}

Theorem 3.5 is an immediate consequence of Lemmas 3.6-3.9 below.
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Lemma 3.6. Let u be an infinite cardinal < k. Then
cov(h, k't KT, ) < cof SH(NSE ).

Proof. By 3.3 we may pick a family X C *(P,(\)) with the property that |X| =
cof SH(NSy ) and for every function g : & — Py (A) there is X € P,,(X) such that
N C;CCy. For feX, let Br=rU |J f(a) € Per(N).
fex a<nk

Suppose now that B € P,+(A). Pick a function g : Kk — P,(\) such that

B C | g(a). There is X € P,(X) such that (| Cy C Cy. We are going to show
a<k fex
that B C |J Bjy. To this end suppose a <  and let us argue that g(a) C |J By.
fex fex
For n < w let a, € Pc( |J By) be defined by
fex

ag = {Oz}, and Ap+1 = Qp U U U f(ﬁ)a
feX Beannk

and let a = |J an. Then o € a € () Cfy C Cy and consequently g(a) C a C

n<w fex
U By
fex

O

Lemma 3.7. Let pu be an infinite cardinal < k. Then d5# < cof " (NS ).

Proof. By Theorem 1.12, it suffices to establish that cof “*(NS,) < cof “¥(NST ).
Let a family X C "(P.())) be such that |X| = cof **(NSy ) and

(VB € NS5 ) (3X € Pu(X)\{0}) (BN () C; =0).

fex
For f € X, let Z; be the set of all limit ordinals & < & such that

(VB <a)(f(B) Nk C a).

Plainly, Z¢ is a closed unbounded subset of k. Now given a closed unbounded
subset T of &, set By = {a € P.,(\) : ank ¢ T}. A simple argument (see, e.g.,
[MPS16]) shows that Br € NS} \. Hence there is Xp € P,(X) \ {0} such that
Brn () Cj;=0. Wewill show that (| Z; CT. Thusleta € () Zy. Setting

feXr feXr feXr
a=aU |J U f(B),itiseasy toseethat aNk =aanda € (| Cy. It follows
feXr B<a feXr
that a =anNk eT. g

Lemma 3.8. Let pi be an infinite cardinal < k. Then cof S*(NSY ) <07 H.

Proof. The inequality easily follows from the following observation.
Suppose h : £ — Py(A) and X € P, (*(P.(A))) are such that

(Va < k) (h(a) C U f(a)).
fex

Then () Cy C Ch. O
fex

Lemma 3.9. Let p be an infinite cardinal < k. Then

oS < max{dg#, cov(h, kT, KT, )}
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Proof. Fix F C Fk so that |F| = 0# and
(Vh € k) (3F € Pu(F)) (Vo < k) (h(a) < sup{f(a): f € F}).
Also, fix X C P+ (\) such that |X| = cov(\, kT, kT, 1) and

Per(A) = [ JIPUX) : X € Pu(X)}.

For each a € &, select a mapping ¢, : & 2% 4. Now for f € Fand a € X define
Gf,a ik —> Pg(A) by

9r.a(a) ={pa(8) : 6 < f(a)}.
Suppose now that g : K — P (A). By the choice of X, there is X € P,(X) such
that |J g(o) CJX. Choose h € Fk such that

a<k

(Va < k) (g9(a) € |J{pal®) : € < (@)}).

aceX
Next pick F' € P, (F) such that (Vo < k)(h(e) < sup{f(a): f € F}). Then

(Va < Iﬁ?) (g(a) C U U gf,a(a))'

feFaeX
O
Another formula worth noting is:
cof SH(NSy ) = max{cof “*(NSy), cof “*( T+ 1) }-
This identity follows from Theorems 1.12 and 3.5 and the next proposition.
Proposition 3.10. Let p be an infinite cardinal < . Then cov(A\, kT, kT, p) =
cof<”(‘75+7>\).
Proof. The result easily follows from the following observation.
Suppose that X C P,+(A) and X € P,(X)\ {0}. Then
ﬂ {ceP+(N):aCct={ceP+(N):UX Cc},
a€eX
and therefore for each b € P,.+ ()
bCUX if and only if m {ceP+(N):aCc} C{cePe+(N):bCc}.
a€eX
O

We next consider special cases when cof **(NSY. ) < cof (NS ).
Lemma 3.11. Let p be an infinite cardinal < . Then cov(A, &%, k7, 1) > .

Proof. Tt is shown in Matet, Péan and Shelah [MPS05] that cof(7,+ ) > A. Now
observe that (by Proposition 3.10) cov(\, kT, kT, 1) > cof (Ty+ 5). O

Lemma 3.12. Suppose X is singular and p is a cardinal such that cf(\) < p < k.
Then cov(\, k1, kT, 1) <sup{u(s™,v) : kK <v < A}

Proof. Let (A¢ : & < cf(\)) be an increasing sequence of cardinals cofinal in A.

Then, for every a € P+ (A\),a= |J an e The desired inequality follows. O
E<cf(N)
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Proposition 3.13. Let u be an uncountable cardinal < k. Then
cof “H(NSy +o) = max{ogh, k).

Proof. By Lemmas 1.4, 3.11 and 3.12 we have

Tt kit ) = w

cov(k ,

so the result follows from Theorem 3.5. O

Thus, if 059t < k1%, then
cof ST (NS +er) < cof (NSF +0).

Lemma 3.14. Assume the Singular Cardinals Hypothesis. If X > 2% then

AT dfef(N) <k
=+ _ = v
u(k™,A) = { A otherwise.

Proof. Plainly, A < u(sT,\) < A*. It follows immediately that u(x™,X) = X if
cf(A) > k. For the other case, use the well-known fact (see, e.g., [MPS16]) that
cf(u(k™, ) > k™. O

Proposition 3.15. Assume the Singular Cardinals Hypothesis. If A\ > 2% and
No < u <k, then

AT ifp<cf(\) <k

<p K _ = = Ny

cof H(NSEA) _{ A otherwise.

Proof. By Lemma 3.11, cov(A, k%, 5T, ) > X\ >0, > 05K, so by Theorem 3.5
cof SH(NSE ) = cov(A, kT, k™, ).

CASE:  cf()) > k.
By Lemmas 3.11 and 3.14 we have A < cov(\, k7, kT, 1) < u(kT, ) < A, and hence
cov(\, kT, kT u) = A.

Case:  p <cf(A) <&.
By Lemma 3.14 we know that

covi\, kT, kT, 1) <u(k™,A) < AT and AT <wu(kt,\) < (COV(A,H+,/€+,N))<“.
Since A<H = A, it follows that cov(\, kt, kT, u) = AT,

Case:  cf(X) < p.
By Lemmas 3.11, 3.12 and 3.14 we have

A <cov(\ kT kT ) <sup{u(k™,v) ik <v <A} <A,
and consequently cov(A\, kT, kT, 1) = A. O
Thus, if the Singular Cardinals Hypothesis holds, y < k and A > 2%, then

cof M(NST ) < cof(NS% ) ifand only if  cf(X) < pu.
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4. cov(M,y x)

Let us recall some basic facts and definitions related to the combinatorics of the
k-meager ideal M,; ,, on 2.

Definition 4.1. (1) The Baire number n(X) of a topological space X (also
called the Novak number of X) is the least number of nowhere dense subsets
of X needed to cover X.

(2) For a topological space X and a cardinal y, the (<u)—complete ideal of sub-
sets of X generated by nowhere dense subsets of X is denoted by M, (X);
M_,,+(X) will be also denoted by M, (X). The ideal M, (X) is the ideal
of p—meager subsets of X.

(3) The space "k (respectively 72) is endowed with the topology obtained by
taking as basic open sets ) and O, for s € <Fg (respectively s € <"{2),
where O; = {f € Fr: s C f} (respectively Os = {f € "2 : 5 C f}).

(4) The ideals of k—meager subsets of x, 2 are denoted by M . and M, ,,
respectively.

Remark 4.2. (1) Clearly, for a topological space X, n(X) is the least number
of open dense subsets of X with empty intersection. If p < n(X), then
M_,(X) is a proper ideal (i.e., X ¢ M, (X)).

(2) Following the tradition of the set theory of the reals, we may consider the
covering number cov(Mc, (X)) of the ideal M, (X):

cov(Mc, (X)) = min{|A] : A C M, (X) & | JA=X}.

By the definition, n(X) = cov(Mcy,(X)). But also for every yu < n(X) we
have cov(Mc, (X)) = n(X); also cov(Mcy,(x)(X)) = cf(n(X)).
(3) Plainly, n("x) > x and n("2) > k (remember, & is assumed to be regular).

Lemma 4.3. Suppose that X is a topological space, u < n(X), and Y, are open

subsets of X (for a < p). Assume also thatY = (| Yq is dense in X. Then, if Y
a<p

is equipped with the subspace topology, n(Y) = n(X).

Proof. Let Ug (for 8 < n(X)) be open dense subsets of X such that (| Ug=0.
B<n(X)
Then Ug NY are open dense subsets of Y (remember Y is dense) and (] (UgN
B<n(X)
Y) = ). This shows that n(Y) < n(X).
Now, let V3 C Y (for § < n(Y)) be open dense subsets of Y such that (| V3=

B<n(Y)
(). Take open subsets Ug of X such that Vg = UgNY — clearly Ug’s are dense in
X (asY isso). Then @ = [ (UsnNnY) = [ UsnN () Ya, and hence
B<n(Y) B<n(Y) a<p
n(X) < n(Y) + u and therefore n(X) < n(Y). O

Proposition 4.4. cov(M} ) = n("k) = n("2) = cov(M, ).

Proof. For s € <F2 and a < & let F(s,a) € <K2 be such that 1h(F(s,a)) =
Ih(s) + o+ 1 and
F(s,a)llh(s) =s, F(s,a)][lh(s),lh(s)+a)=1, and F(s,a)(lh(s)+a)=0.

Now, let 7 : <Fx — <H2 be such that
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o 7(() = (), 7(s (@) = F(n(s), ) for s € <"k, and
o if (50 : (¢ < &) C <Fkis <-increasing, £ < k, s = | s¢,

¢<¢
then w(s) = | m(s¢).
¢<g

Then 7 induces a one-to-one mapping 7* : *x — %2 :n— (J 7(n[¢). The range
(<K
of * is

Rng(r*) = {p € "2: (Vo < k)(3B < k) (a < B & p(B) = 0)}.

Plainly, Rng(7*) is the intersection of x many open dense subsets of 2. Moreover,
7* is a homeomorphism from #x onto Rng(n*). Therefore, using Lemma 4.3, we
get n("k) = n(Rng(n*)) = n(®2). The rest should be clear (remember Remark

4.2(2,3)). 0
Proposition 4.5. cov(M, ) < 0.

Definition 4.6. C,, , is the forcing notion for adding y Cohen functions in #x with
<x-support. Thus a condition in C, , is a function ¢ such that

Dom(q) C p X &, Rng(q) Cx and |q| < &.
The order of C,, ,; is the inclusion.

Proposition 4.7. Assume 2<" = < p. Then ¢, “cov(Mg) > p”

5. MANAGEABLE FORCING NOTIONS

In this section we introduce a property of forcing notions which is crucial for
the consistency results presented later: (6, i, k)—manageability. This property has
three ingredients: an iterable variant of xT—cc (see Definition 5.1), k—completeness
and a special property implying preservation of non-meagerness of subsets of “x
(see Proposition 5.9). Since later we will work with <x—support iterations, we also
prove a suitable preservation theorem (see Theorem 5.11).

Throughout the section we will assume that our fixed (uncountable)
regular cardinal x satisfies 2<% =k (so also k<" = k).

Definition 5.1 (See Shelah [She92, Definition 1.1] and [She00, Definition 7]). Let
P be a forcing notion, and ¢ < k be a limit ordinal.

(1) We define a game 0% (P) of two players, Player I and Player II. A play
lasts ¢ steps, and at each stage a < € of the play g%, p®, ¢“ are chosen so
that:

e "= {0p:i<rt), okt — kT i 0;
e If o > 0, then Player I picks g%, p® such that
(i) ¢* = (g% : i < k™) C P satisfies

(VB < a)(Vi < k1)(pf < g,

(ii) ¢*: kT — kT is regressive, i.e., (Vi < kT)(¢“(i) < 1+1i);
e Player IT answers choosing a sequence p® = (p¢ : i < k) C P such
that (Vi < k™) (g < p%).
If at some stage of the game Player I does not have any legal move, then he
loses. If the game lasted e steps, Player I wins a play (§%,p%, ¢ : a < €)
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if there is a club C of kT such that for each distinct members i,j of C
satisfying cf(i) = cf(j) = x and (Va < €)(p(i) = ©*(j)), the set

P ra<etU{p] a<e}

has an upper bound in P.
(2) The forcing notion P satisfies condition ()% if Player I has a winning strat-
egy in the game O¢¢, (P).
Remark 5.2. Condition (%) is a strong version of k™—cc (easily, if € < & is limit,
k® = k, and P satisfies ()¢, then P satisfies xT—cc). This condition was used
in a number of papers, e.g., to obtain a series of consistency results on partition
relations; see Shelah and Stanley [SS82], [SS86], Shelah [She78], [She92], [She00].

Its primary use comes from the fact that it is preserved in <x-support iterations.

Proposition 5.3 (See Shelah [She92, Iteration Lemma 1.3] and [She00, Theorem
35]). Let e < k be a limit ordinal, k = k<". Suppose that Q = (P¢, Q¢ : £ <) is a
<k—support iteration such that for each & <~y

IFp, “ Qg satisfies (%), 7.
Then P satisfies ()5

K

Definition 5.4. A forcing notion P is <f-complete if every <p—increasing chain
of length less than 6 has an upper bound in P. It is <@-lub—complete if every
<p-increasing chain of length less than 6 has a least upper bound in P.

Definition 5.5. Let 6 and p be cardinals such that 6 < x and u<% = u. Let P be
a <f0*-lub—complete forcing notion.

(1) A model N < (H(x),€,<5) is (P,#,p)-relevant if P,y € N, p € N,
IN| = and <N C N.

(2) For a (P, K, u)-relevant model N we define a game 0™ (N, 0, P) of two play-
ers, He and She, as follows. A play lasts 6 moves, and in the i*" move
conditions p;, q; € P are chosen so that:

e ¢ € NNP, ¢ <pi,

o (Vi <i)(g; < a & pj <pi),

e She chooses p;, g; if ¢ is odd, He picks p;, ¢; if © is even.
She wins the play (g;, p; : ¢ < 8) whenever

if pe is a least upper bound of (p; : i < 6), and ¢y is a least upper
bound of {g; : i < 0),

then (Vg€ NNP)(g9 < q = q,pey are compatible ).

(3) The forcing notion P is weakly (6, u, k) -manageable if (it is <6+—lub—complete
and) there is an x € H(x) (called a witness) such that for every (P, k, )
relevant model N < H(x) with € N, She has a winning strategy in the
game 0" (N, 6,P).

(4) The forcing notion P is (0, u, k) -manageable if it is <k—complete, weakly

(6, i1, k)-manageable, and satisfies the condition ().

Remark 5.6. Suppose that P is <@*-lub—complete and N is (P, s, 1)-relevant. Then
both players have always legal moves in the game 0™ (N, 6, P). Moreover, if {g;, p; :
1 < 0) is a (legal) play of O™ (N, 8, P), then there are least upper bounds g9 € NNP
of (gi:1<0),and pg € Pof (p; : 7 < 0) (and gg < pg).
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Definition 5.7. Let N be a (P, k, u)-relevant model, and let ¢ € NNP, p € P be
such that ¢ < p. We say that a pair (¢*, p*) is an N—cover for (q,p), if

¢ ¢<q e NNP,p<p*€P, ¢ <p*, and

e every condition ¢' € N NP stronger than ¢* is compatible with p*.

Lemma 5.8. Suppose that P is a <07 —lub—complete forcing notion, N is a (P, k, pu)—
relevant model, and She has a winning strategy in the game O™ (N,0,P). Then:

(1) For all conditions ¢ € NNP and p € P such that ¢ < p, there is an N —cover

(¢*,p*) for (¢,p).
(2) NNP < P.

Proof. 1) Consider a play (g;,p; : i < 6) of O™(N,0,P) in which He starts with
g0 = ¢, po = p, and then he always plays the <[-first legal moves, and She uses
her winning strategy. Let ¢* € N NP, p* € P be least upper bounds of (g; : i < 8),
(p; : i < 0), respectively. Plainly, as She won the play, the pair (¢*,p*) is an
N—cover for (g, p).
2) Suppose that A € N NP is a maximal antichain in N NP, but p € P is
incompatible with all members of A. Let (¢*,p*) be an N—cover for (0p,p). The
condition ¢* is compatible with some g € A, so let gt € NNP be such that g™ > ¢*,
qT > g € A. By the choice of (¢*,p*) we know that the conditions ¢+ and p* are
compatible, and hence ¢ and p are compatible, a contradiction.

The rest follows from the elementarity of N. O

Proposition 5.9. Assume § < k < p = pu<® < 7. Suppose that a set Y C Fg
cannot be covered by the union of less than T nowhere dense subsets of “r, and P
is a weakly (0, u, k)-manageable forcing notion not collapsing cardinals. Then

2

IFp “Y is not the union of < T nowhere dense subsets of ¥k

Proof. Let P be weakly (0, i1, k)—manageable with a witness z € H(x). Suppose
toward contradiction that a condition ¢ € P is such that

g IF “Y is the union of < 7 nowhere dense subsets of Fr 7.

Passing to a stronger condition if needed, we may assume that for some ¢ < 7 and
P-names A¢ (for £ < ¢) we have:

o qlIF “ A C<Fr & (Vs € <Fg)(3t € Ag)(s Ct) 7 and
e glF“(VyeY)3<)(Vte Ag)t L y) .
For each ¢ < ¢ pick a (PP, &, p)-relevant model N < (H(x), €, <) such that g, (Ag

€ <u),z,{ € Ne. Then | U N¢| =¢-p < 7, s0 we may pick a y € ¥ such that
¢<e
y € O for all open dense subsets O of 7« from |J N¢. By our assumptions, there
¢<e
are £ < ¢ and p > ¢ such that

plE“(VteAg)t L y) .
Let (¢*,p*) be an Neg—cover for (g, p) (there is one by Lemma 5.8(1)). Put
A={se<Fr:(3¢ > q¢")(¢ IFse A}

Clearly A € Ng, A C N, and O = |J O, € Ng is an open dense subset of 7.
sEA
Hence s C y for some s € A. Let ¢ € N¢ NP be a condition stronger than ¢* and
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such that ¢’ IF s € A¢. The condition ¢’ is compatible with p*, and so with p. Take
a condition ¢T stronger than both ¢’ and p. Then

gtIF“sc A &sCy” and q¢FIF“(Vted)(tLy)?,
a contradiction. O

Corollary 5.10. Suppose that 0 < k < p = pu<" and cov(My, ) > u. Let P be a
(0, i, k) —manageable forcing notion. Then

IFp “ (cov(M,m,))v <cov(My ) 7.

Proof. Remembering Proposition 4.4, apply Proposition 5.9 to 7 = cov(M, x) =
cov(My ) and Y = "k to get

IFp ¢ (%k)V is not the union of < 7 nowhere dense sets ”.

But this clearly implies IFp “ 7 < cov(M, ) = cov(M ) 7. O

Theorem 5.11. Assume that 0 < k < u = p<~®. Let Q = <IP’5,Q5 &< ) be
<k-support iteration such that for each £ <~y

IFpe “ Qg is (0, u, k)-manageable .
Then P is (8, 1, k) -manageable.

Proof. Let 0, k, i and Q be as in the assumptions of the theorem.

First note that the limits of <k—support iterations of <x—complete forcing no-
tions satisfying the condition (x)? are <k-complete kT—cc (as k<" = k; remember
Proposition 5.3). Therefore no such iteration collapses cardinals nor changes cofi-
nalities nor adds sequences of ordinals of length < x. Hence the assumed properties
of 0,k and p hold in all intermediate extensions VF¢ and our assumption on Qg’s
is meaningful.

Plainly, P, is <sx—complete, <6T—lub—complete and satisfies condition (x)0. We
have to show that P., is weakly (6, i1, x)-manageable.

For £ < v let 2¢ be a Ps—name for a witness for Qg being weakly manageable
and let ¥ = (i¢ : £ < ). Suppose that N < (H(x), €, <) is a (P, k, u)-relevant
model such that (z,Q) € N.

Since each P¢ is <k—complete and satisfies the k*—cc (and k +1 C N) we know
that if £ € NN~ and G¢ C P¢ is generic over V, then in V[G¢| we have:

N[Ge )NV =N and N[Ge] < (H(x). €, <))V and <FN[G¢] C N[Ge].

Since clearly Q?E € N[G¢], we conclude that N[G¢] is (Q?gm,,u)frelevant, and
i’?g € N[G¢]. Therefore, She has a winning strategy in the game 0™ (N [G¢], 0, @?5 ).
Let st¢ be a Pg—name for such a strategy. We may assume that the strategy st¢ is
such that

(%) if i < 0 is even and ¢; = p; = QQg’
then s'tg instructs Her to play ¢;+1 = pit1 = ®Q§'
We define a strategy st for Her in the game 0™ (N, 6, P,) as follows. At an odd stage
i < 0 of the game, the strategy st first instructs Her to choose (side) conditions

q; ,p; € P, and only then pick conditions ¢; € N NP, and p; € P, which are to
be played. These conditions will be chosen so that if (g;,p; : j < @) is a legal play
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of O™(N, 6,P,) in which She uses st, and q; ,p; are the side conditions picked by
her (for odd j <), then
(a)); Dom(g;) = Dom(g; ) = Dom(p;—1) N N, Dom(p; ) = Dom(p;—1),
(B)i pi1 <Py <pis @1 < g <p; s i1 < ¢ < piy
(7)i letting (g;,pj) be (qj_,pj_) if j <iis odd and (gj,p;) if 7 < i is even, for
every & € Dom(g;) we have
pil€lFee  “ qi(§) = q; (§) and
the sequence (g;(£),p}(§) : j <14) is a legal play of
O™ (N[I'p,],0,Q¢) in which She uses the strategy ste 7.

So suppose that ¢ < § is odd, (g;,p; : j < 7) is a partial play of O™ (N,0,P,) in
which She uses st (and the side conditions for odd j < ¢ are 4 p;), and the clauses
(@) j—(7); hold for all odd j < i. Let (¢;,p}) be (¢; ,p; ) if j <iis odd and (g;,p;)
if 7 < is even.

We first declare that Dom(q; ) = Dom(p;—1) N N, Dom(p; ) = Dom(p;_1) and
p; (€) = pi—1(¢) for all ¢ € Dom(p; ) \ N. Next, by induction on { € Dom(g; )
we define ¢; (€),p; (§). So suppose that & € Dom(g; ) and ¢; [, p; [€ have been
defined so that ¢;—1[¢ < g; [£ < p; 1€ and p;—11€ < p; [{. Then, by clauses (7);,

p; [€1Fp,  “ the sequence <q;(§),p;- (&) : j < i) is a legal play of
O™ (N[I'p,],0,Q¢) in which She uses the strategy ste 7.

(Remember our assumption () on stg and our convention regarding @p stated in
Notation 0.3(1).) Let g; (§) and p; (§) be P¢—names for members of Q¢ such that

q; 1€1Fp, “ g (§) € N[I'p.] & qi—1(§) < q; (§) 7,
and

p; [€lp,  “ (g7 (€),p; (£)) is what ste tells Her to play
as the answer to (g7 (£),p;(§) :j <14) 7.

(So g; (&) is a name for a member of N[I'p.], but it does not have to be from
N.) This completes the definition of ¢; ,p; € P,. Now we use the fact that P,
is <k—complete and |Dom(g; )| < & to pick a condition p; € P, stronger than p;
and names 7¢ € N (for £ € Dom(g; )) such that p;[§ IFp,“ ¢; (§) = 7¢ ”. Since
<KN C N, the sequence (7¢ : £ € Dom(q; )) is in N. Hence we may find a condition
¢; € N NP, such that

e Dom(g;) = Dom(g; ), and

e for each £ € Dom(g;),

IFp, “if 7¢ > qi—1(§), then ¢;(§) = 7¢, otherwise ¢;(£) = ¢i—1(§) 7.
(For definiteness we pick the <}-first p;,q; as above.) It should be clear that
q; ¢, Dp; ,pi satisty conditions («);—(7);. This finishes the description of the strat-
egy st. Let us argue that it is a winning strategy for Her.
To this end suppose that (g;,p; : ¢ < 6) is the result of a play of O™(N, §,P,) in
which She uses st. Let gg, pg € P, be least upper bounds of (g; : © < 6), (p; : i < 6),
respectively. Then for every £ € Dom(py) we have

pol& ke, “ pa(€) is a least upper bound of (p;(§) : i < ) 7.

We may also assume that Dom(gg) = |J Dom(g;) = Dom(pg) N N.
<0
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Let ¢ € NNP, be a condition stronger than gy (and thus stronger than all ¢; for
i < 0). We define a condition p € P, as follows. First, we declare that Dom(p) =
Dom(g) UDom(py), and p(€§) = ¢(§) for £ € Dom(g) \ Dom(pg), and p(§) = ps(§) for
¢ € Dom(pg) \ Dom(q) = Dom(pg) \ N. Now suppose that £ € Dom(q) N Dom(pp)
and we have already defined p[¢ so that ¢q[¢ < p[€ and py[€ < pl€. Then, by our
choices,

pl¢ ke, “ the sequence (g;(£),p;(€) : j < 0) is a legal play of
O™ (N[Tp,],0,Q¢) in which She uses the strategy ste, and
q(§) € N[I'p,] is stronger than all ¢;(§) for j <6 7.

(Above, p; are as in the definition of st: either p; or P depending on the parity
of j.) Consequently,

pl€ Ik “ q(&) and py(§) are compatible 7,
so we may pick a Pe—name p(&) for a condition in Qg such that

pl& Ik “ q(€) < p(§) and pe(&) < p(&) 7.

This completes the choice of p € P,. Plainly, p is an upper bound of ¢ and pe
showing that they are compatible. [l

Remark 5.12. Note that

if P is weakly (6, u, k)—manageable,
then it satisfies the pu*—cc.

Hence we may use a slight modification of the proof of 5.11 to show (by induction
on ~) that

if0 <k =r<" Q= (P;,Q : £ <) is a(<k)support iteration

of <k—complete weakly (0, k, k)-manageable forcing notions,

then P, is weakly (¢, s, k)-manageable and xk—complete (and thus

also kT—cc).

6. THE ONE-STEP FORCING

In this section we introduce a forcing notion Q for adding a small family of
functions in #x which 7-dominates #x N V. Iterating this type of forcing notions
we will get models with 97 small. Our forcing is (of course) manageable for suitable
parameters, and thus it preserves non-meagerness of subsets of k. Throughout this
section we assume the following.

Context 6.1. (i) 7 =cf(7) < cf(k) = kK =27,
(ii) 1 = (po : & < 7) is an increasing sequence of regular cardinals, k < pog,
(iii) | [T pal = 2% and 7 : [] pa — ©r is a bijection.
a<lT a<lT

We will write 7, for m(n). Also for a set u C [] pa we let

a<lT
T(u)déf{n[a:a<7&n6u}

Definition 6.2. (1) We define a forcing notion Q = Q(, fi, k) as follows.
A condition in Q is a tuple p = (i,u, f,g) = (i, u?, fP, gP) such that
(a) i <k u€ Pyl ] ta),

_ a<T

(b) f={(fs:0€T(u)) and f, : i — & for o € T'(u),
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(¢) g:u—i+1,and if n € u, g(n) < j < i, then

() <sup{fyja(j) : o <7}
The order of Q is such that for p,q € Q we have
p < q if and only if
P <iq% uP Cul, g? C g7 and fP? C f2 for o € T(u?).
(2) Foraset U C [] po welet QU = {p € Q: uP C U}, and for a condition

a<T

q € Q we put
qIU = (i, u? N U, fT(u? NU),g"[(u? NU)).

Proposition 6.3. (1) Q is a <k-lub—complete forcing notion of size 2".
(2) Let U C ] pa be of size < k. Then |Q|U| < k.
a<lTt
Proof. 1) Plainly, (Q, <) is a partial order of size 2. To prove the completeness
suppose that (pe : £ < £*) is an <-increasing sequence of members of Q and £* < k.
Put
19 = sup P, wul= U ube, g¢g1= U gPe
£<gr c<tr f<en
and f4 = J{f5 : £ <& & o € T(uPe)} for o € T(u9). Clearly q = (i9,u?, f9,g9) €
Q is the least upper bound of (pg : £ < £*).
2) Should be clear. O

Proposition 6.4. The forcing notion Q satisfies the condition (%) (see 5.1(2))
for any limit ordinal € < k.

Proof. Let € < k be a limit ordinal. To give the winning strategy for Player I in
the game O, (Q) we need two technical observations.

Claim 6.4.1. Ifp,q € Q are such that i? = i? and g?[(u? Nu?) = g?|(v? Nu?) and
f2 = f2 for o € T(uP) N T(u?), then the conditions p,q have a least upper bound.

Proof of the Claim. Let i" =" =%, u" =uP Uu?, g" = g? U g% and
fr { 2 if o € T(uP)

o =

1 f1 ifoeT(ul).
Then r = (i",u", f7,¢") € Q is the least upper bound of p, q. O

Claim 6.4.2. Suppose ¢ = (q; : j < k) C Q. Then there is a regressive function
g kT — kT such that

ifj <7 <nt, of(j) = cf(j') = & and 9a(j) = ¢a(7),

then i% = %', and g% [(u% Nu%") = g% [(u% Nu%’), and f& = &' for o €
T(u®%)NT(ud").

Proof of the Claim. Take a sequence (e : £ < k™) C ] pq such that for each j <

a<T
kT of cofinality s and an « < j we have ud> C {n¢: £ < j}. Let U ={ne : £ <™}
and U; = {ne : £ < j} for j < k*. By 6.3(2) we know that |Q|U;| < k (for j < k™)
and |Q|U| < k*, and hence we may pick a mapping 1o : £ — Q|U such that
(vj <w*)(cf(j) =% = Rng(wlj) = QIT;).
Also, for j < k*, let F(Uj) be the set

{f={f,:0 € Dom(f)): Dom(f) € P (T(U;)) & (Vo € Dom(f))(f, € <"x)},
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and F(U) = |J F(U;). Note that |F(U;)| < k and |[F(U)| < k*. Choose a
<kt
function 1 : kT — F(U) such that

(Vi < K¥)(cf(j) =K = Rng(yrlj) = F(Uy)).
Finally, let ¢: kT x kT — xT be a bijection such that
(Vi < w")(cf(j) =k = Rng(cl(j x ) = j).

Now let g : kT — kT be a regressive function such that for j < £ of cofinality
k we have

0g(4) = c(minf{a < k1 : Yp(a) = ¢;1U; },min{a < k7 : 1 (a) = f9T(U;)}).
Easily, g is as required. (]

Now we may complete the proof of Proposition 6.4. Consider the following
strategy st for Player I in the game Og, (Q). Suppose that the players arrived at
stage o > 0 of the play and they have already constructed a sequence (g%, p°, o? :
B < a). Then, for each j < k™, the sequence (pf : B < a) is increasing, so Player
I can take its least upper bound ¢f'. This determines ¢* played by Player I; the
function ¢ played at this stage is the ygzo given by Claim 6.4.2.

One easily verifies that the strategy st is a winning one (remember Claim 6.4.1).

O

Theorem 6.5. Suppose 6 and ¢ are cardinals such that § = cf(0) < k < ¢ = 1<".
Then the forcing notion Q is (0, , k) -manageable.

Proof. For each 0 € |J ][] pg fix a sequence n, € [] e such that o C n,. Let
a<lT <o a<lT

n=mo:0e U II pp)-

a<lT f<a
Suppose that N is a (Q, , t)-relevant model such that (7, i, 7) € N.
For a condition p € Q we define conditions cl(p) = ¢ and cly(p) = r by

o " =11 =1
oy = (upﬂN)U{ng ceT(W)NN} ul=uPU{n,:0ce€T(uP)NN},
o fr=fPforoceT(uP)NN, fi= fLfor o € T(uP), and fi(j) = fr(j) =P
for o € T(u9) \ T'(uP), j < 4P,
e g"(n) =gP(n) for n € w? NN and ¢g"(n) = for n € u™ \ u?;
g9(n) = gP(n) for n € uP and g%(n) = ® for n € w9\ u?.

Plainly, clf(p),cly(p) are conditions in Q and cly(p) belongs to N (remember
<FN C N). If p € N then also clf;(p) € N.

Claim 6.5.1. Suppose that p € Q, g € N NQ are such that ¢ < p. Then

(1) cly(a) = cly(a), g < cly(p) < clj(p), and p < cly(p),
(2) if ¢ € NNQ is stronger than cly(p), then ¢’ and p are compatible,
(3) if p' € P is stronger than cli (p), then cly(p) < cly(p).

Proof of the Claim. 1) Just check.
2) Suppose cly(p) < ¢ € NNQ. Put

’ ’ q/ 'f q'
i" =147, u =u? UuP, gr(n):{g(n) irneut,

’ d:
gP(n) ifneul\ul an
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if o € T(u?), then f7 = f¢', and if 0 € T(uP) \ T(u?), then
fECfr and  fl(j) =sup{m(j):o Cneul}+1 fori¥ <j< i

Note that if € u? \ u?', then for some o < 7 we have nfa ¢ N (so nla ¢ T(u?)).
Hence we may easily verify that r = (i",u", f7,¢") € Q and clearly r is stronger
than ¢’. To check that it is also stronger than p it is enough to note that:

if n € u? Nu?, then (n € u~® and hence) g7 () = ¢°'~®) () = ¢?(n), and

if o € T(u?) NT(u?), then (o € T(u'~®) and hence) f2 = f,le(p) C f9.
3) Note that if cli(p) < p/, then

(WP N N)U{n,:0 € T(w’) NN} Cu? NN,
so checking the conditions for cly (p) < cly(p') is pretty straightforward. O

Claim 6.5.2. Suppose that a sequence (pc : ¢ < ¢*) C Q is increasing, (* < K is
a limit ordinal, and Cl}(pg) = pcy1 for all even ¢ < (*. Let p* be the least upper
bound of (pc : ¢ < (*). Then cly(p*) is the least upper bound of (cly(pc) : ¢ < ¢*).

Proof of the Claim. It follows from Claim 6.5.1(3) that cly(pc) < cly(p*) (for ¢ <
¢*). To show that cly(p*) is actually the least upper bound it is enough to note
that

PN @PT) = 7 = sup{#¢ : ( < (*} = sup{icm(pC) (¢ < ('Y
and

uw?" NN =J{uPst NN : ¢ < ¢* & ¢ even} = J{u~vPo) : ¢ < ¢* & ¢ even},
{(o:0 € T(WP )NN}={ny:0 € T(wP)NN & ¢ < ¢} CU{uv®P): ¢ < ¢+,

so uN ) =" AN = [J{un P : ¢ < ¢*). O

Now we may describe a strategy st for Her in the game 0™ (N, 6,Q). Suppose
that i < 6 is even and (g;,p;) is His move at this stage of the play (so ¢; € N NP,
¢; < p; € P). Then st instructs Her to play ¢;11 = cly(p:) and pi1 = clf(p;). Tt
follows from Claim 6.5.1(1) that (g;+1,pi+1) is a legal move. It follows from Claims
6.5.2 and 6.5.1(2) that the strategy st is a winning one.

Thus we have shown that Q is weakly (0, ¢, x)-manageable (remember 6.3(1)).
The rest follows from Propositions 6.3 and 6.4. (]

Definition 6.6. We define Q-names f, (forc e |J [] pg) and g by
a<lT <o

Fo “fo=U{ft:pelg & oeT(u)}”,
Fo “g=U{¢? :peTlg}”.

Proposition 6.7. D) kg “g: I pta — & 7.
a<lT
(2) For eacho € |J ][ pp we have kg “ fo:h—> K 7.
a<lT <o

(3) For eachn e [] ta,

a<T

Fo “ (Vi <&)(9(m) <j = m(5) <sup{fyali) @ <7}).
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Proof. For n € [] po and i < & let

a<T

Z,={peQ:necu’} and IT'={pecQ:i<il}.
We claim that these are open dense subsets of Q. First, suppose n ¢ uP, p € Q
and let i" =P, u" = uwP U{n}, g* C ¢", g"(n) =", fL = f? for 0 € T(uP) and
fria@) =1if nla ¢ T(u?), a < 7. Then r € Z, is stronger than p. (Thus the sets
Z, are dense.)

Now suppose that p € P is such that ¥ <i < k. Put " =¢+1,u" =uP, g" = ¢”
and for o € T'(u") let fI D f be such that (Dom(f}) = ¢" and) for j € i" \ i? we
have f7(j) = sup{m,(j) : 7 € u"} + 1. This way we have defined a condition r € Q
stronger than p and such that r € Z%. (Thus the sets Z* are dense.)

Using the above observation and the definition of the order of @Q one easily
justifies (1) and (2). (Note also that, as Q is <k—complete, IFg “ [ pta =

a<T

(11 ua)v ”.) Then (3) follows immediately once you note that

a<lT
plFeg" Co& fiCfe”,
(for o € T(uP), p € Q); remember Definition 6.2(1)(c). O

7. THE MODELS

Theorem 7.1. Assume that
(a) k=21,
(b) p is a cardinal such that cf(u) < k < p < pf) = 2%
(c) there is an increasing sequence i = (fqo = o < cf(u)) of regular cardinals
such that

(Vo < cf (1)) (5 < pa < ()™ < prag1)  and  p=sup{pa : a < cf(p)}.
Then there is a forcing notion P such that:

(i) P has a dense subset of size 2%,
(ii) P is (0,¢, k)-manageable for all cardinals 0,1 satisfying cf(0) =0 < k <1 =
L<n}
(111> “_lP « sz(l‘) S U 777
(iv) if cov(M,, ) > p, then lFp © oct) = < (cov(MK,K))V <cov(My ) 7.

Proof. Assume £, i, i = (o, : o < cf(p)) are as in the assumptions (a)—(c). Note

that then also [] pa = 2" (by Tarski’s theorem).
a<ct(p)

The forcing notion P is built as the limit of a <x-support iteration Q = (Pe, Qg :
¢ < k™). The names Q¢ are defined by induction on £ < s so that
(o) P¢ has a dense subset of size 27,
and for all cardinals 6, satisfying cf(0) =0 < k <1 = 1<,
(8) the forcing notion P is (6, ¢, k)-manageable and
(7) IFp, “ Qg is (0,1, k)-manageable ”.
So suppose that P¢ is already defined (and clauses («), (8) hold). Then P is <x—
complete kt—cc, and hence the properties of %, and ji stated in (a)—(c) hold in
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VPe. Take a P¢-name 7r¢ such that

IFp, e - H fo — "k is a bijection 7,
a<cf(p)
and let Q¢ be a P¢-name for the forcing notion Q(7¢, fi, £). Then clause () holds
(remember Theorem 6.5).
It follows from Proposition 6.3(1) that the demand («) is preserved at successor
stages and it is preserved at limits < x* by the support we use. By Theorem 5.11,
the clause () holds for each P¢ (£ < k). So our P = P+ satisfies (1)+(ii).

For ¢ < ktlet f§ (foroc e |J I ps) and ¢¢ be P¢+1—names for functions
a<cf(p) f<a
added by Q(7¢, fi, &) (see Definition 6.6). Then the family

F={fS:¢<nt&oe |J []ns
a<cf(p) B<a
is of size p. Since P is .H+*CC, for each P-name h for a member of ®x there are
¢ < kT and a Pe—name h* such that I-p “ h = h* 7. Thus using Proposition 6.7(3)
we get
e (37" < w)3F € Peguy+ (F))(V5 < 8)(G* <5 = h(j) <sup{f(j): f € F}) .

Now we easily conclude that demand (iii) holds.
To show (iv) let us assume cov(M,, ,;) > p. The forcing notion P is (g, K, x)—
manageable, so by Corollary 5.10 and Proposition 4.5 we have

Fp “p < (COV(M,{’,{))V <cov(M, ) <0, .
By (iii) we know IFp “ o) < 117 but as for each o < cf (u):
Fp < (1) < pagr <p <07,
we immediately get that IFp “ et u” (remember 0, < (Dcnf(”))"f(")). O

Corollary 7.2. Assume GCH. Then there a k—complete Kt —cc forcing notion P*
such that

lFpe “0 = 0N° = kT and cov(M, ) = 2" = gt 7,

Proof. Let Py = C, +(w+1) ,, be the forcing adding £ T+ many Cohen functions in
Rk (with <s-support). Note that
+w

2

lFp, “ K, p =~k and i = (k™™ : n < w) are as in Theorem 7.1(a)—(c)

Therefore we have a Py-name P for a forcing notion satisfying 7.1(1)—(iv). (Note
that IFp, “cov(M, ) = k7@ ” 5o the assumption of 7.1(iv) holds.) Let P* =
Py« P. O

Note that Theorem 0.1 follows from Corollary 7.2, Theorem 1.12, and the fact
that cov(M,, ) < cof (NS,).
Theorem 7.3. Assume that (a)—(c) of Theorem 7.1 hold and
(d) v is a regular cardinal such that p < v < 2%,
Then there is a forcing notion P, satisfying (i)+(ii) of Theorem 7.1 and
(i)} Ikp, “0T = v for every cardinal T satisfying cf(p) <1 <k 7,
(iv)~ IFp, “ (cov(M, )Y < cov(M, ) .

v
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Proof. The forcing notion P, is the limit of <x-support iteration Q = (P, Qg €<
v), where Qg are defined as in the proof of Theorem 7.1 (so the only difference is the
length of the iteration). As there, P, satisfies (i)+(ii) and IFp, “ 92" < 1 7. Since
cov(My ) > « and P, is (N, %, k)—manageable, we get (iv)~ (by Corollary 5.10).
To show that (i)} holds, suppose that F is a P, name for a family of functions
in ®r of size < v. Then F is essentially a Pe—name for some & < v. Since Pgy,
)V

adds a subset of x which is Cohen over V', is not a dominating family in

(FKk)V™, and hence for any T < &
kg, “ F is not 7-dominating ”
(remember that P, is <x—complete). O
Now, Theorem 0.2 follows from Theorem 1.12 and the following corollary.

Corollary 7.4. It is consistent, relative to the existence of a cardinal v such that
o(v) = vt that 0, = Nyp1 and cov(My, x,) = Ryto.

Proof. Gitik and Woodin (see Gitik [Git89] also Gitik and Merimovich [GM97])

constructed a model of “ 2% < R, for every n < w, 2% = R; and 2% = R, 5 ”
from o(v) = vT. Add R, 2 Cohen subsets of 8; (with countable support) to that
model and then apply Theorem 7.3 (with k =8y, p =N, and v =R, 41). O

Theorem 7.5. Assume that
(a) k=cf(k) =2, n<w
(b) wo, 1, - -, tn are cardinals such that
fo > 1 > .. > >k and  cf(pg) < cf(pr) < ... <cf(pn) <&,

(¢) (pe)fHe) = 2% for £ =0,...,n,
(d) for £ =0,...,n, there is an increasing sequence ji* = (u’, : o < cf(pg)) of
reqular cardinals such that
(Vo < ef () (s < & = (uE)50))  and  pp = sup{ut : @ < c(p)}.
(e) cov(My ) = 2°.
Then there is a forcing notion P such that

(i) P has a dense subset of size 2",

(ii) P s (0, ¢, k)—manageable for all cardinals 0,1 satisfying cf(0) =0 <k <1 =
L<)<,

(iii) IFp “ o) =y for £=0,...,n and cov(M, ) =27 7.
Proof. Let Ay, ..., A, be a partition of kT into sets of size ™. The forcing notion

P is the limit of a <k-support iteration Q = (IPE,Qg : &€ < k1) defined like in the
proof of Theorem 7.1, but

o if £ € Ay, then 7¢ is a P¢—name for a bijection from [] pé, onto Mk, and
a<Ty
@E is Q(’/’.Tg, ﬂea KJ)'
We argue that P has the required properties similarly as in Theorem 7.1. O

Remark 7.6. Of course the assumption (e) in Theorem 7.5 is not very important:
we may start with adding 2 many Cohen subsets of k.
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Corollary 7.7. It is consistent, relative to the existence of a strong cardinal, that
a§; = NWU Dgg = Nw1+w and COV(MN27N2) = Nw1+w+1'

Proof. As was pointed out to us by Moti Gitik, by work of Magidor [Mag77],
Merimovich [Mer03], and Segal [Seg96], it is consistent relative to a strong cardinal
that

(a) 2% =Ry, N¥0 =R, , and
(b) for every o < wy,

N Nator1
Rohwt1 = Nagwtr  and  20etedt =R 4,

and
(C) Ngi = NNO = Nw1+w+1~

w1+w
After adding N, +.,+1 Cohen subsets of Ry (with <Xy support) to a model of (a)—
(c) we will get a model in which the assumptions of Theorem 7.5 are satisfied for
K:N27n:27 /J'():Nw1+wa ,ulzNwl' U
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