ON LONG EF-EQUIVALENCE IN NON ISOMORPHIC MODELS SH836

SAHARON SHELAH

Abstract

There has been a great deal of interest in constructing models which are non-isomorphic, of cardinality λ, but are equivalent under the Ehrefeuch-Fraissé game of length α, even for every $\alpha<\lambda$. So under G.C.H. particularly for λ regular we know a lot. We deal here with constructions of such pairs of models proven in ZFC, and get their existence under mild conditions.

The author would like to thank the ISF for partially supporting this research. First typed: 2 Sept 2003 and last revised in May 25, 2004. Publication 836.

0 . Introduction

There has been much work on constructing pairs of $\mathrm{EF}_{\alpha, \mu}$-equivalent nonisomorphic models of the same cardinality.

In Summer of 2003, Vaanenen has asked me whether we can provably in ZFC construct a pair of non-isomorphic models of cardinality \aleph_{1} which are $E F_{\alpha}$-equivalent even for α like ω^{2}. We try to shed light on the problem for general cardinals. We construct such models for $\lambda=\operatorname{cf}(\lambda)=\lambda^{\aleph_{0}}$ for every $\alpha<\lambda$ simultaneously and then for singular $\lambda=\lambda^{\aleph_{0}}$. In subsequent work [HS07] we shall investigate further: weaken the assumption " $\lambda=\lambda^{\aleph_{0}}$ " (e.g., $\lambda=\operatorname{cf}(\lambda)>\beth_{\omega}$) and we generalize the results for trees with no λ branches and investigate the case of models of a first order complete T (mainly strongly dependent). We thank Chanoch Havlin and the referee for detecting some inaccuracies.

Definition 0.1. (1) We say that M_{1}, M_{2} are EF_{α}-equivalent if M_{1}, M_{2} are models (with same vocabulary) such that the isomorphism player has a winning strategy in the game $\partial_{1}^{\alpha}\left(M_{1}, M_{2}\right)$ defined below.
(1A) Replacing α by $<\alpha$ means: for every $\beta<\alpha$; similarly below.
(2) We say that M_{1}, M_{2} are $E F_{\alpha, \mu^{-}}$equivalent when M_{2}, M_{2} are models with the same vocabulary such that the isomorphism player has a winning strategy in the game $\partial_{\mu}^{\alpha}\left(M_{1}, M_{2}\right)$ defined below.
(3) For $M_{1}, M_{2}, \alpha, \mu$ as above and partial isomorphism f from M_{1} into M_{2} we define the game $\partial_{\mu}^{\alpha}\left(f, M_{1}, M_{2}\right)$ between the player ISO and AIS as follows:
(a) the play lasts α moves
(b) after β moves a partial isomorphism f_{β} from M_{1} into M_{2} is chosen increasing continuous with β
(c) in the $\beta+1$-th move, the player AIS chooses $A_{\beta, 1} \subseteq M_{1}, A_{\beta, 2} \subseteq$ M_{2} such that $\left|A_{\beta, 1}\right|+\left|A_{\beta, 2}\right|<1+\mu$ and then the player ISO chooses $f_{\beta+1} \supseteq f_{\beta}$ such that

$$
A_{\beta, 1} \subseteq \operatorname{Dom}\left(f_{\beta+1}\right) \text { and } A_{\beta, 2} \subseteq \operatorname{Rang}\left(f_{\beta+1}\right)
$$

(d) if $\beta=0$, ISO chooses $f_{0}=f$; if β is a limit ordinal ISO chooses $f_{\beta}=\cup\left\{f_{\gamma}: \gamma<\beta\right\}$.
The ISO player loses if he had no legal move.
(4) If $f=\emptyset$ we may write $\partial_{\mu}^{\alpha}\left(M_{1}, M_{2}\right)$. If μ is 1 we may omit it. We may write $\leq \mu$ instead of μ^{+}. The player ISO may be restricted to choose $f_{\beta+1}$ such that $(\forall a)\left(a \in \operatorname{Dom}\left(f_{\beta+1}\right) \wedge a \notin \operatorname{Dom}\left(f_{\beta}\right) \rightarrow a \in\right.$ $\left.A_{\beta, 1} \vee f_{\beta+1}(a) \in A_{\beta, 2}\right)$

1. The Case of Regular $\lambda=\lambda^{\aleph_{0}}$

Definition 1.1. (1) We say that \mathfrak{x} is a λ-parameter if \mathfrak{x} consists of
(a) a cardinal λ and ordinal $\alpha^{*} \leq \lambda$
(b) a set I, and a set $S \subseteq I \times I$ (where we shall have compatibility demand)
(c) a function $\mathbf{u}: I \rightarrow \mathcal{P}(\lambda)$; we let $\mathbf{u}_{s}=\mathbf{u}(s)$ for $s \in I$
(d) a set J and a function $\mathbf{s}: J \rightarrow I$, we let $\mathbf{s}_{t}=\mathbf{s}(t)$ for $t \in J$ and for $s \in I$ we let $J_{s}=\left\{t \in J: \mathrm{s}_{t}=s\right\}$
(e) a set $T \subseteq J \times J$ such that $\left(t_{1}, t_{2}\right) \in T \Rightarrow\left(\mathbf{s}_{t_{1}}, \mathbf{s}_{t_{2}}\right) \in S$
(1A) We say \mathfrak{x} is a full λ - parameter if in addition it consists of:
(f) a function \mathbf{g} with domain J such that $\mathbf{g}_{t}=\mathbf{g}(t)$ is a nondecreasing function from $\mathbf{u}_{\mathbf{s}(t)}$ to some $\alpha<\alpha^{*}$
(g) a function \mathbf{h} with domain J such that $\mathbf{h}_{t}=\mathbf{h}(t)$ is a nondecreasing function from $\mathbf{u}_{\mathbf{s}(t)}$ to λ such that
(h) if $t_{1}, t_{2} \in J$ and $\mathbf{s}_{t_{1}}=s=\mathbf{s}_{t_{2}}, \mathbf{g}_{t_{1}}=g=\mathbf{g}_{t_{2}}$ and $\mathbf{h}_{t_{1}}=h=$ $\mathbf{h}_{t_{2}}, \alpha^{t_{1}}=\alpha=\alpha^{t_{2}}$ then $t_{1}=t_{2}$ hence we write $t=t_{s, g, h}^{\alpha}=$ $t^{\alpha}(s, g, h)$.
(2) We may write $\alpha^{*}=\alpha_{\mathfrak{x}}^{*}, \lambda=\lambda_{\mathfrak{x}}, I=I_{\mathfrak{x}}, J=J_{\mathfrak{x}}, J_{s}=J_{s}^{\mathfrak{l}}, t^{\alpha}(s, g, h)=$ $t^{\alpha, \mathfrak{x}}(s, g, h)$, etc. Many times we omit \mathfrak{x} when clear from the context.

Definition 1.2. Let \mathfrak{x} be a λ-parameter.
(1) For $s \in I_{\mathfrak{x}}$, let $\mathbb{G}_{s}^{\mathfrak{r}}$ be the group ${ }^{1}$ generated freely by $\left\{x_{t}: t \in J_{s}\right\}$.
(2) For $\left(s_{1}, s_{2}\right) \in S_{\mathfrak{x}}$ let $\mathbb{G}_{s_{1}, s_{2}}=G_{s_{1}, s_{2}}^{\mathfrak{x}}$ by the subgroup of $\mathbb{G}_{s_{1}}^{\mathfrak{x}} \times \mathbb{G}_{s_{2}}^{\mathfrak{x}}$ generated by

$$
\left\{\left(x_{t_{1}}, x_{t_{2}}\right):\left(t_{1}, t_{2}\right) \in T_{\mathfrak{x}} \text { and } t_{1} \in J_{s_{1}}^{\mathfrak{v}}, t_{2} \in J_{s_{2}}^{\mathfrak{r}}\right\}
$$

(3) We say \mathfrak{x} is (λ, θ)-parameter if $s \in I_{\mathfrak{x}} \Rightarrow\left|\mathbf{u}_{s}\right|<\theta$.

Remark 1.3. (1) We may use S a set of n-tuples from I (or $(<\omega)$-tuples) then we have to change Definitions 1.2(2) accordingly.

Definition 1.4. For a λ-parameter \mathfrak{x} we define a model $M=M_{\mathfrak{x}}$ as follows (where below $I=I_{\mathfrak{r}}$, etc.).
(A) its vocabulary τ consist of
(α) P_{s}, a unary predicate, for $s \in I_{\mathfrak{r}}$
(β) $Q_{s_{1}, s_{2}}$, a binary predicate for $\left(s_{1}, s_{2}\right) \in S_{\mathfrak{x}}$
$(\gamma) F_{s, a}$, a unary function for $s \in I_{\mathfrak{x}}, a \in \mathbb{G}_{s}^{\mathfrak{r}}$
(B) the universe of M is $\left\{(s, x): s \in I_{\mathfrak{x}}, x \in \mathbb{G}_{s}^{\mathfrak{r}}\right\}$
(C) for $s \in I_{\mathfrak{x}}$ let $P_{s}^{M}=\left\{(s, x): x \in \mathbb{G}_{s}^{\mathfrak{r}}\right\}$
(D) $\left.Q_{s_{1}, s_{2}}^{M}=\left\{\left(\left(s_{1}, x_{1}\right),\left(s_{2}, x_{2}\right)\right):\left(x_{1}, x_{2}\right) \in \mathbb{G}_{s_{1}, s_{2}}^{\mathfrak{r}}\right)\right\}$ for $\left(s_{1}, s_{2}\right) \in S_{\mathfrak{v}}$
(E) if $s \in I_{\mathfrak{x}}$ and $a \in \mathbb{G}_{s}^{\mathfrak{r}}$ then $F_{s, a}^{M}$ is the unary function from P_{s}^{M} to P_{s}^{M} defined by $F_{s, a}^{M}(y)=a y$, multiplication in $\mathbb{G}_{s}^{\mathfrak{r}}$ (for $y \in M \backslash P_{s}^{M}$ we can let $F_{s, a}^{M}(y)$ be y or undefined).

Remark 1.5. We can expand $M_{\mathfrak{x}}$ by the following linear order: let $<_{\mathfrak{x}}$ linearly order I and for each $s \in I_{\mathfrak{y}}$ let $<_{s}^{*}$ be a linear order of $\mathbb{G}_{s}^{\mathfrak{r}}$ such that $\left(G_{s}^{\mathfrak{r}}, \ll_{s}^{\mathfrak{r}}\right)$

[^0]is an ordered group, exists as $? ? F_{s}^{\mathfrak{v}}$ is free and let $<_{M_{\mathfrak{r}}}=\left\{\left(\left(s_{1}, \lambda_{1}\right)\right),\left(s_{2}, x_{2}\right)\right.$: $\left(s_{\ell}, x_{\ell}\right) \in M_{\mathfrak{r}}$ for $\ell=1,2$ and $s_{1}<_{\mathfrak{x}} s_{2}$ or $s_{1}=s_{2} \wedge x_{1}<_{s}^{\mathfrak{r}} x_{2}$
Definition 1.6. (1) For \mathfrak{x} a λ-parameter and for $I^{\prime} \subseteq I_{\mathfrak{x}}$ let $M_{I^{\prime}}^{\mathfrak{r}}=$ $M_{\mathfrak{y}} \upharpoonright \cup\left\{P_{s}^{M_{\mathfrak{z}}}: s \in I^{\prime}\right\}$ and let $I_{\gamma}=I_{\gamma}^{\mathfrak{r}}=\left\{s \in I_{\mathfrak{x}}: \sup \left(\mathbf{u}_{s}\right)<\gamma\right\}$.
(2) Assume \mathfrak{x} is a full λ - parameter and $\beta<\lambda$; for $\alpha<\alpha_{\mathfrak{x}}^{*}$ we let $\mathcal{G}_{\alpha, \beta}^{\mathfrak{x}}$ be the set of $g: \beta \rightarrow \alpha$ which are non-decreasing; then for $g \in \mathcal{G}_{\alpha, \beta}^{\mathfrak{r}, \beta}$
(a) we define $h=h_{g}: \beta \rightarrow \lambda$ as follows: $h(\gamma)=\operatorname{Min}\left\{\beta^{\prime} \leq \beta\right.$: if $\beta^{\prime}<\beta$ then $\left.g\left(\beta^{\prime}\right)>g(\gamma)\right\}$
(b) we let $I_{g}=I_{g}^{\mathfrak{k}}=\left\{s \in I: \mathbf{u}_{s} \subseteq \beta\right.$ and $t_{s, g \mid \mathbf{u}_{s}, h_{g} \backslash \mathbf{u}_{s}}^{\alpha}$ is well defined $\}$
(c) we define $\bar{c}_{g}^{\alpha}=\left\langle c_{g, s}^{\alpha}: s \in I_{g}^{\mathfrak{v}}\right\rangle$ by $c_{g, s}^{\alpha}=x_{t_{g, s}}^{\alpha}$ where $t_{g, s}^{\alpha}=$ $t_{s, g}^{\alpha, \boldsymbol{v}} \backslash \mathbf{u}_{s}, h_{g}\left\lceil\mathbf{u}_{s}\right.$.
(3) Let $\mathcal{G}_{\alpha}^{\mathfrak{r}}=\cup\left\{\mathcal{G}_{\alpha, \beta}^{\mathfrak{r}}: \beta<\lambda\right\}$ and $\mathcal{G}_{\mathfrak{r}}=\cup\left\{\mathcal{G}_{\alpha}^{\mathfrak{r}}: \alpha<\alpha^{*}\right\}$.

Definition 1.7. Let \mathfrak{x} be a λ-parameter.
(1) Let $\mathbf{C}_{\mathfrak{x}}=\cup\left\{\mathbf{C}_{I^{\prime}}^{\mathfrak{r}}: I^{\prime} \subseteq I_{\mathfrak{x}}\right\}$ where for $I^{\prime} \subseteq I_{\mathfrak{x}}$ we let $\mathbf{C}_{I^{\prime}}^{\mathfrak{r}}=\{\bar{c}: \bar{c}=$ $\left\langle c_{s}: s \in I^{\prime}\right\rangle$ satisfies $c_{s} \in \mathbb{G}_{s}^{\mathfrak{r}}$ when $s \in I^{\prime}$ and $\left(c_{s_{1}}, c_{s_{2}}\right) \in \mathbb{G}_{s_{1}, s_{2}}$ when $\left(s_{1}, s_{2}\right) \in S_{\mathfrak{x}}$ and $\left.s_{1}, s_{2} \in I^{\prime}\right\}$.
(2) For $\bar{c} \in \mathbf{C}_{I^{\prime}}^{\mathfrak{r}}, I^{\prime} \subseteq I_{\mathfrak{r}}$, let $f_{\bar{c}}^{\mathfrak{q}}$ be the partial function from $M_{\mathfrak{x}}$ into itself defined by $f_{\bar{c}}^{\mathfrak{r}}((s, y))=\left(s, y c_{s}\right)$ for $(s, y) \in P_{s}^{M_{s}}, s \in I^{\prime}$.
(3) $M_{\mathfrak{x}}$ is P_{s}-rigid when for every automorphism f of $M_{\mathfrak{x}}, f \upharpoonright P_{s}^{M_{\mathfrak{x}}}$ is the identity.
Observation 1.8. 1) Let \mathfrak{x} be a full λ-parameter. If $g: \gamma_{2} \rightarrow \alpha$ where $\alpha<\alpha_{\mathfrak{r}}^{*}, \gamma_{2}<\lambda$ and the function g is non-decreasing, $\gamma_{1}<\gamma_{2}$ and $(\forall \gamma<$ $\left.\gamma_{1}\right)\left(g(\gamma)<g\left(\gamma_{1}\right)\right)$ then $I_{g \mid \gamma_{1}} \subseteq I_{g}$ and $h_{g \mid \gamma_{1}} \subseteq h_{g}$ and $\bar{c}_{g \mid \gamma_{1}}^{\alpha}=\bar{c}_{g}^{\alpha} \upharpoonright I_{g \mid \gamma_{1}}$.
2) If $g \in \mathcal{G}_{\mathfrak{x}}^{\alpha}$ in Definition 1.6(3), then $\bar{c}_{g}^{\alpha} \in \mathbf{C}_{I_{g}^{\mathfrak{r}}}^{\mathfrak{r}}$.

Claim 1.9. Assume \mathfrak{x} is a full λ-parameter.

1) For $I^{\prime} \subseteq I_{\mathfrak{x}}$ and $\bar{c} \in \mathbf{C}_{I^{\prime}}^{\mathfrak{x}}, f_{\bar{c}}^{\mathfrak{x}}$ is an automorphism of $M_{I^{\prime}}^{\mathfrak{x}}$ which is the identity iff $s \in I^{\prime} \Rightarrow c_{s}=e_{\mathbb{G}_{s}}$.
2) In (1) for $s \in I^{\prime}, f_{\bar{c}}^{\mathfrak{r}} \upharpoonright P_{s}^{M_{\mathfrak{x}}}$ is not the identity iff $c_{s} \neq e_{\mathbb{G}_{s}}$.
3) If f is an automorphism of $M_{I_{2}}^{\mathfrak{v}}$ then $f \upharpoonright M_{I_{1}}^{\mathfrak{v}}$ is an automorphism of $M_{I_{1}}^{\mathfrak{v}}$ for every $I_{1} \subseteq I_{2} \subseteq I_{\mathfrak{r}}$.
4) If $I^{\prime} \subseteq I_{\mathfrak{x}}$ and f is an automorphism of $M_{I^{\prime}}^{\mathfrak{v}}$, then $f=f_{\bar{c}}^{\mathfrak{l}}$ for some $\left\langle c_{s}: s \in I_{\mathfrak{x}}\right\rangle \in \mathbf{C}_{I^{\prime}}$.
5) If $\bar{c}_{\ell} \in \mathbf{C}_{I_{\ell}}^{\tau}$ for $\ell=1,2$ and $I_{1} \subseteq I_{2}$ and $\bar{c}_{1}=\bar{c}_{2} \upharpoonright I_{1}$ then $f_{\bar{c}_{1}} \subseteq f_{\bar{c}_{2}}$.
6) The cardinality of $M_{\mathfrak{x}}$ is $\left|J_{\mathfrak{x}}\right|+\aleph_{0}$

Proof: Straight, e.g.
4) For $s \in I^{\prime}$ clearly $f\left(\left(s, e_{\mathbb{G}_{s}}\right)\right) \in P_{s}^{M_{\mathfrak{r}}}$ so it has the form $\left(s, c_{s}\right), c_{s} \in \mathbb{G}_{s}$ and let $\bar{c}=\left\langle c_{s}: s \in I^{\prime}\right\rangle$. To check that $\bar{c} \in \mathbf{C}_{I^{\prime}}^{\mathfrak{r}}$ assume $\left(s_{1}, s_{2}\right) \in S_{\mathfrak{r}}$; and we have to check that $\left(c_{s_{1}}, c_{s_{2}}\right) \in \mathbb{G}_{s_{1}, s_{2}}$. This holds as $\left(\left(s_{1}, e_{\mathbb{G}_{s_{1}}}\right),\left(s_{2}, e_{\mathbb{G}_{s_{2}}}\right)\right) \in Q_{s_{1}, s_{2}}^{M_{r}}$ by the choice of $Q_{s_{1}, s_{2}}^{M_{\mathrm{r}}}$ hence we have $\left(\left(s_{1}, c_{s_{1}}\right),\left(s_{2}, c_{s_{2}}\right)\right)=\left(f\left(s_{1}, e_{\mathbb{G}_{s_{1}}}\right), f\left(s_{2}, e_{\mathbb{G}_{s_{2}}}\right)\right) \in$ $Q_{s_{1}, s_{2}}^{M_{\mathrm{r}}}$ hence $\left(c_{s_{1}}, c_{s_{2}}\right) \in \mathbb{G}_{s_{1}, s_{2}}$.

Claim 1.10. Let \mathfrak{x} be a full λ-parameter $s \in I_{\mathfrak{x}}$ and $c_{1}, c_{2} \in P_{s}^{M}, c^{*} \in \mathbb{G}_{s}$ and $F_{s, c^{*}}^{M_{\mathfrak{y}}}\left(c_{1}\right)=c_{2}$. A sufficient condition for " $\left(M_{\mathfrak{x}}, c_{1}\right),\left(M_{\mathfrak{y}}, c_{2}\right)$ are $\mathrm{EF}_{\alpha, \mu^{-}}$ equivalent" where $\alpha \leq \alpha_{\mathfrak{x}}^{*}$, is the existence of $R, \bar{I}, \overline{\mathbf{c}}$ such that:
\circledast (a) R is a partial order,
(b) $\bar{I}=\left\langle I_{r}: r \in R\right\rangle$ such that $I_{r} \subseteq I_{\mathfrak{x}}$ and $r_{2} \leq_{R} r_{2} \Rightarrow I_{r_{1}} \subseteq I_{r_{2}}$
(c) R is the disjoint union of $\left\langle R_{\beta}: \beta<\alpha\right\rangle, R_{0} \neq \emptyset$
(d) $\overline{\mathbf{c}}=\left\langle\bar{c}^{r}: r \in R\right\rangle$ where $\bar{c}^{r} \in \mathbf{C}_{I_{r}}$ and $r_{1} \leq r_{2}=\bar{c}^{r_{1}}=\bar{c}^{r_{2}} \upharpoonright I_{r_{1}}$ and $c_{s}^{r}=c^{*}$ so $s \in \cap\left\{I_{r}: r \in R\right\}$
(e) if $\left\langle r_{\beta}: \beta<\beta^{*}\right\rangle$ is \leq_{R}-increasing, $\beta<\beta^{*} \Rightarrow r_{\beta} \in R_{\beta}$ and $\beta^{*}<\alpha$ then it has an $\leq_{R^{-} \text {-ub from } R_{\beta^{*}}}$
(f) if $r_{1} \in R_{\beta}, \beta+1<\alpha$ and $I^{\prime} \subseteq I,\left|I^{\prime}\right|<\mu$ then $\left(\exists r_{2}\right)\left(r_{1} \leq r_{2} \in\right.$ $\left.R_{\beta+1} \wedge I^{\prime} \subseteq I_{r_{2}}\right)$.

Proof: Easy. Using 1.9(1),(5).
Claim 1.11. (1) Let \mathfrak{x} be a λ-parameter and $I^{\prime} \subseteq I_{\mathfrak{x}}$. A necessary and sufficient condition for " $M_{I^{\prime}}^{\mathfrak{r}}$ is P_{s}-rigid" is: \circledast_{1} there is no $\bar{c} \in \mathbf{C}_{I^{\prime}}^{\mathfrak{r}}$ with $c_{s} \neq e_{\mathbb{G}_{s}}$.
(2) Let \mathfrak{x} be a full λ-parameter and assume that $s(*) \in I_{\mathfrak{x}}, \alpha<\alpha_{\mathfrak{x}}^{*}, \alpha \geq \omega$ for notational simplicity and $t^{*} \in J_{s(*)}^{\mathfrak{r}}$. The models $M_{1}=\left(M,\left(s, e_{\mathbb{G}_{s}}\right)\right), M_{2}=$ $\left(M,\left(s, x_{t^{*}}\right)\right)$ are $\mathrm{EF}_{\alpha, \lambda}$-equivalent when:
$\circledast_{2, \alpha} \quad$ (i) λ is regular, $s \in I_{\mathfrak{r}} \Rightarrow\left|\mathbf{u}_{s}^{\mathfrak{x}}\right|<\lambda$
(ii) if $s \in I_{\mathfrak{x}}$ and $g \in \mathcal{G}_{\mathfrak{x}}$ and $\mathbf{u}_{s}^{\mathfrak{r}} \subseteq \operatorname{Dom}(g)$ then $t_{s, g\left\lceil\mathbf{u}_{s}, h_{g} \backslash \mathbf{u}_{s}\right.}^{\alpha, \mathfrak{r}}$ is well defined
(iii) if $\left(s_{1}, s_{2}\right) \in S_{\mathfrak{x}}$ and $t_{1}=t_{s_{1}, g_{1}, h_{1}}^{\alpha}, t_{2}=t_{s_{2}, g_{2}, h_{2}}^{\alpha}$ are well defined then $\left(t_{1}, t_{2}\right) \in T_{\mathfrak{x}}$ when for some $g \in \mathcal{\mathcal { G } _ { \mathfrak { x } }}$ we have $g_{t_{1}} \cup g_{t_{2}} \subseteq g$ and $h_{1} \cup h_{2} \subseteq h_{g}$
(iv) $t^{*}=t_{s(*), g, h_{g}}^{\alpha, \mathfrak{r}}$ where $g: \mathbf{u}_{s(*)} \rightarrow\{0\}$ and h_{g} is constantly $\gamma^{*}=\cup\left\{\gamma+1: \gamma \in \mathbf{u}_{s(*)}\right\}$.

Proof
(1) Toward contradiction assume that f is an automorphism of $M_{I^{\prime}}^{\mathfrak{x}}$, such that $f \upharpoonright P_{s}^{M_{v}}$ is not the identity. By 1.9(4) for some $\bar{c} \in \mathbf{C}_{I^{\prime}}^{\mathfrak{r}}$ we have $f=f_{\bar{c}}$. So $f_{\bar{c}} \upharpoonright P_{s}^{M_{s}}=f \upharpoonright P_{s}^{M_{s}} \neq \mathrm{id}$ hence by 1.9(1) we have $c_{s} \neq e_{\mathbb{G}_{s}}$, contradicting the assumption \circledast_{1}.
(2) We apply 1.10. For every $i<\alpha$ and non-decreasing function $g \in$ $\mathcal{G}_{\alpha}^{\mathfrak{t}}$ from some ordinal $\gamma=\gamma_{g}$ into i we define $\bar{c}_{g}^{\alpha}=\left\langle c_{g, s}^{\alpha}: s \in\right.$ $\left.I_{g_{p}}\right\rangle, c_{g, s}^{\alpha}=\left(s, x_{t_{g, s}^{\alpha}}\right), t_{g, s}^{\alpha}=t_{s, g\left\lceil\mathbf{u}_{s}, h_{g} \mid \mathbf{u}_{s}\right.}^{\alpha}$. Let $R_{i}=\{g: g$ a nondecreasing function from some $\gamma<\lambda$ to $1+i$ such that $\gamma^{*} \leq \gamma, g \upharpoonright \gamma^{*}$ is constantly zero, $\left.\gamma^{*}<\gamma \Rightarrow g\left(\gamma^{*}\right)=1\right\}$ and let $R=\cup\left\{R_{i}: i<\alpha\right\}$ ordered by inclusion. Let $\bar{I}=\left\langle I_{g}: g \in R\right\rangle$ and $\overline{\mathbf{c}}=\left\langle\bar{c}_{g}^{\alpha}: g \in R\right\rangle$. It is easy to check that $(R, \bar{I}, \overline{\mathbf{c}})$ is as required.

Claim 1.12. (1) Assume $\alpha^{*} \leq \lambda=\operatorname{cf}(\lambda)=\lambda^{\aleph_{0}}$. Then for some full $\left(\lambda, \aleph_{1}\right)$-parameter \mathfrak{x} we have $|I|=\lambda=|J|, \alpha_{\mathfrak{r}}^{*}=\alpha^{*}$ and condition \circledast_{1} of 1.11(1) holds and for every $s(*) \in I_{\mathfrak{r}} \backslash\{\emptyset\}$ condition $\circledast_{2, \alpha}$ of 1.11(2) holds whenever $\alpha<\alpha^{*}$.
(2) Moreover, if $s \in I_{\mathfrak{r}} \backslash\{\emptyset\}$ then for some $c_{1} \neq c_{2} \in P_{s}^{M_{\mathfrak{v}}}$ and $\left(M, c_{1}\right),\left(M, c_{2}\right)$ are $\mathrm{EF}_{\alpha, \lambda}$-equivalent for every $\alpha<\alpha_{\mathfrak{x}}^{*}$ but not $\mathrm{EF}_{\alpha_{\mathfrak{s}}^{*}, \lambda \text {-equivalent. }}$
Claim 1.12(1) clearly implies
Conclusion 1.13. (1) If $\lambda=\operatorname{cf}(\lambda)=\lambda^{\aleph_{0}}, \alpha^{*} \leq \lambda$ then for some model M of cardinality λ we have:
(a) M has no non-trivial automorphism
(b) for every $\alpha<\lambda$ for some $c_{1} \neq c_{2} \in M$, the model $\left(M, c_{1}\right),\left(M, c_{2}\right)$ are EF_{α}-equivalent and even $\mathrm{EF}_{\alpha, \lambda}$-equivalent.
(2) We can strengthen clause (b) to: for some $c_{1} \neq c_{2}$ for every $\alpha<\lambda$ the models $\left(M, c_{1}\right),\left(M, c_{2}\right)$ are $\mathrm{EF}_{\alpha, \lambda}$-equivalent.
Proof of 1.12: 1) Assume $\alpha_{*}>\omega$ for notational simplicity. We define \mathfrak{x} by ($\lambda_{\mathfrak{x}}=\lambda$ and):
\boxtimes (a) $\quad(\alpha) \quad I=\left\{u: u \in[\lambda]^{\leq \aleph_{0}}\right\}$
(β) the function \mathbf{u} is the identity on I
(γ) $S=\left\{\left(u_{1}, u_{2}\right): u_{1} \subseteq u_{2} \in I\right\}$
(δ) $\alpha_{\mathfrak{r}}^{*}=\alpha^{*}$
(b) $\quad(\alpha) \quad J$ is the set of quadruple (u, α, g, h) satisfying
(i) $u \in I, \alpha<\alpha^{*}$
(ii) $\quad h$ is a non-decreasing function from u to λ
(iii) g is a non-decreasing function from u to α
(iv) if $\beta_{1}, \beta_{2} \in u$ and $g\left(\beta_{1}\right)=g\left(\beta_{2}\right)$ then $h\left(\beta_{1}\right)=h\left(\beta_{2}\right)$
(v) $h(\beta)>\beta$
(β) let $t=\left(u^{t}, \alpha^{t}, g^{t}, h^{t}\right)$ for $t \in J$ so naturally $\mathbf{s}_{t}=u$, $\mathbf{g}_{t}=g^{t}, \mathbf{h}_{t}=h^{t}$
$(\gamma) \quad T=\left\{\left(t_{1}, t_{2}\right) \in J \times J: \alpha^{t_{1}}=\alpha^{t_{2}}, u^{t_{1}} \subseteq u^{t_{2}}, h^{t_{1}} \subseteq h^{t_{2}}\right.$ and $\left.g^{t_{1}} \subseteq g^{t_{2}}\right\}$.
Now
$(*)_{0} \mathfrak{x}$ is a full $\left(\lambda, \aleph_{1}\right)$-parameter
[Why? Just read Definition 1.1 and 1.2(3).]
$(*)_{1}$ for any $s(*) \in I \backslash\{\emptyset\}, \mathfrak{x}$ satisfies the demands for $\circledast_{2, \alpha}(i),(i i),(i i i),(i v)$
from 1.11(2) for every $\alpha<\alpha^{*}$
[Why? just check]
$(*)_{2}$ if $u_{1} \subseteq u_{2} \in I$, we define the function $\pi_{u_{1}, u_{2}}: J_{u_{2}} \rightarrow J_{u_{1}}$ by $\pi_{u_{1}, u_{2}}(t)=\left(u_{1}, \alpha^{t}, g^{t} \upharpoonright u_{1}, h^{t} \upharpoonright u_{1}\right)$ for $t \in J_{u_{2}}$,
[Why is $\pi_{u_{1}, u_{2}}$ a function from $J_{u_{2}}$ into $J_{u_{1}}$? Just check]
$(*)_{3}$ for $u_{1} \subseteq u_{2}$ we have
($\alpha) ~ T \cap\left(J_{u_{1}} \times J_{u_{2}}\right)=\left\{\left(\pi_{u_{1}, u_{2}}\left(t_{2}\right), t_{2}\right): t_{2} \in J_{u_{2}}\right\}$ hence
$(\beta) \mathbb{G}_{u_{1}, u_{2}}=\left\{\left(\hat{\pi}_{u_{1}, u_{2}}\left(c_{2}\right), c_{2}\right): c_{2} \in \mathbb{G}_{u_{2}}\right\}$ where $\hat{\pi}_{u_{1}, u_{2}} \in \operatorname{Hom}\left(\mathbb{G}_{u_{2}}^{\mathfrak{r}}, \mathbb{G}_{u_{1}}^{\mathfrak{r}}\right)$ is the unique homomorphism from $\mathbb{G}_{u_{2}}^{\mathfrak{x}}$ into $\mathbb{G}_{u_{1}}^{\mathfrak{x}}$ mapping $x_{t_{2}}$
to $x_{t_{1}}$ whenever $\pi_{u_{1}, u_{2}}\left(t_{2}\right)=t_{1}$
[Why? Check.]
$(*)_{4}$ if $u_{1} \cup u_{2} \subseteq u_{3} \in I, t_{3} \in J_{u_{3}}$ and $t_{\ell}=\pi_{u_{\ell}, u_{3}}\left(t_{3}\right)$ for $\ell=1,2$ then $\mathbf{g}_{t_{1}}, \mathbf{g}_{t_{2}}$ are compatible functions as well as $\mathbf{h}_{t_{1}}, \mathbf{h}_{t_{2}}$ and $\alpha^{t_{1}}=\alpha^{t_{2}}$ moreover $\mathbf{g}_{t_{1}} \cup \mathbf{g}_{t_{2}}$ is non-decreasing, $\mathbf{h}_{t_{1}} \cup \mathbf{h}_{t_{2}}$ is non-decreasing [Why? just check]
$(*)_{5}$ clause $*_{1}$ of $1.11(1)$ holds for $I^{\prime}=I, s(*) \in I \backslash\{\emptyset\}$
[Why? Assume $\bar{c} \in C_{I}^{\mathfrak{x}}$ is such that $c_{s(*)} \neq e_{\mathbb{G}_{s(*)}}$. For each $u \in I, c_{u}$ is a word in the generators $\left\{x_{t}: t \in J_{u}\right\}$ of \mathbb{G}_{u} and let $\mathbf{n}(u)$ be the length of this word and $\mathbf{m}(u)$ the number of generators appearing in it.
Now by $(*)_{3}$ we have $u_{1} \subseteq u_{2} \Rightarrow \mathbf{n}\left(u_{1}\right) \leq \mathbf{n}\left(u_{2}\right) \wedge \mathbf{m}\left(u_{1}\right) \leq \mathbf{m}\left(u_{2}\right)$. As (I, \subseteq) is \aleph_{1}-directed, for some $u_{*} \in I$ we have $u_{*} \subseteq u \in I \Rightarrow \mathbf{n}(u)=n_{*} \wedge \mathbf{m}(u)=m_{*}$ and let $c_{u}=\left(\ldots, x_{t(u, \ell)}^{i(\ell)}, \ldots\right)_{\ell<n_{*}}$ where $i(\ell) \in\{1,-1\}$ and $t(u, \ell) \in J_{u}^{\mathfrak{x}}$ and $t(u, \ell)=t(u, \ell+1) \Rightarrow i(\ell)=i(\ell+1)$. Clearly $u_{*} \subseteq u_{1} \subseteq u_{2} \in I \& \ell<n_{*} \Rightarrow$ $\left.\pi_{u_{1}, u_{2}}\left(t\left(u_{2}, \ell\right)\right)=t\left(u_{1}, \ell\right)\right) \wedge \alpha^{t\left(u_{2}, \ell\right)}=\alpha^{t\left(u_{*}, \ell\right)}$. By our assumption toward contradiction necessarily $n_{*}>0$.

As $\left\{u: u_{*} \subseteq u \in I\right\}$ is directed, by $(*)_{4}$ above, for each $\ell<n_{*}$ any two of the functions $\left\{g^{t(u, \ell)}: u_{*} \subseteq u \in I\right\}$ are compatible so $g_{\ell}=: \cup\left\{g^{t(u, \ell)}\right.$: $u \in I\}$ is a non-decreasing function from $\lambda=\cup\{u: u \in I\}$ to α^{*} and $h_{\ell}=: \cup\left\{h^{t(u, \ell)}: u_{*} \subseteq u \in I\right\}$ is similarly a non-decreasing function from λ to λ. It also follows that for some α_{ℓ}^{*} we have $\alpha_{\ell}^{*}=: \alpha^{t(u, \ell)}$ whenever $u_{*} \subseteq u \in I$ in fact $\alpha_{\ell}^{*}=\alpha^{t\left(u_{*}, \ell\right)}$ is O.K. For each $i \in \operatorname{Rang}\left(g_{\ell}\right) \subseteq \alpha_{\ell}^{*}$ choose $\beta_{\ell, i}<\lambda$ such that $g_{\ell}\left(\beta_{\ell, i}\right)=i$ and let $E=\{\delta<\lambda: \delta$ a limit ordinal $>\sup \left(u_{*}\right)$ such that $i<\alpha_{\ell}^{*} \& \ell<n_{*} \& i \in \operatorname{Rang}\left(g_{\ell}\right) \Rightarrow \beta_{\ell, i}<\delta$ and $\left.\beta<\delta \& \ell<n \Rightarrow h_{\ell}(\beta)<\delta\right\}$, it is a club of λ. Choose u such that $u_{*} \subseteq u$ and $\operatorname{Min}\left(u \backslash u_{*}\right)=\delta^{*} \in E$.

Now what can $\mathbf{g}_{\ell}\left(\operatorname{Min}\left(u \backslash u_{*}\right)\right)$ be?
It has to be i for some $i<\alpha_{\ell}^{*}<\alpha^{*}$ hence $i \in \operatorname{Rang}\left(g_{\ell}\right)$ so for some $u_{1}, u_{*} \subseteq u_{1} \subseteq \delta^{*}$ and $\beta_{\ell, i} \in u_{1}$ so $h_{\ell}\left(\beta_{\ell, i}\right)<\delta^{*}$ hence considering $u \cup u_{1}$ and recalling clause $(\alpha)(v i)$ of (b) from definition of \mathfrak{x} in the beginning of the proof we have $h_{\ell}\left(\beta_{\ell, i}\right)<h_{\ell}\left(\delta^{*}\right)$ hence by (clause $(b)(\alpha)(v)$) we have $i=g_{\ell}\left(\beta_{\ell, i}\right)<g_{\ell}\left(\delta^{*}\right)$, contradiction.]
2) A minor change is needed in the choice of $T^{\mathfrak{x}}$

$$
\begin{aligned}
T^{\mathfrak{x}}=\left\{\left(t_{1}, t_{2}\right):\right. & \left(t_{1}, t_{2}\right) \in J \times J \text { and } u^{t_{1}} \subseteq u^{t_{2}}, h^{t_{1}} \subseteq h^{t_{2}}, g^{t_{1}} \subseteq g^{t_{2}} \\
& \left.\gamma^{t_{1}} \leq \gamma^{t_{2}} \text { and if } \operatorname{Rang}\left(g^{t_{1}}\right) \nsubseteq\{0\} \text { then } \alpha^{t_{1}}=\alpha^{t_{2}}\right\}
\end{aligned}
$$

2. The singular case

We deal here with singular $\lambda=\lambda^{\aleph_{0}}$ and our aim is the parallel of 1.13 constructing a pair of EF_{α}-equivalent for every $\alpha<\lambda$ non-isomorphic models of cardinality λ. But it is natural to try to construct a stronger example: This is done here:
\circledast for each $\gamma<\kappa=\operatorname{cf}(\lambda)$, in the following game the ISO player wins.
Definition 2.1. (1) For models M_{1}, M_{2}, λ and partial isomorphism f from M_{1} to M_{2} and $\gamma<\operatorname{cf}(\lambda)$ we define a game $\partial_{\gamma, \lambda}^{*}\left(f, M_{1}, M_{2}\right)$. A play lasts γ moves, in the $\beta<\gamma$ move a partial isomorphism f_{β} was formed increasing with β, extending f, satisfying $\left|\operatorname{Dom}\left(f_{\beta}\right)\right|<\lambda$. In the β-th move if $\beta=0$, the player ISO choose $f_{0}=f$, if β is a limit ordinal the ISO player chooses $f_{\beta}=\cup\left\{f_{\epsilon}: \epsilon<\beta\right\}$. In the $\beta+1<\gamma$ move the player AIS chooses $\alpha_{\beta}<\lambda$ and then they play a subgame $\partial_{1}^{\alpha_{\beta}}\left(f_{\beta}, M_{1}, M_{2}\right)$ from $0.1(3)$ producing an increasing sequence of partial isomorphisms $\left\langle f_{i}^{\beta}: i<\alpha_{\beta}\right\rangle$ and let their union be $f_{\beta+1}$. ISO wins if he always has a legal move.
(2) If ISO wins the game (i.e. has a winning strategy) then we say M_{1}, M_{2} are $\mathrm{EF}_{\gamma, \lambda}^{*}$-equivalent, we omit λ if clear from the context. If $f=\emptyset$ we may write $\partial_{\gamma, \lambda}^{*}\left(M_{1}, M_{2}\right)$

Remark: For $\left(M, c_{1}\right),\left(M, c_{2}\right)$ to be $\mathrm{EF}_{<\alpha, \lambda^{\prime}}^{*}$ equivalent not $\mathrm{EF}_{\alpha, \lambda^{-}}^{*}$ equivalent not just $E F_{\alpha}^{*}$-equivalent not $E F_{\alpha+1}^{*}$-equivalent we may need a minor change.

Hypothesis 2.2. $\left.j_{*} \leq \kappa=\operatorname{cf}(\lambda)<\lambda, \kappa\right\rangle \aleph_{0}, \bar{\mu}=\left\langle\mu_{i}: i<\kappa\right\rangle$ is increasing continuous with limit $\lambda, \mu_{0}=0, \mu_{1}=\kappa(=\operatorname{cf}(\lambda)), \mu_{i+1}$ is regular $>\mu_{i}^{+}$and let $\mu_{\kappa}=\lambda$ and for $\alpha<\lambda$ let $\mathbf{i}(\alpha)=\operatorname{Min}\left\{i: \mu_{i} \leq \alpha<\mu_{i+1}\right\}$.
Definition 2.3. Under the Hypothesis 2.2 we define a λ-parameter $\mathfrak{x}=\mathfrak{x}_{j_{*}, \bar{\mu}}$ as follows:
(a) (α) $\quad I$ is the set of $u \in[\lambda \backslash \kappa]^{\leq \aleph_{0}}$
(β) $\mathbf{u}: I \rightarrow \mathcal{P}(\lambda \backslash \kappa)$ is the identity,
(γ) $\quad S=\left\{\left(u_{1}, u_{2}\right): u_{1} \subseteq u_{2} \in I\right\}$
($\delta) \quad \alpha_{\mathrm{x}}^{*}=j_{*}$
(b) J is the set of tuples $t=(u, j, g, h)=\left(u^{t}, j^{t}, g^{t}, h^{t}\right)$ such that
(α) $u \in I$
(β) $j<j_{*}$
$(\gamma) \quad$ (i) g is a non-decreasing function from $u_{g}=u \cup v_{g}$ to λ where $v_{g}=\left\{\mathbf{i}(\alpha): \alpha \in u\right.$ and $\left.g(\alpha)=\mu_{\mathbf{i}(\alpha)}^{+}\right\}$
(ii) $\alpha \in u \Rightarrow g(\alpha) \in\left[\mu_{\mathbf{i}(\alpha)}, \mu_{\mathbf{i}(\alpha)}^{+}\right]$
(iii) if $i \in v_{g}$ then $g(i)<j^{t}\left(<\kappa=\mu_{1}\right)$
(iv) v_{g} is an initial segment of $\{\mathbf{i}(\alpha): \alpha \in u\}$
(δ) (i) h is a non-decreasing function with domain $u_{g} \cup v_{g}$
(ii) $\alpha \in u \Rightarrow h(\alpha) \in\left[\mu_{\mathbf{i}(\alpha)}, \mu_{\mathbf{i}(\alpha)+1}\right]$ and if $i \in v_{g}$ then $h(i)<\kappa$
(iii) if $\beta_{1}<\beta_{2}$ are from $u_{g} \cup v_{g}$ and $\mathbf{i}\left(\beta_{1}\right)=\mathbf{i}\left(\beta_{2}\right)$ then $g\left(\beta_{1}\right)=$ $g\left(\beta_{2}\right) \Leftrightarrow h\left(\beta_{1}\right)=h\left(\beta_{2}\right)$
(iv) $\alpha<h(\alpha)$ for $\alpha \in u_{g} \cup v_{g}$ and $g(\alpha)=\mu_{\mathbf{i}(\alpha)}^{+} \Leftrightarrow h(\alpha)=$ $\mu_{\mathbf{i}(\alpha)+1}$ for $\alpha \in u$
(c) T is the set of pairs $\left(t_{1}, t_{2}\right) \in J \times J$ satisfying
(i) $u^{t_{1}} \subseteq u^{t_{2}} \in I$ and
(ii) $g^{t_{1}} \subseteq g^{t_{2}}, h^{t_{1}} \subseteq h^{t_{2}}, j^{t_{1}}=j^{t_{2}}$

Observation 2.4. $\mathfrak{x}_{\lambda}=\mathfrak{x}_{j_{*}, \bar{\mu}}$ is a full λ-parameter.
Proof: Read the Definition 1.1(1)+1.1(1A)
Claim 2.5. Assume $s \in I_{\mathfrak{r}}, c_{1}=\left(s, e_{\mathbb{G}_{s}}\right), c_{2}=\left(s, x_{t}\right), t \in J_{s}$, and for simplicity $\operatorname{Rang}\left(g^{t} \upharpoonright\left[\mu_{1+i}, \mu_{1+i+1}\right)\right) \subseteq\left\{\mu_{1+i}\right\}, \operatorname{Rang}\left(g^{t} \mid \kappa\right)=\{0\}$ and $\omega<j^{t}<j_{*}$. Then $\left(M_{\mathfrak{x}}, c_{1}\right),\left(M_{\mathfrak{x}}, c_{2}\right)$ are $\mathrm{EF}_{\lambda, j^{t}}^{*}$-equivalent.

Proof: So t, j^{t} are fixed. For $i_{*}<\kappa, j<j_{*}$ let
(a) $B_{i_{*}}=\left\{\bar{\beta}: \bar{\beta}=\left\langle\beta_{i}: i<\kappa\right\rangle\right.$ and $\mu_{i} \leq \beta_{i} \leq \mu_{i+1}$ and $\beta_{0}=i_{*}$ and $\left.\left(\beta_{1+i}=\mu_{1+i+1} \equiv 1+i<i_{*}\right)\right\}$
(b) for $\bar{\beta} \in B_{i_{*}}$ let $A_{\bar{\beta}}=\cup\left\{\left[\mu_{i}, \beta_{i}\right): i<\kappa\right\}$ which by our conventions is equal to $i_{*} \cup \bigcup\left\{\left[\mu_{j}, \mu_{j+1}\right): 1 \leq j<i_{*}\right\} \cup \bigcup\left\{\left[\mu_{i}, \beta_{i}\right): i \in\left[i_{*}, \kappa\right)\right\}$
(c) for $\bar{\beta} \in B_{i_{*}}$ let $\mathcal{G}_{j, i_{*}, \bar{\beta}}=\left\{g: g\right.$ is a function from $A_{\bar{\beta}}$ to λ, nondecreasing and the function $g \upharpoonright \kappa$ is into j and the function $g \upharpoonright\left[\mu_{1+i}, \mu_{1+i+1}\right)$ is into $\left[\mu_{i}, \mu_{i}^{+}\right]$and $\left.1 \leq i<i_{*} \Leftrightarrow(\exists \alpha)\left(\mu_{i} \leq \alpha<\mu_{i+1} \wedge g(\alpha)=\mu_{i}^{+}\right)\right\}$
(d) for $g \in \mathcal{G}_{j, i_{*} \bar{\beta}}, \bar{\beta} \in B_{i_{*}}$ we define $h_{g}: A_{\bar{\beta}} \rightarrow \lambda$ as follows: if $\gamma \in A_{\bar{\beta}}$ then $h(\gamma)=\operatorname{Min}\left\{\beta^{\prime} \leq \beta_{\mathbf{i}(\gamma)}\right.$: if $i(\gamma)>0 \wedge g(\gamma)=\mu_{\mathbf{i}(\gamma)}^{+}$then $\beta^{\prime}=$ $\mu_{\mathbf{i}(\gamma)+1}$, otherwise $\beta^{\prime} \in\left[\mu_{\mathbf{i}(\gamma)}, \beta_{\mathbf{i}(\gamma)}\right]$ and $\left.\beta^{\prime} \neq \beta_{\mathbf{i}(\gamma)} \Rightarrow g(\gamma)<g\left(\beta^{\prime}\right)\right\}$
(e) $\mathcal{G}_{j, i_{*}}=\cup\left\{\mathcal{G}_{j, i_{*}, \bar{\beta}}: \bar{\beta} \in B_{i_{*}}\right\}$ and $\mathcal{G}_{j}=\cup\left\{\mathcal{G}_{j, i_{*}}: i_{*}<\kappa\right\}$

Let $R=\mathcal{G}_{j^{t}}$ and for $g \in R$ let $i_{*}(g)$ be the unique $i_{*}<\kappa$ such that $g \in \mathcal{G}_{j^{t}, i_{*}}$ and $\bar{\beta}_{g}$ the unique $\bar{\beta} \in B_{i_{*}}$ such that $g \in \mathcal{G}_{j^{t}, i_{*}(g), \bar{\beta}}$ and $\bar{\beta}=\left\langle\beta_{i}(g): i<\kappa\right\rangle$

On R we define a partial order $g_{1} \leq g_{2} \Leftrightarrow g_{1} \subseteq g_{2} \wedge h_{g_{1}} \subseteq h_{g_{2}}$
For $g \in R$ we define I_{g}, \bar{c}_{g} as follows
*
(a) $I_{g}=\{u \in I: u \subseteq \operatorname{Dom}(g) \backslash \kappa\}$
(b) $\bar{c}_{g}=\left\langle c_{g, s}: s \in I_{g}\right\rangle$
(c) $c_{g, s}=x_{t_{g}(s)}$ where $t_{g}(s)=\left(s, j, g \upharpoonright u_{g, s}, h_{g} \upharpoonright u_{g, s}\right)$ where $u_{g, s}=$ $u \cup\left\{\mathbf{i}(\alpha): \alpha \in u\right.$ and $\left.g(\alpha)=\mu_{\mathbf{i}(\alpha)}^{+}\right\}$
Let $g_{*} \in \mathcal{G}_{1}$ be chosen such that for $i>0, \beta_{i}\left(g_{*}\right)=\sup \left(\left\{g^{t}(\alpha): \alpha \in u^{t} \cap\right.\right.$ $\left.\left.\left[\mu_{i}, \mu_{i+1}\right)\right\} \cup\left\{\mu_{i}\right\}\right)$ and $\beta_{0}\left(g_{*}\right)=\cup\left\{\mathbf{i}(\alpha)+1: \alpha \in u^{t}\right.$ and $\left.g^{t}(\alpha)=\mu_{\mathbf{i}(\alpha)}^{+}\right\} \cup\{1\}$. Let $\bar{c}_{*}=\bar{c}_{g_{*}}$ and $f_{*}=f_{\bar{c}_{*}}^{\mathfrak{z}}$ is the partial automorphism of M_{γ} with domain $\cup\left\{P_{u}^{M_{x}}: u \in I_{g_{*}}\right\}$ from Definition 1.7. We prove that the player ISO wins in the game $\partial_{\lambda, j}^{*}\left(f_{*}, M_{1}, M_{1}\right)$, as $f_{*}\left(c_{1}\right)=c_{2}\left(\in P_{u^{t}}^{M_{\mathrm{r}}}\right)$ this is enough. Recall that a play last j moves; now the player ISO commit himself to choose in the $\beta<j$ move on the side a function $g_{\beta} \in \mathcal{G}_{1+\beta}$, increasing with $\beta, g_{0}=g_{*}$
and his actual move f_{β} is $f_{\bar{c}_{\beta}}^{\mathfrak{z}}$ where $\bar{c}_{\beta}=\bar{c}_{g_{\beta}}$. For the β-th move if $\beta=0$ or β limit let $g_{\beta}=\cup\left\{g_{\epsilon}: \epsilon<\beta\right\} \cup g_{*} \in \mathcal{G}_{1+\beta}$. In the ($\beta+1$)-th move let the AIS player choose $\alpha_{\beta}<\lambda$. Now the player ISO, on the side, first choose $i_{\beta}<\kappa$ such that $i_{*}\left(g_{\beta}\right)<i_{\beta}$, and $\mu_{i_{\beta}}>\alpha_{\beta}$, second he chooses $g_{\beta}^{+} \in \mathcal{G}_{1+\beta+1, i_{\beta}}$ satisfying:

* (a) g_{β}^{+}extends g_{β},
(b) $\operatorname{Dom}\left(g_{\beta}^{+}\right) \cap \kappa=i_{\beta}$
(c) $g_{\beta}^{+} \upharpoonright\left(i_{\beta} \backslash \operatorname{Dom}\left(g_{\beta}\right)\right)$ is constantly $1+\beta$
(d) if $0<i \in \operatorname{Dom}\left(g_{\beta}\right) \cap \kappa$ then $g_{\beta}^{+} \upharpoonright\left\lceil\mu_{i}, \mu_{i+1}\right)=g_{\beta} \upharpoonright\left[\mu_{i}, \mu_{i+1}\right)$
(e) if $i \notin\left(\operatorname{Dom}\left(g_{\beta}\right) \cap \kappa\right)$ and $i \in \operatorname{Dom}\left(g_{\beta}^{+}\right) \cap \kappa$ then $\operatorname{Dom}\left(g_{\beta}^{+} \upharpoonright\left[\mu_{i}, \mu_{i+1}\right)\right)=$ $\left[\mu_{i}, \mu_{i+1}\right)$ and $\varepsilon \in\left[\mu_{i}, \mu_{i+1}\right) \backslash \operatorname{Dom}\left(g_{\beta}\right) \Rightarrow g_{\beta}^{+}(\varepsilon)=\mu_{i}^{+}$
(f) if $i<\kappa, i \notin \operatorname{Dom}\left(g_{\beta}^{+}\right)$then $g_{\beta}^{+} \upharpoonright\left[\mu_{i}, \mu_{i+1}\right)=g_{\beta} \upharpoonright\left[\mu_{i}, \mu_{i+1}\right)$

Now ISO and AIS has to play the sub-game $\partial_{1}^{\alpha_{\beta}}\left(f_{\beta}, M_{1}, M_{2}\right)$. The player ISO has to play $f_{\beta, \alpha}$ in the α-th move for $\alpha \leq \alpha_{\beta}$ and on the side he chooses $g_{\beta, \alpha} \in \mathcal{G}_{1+\beta+1}$ with large enough domain and range, to make it a legal move, increasing with α, and $g_{\beta, 0}=g_{\beta}^{+}$and $g_{\beta, \alpha} \upharpoonright \mu_{i_{\beta}}=g_{\beta}^{+} \upharpoonright \mu_{i_{\beta}}$. Now obviously $\left\{g: g \in \mathcal{G}_{1+\beta+1}, g_{\beta}^{+} \subseteq g\right\}$ is closed under increasing union of length $<\mu_{i_{\beta}}$, it is enough to show that he can make the $(\alpha+1)$-th move which is trivial so we are done.

Claim 2.6. $M_{\mathfrak{r}}$ is P_{s}-rigid for $s \in I^{*}$.
Proof: We imitate the proof of 1.12 .
$(*)_{0} \mathfrak{x}$ is a full $\left(\lambda, \aleph_{1}\right)$-parameter
$(*)_{1}$ if $u_{1} \subseteq u_{2} \in I$, we define the function $\pi_{u_{1}, u_{2}}: J_{u_{2}} \rightarrow J_{u_{1}}$ by $F_{u_{1}, u_{2}}(t)=\left(u_{1}, j^{t}, g^{t} \upharpoonright u_{1}, h^{t} \upharpoonright u_{1}\right)$ for $t \in J_{u_{2}}$,
$(*)_{2}$ if $u_{1} \subseteq u_{2} \subseteq u_{3}$ are from I then $\pi_{u_{1}, u_{3}}=\pi_{u_{1}, u_{2}} \circ \pi_{u_{2}, u_{3}}$ that is $\pi_{u_{1}, u_{2}}(t)=\pi_{u_{1}, u_{2}}\left(\pi_{u_{2}, u_{3}}(t)\right)$
$(*)_{3}$ for $u_{1} \subseteq u_{2}$ we have
$(\alpha) T \cap\left(J_{u_{1}} \times J_{u_{2}}\right)=\left\{\left(\pi_{u_{1}, u_{2}}\left(t_{2}\right), t_{2}\right): t_{2} \in J_{u_{2}}\right\}$
$(\beta) \mathbb{G}_{u_{1}, u_{2}}=\left\{\left(\hat{\pi}_{u_{1}, u_{2}}\left(c_{2}\right), c_{2}\right): c_{2} \in \mathbb{G}_{u_{2}}\right\}$ where $\hat{\pi}_{u_{1}, u_{2}} \in \operatorname{Hom}\left(\mathbb{G}_{u_{2}}^{\mathfrak{r}}, \mathbb{G}_{u_{1}}^{\mathfrak{r}}\right)$
is the unique homomorphism from $\mathbb{G}_{u_{2}}^{\mathfrak{x}}$ into $\mathbb{G}_{u_{1}}^{\mathfrak{r}}$ mapping $x_{t_{2}}$ to $x_{t_{1}}$ whenever $\pi_{u_{1}, u_{2}}\left(t_{2}\right)=t_{1}$
[Why? Check.]
$(*)_{4}$ if $u_{1} \cup u_{2} \subseteq u_{3} \in I, t_{3} \in J_{u_{3}}$ and $t_{\ell}=\pi_{u_{\ell}, u_{3}}\left(t_{3}\right)$ for $\ell=1,2$ then, recalling Definition $1.1(1 \mathrm{~A})(\mathrm{h}), g^{t_{1}}, g^{t_{2}}$ are compatible functions as well as $h^{t_{1}}, h^{t_{2}}$ and $j^{t_{1}}=j^{t_{2}}$ moreover $g^{t_{1}} \cup g^{t_{2}}$ is non-decreasing, $h^{t_{1}} \cup h^{t_{2}}$ is non-decreasing [Why? just check]
$(*)_{5}$ clause \circledast_{1} of $1.11(1)$ holds for $I^{\prime}=I\left(=I_{\mathfrak{x}}\right)$
Why? Assume $\bar{c} \in C_{I}^{\mathfrak{n}}$ is such that $c_{s(*)} \neq e_{\mathbb{G}_{s(*)}}$ for some $s(*) \in I$. For each $u \in I, c_{u}$ is a word in the generators $\left\{x_{t}: t \in J_{u}\right\}$ of \mathbb{G}_{u} and let $\mathbf{n}(u)$ be the length of this word and $\mathbf{m}(u)$ the number of generators appearing in it.

Now by clause (β) of $(*)_{3}$ we have $u_{1} \subseteq u_{2} \Rightarrow \mathbf{n}\left(u_{1}\right) \leq \mathbf{n}\left(u_{2}\right) \wedge \mathbf{m}\left(u_{1}\right) \leq$ $\mathbf{m}\left(u_{2}\right)$. As (I, \subseteq) is \aleph_{1}-directed, for some $u_{*} \in I, n_{*}<\omega$ and $m_{*}<\omega$ we have $u_{*} \subseteq u \in I \Rightarrow \mathbf{n}(u)=n_{*} \wedge \mathbf{m}(u)=m_{*}$ and let $c_{u}=\left(\ldots, x_{t(u, \ell)}^{k(u, \ell)}, \ldots\right)_{\ell<n_{*}}$ where $k(u, \ell) \in\{1,-1\}$ and $t(u, \ell) \in J_{u}^{\mathfrak{v}}$ and $t(u, \ell)=t(u, \ell+1) \Rightarrow k(u, \ell)=$ $k(u, \ell+1)$. Clearly $u_{*} \subseteq u_{1} \subseteq u_{2} \in I \& \ell<n_{*} \Rightarrow \pi_{u_{1}, u_{2}}\left(t\left(u_{2}, \ell\right)\right)=$ $t\left(u_{1}, \ell\right) \wedge ? k\left(u_{1}, \ell\right)=k\left(u_{2}, \ell\right)=k\left(u_{*}, \ell\right)$ hence $j^{t\left(u_{2}, \ell\right)}=j^{t\left(u_{*}, \ell\right)} \wedge j^{t\left(u_{2}, \ell\right)}=$ $j^{t\left(u_{*}, \ell\right)}$. By our assumption toward contradiction necessarily $n_{*}>0$ and let $k(\ell)=k\left(u_{*}, \ell\right)$.

As $\left\{u: u_{*} \subseteq u \in I\right\}$ is directed, by $(*)_{4}$ above, for each $\ell<n_{*}$ any two of the functions $\left\{g^{t(u, \ell)}: u_{*} \subseteq u \in I\right\}$ are compatible so $g_{\ell}=: \cup\left\{g^{t(u, \ell)}: u \in I\right\}$ is a non-decreasing function from $Y_{i_{\ell}(*)}$ to λ where $Y_{i_{\ell}(*)}=(\lambda \backslash \kappa) \cup i_{\ell}(*)$ for some $i_{\ell}(*) \leq \kappa$ and $h_{\ell}=: \cup\left\{h^{t(u, \ell)}: u_{*} \subseteq u \in I\right\}$ is similarly a nondecreasing function from $Y_{i_{\ell}(*)}$ to λ. Also g_{ℓ} maps $\left[\mu_{i}, \mu_{i+1}\right)$ into $\left[\mu_{i}, \mu_{i}^{+}\right]$for $i<\kappa$ and maps κ to κ.
Case 1: $i_{\ell}(*)=\kappa$.
It also follows that for some j_{ℓ}^{*} we have $j_{\ell}^{*}=: j^{t(u, \ell)}$ whenever $u_{*} \subseteq u \in I$ in fact $j_{\ell}^{*}=j^{t\left(u_{*}, \ell\right)}$ is O.K. and $j_{\ell}^{*}<j_{*} \leq \kappa$. For each $i \in \operatorname{Rang}\left(g_{\ell} \upharpoonright \kappa\right)$ choose $\beta_{\ell, i}<\kappa$ such that $g_{\ell}\left(\beta_{\ell, i}\right)=i$ and let $E=\{\delta<\kappa: \delta$ a limit ordinal $>\sup \left(u_{*} \cap \kappa\right)$ such that $i<j_{\ell}^{*} \& \ell<n_{*} \& i \in \operatorname{Rang}\left(g_{\ell}\right) \Rightarrow \beta_{\ell, i}<\delta$ and $\left.\beta<\delta \& \ell<n \Rightarrow h_{\ell}(\beta)<\delta\right\}$, it is a club of κ. Choose u such that $u_{*} \subseteq u$ and $\operatorname{Min}\left(u \cap \kappa \backslash u_{*}\right)=\delta^{*} \in E$.

Now what can $g^{t(u, \ell)}\left(\operatorname{Min}\left(u \backslash u_{*}\right)\right)$ be?
It has to be i for some $i<j_{\ell}^{*}<j^{*}$ hence $i \in \operatorname{Rang}\left(g_{\ell}\right)$ so for some $u_{1}, u_{*} \subseteq$ $u_{1} \subseteq \delta^{*}$ and $\beta_{\ell, i} \in u_{1}$ so $h_{\ell}\left(\beta_{\ell, i}\right)<\delta^{*}$ hence considering $u \cup u_{1}$ and recalling clause $(\delta)(i v)$ of (b) from definition 2.3 of \mathfrak{x} we have $h_{\ell}\left(\beta_{\ell, i}\right)<h_{\ell}\left(\delta^{*}\right)$ hence by (clause $(b)(\alpha)(i i i))$ we have $i=g_{\ell}\left(\beta_{\ell, i}\right)<g_{\ell}\left(\delta^{*}\right)$, contradiction.

Case 2: $i_{\ell}(*) \neq \kappa$ so $i_{\ell}(*)<\kappa$.
Clearly if $i \in\left(i_{\ell}(*), \kappa\right)$ and $\alpha \in\left[\mu_{i}, \mu_{i+1}\right)$ then $g_{\ell}(\alpha) \neq \mu_{i}^{+}$(see clause (b) $(\gamma)($ iii $)$ of Definition 2.3) hence $g_{\ell} \upharpoonright\left[\mu_{i}, \mu_{i+1}\right)$ is a non-decreasing function from $\left[\mu_{i}, \mu_{i+1}\right)$ to μ_{i}^{+}, but μ_{i+1} is regular $>\mu_{i}^{+}$(see Hypothesis 2.2) hence $g_{\ell} \upharpoonright\left[\mu_{i}, \mu_{i+1}\right)$ is eventually constant say $\gamma_{i} \in\left[\mu_{i}, \mu_{i+1}\right)$ and $g_{\ell} \upharpoonright\left[\gamma_{i}, \mu_{i+1}\right)$ is constantly $\epsilon_{i} \in\left[\mu_{i}, \mu_{i}^{+}\right)$. So also $h_{\ell}\left\lceil\left[\gamma_{i}, \mu_{i+1}^{+}\right)\right.$is constant and its value is $<\mu_{i+1}$, and we get contradiction as in case 1 .
$\square_{2.6}$
Conclusion 2.7. If $\lambda=\lambda^{\aleph_{0}}>\operatorname{cf}(\lambda)>\aleph_{0}$ then for every $\alpha<\operatorname{cf}(\lambda)$ there are non-isomorphic models M_{1}, M_{2} of cardinality λ which are $E F_{\alpha, \lambda}^{*}$-equivalent.
Proof: By $2.5+2.6$ as the cardinality of $M_{\mathfrak{x}}$ is λ.

Remark 2.8. By minor changes, for some $t \in P_{u}^{M}, u=\emptyset$ letting $c_{1}=$ $e_{\mathbb{G}_{u}}, c_{2}=x_{t}$ we have: $\left(M_{\mathfrak{x}}, c_{1}\right),\left(M_{\mathfrak{x}}, c_{2}\right)$ are non-isomorphism but $E F_{\lambda, j}^{*}-$ equivalent for every $j<\kappa=\operatorname{cf}(\lambda)$. This is similar to the parallel remark in the end of $\S 1$.

Private Appendix

3. For every λ Large enough

Naturally we would like to prove this for all are at least in some sense for most λ. Naturally, for me at least we do it by using the RGCH (the revised G.C.H., see [She00] or [She06, §1]). Specifically, this holds for every $\lambda \geq \beth_{\omega}$, moreover we phrase a weaker condition which conceivably?? is provable in every $\lambda \geq 2^{\aleph_{0}}$. So instead "every countable u and function g from u..." we shall try to use "for density means?? So this leads to the following.

Conclusion 3.1. Like 1.12 (hence also 1.13) assuming just $\lambda=\operatorname{cf}(\lambda)>\beth_{\omega}$ or at least
\circledast_{λ} there is $\mathcal{P} \subseteq[\lambda]^{\aleph_{0}}$ of cardinality λ such that $\left(\forall A \in[\lambda]^{\lambda}\right)(\exists u \in \mathcal{P})(u \subseteq$ A).

Proof: We define $\mathfrak{y}=\mathfrak{y}_{\lambda}$ as in the proof of 1.12 see \boxtimes there except that $[\lambda]^{<\aleph_{0}} \subseteq I \subseteq[\lambda]{ }^{\leq \aleph_{0}},|I|=\lambda, J \subseteq\{(u, \alpha, g, h): u \in I,(u, \alpha, g, h)$ as in clause (b) (α) of $\boxtimes\},|J|=\lambda$ and the pair (I, J) is quite large E.g. let \mathfrak{B} be an elementary submodel of $(\mathcal{H}(\chi) \in), \lambda=\beth_{2}(\lambda)^{+}, \lambda+1 \subseteq \mathfrak{B}, \| \mathfrak{B}| | \mathfrak{x}_{\lambda} \in \mathfrak{B}$ and $\mathfrak{x}=\mathfrak{x}_{\lambda} \mid \mathfrak{B}$. We first have to note that the proof of "ISO wins $\partial_{\lambda}^{\alpha}\left(\left(M_{\mathfrak{y}}, b\right),\left(M_{\mathfrak{y}}, c\right)\right)$ for appropriate $u \in I, b \neq c \in P_{u}^{M_{\mathfrak{y}}}$ " is not changed (in fact the results follows as $M_{\mathfrak{n}_{\lambda}^{\prime}} \subseteq M_{\mathfrak{r}_{\lambda}}$, and moreover

$$
M_{\mathfrak{n}_{\lambda}^{\prime}}=M_{\mathfrak{r}_{\lambda}} \upharpoonright\left(\cup\left\{P_{u}^{\hat{M}_{r_{\lambda}}}: u \in I\right\}\right) .
$$

Also for simplicity we use the abelian group satisfying $x+x=0$ version. Second, as for " $M_{\mathfrak{y}}$ is P_{u}-rigid for $u \in I_{\mathfrak{y}}$ " again if this fail for $u \in I_{\mathfrak{y}}$ then we can find $\alpha<\alpha^{*}$ and \bar{z} such that
$(*)_{0} \quad$ (a) $\quad \bar{z}=\left\langle z_{v}: v \in I\right\rangle$
(b) z_{v} a finite subset of $J_{v}^{\mathfrak{\eta}}$ such that $t \in z^{v} \Rightarrow \alpha^{t}=\alpha$
(c) if $v \subseteq w \in I$ then $\pi_{v, w}^{\mathfrak{y}}$ maps z_{w} onto a subset of $J_{v}^{\mathfrak{y}}$ which includes z_{v} where $\pi_{v, w}^{\mathfrak{y}}$ is as in $(*)_{2}$ of the proof of 1.12
(d) $z_{u_{*}} \neq \emptyset$
(e) $\quad f \in \operatorname{Aut}(M), f=f_{\bar{c}}, \bar{c}=\left\langle c_{v}: v \in I\right\rangle=\mathbf{C}_{I_{\eta}}^{\mathfrak{\eta}}, c_{u} \neq e_{\mathbb{G}_{u}}$, see Definition 1.7.
$(*)_{1}$ for each $v \in I$ we let $z_{v}^{+}=\cup\left\{\operatorname{Rang}\left(\pi_{v, w}\right): v \subseteq w \in I\right\}$
$(*)_{2}$ if $\circledast{ }_{\lambda}$ from the conclusion holds then $\left|z_{v}^{+}\right|<\lambda$ for $v \in I_{\mathfrak{y}}$.
[Why? as in the proof of 1.11]
Now for every $\beta_{1}<\beta_{2}<\alpha$ let

$$
\begin{array}{cl}
B_{\beta_{1}, \beta_{2}}=:\{\gamma: & \text { for some } v \in I \text { and } t \in z_{v}^{+} \text {and } \\
& \gamma_{1}<\gamma_{2} \text { from } u^{t} \text { we have } \gamma_{1}<\gamma=h^{t}\left(\beta_{1}\right)<\gamma_{2} \\
& \text { and } \left.g^{t}\left(\gamma_{1}\right)=\beta_{1}, g^{t}\left(\gamma_{2}\right)=\beta_{2}\right\} \\
& B_{*}=\cup\left\{B_{\beta_{1}, \beta_{2}}: \beta_{1}<\beta_{2}<\alpha\right\}
\end{array}
$$

$\boxtimes\left|B_{*}\right|<\lambda$
[why? otherwise we can find $\gamma_{\varepsilon} \in B_{*}$ for $\varepsilon<\lambda$, pairwise distinct. So for $\varepsilon<\lambda$ there are $v_{\varepsilon} \in I, t_{\varepsilon} \in z_{v_{\varepsilon}}^{+}$and be $\gamma_{1, \varepsilon}, \gamma_{2, \varepsilon} \in v_{\varepsilon}$ such that $h^{t_{\varepsilon}}\left(\gamma_{1, \varepsilon}\right)=\varepsilon$ and $\gamma_{1, \varepsilon}<\gamma_{\varepsilon}<\gamma_{2, \varepsilon}$. As λ is regular without loss of generality $\left(h^{t_{\varepsilon}}\left(\gamma_{1, \varepsilon}\right), h^{t_{\varepsilon}}\left(\gamma_{2, \varepsilon}\right)\right)=\left(\beta_{1}^{*}, \beta_{2}^{*}\right)$ and $h^{t_{\varepsilon}}\left(\gamma_{1, \varepsilon}\right)=\gamma_{\varepsilon}$.
Let ($w_{\varepsilon}, t_{\varepsilon}^{\prime}$) be such that $v_{\varepsilon} \subseteq w_{\varepsilon} \in I, t_{\varepsilon}^{\prime} \in z_{w_{\varepsilon}}$ and $\pi_{v_{\varepsilon}, w_{\varepsilon}}\left(t_{\varepsilon}^{\prime}\right)=t_{\varepsilon}$. By the assumption $\circledast \lambda$ we know that for some $\Lambda \subseteq \lambda,|\Lambda|=\aleph_{0}$ and $w=\cup\left\{w_{\varepsilon}: \varepsilon \in \Lambda\right\} \in I$. Now for each $\varepsilon \in \Lambda$ there is $s_{\varepsilon} \in z_{v}^{+}$ such that $\pi_{w_{\varepsilon}, w}\left(s_{\varepsilon}\right)=t_{\varepsilon}^{\prime}$. But $\varepsilon \neq \zeta \in \Lambda \in s_{\varepsilon} \neq s_{\zeta}$, so we get a contradiction.]

So we can find $\gamma_{*}<\lambda$ such that
\boxtimes_{2} if $\gamma_{1} \in\left[\gamma_{*}, \lambda\right)$ then for no γ, γ_{2} and $u \in I, t \in z_{u}^{+}$do we have $\gamma_{1}, \gamma_{2} \in$ $u, \gamma_{1} \leq h^{t}\left(\gamma_{1}\right)<\gamma_{2}$
We can find $u_{1} \in I$ such that $\gamma_{*} \in u_{1} \wedge u_{*} \subseteq u_{1}$ hence $z_{u_{1}} \neq \emptyset$ and let $s \in z_{u_{1}}, \gamma=h^{t}\left(\gamma_{*}\right)$ and let $u_{2} \in I$ be such that $u_{1} \cup\{\gamma+1\} \subseteq u_{2} \in I$, so there is $t \in Z_{u_{2}}$ such that $\pi_{u_{1}, u_{2}}(t)=s$ hence
$h^{t}\left(\gamma_{*}\right)=h^{s}\left(\gamma_{*}\right)=\gamma<\gamma+1 \in u_{2}$ so ($u_{2}, \gamma_{*}, \gamma+1$) witness then $\gamma \in B_{h^{t}\left(\gamma_{*}\right), h^{t}(\gamma+1)} \subseteq B_{*}$, contradiction.

Conclusion 3.2. Like 2.7 assuming only $\operatorname{cf}(\lambda)>\aleph_{0}$ and $\lambda>\beth_{\omega} \wedge \operatorname{cf}(\lambda)>\aleph_{0}$ or just
$\circledast_{\lambda}^{\prime}$: there is $\mathcal{P} \subseteq[\lambda]^{\aleph_{0}}$ of cardinality λ such that
(a) if for every $A \subseteq \lambda$ of cardinality λ there is $u \subseteq A, u \in \mathcal{P}$
(b) for every $A \subseteq \operatorname{cf}(\lambda)$ of cardinality λ there is $u \subseteq A, u \in \mathcal{P}$

TO BE FILLED : λ singular.

4. HAVNING TREES INSTEAD " $\alpha<\lambda$ "

When $\lambda<\lambda^{<\lambda}$, it is not so clear what does it mean "using EF games with trees with λ nodes, λ levels no λ-branch". We suggest here a replacement and generalize $\S 1$.

Definition 4.1. Assume that M_{1}, M_{2} are τ-models, f a partial isomorphism from M_{1} to M_{2}, N is a τ-model, g a partial unary function from N to N, $\tau^{+}=\tau_{N} \cup\{F\}, F$ a unary function symbol $(\notin \tau)$ and λ, μ are cardinals α an ordinal and T is a universal theory in $\mathbb{L}\left(\tau^{+}\right)$. We define a game $\partial_{\lambda, \mu, \alpha}^{\alpha}\left(M_{1}, M_{2}, N, T, f, g\right)$.
A play last up to λ moves in the α-th move a pair $\left(f_{\alpha}, g_{\alpha}\right)$ is chosen such that

* (a) $\quad f_{\alpha}$ is a partial isomorphism from M_{1} onto M_{2}
(b) f_{α} is increasing continuous with α
(c) $\quad f_{0}=f$ and $\left|\operatorname{Dom}\left(f_{\alpha_{\beta+1}}\right) \backslash \operatorname{Dom}\left(f_{\beta}\right)\right|<1+\mu$
(d) g_{α} is a partial function from N to N_{1} increasing continuous with α
(e) $\quad g_{0}=g,\left|\operatorname{Dom}\left(g_{\beta+1}\right) \backslash \operatorname{Dom}\left(g_{\beta}\right)\right|<1+\mu$
(f) $\quad\left(N, g_{\alpha}\right)$ satisfies T as far as it is meaningful
\circledast_{2} in the α-th move (every player can make choices only compatible with \circledast_{1})
(a) first ISO chooses $u_{\alpha} \subseteq N$ of cardinality $<1+\mu$
(b) second AIS chooses $g_{\alpha+1}$ with $\operatorname{Dom}\left(g_{\alpha+1}\right)=\operatorname{Dom}\left(g_{\alpha}\right) \cup u_{\alpha}$
(c) third AIS chooses $A_{\alpha}^{1} \subseteq M_{1}, A_{\alpha}^{2} \subseteq M_{\alpha}$ such that $\left|A_{\alpha}^{1}\right|+\left|A_{\alpha}^{2}\right|<$ $1+\mu$
(d) fourth ISO chooses $f_{\alpha+1}$ such that $A_{\alpha}^{1} \subseteq \operatorname{Dom}\left(f_{\alpha+1}\right), A_{\alpha}^{2} \subseteq$ Dom $\left(f_{\alpha=1}\right)$.
A player loses the play when he has no legal move.
Definition 4.2. (1) In 4.1 if $g=\emptyset$ we may omit it, if $f=\emptyset=g$ we may omit then.
(2) We say that M_{1}, M_{2} are $\mathrm{EF}_{\lambda, \mu, \alpha, N, T}$-equivalent if the player ISO wins the game $\partial_{\lambda, \mu}\left(M_{1}, M_{2} ; N, T\right)$.
Claim 4.3. There are non-isomorphic models M_{1}, M_{2} of cardinal λ which are $\mathrm{EF}_{\lambda, \mu, N, T}$-equivalent when

\boxtimes (a) $\lambda=\lambda^{\aleph_{0}}$

(b) N is a model of cardinality λ
(c) T is a universal first order theory in the vocabulary $\tau^{T}=\tau_{N}$ such that N has no expansion to a model of T.

Proof: As in §1. Saharon fill.
5. On \aleph_{0}-INDEPENDENT THEORIES

Our aim is to prove
\boxtimes if $T \subseteq T_{1}$ are complete first order theorem T with the \aleph_{0}-independence property, $\lambda=\operatorname{cf}(\lambda)>|T|$ then
(a) there are $\left.M_{1}, M_{1} \in P \overline{C(} T_{1}, T\right)$ of cardinality λ which are $E F_{\alpha, \lambda^{-}}$ equivalent for every $\alpha<\lambda$ but not isomorphism.
(b) the singular.
(c) Karp complexity.
 From a nice λ-parameter \mathbf{p}, we drive a model $N \in K_{\lambda}^{\text {orgr }}$ as follows: for each $G_{s}^{\mathbf{p}}$ we attached $N_{s}^{\mathbf{p}}$ and the action of $x \in \mathcal{G}_{s}^{\mathbf{p}}$ and define the graph of $N^{\mathbf{p}} \cup\left\{N_{s}^{p}: s \in S\right\}$ such that the partial automorphism of $M^{\mathbf{P}}$ i.e. $\bar{e}=\left\langle c_{s}: s \in\right.$ set \rangle induce a partial automorphism of the ordered graph. So the problem will be to make $M_{1} \nsupseteq M_{2}$. Better: from one λ-parameter \mathbf{p} we define two ordered graphs $N_{s, 1}^{\mathrm{p}} N_{s, 2}^{\mathrm{p}}$ and partial automorphism of each+ partial isomorphism from one to the other- those are the really interesting objects.

Remark: Note that $\mathbf{J} \in K^{o i}$ we can use $P^{\mathbf{J}}$ only in particular defining

$$
E M(\mathbf{J}, \Phi)
$$

Definition 5.1. 1) $K_{\lambda}^{o i}$ is the class of structures \mathbf{J} of the form $(A, Q, P<$,$\left.F_{n}\right)_{n<\omega}=\left(|\mathbf{J}|, P^{\mathbf{J}}, Q^{\mathbf{J}},<^{\mathbf{J}}, F_{n}^{\mathbf{J}}\right)$, where \mathbf{J} has cardinality $\lambda,<^{\mathbf{J}}$ a linear order on $Q^{\mathbf{J}}, P^{\mathbf{J}}=|\mathbf{J}| \backslash Q^{\mathbf{J}}, F^{\mathbf{J}} \backslash Q^{\mathbf{J}}=$ the identity and $a \in A \backslash Q^{\mathbf{I}} \Rightarrow F_{n}(a) \in Q^{\mathbf{J}}$ and $a \neq b \in P^{M} \Rightarrow \bigvee_{n<\omega} F_{n}(a) \neq F_{n}(b)$. Let $F_{\omega}^{\mathbf{J}}=$ be the identity on $|\mathbf{J}|$. where (from [She09], where T being $\aleph_{0^{-}}$independent follows from T having the independence property and implies T is not superstable or just not strongly dependent, see below)
2) For a linear order I and $\mathfrak{S} \subseteq{ }^{\omega} I$, we let $\mathbf{J}=\mathbf{J}_{I, \mathfrak{S}}$ be the derived member of $K^{o i}$ that is $|\mathbf{J}|=I \cup \mathfrak{S},\left(Q^{|\mathbf{J}|},<^{\mathbf{J}}\right)=I, F_{n}^{\mathbf{J}}(\eta)=\eta(n)$ for $n<\omega, F_{n}^{\mathbf{J}}(t)=t$ for $t \in I_{i}$; note that every $\mathbf{J} \in K^{o i}=\cup\left\{K_{\lambda}^{o i}: \lambda\right.$ a cardinal $\}$ is isomorphic to some $\mathbf{J}_{I, \mathfrak{S}}$
Definition 5.2. (1) A (complete f.o.) T is \aleph_{0}-independent (\equiv not strongly dependent) if there is a sequence $\bar{\varphi}=\left\langle\varphi_{n}\left(x, \bar{y}_{s}\right): n\langle\omega\rangle\right.$ (or finite \bar{x}, as usual) of (f.o.) formulas such that T is consist with Γ_{λ} for some $\left(\equiv\right.$ every $\left.\lambda \geq \aleph_{0}\right)$

$$
\Gamma_{\lambda}=\left\{\varphi_{n}\left(x_{\eta}, \bar{y}_{\alpha}^{n}\right)^{\text {if }(\alpha=\eta(n))}: \eta \in{ }^{\omega} \lambda, \alpha<\lambda, n<\omega\right\}
$$

(2) T is strongly stable if it is stable and strongly dependent.

Claim 5.3. If T is f.o. complete $T_{1} \supseteq T$ is complete, w.l.o.g. with Skolem function and T is not strongly dependent (from [She09]) then we can find Φ, $\bar{\varphi}=\left\langle\varphi_{n}\left(x, \bar{y}_{n}\right): n<\omega\right\rangle, \bar{y}_{n} \unlhd \bar{y}_{n+1}$
(a) Φ is proper for $K^{o i}$ and $\tau\left(T_{1}\right) \subseteq \tau(\Phi)$ and $|\tau(\Phi)|=\left|T_{1}\right|$
(b) In $M_{1}=\operatorname{EM}(\mathbf{J}, \Phi), \mathbf{J}=\mathbf{J}_{I, \mathfrak{S}}$ we have $\left\langle\bar{a}_{t}: t \in I\right\rangle$ and $\left\langle a_{\eta}: \eta \in \mathfrak{S}\right\rangle$ such that
(α) M_{1} is the Skolem full of $\left\{\bar{a}_{t}: t \in I, n<n\right\} \cup\left\{a_{\eta}: \eta \in \mathfrak{S}\right\}$
(β) $\bar{a}_{t} \in{ }^{\omega} M_{1}$
(γ) $M_{1} \models \varphi_{n}\left[a_{\eta}, \bar{a}_{n, t}\right]$ iff $\eta(n)=t$ (pedantically we should write $\left.\varphi_{n}\left(a_{\eta}, \bar{a}_{t} \upharpoonright \lg \left(\bar{y}_{n}\right)\right)\right]$
(c) M_{1} is a model of T_{1}

Proof: Let I be an infinite linear order. We can find $M_{1} \models T_{1}$ and sequence

$$
\begin{aligned}
& \left\langle\bar{a}_{q}: q \in I\right\rangle, \bar{a}_{\alpha} \in{ }^{\omega}\left(M_{1}\right) \text { such that for every } \\
& \eta \in{ }^{\omega} I,\left\{\varphi_{n}\left(x, \bar{a}_{q}\right)^{\text {if }(\eta(n)=q)}: q \in I, n<\omega\right\} .
\end{aligned}
$$

Now w.l.o.g. $\left\langle\bar{a}_{q}: q \in I\right\rangle$ is an indiscernible sequence in M_{1}. W.l.o.g. M_{1} is λ^{+}-saturated, we then expand M_{1} to M_{1}^{+}by function $F_{n}^{M_{1}^{+}}(n<\omega$), (of finite arity) such that $F_{n}\left(\bar{a}_{q_{0}}, \bar{a}_{q_{1}}, \ldots \bar{a}_{q_{n-1}}\right)$ or more exactly $F_{n}\left(\bar{a}_{q_{0}} \backslash \lg \bar{y}_{0}, \bar{a}_{q_{1}} \upharpoonright \lg \left(\bar{y}_{1}\right), \ldots, \bar{a}_{q_{n-1}}\left\lceil\lg \left(\bar{y}_{n-1}\right)\right)\right.$ realizes in M_{1} the type $\left\{\varphi_{\ell}\left(x, \bar{a}_{q}\right)^{\text {if }(\eta(\ell)=q)}: q \in I, \ell<n\right\}$. W.l.o.g. $\left\langle\bar{a}_{q}: q \in I\right\rangle$ is an indexed
sequence in M_{1}. Let D be a non-principal ultrafilter on ω and in $M_{2}^{+}=\left(M_{1}^{+}\right)^{\omega} / D$, we let $\bar{a}_{q}=\left\langle\bar{a}_{q}: n\langle\omega\rangle / D\right.$, and
$\bar{a}_{\eta}=\left\langle F_{n}\left(\bar{a}_{\eta(0)}, \bar{a}_{\eta(1)}, \ldots, \bar{a}_{\eta(n-1)}\right): n<\omega\right\rangle / D$ for $\eta \in{ }^{\omega} I$. Now has the right vocabulary and from the quantifier free types realized by $\left\langle\bar{a}_{q}: q \in I\right\rangle \frown\left\langle\bar{a}_{\eta}: \eta \in{ }^{\omega} I\right\rangle$ in M_{2}^{+}we can read Φ.

As in [Shear, III].
Claim 5.4. Assume $\mathbf{J}_{1}, \mathbf{J}_{2} \in K^{o i}$, and $\Phi, \bar{\varphi}, T_{1}, T$ as in 6.3. A sufficient condition for $E M_{\tau(T)}\left(\mathbf{J}_{1}, \Phi\right) \nsucceq E M_{\tau(T)}\left(\mathbf{J}_{2}, \Phi\right)$ is
$\left(^{*}\right)$ if f is a function from \mathbf{J}_{1} (i.e. its universe) into $\mathcal{M}_{\left|T_{1}\right|, \aleph_{0}}\left(\mathbf{J}_{2}\right)$ (i.e. the free algebra generated by $\left\{x_{t}: t \in \mathbf{J}_{1}\right\}$ the vocabulary $\tau_{\left|T_{1}\right|, \aleph_{0}}=$ $\left\{F_{\alpha}^{n}: n<\omega\right.$ and $\left.\alpha<\left|T_{1}\right|\right\}, F_{\alpha}^{n}$ has arity n, see [Shear, III 1]) we can find $t \in P^{\mathbf{J}_{1}}, n<\omega$, and $s_{1}, s_{2} \in Q^{\mathbf{J}_{1}}$ such that:
$(\alpha) F_{n}^{\mathbf{J}_{1}}(t)=s_{1} \neq s_{2}$
(β) $f\left(s_{\ell}\right)=\sigma\left(r_{0}^{\ell}, \ldots, r_{k-1}^{\ell}\right)$ so $k<\omega, r_{t}^{\ell} \in \mathbf{J}_{2}$ for $i<k$ so σ is a $\tau_{\left|T_{1}\right|, \aleph_{0}}$-term not dependent on ℓ
$(\gamma) f(t)=\sigma^{*}\left(r_{0}, \ldots, r_{m-1}\right), \sigma^{*}$ is a $\tau_{\left|T_{1}\right|, \aleph_{0}}$-term and $r_{0}, \ldots, r_{m-1} \in$ \mathbf{J}_{2}
(δ) the sequences

$$
\begin{aligned}
& \left\langle r_{i}^{1}: i<k\right\rangle \frown\left\langle r_{i}: i<m\right\rangle \\
& \left\langle r_{i}^{2}: i<k\right\rangle \nearrow\left\langle r_{i}: i<m\right\rangle
\end{aligned}
$$

realize the same quantifier free type in \mathbf{J}_{2} (note: we should close by the $F_{n}^{\mathbf{J}_{2}}$, so type mean the truth value of the inequalities $F_{n_{1}}\left(r^{\prime}\right) \neq F_{n_{2}}\left(r^{\prime}\right)$ (including F_{ω}) and the order between those terms)

Proof: As in [Shear, III].
Remark: We could have replaced Q by the disjoint union of $\left\langle Q_{n}^{\mathbf{J}}: n<\omega\right\rangle,<^{\mathbf{J}}$ linearly order each $Q_{n}^{\mathbf{J}}\left(\right.$ and $<^{\mathbf{J}}=\cup\left\{<\upharpoonright Q_{n}^{\mathbf{J}_{1}}: n<\omega\right\}$ and use Q_{n} to index parameters for $\varphi_{n}\left(x, \bar{y}_{n}\right)$. Does not matter. If you like just to get the main point for $\left[\mathrm{S}^{+}\right]$, i.e. to show that \aleph_{0}-independent is a relevant dividing line note the following claim.

Claim 5.5. Assume $\left(\Phi, \bar{\varphi}, T, T_{1}\right)$ is an in 6.3 and $\lambda=\lambda^{<\lambda}$. Then for some λ-complete λ^{+}. c.c. forcing notion \mathbb{Q} we have: $\Vdash_{\mathbb{Q}}$ "there are $\mathbf{J}_{1}, \mathbf{J}_{2} \in K^{\text {oi }}$ of cardinality λ such that $E M_{\tau(T)}\left(\mathbf{J}_{1}, \Phi\right), E M_{\tau(T)}\left(\mathbf{J}_{2}, \Phi\right)$ are $E F_{\alpha, \lambda}$ equivalent for every $\alpha<\lambda$ but are not isomorphic".

Remark 5.6. It should be clear that we can improve it allowing $\alpha<\lambda^{+}$and replacing forcing and e.g. $2^{\lambda}=\lambda^{+}+\lambda=\lambda^{<\lambda}$, but anyhow we shall get better result

Proof: We define \mathbb{Q} as follows
$\circledast 1 p \in \mathbb{Q}$ iff p consist of the following objects satisfying the following conditions
(a) $u=u^{p} \in\left[\lambda^{+}\right]^{<\lambda}$ such that $\alpha+i \in u \wedge i<\lambda \Rightarrow \alpha \in u$
(b) $<^{p}$ a linear order of u such that

$$
\begin{gathered}
\alpha, \beta \in u \wedge \alpha+\lambda \leq \beta \Rightarrow \alpha<^{p} \beta \\
\alpha<\beta \in u \wedge \alpha \in u \wedge \lambda \mid \alpha \Rightarrow \alpha<^{p} \beta
\end{gathered}
$$

(c) for $\ell=1,2 \quad \mathfrak{S}_{\ell}^{p}$ is a subset of $\left\{\eta \in{ }^{\omega} u: \eta(n)+\lambda \leq \eta(n+1)\right.$ for $n<\omega\}$ such that $\eta \neq \nu \in \mathfrak{S}_{\ell}^{p} \Rightarrow \operatorname{Rang}(\eta) \cap \operatorname{Rang}(\nu)$ is finite; note that in particular $\eta \in \mathfrak{S}_{\ell}^{p}$ is without repetitions
(d) Λ^{p} a set of $<\lambda$ increasing sequence of ordinals from $\left\{\alpha \in u^{p}\right.$: $\lambda \mid \alpha\}$ hence of length $<\lambda$
(e) $\bar{f}^{p}=\left\langle f_{\rho}^{p}: \rho \in \Lambda^{p}\right\rangle$ such that
(f) f_{ρ}^{p} is a partial automorphism of the linear order ($u^{p},<^{p}$) and we let $f_{\rho}^{1, p}=f_{\rho}^{p}, f_{\rho}^{2, p}=\left(f_{\rho}^{p}\right)^{-1}$
(g) if $\eta \in \mathfrak{S}_{\ell}^{p}, \rho \in \Lambda^{p}, \ell \in\{1,2\}$ then $\operatorname{Rang}(\eta)$ is included in $\operatorname{Dom}\left(f_{\rho}^{\ell, p}\right)$ or is almost disjoint to it (i.e. except finitely many "errors").
(h) if $\rho \triangleleft \varrho \in \Lambda^{p}$ then $\rho \in \Lambda^{p}$ and $f_{\rho}^{p} \subseteq f_{\varrho}^{p}$
(i) if $\rho \in \Lambda^{p}$ has limit length then

$$
f_{\rho}^{p}=\cup\left\{f_{\rho\lceil i}^{p}: i<\lg (\rho)\right\}
$$

(j) if $\rho \in \Lambda^{p}$ has length $i+1$ then $\operatorname{Dom}\left(f_{\rho}^{\ell, p}\right) \subseteq \rho(i)$ for $\ell=1,2$
(k) if $\rho \in \Lambda$ and $\eta \in{ }^{\omega}\left(\operatorname{Dom}\left(f_{\rho}^{p}\right)\right)$ then $\eta \in \mathfrak{S}_{1}^{p} \Leftrightarrow\left\langle f_{\rho}^{p}(\eta(n)): n<\right.$ $\omega\rangle \in \mathfrak{S}_{2}^{p}$
(ℓ) if $\rho_{n} \in \Lambda^{p}$ for $n<\omega$ and $\rho_{n} \triangleleft \rho_{n+1}$ and $\lambda>\aleph_{0}$ then $\cup\left\{\rho_{n}: n<\right.$ $\omega\} \in \Lambda$
\circledast_{2} We define the order on \mathbb{Q} as follows: $p \leq q$ iff $(p, q \in \mathbb{Q}$ and $)$
(a) $u^{p} \subseteq u^{\varphi}$
(b) $\leq^{p}=\leq^{q} \upharpoonright u^{p}$
(c) $\mathfrak{S}_{\ell}^{p} \subseteq \mathfrak{S}_{\ell}^{q}$ for $\ell=1,2$
(d) $\Lambda^{p} \subseteq \Lambda^{q}$
(e) if $\rho \in \Lambda^{p}$ then $f_{\rho}^{p} \subseteq f_{\rho}^{q}$
(f) if $\eta \in \mathfrak{S}_{\ell}^{q} \backslash \mathfrak{S}_{\ell}^{p}$ then $\operatorname{Rang}(\eta) \cap u^{p}$ is finite
(g) if $\rho \in \Lambda^{p}$ and $f_{\rho}^{p} \neq f_{\rho}^{q}$ then $u^{p} \subseteq \operatorname{Dom}\left(f_{\rho}^{\ell, q}\right)$ for $\ell=1,2$
(h) if $\rho \in \Lambda^{p}$ and $\ell \in\{1,2\}, \alpha \in u^{p} \backslash \operatorname{Dom}\left(f_{\rho}^{\ell, p}\right)$ and $\alpha \in \operatorname{Dom}\left(f_{\rho}^{\ell, q}\right)$ then $f_{\rho}^{\ell, p}(\alpha) \notin u^{p}$
(i) if $n<\omega$ and $\rho_{k} \in \Lambda^{p}, \ell_{k} \in\{1,2\}$ for $k<n$ and $\alpha_{k} \in u^{q}$ for $k \leq \gamma, f_{\rho}^{\ell_{k}, q}\left(\alpha_{k}\right)=\alpha_{k+1}$ for $k<n$, and for no $k, \ell_{k} \neq$ $\left.\ell_{k+1} \wedge(\exists \rho)\left[\rho \unlhd \rho_{k} \wedge \rho \unlhd \rho_{k+1} \wedge \alpha_{k} \in \operatorname{Dom}\left(f_{\rho}^{\ell_{k}, p}\right)\right)\right]$ and $\alpha_{0}=\alpha_{n}$ then $\alpha_{0} \in \operatorname{Dom}\left(f_{\rho_{0}}^{\ell, p}\right)$.
Having defined the forcing notion \mathbb{Q} we start to investigate it.
$\circledast_{3} \mathbb{Q}$ is a partial order of cardinality λ^{+}
$\circledast_{4} \quad$ (i) if $\bar{p}=\left\langle p_{i}: i<\delta\right\rangle$ is $\leq{ }^{\mathbb{Q}}$-increasing, δ a limit ordinal $<\lambda$ of uncountable cofinality then $p_{\delta}:=\cup\left\{p_{i}: i<\delta\right\}$ defined naturally is an upper bound of \bar{p}
[Why? think]
(ii) if $\delta<\lambda^{+}$is a limit ordinal of cofinality \aleph_{0} and the sequence $\bar{p}=\left\langle p_{i}: i<\delta\right\rangle$ is increasing (in \mathbb{Q}), then it has an upper bound. [We define $q \in \mathbb{Q}$ as follows: $u^{q}=\cup\left\{u^{p_{i}}: i<\delta\right\},<^{q}=\cup\left\{<^{p_{i}}\right.$: $i<\delta\}, \Lambda^{q}=\cup\left\{\Lambda^{p_{i}}: i<\delta\right\} \cup\{\rho: \rho$ is an increasing sequence of ordinals from u^{q} of length a limit ordinal of cofinality \aleph_{0} such that $\left.\varepsilon<\lg (\rho) \Rightarrow \rho \mid \varepsilon \in \cup\left\{\Lambda^{p_{i}}: i<\delta\right\}\right\}$. Lastly \mathfrak{S}_{ℓ}^{q} is the closure of $\left.\cup \mathfrak{S}_{\ell}^{p_{i}}: i<\delta\right\}$ under clause (g) of \circledast_{1}, where by clauses (f)-(i) of \circledast_{2} this works MORE DETAILS.]
$\circledast_{5} \mathbb{Q}$ satisfies the λ^{+}-c.c.
[Why? use \triangle-system lemma and check]
\circledast_{6} if $\alpha<\lambda^{+}$then $\mathcal{I}_{\alpha}^{1}:=\left\{p \in \mathbb{Q}: \alpha \in u^{p}\right\}$ is dense and open
[Why? Easy]
\circledast_{7} if $\varrho \in \Lambda^{*}:=\left\{\rho: \rho\right.$ is an increasing sequence of ordinals $<\lambda^{+}$divisible by λ of length $<\lambda\}$ then $\mathcal{I}_{\varrho}^{2}=\left\{p \in \mathbb{Q}: \varrho \in \Lambda^{p}\right\}$ is dense open
[Why? let $p \in \mathbb{Q}$ by $\circledast_{6}+\circledast_{4}$ there is $q \geq p$ such that $\operatorname{Rang}(\varrho) \subseteq u_{1}^{q}$. If $\varrho \in \Lambda^{q}$ we are done otherwise define q^{\prime} as follows: $u^{q^{\prime}}=u^{q},<^{q^{\prime}}=<^{q}$ $, \mathfrak{S}_{\ell}^{q^{\prime}}=\mathfrak{S}_{\ell}^{q}, \Lambda^{q^{\prime}}=\Lambda^{q} \cup\left\{\varrho \upharpoonright \varepsilon: \varepsilon \leq \lg (\varrho\}\right.$ and if $i \leq \lg (\varrho)$, $\varrho i \notin \Lambda^{q}$ then we let $f_{\varrho\lceil i}^{q^{\prime}}=\cup\left\{f_{\rho}^{q}: \rho \in \Lambda^{q}\right.$ and $\left.\left.\rho \triangleleft \varrho \varrho i\right\}\right]$
\circledast_{8} For ϱ as in \circledast_{7} and $\alpha<\lambda^{+}$and $\ell \in\{1,2\}$

$$
\mathcal{I}_{\varrho, \alpha, \ell}^{3}=\left\{p \in \mathbb{Q}: \alpha \in \operatorname{Dom}\left(f_{\varrho}^{\ell, p}\right) \text { so } \varrho \in \Lambda^{p}, \alpha \in u^{p}\right\} \text { is dense open }
$$

[Why? for any $p \in \mathbb{Q}$ there is $p^{1} \geq p$ such that $\varrho \in \Lambda^{p_{1}}, \alpha \in u^{p_{1}}$, now use disjoint amalgamation]
\circledast_{9} define $\mathbf{J}_{\ell} \in K_{\lambda}^{o i}$ a \mathbb{Q}-name as follows:

$$
\begin{gathered}
Q^{\mathbf{J}_{\ell}}=\lambda^{+} \\
\mathfrak{S}^{\mathbf{J}_{\ell}}=\cup\left\{\mathfrak{S}_{\ell}^{p}: p \in G_{\mathbb{Q}}\right\} \\
<^{\mathbf{J}_{\ell}}=\cup\left\{<^{p}: p \in G_{\mathbb{Q}}\right\}
\end{gathered}
$$

$F_{n}^{\mathbf{J} \ell}$ is a unary function, the identity on λ^{+}and

$$
\eta \in \mathfrak{S}^{\mathbf{J}_{\ell}} \Rightarrow F_{n}^{\mathbf{J}_{n}}(\eta)=\eta(n)
$$

$\circledast_{10} \vdash_{\mathbb{Q}}$ " $\mathbf{J}_{\ell} \in K_{\lambda+}^{o i}$ for $\ell=1,2$
[Why? think]
$\circledast_{11} \vdash_{\mathbb{Q}}{ }^{\text {" }} E M_{\tau(T)}({\underset{\mathbf{J}}{1}}, \Phi), E M_{\tau(T)}\left({\underset{\sim}{\mathbf{J}}}_{2}, \Phi\right)$ are $E F_{\lambda, \lambda^{+}}$-equivalent (i.e. games of length $<\lambda$, and the player INC chooses sets of cardinality $<\lambda^{+}$).
[Why? recall $\Lambda^{*}=\{\rho: \rho$ is an increasing sequence of ordinals $<\lambda^{+}$divisible by λ of length $\left.<\lambda\right\}$ (is the same in \mathbf{V} and $\mathbf{V}^{\mathbb{Q}}$). For $\rho \in \Lambda^{*}$ let $\underset{\sim}{f}{ }_{\rho}=\cup\left\{f_{\rho}^{p}: \rho \in \underset{\sim}{G}, \rho \in \Lambda^{p}\right\}$. Easily $\Vdash_{\mathbb{Q}}{ }^{"}{\underset{\sim}{f}}_{\rho}$ an isomorphism from $\mathbf{J}_{1} \backslash \sup \operatorname{Rang}(\rho)$ onto $\mathbf{J}_{2} \upharpoonright \operatorname{supRang}(\rho)$ where for any $\delta<\lambda^{+}$(divisible by λ),

$$
\mathbf{J}_{\ell} \upharpoonright \delta=\left(\left(\delta \cup\left(P^{\mathbf{J}_{\ell}} \cap \omega \delta\right), Q^{M} \cap \delta, P^{M} \upharpoonright \delta, F_{n}^{\mathbf{J}_{\ell}} \upharpoonright\left(\delta \cup\left(P^{\mathbf{J}_{\ell}} \cap \omega \delta\right)\right)\right) .\right.
$$

Also $\rho \triangleleft \varrho \Rightarrow \vdash_{\mathbb{Q}}{\underset{\sim}{f}}_{\rho} \subseteq{\underset{\sim}{\varrho}}_{\varrho}$. So $\left\langle f_{\rho}: \rho \in \Lambda^{*}\right\rangle$ exemplify the equivalence]

Remark: Note that $\lambda \mid \delta \wedge \delta<\lambda^{+} \wedge \delta \in \operatorname{Dom}\left(f_{\rho}\right) \Rightarrow\left\{f_{\rho}(\alpha): \alpha<\delta\right\}=\delta$
So to finish we need just \circledast_{13} but first
\circledast_{12} for $p \in \mathbb{Q}$ let $\mathbf{J}_{\ell}^{p} \in K^{o i}$ has universe $u^{p} \cup \mathfrak{S}_{\ell}^{p},<^{\mathbf{J}_{\ell}}=<^{p}, Q^{\mathbf{J}_{\ell}^{p}}=$ $u^{p}, F_{n}^{\mathbf{J}_{\ell}^{p}}(\eta)=\eta(n)$. We do not distinguish
$\circledast_{13} \vdash_{\mathbb{Q}}$ " $M_{1}=E M_{\tau(T)}\left(\mathbf{J}_{1}, \Phi\right), M_{\sim} M_{2}=E M_{\tau(T)}\left(\mathbf{J}_{2}, \Phi\right)$ are not isomorphic"
Why? let $M_{\ell}^{+}=E M\left(\mathbf{J}_{1}, \Phi\right)$, and assume toward contradiction that $p \in \mathbb{Q}$, and $p \Vdash_{\mathbb{Q}}$ " g is an isomorphism from M_{1} onto M_{2} ". For each
$\delta \in S_{\lambda}^{\lambda^{+}}:=\left\{\delta<\lambda^{+}: \operatorname{cf}(\delta)=\lambda\right\}$ we can find $p_{\delta} \in \mathbb{Q}$ and g_{δ} such that:

- (a) $p \leq p_{\delta}, \delta \in u^{p_{\delta}}$
(b) $p_{\delta} \Vdash{ }^{\Vdash} g_{\delta}$ is $\underset{\sim}{g} \upharpoonright E M\left(\mathbf{J}^{p_{\delta}}, \Phi\right) "$
(c) g_{δ} is an isomorphism from $E M_{\tau(T)}\left(\mathbf{J}_{1}^{p}, \Phi\right)$ onto $E M_{\tau(T)}\left(\mathbf{J}_{2}^{p}, \Phi\right)$.

We can find stationary $S \subseteq S_{\lambda}^{\lambda^{+}}$and p^{*} such that
\square_{2} (a) $p_{\delta}\left\lceil\delta\right.$, naturally defined is p^{*} for $\delta \in S$.
(b) for $\delta_{1}, \delta_{2} \in S, u^{p_{\delta_{1}}}, u^{p \delta_{2}}$ has the same order type and the order preserving mapping $\pi_{\delta_{1}, \delta_{2}}$ from $u^{p_{\delta_{2}}}$ onto $u^{p_{\delta_{1}}}$ induce an isomorphism from $p_{\delta_{2}}$ onto $p_{\delta_{1}}$.

Now choose $\eta^{*}=\left\langle\delta_{n}^{*}: n\langle\omega\rangle\right.$ such that
$\boxtimes_{3} \quad$ (c) $\delta_{n}^{*}<\delta_{n+1}^{*}$
(d) $\delta_{n}^{*}=\sup \left(S \cap \delta_{n}^{*}\right)$

We define $q \in \mathbb{Q}$ as follows
$\oplus_{4} \quad(\mathrm{e}) u^{q}=\cup\left\{p_{\delta_{n}^{*}}: n<\omega\right\}$
(f) $<^{q}=\left\{(\alpha, \beta): \alpha<_{n}^{p_{\delta} *} \beta\right.$ for some n or for some $m<m, \alpha \in$ $u^{p_{\delta_{m}^{*}}} \backslash \delta_{m}^{*}, \beta \in u^{p_{\delta_{n}^{*}}} \backslash \delta_{n}^{*}$
(g) $\mathfrak{S}_{1}^{q}=\cup\left\{\mathfrak{S}_{1}^{p_{\delta_{n}^{*}}}: n<\omega\right\} \cup\left\{\eta^{*}\right\}$
(h) $\mathfrak{S}_{2}^{q}=\cup\left\{\mathfrak{S}_{2}^{p_{\rho_{n}^{*}}}: n<\omega\right\}$
(i) $\Lambda^{q}=\cup\left\{\Lambda^{p_{\delta_{n}^{*}}}: n<u\right\}$
(j) $f_{\rho}^{q}=f_{\rho}^{p_{\delta_{n}^{*}}}$ if $\rho \in \Lambda^{p_{\delta_{n}^{*}}}$

Now q forces contradiction.
6.

Our aim is
Theorem 6.1. Let $T \subseteq T_{1}$ be complete f.o., T is \aleph_{0}-independent or unstable. Some non-isomorphic $M_{1}, M_{2} \in P C\left(T_{1}, T\right)$ of cardinality λ are $E F_{\alpha, \lambda^{-}}$ equivalent when $\lambda=\lambda^{\aleph_{0}}=\operatorname{cf}(\lambda)>\left|T_{1}\right|+\aleph_{1}$

Proof: If T is \aleph_{0}-independent. We can find Φ as in 5.3 (for T, T_{1}). If T is not \aleph_{0}-independent but is unstable we can find Φ satisfies the conclusion of 5.3 except that for some $\varphi(\bar{x}, \bar{y}) \in \mathbb{L}\left(\tau_{\varphi}\right)$ which linearly order some infinite set of m-types is some model of $T, m=\lg (\bar{x})=\lg (\bar{y})$ we replace clause (c) there by
(c)' $M \models \varphi\left[\bar{a}_{\eta}, \bar{a}_{\nu}\right]$ iff $\eta<_{\ell x}^{\mathbf{J}} \nu$ which mean $\eta, \nu \in \mathbf{J}$, and $I^{\mathbf{J}} \models \eta<\nu$ or $\eta \in P^{\mathbf{J}}, \nu \in Q^{\mathbf{J}}$ or for some $n, m<n \rightarrow F_{m}^{\mathbf{J}}(\eta)=F_{m}^{\mathbf{J}}(\nu)$ and $I^{\mathbf{J}} \models$

$$
" F_{n}^{\mathbf{J}}(\eta)<F_{n}^{\mathbf{J}}(\nu) .
$$

$(e)\left\langle\bar{a}_{\eta}: \eta \in \mathbf{J}\right\rangle$ an indiscernible sequence in M_{1}.
Now use Definition 6.2 and claims 6.3,6.5 below.

Definition 6.2. (1) We say \mathbf{y} is an ordered full λ-parameter if
(a) $\mathbf{y}=(\mathfrak{x},<, s, t)=\left(\mathfrak{x}_{\mathbf{y}},<_{\mathbf{y}}, s_{\mathbf{y}}, t_{\mathbf{y}}\right)$
(b) \mathfrak{x} is a full λ-parameter, see Definition 1.1(1A), so $M_{\mathbf{y}}=: M_{\mathfrak{x}}$ is from Definition 1.4
(c) $s \in I_{\mathfrak{x}}, t \in J_{s}^{\mathfrak{k}}$
(d) $<_{\mathbf{y}}$ is a linear order of $J_{\mathfrak{x}}$ such that
(e) $J_{s}^{\mathfrak{t}}$ is a convex subset of $J_{\mathfrak{x}}$ for each $s \in I_{\mathfrak{x}}$
(f) may add: in J_{s} there is a first element (hence in \mathbb{G}_{s}, every element has an immediate successor and an immediate predecessor).
(1A) We let $I_{\mathbf{y}}=I_{\mathfrak{x}}$ etc., and $s_{1}<_{\mathbf{y}} s_{2}$ where $s_{1}, s_{2} \in I_{\mathbf{y}}$ mean $\mathbf{s}_{t_{1}}=$ $s_{1} \wedge \mathbf{s}_{t_{2}}=s_{2} \Rightarrow t_{1}<_{\mathbf{y}} t_{2}$. We use $\leq_{\mathbf{y}}$ also for the following linear order on each \mathbb{G}_{s} and on $M_{\mathbf{y}}$
(a) for $s \in I_{\mathfrak{x}},\left(\mathbb{G}_{s}, \leq_{\mathbf{y}}\right)$ is an ordered abelian group, $\mathbb{G}_{s}=\mathbb{G}_{s}^{\mathbf{y}}$ is the abelian group generated freely by $\left\{x_{t}: \mathrm{s}_{t}=s\right\}$ and for $n<$ $\omega, t_{0}<_{\mathbf{y}} t_{1}<_{\mathbf{y}} \ldots<_{\mathbf{y}} t_{n-1} \in J_{s}$ and $a_{0}, a_{1}, \ldots a_{n-1} \in \mathbb{Z} \backslash\{0\}$ we have $0_{\mathbb{G}_{s}}<_{\mathbf{y}} \sum_{i=1}^{n} a_{i} x_{t_{i}}$ iff $a_{n-1}>0$ so $n>0$.
(c) for $s_{1}<_{\mathbf{y}} s_{2}$ all member of $\left\{s_{1}\right\} \times \mathbb{G}_{s_{1}}$ are $<_{\mathbf{y}}$ below those of $\left\{s_{2}\right\} \times \mathbb{G}_{s_{2}}$
(3) Let $\mathfrak{S}_{\mathbf{y}}=\left\{\eta: \eta\right.$ an ω-sequence from $\left.\left(M_{\mathbf{y}},<_{\mathbf{y}}\right)\right\}$.
(4) We define a graph $H_{\mathbf{y}}$ on $\{1,2\} \times \mathfrak{S}_{\mathbf{y}}$: it consist of the pairs $\left\{\left(1, \eta_{1}\right),\left(2, \eta_{2}\right)\right\}$ such that $\eta_{1}, \eta_{2} \in \mathfrak{S}_{\mathbf{y}}$ and for some $\alpha<\lambda, \bar{c} \in \mathbf{C}_{I_{2}}^{\mathfrak{t}}$ we have $f_{\bar{c}}^{\mathfrak{t}}$ maps η_{1} to η_{2} so necessarily $n<\omega \Rightarrow \eta_{\ell}(n) \in \operatorname{Dom}\left(f_{\bar{c}}^{\underline{\imath}}\right)$
(5) $E_{\mathbf{y}}$ is the equivalence relation on $\mathfrak{S}_{\mathbf{y}}$ which is being $H_{\mathbf{y}}$-connected.
(6) We say $\left(\mathfrak{S}_{1}, \mathfrak{S}_{2}\right)$ is a \mathbf{y}-candidate when
(a) $\mathfrak{S}_{1}, \mathfrak{S}_{2} \subseteq \mathfrak{S}_{\mathbf{y}}$
(b) if $\left\{\left(1, \eta_{1}\right),\left(2, \eta_{2}\right)\right\} \in H$ then $\eta_{1} \in \mathfrak{S}_{1} \Leftrightarrow \eta_{2} \in \mathfrak{S}_{2}$ (hence $(\{1\} \times$ $\left.\mathfrak{S}_{1}\right) \cup\left(\{2\} \times \mathfrak{S}_{2}\right)$ is closed under E-equivalence.
(7) For $\mathfrak{S} \subseteq \mathfrak{S}_{\mathbf{y}}$ let $\mathbf{J}_{\mathbf{y}, \mathfrak{G}}=J_{I, \mathfrak{S}}$ where I is the linear order $\left(\left|M_{\mathbf{y}}\right|,<_{\mathbf{y}}\right)$, clearly $\mathbf{J}_{\mathbf{y}, \mathfrak{S}} \in K_{\lambda}^{o i}$
Claim 6.3. (1) Assume \mathbf{y} is an ordered full λ-parameters satisfying $\circledast_{2, \alpha}$ from 1.11(2) and $\left(\mathfrak{S}_{1}, \mathfrak{S}_{2}\right)$ is a \mathbf{y}-candidate and $\Phi, \bar{\varphi}, T_{1}, T$ are as in 6.3. Then $E M_{\tau(T)}\left(\mathbf{J}_{\mathbf{y}, \mathfrak{S}_{1}}, \Phi\right), E M_{\tau(T)}\left(\mathbf{J}_{\mathbf{y}, \mathfrak{S}_{2}}, \Phi\right)$ are $E F_{\alpha, \lambda^{-}}$ equivalent for every $\alpha<\alpha_{\mathbf{y}}^{*}$

Proof: Recall that for any $\bar{c} \in \mathbf{C}_{\mathfrak{x}}, f_{\bar{c}}^{\mathfrak{l}}$ is a partial automorphism of $M_{\mathfrak{x}}$ (in fact an automorphism of $M_{I[\bar{c}]}^{\mathfrak{x}}$ where $\bar{c} \in \mathbf{C}_{I[\bar{c}]}^{\mathfrak{x}}$, so $I[\bar{c}] \subseteq I$ is uniquely determined by $\bar{c})$. Let $f_{\bar{c}}^{\mathfrak{q}}$ be the partial mapping from $J_{y, \mathfrak{S}_{1}}$ to $\mathbf{J}_{\mathbf{y}, \mathfrak{S}_{2}}$ defined by $x \in M_{I[\bar{c}]}^{\mathfrak{v}} \Rightarrow f_{\bar{c}}^{\mathfrak{v}}(x)=f_{\bar{c}}^{\mathfrak{v}}(x)$ and

$$
\begin{aligned}
\eta \in \mathfrak{S}_{1} \Rightarrow f_{\bar{c}}^{\mathfrak{l}, *}(\eta)= & \left\langle f_{\bar{c}}^{\mathfrak{l}}(\eta(n)): n<\omega\right\rangle . \text { It is easy to check that } \\
& \operatorname{Rang}\left(f_{\bar{c}}^{\mathfrak{k}, *}\right) \subseteq \mathbf{J}_{y, \mathfrak{S}_{2}} .
\end{aligned}
$$

Now for each $\alpha<\lambda$ we can prove that $\left\{f_{\bar{c}}^{\mathfrak{k}, *}: \bar{c} \in \mathbf{C}_{\mathfrak{r}}\right\}$ exemplifies that M_{1}, M_{2} are $E F_{\alpha, \lambda^{-}}$equivalent exactly as in the proof of 1.10.

Discussion 6.4. Now we need two steps
Step A: Characterize E (or a less fine E)?? effectively.
Step B: Construct $\left(\mathfrak{S}_{1}, \mathfrak{S}_{2}\right)$ such that the criterion from 5.4 unto holds for $\mathbf{J}_{\mathbf{y}, \mathfrak{S}_{1}}, \mathbf{J}_{\mathbf{y}, \mathfrak{S}_{2}}$

Claim 6.5. Assume $\lambda=\lambda^{\aleph_{0}}=\operatorname{cf}(\lambda)>\aleph_{1}+\mid T_{1}$ (we may concentrate on the case $\left.(\forall \alpha<\lambda)\left(|\alpha|^{\aleph_{0}}<\lambda\right)\right)$. Let $\mathfrak{x}=\mathfrak{x}_{\lambda}$ be the full λ-candidate constructed in the proof of 1.12 (hence $\circledast_{4 \alpha}$ for $\alpha<\lambda$ holds by its proof). Then we can find a y-candidate $\left(\mathfrak{S}_{1}, \mathfrak{S}_{2 \text { ? }}\right)$ such that letting $M_{\ell}=M_{\ell}^{+} \upharpoonright \tau(T)$ where $M_{\ell}^{+}=E M\left(J_{\mathbf{y}, \mathfrak{S}_{\ell}}, \Phi\right)$ the models M_{1}, M_{2} are $E F_{\alpha, \lambda}$-equivalent for every $\alpha<\lambda$ but are not isomorphic.

Proof: By renaming $\left|M_{\mathbf{y}}\right|=\lambda$ let $S \subseteq\left\{\delta<\aleph_{0}: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ be stationary and we use the appropriate black box (see [Shear, IV]), $\left\langle\left(N_{\alpha}, \eta_{\alpha}\right): \alpha<\right.$ $\left.\alpha^{*}\right\rangle, \zeta: \alpha^{*} \rightarrow S$ non-decreasing, and $\dot{\zeta}\left(\alpha_{1}\right)=\delta=\dot{\zeta}\left(\alpha_{2}\right) \wedge \alpha_{1} \neq \alpha_{2} \Rightarrow$ $\sup \left(N_{\alpha_{1}} \cap N_{\alpha} \cap \lambda\right)<\delta$ etc. [Maybe: for the sets $N_{\alpha_{1}} \cap \lambda, N_{\alpha_{2}} \cap \lambda$ interlacing is simple]
We choose $\nu_{\alpha} \in{ }^{\omega}\left(\left|N_{\alpha}\right| \cap \lambda\right)$ as used in the later part of the proof (for some $\alpha \in S)$ and let $\mathfrak{S}_{\ell}=\left\{(\ell, \nu)\right.$: for some α, in the graph $H,\left(1, \nu_{\alpha}\right),(\ell, \nu)$ are connected (i.e. finite path) $\}$. The $E F_{\alpha, \lambda^{-}}$equivalence holds by 6.3. To prove the models are not isomorphic assume f is an isomorphism from M_{1} onto M_{2}. [Probably into is enough, not crucial for the main result.]?
For every $\alpha<\lambda$ let $s_{\alpha}=s(\alpha)=\{\alpha\} \in I_{\mathfrak{x}}$, and $t_{\alpha}=t(\alpha) \in J_{s}$. Let $f\left(\left(s_{\alpha}, 0_{\mathbb{G}_{s(\alpha)}}\right)\right)=\sigma_{\alpha}\left(a_{r(\alpha, 0)}, \ldots, a_{r(\alpha, n(\alpha)-1)}\right)$ where $r(\alpha, \ell) \in J_{\mathbf{y}} \cup \mathfrak{S}_{2}$. By earlier remark w.l.o.g. $r(\alpha, \ell) \in \mathfrak{S}_{2}$. Let $S_{1}=\left\{\delta<\lambda: \operatorname{cf}(\delta)>\aleph_{0}\right\}$ and
assuming for simplicity $(\forall \beta<\lambda)\left(|\beta|^{\aleph_{0}}<\lambda\right)$ for the time being, there is a stationary $S_{2} \subseteq S_{1}$ such that
(a) $\delta \in S_{2} \Rightarrow \sigma_{\delta}=\sigma_{*}$ so $\delta \in S_{2} \Rightarrow n(\delta)=n(*)$.
(b) for each $n<n(*), k<\omega$ one of the following occurs
(α) for $\delta \in S, r(\delta, n)(k) \in J_{\mathbf{y}}$, so in fact
(β) $r(\delta, n)(k)=\sum_{\ell<\ell(2)} a_{\delta, k, n, \ell} t_{\delta, k, n, \ell}$ where $t_{\delta, k, n, 0}<\mathbf{y} \ldots<_{\mathbf{y}} t_{\delta, k, n, \ell, \alpha}$
$(\gamma) t_{\delta, k, n, \ell} \in J_{s, \delta, k, n}$ and
(δ) $s_{\delta, k, 0}<_{\mathbf{y}} \ldots<_{\mathbf{y}} s_{\delta, k, \ell(n)-1} \in I_{\mathbf{y}}$
(ϵ) $s_{\delta, k, n} \cap \delta=u_{k, n}^{*}$ kak? mqur lo mxuq [[so $\left\langle\left(g^{t_{\delta, k, n, \ell}}, h^{t_{\delta, k, n, \ell}}\right)\right.$: $\left.\delta \in S_{2}\right\rangle$ is like a \triangle-system.]]
(c) (α) $s_{\delta, k, n} \subseteq \operatorname{Min}\left(S_{2} \backslash(\delta+1)\right)$ moreover if $t \in\left\{t_{\delta, k, n, \ell}: k, n, \ell\right\}$ then $\operatorname{Rang}\left(h^{t}\right) \cup \operatorname{Rang}\left(g^{t}\right) \subseteq \operatorname{Min}\left(S_{2} \backslash(\delta+1)\right.$
Now we choose $\beta<\alpha^{*}$ (the α^{*} of the B.B) such that N_{β} guess this situation, in particular
(*) (a) N_{β} is closed under f
(b) $S_{2} \cap N_{\beta}$ is $P^{N_{\beta}}$, for a fine predicate P relation of N_{β} and the function $\delta \mapsto\left\langle s_{\delta, k, n}, t_{\delta, k, n, \ell}: k, n, \ell\right\rangle$ is $F^{N_{\beta}}$, for some fixed function symbol F is $P^{N_{\beta}}$, for a fine predicate P.
Now we can choose $\nu_{\beta} \in{ }^{\omega}\left(S_{2} \cap N_{\beta}\right)$ increasing with limit $\dot{\zeta}(\beta) \in S$. Note: each $\nu_{\beta}(n)$ has $<_{J_{y}}$-successor which we call $\rho_{\beta}(n)$ (see clause (f) of Definition 6.2(1)). The type of $f\left(a_{\nu_{\beta}}\right)$ "mark" the $q_{\nu_{\beta}(n)}$. The rest should be straight. FILL

The $(\exists \mu)\left(\mu<\lambda=\operatorname{cf}(\lambda) \leq \mu^{\aleph_{0}} \wedge \lambda>2^{\aleph_{0}}\right.$: Should be similar somewhat more complicated case.
λ singluar case have not thought.
The unstable case
Question: The case
(a) set theory $\aleph_{1}=\operatorname{cf}(\lambda)<\operatorname{cf}(\mu)<\mu<\lambda<\lambda^{\aleph_{0}} \leq 2^{\mu}$, -
(b) model theory: $T=$ the theory of the rational order, T_{1} - make it home, see Droste ...

Question: Karp complexly?? [for Chris ??] for $\mathbb{L}_{\infty, \kappa}$, for simplicity $\left(2^{\aleph_{0}}\right)^{+}<\kappa=\operatorname{cf}(\kappa),(\forall \alpha<\kappa)\left(|\alpha|^{\aleph_{0}}<\kappa\right.$.
first case: depth $\gamma<\kappa$. second case: arbitrary γ.

Discussion 6.6. Given κ, γ we use the linear order $I=\{(\alpha, \eta): \alpha<\kappa, \eta \in$ $d ? ?(\gamma)\}$, ordered but $\left(\alpha_{1}, \eta_{1}\right) \leq_{I}\left(\alpha_{2}, \eta_{1}\right)$ iff $\alpha_{1}<\alpha_{2} \vee\left(\alpha_{1}=\alpha_{2} \wedge \lg \eta_{1}<\right.$ $\left.\lg \eta_{2}\right), \wedge\left(\alpha_{1}=\alpha_{2} \wedge \lg \eta_{1}=\lg \eta_{2} \wedge \eta_{1}<_{\ell x} \eta_{2}\right.$ (or simpler)
In the depth we use $\overline{\mathbf{a}}_{\eta}=\left\langle a_{\alpha(\eta)}: \alpha<\kappa\right\rangle$. All as in [LS03]. But we have to do a specific work here: for every pretender to an $\overline{\mathbf{a}}_{\eta}$ there is
$\left\langle\sigma\left(\ldots, a_{\left(\alpha_{\epsilon, \ell}, \eta_{\epsilon, \ell}\right)}, \ldots\right)_{\ell<n_{*}}: \epsilon<\kappa\right\rangle, n_{*}>1$ if possible we give witness to its being a "composite"; similarly for a pair of $\left(\bar{a}^{\prime}, \bar{a}^{\prime \prime}\right)$ of pretenders.

References

[HS07] Chanoch Havlin and Saharon Shelah, Existence of EF-equivalent non-isomorphic models, MLQ Math. Log. Q. 53 (2007), no. 2, 111-127, arXiv: math/0612245. MR 2308491
[LS03] Michael Chris Laskowski and Saharon Shelah, Karp complexity and classes with the independence property, Ann. Pure Appl. Logic 120 (2003), no. 1-3, 263-283, arXiv: math/0303345. MR 1949710
$\left[\mathrm{S}^{+}\right] \quad$ S. Shelah et al., Tba, In preparation. Preliminary number: Sh:F660.
[She00] Saharon Shelah, The generalized continuum hypothesis revisited, Israel J. Math. 116 (2000), 285-321, arXiv: math/9809200. MR 1759410
[She06] , More on the revised GCH and the black box, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 133-160, arXiv: math/0406482. MR 2224056
[She09] , Dependent first order theories, continued, Israel J. Math. 173 (2009), 1-60, arXiv: math/0406440. MR 2570659
[Shear] \qquad , Non-structure theory, Oxford University Press, to appear.

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA
Email address: shelah@math.huji.ac.il

[^0]: ${ }^{1}$ we also could use abelian groups satisfying $\forall x(x+x=0)$, in this case \mathbb{G}_{s} is the family of finite subsets of J_{2} with the symmetric difference operation also we could use the free abelian group.

