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ON LONG EF-EQUIVALENCE IN NON ISOMORPHIC
MODELS SH836

SAHARON SHELAH

ABSTRACT. There has been a great deal of interest in constructing mod-
els which are non-isomorphic, of cardinality A, but are equivalent under
the Ehrefeuch-Fraissé game of length «, even for every o < A. So under
G.C.H. particularly for A regular we know a lot. We deal here with con-
structions of such pairs of models proven in ZFC, and get their existence
under mild conditions.
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0. INTRODUCTION

There has been much work on constructing pairs of EF,, ,-equivalent non-
isomorphic models of the same cardinality.

In Summer of 2003, Vaanenen has asked me whether we can provably in
ZFC construct a pair of non-isomorphic models of cardinality N; which are
EF,-equivalent even for « like w?. We try to shed light on the problem
for general cardinals. We construct such models for A = cf(\) = A for
every a < A simultaneously and then for singular A = AX0. In subsequent
work [HS07] we shall investigate further: weaken the assumption “\ = \Xo”
(e.g., A = cf(A) > 3,) and we generalize the results for trees with no A-
branches and investigate the case of models of a first order complete T
(mainly strongly dependent). We thank Chanoch Havlin and the referee for
detecting some inaccuracies.

Definition 0.1. (1) We say that My, My are EF,-equivalent if My, M,
are models (with same vocabulary) such that the isomorphism player
has a winning strategy in the game Of(Mj, M2) defined below.

(1A) Replacing a by < a means: for every 8 < «; similarly below.

(2) We say that My, My are E'F, - equivalent when My, My are models
with the same vocabulary such that the isomorphism player has a
winning strategy in the game of (M1, M) defined below.

(3) For My, Ms, o, i as above and partial isomorphism f from M; into
My we define the game Of(f, M1, M) between the player ISO and
AIS as follows:

(a) the play lasts a moves

(b) after § moves a partial isomorphism fg from M; into My is
chosen increasing continuous with

(c) in the 8+ 1-th move, the player AIS chooses Az C My, Aga C
M such that [Ag |+ |Ag2| < 1+ p and then the player ISO
chooses fzy1 2 fg such that

Ap1 € Dom(fs11) and Ag2 C Rang(fs41)

(d) if B =0, ISO chooses fo = f; if § is a limit ordinal ISO chooses
fp= U{f'y ty < B}
The ISO player loses if he had no legal move.

(4) If f = 0 we may write O (M, Mz). If p is 1 we may omit it. We
may write < yu instead of u. The player ISO may be restricted to
choose fg11 such that(Va)(a € Dom(fg11) Aa ¢ Dom(fg) = a €
Ap1V fp41(a) € Apo)

1. THE CASE OF REGULAR )\ = \Xo

Definition 1.1. (1) We say that ¢ is a A-parameter if ¢ consists of
(a) a cardinal A and ordinal a* < A
(b) aset I, and a set S C I x I (where we shall have compatibility
demand)

See https://shelah.logic.at/papers/836/ for possible updates.
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(c) a function u: I — P(A); we let ug = u(s) for s € I
(d) aset J and a function s : J — I, we let s; = s(t) for ¢t € J and
for se I welet Js={te J:s =s}
(e) aset T'C J x J such that (t1,t2) € T = (s¢,,81,) €S
(1A) We say ¢ is a full A- parameter if in addition it consists of:
(f) a function g with domain J such that g; = g(¢) is a non-
decreasing function from ug) to some a < o*
(g) a function h with domain J such that h; = h(¢) is a non-
decreasing function from ugy) to A
such that
(h) if t1,t0 € J and 8¢, = s = St,,8, = g = 8, and hy, = h =
ht2,a 1 = a = o'2 then t; = to hence we write t = t¢
t“(s, g, h).
(2) We may write a* = of , A = N\, [ = Iy, J = Jp, Js = Js, t%(s,g,h) =
t*¥(s, g, h), etc. Many times we omit ¢ when clear from the context.

s,g.h

Definition 1.2. Let r be a A-parameter.

(1) For s € I, let G§ be the group' generated freely by {x; :t € J;}.
(2) For (s1,s2) € S; let Gy, 5, = G5, 5, by the subgroup of G§, x G,
generated by

{(zty,m1y) = (t1,t2) € T, and t; € JE

R

to € ng}
(3) We say ¢ is (A, 0)-parameter if s € I, = |ug| < 0.

Remark 1.3. (1) We may use S a set of n-tuples from I (or (< w)-tuples)
then we have to change Definitions 1.2(2) accordingly.

Definition 1.4. For a A\-parameter ¢ we define a model M = M, as follows
(where below I = I, etc.).

(A) its vocabulary 7 consist of
(o) Ps, a unary predicate, for s € I;
(B) Qs,,s5, & binary predicate for (s1,s2) € S;
(7) Fs.q, a unary function for s € Iy, a € G
(B) the universe of M is {(s,z) : s € I,z € G}
(C) for s€ I let PM ={(s,2):2 € G}
D) QY ., = {((Slwl) (s2,22)) & (x1,22) € Gy )} for (s1,82) € S
(E) if s € I and a € Gf then F2 is the unary function from P to PM
defined by FM(y) = ay, multlphcatlon in G§ (for y € M\ PM we
can let F2(y) be y or undefined).

Remark 1.5. We can expand M, by the following linear order: let <; linearly
order I and for each s € I; let <} be a linear order of G% such that (Gi, <§)

Lwe also could use abelian groups satisfying Vz(z +x = 0), in this case G, is the family

of finite subsets of J2 with the symmetric difference operation also we could use the free
abelian group.
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is an ordered group, exists as ??F% is free and let <pr,= {((s1, 1)), (s2,%2) :

(s¢, ) € My for £ =1,2 and s1 <; s2 or §1 = s2 A1 <5 T2

Definition 1.6. (1) For ¢ a A-parameter and for I’ C I; let Mj, =
M,TU {PSMI :s€I'} and let I, = I}, = {s € I, : sup(us) < v}

(2) Assume ¢ is a full A\- parameter and 8 < A; for a < ay we let g 8
be the set of g : 8 — « which are non-decreasing; then for g € gi s
(a) we define h = hy : B — X as follows: h(y) = Min{p’ < g: if
B < B then g(8') > g(v)}

(b) welet I, =Ig ={s€I:u, C [ and £ ghus gl 18 Well defined}

(67

(c) we define ¢f = (cf,

g
a’x’
$,9 FUS:hg [us

(3) Let G5 = U{giﬂ 1B <A} and Gy = U{G} : a < a*}.
Definition 1.7. Let r be a A-parameter.

(1) Let C; = U{CY}, : I" C I} where for I' C I, we let C}, = {¢c: ¢ =
(cs : s € I') satisfies ¢; € G§ when s € I’ and (cg,, ¢s,) € Gg, 5, when
(s1,s2) € Sy and s1,s2 € I'}.

(2) For ¢ € C},,I' C I, let f% be the partial function from M, into itself
defined by fi((s,vy)) = (s,ycs) for (s,y) € Pl ser.

(3) M, is Ps-rigid when for every automorphism f of M,, f[PSM‘ is the
identity.

Ds € Iy) by ¢f, = zg . where tg, =

Observation 1.8. 1) Let ¢ be a full A\-parameter. If g : v2 — « where
a < af,72 < A and the function g is non-decreasing, y1 < v2 and (Vy <
Y1)(9(7) < g(n)) then Iy, C Iy and hgpy, C hg and &5 = ¢ [ Igpy, -
2) If g € G* in Definition 1.6(3), then ¢y € C;I;.

g

Claim 1.9. Assume ¢ is a full A-parameter.

1) For I' C I and ¢ € Cﬁ,,fé is an automorphism of M}, which is the
identity iff s € I' = ¢5 = eg, -

2) In (1) forsel, f: [PSM‘ is not the identity iff cs # eg,.

3) If f is an automorphism of M;Q then f | M;l is an automorphism of M}l
for every Iy C I C I.

4) If I' C I and f is an automorphism of M;/, then f = f& for some
(cs:s€l)eCp.

5) If ¢ € CZ fort =1,2 and I C Iy and ¢, = ¢o | 11 then fz, C fz,.

6) The cardinality of My is |J:| + No

Proof: Straight, e.g.

4) For s € I' clearly f((s,eg,)) € PM 50 it has the form (s,cs),cs € Gg and
let ¢ = (¢ : s € I'). To check that ¢ € C}, assume (s1, s2) € Sy; and we have
to check that (cs,,cs,) € Gs,,5,- This holds as ((s1, eg,, ), (52, €G,,)) € Qﬁffs2
by the choice of Q?{f” hence we have ((s1, ¢s,), (52, ¢s,)) = (f(s1, €6, ), f(82,€G,,)) €

M,
Qs 's, hence (cs,,¢s,) € Gg, 5, O g
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Claim 1.10. Let ¢ be a full A-parameter s € Iy and c1,c2 € PM c* € G,
and FMIE (c1) = ca. A sufficient condition for (Mg, c1), (Mg, c2) are EFq -
equwalent where a < of , is the existence of R, I,¢ such that:

® (a) R is a partial order,

(b) I =(I,:r € R) such that I, C I, and ro <pr9 = I, C I,

(c) R is the disjoint union of (Rg : ,B <a),Ry#0

(d) c=(c: r€R> where ¢ € Cy. andry <rg=¢" =2 | I,

and ¢y =c* sose N{l, :r € R}

(e) if (rg B < B*) is <g-increasing, f < [* = rz € Rg and
B* < a then it has an <gr-ub from Rg-

(f) if e Rg,B+1<aandI CI,|I'| <p then (3ra)(r <r €
Rsq AN C ITQ).

Proof: Easy. Using 1.9(1),(5). U0

Claim 1.11. (1) Let ¢ be a A-parameter and I' C I;. A necessary and
sufficient condition for “M;, is Ps-rigid” is
®1 there is no ¢ € C? with ¢ # eg, -

(2) Letr be a full \-parameter and assume that s(x) € I;,a < af,a > w
for notational simplicity and t* € Ji(*)- The models My = (M, (s, eg,)), Ma =
(M, (s,x)) are EFq x-equivalent when:
®20 (i) A s regular, s € I, = |[u§| < A

(ii) if s € Iy and g € G, and ug C Dom (g) then t 7’;“57%[
1s well defined

(iii) f (s1,82) € Sy and t1 = g, , to = tg, . 5. are well
defined then (t1,t2) € T, when for some g € G, we have
gty U g, € g and hy Uhg C hy

(iv) t* = t?(’i),g’hg where g : gy — {0} and hy is constantly
Y =U{y+ 1y €ugw )

Proof

(1) Toward contradiction assume that f is an automorphism of M7, such
that f | PSMI is not the identity. By 1.9(4) for some ¢ € Ci, we have
f=fz So fz 1] PSMZC = f1 PSM" # id hence by 1.9(1) we have
¢s # €g,, contradicting the assumption ®;.

(2) We apply 1.10. For every i < a and non-decreasing function g €
G from some ordinal v = +, into i we define Cg = (cgs s €
Ig,),cgs = (siae ), tgs = b glus gy Let Ri = {g : g a non-
decreasing functlon from some v < A to 144 such that v* <~,¢g [ v*
is constantly zero, v* <y = g(v*) =1} and let R = U{R; : i < a}
ordered by inclusion. Let [ = (I, : g € R) and ¢ = (¢} : g € R). I
is easy to check that (R, I, C) is as required. U141
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Claim 1.12. (1) Assume a* < X = cf(\) = AN, Then for some full
(A, Rp)-parameter ¢ we have |I| = X\ = |J|,af = o and condition
®1 of 1.11(1) holds and for every s(x) € I\{0} condition @34 of
1.11(2) holds whenever o < o*.

(2) Moreover, if s € I,\{0} then for some c1 # ¢ € P and (M,c1), (M, c2)
are EF, \-equivalent for every a < a;‘ but not EFa;A—equivalent.

Claim 1.12(1) clearly implies

Conclusion 1.13. (1) If A = cf(\) = AR a* < X then for some model
M of cardinality A we have:
(a) M has no non-trivial automorphism
(b) for every v < A for some ¢ # co € M, the model (M, cy), (M, c2)
are EF ,-equivalent and even EF, )-equivalent.
(2) We can strengthen clause (b) to: for some ¢ # co for every o < A
the models (M, c1), (M, cz) are EF, y-equivalent.

Proof of 1.12: 1) Assume «, > w for notational simplicity. We define ¢ by

(Ay = A and):
X (a) (a) I={u:uc][\=N}
(8)  the function u is the identity on I
() S={(ur,u2):u; Cug €I}
(6) af=a"
(b) () Jis the set of quadruple (u, «, g, h) satisfying

i vel a<a*
h is a non-decreasing function from u to A

11

— — S S

(
(iii g is a non-decreasing function from u to «
(iv if B1, B2 € wand g(B1) = g(B2) then h(51) = h(B2)
(v) h(p)>p
(B)  let t = (ul,al, gt ht) for t € J so naturally s; = u,
gt = gt7 ht = ht

(v) T ={(t1,t2) € J x J:aht = a2 ult Cul2 plt C At
and g"* C g'2}.
Now
(¥)o ris a full (A, Ry)-parameter
[Why? Just read Definition 1.1 and 1.2(3).]
(x)1 for any s(x) € I\{0}, r satisfies the demands for ®2 o(4), (i1), (i), (iv)
from 1.11(2) for every o < o*
[Why? just check]
(¥)2 if wg C wg € I, we define the function my, u, : Ju, — Ju, by
Tur s (t) = (w1, 0%, g [ g, ht [ uy) for t € Jy,,
[Why is 7y, 4, a function from J,, into J,,,? Just check]
()3 for u; C ug we have
(a) TN (Juy X Juy) = {(Tuy us (t2), t2) = t2 € Jy, } hence
(B) Guyus = {(Fruy us(c2), ¢2) i ca € Gy, } where 7y, 4, € Hom(Gi,,, GY,)
is the unique homomorphism from G}, into G}, mapping z,
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to x¢, whenever my, 4, (t2) =t
[Why? Check.]

(¥)4 if wg Uug C ug € I,t3 € Jy, and ty = my,u,(t3) for £ = 1,2 then
g:,, 8, are compatible functions as well as hy,, hy, and o't = 2
moreover gy, U g, is non-decreasing, hy, U hy, is non-decreasing
[Why? just check]

(x)5 clause ®; of 1.11(1) holds for I’ = I, s(x) € I \ {0}

[Why? Assume ¢ € C7 is such that Cs(x) F €G,,- Foreach u € I,c, is a
word in the generators {x; : t € J,} of G, and let n(u) be the length of this
word and m(u) the number of generators appearing in it.

Now by (*)3 we have u1 C ug = n(u1) < n(uz) Am(u;) < m(ug). As (I, Q)
is Ny-directed, for some u, € I we have u, C u € I = n(u) = n.Am(u) = my,
and let ¢, = (... ,:cigig), .. )e<n, where i(¢) € {1,—1} and t(u, ) € Ji, and
t(u,0) =t(u,€+1) =i(f) =i({+1). Clearly us Cus Cup € [ & ¢ < ny, =
Ty i (H(u2, €)) = t(uy, £)) A 28 = o0 By our assumption toward
contradiction necessarily n, > 0.

As {u : ux C u € I} is directed, by (x)4 above, for each ¢ < n, any two
of the functions {g"*9 : u, C u € I} are compatible so gy =: U{g(®? :
u € I} is a non-decreasing function from A = U{u : u € I} to a* and
he =: U{R*®0 .y, C u € I} is similarly a non-decreasing function from
A to A. It also follows that for some a; we have o =: o) whenever
uy Cu € I in fact aj = attu) is O.K. For each i € Rang(gs) C a; choose
Bei < A such that ge(B,;) = ¢ and let E = {6 < X : § a limit ordinal
> sup(uy) such that i < aj & ¢ < n, & i € Rang(gr) = Br; < ¢ and
B<d&l<n= hy(B) <d},itisaclub of \. Choose u such that u, C u
and Min(u\uy) = 0* € E.

Now what can gy( Min (u\u4)) be?

It has to be i for some i < aj < o hence i € Rang(gy) so for some
ur,ux € up € 6% and Bp; € ui so hy(Bei) < 6* hence considering u U u;
and recalling clause («)(vi) of (b) from definition of ¢ in the beginning of
the proof we have h¢(f;) < h¢(6*) hence by (clause (b)(c)(v)) we have
i = ge(Bei) < ge(6*), contradiction.]

2) A minor change is needed in the choice of T*

Tt = {(t1,t2) : (t1,t2) € J x J and u!t C w2 bt C ht2 gl C g'2,
vt < 4" and if Rang(g") € {0} then o't = af2}.

Oi.12
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2. THE SINGULAR CASE

We deal here with singular A = AY and our aim is the parallel of 1.13
constructing a pair of EF,-equivalent for every a < A non-isomorphic models
of cardinality A. But it is natural to try to construct a stronger example:
This is done here:

® for each v < k = cf()), in the following game the ISO player wins.

Definition 2.1. (1) For models Mj, My, A\ and partial isomorphism f
from My to M and v < cf(X) we define a game O ,(f, My, Ma2). A
play lasts v moves, in the 8 < v move a partial isomorphism fg was
formed increasing with /3, extending f, satisfying |[Dom(fz)| < A. In
the [-th move if § = 0, the player ISO choose fy = f, if § is a limit
ordinal the ISO player chooses fg = U{fc: e < f}. Inthe B+1 <~
move the player AIS chooses ag < A and then they play a sub-
game D?B (fs, M1, My) from 0.1(3) producing an increasing sequence
of partial isomorphisms ( fZB 4 < ag) and let their union be fg.
ISO wins if he always has a legal move.

(2) If ISO wins the game (i.e. has a winning strategy) then we say
My, M are EF* y-equivalent, we omit X if clear from the context. If
f =0 we may erte 0% \(My, M2)

Remark: For (M, c1), (M, cg) to be EFZ | y-equivalent not EF}, ,- equivalent
not just EF},-equivalent not EF, H—equlvalent we may need a minor change.

Hypothesis 2.2. j. < k = cf(A) < A,k > Ro, 1 = (u; : i < K) is increasing
continuous with limit A, g = 0, u1 = k(= cf(N)), pit1 is regular > p and
let p, = A and for a < Alet i(a) = Min{i : p; < o < priy1}-

Definition 2.3. Under the Hypothesis 2.2 we define a A\-parameter ¢ = ¢, 5
as follows:

(a) (a
(8

(
(
J i

) Iis the set of u € [\\ ]=N0
) u:l— P(A\ k) is the identity,
) S ={(u1,u2) :u; Cuy el}
) 0‘; = Jx
(b) J is the set of tuples t = (u, j,g,h) = (ul, 5, g*, h') such that
yuel
) 3 <Js
) (i) gis anon-decreasing function from u, = uUv, to A where
vg ={i(a) : @ € u and g(a) = ,uaa)}

(ii) o € u= g(a) € [ti(a), Ky
(iii) if ¢ € vy then g(i) < (< K = p1)

)

i)

Y
4]
(a
(8
(

~

(iv) vg is an initial segment of {i(a) : @ € u}
(0) i h is a non-decreasing function with domain u, U v,

See https://shelah.logic.at/papers/836/ for possible updates.
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(ii) @ € u = h(a) € (i), Mi(a)+1] and if 7 € vy then h(i)
(iii) if B < B are from uyUvy and i(51) = i(52) then g(5:
9(B2) < h(B1) = h(f2)
(iv) a < h(a) for a € ug Uw, and g(a) = ,ui'ta) < h(a) =
Hi(a)+1 for a € u
(c) T is the set of pairs (t1,t2) € J x J satisfying
(i) u't Cu'? €I and
(ii) g"t C g'2, B!t C A2 11 = jt2

<K
) =

Observation 2.4. 1\ = xj, i s a full \-parameter.
Proof: Read the Definition 1.1(1)+1.1(1A)

Claim 2.5. Assume s € I;,c1 = (s,eg,),c2 = (s xt),t € Js, and for simplic—

ity Rang(g° [[11+i, pavi+1)) S {p+i}, Rang(g'[r) = {0} and w < j' < j.
Then (M, c1), (My, c2) are EFY, . -equivalent.

Proof: So t, j! are fixed. For i, < K,j < jx let
(a) Bi, = {B: 8= {(Bi:i<r)and p; < < piy1 and By = ix and
(Bri = prriv1 = 1414 < i)}
(b) for 8 € B, let Ag = U{[u;, B;) : @ < x} which by our conventions is
cqual 80 i, U ({5 y1) 1< < i} U Uy 89 € inoh)
(c) for B € By, let G;; 5 = {g : g is a function from Az to A, non-
decreasing and the function gk isinto j and the function g[p1+4i, 14i+1)
is into [ui, ] and 1 <i < iy & (Fa)(p < @ < pip1 A g(a) = p)}
(d) for g € gj,i*B’B € B;, we define hy : Az — X as follows: if v € A3
then h(y) = Min{g" < Bip): if i(y) > 0Ag(y) = ,u%) then ' =
Hi(y)+1, otherwise B € [1i(,), Bi(y)] and B # Bi,) = g(v) < g(8)}
(e) Gji. =U{G,;, 5: B € Bi,} and G = U{Gj, :ix < K}
Let R = Gj+ and for g € R let ix(g) be the unique i, < k such that g € Gjt i,
and Bg the unique € B;, such that g € Gt ix(g),3 and B ={Bi(g) :i < k)
On R we define a partial order g1 < g2 < g1 Q 92 N hg, C hg,
For g € R we define I , ¢, as follows
® (a) I;={uel:uCDom(g))\k}
(b) &g ={cgs:5€I)
(¢)  cgs = @y,(s) Where tg(s) = (s, ], glug,s, hglugs) where ug s =
uU{i(a) : o € v and g(a) = 1(a)}

Let g. € Gi be chosen such that for ¢ > 0, ﬂz(g*) sup({g (o ) : a€utn
(i, is1) YU {pi}) and Bo(gs) = U{i(e) +1: & € u’ and g*(a) = 5,0 }U{1}.
Let ¢, = ¢y, and f, = fi_is the partial automorphism of M, Wlth domain
U{Pi\/[ *:u € Iy} from Definition 1.7. We prove that the player ISO wins
in the game O3 ,(fi, M1, M1), as fi(c1) = c2(€ Pé‘f‘) this is enough. Recall
that a play last j moves; now the player ISO commit himself to choose in
the 8 < j move on the side a function gg € G144, increasing with 3, go = g«
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and his actual move f3 is fgﬁ where ¢g = ¢,4,. For the S-th move if § =0 or
B limit let gg = U{ge : € < B}Ugs € G145. In the (5+1)-th move let the AIS
player choose ag < A. Now the player ISO, on the side, first choose ig < x
such that i.(gs) < ig, and p;; > ag, second he chooses ggf € G14+p+1,is
satisfying:

[1is pri1) and € € [pi, piv1) \ Dom(gp) = g5 (€) = p;
(f) if i < &,i ¢ Dom(gy) then g5 [u;, pi+1) = gg![pis pi+1)
Now ISO and AIS has to play the sub-game D?B(fg, My, Ms). The player
ISO has to play fg. in the a-th move for a < ag and on the side he
chooses gg o € Gi4+p+1 With large enough domain and range, to make it a
legal move, increasing with «, and ggo = gZ{ and gg o lpi; = g; [tig. Now
obviously {g : g € G14++1, ggf C g} is closed under increasing union of length
< Wig, it is enough to show that he can make the (a + 1)-th move which is
trivial so we are done. Uas

Claim 2.6. M, is Ps-rigid for s € I*.

Proof: We imitate the proof of 1.12.

(*)o ris a full (A, Ny)-parameter

(¥)1 if wg C wg € I, we define the function my, u, @ Ju, — Ju, by
Fyyup (t) = (ulajtagt [ uy, ht [uy) for t € Jy,,

(¥)2 if u; € ug C wug are from I then my, y; = Tyy up © Tuguy that is
Ty s (8) = Tu s (Tugus (1))

(x)3 for uy C ug we have
(Oé) rn (Jul X Juz) = {(ﬂ-ulﬂtz(t?)at?) il2 € ‘]Uz}

(B) Guyuy = {(Fuyun(c2),c2) : c2 € Gy, } where 7y, 4w, € Hom(Gh,, GY,)
is the unique homomorphism from G}, into G}, mapping z,
to x¢, whenever my, 4, (t2) = t1
[Why? Check.]

(%)4 if ug Uug Cug € I,t3 € Jyy and ty = my, 44(ts) for £ = 1,2 then,
recalling Definition 1.1(1A)(h), g1, ¢*2 are compatible functions as
well as hft, h*2 and j* = j2 moreover g'* U g*2 is non-decreasing,
h't U h'? is non-decreasing
[Why? just check]

(x)5 clause ®; of 1.11(1) holds for I’ = I(= I,)

Why? Assume ¢ € CJ is such that cy(,) # €G,,, for some s(x) € I. For each
u € I, ¢, is a word in the generators {z; : t € J, } of G, and let n(u) be the
length of this word and m(u) the number of generators appearing in it.
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Now by clause () of (x)3 we have u; C ug = n(u1) < n(uz) A m(ug) <
m(ug). As (I,C) is Wy-directed, for some u, € I,n, < w and m, < w we

have u, Cu € I = n(u) = n.Am(u) = m, and let ¢,, = (... ,xf((g’f)), e )e<n,

where k(u,?) € {1, -1} and t(u,f) € J}, and t(u,l) = t(u, £+ 1) = k(u,l) =
E(u, +1). Clearly ux C u1 C ug € I & £ < ny = my uy(t(ug, ) =
t(ur, O)A?k(ur, £) = k(ug,€) = k(us, £) hence jHu2:0) = jtlut) A jtluz) —
448 By our assumption toward contradiction necessarily n, > 0 and let
kE(l) = k(uy, 0).

As {u: u, Cu € I} is directed, by (x)4 above, for each ¢ < n, any two of
the functions {g*? : u, C u € I} are compatible so gp =: U{g"*® : u € T}
is a non-decreasing function from Yj,(,) to A where Yj,(,) = (A \ &) U ig()
for some ig(¥) < & and hy =: U{h*®0 : 4, C u € I} is similarly a non-
decreasing function from Yj,(,) to A. Also go maps [, pti+1) into [u, 1] for
1 < k and maps k to k.

Case 1: ig(*) = k.

It also follows that for some j; we have j; =: 1w whenever u, C u e I
in fact j; = jtu0 is O.K. and J; < J«» < k. For each i € Rang(g¢[r)
choose f;; < k such that g¢(f,;) =i and let E = {§ < k : § a limit ordinal
> sup(us N x) such that i < j7 & ¢ < n, & i € Rang(g¢) = Be; < 6 and
B <0 &Ll<n= hyB) <}, itisa club of k. Choose u such that u, C u
and Min(u N k\uy) = 0* € E.

Now what can ¢*“9( Min (u\u,)) be?

It has to be 4 for some i < j; < j* hence i € Rang(g,) so for some uy, u, C
up € 0% and Sy, € uy so hy(Be;) < 0* hence considering v U u; and recalling
clause (6)(iv) of (b) from definition 2.3 of ¢ we have h(8;;) < h¢(6*) hence
by (clause (b)(c)(7it)) we have i = go(Be;) < ge(d*), contradiction.

Case 2: ig(*) # K 80 ip(*) < K.

Clearly if i € (ig(x),r) and o € [u;, prip1) then go(a) # pi (see clause
(b)(7y)(iii) of Definition 2.3) hence g;[[ui, ti+1) is a non-decreasing function
from [p;, pi+1) to pi, but iy is regular > pf (see Hypothesis 2.2) hence
gellti, it1) is eventually constant say 7; € [, ti+1) and gel[vi, phi+1) is
constantly € € [ui,p;). So also hel[v;, ,u;-';l) is constant and its value is
< wit+1, and we get contradiction as in case 1.

Lo

Conclusion 2.7. If A = A\¥0 > cf(\) > R then for every a < cf()\) there are
non-isomorphic models M7, M of cardinality A which are E'F; \-equivalent.

Proof: By 2.542.6 as the cardinality of M, is A. s 7
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Remark 2.8. By minor changes, for some t € Pd\/[,u = ( letting ¢ =
€G,,C2 = xy we have: (M, c1), (M, cz) are non-isomorphism but EFY ;-
equivalent for every j < x = cf(\). This is similar to the parallel remark in
the end of §1.
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Private Appendix

3. FOR EVERY A\ LARGE ENOUGH

Naturally we would like to prove this for all are at least in some sense for
most A. Naturally, for me at least we do it by using the RGCH (the
revised G.C.H., see [She00] or [She06, §1]). Specifically, this holds for every
A > 1, moreover we phrase a weaker condition which conceivably?? is
provable in every A > 280, So instead “every countable u and function g
from w...” we shall try to use “for density means?? So this leads to the
following.

Conclusion 3.1. Like 1.12 (hence also 1.13) assuming just A = cf(\) > 3,
or at least

®y thereis P C [\ of cardinality X such that (VA € [A\]*)(3u € P)(u C
A).

Proof: We define y = 1, as in the proof of 1.12 see X there except that
<X CTC NN I =)\ JC{(u,a,9,h) :u€l,(u,a,g,h) as in clause
(b)(a) of X}, |J| = A and the pair (I, J) is quite large E.g. let B be an
elementary submodel of (H(x) €),A = J2(A\)T, A+ 1 C B,[|B][r) € B and
r=1,[2B. We first have to note that the proof of “ISO wins
O ((My, b), (M, c)) for appropriate u € I,b# c € P27 is not changed (in
fact the results follows as MU/A C M;,, and moreover

My, = My, | (WP, :ue I},
Also for simplicity we use the abelian group satisfying x 4+ x = 0 version.
Second, as for “M, is P,-rigid for u € I,” again if this fail for u € I, then
we can find o < a* and Z such that
a) zZ={(z:vel)
(b) 2, a finite subset of J; such that t € 2V = of = «
(¢) ifv Cw el then Wg,w maps 2, onto a subset of Jy which
includes z, where 7, ,, is as in (%) of the proof of 1.12
@)z #0
() feAuwM),f=foec={(c:vel :C'}U,cu#e@,u,see
Definition 1.7.
(%)1 for each v € I we let 27 = U{Rang(my ) :v Cw € I}
(%)2 if ®) from the conclusion holds then |z | < A for v € I
[Why? as in the proof of 1.11]

Now for every 81 < f2 < « let

Bg, g, =:{v: forsomev el andtez and
11 < 2 from u! we have v1 < v = hi(B1) < 72
and g'(v1) = B1, 9" (12) = Ba}

B, = U{B/glﬂ2 < P < Oz}
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X |Bi| < A
[why? otherwise we can find 7. € B, for € < \, pairwise distinct.
So for € < A there are v, € I,t. € z;‘; and be v ., 72, € v: such that
hts(y1.) = € and y1. < Ve < 72.. As A is regular without loss of
generality (A" (y1.), ' (12.)) = (B}, B5) and h'(11..) = ..
Let (we,t.) be such that v. C w, € I,t. € 2y, and my_q, (1) = t..
By the assumption ®) we know that for some A C A, |A| = Yy and
w = U{w: : ¢ € A} € I. Now for each € € A there is 5. € z}
such that m,_w(s:) = t.. But € # ¢ € A € s. # s¢, so we get a
contradiction.]
So we can find 7, < A such that
Xy if v1 € [V, A) then for no v,v2 and u € I,t € 2} do we have 71,7, €
u,m < hH(n) <72
We can find u; € I such that v, € u3 A ux C ug hence z,, # 0 and let
S € 2y, = h'(7x) and let ug € I be such that uy U{y+ 1} Cuz € I, so
there is t € Z,, such that m,, 4, (t) = s hence
ht(ve) = h¥(vs) =7 <~ + 1 € uz so (uz, Vs, + 1) witness then
Y € Bpt(y,),nt(v+1) © Bs, contradiction. Usq

Conclusion 3.2. Like 2.7 assuming only cf(A) > Rg and A > 3, Acf(A) > Ny
or just
®): there is P C [A]™ of cardinality A such that

(a) if for every A C X of cardinality A there is u C A,u € P
(b) for every A C cf (\) of cardinality A there is u C A,u € P

TO BE FILLED :\ singular.
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4. HAVNING TREES INSTEAD “a < A”

When A < A<, it is not so clear what does it mean “using EF games with
trees with A\ nodes, A levels no A\-branch”. We suggest here a replacement
and generalize §1.

Definition 4.1. Assume that My, M5 are T-models, f a partial isomorphism

from M; to Ms, N is a 7-model, g a partial unary function from N to N,

7t = 75y U{F},F a unary function symbol (¢ 7) and A, u are cardinals

« an ordinal and T is a universal theory in L(7"). We define a game
N (Ml,MQ,N,T, f,g).

D WINeY
A glay last up to A moves in the a-th move a pair (fu,ga) is chosen such
that
® (a) fa is a partial isomorphism from M; onto My
(b)  fa is increasing continuous with «
() fo=f and |Dom (fa,,,)\Dom (f5)] <1+ s
(d)  go is a partial function from N to Nj increasing continuous

with «
(e)  go=g,[Dom (gg4+1)\Dom (gg)| <1+ p
(f)  (IV,gq) satisfies T as far as it is meaningful
®2 in the a-th move (every player can make choices only compatible
with @1)
(a) first ISO chooses uq € N of cardinality < 1+ p
(b) second AIS chooses go+1 With Dom(ga+1) = Dom (ga) U uq
(c) third AIS chooses Al C My, A2 C M, such that |AL| + |A2| <
T+p
(d) fourth ISO chooses f,11 such that AL C Dom (fu11), 42 C
Dom (fazl).

A player loses the play when he has no legal move.

Definition 4.2. (1) In 4.1 if g = ) we may omit it, if f =0 = g we
may omit then.
(2) We say that My, My are EF), ,, o, v 7-equivalent if the player ISO wins
the game Oy , (M1, M2; N, T).

Claim 4.3. There are non-isomorphic models My, Mo of cardinal A which
are EFy , N T-equivalent when
X (a) A= AN
(b) N is a model of cardinality X
(c) T is a universal first order theory in the vocabulary 1 = Ty
such that N has no expansion to a model of T'.

Proof: As in §1. Saharon fill.
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5. ON Ng-INDEPENDENT THEORIES

Our aim is to prove
X if T' C Ty are complete first order theorem 7" with the Rp-independence

property, A = cf(A) > |T| then

(a) there are My, My € PC(T1,T) of cardinality A which are EF, -

equivalent for every a < A but not isomorphism.
(b) the singular.
(c) Karp complexity.
Program:

We use EM (I, ®),I € K\'"®" = class of ordered graphs of cardinality A.
From a nice A-parameter p, we drive a model N € K{"®" as follows: for
each G% we attached N¥ and the action of z € G and define the graph of
NP U{N? : s € S} such that the partial automorphism of MP i.e.
€ = (cs : s € set) induce a partial automorphism of the ordered graph.
So the problem will be to make M; 2 Ms. Better: from one A-parameter p
we define two ordered graphs NP, N7, and partial automorphism of each+-
partial isomorphism from one to the other- those are the really interesting
objects.
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Remark: Note that J € K° we can use PJ only in particular defining
EM(J, ®)

Definition 5.1. l)Kf\’Z is the class of structures J of the form (A4,Q,P <
 E)new = (|3], P?,Q7, <7, FJ), where J has cardinality A, <” a linear order
on Q7, PT = |J|\ @7, F! Q' = the identity and a € A\ Q! = F,(a) € Q7
and a # b € PM = \/ F,(a) # F,(b). Let I = be the identity on

n<w

|J|. where (from [She09], where T" being No- independent follows from T°
having the independence property and implies T is not superstable or just
not strongly dependent, see below)

2) For a linear order I and & C “I, we let J = J; g be the derived member
of K% that is |J| = TUG, (QY, <7) = I, FI(n) = n(n) for n <w, FJ(t) =t
for ¢t € I;; note that every J € K% = U{KiZ : A a cardinal} is isomorphic to
some J; g

Definition 5.2. (1) A (complete f.0.) T is Rp-independent (= not strongly
dependent) if there is a sequence @ = (¢, (z,¥s) : n < w) (or finite Z,
as usual) of (f.o.) formulas such that 7" is consist with I'y for some
(= every A > Ny)

I'y= {SOn(fL‘n,l?g)if (a=n(n)) ne “ANa<\n< w}
(2) T is strongly stable if it is stable and strongly dependent.

Claim 5.3. If T is f.o. complete Ty D T is complete, w.l.0.g. with Skolem
function and T is not strongly dependent (from [She09]) then we can find ®,
p= <80n($7gn) ‘n < w>7ﬂn L Yn+1
(a) @ is proper for K° and 7(Ty) C 7(®) and |7(®)| = |T1|
(b) In My = EM(J,®),J =J; & we have (a; : t € I) and (a, : n € 6)
such that
() My is the Skolem full of {a; :t € I,n <n}U{a,:ne &}
(B) ar € “M;
(v) M1 = enlay, ang iff n(n) = t (pedantically we should write
Pn(an, at1g(7n))]
(¢) My is a model of Ty

Proof: Let I be an infinite linear order. We can find M; = T and sequence
(ag :q € I),aq € “(My) such that for every
n € ¥ {pn(z,ay) M= : g € I,n < w}.

Now w.l.o.g. (aq : ¢ € I) is an indiscernible sequence in M;. W.lLo.g. M; is

AF-saturated, we then expand M; to M~ by function Féw;r(n < w), (of
finite arity) such that Fj,(aq,,aq,, - .- aq,_,) or more exactly
Fo(ag, gyo, ag, | 1g(91), .-, aq,_, 118(Yn—1)) realizes in M; the type
{@e(x,a,)T"O=D) . g € I, < n}. W.lo.g. (@, :q€ I) is an indexed
sequence in M;. Let D be a non-principal ultrafilter on w and in
M = (M")%/D, we let a; = (G, : n < w)/D, and
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an = (Fn(@p(0); Gp(1)s - - - Gpn—1y) : 7 < w)/D for n € “I. Now has the right
vocabulary and from the quantifier free types realized by
(ag:q € I)(a,:n€“l)in My we can read 9. Os.3

As in [Shear, III].

Claim 5.4. Assume J1,Jo € K%, and ®,¢,T1,T as in 6.3. A sufficient
condition for EM ) (J1, ®) 2 EM (7)(J2, ®) is
(*) if f is a function from Jy (i.e. its universe) into M| x,(J2) (i-e.
the free algebra generated by {x; : t € J1} the vocabulary TR =
{Fl' :n <w and o < |T1|}, F} has arity n, see [Shear, III 1]) we
can find t € PY'.n < w, and s1, 2 € QY such that:
(@) FIH(t) = s1# s2
(B) f(se) = a(rf,...,m0 ) sok < w,rf € Iy fori < k so o is a
/11|80 "t€Tm not dependent on L
(v) ft)=0c*(roy...,rm-1),0% is a Ty |, R -tET and rg,...,Tm_1 €
Jo
(0) the sequences

(r}oi<k)(r:i<m)

<ri2 i< k)Y (rii<m)
realize the same quantifier free type in Jo (note: we should close
by the FJ2, so type mean the truth value of the inequalities

Fo,(r") # Fu,(r') (including F,,) and the order between those
terms)

Proof: As in [Shear, III].

Remark: We could have replaced @ by the disjoint union of
Q3 :n < w), <’ linearly order each @} (and <7= U{< [QJ' : n < w} and
use @, to index parameters for ¢, (z, g,). Does not matter. If you like just
to get the main point for [ST], i.e. to show that Np-independent is a
relevant dividing line note the following claim.

Claim 5.5. Assume (®,,T,Ty) is an in 6.8 and X\ = \<*. Then for some
A-complete \T. c.c. forcing notion Q we have: IFg “there are J1,Jo € K of
cardinality X\ such that EM.(1y(J1, ®), EM(1y(J2,®) are EF, ) equivalent
for every o < A but are not isomorphic”.

Remark 5.6. It should be clear that we can improve it allowing a@ < A" and
replacing forcing and e.g. 2% = AT 4+ X = A<}, but anyhow we shall get
better result

Proof: We define QQ as follows

®1 p € Q iff p consist of the following objects satisfying the following
conditions
(a) u=uP € MT]Psuch that a +i cuNi<A=>acu
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(b) <P a linear order of u such that
a,feEuna+I<B=>a<?p

a<fBeuNacunia=a<?f

(c) for £=1,2 &} is asubset of {n € “u:n(n)+ X <n(n+1) for
n < w} such that n # v € &) = Rang(n) N Rang(v) is finite;
note that in particular n € 6? is without repetitions

(d) AP a set of < A increasing sequence of ordinals from {a € u? :
Ala} hence of length < A

(&) P = (2 : pe AP)
such that

(f) f5 is a partial automorphism of the linear order (u?, <P) and
we let fo? = f, £V = (£5)7!

(g) if n € &),p € AP,£ € {1,2} then Rang(n) is included in
Dom( ff;’p ) or is almost disjoint to it (i.e. except finitely many
“errors”).

(h) if p<p € AP then p € AP and f5 C f¥

(i) if p € AP has limit length then

I5=U{f); i <lglp)}

(j) if p € AP has length ¢ + 1 then Dom(fﬁ’p) Cp(i) for £ =1,2
(k) if p € A and n € “(Dom(f3)) then n € &) < (f5(n(n)) : n <
w) € &5
(0) if p, € AP for n < w and py, < ppy1 and A > Ry then U{p, : n <
wleA
®2 We define the order on Q as follows: p < ¢ iff (p,q € Q and)
(a) uP Cu¥

(b) <P=<1 [yP

(c) &7 C & for £ =1,2

(d) AP C A4

(e) if p € AP then [} C f]

(f) if n € &7 \ &} then Rang(n) N u” is finite

(g) if p€ AP and f5 # f] then u? C Dom(fg’q) for £ =1,2

(h) if pe AP and ¢ € {1,2},a € uP \ Dom(fg’p) and o € Dom(fg’q)

then fﬁ’p(a) ¢ uP
(i) if n < wand pp € AP, ¢, € {1,2} for k < n and oy € u?
for £ < fy,fﬁ’“’q(ak) = a1 for k < n, and for no k, 0 #
Uee1 AGp)lp < pr A p < pra Aay, € Dom(fp*P))] and ag = ay,
then ag € Dom(fgg’p).
Having defined the forcing notion Q we start to investigate it.

®3 Q is a partial order of cardinality A\

®s (i) if p = (p; : i < 6) is <%increasing , J a limit ordinal < X\ of
uncountable cofinality then ps := U{p; : i < 0} defined naturally
is an upper bound of p
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[Why? think]
(ii) if § < AT is a limit ordinal of cofinality Xy and the sequence
p = (p; : 1 < J) is increasing (in Q), then it has an upper bound.
[We define ¢ € Q as follows: u? = U{uPi : i < 0}, <9= U{<Pi:
i <0}, AT =U{AP" : i <} U{p: pis an increasing sequence of
ordinals from u? of length a limit ordinal of cofinality Ny such
that e < lg(p) = ple € U{AP : i < §}}. Lastly &7 is the closure
of USY" : i < §} under clause (g) of ®;, where by clauses (f)-(i)
of ®9 this works MORE DETAILS.|
Q satisfies the AT-c.c.
[Why? use A-system lemma and check]
if a < A\t then Z. := {p € Q: a € uP} is dense and open
[Why? Easy]
if o € A* := {p : pis an increasing sequence of ordinals < A\ divisible
by A of length < A} then IS ={p € Q:p € AP} is dense open
[Why? let p € Q by ®s+®4 there is ¢ > p such that Rang(p) C uf.
If o € A? we are done otherwise define ¢’ as follows: u? = ud, <4 =<4
67 = &9 A = AU {ple : £ < lg(o} and if i < lg(o), oli ¢ A
then we let fg;l. =U{f7:pe A?and p<pli}]

®g For g as in ®7 and a < AT and /¢ € {1,2}
Ig,a,z = {p €Q:ac Dom(fg’p) so o€ AP, a € up} is dense open

®9

®10

[Why? for any p € Q there is p* > p such that o € AP', o € uP*, now
use disjoint amalgamation]
define J, € K¢ a Q-name as follows:

QJz -\t
&% = U{6] : p € Go}
<= U{<P: p € Gg}
F,g ‘ is a unary function, the identity on A™ and
ne & = F"(n) =n(n)

g “Je € K¢, for £ =1,2

[Why? think]
Fo“ EM(1y(d1, ®), EM(1)(J2, ®) are EF) )+ -equivalent (i.e. games
of length < A, and the player INC chooses sets of cardinality < AT).

[Why? recall A* = {p : p is an increasing sequence of ordinals
< At divisible by A of length < A} (is the same in V and V©).
For p € A* let f, = U{f} : p € G,p € AP}. Easily IFg*“ f, an
isomorphism from J; [supRang(p) onto J [supRang(p) where for any
d < AT (divisible by \),

Jol6 = (U (PTenws), QM n s, PMIs, EJer(s U (PY n@d))).

See https://shelah.logic.at/papers/836/ for possible updates.



Paper Sh:836, version 2007-08-16_11. See https://shelah.logic.at/papers/836/ for possible updates.

ON LONG EF-EQUIVALENCE IN NON ISOMORPHIC MODELS SH836 21

Also p<o =k fp C fo So (f,: p € A*) exemplify the equiva-
lence]

Remark: Note that A|[d Ad < AT Ad € Dom(f,) = {fo(a) :ae <} =46
So to finish we need just ®13 but first

®12 for p € Q let IV € K° has universe u? U &7, <Ji=<p, Q‘]g =
uP, Fﬁ]]’? (n) = n(n). We do not distinguish
®13 IFQ“My = EM(1y(J1,®), M2 = EM(7)(J2, ®) are not isomorphic”
Why? let M} = EM(Jy,®), and assume toward contradiction that p € Q,
and p IFg “g is an isomorphism from A; onto M>”. For each
§ €83 = {0 < AT :cf(8) = A} we can find ps € Q and gs such that:
O (a) p<ps o € ubs

(b) ps - g5 is gIEM(IP3, @)”

(¢) gs is an isomorphism from EM_ (I}, ®) onto EM_ (1 (J5, ).
We can find stationary S C S§+ and p* such that

(e (a) psld, naturally defined is p* for 6 € S.

(b) for 61,02 € S, uP%1, uP% has the same order type and the or-
der preserving mapping 7s, 5, from w2 onto u”%1 induce an
isomorphism from ps, onto ps, .

Now choose n* = (6% : n < w) such that
X3 (c) 65 <5y
(d) 5; = sup(S 1 67)
We define ¢ € Q as follows
Cly (e) u? =U{ps: : n <w}

(f) <= {(o,B) : a <B?" B for some n or for some m < m,a €
uPin \ 67, B € uPi \ o,

(8) 61 =U{&," :n<w}u {7}

(h) &1 = {65 : n < w}

(i) A7 =U{APs% :n < u}

() ff = f" if p e AP

Now ¢ forces contradiction. 55
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6.
Our aim is

Theorem 6.1. Let T C Ty be complete f.o., T is Rg-independent or unsta-
ble. Some non-isomorphic My, My € PC(T1,T) of cardinality A are EF, \-
equivalent when X\ = A¥0 = cf(\) > |T1| + ¥y

Proof: If T is Rp-independent. We can find ® as in 5.3(for 7, T7). If T is
not Ng-independent but is unstable we can find @ satisfies the conclusion of
5.3 except that for some ¢(Z,y) € L(7,) which linearly order some infinite
set of m-types is some model of T, m = lg(z) = 1g(y) we replace clause (c)

there by
(¢)’ M = play, a,] iff n <}, v which mean n,v € J, and I En < v or
ne PYve@? orfor some n,m <n — FJ(n) =F)(v)and I! =
“Fil(n) < F(v).
(e)(ay : m € J) an indiscernible sequence in M;.
Now use Definition 6.2 and claims 6.3,6.5 below.

Definition 6.2. (1) We say y is an ordered full A-parameter if

(a) y = (;7 <7 S, t) = (Fyv <y> Sya ty)

(b) r is a full A-parameter, see Definition 1.1(1A), so My =: M, is
from Definition 1.4

(c) s€l,teJ§

(d) <y is a linear order of J;
such that

(e) J; is a convex subset of .J; for each s € I,

(f) may add: in Js there is a first element (hence in Gg, every
element has an immediate successor and an immediate prede-
cessor).

(1A) We let Iy, = I; etc., and s; <y S where s1,s2 € Iy mean s;; =
51 A8y, = 89 = t1 <y t2. We use <y also for the following linear
order on each G, and on M,

(a) for s € I, (Gs,<y) is an ordered abelian group, Gs = GY is
the abelian group generated freely by {x; : s; = s} and for n <
w,ty <y t1 <y ... <y th—1 € Js and ap,a1,...an—1 € Z\ {0}

n
we have Og, <y > a;x¢, iff a,—1 > 0son > 0.
i=1

(c) for s1 <y s2 all member of {s1} x Gy, are <y below those of
{52} X GSQ

(3) Let &y = {n : n an w-sequence from (My, <y)}.

(4) We define a graph Hy, on {1, 2} xSy, : it consist of the pairs {(1,71), (2,72)}
such that n1,n2 € &y and for some a < A, ¢ € Cﬁz we have fi maps
n1 to 1 so necessarily n < w = ny(n) € Dom(f5)

(5) Ey is the equivalence relation on &y which is being Hy-connected.

(6) We say (61,63) is a y -candidate when
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(a) ©1,62 C &y
(b) if {(1,m),(2,m2)} € H then n; € &1 < ny € Sa (hence ({1} x
S1) U ({2} x G&2) is closed under E-equivalence.
(7) For 6 C &y let Jy ¢ = J;, & where I is the linear order (|My|, <y),
clearly Jy s € Kj\”

Claim 6.3. (1) Assume y is an ordered full A-parameters satisfying
@2, from 1.11(2) and (S1,62) is a y-candidate and ®,p,T1,T
are as in 6.3. Then EMm)(Jy &, ®), EM1)(Jy.,, ®) are EF, \-
equivalent for every a < o,

Proof: Recall that for any ¢ € Cy, f; is a partial automorphism of M; (in
fact an automorphism of M ;[5] where ¢ € Cz}[a], so I[¢] C I is uniquely
determined by ¢). Let f be the partial mapping from J, g, to Jy.e,

defined by = € Mﬁ[é] = fi(z) = fi(x) and
ne€ & = 2 () = (fi(n(n)) : n < w). It is easy to check that
Rang(f2") C Jy e,
Now for each o < A we can prove that {f* : ¢ € C,} exemplifies that
My, My are EF, - equivalent exactly as in the proof of 1.10. Oe.3

Discussion 6.4. Now we need two steps
Step A: Characterize E (or a less fine E)?7 effectively.

Step B: Construct (&1, &2) such that the criterion from 5.4 unto holds for
Jy761 ? Jy762

Claim 6.5. Assume A = AR = cf(\) > Ry + |1} (we may concentrate on the
case (Voo < N)(Jaf < X)). Let ¢ = 1 be the full A\-candidate constructed
in the proof of 1.12 (hence ®44 for o < X holds by its proof). Then we
can find a y-candidate (S1,&97) such that letting My = M, |7(T) where
M; = EM(Jye,, ®) the models My, My are EF, x-equivalent for every
a < X but are not isomorphic.

Proof: By renaming |My| = X let S C {§ < Ry : cf(d) = No} be stationary
and we use the appropriate black box (see [Shear, IV]), (N4, n4) @ a <
o*),¢ : o* — S non-decreasing, and ((a1) = 6 = C(a) A og # ay =
sup(Ngo, NNy NA) < 0 ete. [Maybe: for the sets Ny, N A, Ny, N A interlacing
is simple]

We choose v, € “(|Ng| N A) as used in the later part of the proof (for some
a € S) and let &y = {(¢,v): for some «, in the graph H, (1,v,), (¢,v) are
connected (i.e. finite path)}. The EF, - equivalence holds by 6.3. To prove
the models are not isomorphic assume f is an isomorphism from M; onto
Ms. [Probably into is enough, not crucial for the main result.]?

For every a < X let s, = s(a) = {a} € I, and t, = t(a) € J;. Let
f((80:06,,,)) = dal@r(a0):---» r(an)-1)) Where r(a,l) € Jy US2. By
earlier remark w.lo.g. r(a,f) € G, Let S1 = {0 < A : cf(d) > Ny} and
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assuming for simplicity (V8 < A)(|3|N0 < \) for the time being, there is a
stationary Sy C 57 such that
(a) d € Sy = 05 =04 50 € Sy = n(d) =n(x).
(b) for each n < n(x),k < w one of the following occurs
(a) for 6 € S,r(d,n)(k) € Jy, so in fact

(B) r(6,n)(k) = > askmetskne Where tspno <y ... <y tsknta
£0<L(2)

)

)

) toknt € Js ok and

) 8640 <y -+ <y Sskem)—1 € Iy
€) SsknN0 =up, kak? mqur lo mxuq | [[so ((g'okme, hfoknt)

d € Sy) is like a A-system.|]
(¢) (@) Sskn € Min(S2\ (6 + 1)) moreover if t € {tspny¢: k,n,¢} then
Rang(h!) U Rang(g") C Min(S2 \ (6 + 1)

Now we choose 3 < o* (the o* of the B.B) such that Ng guess this situation,
in particular

(*) (a) N is closed under f
(b) S2 N Ng is PNs, for a fine predicate P relation of N and the
function & — (S5 ks tokne  k,n,l) is FNs _ for some fixed func-
tion symbol F is P58, for a fine predicate P.

(v
(6
(

Now we can choose vg € “(S2 N Nj) increasing with limit ¢(8) € S. Note:
each vg(n) has <, -successor which we call pg(n) (see clause (f) of Definition
6.2(1)). The type of f(ay,) “mark” the q,,(,). The rest should be straight.
FILL

The (Fp) (< A = cf(N) < pRo A X > 2%0: Should be similar somewhat
more complicated case.
A singluar case have not thought.
The unstable case

Question: The case
(a) set theory Ny = cf(\) < cf(u) < pp < A < AN <20 —
(b) model theory: T = the theory of the rational order, 77- make it
home, see Droste ...

Question: Karp complexly?? [for Chris 77| for Lo, for simplicity
(280)F < k = cf(k), (Yo < &) (oM < k.
first case: depth v < k.
second case: arbitrary ~.

Discussion 6.6. Given k,~ we use the linear order I = {(a,n) : @ < K, €
d??(y)}, ordered but (ag,m) <7 (ag2,m) iff a1 < a2 V (1 = ag Algn <
lgnz), A(ar = ao Algm = lgnz A m1 <ge m2 (or simpler)

In the depth we use a, = (aqu) : @ < k). All as in [LS03]. But we
have to do a specific work here: for every pretender to an a, there is
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(0(- 50, g ) - Je<n. @ € < K),ny > 1 if possible we give witness to
its being a “composite”; similarly for a pair of (a@’,a”) of pretenders.
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