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Abstract. We show that ♦(R,N ,∈) together with CH and “all Aronszajn

trees are special” is consistent relative to ZFC. The weak diamond for the
covering relation of Lebesgue null sets was the only weak diamond in the Cichoń

diagramme for relations whose consistency together with “all Aronszajn trees

are special” was not yet settled. Our forcing proof gives also new proofs to
the known consistencies of several other weak diamonds stemming from the

Cichoń diagramme together with “all Aronszajn trees are special” and CH.

The main part of our work is an application [15, Chapter V, §§1 – 7] for a
special completeness system, such that we have a genericity game. Thus we

show new preservation properties of the known forcings.

1. Introduction

Let A and B be sets of reals and let E ⊆ A×B. Here we work only with Borel
sets A and B and absolute E, so that there are no difficulties in the interpretation
of the notions in various ZFC models. The set A carries the topology inherited from
the reals and 2α carries the product topology. A function F : 2<ω1 → A is called
Borel function if each part F � 2α, α < ω1, is a Borel function. The complexity of
the set of ℵ1 parts can be high.

Definition 1.1. (Definition 4.4. of [14]) Let ♦(A,B,E) be the following statement:
For every Borel map F : 2<ω1 → A there is some g : ω1 → B such that for every
f : ω1 → 2 the set

{α ∈ ω1 : F (f � α)Eg(α)}
is stationary. Commonly, if E is not the equality ♦(A,B,E) is called a weak dia-
mond.

The original diamond, ♦ω1
, is ♦(A,B,E) with A = B = 2<ω1 (so here we do

not have subsets of the reals), E being equality, in the special case of F being the
identity function. Jensen [9] showed that ♦ω1

holds in L. Devlin and Shelah [7]
showed that in the case |B| = 2 some diamond principles follow from 2ℵ0 < 2ℵ1 .

In the mentioned work Jensen also showed that ♦ω1 implies the existence of a
Souslin tree. Since then it has been interesting to investigate which weakenings
of ♦ω1

still imply the existence of a Souslin tree. Moore, Hrušák and Džamonja
[14] introduce and investigate numerous versions of weak diamonds. Let Unif(M)
denote the relation (Fσ meager sets, ωω, 63), and let Unif(N ) denote the relation
(Gδ null sets, ωω, 63). They show that ♦(Unif(M)) implies the existence of a Souslin
tree, and from work by Hirschorn [8] they derive that ♦(Unif(N )) does not imply
the existence of a Souslin tree. Another model (with larger continuum) is given by
Laver [11]. Since the Borel Galois-Tukey connections (see Vojtáš [16]) in the Cichoń
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♦(Add(N )) ♦(Add(M))oo ♦(Cov(M))oo ♦(Unif(N ))oo

Figure 1. The framed weak diamonds imply the existence of a
Souslin tree. The arrows indicate implications.

diagramme can be translated into implications of the corresponding weak diamonds
[14, Proposition 4.9], there is a Cichoń’s diagramme of weak diamonds. So all its
entries above ♦(Unif(M)) imply the existence of a Souslin tree, see Figure 1.

Also ♦(ωω, ωω,≤∗) together with “all Aronszajn trees are special” is consistent
relative to ZFC according to [12]. In this model, the continuum is ℵ2.

So, before this work, there was one question regarding the existence of Souslin
trees and the weak diamonds in Cichoń’s diagramme left open: Does the weak
diamond for the covering relation (R, Fσ null sets,∈) imply that there is a Souslin
tree? The answer is negative:

Theorem 1.2. ♦(R, Fσ null sets,∈) together with CH and with “all Aronszajn trees
are special” is consistent relative to ZFC.

Now we give an outline: An essential tool in the analysis of proper forcings are
countable elementary substructures: We let χ > 2ℵ2 (this is the concrete inter-
pretation of the phrase “sufficiently large” in our context, and sometimes smaller
lower bounds suffice, but let us be definite) be regular and denote by H(χ) the set
of all sets of hereditary cardinality < χ. Let <∗χ be a fixed well-ordering of H(χ)
such that x ∈ y implies x <∗χ y. We work with countable elementary substructures
M ≺ (H(χ),∈), and when we want to perform constructions along a well-order we
take M ≺ (H(χ),∈, <∗χ). There are at most 2ℵ0 isomorphism types of transitive

collapses (N,∈, (<∗χ)N ) of (M,∈, <∗χ). By our proviso on <∗χ, the relation (<∗χ)N

is still a well-order. In general we let the letter N (also with subscripts) stand for
transitive models (Mostowski collapses of the M ’s), and let M stand for a countable
elementary submodel.

We shall define a game played in countable parts of the iterated proper forcings
from [15, Chapter V, Section 5]. The countable elementary submodel M , P , p ∈ P ∩
M , f

˜
, . . . are parameters. The number of rounds is α = otp(M ∩γ), where γ is the

iteration length. The generic player gives a real νε and the antigeneric player gives
a real ηε dominating it in round ε < α. The strategy of the game depends only on
the isomorphism type of the Mostowski collapse of the given countable elementary
submodel (M,Pγ , p), Pγ an iteration of length γ. In the central Theorem 3.4, we
prove the existence of a Borel functions Bα : (ωω)α × P(ω) → P(ω) for α < ω1,
such that Bα has the play and the isomorphism type of the collapse as arguments
and then yields as value a bounded (M,Pγ)-generic filter iff the generic player
wins. An (M,Pγ)-generic filter G is called bounded if there is a q ∈ Pγ such that
G = {p ∈ M ∩ Pγ : p ≤ q}. We will prove that there is a winning strategy for
the generic player and let the antigeneric player play in such a way that the generic
real or a Borel function applied to the generic real will be contained in the sets of
branches of a meagre measure zero tree. Then from ♦ω1 in V, which shows that
all the Mostowski collapses N and all used (finitely many) predicates on them are
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guessed stationarily often in ω1, we will derive that the extension preserves certain
weak diamonds. Juhász’ question [13], whether ♣ (a definition can be found, e.g.,
in [15, Chapter I, Def. 7.1]) implies the existence of a Souslin tree, remains open.
It cannot be attacked by forcings adding no reals since in the presence of CH, ♣
implies ♦.

2. Proper forcings adding no new reals

We first recall the definition of the forcings “specialising an Aronszajn tree with-
out adding reals” from [2] and [15, Chapter V, Section 6]. It is known that these
forcings are α-proper for all α < ω1 and are D-complete for a simple ℵ1-completeness
system D, which guarantees that their countable support iterations do not add reals
[15, Theorem V.7.1]). Abraham gives a nice didactic exposition of the method of D-
completeness systems in [1, Section 5]. Here, we will take a simple ℵ1-completeness
system D similar to the one from Abraham and Shelah’s work [2].

Jensen (see [6]) showed that the property of not adding reals is in general not
preserved in countable support iterations of proper forcings at limit steps of cofi-
nality ω. So some stronger requirement has to be imposed on the iterands. The
method of completeness systems that has been developed by Shelah [15, Chapter
V] is appropriate for our aim.

Recall, a specialisation of an Aronszajn tree T = (ω1, <T) is a function f : ω1 →
Q such that for any s, t ∈ ω1, s <T t → f(s) < f(t). We call such a function
monotone. Now we work with monotone functions f , that specialise only a part of
T, namely the union of countably many of its levels, so that the indices of the levels
form a closed set C. We call such a pair (f, C) an approximation. For α < ω1 let
Tα denote the α-th level of T. For x ∈ Tα and β < α we let xdβ be the y ∈ Tβ such
that y <T x. For making the notation easier, we consider only Aronszajn trees T
whose α-th level, Tα, is [ωα, ω(α+1)). This is no loss of generality since specialising
all these Aronszajn trees suffices.

For any closed C of ω1, every monotone f :
⋃
α∈C Tα → Q can be extended to

a total specialisation (see, e.g., [8, Lemma 3.7]), and hence working with approxi-
mations on a closed set of levels is the same as working with all levels. We follow
the exposition in [2], where the promises (see Def. 2.3) are not only finite parts of
the Aronszajn trees as in the book [15], but they are functions from these finite
parts into Q. We follow the book [15] in that we use club sets of levels on which
the approximations will be defined and not just initial segments

⋃
β≤α Tα as in [2].

We follow the Israeli convention that the stronger forcing condition is the larger
one. We assume that each poset P has a weakest element and denote it by 0P .

Definition 2.1. (A modification of [2, Definition 4.1].)

(1) An approximation is a pair (f, C) such that there is a countable ordinal
α and C ⊆ α + 1, C is closed and α ∈ C, f :

⋃
i∈C Ti → Q is a partial

specialisation function. The ordinal α is called last(f). We say “(f2, C2)
extends (f1, C1)” and write (f1, C1) ≤ (f2, C2) iff f1 ⊆ f2 and C1 ⊆ C2 and
(C2 \ C1) ∩ (

⋃
C1) = ∅.

(2) We say H is a requirement of height γ < ω1 iff for some n = n(H) < ω, H
is a countable set of functions of the form h : dom(h)→ Q with dom(h) ∈
[Tγ ]n.

(3) We say that a finite function h : Tα → Q bounds an approximation f with
last(f) = α iff ∀x ∈ dom(h), f(x) < h(x). More generally, if β ≥ α =
last(f), then h : Tβ → Q bounds f iff ∀x ∈ dom(h)(f(xdα) < h(x)).
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(4) An approximation f with last(f) = α is said to fulfil the requirement H of
height γ ≥ α iff for every t ∈ [Tα]<ω there is some h ∈ H which bounds f
and such that {xdα : x ∈ dom(h)} is disjoint from t.

If f fulfils the requirement H, then any approximation f ′ with the same last
level that is dominated everywhere by f fulfils the requirement as well. Note that
according to Definition 2.1(4) only infinite requirements H can be fulfilled. For
γ = α the necessary property is equivalent to having an infinite set of pairwise
disjoint dom(h), h ∈ H and is equivalent to a property we call dispersedness:

Definition 2.2. H ⊆ Q[Tγ ]n is called dispersed iff for each t ∈ [Tγ ]<ω, there is
some h ∈ H such that t ∩ dom(h) = ∅.

A forcing condition will be an approximation together with a T-promise. The
promises function as side-conditions and ensure that the forcing and also all of its
countable support iterations (see Theorem 2.20) do not add new reals.

In order to describe how elements of Γ(γ) are seen at lower levels in the tree,
we extend our d-notation: Let α < γ. For h : Tγ → Q we let dom(hdα) ⊆ Tα and
hdα(x) = min{h(y) : ydα = x, y ∈ dom(h)}. For a requirement H of height γ and
α < γ we set Hdα = {hdα : h ∈ H}.

Definition 2.3. (See [2, Definition 4.1 (4)].) Γ is a T-promise iff dom(Γ) is club
in ω1 and Γ = 〈Γ(γ) : γ ∈ dom(Γ)〉 has the following properties:

(a) For each γ ∈ dom(Γ), Γ(γ) is a countable set of requirements of height γ.

(b) (∀γ ∈ dom(Γ))(∀H ∈ Γ(γ)) H is dispersed.

(c) (∀α < γ ∈ dom(Γ))(Γ(α) ⊇ {Hdα : H ∈ Γ(γ)}). This condition implies
that {Hdα : (∃γ > α)(H ∈ Γ(γ))}) is countable.

Definition 2.4. ([2, Definition 4.1 (5)]) We say that an approximation (f, C) fulfils
the promise Γ iff last(f) ∈ dom(Γ) and f fulfils each requirement H in Γ(last(f)).

Finally we can describe the iterands of our iteration of length ω2. QT is called
S(T) in [2]. We do not know whether it is equivalent to the forcing notion QNNR

or NNR(T) from [15, V, 6.3]. NNR means “no new reals”.

Definition 2.5. ([2, 4.2]) QT is the set of (f, C,Γ) such that (f, C) is an approx-
imation, and Γ is a promise and (f, C) fulfils Γ. The partial order is defined as
(f0, C0,Γ0) ≤ (f1, C1,Γ1) iff

(1) f1 extends f0,

(2) C1 is an end-extension of C0 and C1 \ C0 ⊆ dom(Γ0), and

(3) (∀γ ∈ dom(Γ0 \ last(f1))(γ ∈ dom(Γ1) and Γ0(γ) ⊆ Γ1(γ)).

If p = (f, C,Γ), we write f = fp , C = Cp and Γ = Γp, and we write last(p) =
last(fp) = max(Cp).

Do not confound the countable, closed C’s that are the second coordinate of
the approximations with the true clubs dom(Γ) in ω1 that are the domains of the
promises Γ: the first ones are approximations to the latter ones as in the forcing
adding a club through a stationary set by countable approximations [4]. However,
we take club sets dom(Γ) and not co-stationary sets as there, as we want to work
with proper forcings.

Now we want to extend a given condition to a stronger condition of a given
height, and we want to show that the set of promises can be enlarged.

Lemma 2.6. ([2, Lemma 4.3], The extension lemma.) Let µ < ω1. If p ∈ QT

and if last(p) < µ ∈ dom(Γp), then there is some q ≥ p such that Γq = Γp and
last(q) = µ. Moreover, if h : Tµ → Q is finite and bounds fp, then q can be chosen
such that h bounds fq.
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Proof. The proof is done by induction on µ. First case: µ = µ0 + 1 is a successor.
We may assume that last(p) = µ0 and we have to extend fp onto Tµ0+1, fulfilling
all the countably many requirements in Γp(µ). We know that every requirement
Hdµ0 for H ∈ Γp(µ) is fulfilled by fp. So Hdµ0 contains infinitely many functions
h that bound f . We have countably many H, and we enumerate them as H0, H1,
. . . . There are enough points in Tµ0+1 \Tµ0 such that in each Hi there will be some
hi such that dom(hi) ∩

⋃
{dom(hj) : j < i} = ∅.

Since it will be used in the limit step, we now prove the “moreover”-clause. If h
bounds p as in the Lemma, we first choose any extension p1 of p with µ = last(p1)
and then we correct p1 as follows to obtain q: There is some d > 0 such that
∀x ∈ dom(h), h(x) > fp(xdµ0) + d. Now we take δ : Q+ → (0, d) order-preserving
and such that δ(x) < x for all x ∈ Q+. Now we set fq(x) = fp(xdµ0) + δ(fp1(x)−
fp(xdµ0)). Hence h bounds q.

Second Case: µ is a limit of dom(Γp). We pick an increasing sequence of ordinals
µi, i < ω, converging to µ. We define an increasing sequence pi ∈ QT, i ∈ ω,
beginning with p0 = p and finite hi, gi : Tµ → Q which bound pi and whose union of
domains will be Tµ. The passage from µi to µi+1 uses the inductive assumption for
µi+1 of the stronger claim in the “moreover” clause. The hi and gi ensure that fq is
bounded on each branch in T<µ and that fq on the level Tµ fulfils all the promises
in Γ(µ). Then we can define q = (f, C,Γ) by C = Cp ∪ {µ} and Γ = Γp. We let
f ′ =

⋃
{fpi : i < ω} ∪ {(x, lim supi→ω f

pi(xdµi)) : x ∈ Tµ}. The values on level µ
might be irrational. We correct them to slightly larger values in Q that are so small
as to fulfil all the promises in Γq(µ) and let the resulting function be fq. Such a
choice is possible since all (ω, ω)-gaps in R are filled with sequences with values in
Q.

To carry out the step from i to i + 1, let Γp(µ) = {Hi : i < ω}. At step i,
we choose hi ∈ Hi such that dom(hi) ∩

⋃
{dom(hj) : j < i} = ∅ and we choose

gi ∈ {g : [Tµ]n(Hi) → Q : g(x) = fp(xdlast(p)) + 1
2i } and fulfil both. In addition we

take care that
⋃
{dom(hi)∪dom(gi) : i < ω} = Tµ. Then we choose `i so high that

dom(hidµ`i) ∩
⋃
{dom(hjdµ`i) : j < i} = ∅. By the induction hypothesis of the

statement together with the “moreover”-clause we have some εi > 0 and pi such
that for all j ≤ i, ∀x ∈ dom(hj) f

pi(xdµ`i) < hjdµ`i(xdµ`i)− εi and last(pi) = µ`i ,
and the same can be arranged for the gj . Since hj ∈ Hj is taken care of at each
step i ≥ j, in the end also f(x) < hj(x) for all x ∈ dom(hj). a

Definition 2.7. Let p be a condition of height µ and let Ψ be a promise. We say
that p includes Ψ iff dom(Ψ) ⊆ dom(Γp) and for all γ ∈ dom(Ψ), Ψ(γ) ⊆ Γp(γ).

If p includes Ψ, then p fulfils Ψ. There is a sufficient condition for the existence
of an extension q of p such that q includes Ψ:

Lemma 2.8. (Modification [2, Lemma 4.4.], Addition of promises.) Let p ∈ QT

and µ = last(p). Let Ψ be a promise with µ < β = min(dom(Ψ)) and dom(Ψ) ⊆
dom(Γp). Suppose that for some finite g : Tµ → Q called a basis for Ψ, g bounds fp

and

(∀γ ∈ dom(Ψ))(∀H ∈ Ψ(γ))(∀h ∈ H)(hdµ = g).

Then there is an extension q of p in QT that includes Ψ.

Proof. Since g is finite, there is some rational d > 0 such that (∀x ∈ dom(g))(g(x) >
fp(x)+d). Now every H ∈ Ψ(β) is a dispersed collection of functions h with hdµ ≥
g. Let p1 be any extension of p of height β. For γ ≥ β we set Γq(γ) = Ψ(γ)∪Γp(γ),
and γ ∈ [µ, β) we set Γq(γ) = {Hdγ : H ∈ Ψ(β)} ∪ Γp(γ). The desired exten-
sion of p is obtained by correcting fp1 to get fq that fulfils Ψ(β) ∪ Γ(β) as in the
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“moreover”-part of the previous lemma. a

In the following lemma χ > 2ℵ1 is sufficiently large.

Lemma 2.9. ([2], [15, Fact V 6.7]) Let T be an Aronszajn tree. Let M ≺ (H(χ),∈)
be a countable elementary substructure with a sufficiently large regular χ, QT ∈M ,
p ∈ QT ∩M , µ = ω1 ∩M and h : Tµ → Q be a finite function which bounds fp. Let
D ∈M , D ⊆ QT be dense open. Then there is an q ≥ p, q ∈ D ∩M , that h bounds
q.

Proof. We assume that the contrary is the case. Let T, M , p, h be a counterexam-
ple. Let µ0 = last(p) < µ and let {x0, . . . , xn−1} = dom(h) ∈ [Tµ]n. Let vi = xidµ0.
We assume that vi 6= vj for i 6= j otherwise we extend p upwards with Lemma 2.6
to get some p′ ≥ p with last(p′) < µ and xidlast(p′) 6= xjdlast(p′).

Put g0 = hdµ0. Then g0 ∈ M , as it is finite. We say that that a finite partial
g : Tγ → Q is bad iff µ0 ≤ γ and gdµ0 = g0 and, whenever q ∈ D extends p and
γ ≥ last(q), g does not bound q. So g is bad iff it has the similar behaviour as hdµ0.
For every γ ∈ [µ0, µ), hdγ is bad. So in M and hence in H(χ) there are uncountably
many bad g’s. We set

B = {dom(g) : g is bad}.
Then B is an uncountable and closed downwards in <T (above µ0) subset of⋃
µ0≤γ<ω1

[Tγ ]n. As T is an Aronszajn tree, [6, Lemma VI.7] implies that there

is some β ≥ µ0 and some B0 ⊆ B such that:

(1) For β ≤ γ0 < γ1, B0 ∩ Tγ0 = (B0 ∩ Tγ1)dγ0

(2) B0 ∩ Tβ is dispersed.

Here we take Xdγ = {xdγ : x ∈ X} for X ⊆ T. We may find B0 in M , since only
parameters in M were mentioned in its definition. For β ≤ γ < ω1 let Ψ(γ) = {Hγ}
with Hγ = {g : g is bad and dom(g) ⊆ B0 ∩ Tγ}M . By Lemma 2.8, read in M ,
there is an extension q of p in M of height β which includes Ψ, i.e., Hγ ∈ Γq(γ).

Now let r ∈ D be any condition extending q. Let γ = last(r). Since r fulfils Γ,
for some g in Hγ , g bounds r. But this contradicts the fact that g is bad. a
Lemma 2.9 will be used in the induction in Claim 2.16 to get point (5).

Definition 2.10. Now we assume V |= CH + ♦ω1 + 2ℵ1 = ℵ2 and let Pω2 =
〈Pα, Q

˜
β : α ≤ ω2, β < ω2〉 be a countable support iteration with Q

˜
α = QTα

˜
being

as above for some Aronszajn tree Tα ∈ V[Gα], where the filter Gα is Pα-generic
over V, such that 
Pα “T

˜
α is an Aronszajn tree and for γ < ω1 its γ-th level is

[ωγ, ωγ + ω)”. The book-keeping shall be arranged so that every Pω2
-name for an

Aronszajn tree is used in some iterand.

Why does every Aronszajn tree in VPω2 have a Pα-name for some α < ω2?
We have |QT| = ℵ2, so that we cannot work with the ℵ2-chain condition for each
iterand. Now [15, Chapter VIII, Section 2] helps: Basically by Lemma 2.8, each QT

has the ℵ2 p.i.c. (proper isomorphism condition), see [15, Chapter VIII, Def. 2.1],
and hence by [15, Chapter VIII, Lemma 2.4], Pω2

has the ℵ2-c.c, if V0 fulfils the
CH.

Since Pω2
has the ℵ2-c.c., by a lemma similar to the one of [5, 5.10], now for

subsets of ω1 instead of real numbers, every subset of ω1 in a countable support
iteration of proper forcings with the ℵ2-c.c. at each initial segment has a name at
some stage of cofinality ω1. So we an carry out the desired book-keeping.

In the remainder of this section, we shall prove that Pω2
does not add new

reals. Towards this aim, we first recall some general theory for < ω1-proper forcings
P adding no reals. Then we shall show that our specific forcing and a suitable
completeness system D(M,P, p) exhibit these properties. Note that adding no reals
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and adding no new ω-sequence of ordinals is the same for proper forcings. In the
application, P is of the form QT or is some countable support iteration of QT’s.

Recall, p ∈ P is (M,P )-generic if for every P -generic filter G over V with p ∈ G,
p 
M [G

˜
] ∩On = M ∩On. Now in the context of proper forcings that do not add

reals we find completely (M,P )-generic conditions.

Definition 2.11. A condition p is completely (M,P )-generic if G = {q ∈ P ∩M :
q ≤ p} is an (M,P )-generic filter. G is called bounded.

Indeed, P is proper and does not add reals iff for every M ≺ (H(χ),∈), for every
p ∈ M ∩ P there is a completely (M,P )-generic q ≥ p. Given a name f

˜
for a

real, consider the dense sets Dn = {p : (∃m ∈ ω)(p 
 f
˜

(n) = m)}. Completeness
systems that are closed under finite intersections — we shall have countably closed
ones — help to find completely generic conditions in a first order definable way
and allow to prove that no new reals sneak in at the limit steps. Only the case
of cofinality ω is hard, since every real in a countable support iteration of proper
forcings appears for the first time at some stage of at most countable cofinality [1,
Cor. 2.9 (1)]. An important point is that some parameters of the members of the
completeness system, that are subsets of M , here called x, need to be guessed. Since
intersections over countable parts of the completeness system are not empty, the
guessing can be performed in M ′, when M ′ ≺ (H(χ),∈, <∗χ) and M ∈M ′. One not
so aesthetic feature stays: There is neither a completeness system for the two-step
iteration nor for the limit forcing, we only know that no reals are added. From the
proof we get a description of the bounded generic filters and of the generic filters
for some towers of elementary submodels that appear as helpers in the proofs.

Definition 2.12. ([15, V, 5.5])

(1) We call D a completeness system if for some µ, D is a function defined
on the set of triples 〈M,P, p〉, p ∈ M ∩ P , P ∈ M , M ≺ (H(µ),∈), M
countable, such that D(M,P, p) is a family of non-empty subsets of

Gen(M,P, p) ={G : G ⊆M ∩ P,G is directed and p ∈ G
and G ∩ I 6= ∅
for every dense subset I of P which belongs to M}.

(2) We call D a λ-completeness system if each family D(M,P, p) has the prop-
erty that the intersection of any i elements is non-empty for i < 1 + λ (so
for λ ≥ ℵ0, D(M,P, p) generates a filter). ℵ1-completeness systems are also
called countably closed completeness systems.

(3) We say D is on µ if M ≺ (H(µ),∈). We do not always distinguish strictly
between D and its definition.

The notion of forcing QT has size 2ℵ1 , and the set of all approximations has size
ℵℵ01 . So for a countable M ≺ (H(χ),∈, <∗χ), we never have P ⊆ M . If T ∈ M , we

can read the definition of P = QT in M and get PM . Since T is definable from QT

(x 6<T y iff there is an approximation with f(x) = f(y)), QT ∈M implies T ∈M .
If χ > 2ℵ1 is regular, then PM = P ∩M . In our description via first order formulae,
P , x, and G are predicates on M .

Definition 2.13. Suppose that D is a completeness system on χ. We say P is D-
complete, if for every countable M ≺ (H(χ),∈) with P ∈ M , D ∈ M , p ∈ P ∩M ,
the following set contains as a subset a member of D(M,P, p):

Gen+(M,P, p) = {G ∈ Gen(M,P, p) : there is an upper bound for G in P}.

Definition 2.14. ([15, V, 5.5])
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(1) A completeness system D is called simple if there is a first order formula ψ
such that

D(M,P, p) = {Ax : x is a finitary relation on M, i.e., x ⊆Mk for some k ∈ ω},

where

Ax = {G ∈ Gen(M,P, p) : (M ∪ P(M),∈, p,M,P ) |= ψ(x,G)}.

(2) A completeness system D is called almost simple over V0 (V0 a class,
usually a subuniverse) if there is a first order formula ψ such that

D(M,P, p) = {Ax,z : x is a finitary relation on M, i.e.,

x ⊆Mk for some k ∈ ω, z ∈ V0},

where

Ax,z = {G ∈ Gen(M,P, p) :

(V0 ∪M ∪ P(M),∈V0 ,∈M∪P∪P(M), p,M,V0, P ) |= ψ(x, z,G)},

where ∈A= {(x, y) ∈ A×A : x ∈ y}.

(3) If in (2) we omit z, we call D simple over V0.

We shall give an example ψ and a simple ℵ1-completeness system D on any
regular χ > 2ℵ2 , so that QT is D-complete. From now on we use the requirement
from Def. 2.10 that the α-th level of T = (ω1, <T) is [ωα, ω(α + 1)). Let χ > 2ℵ2

be a regular cardinal. If we have a countable M ≺ (H(χ),∈), then M ∩ T = T<µ
for µ = M ∩ ω1. We take an increasing sequence β̄ = 〈βn : n ∈ ω〉 that is cofinal
in µ. Now we take for x1 ⊆ M a code of the branches through T<µ, for example
x1 : T<µ → ω, x1 is eventually constant on each branch. We also code in x1 the
branches through T<µ that have <T successors in Tµ. Indeed the other branches
are unimportant. If we want to find an (M,P )-generic condition with last level
Tµ we have to take care that the approximations to the specialisation function do
not diverge on any branch that is continued in Tµ. Since we are looking for a
condition q ≥ p and p ∈ M , we also code into another component x2 ⊆ M the set⋃
γ≥µ Γq(γ)dµ of promises for each q ∈ M ∩ P . The codes x = (x1, x2, β̄) are in

general not in M , but they are predicates ⊆Mk. The point is that countably many
Ax from Definition 2.14 (the ψ appearing in Ax will be given in Lemma 2.15) have
a non-empty intersection. This works also for countably many guesses for codes,
which is crucial in the proofs of Theorems 2.20 and 3.4.

The technique of the following lemma comes from [2]. Actually a sketch of the
elements of the ℵ1-completeness system is also given in the end of the proof of [15,
Chapter V, Theorem 6.1] on page 236. We conceive x = (x1, x2, β̄) as one relation
in M .

Lemma 2.15. QT is D-complete for the simple ℵ1-completeness system D given by
ψ(x,G) = ψ0(x) ∧ ψ1(x,G), with

ψ0(x) ≡x = (x1, x2, β̄) ∧ β̄ = 〈βn : n ∈ ω〉 increasing

∧M ∩ ω1 =
⋃
{βn : n < ω}
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and

ψ1(x,G) ≡(∀ε > 0)(∃m < ω)(∀n1 < n2 ∈ [m,ω))(∀t ∈ Tµ)(∀y1, y2 <T t)(
(y1 ∈ Tβn1

∧ y2 ∈ Tβn2
∧ y1 <T y2 → f

˜
[G](y2) < f

˜
[G](y1) +

ε

2n2

)
∧ “G is a filter”

∧ p ∈ G ∧ ∀D ∈M((D ⊆ P ∧D dense in P )→ D ∩G 6= ∅)
∧ (∀H ∈ x2)(∀n)(∀t ∈ [Tβn ]<ω)(∃h ∈ H)

(domhdβn ∩ t = ∅ ∧ f
˜

[G] � Tβn fulfils hdβn).

Here M , P , x and G appear in the formulas as (names for) predicates and p is a
constant. To ease readability, we write Tµ instead of x1 (though Tµ is not a subset
of M) and

⋃
γ≥µ Γp(γ)dµ instead of x2.

Proof. First we proof the following claim:

Claim 2.16. Let µ = M ∩ ω1 = sup〈βn : n < ω〉 and let the βn be increasing. If

(M ∪ P(M),∈M∪P(M), p,M,QT) |= ψ0(x),

then there is G ⊆ QT, G ∈ G(M,QT, p) ∩Ax such that

(M ∪ P(M),∈M∪P(M), p,M,QT) |= ψ(x,G).

Proof. Let {In : n ∈ ω} be an enumeration of all open dense subsets of QT that
are in M . Let {tn : n ∈ ω} enumerate Tµ: Now we choose by induction on n < ω,
pn such that

(1) p0 = p,

(2) pn+1 ≥ pn ∈M ,

(3) last(pn+1) ≥ βn+1,

(4) pn+1 ∈ In,

(5) (∀t ∈ {tk : k ≤ n})(∀y <T t)
(
y ∈ Tβn+1 → fpn+1(y) < fpn(ydβn) +

1
2n+1+n

)
.

Then G = {r : (∃n ∈ ω)(r ≤ pn)} ∈ Gen(M,QT, p) ∩Ax.
Why is this choice possible? For Properties (4) and (5) we use Lemma 2.9 for h

with

dom(h) = {tkdβn+1 : k ≤ n},

h(y) = fpn(ydβn) +
1

2n+1+n
,

which is a finite function that bounds pn and we find some pn+1 of length βn+1. a

Claim 2.17. If (M ∪ P(M),∈, p,M,QT) |= ψ(x,G) for some x, then G has an
upper bound in QT.

Proof. Again let {In : n ∈ ω} be an enumeration of all open dense subsets of QT

that are in M . Let x be as in ψ(x,G). Let G ⊇ {qn : n ∈ ω}, qn ∈ M ∩ In,
last(qn) = βn such that the βn and the qn are increasing. We set µ = M ∩ ω1 =⋃
βn, fq as in the proof of Lemma 2.6 a slightly larger rational variant of

⋃
fqn ∪

{(z, sup{fqn(zdβn) : n ∈ ω}) : z ∈ Tµ}, Cq =
⋃
n∈ω C

qn∪{µ}, which is closed since
for each n, Cqn+1 is an end extension of Cqn , dom(Γq) = (

⋃
n∈ω dom Γqn ∩ [µ, ω1))∪

{µ}, and for µ′ > µ, Γq(µ′) =
⋃
n∈ω Γqn(µ′) and Γq(µ) =

⋃
µ′≥µ

⋃
n∈ω Γqn(µ′)dµ.

We claim that q is an upper bound of G: First we check that q ∈ QT. Note that
if ν dominates all hβ̄,z, z ∈ Tµ, then for every z ∈ Tµ the limit fq(z) exists, because
if hz,β̄ ≤∗ ν, then for almost all n, zdβn = ωβn+hz,β̄(n) and hz,β̄(n) ≤ ν(n). So we
have that (fq, Cq) is an approximation. Now let H ∈ Γq(µ) be a T-promise. For
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some µ′ ≥ µ, k ∈ ω, H ∈ Γqk(µ′)dµ. Then, since qk fulfils the promise, also q fulfils
the promise. a

Proof of Lemma 2.15 continued: We showed that Ax ⊆ G+(N,QT, p). So we
have that QT is D-complete. It remains to show that D is countably closed, i.e.,
that given x` with ψ(x`, G), ` < ω, the intersection

⋂
`∈ω Ax` is not empty. But

this is now easy: Let x` = (x1,`, x2,`, β̄`). x1,`, coding the cofinal branches in T<µ,
and x2,`, coding the promise Γ(µ), are defined from T and p and do depend on ` at
most in the way the coding is chosen, not in the content they code.

There is only some little twist because the β̄` = 〈β`,u : u < ω〉 are not the
same. We choose β = 〈βm : m < ω〉 such that β0 = 0, (∀` ≤ m)(∃u < ω)(β`,u ∈
[βm, βm+1)). Then we let x1 = x1,0, x2 = x2,0 and x = (x1, x2, β̄). Then Ax ⊆ Ax` ,
` < ω. a

Definition 2.18. We call P α-proper if the following holds: Let Mi, i < α, be
countable elementary submodels of (H(χ),∈). Let P ∈ M0 and let 〈Mi : i < α〉
be an increasing sequence such that 〈Mj : j ≤ i〉 ∈ Mi+1 and for limit ordinals j,
Mj =

⋃
i<jMi. Then for every p ∈ P ∩M0 there is some q ≥ p that is (Mi, P )-

generic for all i < α. Such a sequence 〈Mi : i < α〉 is called a tower of models and
α is the height or the length of the tower.

Lemma 2.19. QT is α-proper for all α < ω1.

Proof. The upper bound from Claim 2.17 gives a completely (M,QT)-generic q ≥ p.
Given a tower of height α, we can repeat the construction α steps, using a “diag-
onalised” version of Claim 2.16 for countably many M and countably many enu-
merations of dense sets simultaneously, so that in the end we get some q that is
(Mi, QT)-generic for all i < α. a

Now we can cite Theorem V.7.1 (2) of [15] for ℵ1-complete systems. A very clear
proof, even in a more general context when “almost simple over V0” is replaced by
“in V0”, is given in [1, Theorem 5.17].

Theorem 2.20. Let Pγ = 〈Pj , Q
˜
i : j ≤ γ, i < γ〉 be a countable support iteration.

If each Qi
˜

is β-proper for every β < ω1 and Di-complete for some almost simple
ℵ1-completeness system Di over V0 (not over the current stage of the iteration),
then Pγ does not add reals.

So we know that Pω2
from Definition 2.10 exists and specialises all Aronszajn

trees and does not add reals. The remaining task is to obtain the weak diamond
♦(R,N ,∈) in VPω2 .

3. Games for the generic filters over countable models

In this section we show that certain weak diamonds hold when forcing with a
countable support iteration of QT’s (of arbitrary iteration length γ) over a ground
model fulfilling ♦ω1

. In order to specialise all Aronszajn trees, we start with a
ground model of CH and 2ℵ1 = ℵ2 and perform an iteration of length γ = ω2 with
a suitable book-keeping.

For the weak diamonds, we rework the facts used in the proof of Lemma 2.15
to give some stronger, descriptive statement about G ∩ M . The basic idea is:
The parameters x1 and x2 of the Ax in the completeness system D(M,P, p) from
Lemma 2.16 can be coded into functions ν : ω → ω in a way that each η ≥∗ ν
also serves as a code for a parameter. The proof of Theorem 2.20, which works
with guessing parameters, will be translated into a game whose innings give ≤∗-
sufficiently large codes of parameters. Let γ be the iteration length. The result,
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stated in Theorem 3.4, is that bounded (M0, Pγ)-generic filters containing p0 can
be computed in a Borel manner from the isomorphism type of (M0, Pγ , p0) and a
game played according to a strategy. The length of the game is α = otp(M0 ∩ γ).

In the following χ > 2ℵ2 suffices. Let <∗χ be a fixed well-ordering of H(χ) such
that x ∈ y implies x <∗χ y. Assume that M ≺ (H(χ),∈, <∗χ) is a countable model
and T, QT ∈M . From now on we shall use the well-order <∗χ. In the following, let
M always be a model of this kind. We reserve the letter N for transitive collapses of
the M ’s. Fix a bijective pairing function e : ω×ω → ω that is so low in complexity
such that it is an element of every M .

Now we want to get rid of the two parameters x1 and x2 that depend on p, Tµ
and

⋃
µ′≥µ Γp(µ′)dµ and are relations over M but not elements in M . The trick is

to find a real ν coding them (after a transitive collapse) and code in such a way
that every η ≥∗ ν codes even better. Coding means we want to imitate Lemma 2.16
now with η taking the role of x1 and of x2. The parameter β̄ can stand as it is,
since it depends only on the transitive collapse of M and not on P and p.

We translate the task of x1:

Definition 3.1. Let T be an Aronszajn tree with levels Tα = [ωα, ω(α + 1)). Let
µ be a limit ordinal in ω1. Given β̄ converging to µ, we can write cofinally many
nodes of a branch b of T<µ into a function hb,β̄ : ω → ω, such that for all n,

b ∩ Tβn = {ωβn + hb,β̄(n)}
and we can describe each node t = ωµ + k ∈ Tµ, by ht,β̄ : ω → ω, such that for all
n,

tdβn = ωβn + ht,β̄(n).

If t = ωβn + k ∈ Tβn , then we define ht,β̄ : n+ 1→ ω, such that for all m ≤ n,

tdβm = ωβm + ht,β̄(m).

Now we translate the task of x2:

Definition 3.2. Let µ = M ∩ ω1. Given β̄ converging to µ, and p ∈M ∩QT with
last(p) = β0, let Γp(µ) = {Hn : n ∈ ω}, and let hn,m ∈ Hn be such that p fulfils
hn,m, and such that {dom(hn,m) : m < ω} is dispersed and pairwise disjoint. We
define hp,Hn : Tµ → ω, such that for all x ∈ Tµ, for all m

hn,m(x)− 2−hp,Hn (x) > fp(xdlast(p)).

That is, the growth of fq ⊇ fp along the branch leading to x ∈ Tµ and a promise

Hn ∈ Γp(µ) shall be bounded, only the small increase 2−hp,Hn (x) above fp is allowed.
We code the level Tµ ⊆M in a predicate on M and we code the promise Γp(µ) into
the natural numbers via a bijection l : ω → Tµ. Then hp,Hn ◦ l : ω → ω is a function
we want to eventually dominate with a good parameter ν. The parameter does not
know the actual functions hp,Hn . That aim ist: if a parameter ν dominates all the
ht,β̄ , t ∈ Tµ, and all the hp,Hn , n ∈ ω. then we can choose the conditions in an
(M,P )-generic filter only with the knowledge of η for any η ≥∗ the parameter ν and
without Tµ (or x1) and Γp(µ) (or x2). To make the induction in the next lemma
going, the parameter need also to be larger than the codes of the Γpn(µ) for n ∈ ω.
So we code all hq,H for H ∈ Γq(µ), q ∈M ∩ P , into x2.

Lemma 3.3. Let p ∈ QT ∩M . Let µ = M ∩ ω1 = sup〈βn : n < ω〉, βn+1 > βn.
Let c : ω →M be a bijection with c(0) = QT, c(1) = p, c(2n+ 2) = βn, and let

U = U(M,QT, p)

= {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2) + 1 : c(n1) <∗χ c(n2)}.
We let Γp(µ) = {Hn : n ∈ ω} and we let the functions hy,β̄ and hp,Hn be defined

as in Defs. 3.1 and 3.2.
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There is a Borel function B1 : ωω ×P(ω)→ P(ω), such that for every η ∈ ωω, if

(3.1) (∀y ∈ Tµ)(hy,β̄ ≤∗ η),

and

(3.2) (∀n)(hp,Hn(l(·)) ≤∗ η)

for

G = {c(n) : n ∈ B1(η, U)}
the following holds: G is (M,QT)-generic and p ∈ G and there is an upper bound
r of G as in Claim 2.17.

Remark: r is an upper bound of G iff we have for every QT-generic filter GV

over V with r ∈ GV and name GV

˜
that

r 
QT
GV

˜
∩M = {c(n) : n ∈ B1(η, U)}.

Proof. We verify that each step in the proof of Lemma 2.15 is Borel-computable
from (η, U). Let M ≺ (H(χ),∈, <∗χ) be countable. Then we take an enumeration
〈In : n ∈ ω〉 of all dense subsets of QT that are in M , ordered according to <∗χ.

Now, we compute from η and U by induction on n < ω, pn such that

(1) p0 = p, last(p) = β0

(2) pn+1 is the <∗χ-least element of M such that

(2a) pn+1 ≥ pn,

(2b) last(pn+1) ≥ βn+1,

(2c) pn+1 ∈ In,

(2d) (∀x ∈ Tβn+1
)
(
hx,β̄(n+ 1) ≤ η(n+ 1) → fpn+1(x) < fpn(xdβn) +

1
2n+1+n+η(l(x))

)
.

For finding such an pn+1 we use the Lemma 2.9 for the finitely many initial segments
of branches y � (βn+1 + 1) with y(βn+1) ≤ η(n+ 1) and with the following bound h:

dom(h) = {x ∈ Tβn+1
: hx,β̄(n+ 1) ≤ η(n+ 1)},

h(x) = fpn(xdβn) +
1

2n+1+n+η(l(x))
.

If Equations (3.1) and (3.2) hold, then η is sufficiently large to take care of all
branches of T<µ that lead to points x ∈ Tµ. Set B1(η, U) = {q ∈ N ∩QT : (∃n)q ≤
pn}.

Then B1(η, U) ∈ Gen+(N,QT, p)∩Ax and there is an upper bound of B1(η, U)
as in Claim 2.17. a

Strictly speaking we must write U = U(M,P, p, β̄), since by the boundedness
theorem (see, e.g., [10, Theorem 31.1]) a cofinal sequence β̄ cannot be computed
in a Borel manner from (M,∈, <∗χ), and for each n, βn is coded by the stipulation
c(2n + 2) = βn. The arguments (M,P, p) of U will change during the iteration,
and one of the main tasks is to show that all the changes are Borel computable,
see for example Equation (3.8). Fortunately, since in proper forcing P the ordinary
height of N and N [G] (we use the letters N and G for the objects after the transitive
collapse) are the same for all (M,P )-generic filters G, β̄ will not change and it does
not hide features of the proof if we do not write it during the proof of the iteration
theorem. However, β̄ needs to be guessed as one component in Lemma 3.11 and
will be written there. Since our notation is already heavily burdened, we write only
U(M,P, p) until the end of the proof of Theorem 3.4.

Since each η dominating all ht,β̄ , t ∈ Tµ, and dominating hp,Hn , n ∈ ω, gives
an (M,QT)-generic G, the generic player can play ν fulfilling all theses largeness
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requirements and thereafter any η ≥∗ ν can be used as an argument of B. We use
this option to build a game between two players, and to establish properties that
say: The ≤∗-larger the argument η in the Borel function B1 is, the better it aims
at the envisaged weak diamond. See also the remark [15, V, Remark 5.4 (2)] about
the influence of the guessed parameters on the generic filter. The knowledge that
the ≤∗-larger parameter can be inserted in the Borel function B1 will help us later
to see that in the iteration every name of a real (called B′ in Lemma 3.10 as it is
another Borel function) can be forced into a slalom from the ground model (called
C there) that is meagre and of Lebesgue measure zero.

The following theorem is an iterated version of Lemma 3.3. It is related to
Theorem 2.20, however now we want to compute bounded (M,Pγ)-generic filters
(that witness that no reals are added) as Borel functions of certain arguments.
As in Theorem 2.20 we use < ω1-properness and a tower 〈Mi : i ≤ α〉 with
α = otp(M ∩ γ) < ω1, γ= iteration length, of elementary submodels in order to
prove facts about M = M0 and Pγ . The tower appears only in the proof, not in the
statement of the theorem. The following theorem would work for arbitrary iteration
length, but we use it only for length ω2 and notate it only for this length.

Theorem 3.4. Let Pω2 = 〈Pα, Q
˜
β : α ≤ ω2, β < ω2〉 be a countable support

iteration of iterands of the form QT. If χ is sufficiently large and regular and if
M ≺ (H(χ),∈, <∗χ) is countable and

(a) Pγ ∈M , γ ≤ ω2,

(b) p ∈ Pγ ∩M ,

(c) α = otp(M ∩ γ),

(d) Let β̄ be cofinal in M ∩ ω1. Let c : ω → M be a bijection with c(0) = Pγ ,
c(1) = p, c(2n+ 2) = βn, and let

U = U(M,Pγ , p)

= {2e(n1, n2) : c(n1) ∈ c(n2)} ∪ {2e(n1, n2) + 1 : c(n1) <∗χ c(n2)}.

Then there is a Borel function B = Bα : (ωω)α × P(ω) → P(ω), such that in the
following game a(M,Pγ ,p) the generic player has a winning strategy σ, which depends

only on the isomorphism type of (M,∈, <∗χ, Pγ , p, β̄):

(α) a play lasts α moves,

(β) in the ε-th move the generic player chooses some real νε and the antigeneric
player chooses some ηε ∈ ωω, such that ηε ≥∗ νε,

(γ) in the end the generic player wins iff the following is true:

Gγ = {c(n) : n ∈ Bα(〈ηε : ε < α〉, U)} is (M,Pγ)-generic and

p ∈ Gγ and

(∃q ∈ Pγ)(p ≤ q and q bounds Gγ).

Proof. We follow Abraham’s exposition in [1, Theorem 5.17]. This theorem works
only inductively: For Qα in VPα to be D–complete with respect to a system that
lies in V we need that Pα does not add new countable sets of ordinals. So every
countable transitive set in VPα is in V.

To prove the theorem we shall first define for every countable M ≺ (H(χ),∈,
<∗χ) with Pγ ∈ M , p ∈ Pγ ∩M , with α = otp(M ∩ γ), an (M,Pγ)-generic filter
Gγ = Bα(〈ηi : i < α〉, U); and then we shall prove that Gγ is bounded in Pγ by
a completely (M,Pγ)-generic condition. The bounding condition is not computed
in a Borel manner. Its existence is sufficient, and its existence is proved along the
iteration.
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Remark: The bounding condition also appears in an argument about the truth
in forcing extensions at the very end of our Lemma 3.11.

The definition of Gγ is by induction and we shall define for every γ0 < γ and
Gγ0 that is (M,Pγ0)-generic and every p ∈ Pγ ∩M with p � γ0 ∈ G0 a filter Gγ that
extends Gγ0 and contains p. Once the induction is performed, we shall set γ0 = 0,
G0 = {0P0

}. There will be two main cases in this definition: γ successor and γ
limit, and likewise there will be two cases in the proofs that Gγ is bounded. We
start with the preparations for the successor case. When looking at complexity, we
regard G0 as a parameter.

Two step iteration
Let P be a poset and let Q

˜
∈ VP be a name forced by 0P to be a poset.

Let χ be sufficiently large and regular (as said, χ = (2ℵ2)+ is always sufficiently
large) and M0 ≺ (H(χ),∈, <∗χ) be a countable elementary submodel such that P ,
Q
˜
∈M0. Henceforth we write just H(χ) instead of (H(χ),∈, <∗χ). We want to find

a criterion for when a condition (q0, q1) ∈ P ∗Q
˜

is completely (M0, P ∗Q
˜

)-generic.
Let π : M0 → N0 be a transitive collapsing map. Suppose that q0 ∈ P is completely
generic over (M0, P ) and let G0 ⊆ P ∩M0 be the (M0, P )-generic filter induced by
q0. Then G0 = π′′G0 is an (N0, π(P ))-generic filter and we can form the transitive
extension N∗0 = N0[G0]. π(Q

˜
) is a name in N0, and its interpretation Q∗0 = π(Q

˜
)[G0]

is a poset in N∗0 .

Let G
˜
∈ VP be the canonical name of the P -generic filter over V. If F is a

(V, P ) generic filter containing q0 then M0[F ] ≺ H(χ)[F ] can be formed and the
collapsing map π on M0 can be extended to collapse M0[F ] onto N∗0 . Let π

˜
be the

name of the extended collapse. Then q0 
P π
˜

: M0[G
˜

] → N∗0 . We phrase now the
desired criterion and we shall use the direction from right to left later.

Lemma 3.5. Using the above notation, (q0, q1) is completely generic over (M0, P ∗
Q
˜

), iff

1. q0 is completely (M0, P )-generic, and

2. for some G1 ⊆ Q∗0 that is (N∗0 , Q
∗
0)-generic q0 
 “π

˜
−1′′G1 is bounded by q1”.

In this case the filter induced by (q0, q1) over M0 ∩ P ∗Q
˜

is π−1′′G0 ∗ G1.

Given a countable M0 ≺ H(χ) such that the two step iteration P ∗Q
˜

is in M0,
our aim is to extent each (M0, P )-generic filter G0 to an (M0, P ∗Q

˜
)-generic filter.

This definition depends not only on M0 but also on another countable elementary
submodel M1 ≺ H(χ) such that M0 ∈ M1 and G0 ∈ M1. In addition we fix a
p0 ∈ P ∗Q

˜
which we want to include in the extended filter. All of this leads us to

a five place function E(M0,M1, P ∗Q
˜
, G0, p0) that we define now.

Definition 3.6. Let P be a poset that adds no new countable sets of ordinals and
suppose that Q

˜
, D

˜
∈ VP are such that


P D
˜
∈ V is an ℵ1-completeness system and

Q
˜

is D-complete with respect to D
˜

.

Let χ be sufficiently large and M0 ≺ M1 ≺ (H(χ),∈, <∗χ) be countable elementary
submodels with M0 ∈M1 and P , Q

˜
, D

˜
∈M0. Let G0 ⊆M0 ∩P be (M0, P )-generic

and suppose that G0 ∈ M1. Let p0 ∈ P ∗Q
˜
∩M0 be given p0 = (a, b

˜
) with a ∈ G0.

Then we define

G = E(M0,M1, P ∗Q
˜
, G0, p0),

an (M0, P ∗Q
˜

)-generic filter containing p0 (dominating G0) by the following proce-
dure:

Let π : M1 → N1 with π(M0) = N0 be the transitive collapse and G0 = π′′G0.
Form N∗0 = N0[G0]. Observe that N∗0 ∈ N1. Let Q∗0 = π(Q

˜
)[G0], and let D0 =
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π(D
˜

)[G0]. Then D0 ∈ N0, because it is forced to be in the ground model. So D0 =
π(D) where D ∈M0 is a countably closed completeness system. Thus D0(N∗0 , Q

∗
0, b
∗)

is defined in N1, where b∗ = π(b
˜
)[G0] is a condition in Q∗0. Since N1∩D0(N∗0 , Q

∗
0, b
∗)

is countable,

(3.3) there is some G1 ∈
⋂

(N1 ∩ D0(N∗0 , Q
∗
0, b
∗)).

G1 is (N∗0 , Q
∗
0)-generic and b∗ ∈ G1. Form G0 ∗ G1 = G, an (N0, π(P ∗ Q

˜
))-generic

filter. Then π(p0) ∈ G. Finally we define

(3.4) G = E(M0,M1, P ∗Q
˜
, G0, p0) = π−1′′G.

Now observe that if η fulfils Equations (3.1) and (3.2) for (N∗0 , Q
∗
0, b
∗) instead of

(M,QT, p), then the existence of Equation (3.3) is given by

π−1′′G1 = B1(η, U(M0[G0], Q0
˜

[G0], b
˜
[G0]))

and hence is Borel computable from η and the code U of the intermediate model
(N∗0 , Q

∗
0, b
∗).

In fact, we want to define a formula ψ so that

H(χ) |= ψ(M0,M1, P ∗Q
˜
, G0, p0)

iff Equation (3.4) holds. That is, we want to define E in H(χ). We cannot take
the above definition verbally, because it relies on the assumption that M0 and M1

are elementary substructures of H(χ), something which is not expressible in H(χ).
Whenever the definition above relies on some fact that happens not to hold we let
G have an arbitrary value. For example if N∗0 is not in N1 or if N1 ∩D0(N∗0 , Q

∗
0, b
∗)

is empty, then we let G be some arbitrary fixed N0-generic filter. The Borel compu-
tation does not invoke N1, since π−1′′G1 = B1(η, U(M0[G0], Q0

˜
[G0], b

˜
[G0])). Here,

G0 is a parameter and will be set {0P0} later, so that in the end (that means in
Lemma 3.11) only the possible isomorphism types of (M0,∈�M0, <

∗
χ�M0, Pγ , p, β̄)

need to be guessed stationarily often alongside with names for the F and f from
the statement of the weak diamond.

The following lemma shows the second part of the argument: We want to show
the G given in Equation (3.4) is bounded. The lemma analyses the iteration of two
posets when the second is D-complete.

Lemma 3.7. The One Step Extension Lemma. Let P be poset and suppose that
Q
˜

, D
˜
∈ VP are such that


P D
˜
∈ V is an ℵ1-completeness system and

Q
˜

is D-complete with respect to D
˜
.

Let χ be sufficiently large and M0 ≺ M1 ≺ Hχ be countable elementary submodels
with M0 ∈ M1 and P , Q

˜
, D

˜
∈ M0. Suppose that q0 ∈ P is (M1, P )-generic as

well as completely (M0, P )-generic, and let G0 ⊆ M0 ∩ P be the M0 filter over
M0 ∩ P induced by q0. Let p0 ∈ P ∗ Q

˜
, p0 ∈ M0 be given, so that p0 = (a, b

˜
)

and a ∈ G0. Then there is q1 ∈ VP such that (q0, q1) is completely generic over
(M0, P ∗Q

˜
) and p0 ≤ (q0, q1), in fact (q0, q1) bounds G = E(M0,M1, P ∗Q

˜
, G0, p0) =

G0 ∗B1(η, U(N∗0 , Q
∗
0, π(b

˜
))).

Proof. This is literally [1, The Gambit Lemma]. For completeness’ sake we repeat
Abraham’s proof here. Notice that G0 ∈ M1 by the following argument: Let R be
the collection of all conditions r ∈ P that are completely generic over M0. Then
R ∈M1 and q0 ∈ R∩M1. Since q0 is (M1, P )-generic, it follows that it is compatible
with some r ∈ R ∩M1. But any two compatible conditions in R induce the same
filter, and hence G0 is the filter induced by r.

Let π : M1 → N1, π(M0) = N0, be the transitive collapse and G0 = π′′G0.
We recall the definition of E(M0,M1, P ∗ Q

˜
, G0, p0). Form N∗0 = N0[G0] and let
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16 HEIKE MILDENBERGER AND SAHARON SHELAH

Q∗0 = π(Q
˜

)[G0], and let D0 = π(D
˜

)[G0]. Then D0 ∈ N0 because it is forced to
be in the ground model. So D0 = π(D) where D ∈ M0 is a countably closed
completeness system. Thus D0(N∗0 , Q

∗
0, b
∗) is defined in N1, where b∗ = π(b

˜
)[G0]

is a condition in Q∗0. Since N1 ∩ D0(N∗0 , Q
∗
0, b
∗) is countable, there is some G1 ∈⋂

(N1 ∩ D0(N∗0 , Q
∗
0, b
∗)). G1 is (N∗0 , Q

∗
0)-generic and b∗ ∈ G1. Form G0 ∗ G1 = G,

an (N0, π(P ∗ Q
˜

))-generic filter. Then π(p0) ∈ G. We defined G = E(M0,M1, P ∗
Q
˜
, G0, p0) as π−1′′G.

Let G
˜
∈ VP be the canonical name of the generic filter over P . Then q0 forces

that π can be extended to a collapse π
˜

which is onto N∗0 , that is

q0 
P π
˜

: M0[G
˜

]→ N∗0 .

The conclusion of our lemma follows if we show that

(3.5) q0 
P π
˜
−1′′G1 is bounded in Q

˜
.

In this case, if we define q1 ∈ VP so that q0 
P q1 bounds π
˜
−1′′G1, then the

previous lemma implies that the (M0, P ∗ Q
˜

)-generic filter induced by (q0, q1) is

π−1′′G0 ∗ G1.

So let F be (V, P )-generic with q0 ∈ F . π
˜

[F ] collapses M0[F ] onto N∗0 and there
is a set X ∈ D0(N∗0 , Q

∗
0, b
∗), so that if H ∈ X is any filter then π−1′′H is bounded

in Q
˜

[F ]. As N1[F ] ≺ Hχ[F ], we can have X ∈ N1[F ]. But since D0 is in the ground
model, X ∈ N1. Thus G1 ∈ X, where G1 is the filter defined above. This proves
Equation (3.5). a

The iteration theorem
Let Pγ be a countable support iteration of length γ obtained by choosing iterands

Qα ∈ VPα as in the theorem. That is, each Qα is D-complete in VPα for some ℵ1-
completeness system taken from V. Let χ be a sufficiently large regular cardinal.
To prove the theorem we first describe a machinery for obtaining generic filters over
countable submodels of H(χ). We define a function E that takes five arguments,
E(M0, M̄ � [1, α), Pγ , G0, p0) of the following types.

1. M0 ≺ Hχ is countable, Pγ ∈M0, so γ ∈M0. Moreover, p0 ∈M0 ∩ Pγ .

2. For some γ0 ∈ M0 ∩ γ, G0 is an (M0, Pγ0)-generic filter and such that
p0 � γ0 ∈ G0. We assume that G0 ∈M1.

3. The order type of M0 ∩ [γ0, γ) is α.

4. M̄ = 〈Mξ : 0 ≤ ξ ≤ α〉 is an α+1-tower of countable elementary submodels
of H(χ) and M0 = M . Note that only M0 = M appears in the statement
of the theorem. The rest 〈Mξ : 1 ≤ ξ ≤ α〉 of the tower is a technical
means for the proof.

The value returned, Gγ = E(M0, M̄ � [1, α), Pγ , G0, p0) is an (M0, Pγ)-generic
filter that extends G0 and contains p0. Formally, in saying that Gγ extends G0, we
mean that the restriction projection takes Gγ onto G0. The definition of E(M0, M̄ �
[1, α), Pγ , G0, p0) is by induction on α < ω1.

Assume that α = α′+1 is a successor ordinal. Then γ = γ′+1 is also a successor.
Assume first that γ0 = γ′. Then α = 1 and we have only two structures: M0 and
M1. Since Pγ is isomorphic to Pγ0 ∗ Qγ0 we can define Gγ by Equation (3.4). So,
if η fulfils Equations (3.1) and (3.2) for (M0[G0], Q0

˜
[G0], b

˜
[G0]) in the role of of

(M,QT, p), then

Gγ = E(M0,M1, Pγ0 ∗Qγ0 , G0, p0) = G0 ∗B1(η0, U(M0[G0], Q0
˜

[G0], b
˜
[G0])).
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SPECIALISING ARONSZAJN TREES AND PRESERVING SOME WEAK DIAMONDS 17

Assume next that γ0 < γ′. Then by induction hypothesis, if all ηi, i < α′, are
sufficiently large, then

Gγ′ = E(M0, 〈Mξ : 1 ≤ ξ ≤ α′〉, Pγ′ , G0, p0 � γ′)

=G0 ∗Bα′(〈ηi : 0 ≤ i < α′〉, U(M0[G0], P[γ0,γ′)

˜
[G0], p0 � [γ0, γ

′)
˜

[G0]))
(3.6)

is defined and is an (M0, Pγ′)-generic filter that extends G0 and contains p0 � γ′.
Moreover by elementarity, Gγ′ ∈ Mα. When we finish this definition it will be
evident that it continues for every α < ω1 since Mα ≺ H(χ) and the parameters
are all in Mα. This brings us to the previous case and we choose ηα′ such that it
fulfils Equations (3.1) and (3.2) in which (M,QT, p) is replaced by

(M0[Gγ′ ], Qγ˜ [Gγ′ ], p0(γ′)˜ [Gγ′ ]).

Now from Equation (3.6) we define temporarily

(3.7) U ′ = U(M0[G0], P[γ0,γ′)˜ [G0], p0 � [γ0, γ
′)˜ [G0)]).

Then

Gγ = E(M0,Mα, Pγ′ ∗Qγ′ , Gγ′ , p0)

=G0 ∗B1(ηα′ , U(M0[G0 ∗Bα′(〈ηi : i < α′〉, U ′)],
Qγ˜ [G0 ∗Bα′(〈ηi : i < α′〉, U ′)],
p0(γ′)˜ [G0 ∗Bα′(〈ηi : i < α′〉, U ′)]))

=:G0 ∗Bα(〈ηi : i < α〉, U(M0[G0], P[γ0,γ)˜ [G0], p0˜ [G0]))

(3.8)

and the middle U ′ is defined above in Equation (3.7). This justifies that the Borel
functions given by induction hypothesis can be composed to one Borel function of
the required arguments.

Now it is also clear how to define the strategy σ(〈νi, ηi : i < α′〉): The generic
player plays να′ so that it fulfils Equations (3.1) and (3.2), where (M,QT, p) is
replaced by (M0[Gγ′ ], Qγ˜ [Gγ′ ], p0(γ′)˜ [Gγ′ ]) with Gγ′ as in Equation (3.6).

Now assume that α is a limit ordinal and let 〈αn : n ∈ ω〉 be an increasing
cofinal sequence with α0 = 0. Let γn ∈ M0 be such that αn = otp(M0 ∩ [γ0, γn)).
Let 〈In : n ∈ ω〉 be an enumeration of all dense subsets of Pγ that are in M0 in such
a way that In is the <∗χ-least dense subset of Pγ that is not among {Im : m < n}.

We define

Gγ = E(M0, M̄ � [1, α), Pγ , G0, p0)

=G0 ∗Bα(〈ηi : i < α〉, U(M0[G0], P[γ0,γ)˜ [G0], p0 � [γ0, γ)˜ [G0]))

as follows. We define by induction on n ∈ ω a condition pn ∈ Pγ ∩M0 and an
(M0, Pγn)-generic filter Gn ∈Mαn+1

such that

1. G0 and p0 are given. pn � γn ∈ Gn.

2. pn ≤ pn+1 and pn+1 ∈ In.
Suppose that Gn and pn are defined. First we can find pn+1 ∈ In ∩M0 such that
pn+1 � γn ∈ Gn (for an existence proof see [1, Lemma 1.2]) and we take the <∗χ-least
in M0 so that it is Borel computed. Now define

Gn+1 = E(M0, 〈Mξ : αn + 1 ≤ ξ ≤ αn+1〉, Pγn+1
, Gn, pn+1 � γn+1)

=G0 ∗Bαn+1−αn(〈ηi : i ∈ [αn, αn+1)〉, U∗)

Here we have

U∗ = U(M0[G0 ∗Bαn(〈ηi : i < αn〉, U ′′)],
P[γn,γn+1)˜ [G0 ∗Bαn(〈ηi : i < αn〉, U ′′)],

pn+1 � [γn, γn+1)˜ [G0 ∗Bαn(〈ηi : i < αn〉, U ′′)]) and
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18 HEIKE MILDENBERGER AND SAHARON SHELAH

U ′′ = U(M0[G0], P[γ0,γn)˜ [G0], pn+1 � [γ0, γn)˜ [G0]).

Finally let

Gγ = the generic filter generated in M0 by {pn : n ∈ ω}.

From the above induction on n < ω and from the induction hypothesis it is clear
that there is a Borel function Bα such that

(3.9) Gγ = G0 ∗Bα(〈ηi : i < α〉, U(M0[G0], P[γ0,γ)˜ [G0], p0 � [γ0, γ)˜ [G0])).

This ends the definition of E(M0, M̄ � [1, α), Pγ , G0, p0) and of Bα.

The strategy σ for the generic player is defined by the prescription, that in the
limit game of length α he plays according to the strategies for the initial segments
of the game. (This justifies that σα is just named σ, for all lengths α.) This is a
winning strategy, as the Borel function was just derived. It gives a generic filter.
We still have to show that the given generic filter is bounded.

Now the missing part is to show that “all the generic filters are bounded” is
preserved in the limit steps of the iteration. Again there is nothing new to our work
and we repeat Abraham’s proof to [1, The Extension Lemma].

Lemma 3.8. Let 〈Pα, Q
˜
β : β < γ, α ≤ γ〉 be a countable support iteration of

forcing posets such that each iterand Qα satisfies the following in VPα :

1. Qα is δ-proper for every countable δ.

2. Qα is D-complete with respect to some countably closed completeness sys-
tem in the ground model that has the property that all η ≥∗ ν serve as
parameters.

Suppose that M0 ≺ H(χ) is countable, Pγ ∈ M0 and p0 ∈ Pγ ∩ M0. For any
γ0 ∈ γ ∩M0 with α = otp(M0 ∩ [γ0, γ)) and M̄ = 〈Mξ : ξ ≤ α〉 is a tower of
countable elementary substructures starting with the given M0, then the following
holds:

For every q0 ∈ Pγ0 that is completely (M0, Pγ0)-generic as well as (M̄, Pγ0)-
generic, if p0 � γ0 < q0, then there is some q ∈ Pγ such that q0 = q � γ0 and
p0 < q and q is completely (M0, Pγ)-generic. In fact, the filter induced by q is
E(M0, 〈Mξ : 1 ≤ ξ ≤ α〉, Pγ , G0, p0) where G0 ⊆ Pγ0 ∩M0 is the filter induced by
q0.

Proof. Let G0 ⊆ Pγ0 ∩M0 be the M0-generic filter induced by q0. Observe that
G0 ∈ M1 follows from the assumption that q0 is also M1-generic. We shall prove
by induction on α = otp(M0 ∩ [γ0, γ)) that q can be found that bounds Gγ =
E(M0, 〈Mξ : 1 ≤ ξ ≤ α〉, Pγ , G0, p0).

Suppose first that α = α′+ 1 and consequently γ = γ′+ 1 are successor ordinals.
Define in Mα, X ⊆ Pγ0 as maximal antichain of conditions r so that

1. r bounds G0,

2. r in 〈Mξ : 1 ≤ ξ ≤ α′〉-generic.

Then X ∈Mα is predense above q0. By our inductive assumption, every r0 ∈ X
has a prolongation r1 ∈ Pγ′ that bounds Gγ′ = E(M0, 〈Mξ : 1 ≤ ξ ≤ α′〉, G0, p0 �
γ′). Since all the parameters are in Mα, we get that Gγ′ ∈Mα. Since Mα ≺ H(χ)
we can choose r1 ∈ Mα whenever r0 ∈ X ∩Mα. This defines a name r

˜
1 ∈ VPγ0 ,

forced by q0 to be in Mα∩Pγ′ . Namely, if G is any (V, Pγ0)-generic filter containing
q0, then X ∩ G contain a unique condition r0, and we let r

˜
1[G] = r1. By the

Properness Extension Lemma [1, Lemma 2.8] we can find q1 ∈ Pγ′ , q1 � γ0 = q0, q1

is (Mα, Pγ′)-generic, and q1 
Pγ′ “r
˜

1 is in the generic filter Gγ′
˜

”. It follows that q1

bounds Gγ′ . We find q2 ∈ Pγ , such that q2 � γ′ = q1 and q2 bounds Gγ . In order
to define q2(γ) we use the Two Step Lemma and Equation (3.5).
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Now assume that α is a limit ordinal. We follow the definition of Gγ see Equa-
tion (3.9). Recall that we had an ω-sequence 〈αn : n ∈ ω〉 cofinal in α and we
defined γn cofinal in γ as the resulting sequence αn = otp(M0 ∩ [γ0, γn)). We de-
fined by induction pn ∈ Pγ ∩M0 and filters Gn ⊆ Pγn , Gn ∈ Mαn+1 and defined
Gγ as the filter generated by the pn’s. We shall define now qn ∈ Pγn by induction
on n so that the following hold

1. qn bounds Gn,

2. pn � γn ≤ qn,

3. qn = qn+1 � γn,

4. qn is 〈Mξ : αn + 1 ≤ ξ ≤ α〉-generic over Pγn .

Thus qn gains in length and looses in status as an Mξ-generic condition for 0 <
ξ ≤ αn. But qn is completely (M0, Pγn)-generic for all n. Finally q =

⋃
qn is not

Mξ-generic for any ξ > 0. However, q is completely (M0, Pγ)-generic.

Suppose that qn is defined. Let X be in Mαn+1+1 be a maximal antichain in Pγn
of conditions r that induce Gn and are 〈Mξ : αn+ 1 ≤ ξ ≤ αn+1〉-generic over Pγn .
Observer that X is predense above qn. For each r0 ∈ X, define by the induction as-
sumption r1 ∈ Pγn+1

such that r1 bounds Gn+1, pn+1 � γn+1 < r1 and r1 � γn = r0.
If r0 ∈ X ∩Mαn+1+1, then r1 is taken from Mαn+1+1. Now view {r1 : r0 ∈ X}
as a name r

˜
for a condition forced by qn to lie in Mαn+1+1. By the α-Extension

Lemma [1, Lemma 5.6], define qn+1 that satisfies items 2 to 4 from the above list
and such that qn+1 
Pγn+1

r
˜
∈ Gn+1

˜
. Then qn+1 bounds Gn+1 and is a required. a

End of proof of Theorem 3.4: Now that the induction is performed, we set
γ0 = 0, G0 = {0P0

}, p0 = p ∈ Pγ from the statement of Theorem 3.4. Then
N∗0 = N0 = π(M0), π(P[γ0,γ)

˜
)[G0] = π(Pγ) and π(p0)[γ0,γ)

˜
)[G0] = π(p) and the Bα’s

second argument is just the isomorphism type of (M0,∈, <∗χ, Pγ , p, β̄). a3.4

The role of the antigeneric player in the game a(M,Pγ , p) is now turned to good
use:

Definition 3.9. Let f, g ∈ V∩ωω. A notion of forcing P ∗ has the (f, g)-bounding
property when for every P ∗-name u

˜
for a function from ω to ω the following holds:

If p 
P∗ u
˜
≤∗ g, then there are q ≥ p and an f -slalom 〈Sn : n < ω〉 in the ground

model such that q 
P∗ (∀n)(u
˜

(n) ∈ Sn). 〈Sn : n < ω〉 is an f -slalom if for every
n, Sn ⊆ ω and |Sn| ≤ f(n).

Lemma 3.10. Suppose that

(α) γ < ω1, and

(β) B′ is a Borel function from (ωω)γ to 2ω,

(γ) r : ω → ω, r diverging to infinity, and lim r(n)
2n = 0.

Then we can find some C = CB′ such that

(a) C is a closed subset of 2ω,

(b) (∀n)|{η � n : η ∈ C}| ≤ r(n), so if C = lim(T ) = {f ∈ 2ω : ∀nf � n ∈ T},
then T ⊆ 2<ω is a tree with n-th level counting less than or equal to r(n),

(c) in the following game a(γ,B′) between two players, IN and OUT, the player
IN has a winning strategy, the play lasts γ moves and in the ε-th move
OUT chooses νε ∈ ωω and then IN chooses ηε ≥∗ νε. In the end IN wins
iff B′(〈ηε : ε < γ〉) ∈ C.

Proof. Assume that P ∗γ = 〈P ∗ξ , Q
˜

∗
ζ : ξ ≤ γ, ζ < γ〉 is a c.s. iteration of Laver forcing

and assume that p ∈ P ∗γ and 〈ρ
˜
ξ : ξ < γ〉 is a sequence of names for the P ∗ξ -generics.

Clearly p 
P∗γ B′(〈ρε
˜

: ε < γ〉) ∈ 2ω.
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The (f, g)-bounding property is preserved in countable support iterations [3, p.
340]. The Laver forcing and any forcing not adding reals at all have the (f, g)-
bounding property. Hence there are p∗ ∈ P ∗γ and C as in (a) and (b) above such
that

p∗ 
P∗γ B′(〈ρε
˜

: ε < γ〉) ∈ C.
Now we show that player IN can play in a way that imitates the Laver-generic reals
over a countable elementary submodel, so that actually everything is in the ground
model.

Let M∗ ≺ (H(χ),∈) be countable such B′, C ∈ M∗. (So M∗ is not the M from
the next proof, but rather contains a non-trivial part of the power-set of that M .)
Now we prove by induction on j ≤ γ for all i < j

�i,j Assume that P ∗j ∈M∗ and Gi ⊆ P ∗i ∩M∗ is generic over M∗, and p∗ is such
that p∗ ∈ P ∗j ∩M∗ and p∗ � i ∈ Gi. Then in the following game a∗(i,j,Gi,p∗)
player II has a winning strategy σ(i,j,Gi,p∗). There are j − i moves indexed
by ε ∈ [i, j), and in the ε-th move (pε, νε, ηε) are chosen such that player
I chooses pε ∈ Pε/Gi, pε ≥ p∗ � ε, and νε ∈ ωω and player II chooses
ηε ≥∗ νε.

First case: there is a (P ∗ε ,M
∗)-generic Gε ⊆ P ∗ε ∩M∗, such that p∗(ε) ∈

Gε and Gε ⊃ Gi and (∀ξ ∈ [i, ε)ρξ
˜

[Gε] = ηξ and M∗[Gε∩P ∗ξ ] |= pξ ≥ p∗(ξ).
In this case player I chooses pε ∈ Gε forcing this and so that M∗[Gε] |=
p∗(ε) ≤P∗ε pε. Then player I chooses νε dominating M∗[Gε] and the second
player chooses ηε ≥∗ νε.

Second case: There is no such Gε. Then player I won the play.

We prove by induction on j that player II wins the game a∗(i,j,Gi,p∗): Case 1:

j = 0. Nothing to do. Case 2: j = j∗ + 1. For ε ∈ [i, j) we use the strategy for
a∗(i,j,Gi,p∗), and for ε = j we make the following move: We show that there is a

generic Gj
∗

of Q∗
M∗[Gj∗ ]
j∗ to which p∗(j∗) belongs and such that ρ

˜
j∗ [G

j∗ ] ≥∗ νj∗ .
Then the move ρ

˜
j∗ [G

j∗ ] dominates ωω ∩M∗[Gj∗ ] and also player I’s move νj∗ .

First take q ≥ p∗(j∗) such that q is (M∗[Gj∗ ], Q
∗M
∗[Gj∗ ]

j∗ )-generic. q ∈ V is a

Laver condition. Now we take a stronger condition q′ by letting trunk(q) = trunk(q′)
and for every s ∈ q′ of length n,

succ(q′, s) = {n ∈ succ(q, s) : n ≥ νj∗(n)}.

Now let Gj
∗

= {r ∈ M∗[Gj∗ ] : q′ ≥ r}. Since q′ is a (M∗[Gj∗ ], Q
∗M
∗[Gj∗ ]

j∗ )-

generic condition, Gj
∗

is a (M∗[Gj∗ ], Q
∗M
∗[Gj∗ ]

j∗ )-generic filter. The generic real is

ρ
˜
j∗ [G

j∗ ] =
⋃
{trunk(p) : p ∈ Gj

∗}. Then q′ 
 ρ
˜
j∗ ≥∗ νj∗ . Now player II takes

ηj∗ = ρ
˜
j∗ [G

j∗ ]. We set Gj = Gj∗ ∗Gj
∗
. Case 3: j is a limit. Like the proof of the

preservation of properness.

Why does �i,j suffice? Use i = 0, j = γ, B′ ∈M∗. Take P ∗γ ∈M∗, p∗ ∈ P ∗γ ∩M∗.
Let σ(0, γ, {∅}, p∗) be a winning strategy for player II in the game a∗(0,γ,{∅},p∗).
During the play of a(γ,B′) let νε be chosen in stage ε < γ. The player IN simulates
on the side a play of a∗(0,γ,{∅},p∗): As a move of I he assumes the νε chosen by OUT

in the play of a(γ,B′) and pε, pε � δ = pδ for δ < ε, the pδ gotten from earlier
simulations. Then player IN uses σ(0, γ, {∅}, p∗) for player II, applied to (pε, νε), to
compute an ηε, which he presents in this move in a(γ,B′). So pε forces that there
is a Laver generic ρε

˜
[Gε] =: ηε over M∗[Gε] and that ηε ≥∗ νε. The requirement

ηε ≥∗ νε is fulfilled.

Suppose that they have played. So we have 〈νε, ηε : ε < γ〉 and there is
p =

⋃
ε<γ pε ≥ p∗, and for ε < γ there is the name for the Q∗ε-generic real, namely
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ρε
˜
∈ M∗, such that for all ε < γ, p 
P∗γ ρε

˜
= η̌ε. So as p 
P∗γ “B′(〈ρ

˜
ε : ε < γ〉) ∈

C”, we have B′(〈ηε : ε < γ〉) ∈ C. a

Let S ⊆ ω1 be stationary and 〈Aδ : δ ∈ S〉 exemplify ♦S . For example we can
take the most frequent S = {α < ω1 : α limit ordinal}, which gives ♦ω1 .

Lemma 3.11. Let r : ω → ω such that lim r(n)
2n = 0. Assume that V |= ♦S. Then


Pω2
♦(2ω, {lim(T ) : T ⊆ R perfect ∧ (∀n)|{η � n : η ∈ lim(T )}| ≤ r(n)},∈).

Proof. Let G be Pω2-generic over V. We use the ♦S-sequence 〈Aδ : δ ∈ S〉 in the
following manner: By easy integration and coding we have 〈(Nδ, β̄δ, f

˜

δ, F
˜
δ, C

˜
δ, P δω2

,

pδ, <δ) : δ ∈ S〉 such that

(a) Nδ is a transitive collapse of a countable M ≺ H(χ,∈, <∗χ), <δ is a well-

ordering of Nδ, Uδ codes the isomorphism type of (Nδ, P δω2
, pδ, β̄δ).

(b) Nδ |= P δω2
= 〈P δα, Q

˜

δ
β : α ≤ ωNδ2 , β < ωN

δ

2 〉 is as in Definition 2.10.

(c) Nδ |= (pδ ∈ P δω2
, f

˜

δ is a P δω2
-name of a member of ω12 F

˜
δ : 2<ω1 → 2ω).

(d) If p ∈ Pω2
,

p 
Pω2
f
˜
∈ 2ω1 ∧ F

˜
: 2<ω1 → 2ω is Borel, C

˜
⊆ ω1 is club,

and p, Pω2
, F

˜
, f

˜
, C

˜
∈ H(χ), then

S(p, F
˜
, f
˜

) := {δ ∈ S : there is a countable M ≺ (H(χ),∈, <∗χ)

such that f
˜
, F
˜
, C
˜
, Pω2

, p ∈M
and there is an isomorphism hδ from Nδ onto M

mapping P δω2
to Pω2 , f

˜

δ to f
˜
,

F
˜
δ to F

˜
, C
˜
δ to C

˜
, pδ to p,<δ to <∗χ�M}

is a stationary subset of ω1.

(e) Choose 〈Bγ(δ) : δ ∈ S〉 such that γ(δ) = otp(Nδ ∩ ω2) and

Bγ(δ) : (ωω)γ(δ) × P(ω)→ Gen+(P δω2
)

= {G ⊆ P δω2
∩Nδ : G is P δω2

-generic over Nδ and bounded}

be as in Theorem 3.4 with Uδ = U(Nδ, P δω2
, pδ, β̄δ).

We do not require uniformity, 〈νε, ηε : ε < γ(δ)〉 is indeed 〈νδε , ηδε : ε < γ(δ)〉
since we have the dependence on the δ in the definition of Bγ(δ). We assume that

Nδ ∩ ω1 = δ. Since this holds on a club set of δ ∈ ω1, this is no restriction.

Now assume the p ∈ G and F
˜

, f
˜

, C
˜

are as in (d).

We define a function B′δ,Uδ with domain (ωω)γ(δ).

B′δ,Uδ(〈ηε : ε < γ(δ)〉) =


F
˜
δ(f

˜

δ � δ)[Bγ(δ)(〈ηε : ε < γ(δ)〉, Uδ)], if the argu-
ment is good;

〈0, 0, . . . , 〉 ∈ 2ω, otherwise.

Here, we call 〈ηε : ε < γ(δ)〉 a good argument if there is a play 〈νε, ηε : ε <
γ(δ)〉 in the game a(Nδ,P δ,pδ) from Theorem 3.4 in which the generic player plays
according his winning strategy and the antigeneric player plays according to the
rules. Goodness is a Borel predicate because the νε are irrelevant, just check whether
the ηε are large enough for Equations (3.1) and (3.2) in the respective iteration
step. So B′δ,Uδ(〈ηε : ε < γ(δ)〉 is a Borel function. Now we choose a “very good”

argument 〈ηδε : ε < γ(δ)〉 that player IN plays with his strategy in a(γ(δ),B′δ,Uδ
)
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from Lemma 3.10 applied to B′δ,Uδ and the (r, 2n) bounding property, answering to

a good argument 〈νδε : ε < γ(δ)〉 played by player OUT.

Now we derive a guessing function g. We consider for every δ ∈ S a very good
argument 〈ηδε : ε < γ(δ)〉. We assume that G is Pω2

-generic over V and that p ∈ G.
Then we also have by the rules of the game a(Nδ,P δ,pδ) that

Bγ(δ)(〈ηδε : ε < γ(δ)〉, Uδ) has an upper bound qδ.

Lemma 3.10 gives a closed set CB′
δ,Uδ

with small levels as in 3.10(b), such that for

δ ∈ S, and we have

(3.10) B′δ,Uδ(〈η
δ
ε : ε < γ(δ)〉) ∈ CB′

δ,Uδ
.

Note that CB′
δ,Uδ

does not depend on 〈ηδε : ε < γ(δ)〉. So (3.10) also holds for

〈ηδε : ε < γ(δ)〉 that are the answers of player IN in the game a(γ(δ),B′
δ,Uδ

) to any

good sequence 〈νδε : ε < γ(δ)〉 given by the generic player that is so fast growing
νδε that Bδ,Uδ(〈νδε : ε < γ(δ)〉) computes a bounded generic filter over M as in
Theorem 3.4. This is important, since the isomorphism hδ does not preserve the
knowledge (that is which branches are continued and what are the values of the
promises in these continuations) about the level δ for the Aronszajn trees involved
in P ∩M .

We set
CB′

δ,Uδ
=: g(δ).

Both sides are conceived as Borel codes for closed sets. Since ω ⊆ M and ω ⊆ Nδ

we have that hδ(CB′
δ,Uδ

) = CB′
δ,Uδ

. We show that g is a diamond function.

Since Pω2
is proper, S(p, f

˜
, F
˜

) is also stationary in V[G]. Now we take a very

good sequence 〈ηδε : ε < γ(δ)〉 that is suitable so that Bδ,Uδ(〈ηδε : ε < γ(δ)〉)
computes a bounded (M,P )-generic filter for M that witnesses that δ ∈ S. So now
we take the game a(M,P,p) for the choice of the 〈νδη : η < γδ〉 and then again we take
the winning strategy in the game a(γ(δ),B′δ,Uδ

), which is unchanged by the collapse,

for choosing 〈ηδε : ε < γδ〉. We take q to be a bound of Bδ,Uδ(〈ηδε : ε < γ(δ)〉).
Now we have that q ≥ p and

q 
 “Bγ(δ)(〈ηδε : ε < γ(δ)〉, Uδ) is (M,P )-generic and bounded by q”.

Now for δ ∈ S(p, f
˜
, F
˜

) we have by the isomorphism property of hδ and by (3.10),

q 
 hδ ′′F
˜
δ(f

˜

δ � δ) = F
˜

(f
˜
� δ) ∧ F

˜
(f
˜
� δ) ∈ g(δ) ∧ δ ∈ C

˜
.

So we have that p forces that {α ∈ S : F (f � δ) ∈ g(δ)} contains a stationary subset
of S(p, f

˜
, F
˜

). Note that the stationary subset depends on F (and f of course), but
the guessing function g does not. So actually we proved a diamond of the kind:

There is some g : ω1 → B such that for every Borel map F : 2<ω1 → A and for
every f : ω1 → 2 the set

{α ∈ ω1 : F (f � α)Eg(α)}
is stationary. a

Corollary 3.12. 
Pω2
♦(R,N ,∈).

Proof. Leb(g(δ)) = 0 for the functions g : ω1 → {closed subsets of 2ω} from the
previous lemma. Thus, for every Borel F : 2<ω1 → 2ω, the function g : ω1 → N
is a guessing sequence showing 
Pω2

♦(R,N ,∈), and we finish the proof of Theo-
rem 1.2. a1.2
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Since C from Lemma 3.10 is also meagre, the same proof also yields

Corollary 3.13. 
Pω2
♦(R,M,∈).

If S ⊆ ω1 is stationary and we start with ♦S in the ground model, then we
get the respective weak diamonds on S. We conclude with an open question: The
forcing from Definition 2.10 could easily be mixed with proper ℵ2-p.i.c. iterands, for
example iterands with |Qα| ≤ ℵ1 (by [15, Lemma VIII 2.5] this is sufficient for the
ℵ2-p.i.c.) that add reals. Still we specialise all Aronszajn trees in the new mixed
iteration. However, the parallel of our main technique for the weak diamonds, that
is Theorems 3.4 and 3.11, does not work anymore, since the completeness systems
are no longer in the ground model. So there is the question:

Question 3.14. Is 2ℵ0 = ℵ2 and ♦(Cov(N )) and “ all Aronszajn trees are special”
consistent relative to ZFC?
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