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2 CHANOCH HAVLIN AND SAHARON SHELAH

1. Introduction

There had been much study of equivalence relations between models. When
we study such an equivalence relation, the basic question is whether this
relation is actually trivial, i.e., if equivalent models are isomorphic. For
example, countable models which are elementary equivalent in Lω1,ω are
isomorphic. (Scott showed this in [10] for countable vocabulary, and Chang
generalized it in [1] for any vocabulary). For λ = cf(λ) > ℵ0, Morely gave
(without publishing) a counter example - a pair of L∞,λ equivalent models
of size λ which are not isomorphic. Shelah [9, Ch. II, §7] gave such an
example for almost every singular λ .

Those questions also relate to classification theory: The existence of
”strongly” equivalent models which are not isomorphic is a non-structure
property for a class of models. On the other side, if a ”not too strong”
equivalence relation is actually the isomorphism relation, this is a structure
property.(See [8] and [2]).

One of the equivalence relations studied in this context, is equivalence
under EF(Ehernfeucht-Fraisse) games. A detailed discussion of EF games
and their history can be found in [3] and in [11]. The general structure
of an EF game on a pair of models is as follows: There are two players -
isomorphism player, who we call ISO and anti-isomorphism player, who we
call AIS. During the game, AIS chooses members of the models, and ISO
defines ”interactively” a partial isomorphism between the models - in every
move he has to extend that partial isomorphism so that the elements chosen
by AIS will be contained in the domain or in the range. The isomorphism
player loses the game if at some point he cannot find a legal move. If he
does not lose, he wins. We limit the length of the game and the number
of elements that AIS may choose at each move. (Because, if AIS can list
all the members of one of the models, then the game is not interesting).
In [4], the games were with fixed length. In this paper, we deal with EF
games approximated by trees - the length of the game is limited by adding
the demand that in each move, AIS has to choose a node in some fixed tree
T (with certain properties) such that the sequence of nodes formed by his
choices is strictly increasing in the order <T . If AIS cannot choose such
node - he loses.

We say that two models are equivalent with respect to some EF game a if
ISO has a winning strategy in a played on those models.

In [4] it was proved that if λ = cf(λ) = λℵ0 , then there are non-isomorphic
models of size λ which are EFα,λ equivalent for every α < λ, where EFα,λ
equivalence means that they are equivalent under every EF game with α
stages, such that AIS has to choose < λ members of the models at each
stage. There was also a result for λ singular, with a necessary change of the
equivalence relation.

Here we generalize the results in two ways: First, we move to EF games
approximated by trees instead of fixed-length games(see Hyttinen and Tuuri
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EXISTENCE OF EF-EQUIVALENT NON ISOMORPHIC MODELS 3

in [2] who investigated such games in the context of classification theory).
Second, we give results also for λ > iω without the assumption λ = λℵ0 ,
where we use PCF theory to have some ”approximation” instead of λ = λℵ0 .

In Section 2 we prove that for regular λ = λℵ0 for some class of reasonably
large trees (see detailed discussion justifying the choice, in the beginning of
Section 2) for every tree from that class there are non isomorphic models of
size λ which are equivalent under EF games approximated by that tree such
that in each move AIS is allowed to choose < λ members of the models (see
Definition 2.1). 〈Sec1-Def-Game-

With-Tree〉In Section 3 we do the parallel for singular λ. But for singular λ, if we
allow AIS to choose < λ elements in each move, and the tree has a branch
of length cf(λ), then the game is not interesting, because AIS can choose
all the members of the models during the game. So we have to be more
careful - we allow AIS to choose only one element in each move. This is
still a generalization of the result for such λ in [4] - see the discussion at the
beginning of Section 3.

In Section 4 we prove that for regular λ > iω, for every tree of size λ
without a branch of length λ there are non-isomorphic models of size λ which
are equivalent under the EF game approximated by that tree such that in
each move AIS is allowed to choose < λ members of the models.

In Section 5 we prove a similar result for λ > cf(λ) > iω. As we explained
above, because of the singularity of λ, we have to restrict the number of
elements that AIS is allowed to choose at each move - in stage α, AIS has to
choose < 1 + α members of the models. For a further work in preparation
of the second author on this subject see [She08, She] on his web. nisux

2. Games with trees for regular λ = λℵ0

In [2] there is a construction of non-isomorphic models of size λ which are
equivalent under EF games approximated by trees of size λ with no λ branch,
when λ = λ<λ. In [4] there is such a construction under a weaker assumption
on λ : λ = cf(λ) = λℵ0 , but there the result is for games of any fixed
length < λ, not for games which are approximated by trees. We want to
generalize this result to games approximated by trees.

Now, which trees should we consider? If we limit ourselves only to trees
of size λ, it seems that the set of trees will be ”small”. Why? Assume for
example that λ = cf(λ) = λℵ0 < λℵ1 . A tree of size λ must drop at least
one of the following conditions:

1. Above every node there is an antichain of size λ.
2. Every chain of size ≤ ℵ1 has an upper bound.

If λ � ℵ1, this kind of trees seem to be too degenerate. We could have
demanded that the size of the tree will be ≤ 2<λ. But it is possible that
2<λ = 2λ and it is reasonable to assume that the result will not be true in
this case.
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4 CHANOCH HAVLIN AND SAHARON SHELAH

We take the middle road: we do not limit explicitly the size of the tree,
but we demand that the tree will be ”definable” enough - the cause of not
having a branch of length λ is that the nodes of the tree are actually partial
functions from λ to λ which satisfy a certain local condition. By ”local” we
mean that a function f satisfies the condition iff any restriction of f to a
countable set satisfies it. The tree order is inclusion, and there is no function
from λ to λ which satisfies the condition. By Remark 2.4 this result is indeed〈Sec1-Remark-

Strength-Of-
Game〉

a generalization of ”for every tree of size λ and without a λ branch”.

LABEL 〈Sec1-Def-
Game-With-Tree〉

Definition 2.1. For a tree T , a cardinal µ, and models with common vo-
cabulary M1,M2, we define the game aT ,µ(M1,M2) between the players
ISO and AIS as follows: After stage α in the game we have the sequence
〈fβ : β ≤ α 〉, which is an increasing continuous sequence of partial isomor-
phisms from M1 to M2, and the sequence 〈zβ : β ≤ α〉 which is an increasing
continuous sequence in T .

Stage α in the game is as follows : First, AIS chooses zα of level α of T
such that for every β < α zα >

T zβ. Then:

1. If α = 0, then fα = ∅.
2. If α is limit, then fα = ∪β<α fβ.
3. If α = β + 1, then AIS chooses A1 ⊆ M1 and A2 ⊆ M2 such that
|A1 ∪A2| < 1 + µ. Then ISO should choose fα such that fα is a par-
tial isomorphism fromM1 toM2, fβ ⊆ fα, A1 ⊆ Dom(fα), A2 ⊆ Rang(fα)

The first player who cannot find a legal move loses the game. If the
isomorphism player ISO has a winning strategy for aT ,µ(M1,M2), we say
that M1,M2 are EFT ,µ equivalent.

LABEL 〈Sec1-Def-
Square-F-lambda〉 Definition 2.2. We say that �F ,λ holds, if

1. F is a set of partial functions from λ to λ;
2. if f is a partial function from λ to λ, then f ∈ F iff f�u ∈ F for

every countable u ⊆ Dom(f);
3. there is no f ∈ F such that Dom(f) = λ.

LABEL 〈Sec1-2.3〉
Definition 2.3. If �F ,λ holds, we define a tree TF in the following way:

The nodes are functions f such that f ∈ F and Dom(f) is an ordinal;
the order is inclusion.

Note that this tree TF does not have a branch of length ≥ λ.
LABEL 〈Sec1-
Remark-Strength-
Of-Game〉

Remark 2.4. If T is a tree of size λ with no λ-branch, we can assume without
loss of generality that T ⊆ λ. Define F by f ∈ F if f is a partial function
from λ to λ such that x < y implies f(x) <T f(y). We get that �F ,λ holds,
and T can be embedded (as a partial order) in TF .

LABEL 〈Sec1-
Theorem-Eq-T-
lambda〉

Theorem 2.5. Suppose

cf(λ) = λ = λℵ0,
�F ,λ holds,
T = TF .
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Then there are non-isomorphic models M1,M2 of size λ which are EFT ,λ
equivalent.

Proof. First, we shall define a tool for constructing models.
LABEL 〈Sec2-2.6〉

Definition 2.6. x is a structure parameter if it consists of the following
objects:

a set I,
a set Js for each s ∈ I, such that if s1 6= s2, then Js1 ∩ Js2 = ∅
(denote J =

⋃
s∈I Js),

sets S, T such that S ⊆ I × I and T ⊆ J × J ,
LABEL 〈Sec2-2.7〉

Definition 2.7. For a given structure parameter x we define a modelM = Mx

in the following way: First for each s ∈ I let Gs be an abelian group gen-
erated freely by {xt : t ∈ Js} except of the relation ∀x(2x = 0). (We could
have also used a free group or a free abelian group, but this choice makes the
proof a bit simpler). We demand also that if s1 6= s2, then Gs1 ∩ Gs2 = ∅.
For (s1, s2) ∈ S, let Gs1,s2 be the subgroup of Gs1 × Gs2 generated by
{(xt1 , xt2) : (t1, t2) ∈ T ∩ (Js1 × Js2)}. The universe of M is

⋃
s∈I Gs. The

vocabulary of M consists of

1. for each a ∈M , a unary function symbol Fa;
2. for each s ∈ I, a unary relation symbol Ps;
3. for each (s1, s2) ∈ S, a binary relation symbol Qs1,s2 .

The interpretation of the symbols in M is as follows:

1. for each b ∈M, s ∈ I, a ∈ Gs, if b ∈ Gs, then FMa (b) = a+ b, else
FMa (b) = b;

2. for each s ∈ I, PMs = Gs;
3. for each (s1, s2) ∈ S, QMs1,s2 = Gs1,s2 .

LABEL 〈Sec1-
Lemma-Cond-Of-
BeingAuto〉
LABEL 〈Sec1-
LemmaCondOfBeingAuto〉

Lemma 2.8. Suppose I ′ ⊆ I and f is a function, f :
⋃
s∈I′ Gs →M . Then

f is a partial automorphism of M iff the following hold:

1. For each s ∈ I ′, f(0Gs) ∈ Gs.
2. For each s ∈ I ′ and a ∈ Gs we have f(a) = f(0Gs) + a.
3. For each s1, s2 ∈ I ′, if (s1, s2) ∈ S, then (f(0Gs1 ), f(0Gs2 )) ∈ Gs1,s2.

Proof. Suppose f is a partial automorphism. Then we have:

1. For each s ∈ I ′, 0Gs ∈ Gs = PMs which implies f(0Gs) ∈ PMs = Gs.
2. For each s ∈ I ′ and a ∈ Gs, f(a) = f(FMa (0Gs)) = FMa (f(0Gs)) =
f(0Gs) + a.

3. For each s1, s2 ∈ I ′, if (s1, s2) ∈ S, then (0Gs1 , 0Gs2 ) ∈ Gs1,s2 (be-

cause it is a subgroup of Gs1 × Gs2) but Gs1,s2 = QMs1,s2 , therefore
we have (f(0Gs1 ), f(0Gs2 )) ∈ Gs1,s2 .

Similar arguments show the other direction. �2.8 〈Sec1-
LemmaCondOfBeingAuto〉Now we shall define a structure parameter x and put M = Mx. Then we will

choose elements a∗, b∗ ∈ M , define M1 = (M,a∗), M2 = (M, b∗), and show
that M1, M2 are as required in Theorem 2.5. 〈Sec1-Theorem-

Eq-T-lambda〉
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6 CHANOCH HAVLIN AND SAHARON SHELAH

Let x = xλ,F be the following structure parameter:

1. I = [λ]ℵ0 .
2. For u ∈ I, Ju consists of the quadruples t = (u, g, h, ζ), where:

(a) g, h are functions from u into λ;
(b) ζ is a function from supRang(g) ∩ u into λ;
(c) ζ ∈ F ;
(d) g, h are weakly increasing;
(e) if g(x) = g(y) then h(x) = h(y);
(f) h(x) > x.

For t = (u, g, h, ζ) we will denote u = ut, g = gt, h = ht, ζ = ζt.
3. S = {(u1, u2) : u1, u2 ∈ I and u1 ⊆ u2}.
4. T = {(t1, t2) : t1, t2 ∈ J, ut1 ⊆ ut2 , gt1 ⊆ gt2 , ht1 ⊆ ht2 , ζt1 ⊆ ζt2 }.

Let M = Mλ,F = Mx be the corresponding model. Note that |I| = λℵ0 = λ

and for each u ∈ I, |Ju| = λℵ0 = λ, therefore ||M || = λ. Define a∗ = 0G∅ , b∗ = x(∅,∅,∅,∅),
M1 = (M,a∗), M2 = (M, b∗).

LABEL 〈Sec1-
Claim-Equiv-
Models〉

Claim 2.9. M1,M2 are EFT ,λ equivalent.

Proof. We start with

LABEL 〈Sec1-Def-
G-of-lambda〉 Definition 2.10. We define a set of functions G = G(λ) with a partial order

≤G in the following way:

1. For an ordinal α < λ, Gα is the set of functions g which satisfy
(a) g : γ → α , γ < λ;
(b) g is weakly increasing.

2. G =
⋃
α<λ Gα.

3. For each g ∈ G such that Dom(g) = γ we define hg : γ → γ + 1 by

hg(x) = Min({y : y < γ ∧ g(y) > g(x)} ∪ {γ}).

4. g1 ≤G g2 if g1 ⊆ g2 and hg1 ⊆ hg2 .
LABEL 〈Sec1-
Claim-G-of-
lambda〉

Claim 2.11. 1. If g(x) = g(y), hg(x) = hg(y).
2. hg(x) > x.
3. hg is weakly increasing.
4. For every g1, g2 ∈ G, g1 ≤G g2 iff

(a) Dom(g1) = γ1 ≤ γ2 = Dom(g2) and g1 ⊆ g2;
(b) if γ1 < γ2, then g2(γ1) > g2(x) for every x < γ1.

5. If g1 ∈ Gα and Dom(g1) < γ < λ, then there is g2 ∈ Gα+1 such that
g1 ≤G g2 and Dom(g2) = γ.

6. If δ < λ and we have 〈gα : α < δ〉 such that gα ∈ Gα and β < α
implies gβ ≤G gα, then g =

⋃
α<δ gα satisfies g ∈ Gδ and gα ≤G g

for each α < δ.

Proof.

1.-3. Easy.
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4. If there is x < γ1 such that g2(γ1) = g2(x), then hg2(x) = hg2(γ1) > γ1 ≥ hg1(x),
so g1 ≮G g2. On the other direction, if g1 ⊂ g2 and g2(γ1) > g2(x)
for every x < γ1, then for every such x: If there is y < γ1 such that
g1(y) > g1(x), let y′ be the minimal y which satisfies this. We get
hg1(x) = hg2(x) = y′. If there is no such y, we get hg1(x) = hg2(x) = γ1.
Therefore we have hg1 ⊂ hg2 .

5. Define g2 : γ → α+ 1 by

g2(x) =

{
g1(x) if x ∈ Dom(g1),
α if x ∈ γ \Dom(g1).

By 4. we get that g1 ≤G g2.
6. Remember that λ is regular, therefore

⋃
α<δ Dom(gα) < λ. This

completes the proof of Claim 2.11. �2.11 〈Sec1-Claim-G-of-
lambda〉
〈Sec1-Claim-G-of-
lambda〉

Now we will describe a winning strategy for ISO in the game aT ,λ(M1,M2).
In stage α of the game, ISO will choose a function gα such that

1. gα ∈ Gα;
2. if β < α, then gβ ≤G gα;
3. if α is a successor ordinal and in stage α AIS chose the sets A1, A2

then for each u ∈ I such that (A1∪A2)∩Gu 6= ∅ we have u ⊆ Dom(gα).

The choice of gα is done in the following way:

1. g0 = ∅.
2. If α is limit, then gα = ∪β<α gβ. By Claim 2.11, gα ∈ Gα and if 〈Sec1-Claim-G-of-

lambda〉β < α then gβ ≤G gα.
3. If α = β+1 and in stage α AIS chose the sets A1, A2, ISO will choose
γ < λ such that Dom(gβ) < γ and u ⊆ γ for every u ∈ I such that
(A1 ∪ A2) ∩ u 6= ∅ (such γ exists sence |A1 ∪ A2| + ℵ0 < λ) . By
Claim 2.11 there is g ∈ Gα such that Dom(g) = γ and gβ ≤G g. ISO 〈Sec1-Claim-G-of-

lambda〉will choose such a function as gα.

Now remember that if α = β+1, then in stage α AIS has to choose a node on
level α, which is actually a function ζα : α → λ, ζα ∈ F . Then he chooses
A1 ⊂ M1 and A2 ⊂ M2. Then ISO has to choose a partial isomorphism
fα from M1 to M2 such that fβ ⊆ fα, A1 ⊆ Dom(fα), A2 ⊆ Rang(fα)
(see Definition 2.1). So, ISO chooses gα, and then defines fα according to 〈Sec1-Def-Game-

With-Tree〉fβ, A1, A2, gα, ζα in the following way :

Dom(fα) = Dom(fβ) ∪
⋃
{Gu : u ∈ I, (A1 ∪A2) ∩Gu 6= ∅}.

Then, for each u ∈ I we have Gu ⊆ Dom(fα) or Gu ∩Dom(fα) = ∅.
IfGu ⊆ Dom(fα), we define fα(0Gu) = xt, where t = (u, gα�u, hgα�u, ζα�(u ∩ supRang(gα�u))).

(Note that because gα ∈ Gα, we have Rang(gα) ⊆ α = Dom(ζα).)
Next, for every a ∈ Gu we define fα(a) = fα(0Gu) + a. By the construc-

tion we get that if (u1, u2) ∈ S, then (fα(0Gu1 ), fα(0Gu2 )) ∈ Gu1,u2 (because

the corresponding couple of t’s lies in T ). Therefore by Lemma 2.8, fα is a 〈Sec1-
LemmaCondOfBeingAuto〉partial automorphism of M . We also have:

1. If β < α, then gβ ⊆ gα, hgβ ⊆ hgα and ζβ ⊆ ζα. Therefore fβ ⊆ fα.
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8 CHANOCH HAVLIN AND SAHARON SHELAH

2. For each α > 0,

fα(a∗) = fα(0G∅) = x(∅,∅,∅,∅) = b∗.

Therefore fα is a partial isomorphism from M1 = (M,a∗) into M2 =
(M, b∗).

This completes the proof of Claim 2.9. �2.9〈Sec1-Claim-
Equiv-Models〉
〈Sec1-Claim-
Equiv-Models〉
LABEL 〈Sec1-
ClaimNotIso〉

Claim 2.12. M1,M2 are not isomorphic.

Proof. It is enough to show that M is rigid (i.e. it does not have a non-trivial
automorphism).

Assume towards contradiction that f 6= id is an automorphism of M . For
each u ∈ I we define cu = f(0Gu). By Lemma 2.8, for each u ⊆ w ∈ I we

〈Sec1-Lemma-
Cond-Of-
BeingAuto〉

have (cu, cw) ∈ Gu,w.
For each u ⊂ w ∈ I and t = (w, g, h, ζ) ∈ Jw we define πw,u(t) ∈ Ju by

πw,u(t) =: (u, g�u, h�u, ζ�supRang(g�u) ∩ u).

By the definition of T we have that if t ∈ Jw and r ∈ Ju, then (r, t) ∈ T iff
r = πw,u(t). We define a homomorphism π̂w,u : Gw → Gu by π̂w,u(xt) = xr,
where r = πw,u(t). We get that Gu,w is the subgroup of Gu ×Gw generated
by {(π̂w,u(xt), xt) : t ∈ Jw}. Since {xt : t ∈ Jw} generate Gw, we get that

Gu,w = {(π̂w,u(c), c) : c ∈ Gw}.
Now define n(u) to be the length of the reduced representation of cu as a
sum of the generators {xt : t ∈ Ju}. For u ⊆ w ∈ I we get n(u) ≤ n(w),
since cu = π̂w,u(cw) and π̂w,u sends one generator to one generator. If for
every u ∈ I there is w ∈ I such that n(w) > n(u), we can find a sequence
〈un : n < ω〉 such that un ∈ I and n(un) < n(un+1). Define w =

⋃
n<ω un,

we get that n(w) is infinite - contradiction. Therefore, there is u∗ ∈ I such
that n(u∗) is maximal. Since we assumed f 6= id , n(u∗) > 0.

Choose t∗ ∈ Ju∗ such that xt∗ appears in the reduced representation of cu∗ .
For each u∗ ⊆ w ∈ I there is a unique t(w) ∈ Jw such that πw,u∗(t(w)) = t∗
and xt(w) appears in the reduced representation of cw. Such t(w) exists
because cu∗ = π̂w,u∗(cw). It is unique because if there were two such t’s,
t1, t2, then

π̂w,u∗(xt1) = π̂w,u∗(xt2) = xt∗ .

Since in Gu∗ ∀x(2x = 0), it implies n(w) > n(u∗), which contradicts the
maximality of n(u∗).

Note that if u ⊆ w ⊆ z ∈ I, then πz,u = πw,u ◦πz,w. Therefore, by unique-
ness of t(w), if u∗ ⊆ w ⊆ z ∈ I then t(w) = πz,w(t(z)). For each u∗ ⊆ w ∈ I,

define gw = gt(w), hw = ht(w), ζw = ζt(w). If u∗ ⊆ w1, w2 ∈ I, then the
functions gw1 , hw1 , ζw1 and gw2 , hw2 , ζw2 are respectively compatible, since

t(w1) = πz,w1(t(z)) and t(w2) = πz,w2(t(z)),

where z = w1 ∪ w2. Define

g = ∪{gw : u∗ ⊆ w ∈ I}, h = ∪{hw : u∗ ⊆ w ∈ I}, ζ = ∪{ζw : u∗ ⊆ w ∈ I}.
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We get:

1. Dom(g) = Dom(h) = λ.
2. g, h are weakly increasing.
3. h(x) > x.
4. If g(x) = g(y), then h(x) = h(y).
5. ζ ∈ F (this is by Definition 2.2(2)). 〈Sec1-Def-Square-

F-lambda〉6. supRang(g) ⊆ Dom(ζ).

By Definition 2.2(3), Dom(ζ) 6= λ. Therefore by 6., supRang(g) < λ. Since 〈Sec1-Def-Square-
F-lambda〉g is weakly increasing and λ is regular, there is α0 < λ such that for every

α0 < α < λ, g(α) = g(α0). By 4. we get that for every α0 < α < λ, h(α) = h(α0).
Choose α > h(α0) > α0 and get that h(α) < α, contradicting 3.

This completes the proof of Claim 2.12. �2.12 The proof of Theorem 〈Sec1-
ClaimNotIso〉
〈Sec1-
ClaimNotIso〉

2.5 is now finished. �2.5

〈Sec1-Theorem-
Eq-T-lambda〉
〈Sec1-Theorem-
Eq-T-lambda〉

3. Games with trees for singular λ = λℵ0

It is clear that for λ singular we cannot expect the same result as in the
previous section, since the AIS player would be able to list all the members
of M1,M2. Thus, we prove a weaker result - we allow AIS to choose only
one element in each turn. We also remark in Remark 3.2 that this result

〈Section2-
Generalize-866〉

generalizes the result in [4] for such λ.

LABEL 〈Sec2-
Theorem-Eq-T,1〉

Theorem 3.1. Suppose

cf(λ) < λ = λℵ0,
�F ,λ holds,
T = TF .

Then there are non-isomorphic models M1,M2 of size λ which are EFT ,1
equivalent.

LABEL 〈Section2-
Generalize-866〉Remark 3.2. We can show that Theorem 3.1 generalizes the result in [4] by

〈Sec2-Theorem-
Eq-T,1〉

choosing appropriate F . The result there shows the existence of two non-
isomorphic models of size λ which are equivalent under every EF game of
length < cf(λ), which consists of sub-games of length < λ, such that AIS
chooses the length of each sub-game before it starts, and in every sub-game
he chooses one element in each move - see the definitions there. Now, an
appropriate F can be chosen by looking at the proof there, but we will take
a shortcut - we will use the result instead of the proof. Let us choose a pair
of models M1,M2 as in the result in [4]. Without loss of generality assume
that the universe of M1 is λ×{1} and the universe of M2 is λ×{2}. We can
take F to be the set of functions f which satisfy the following conditions:

1. Dom(f) ⊆ λ,Rang(f) ⊆ λ.
2. The partial function f ′ from M1 to M2 defined by

Dom(f ′) = Dom(f)×{1}, where for every α ∈ Dom(f), f ′((α, 1)) = (f(α), 2)

is a partial isomorphism.
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10 CHANOCH HAVLIN AND SAHARON SHELAH

Now, it is not hard to see that EFTF ,1 equivalence implies equivalence as in
the result of [4].

Proof of theorem 3.1. Denote κ = cf(λ). (κ > ℵ0 because λ = λℵ0 .) Let〈Sec2-Theorem-
Eq-T,1〉 〈µi : i < κ〉 be an increasing and continuous sequence such that µ0 = 0,

µ+
i < µi+1 = cf(µi+1), gµi > ℵ0 for i > 0, and

⋃
i<κ µi = λ. For every

α < λ there is a unique i < κ such that α ∈ [µi, µi+1). We denote i = i(α).
We define a structure parameter x = xF ,λ in the following way:

1. I = [λ]ℵ0 .
2. For u ∈ I, Ju is the collection of quadruples t = (u, g, h, ζ) such that

(a) g, h are functions from u into λ, ζ is a function from some subset
of u into λ;

(b) ζ ∈ F ;
(c) for every x ∈ u, g(x) ∈ [µi(x), µ

+
i(x)], h(x) ∈ [µi(x), µi(x)+1];

(d) g, h are weakly increasing;
(e) if g(x) = g(y), then h(x) = h(y);
(f) h(x) > x;
(g) Dom(ζ) = u ∩

⋃
{µi(x) : x ∈ u and h(x) = µi(x)+1}

For t = (u, g, h, ζ) we denote u = ut, g = gt, h = ht, ζ = ζt.
3. S = {(u1, u2) : u1, u2 ∈ I, u1 ⊆ u2}.
4. T = {(t1, t2) ∈ J : ut1 ⊆ ut2 , gt1 ⊆ gt2 , ht1 ⊆ ht2 , ζt1 ⊆ ζt2}.

LetM = MF ,λ = Mx be the corresponding model. Define a∗ = 0G∅ , b∗ = x(∅,∅,∅,∅).
Define M1 = (M,a∗) and M2 = (M, b∗).

LABEL 〈Sec2-
Claim-Equiv-
Models〉

Claim 3.3. M1,M2 are EFT ,1 equivalent.

Proof. We start with
LABEL 〈Sec2-Def-
W〉 Definition 3.4. A partially ordered set of functions (W,≤W), which de-

pends on the sequence 〈µi : i < κ〉, is defined in the following way:

1. we define a set B such that β̄ ∈ B iff
(a) β̄ = 〈βi : i < κ〉, µi ≤ βi ≤ µi+1;
(b) there is j = j(β̄) < κ such that i < j(β̄) iff βi = µi+1.

2. For β̄ ∈ B we define Wβ̄ to be the set of functions g which satisfy

(a) Dom(g) = ∪i<κ [µi, βi);
(b) g is weakly increasing;
(c) for every i < κ, x ∈ [µi, βi), we have g(x) ∈ [µi, µ

+
i ], and if

g(x) = µ+
i , then i < j(β̄).

3. For j < κ we define Wj =
⋃
{Wβ̄ : j(β) ≤ j}.

4. For g ∈ Wβ̄ we define a function hg as follows: Dom(hg) = Dom(g)

where for i < κ and x ∈ [µi, βi) we have hg(x) = Min({y : µi ≤ y < βi ∧ g(y) > g(x)} ∪ {βi}).
LABEL 〈Sec2-
Claim-W〉 Claim 3.5. 1. If g(x) = g(y), then hg(x) = hg(y).

2. hg(x) > x.
3. hg is weakly increasing.
4. If x ∈ [µi, µi+1), then hg(x) ∈ [µi, µi+1].
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5. Suppose that g1 ∈ Wβ̄1 , g2 ∈ Wβ̄2. Then g1 ≤W g2 iff

(a) g1 ⊆ g2 (therefore for every i < κ β1
i ≤ β2

i );
(b) for every i < κ if β1

i < β2
i , then for every x ∈ [µi, β

1
i ), g2(x) <

g2(β1
i ).

6. If g1 ∈ Wj and β̄ ∈ B, j(β̄) ≤ j, then there is g2 ∈ Wj such that
g1 ≤W g2 and

⋃
i<κ [µi, βi) ⊆ Dom(g2).

7. If δ < µ+
j and 〈gα : α < δ〉 is such that gα ∈ Wj and α < β implies

gα ≤W gβ then there exists g ∈ Wj such that if α < δ, then gα ≤W g.

Proof.

1. - 4. Easy.
5. Like in the proof of Claim 2.11. 〈Sec1-Claim-G-of-

lambda〉6. We may assume that Dom(g1) ⊆
⋃
i<κ [µi, βi). Define for i < κ

γi = µi + Sup{g1(x) : x ∈ Dom(g1) ∩ [µi, µi+1)}.

Since g1 ∈ Wj we have γi < µ+
i for i ≥ j. Define for i < κ,

γ∗i =

{
µ+
i if i < j,
γi + 1 if i ≥ j .

Now define g2 with Dom(g2) =
⋃
i<κ [µi, βi), where for every i < κ

and x ∈ [µi, βi),

g2(x) =

{
g1(x) if x ∈ Dom(g1),
γ∗i if x /∈ Dom(g1)

Since j(β̄) ≤ j we have g2 ∈ Wj . By 5. we have g1 ≤W g2.
7. Define for every i < κ,

βi = sup(
⋃
α<δ

Dom(gα)∩[µi, µi+1) )+µi, γi = sup(
⋃
α<δ

Rang(gα�[µi, µi+1))+µi,

For every α < δ, gα ∈ Wj . Therefore for every i ≥ j,

sup(Dom(gα) ∩ [µi, µi+1)) < µi+1, supRang(gα�[µi, µi+1)) < µ+
i .

Therefore, since δ < µ+
j ≤ µ

+
i < µi+1 = cf(µi+1), we get that for i ≥ j

we have βi < µi+1 and γi < µ+
i .

Define for i < κ,

β∗i =

{
µi+1 if i < j,
βi if i ≥ j, γ∗i =

{
µ+
i if i < j,
γi + 1 if i ≥ j.

Denote g′ =
⋃
α<δ gα. Define g ∈ Wj with Dom(g) =

⋃
i<κ [µi, β

∗
i )

for i < κ and x ∈ [µi, β
∗
i ) by

g(x) =

{
g′(x) if x ∈ Dom(g′),
γ∗i if x /∈ Dom(g′).

By 5. we get that α < δ implies g ≥W gα.
This completes the proof of Claim 3.5. �3.5 〈Sec2-Claim-W〉

〈Sec2-Claim-W〉
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12 CHANOCH HAVLIN AND SAHARON SHELAH

Now we will describe a winning strategy for ISO:
In every stage α in the game ISO will choose a function gα such that

1. gα ∈ Wi(α)+1;

2. if ε < α, then gε ≤W gα;
3. if in stage α AIS chose an element from Gu, then u ⊆ Dom(gα).

ISO can choose such gα in the following way:

1. For α = 0, g0 = ∅.
2. For α limit, since α < µi(α)+1 and for every ε < α, gε ∈ Wi(α)+1, we

can use Claim 3.5(7).〈Sec2-Claim-W〉
3. If α = ε+ 1 and in stage α AIS chose an element from Gu, then we

choose β̄ = 〈βi : i < κ〉 in the following way : If i < i(α) + 1, then
βi = µi+1. Else, µi+1 > α. We choose βi < µi+1 such that

u ∩ [µi, µi+1) ⊆ [µi, βi).

Now j(β̄) = i(α) + 1, so by Claim 3.5(6) we can find g ∈ Wi(α)+1〈Sec2-Claim-W〉
such that

gε ≤W g and
⋃
i<κ

[µi, βi) ⊆ Dom(g).

Define gα = g.

Now if α = ε + 1 and in stage α AIS chose an element from Gu and the
node ζα ∈ T , ISO will define the automorphism fα according to gα, ζα
with Dom(fα) = Dom(fε) ∪ Gu. For every w such that Gw ⊆ Dom(fα),
fα(0Gw) = xt where

t = (w, gα�w, hgα�w, ζα�(w ∩ {µi(x) : x ∈ w ∧ hgα(x) = µi(x)+1}))

(Note that v ⊆ α = Dom(ζα), because gα ∈ Wi(α)+1.) As in Section 2,
we get that fα is a partial isomorphism and ε < α implies fε ⊆ fα. This
completes the proof of Claim 3.3. �3.3〈Sec2-Claim-

Equiv-Models〉
〈Sec2-Claim-
Equiv-Models〉
LABEL 〈Sec2-
ClaimNotIso〉

Claim 3.6. M1,M2 are not isomorphic.

Proof. We imitate the proof of Claim 2.12. It is enough to show that M

〈Sec1-
ClaimNotIso〉

is rigid. Assume towards contradiction that f 6= id is an automorphism of
M . For each u ⊂ w ∈ I and t = (w, g, h, ζ) ∈ Jw we define πw,u(t) ∈ Ju by
πw,u(t) = (u, gt�u, ht�u, ζt�v), where v =

⋃
{µi(x) : x ∈ u ∧ ht(x) = µi(x)+1 } ∩ u.

We proceed as in the proof of Claim 2.12, and we get that we can find

〈Sec1-
ClaimNotIso〉

functions g, h, ζ such that the following hold:

1. Dom(g) = Dom(h) = λ, Dom(ζ) ⊆ λ.
2. If i(x) = i, then g(x) ∈ [µi, µ

+
i ], h(x) ∈ [µi, µi+1].

3. g, h are weakly increasing.
4. If g(x) = g(y), then h(x) = h(y).
5. h(x) > x.
6. If h(x) = µi(x)+1, then µi(x) ⊆ Dom(ζ).
7. ζ ∈ F .
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By 7. we get that Dom(ζ) 6= λ, therefore by 6. there exists i < κ such that
if i(x) = i, then i(h(x)) = i. By 2., i(x) = i implies g(x) ≤ µ+

i . By 3., g is

weakly increasing. Since µi+1 = cf(µi+1) > µ+
i , we can find α0 such that if

α0 ≤ x < µi+1, then g(x) = g(α0). By 5., h(α0) > α0. By the choice of i we
get that h(α0) < µi+1. Choose h(α0) < x < µi+1. We get h(x) > x > h(α0)
but g(x) = g(α0). This contradicts 4. Therefore we proved that M is rigid.

This completes the proof of Claim 3.6. �3.6 〈Sec2-
ClaimNotIso〉
〈Sec2-
ClaimNotIso〉

Ths proof of Theorem 3.1 is now also completed. �3.1

〈Sec2-Theorem-
Eq-T,1〉
〈Sec2-Theorem-
Eq-T,1〉

4. λ regular > iω
In this section we show a result which holds for every λ regular > iω. In
the previous sections we used the assumption λ = λℵ0 . Here we use instead
of it the existence of a set P ⊂ [λ]ℵ0 of size λ which is ”dense”. By ”dense”
we mean that for every A ∈ [λ]iω there is B ⊂ A, B ∈ P.

LABEL 〈Sec4-4.1〉Remark 4.1. 1. Looking at the proof, one can see that instead of λ > iω,
it is enough to assume the following:
(a) λ > 2ℵ0 .
(b) There is P ⊂ [λ]ℵ0 such that

i. |P| = λ;
ii. for every A ∈ [λ]λ, there is B ∈ P, such that B ⊂ A.

2. It is possible that it can be proved in ZFC that every λ > 2ℵ0 satisfies
1.(b) (it is a problem in cardinal arithmetic).

LABEL 〈Sec3-
Theorem-Equiv〉Theorem 4.2. Suppose

λ = cf(λ) > iω,
T is a tree of size λ with no branch of length λ.

Then there are models M1,M2 of size λ which are EFT ,λ equivalent but not
isomorphic.

Proof. Let χ be large enough cardinal (for example χ = i7(λ)).
LABEL 〈Sec3-
Claim-exists-
inner-model〉

Claim 4.3. We can find M such that the following hold:

1. M is elementary sub-model of H(χ).
2. λ+ 1 ⊆M.
3. ||M|| = λ.
4. For every 〈 (xi, zi) : i < λ〉 such that xi ∈ M and zi ∈ T for every
i < λ there exists an increasing sequence 〈in : n < ω〉 such that
(a) 〈(xin , zin) : n < ω〉 ∈M;
(b) if in addition for i < j < λ the level of zi (in T ) is strictly less

than the level of zj, then 〈zin : n < ω〉 is an antichain in the
order ≤T .

In the proof Claim 4.3 we use a partial version of the RGCH Theorem 〈Sec3-Claim-
exists-inner-
model〉

(see Shelah [5]).

LABEL 〈RGCH-
Theorem〉

Theorem 4.4. (RGCH Theorem, partial version). If λ ≥ iω, then there is
regular κ < iω and P ⊆ [λ]<iω such that
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1. |P| = λ,
2. for every A ∈ [λ]iω , we can find 〈Ai : i < ε〉 such that ε < κ, Ai ∈ P

for every i < ε, and A =
⋃
i<ε Ai.LABEL 〈RGCH-

Corollary〉 Corollary 4.5. If λ ≥ iω, then we can find a set P∗ ⊆ [λ]ℵ0 such that
|P∗| = λ and for every A ∈ [λ]iω there is B ∈ P∗ such that B ⊆ A.

Proof. Choose κ and P as in Theorem 4.4 and define P∗ =
⋃
{[A]ℵ0 : A ∈〈RGCH-Theorem〉

P}. �4.5〈RGCH-Corollary〉
Proof of Claim 4.3. We construct Mn for every n < ω such that〈Sec3-Claim-

exists-inner-
model〉

1. M0 is an elementary sub-model ofH(χ) such that ||M0|| = λ, λ+1 ⊆
M0, and for every A ∈ [λ]iω there is B ∈M0∩[λ]ℵ0 such that B ⊂ A
(this is possible by Corollary 4.5);〈RGCH-Corollary〉

2. ||Mn|| = λ;
3. Mn is an elementary sub-model of H(χ);
4. if A ∈Mn and |A| ≤ λ, then A ⊆Mn+1;
5. Mn ∈Mn+1, and Mn ⊂Mn+1.

Now, let M =
⋃
n<ω Mn. We will prove that M satisfies the conclusion

of Claim 4.3.〈Sec3-Claim-
exists-inner-
model〉

Suppose that 〈 (xi, zi) : i < λ〉 ⊆M× T for every i < λ. We may assume
without loss of generality that there is n0 < ω such that {(i, xi, zi) : i <
λ} ⊆ Mn0 . If the condition in Claim 4.34.(b) is not satisfied, then we are〈Sec3-Claim-

exists-inner-
model〉

done, because we can find A ∈ [λ]ℵ0 such that {(i, xi, zi) : i ∈ A} ∈Mn0+1.
(because in Mn0+1 there is a one to one correspondence between λ×Mn0×T
and λ, and every subset of λ of size iω has infinite countable subset that is
a member of M0).

If the condition in Claim 4.34.(b) is satisfied, then we have two cases:〈Sec3-Claim-
exists-inner-
model〉

Case (1): We can find A ∈ [λ]iω such that 〈zi : i ∈ A〉 is an antichain in
≤T .
Case (2): We cannot find such A.
If we are in Case(1), then we are done in the same way as before.
Suppose we are in Case(2).

LABEL 〈Sec3-
small-1〉 Claim 4.6. For every j < λ, we can find j < i0 < i1 < i2 < λ, such that

zi0 <
T zi1 , zi2 and zi1 , zi2 are not comparable in ≤T .

Proof. Assume towards contradiction that there is j∗ < λ such that we
cannot find j∗ < i0 < i1 < i2 < λ which are as in the claim. Define
C = {zi : j∗ < i < λ}. Then comparability in ≤T is an equivalence relation
on C. Since λ is regular, either there are λ equivalence classes or there is
an equivalence class of size λ. In other words, C contains an antichain or a
chain of size λ. Both options are not possible, the first since we are in Case
(2) and the second since T does not have a λ branch. Contradiction. �4.6〈Sec3-small-1〉

By Claim 4.6 we can choose for every j < λ a triple i0(j), i1(j), i2(j) such〈Sec3-small-1〉
that
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1. i0(j) < i1(j) < i2(j) < λ;
2. j < j′ ⇒ i2(j) < i0(j′);
3. zi0(j) <

T zi1(j), zi2(j);

4. zi1(j) and zi1(j) are not comparable in ≤T .

We chooseA ∈ [λ]ℵ0 such that {(j, i0(j), i1(j), i2(j), xj , zj) : j ∈ A} ∈Mn0+1.
Using the Ramesy Theorem in Mn0+1, we can find an increasing sequence
〈jn : n < ω〉 such that

1. jn ∈ A for every n < ω;
2. 〈jn : n < ω〉 ∈Mn0+1;
3. {zi1(jn) : n < ω} is a chain or an antichain in T ;
4. {zi2(jn) : n < ω} is a chain or an antichain in T .

Now we are done, since either {zi1(jn) : n < ω} or {zi1(jn) : n < ω} must be

an antichain. Because if both are chains, we get that zi1(j0) <
T zi1(j1), zi2(j0) <

T zi2(j1).

Since zi0(j1) is on higher level then zi1(j0), zi2(j0) and it is <T zi1(j1), zi2(j1)

we get that zi1(j0), zi2(j0) <
T zi0(j1) - contradiction, since by the construction

they are not comparable.
This completes the proof of Claim 4.3. �4.3 〈Sec3-Claim-

exists-inner-
model〉
〈Sec3-Claim-
exists-inner-
model〉

We choose M as in Claim 4.3 and we define a structure parameter x = x(M)

〈Sec3-Claim-
exists-inner-
model〉

in the following way:

LABEL 〈Sec3-Def-
Parameter〉

Definition 4.7. 1. I consists of the objects of the form (u,Λ), where
(a) u ∈ λ<ℵ0 ;
(b) Λ ∈ M, |Λ| ≤ ℵ0, Λ is a set of partial functions from λ to λ

with finite domain.
For s = (u,Λ) we denote u = us and Λ = Λs. We define Γ(s) =
us ∪

⋃
{Dom(f) : f ∈ Λs}. Note that this a countable set.

2. For s = (u,Λ) ∈ I, Js consists of all the objects of the form t = (u,Λ, g, h, F, z),
where
(a) g, h are functions from u to λ;
(b) F is a function from Λ2 to {0, 1};
(c) z ∈ T ;
(d) the level α of z in the tree T is minimal under the condition

α > y for every y such that y ∈ Rang(g) or there are f1, f2 ∈ Λ
such that F (f1, f2) = 1 and y ∈ Rang(f1):

(e) there is a witness (g,h) for t, which means that
i. Dom(g) = Dom(h) ⊆ λ, Rang(g) ∪ Rang(h) ⊆ λ,

ii. Γ(s) ⊆ Dom(g).
iii. g,h are weakly increasing,
iv. h(x) > x,
v. if g(x) = g(y), then h(x) = h(y),
vi. g ⊆ g, h ⊆ h,
vii. for every (f1, f2) ∈ Λ2, F (f1, f2) = 1 iff f1 ⊆ g and

f2 ⊆ h.
3. S = I2.

Paper Sh:866, version 2007-03-01 12. See https://shelah.logic.at/papers/866/ for possible updates.



16 CHANOCH HAVLIN AND SAHARON SHELAH

4. T consists of the pairs (t1, t2) ∈ J2, where
(a) t1, t2 have a common witness;
(b) zt1 , zt2 are comparable in the order ≤T .

LABEL 〈Sec4-4.8〉
Fact 4.8. s ∈ I, z ∈ T ,

g,h satisfy conditions i.-v. from Definition 4.72.(e),〈Sec3-Def-
Parameter〉 Dom(g) ⊂ α, where α is the level of z.

Then the following hold:

1. There is unique t ∈ Js such that (g,h) is a witness for t and zt ≤T z.
We denote t = t(s,g,h, z).

2. If
(a) g′,h′, z′ also satisfy the conditions in 1.,
(b) z, z′ are comparable in ≤T ,
(c) g′,h′ are compatible with g,h respectively.

then t(s,g,h, z) = t(s,g′,h′, z′).

Let M = Mx be the corresponding model. We can check that ||M || = λ.
Let a∗ = 0G(∅,∅) , b∗ = x(∅,∅,∅,∅,∅,z∗) where, z∗ is the root of T (without loss

of generality there is a root). Define M1 = (M,a∗),M2 = (M, b∗).
LABEL 〈Sec3-
Claim-Equiv〉 Claim 4.9. M1,M2 are EFT ,λ equivalent.

We describe a winning strategy for ISO - this is very similar to the proof
of Claim 2.9, so we will omit the details. We are using the definitions in〈Sec1-Claim-

Equiv-Models〉 Definition 2.10.

〈Sec1-Def-G-of-
lambda〉

In every stage α of the game ISO will choose a function gα such that the
following hold:

1. g0 = ∅.
2. gα ∈ Gα (see definition of Gα and ≤G in Definition 2.10).〈Sec1-Def-G-of-

lambda〉 3. β < α implies gβ ≤G gα.
4. If in stage α AIS chose the sets A1, A2, then for each s ∈ I, if
Gs ∩ (A1 ∪A2) 6= ∅, then Γ(s) ⊆ Dom(gα).

Now if α = β+ 1 and in stage α AIS chose the sets A1, A2 and the node zα,
ISO will define hα = hgα and then define fα by

1. Dom(fα) =
⋃
{Gs : Γ(s) ⊆ Dom(gα)},

2. for each s such that Gs ⊆ Dom(fα), fα(0Gs) = xt, where t =
t(s,gα,hα, zα).

LABEL 〈Sec3-
Claim-Not-Iso〉 Claim 4.10. M1,M2 are not isomorphic.

Proof. It is enough to show that M is rigid. Assume towards contradiction
that f 6= id is an automorphism of M . Denote cs = f(0Gs) for s ∈ I.
Denote Ws = {t ∈ Js : xt is in the reduced representation of cs}. Since
f 6= id there is s∗ = (u∗,Λ∗) such that Ws∗ 6= ∅. Note also that if us

∗ ⊆ us

and Λ∗ ⊆ Λs, then there is a natural projection πs,s∗ from Js into Js∗ such
that Ws∗ ⊆ Rang(πs,s∗�Ws) (see the proof of Claim 2.12), therefore Ws 6= ∅.〈Sec1-

ClaimNotIso〉 Choose si, ti, αi for i < λ such that the following hold:
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1. si ∈ I, si = (u∗ ∪ {αi},Λ∗)
2. ti ∈Wsi

3. αi < λ
4. If i < j hti(αi) < αj .

Case (*1) : sup{gti(αi) : i < λ} = λ. Then, since the level of zti in T must
be greater then gti(αi), we may assume that if i < j, then the level of zti is
strictly less than the level of ztj .
Case (*2): sup{gti(αi) : i < λ} < λ. Then by regularity of λ, we may
assume that for every i, j < λ, gti(αi) = gtj (αj).

Now, no matter in which case we are, we proceed in the following way:
By the properties of M (see Claim 4.3) we can find a set A ⊂ λ such that 〈Sec3-Claim-

exists-inner-
model〉

1. |A| = ℵ0;
2. {Wsi : i ∈ A} ∈M;
3. if we are in Case (*1), {zti : i ∈ A} is an antichain (we can have

that because in Case(*1) the level of zti is strictly increasing with i
- see Claim 4.3). 〈Sec3-Claim-

exists-inner-
model〉

We define s+ = (u∗, {gt, ht : t ∈ Wsi , i ∈ A} ∪ Λ∗). (Note that
⋃
i∈A Wsi ∈

M, therefore s+ ∈ I.)

LABEL 〈Sec3-
Claim-unique-
projection〉

Claim 4.11. For every i ∈ A, if r ∈ Js+ , t ∈Wsi , (r, t) ∈ T , then we have:

1. If (g,h) is a witness for r, then gt ⊆ g, ht ⊆ h.
2. If t 6= t′ ∈ Jsi, then (r, t′) /∈ T .

Proof.

1. Let (g0,h0) be a common witness for r, t. Then we have gt ⊆
g0, h

t ⊆ h0. Now gt, ht ∈ Λs
+

, therefore (gt, ht) ∈ Dom(F r). Since
(g0,h0) is a witness for r and gt ⊆ g0, h

t ⊆ h0, then F r(gt, ht) = 1.
Therefore for any witness (g,h) of r, we have gt ⊆ g, ht ⊆ h.

2. There are three cases:
(a) gt 6= gt

′
or ht 6= ht

′
. Then, since all those functions have the

same domain, we get that r, t′ cannot have a common witness
(g,h) because by 1. we must have gt ⊆ g, ht ⊆ h.

(b) F t 6= F t
′
. Then, since Dom(F t) = Λ∗ ⊆ Λs

+
= Dom(F r) and

(r, t) ∈ T we know that F t ⊆ F r. Since F t 6= F t
′
and Dom(F t) =

Dom(F t
′
), we get that F r and F t

′
are not compatible (and

therefore there is no common witness).

(c) zt 6= zt
′
. By the previous cases we may assume that F t =

F t
′
, gt = gt

′
, and ht = ht

′
, therefore zt, zt

′
are on the same level

(see Definition 4.7,2.(d)). We can also see that zr must be on 〈Sec3-Def-
Parameter〉a greater level (remember that F t ⊆ F r and F r(gt, ht) = 1).

Since (r, t) ∈ T , zt, zr are comparable in ≤T . It follows that

zt
′
, zr are not comparable, thus (r, t′) /∈ T .

�4.11 〈Sec3-Claim-
unique-projection〉
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LABEL 〈Sec3-
Claim-exists-
projection〉

Claim 4.12. For every i ∈ A there is r ∈Ws+ such that (r, ti) ∈ T .

Proof. Since (cs, cs+) ∈ Gs,s+ and this group is generated by {(xt, xt′) :
(t, t′) ∈ T ∩ (Js × Js+)}, there are representations(not necessarily reduced)
csi = xw1 + · · ·+ xwn , cs+ = xr1 + · · ·+ xrn with (rn, wn) ∈ T .

We may assume that if 1 ≤ `1 < `2 ≤ n, then either r`1 6= r`2 or w`1 6= w`2 .
(Otherwise, we can reduce both representations - remember that in those
groups 2x = 0). Since xti appears in the reduced representation of csi , ti
must appear among the w’s. Let ` be such that w` = ti. Now we show that
if `1 6= `, then r`1 6= r`. Assume toward contradiction that r`1 = r`. By our
assumption, w`1 6= w`. Now, we have:

1. (r`1 , w`1), (r`, w`) ∈ T ;
2. w` ∈Wsi ;
3. w` 6= w`1 .

This contradicts Claim 4.11.〈Sec3-Claim-
unique-projection〉 We got that for every `1 6= `, r`1 6= r`, which implies that xr` does not

cancel. Hence r` ∈Ws+ and we are done. �4.12〈Sec3-Claim-
exists-projection〉 Now choose ri ∈Ws+ for each i ∈ A such that (ri, ti) ∈ T .

LABEL 〈Sec3-
claim-r-ies-
distinct〉

Claim 4.13. If i < j, then ri 6= rj.

Proof. If we are in Case (*1), then {zti : i ∈ A} is an antichain. So, zti , ztj

are not comparable. Since zri ≥T zti and zrj ≥T ztj (see the proof of
Claim 4.11 - zri , zti are comparable and zri is on greater level), we must〈Sec3-Claim-

unique-projection〉 have ri 6= rj .
If we are in Case (*2), assume toward contradiction that r = ri = rj . Let

(g,h) be a witness for r. Then by Claim 4.11, gti , gtj ⊆ g, hti , htj ⊆ h.〈Sec3-Claim-
unique-projection〉 Since we are in Case (*2) we get that g(αi) = g(αj) but by the construc-

tion h(αi) < αj < h(αj), which contradicts the definition of a witness (see
Definition 4.7,2.(e)). �4.13〈Sec3-Def-

Parameter〉
〈Sec3-claim-r-ies-
distinct〉

We got that Ws+ is infinite - contradiction. Therefore M must be rigid, and
hence the proof of Claim 4.10 is finished.. �4.10

〈Sec3-Claim-Not-
Iso〉
〈Sec3-Claim-Not-
Iso〉

With the proof of Claim 4.10 the proof of Theorem 4.2 is also completed.

〈Sec3-Claim-Not-
Iso〉
〈Sec3-Theorem-
Equiv〉

�4.2

〈Sec3-Theorem-
Equiv〉

5. λ > cf(λ) > iω
Clearly, for λ being singular and > iω we cannot prove the same result
as for regular λ > iω (since in such game AIS will be able to list all the
elements of the two models). Therefore, we define another type of game.

LABEL 〈Sec5-5.1〉

Definition 5.1. Let M1,M2 be models with common vocabulary. Let T be
a tree. The game a∗T (M1,M2) is defined in the same way as the definition
of aT ,µ (see 2.1) except that in stage α we demand that the sets A1, A2

〈Sec1-Def-Game-
With-Tree〉

chosen by AIS will satisfy |A1 ∪ A2| < 1 + α instead of |A1 ∪ A2| < 1 + µ.
We say that M1,M2 are EF ∗T equivalent if ISO has a winning strategy for
EF ∗T (M1,M2).
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LABEL 〈Sec5-5.2〉Remark 5.2. Note that in Theorem 3.1, if we replace EFT ,1 with EF ∗T 〈Sec2-Theorem-
Eq-T,1〉we do not get a stronger result, because for every tree T which satisfies

the conditions there, we can construct another tree T ′ which satisfies the
conditions, so that EFT ′,1 equivalence would imply EF ∗T equivalence.

LABEL 〈Sec4-
Theorem-EF*-T-
Equiv〉

Theorem 5.3. Suppose that:

1. λ > cf(λ) = κ > iω;
2. T is a tree of size λ without a λ branch.

Then there are non-isomorphic models M1,M2 of size λ which are EF ∗T
equivalent.

Proof. Let χ be a large enough cardinal(for example χ = i7(λ)).
LABEL 〈Sec4-
Claim-exists-
inner-model〉

Claim 5.4. We can find M such that the following hold:

1. M is elementary sub-model of H(χ).
2. λ+ 1 ⊆M.
3. For every 〈 (xi, zi) : i < κ〉 such that xi ∈ M and zi ∈ T for every
i < λ there exists an increasing sequence 〈in : n < ω〉 such that :
(a) 〈(xin , zin) : n < ω〉 ∈M;
(b) if in addition for every α < λ there is i < κ such that the level

of zi is greater than α, then we can also have that 〈zin : n < ω〉
is an antichain in ≤T .

Proof. The same proof as the proof of Claim 4.3 (we are using the fact that 〈Sec3-Claim-
exists-inner-
model〉

κ is regular and κ > iω). �5.4

〈Sec4-Claim-
exists-inner-
model〉

Let M be as in Claim 5.4. Let 〈µi : i < κ〉 be an increasing and continuous

〈Sec4-Claim-
exists-inner-
model〉

sequence such that µ0 = 0, µ+
i + ℵ0 < µi+1 = cf(µi+1), and

⋃
i<κ µi = λ.

For every α < λ there is a unique i < κ such that α ∈ [µi, µi+1). We
denote this i by i(α).
We define a structure parameter x in the following way:

LABEL 〈Sec4-Def-
Parameter〉

Definition 5.5. 1. I consists of the objects of the form (u,Λ), where:
(a) u ∈ λ<ℵ0 ;
(b) Λ ∈ M, |Λ| ≤ ℵ0, Λ is a set of partial functions from λ to λ

with finite domain.
For s = (u,Λ) we denote u = us, Λ = Λs. We define Γ(s) = us ∪⋃
{Dom(f) : f ∈ Λs}. Note that this is a countable set.

2. For s = (u,Λ) ∈ I, Js consists of the objects of the form t = (u,Λ, g, h, F, z),
where
(a) g, h are functions from u to λ;
(b) F is a function from Λ2 to {0, 1};
(c) z ∈ T ;
(d) the level α of z in the tree T . then α is minimal with regard

to the condition that α ≥ µi(x) for every x such that h(x) =
µi(x)+1 or there are f1, f2 ∈ Λ such that F (f1, f2) = 1 and
f2(x) = µi(x)+1;
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(e) there is a witness (g,h) for t, which means that
i. Dom(g) = Dom(h) ⊆ λ, Rang(g) ∪ Rang(h) ⊆ λ,
ii. Γ(s) ⊆ Dom(g),

iii. g ⊆ g, h ⊆ h,
iv. for every (f1, f2) ∈ Λ2

F (f1, f2) = 1 iff f1 ⊆ g ∧ f2 ⊆ h,
v. g,h are weakly increasing,

vi. h(x) > x,
(i) if g(x) = g(y), then h(x) = h(y),

viii. g(x) ∈ [µi(x), µ
+
i(x)],

ix. h(x) ∈ [µi(x), µi(x)+1].

3. S = I2.
4. T consists of the pairs (t1, t2) ∈ J2, where :

(a) t1, t2 have a common witness;
(b) zt1 , zt2 are comparable in the order ≤T .

Fact 5.6. Suppose

s ∈ I, z ∈ T ,
g,h satisfy i-ii, v-ix from Definition 5.52.(e),〈Sec4-Def-

Parameter〉
⋃
{µi(x) : h(x) = µi(x)+1} ⊂ α, where α is the level of z.

Then the following hold:

1. There is a unique t ∈ Js such that (g,h) is a witness for t and
zt ≤T z. We denote t = t(s,g,h, z).

2. If
(a) g′,h′, z′ satisfy the conditions in 1.,
(b) z, z′ are comparable in ≤T ,
(a) g′,h′ are compatible with g,h, respectively,

then t(s,g,h, z) = t(s,g′,h′, z′).

Let M = Mx be the corresponding model. We can check that ||M || = λ.
Let a∗ = 0G(∅,∅) , b∗ = x(∅,∅,∅,∅,∅,z∗), where z∗ is the root of T (without loss

of generality there is a root). Define M1 = (M,a∗),M2 = (M, b∗).
LABEL 〈Sec4-
Claim-Equiv〉 Claim 5.7. M1,M2 are EF ∗T equivalent.

We describe a winning strategy for ISO - this is very similar to the proof
of Claim 3.3, so we omit the details. We use the definitions in Definition〈Sec2-Claim-

Equiv-Models〉 3.4. In every stage α of the game ISO will choose a function gα such that:

〈Sec2-Def-W〉 1. g0 = ∅.
2. gα ∈ Wi(α)+1.

3. β < α⇒ gβ ≤W gα.
4. If in stage α AIS chose the sets A1, A2, then for each s ∈ I, if
Gs ∩ (A1 ∪A2) 6= ∅ then Γ(s) ⊆ Dom(gα).

Now if α = β+ 1 and in stage α AIS chose the sets A1, A2 and the node zα,
ISO will define hα = hgα and then define fα by

1. Dom(fα) =
⋃
{Gs : Γ(s) ⊆ Dom(gα)},
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2. for each s such that Gs ⊆ Dom(fα),
fα(0Gs) = xt, where t = t(s,gα,hα, zα).

LABEL 〈Sec4-
Claim-Not-
Isomorphic〉

Claim 5.8. M1,M2 are not isomorphic.

Proof. It is enough to show that M is rigid. The proof is very similar to
the proof of Claim 4.10. Assume toward contradiction that f 6= id is an 〈Sec3-Claim-Not-

Iso〉automorphism of M . Denote

Ws = {t ∈ Js : xt is in the reduced representation of cs}.
Since f 6= id there is s∗ = (u∗,Λ∗) such that Ws∗ 6= ∅.
Case (*1): We can find 〈sθ, tθ, αθ : θ < κ〉 such that

1. sθ ∈ J, sθ = (u∗ ∪ {αθ},Λ∗);
2. tθ ∈Wsθ ;
3. htθ(αθ) = µi(αθ)+1;
4. if θ < ε < κ, then i(αθ) < i(αε).

In this case, note that the level of ztθ must be ≥ µi(αθ).
Case (*2): We cannot find such a sequence. Therefore, for every large enough
i < κ, for every α such that i(α) = i, for s(α) = (u∗ ∪ {α},Λ∗), for every
t ∈Ws(α), we have ht(α) < µi+1. Choose i∗ which satisfies this and µi∗ > κ.
We can find 〈tθ, sθ, αθ : θ < µi∗+1〉 such that

1. sθ ∈ I, tθ ∈Wsθ ;
2. i(αθ) = i∗;
3. if θ < ε, then htθ(αθ) < αε (< htε(αε) ).

Since µi∗+1 = cf(µi∗+1) > µ+
i∗ and for every θ we have gtθ(x) ≤ µ+

i∗ (this is
by Definition 5.52.(e)viii.), we may assume that gtθ(αθ) is constant. 〈Sec4-Def-

Parameter〉Now, in both cases, we proceed in a similar way to the proof of Claim
4.10. Using Claim 5.4, we choose A ⊂ κ such that 〈Sec3-Claim-Not-

Iso〉
〈Sec4-Claim-
exists-inner-
model〉

1. |A| = ℵ0;
2. 〈Wsθ : θ ∈ A〉 ∈M;
3. if we are in case (*1), then 〈ztθ : θ ∈ A〉 is an antichain in ≤T (we

can demand this because in Case (*1) the levels of the ztθ ’s are not
bounded in λ - see Claim 5.4). 〈Sec4-Claim-

exists-inner-
model〉

Define s+ ∈ I by s+ = (∅,Λ∗ ∪ {gt, ht : t ∈Wsθ , θ ∈ A}).

LABEL 〈Sec4-
Claim-unique-
projection〉

Claim 5.9. For every θ ∈ A the following holds: If r ∈ Js+ , t ∈Wsθ , (r, t) ∈
T , then

1. if (g,h) is a witness for r, then gt ⊆ g and ht ⊆ h;
2. if t 6= t′ ∈ Jsθ , then (r, t′) /∈ T .

Proof. See the proof of Claim 4.11. �5.9 〈Sec3-Claim-
unique-projection〉
〈Sec4-Claim-
unique-projection〉
LABEL 〈Sec4-
Claim-exists-
projection〉

Claim 5.10. For every θ ∈ A there is r ∈Ws+ such that (r, tθ) ∈ T .

Proof. See the proof of Claim 4.12. �5.10

〈Sec3-Claim-
exists-projection〉
〈Sec4-Claim-
exists-projection〉

Now, using Claim 5.10, we choose for each θ ∈ A an rθ ∈ Ws+ such that

〈Sec4-Claim-
exists-projection〉

(tθ, rθ) ∈ T .
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LABEL 〈Sec4-
claim-r-ies-
distinct〉

Claim 5.11. If θ < ε, then rθ 6= rε.

Proof. If we are in Case (*1): ztθ , ztε are not comparable. But zrθ ≥T ztθ

because they are comparable and zrθ is on greater level, since that level
is determined by Definition 5.5,2.(d). By the same argument, zrε ≥T ztε .〈Sec4-Def-

Parameter〉 Therefore, zrε , zrθ are not comparable, so rθ 6= rε.
If we are in Case (*2): Assume towards contradiction that r = rθ = rε.

Let (g,h) be a witness for r. Then by Claim 5.9, gtθ , gtε ⊆ g and htθ , htε ⊆ h.〈Sec4-Claim-
unique-projection〉 Since we are in Case (*2) we get that

g(αθ) = g(αε) and h(αθ) < αε < h(αε)

which contradicts the definition of a witness (see Definition 5.5,2.(e)). �5.11〈Sec4-Def-
Parameter〉
〈Sec4-claim-r-ies-
distinct〉

We got that Ws+ is infinite - contradiction. Therefore, M must be rigid,
which proves Claim 5.8. �5.8

〈Sec4-Claim-Not-
Isomorphic〉
〈Sec4-Claim-Not-
Isomorphic〉

The proof of Theorem 5.3 is now complete �5.8

〈Sec4-Theorem-
EF*-T-Equiv〉
〈Sec4-Claim-Not-
Isomorphic〉
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