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ABSTRACT. We show that the Deptht of an ultraproduct of Boolean
Algebras cannot jump over the Depth™ of every component by more
than one cardinal. Consequently we have similar results for the Depth
invariant.
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0. INTRODUCTION

Monk [Mon96| has dealt systematically with cardinal invariants of Boolean
algebras. In particular he dealt with the question how an invariant of an
ultraproduct of a sequence of Boolean algebras relates to the ultraproduct
of the sequence of the invariants of each of the Boolean algebras. That is the
relationship of inv([ [, B¢/D) with [],_,. inv(B.)/D. One of the invariants
he dealt with is the depth of a Boolean algebra, Depth(B). We continue here
[She05] getting weaker results without “large cardinal axioms”. On related
results see [MS98], [She03], [RS01]. Further results on Depth and Depth™
by the authors are contained in [ST].

Recall:

Definition 0.1. Let B be a Boolean Algebra.
Depth(B) := sup{f : 3b = (by : v < 0), increasing sequence in B}

Dealing with questions of Depth, Saharon Shelah noticed that investigating
a slight modification of Depth, namely - Depth™, might be helpful (see
[She05] for the behavior of Depth and Depth™ above a compact cardinal).

Recall:
Definition 0.2. Let B be a Boolean Algebra.
Depth™ (B) := sup{6" : 3b = (b, : v < ), increasing sequence in B}

This article deals mainly with Depth™, in the aim to get results for the
Depth. It follows [She05], both - in the general ideas and in the method of
the proof.

Let us take a look on the main claim of [She05]:

Claim 0.3. Assume

(a) k< <A

(b) u s a compact cardinal

(¢) A= cf())

(d) (Va < A)(laf™ <A)

(e) Deptht(B;) < ), for every i < K
( ) B Z1<_[:“€B /D

Then Depth™(B) < \.

So, A bounds the Depth™*(B), where B is an ultraproduct of the Boolean
Algebras By, if it bounds the Depth™ of every B;. That requires some rea-
sonable assumptions on A, and also a pretty high price for that result - you
should raise your view to a very large A, above a compact cardinal. Now,
the existence of large cardinals is an interesting philosophical question. You
might think that adding a compact cardinal to your world is a natural ex-
tension of ZFC. But, mathematically, it is important to check what happens
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without a compact cardinal (or below the compact, even if the compact
cardinal exists).

In this article we drop the assumption of a compact cardinal. Conse-
quently, we phrase a weaker conclusion. We prove that if A bounds the
Depth™ of every B;, then the Depth™ of B cannot jump beyond A*.

We thank the referee for many helpful comments.
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1. BounniNng DEPTH™'

Notation 1.1. (a) K, A are infinite cardinals
(b) D is an ultrafilter on x
(c) B, is a Boolean Algebra, for any i < K
(d) B=[[Bi/D.
1<K

We now state our main result:

Theorem 1.2. Assume

(a) A =cf(N)

(b) (Vo< A)(Ja|® < N)

(c) Deptht(B;) < A, for every i < k.
Then Depth™(B) < AT,

Remark 1.3. We can improve 1.2 (b), demanding only A\* = X\. We intend
to give a detailed proof in a subsequent paper.

Corollary 1.4. Assume

(a) A" =\

(b) Depth(B;) < A, for every i < k.
Then Depth(B) < AT,

Proof. By (b), Deptht(B;) < At for every i < k. By (a), a < AT =
|a|® < AT. Now, AT is a regular cardinal, so the pair (k, A\") satisfies the
requirements of Theorem 1.2. So, Depth™(B) < A*2, and that means that
Depth(B) S /\+. D1.4

Remark 1.5. If A is inaccessible (or even strong limit, with cofinality above
k), and Depth(B;) < A for every i < k, you can easily verify that Depth(B) <
A, using Theorem 1.2 and simple cardinal arithmetic.

Proof of Theorem 1.2:
Let (M, : @ < A") be a continuous and increasing sequence of elementary
submodels of (H(x), €) for sufficiently large x with the following properties:

(a) (Va < AT)([Mall = A)

(b) Va < AT)(A+1C M,)

(c) (¥8 < M) (M : a < B) € Mpyy).
Choose 0* € S3' (:= {6 < AT : cf(§) = A}), such that §* = Mz N AT,
Assume toward a contradiction that (a, : @ < AT) is an increasing sequence
in B. Let us write a, as (a® : i < k)/D for every a < AT. We may assume
that (a® : o < A\T,i < k) € M.

We will try to create a set Z, in the Lemma below, with the following

properties:

(a) ZC A%, |Z] =\

(b) i, € r such that for every a < 8, a, 8 € Z, we have By, = af < a’

T
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Since |Z| = A, we have an increasing sequence of length A in B, , so
Depth™(B;,) > A*, contradicting the assumptions of the claim. O 5

Lemma 1.6. There exists Z as above.
Proof. For every a < 3 < A", define:
Aa,lg:{i</<c:Bi):af‘<a?}

By the assumption, A, g € D for all @ < 8 < AT. For all a < 6%, Let A,
denote the set A, s+.
Let (v : o < A) be increasing and continuous, such that for every a < A:

(i) vo € [6*]<H, for every a < A,

(ii) vo has no last element, for every a < A,

(iii) 0* = U va-

a<A

Let u C 6%, |u|] < k. Define:

Su={B <0 : B >sup(u) and (Va € u)(Aqp = Aa)}-
Now define C'= {6 < A : ¢ is a limit ordinal and
(Va < 6)[(u Cva) A (Ju] < k) = sup(vs) = sup(Sy, Nsup(vs))]}-

Since A = cf(A) and (Va < A)(Ja|® < A), and since |vs| < A for all 6 < A, C
is a club set of A.
The fact that |D| = 2% < cf(\) = X implies that there exists A, € D such
that S = {a < A :cf(a) >k and Agyp(u,) = As} is a stationary subset of A.
C is a club and S is stationary, so C' N S is also stationary. Choose
65 = min(CN'S). Choose 6!, € C'NS for every e < A such that e < ¢ =
sup{d}; 1€ <(} < 5%4_1. Define 6; to be the limit of 41, , when v <, for
every limit € < A. Since C' is closed, we have:
(a) {6l:e<A}CC
(b) (6% : e < \) is increasing and continuous
(c) 88,1 €8, for every e < A
Lastly, define 62 = sup(vs1), for every e < A. Define, for every e < A, the
following family:

2 2 <
A = {S'LL N 56-‘1‘1 \56 tu € [v(sirl]iﬁ}'
We get a family of non-empty sets, which is downward xT-directed. So,

there is a k"-complete filter E, on [§2, 52, ), with 2 C E, for every € < A.
Define, for any i < x and € < A, the sets W, ; C [5527552+1> and B, C k, by:

Wi ={B:02<B<6%,andic Agse, )
Be:={i<r:W. € E'}.

Finally, take a look on W, := N{[62,621) \ We; : i € k\ Be}. For every
e <\, W, € E, since E, is k-complete, so clearly W, # (.
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Choose 8 = B € W.. Ifi € Aﬁ,azﬂ, then W,; € EX, so AB’62+1 C B,
(by the definition of B.). But, Aﬁ’52+1 € D, so B, € D, and consequently
Ay N B. € D, for any € < .

Choose i. € A, N Be, for every ¢ < A. You choose A i.-s from A,, and
|A«| = K, so we can arrange a fixed i, € A, such that theset Y ={e < A:¢
is even ordinal, and i, = 4, } has cardinality A.

The last step will be as follows:
define Z = {62, : € € Y}. Clearly, Z € [§*]* C [AT]*. We will show that
for a < B from Z we get B;, |= af < aiﬁ*. The idea is that if « < 8 and
o, € Z, then iy, € A, 3.

Why? Recall that a = (562“ and 8 = 6§+1, for some € < ¢ < A (that’s the
form of the members of Z). Define:

U, = S{5€2+1} N [5?,5?+1) €A C Ee.

Uy = {v: 5? << 5§+1 and i, € A%(ggﬂ} € Eé‘
So, Uy N Uy # 0.

Choose ¢ € Uy N Us.

Now the following statements hold:

(a) Bi, = af, <aj,
[Why? Well, « € Uy, so A5§+1 = A6€2+1 = A,. But, i, € A, so

52
1y € A62+1 , which means that B, = a,""' (= af") < af ].
(b) B;, Eat <dl

[
[Why? Well, ¢ € Us, so ix € AL,6§+17 which means that B;, =
52
a; < aif“(: ai)].
(c) By, Faf <al
[Why? By (a)+(b)].

So, we are done.

Uie

Without a compact cardinal, we may have a ‘jump’ of the Depth™ in the
ultraproduct of the Boolean Algebras (see [She02, §5]). So, we can have
k < A, Depth®(B;) < A for every i < k, and Depth*(B) = A*. We can
show that if there exists such an example for k and A, then you can create
an example for every regular 6 between s and A.

Claim 1.7. Assume

(a) k <A, D is an ultrafilter on k
(b) Depth™(B;) <\, for every i < k
(c) Depth™(B) = AT
(d) 6 € RegN [k, A).
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Then there exist Boolean algebras Cj, j < 0, and a uniform ultrafilter
E on 6, such that Depth*(C;) < X for every j < 6 and Depth™(C) :=
Depth™ (][] C;/E) = A*.

j<é
Proof. Break 6 into 0 sets (uq : o < ) such that for every o < 6:

(a) [ua| =,

(b) U U, :97

a<f
(c) a# B = ugNug=0.
For every a < 0, let f, : K = us be one to one, onto and order preserving.
Define D,, on u, in the following way: If A C u,, then A € D, iff f;1(A) €
D. For 0 itself, define a filter F, on 6 in the following way: If A C 6, then
A€ E, iff ANu, € D, for every (except, maybe < 6 ordinals) a < 6. Now,
choose any ultrafilter E on 6, such that F, C E.

Define Cy, ;) = By, for every a < § and i < x. You will get (C; : j <
0) such that Depth®™(C;) < X for every j < 6. But, we will show that
Depth™(C) > AT (remember that C = [[ C;/E).

j<

Well, let (a¢ : € < A) testify Depth® (B) = AT. Recall, a¢ is (a5 : i <
k)/D. We may write fo(ag¢) for <fa(af) 11 < k)/Dg, where a < 6. Clearly,
(falag) : € < A) testifies Depth™(C*) = At where C* := [] Cy, (;y/Da-

1<K

Now, ((fa(ae) : v < 0) : £ < A\)/E is an increasing sequence in C.

U7

Remark 1.8. (1) Claim 1.7 applies, in a similar fashion, to the Depth

invariant.
(2) Claim 1.7 is useful for comparing Depth(C) to [] Depth(C;)/E,
j<0
when A7 = ).
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