ON DEPTH AND DEPTH ${ }^{+}$OF BOOLEAN ALGEBRAS

SHIMON GARTI AND SAHARON SHELAH

Abstract

We show that the Depth ${ }^{+}$of an ultraproduct of Boolean Algebras cannot jump over the Depth ${ }^{+}$of every component by more than one cardinal. Consequently we have similar results for the Depth invariant.

0. INTRODUCTION

Monk [Mon96] has dealt systematically with cardinal invariants of Boolean algebras. In particular he dealt with the question how an invariant of an ultraproduct of a sequence of Boolean algebras relates to the ultraproduct of the sequence of the invariants of each of the Boolean algebras. That is the relationship of $\operatorname{inv}\left(\prod_{\epsilon<\kappa} \mathbf{B}_{\epsilon} / D\right)$ with $\prod_{\epsilon<\kappa} \operatorname{inv}\left(\mathbf{B}_{\epsilon}\right) / D$. One of the invariants he dealt with is the depth of a Boolean algebra, $\operatorname{Depth}(\mathbf{B})$. We continue here [She05] getting weaker results without "large cardinal axioms". On related results see [MS98], [She03], [RS01]. Further results on Depth and Depth ${ }^{+}$ by the authors are contained in $\left[\mathrm{S}^{+}\right]$.

Recall:
Definition 0.1. Let Be a Boolean Algebra.

$$
\operatorname{Depth}(\mathbf{B}):=\sup \left\{\theta: \exists \bar{b}=\left(b_{\gamma}: \gamma<\theta\right), \text { increasing sequence in } \mathbf{B}\right\}
$$

Dealing with questions of Depth, Saharon Shelah noticed that investigating a slight modification of Depth, namely - Depth ${ }^{+}$, might be helpful (see [She05] for the behavior of Depth and Depth ${ }^{+}$above a compact cardinal).

Recall:
Definition 0.2. Let \mathbf{B} be a Boolean Algebra.

$$
\operatorname{Depth}^{+}(\mathbf{B}):=\sup \left\{\theta^{+}: \exists \bar{b}=\left(b_{\gamma}: \gamma<\theta\right), \text { increasing sequence in } \mathbf{B}\right\}
$$

This article deals mainly with Depth ${ }^{+}$, in the aim to get results for the Depth. It follows [She05], both - in the general ideas and in the method of the proof.

Let us take a look on the main claim of [She05]:
Claim 0.3. Assume
(a) $\kappa<\mu \leq \lambda$
(b) μ is a compact cardinal
(c) $\lambda=\operatorname{cf}(\lambda)$
(d) $(\forall \alpha<\lambda)\left(|\alpha|^{\kappa}<\lambda\right)$
(e) $\operatorname{Depth}^{+}\left(\mathbf{B}_{i}\right) \leq \lambda$, for every $i<\kappa$
(f) $\mathbf{B}=\prod_{i<\kappa} \mathbf{B}_{i} / D$.
$\underline{\text { Then }} \operatorname{Depth}^{+}(\mathbf{B}) \leq \lambda$.

So, λ bounds the $\operatorname{Depth}^{+}(\mathbf{B})$, where \mathbf{B} is an ultraproduct of the Boolean Algebras \mathbf{B}_{i}, if it bounds the Depth ${ }^{+}$of every \mathbf{B}_{i}. That requires some reasonable assumptions on λ, and also a pretty high price for that result - you should raise your view to a very large λ, above a compact cardinal. Now, the existence of large cardinals is an interesting philosophical question. You might think that adding a compact cardinal to your world is a natural extension of ZFC. But, mathematically, it is important to check what happens
without a compact cardinal (or below the compact, even if the compact cardinal exists).

In this article we drop the assumption of a compact cardinal. Consequently, we phrase a weaker conclusion. We prove that if λ bounds the Depth ${ }^{+}$of every \mathbf{B}_{i}, then the Depth ${ }^{+}$of \mathbf{B} cannot jump beyond λ^{+}.

We thank the referee for many helpful comments.

1. Bounding DEPTH ${ }^{+}$

Notation 1.1. (a) κ, λ are infinite cardinals
(b) D is an ultrafilter on κ
(c) \mathbf{B}_{i} is a Boolean Algebra, for any $i<\kappa$
(d) $\mathbf{B}=\prod_{i<\kappa} \mathbf{B}_{i} / D$.

We now state our main result:

Theorem 1.2. Assume
(a) $\lambda=\operatorname{cf}(\lambda)$
(b) $(\forall \alpha<\lambda)\left(|\alpha|^{\kappa}<\lambda\right)$
(c) $\operatorname{Depth}^{+}\left(\mathbf{B}_{i}\right) \leq \lambda$, for every $i<\kappa$.

Then $\operatorname{Depth}^{+}(\mathbf{B}) \leq \lambda^{+}$.
Remark 1.3. We can improve 1.2 (b), demanding only $\lambda^{\kappa}=\lambda$. We intend to give a detailed proof in a subsequent paper.
Corollary 1.4. Assume
(a) $\lambda^{\kappa}=\lambda$
(b) $\operatorname{Depth}\left(\mathbf{B}_{i}\right) \leq \lambda$, for every $i<\kappa$.

Then $\operatorname{Depth}(\mathbf{B}) \leq \lambda^{+}$.
Proof. By (b), Depth ${ }^{+}\left(\mathbf{B}_{i}\right) \leq \lambda^{+}$for every $i<\kappa$. By (a), $\alpha<\lambda^{+} \Rightarrow$ $|\alpha|^{\kappa}<\lambda^{+}$. Now, λ^{+}is a regular cardinal, so the pair $\left(\kappa, \lambda^{+}\right)$satisfies the requirements of Theorem 1.2. So, $\operatorname{Depth}^{+}(\mathbf{B}) \leq \lambda^{+2}$, and that means that $\operatorname{Depth}(\mathbf{B}) \leq \lambda^{+}$.

Remark 1.5. If λ is inaccessible (or even strong limit, with cofinality above κ), and Depth $\left(\mathbf{B}_{i}\right)<\lambda$ for every $i<\kappa$, you can easily verify that $\operatorname{Depth}(\mathbf{B})<$ λ, using Theorem 1.2 and simple cardinal arithmetic.

Proof of Theorem 1.2:

Let $\left\langle M_{\alpha}: \alpha<\lambda^{+}\right\rangle$be a continuous and increasing sequence of elementary submodels of $(\mathcal{H}(\chi), \in)$ for sufficiently large χ with the following properties:
(a) $\left(\forall \alpha<\lambda^{+}\right)\left(\left\|M_{\alpha}\right\|=\lambda\right)$
(b) $\left(\forall \alpha<\lambda^{+}\right)\left(\lambda+1 \subseteq M_{\alpha}\right)$
(c) $\left(\forall \beta<\lambda^{+}\right)\left(\left\langle M_{\alpha}: \alpha \leq \beta\right\rangle \in M_{\beta+1}\right)$.

Choose $\delta^{*} \in S_{\lambda}^{\lambda^{+}}\left(:=\left\{\delta<\lambda^{+}: \operatorname{cf}(\delta)=\lambda\right\}\right)$, such that $\delta^{*}=M_{\delta^{*}} \cap \lambda^{+}$. Assume toward a contradiction that ($a_{\alpha}: \alpha<\lambda^{+}$) is an increasing sequence in \mathbf{B}. Let us write a_{α} as $\left\langle a_{i}^{\alpha}: i<\kappa\right\rangle / D$ for every $\alpha<\lambda^{+}$. We may assume that $\left\langle a_{i}^{\alpha}: \alpha<\lambda^{+}, i<\kappa\right\rangle \in M_{0}$.

We will try to create a set Z, in the Lemma below, with the following properties:
(a) $Z \subseteq \lambda^{+},|Z|=\lambda$
(b) $\exists i_{*} \in \kappa$ such that for every $\alpha<\beta, \alpha, \beta \in Z$, we have $\mathbf{B}_{i_{*}} \models a_{i_{*}}^{\alpha}<a_{i_{*}}^{\beta}$

Since $|Z|=\lambda$, we have an increasing sequence of length λ in $\mathbf{B}_{i_{*}}$, so Depth $^{+}\left(\mathbf{B}_{i_{*}}\right) \geq \lambda^{+}$, contradicting the assumptions of the claim.

Lemma 1.6. There exists Z as above.
Proof. For every $\alpha<\beta<\lambda^{+}$, define:

$$
A_{\alpha, \beta}=\left\{i<\kappa: \mathbf{B}_{i} \models a_{i}^{\alpha}<a_{i}^{\beta}\right\}
$$

By the assumption, $A_{\alpha, \beta} \in D$ for all $\alpha<\beta<\lambda^{+}$. For all $\alpha<\delta^{*}$, Let A_{α} denote the set $A_{\alpha, \delta^{*}}$.
Let $\left\langle v_{\alpha}: \alpha<\lambda\right\rangle$ be increasing and continuous, such that for every $\alpha<\lambda$:
(i) $v_{\alpha} \in\left[\delta^{*}\right]^{<\lambda}$, for every $\alpha<\lambda$,
(ii) v_{α} has no last element, for every $\alpha<\lambda$,
(iii) $\delta^{*}=\bigcup_{\alpha<\lambda} v_{\alpha}$.

Let $u \subseteq \delta^{*},|u| \leq \kappa$. Define:

$$
S_{u}=\left\{\beta<\delta^{*}: \beta>\sup (u) \text { and }(\forall \alpha \in u)\left(A_{\alpha, \beta}=A_{\alpha}\right)\right\} .
$$

Now define $C=\{\delta<\lambda: \delta$ is a limit ordinal and

$$
\left.(\forall \alpha<\delta)\left[\left(u \subseteq v_{\alpha}\right) \wedge(|u| \leq \kappa) \Rightarrow \sup \left(v_{\delta}\right)=\sup \left(S_{u} \cap \sup \left(v_{\delta}\right)\right)\right]\right\}
$$

Since $\lambda=\operatorname{cf}(\lambda)$ and $(\forall \alpha<\lambda)\left(|\alpha|^{\kappa}<\lambda\right)$, and since $\left|v_{\delta}\right|<\lambda$ for all $\delta<\lambda, C$ is a club set of λ.

The fact that $|D|=2^{\kappa}<\operatorname{cf}(\lambda)=\lambda$ implies that there exists $A_{*} \in D$ such that $S=\left\{\alpha<\lambda: \operatorname{cf}(\alpha)>\kappa\right.$ and $\left.A_{\sup \left(v_{\alpha}\right)}=A_{*}\right\}$ is a stationary subset of λ.
C is a club and S is stationary, so $C \cap S$ is also stationary. Choose $\delta_{0}^{1}=\min (\mathrm{C} \cap \mathrm{S})$. Choose $\delta_{\epsilon+1}^{1} \in C \cap S$ for every $\epsilon<\lambda$ such that $\epsilon<\zeta \Rightarrow$ $\sup \left\{\delta_{\epsilon+1}^{1}: \epsilon<\zeta\right\}<\delta_{\zeta+1}^{1}$. Define δ_{ϵ}^{1} to be the limit of $\delta_{\gamma+1}^{1}$, when $\gamma<\epsilon$, for every limit $\epsilon<\lambda$. Since C is closed, we have:
(a) $\left\{\delta_{\epsilon}^{1}: \epsilon<\lambda\right\} \subseteq C$
(b) $\left\langle\delta_{\epsilon}^{1}: \epsilon\langle\lambda\rangle\right.$ is increasing and continuous
(c) $\delta_{\epsilon+1}^{1} \in S$, for every $\epsilon<\lambda$

Lastly, define $\delta_{\epsilon}^{2}=\sup \left(v_{\delta_{\epsilon}^{1}}\right)$, for every $\epsilon<\lambda$. Define, for every $\epsilon<\lambda$, the following family:

$$
\mathfrak{A}_{\epsilon}=\left\{S_{u} \cap \delta_{\epsilon+1}^{2} \backslash \delta_{\epsilon}^{2}: u \in\left[v_{\delta_{\epsilon+1}}^{2}\right] \leq \kappa\right\} .
$$

We get a family of non-empty sets, which is downward κ^{+}-directed. So, there is a κ^{+}-complete filter E_{ϵ} on $\left[\delta_{\epsilon}^{2}, \delta_{\epsilon+1}^{2}\right)$, with $\mathfrak{A}_{\epsilon} \subseteq E_{\epsilon}$, for every $\epsilon<\lambda$.

Define, for any $i<\kappa$ and $\epsilon<\lambda$, the sets $W_{\epsilon, i} \subseteq\left[\delta_{\epsilon}^{2}, \delta_{\epsilon+1}^{2}\right)$ and $B_{\epsilon} \subseteq \kappa$, by:

$$
\begin{gathered}
W_{\epsilon, i}:=\left\{\beta: \delta_{\epsilon}^{2} \leq \beta<\delta_{\epsilon+1}^{2} \text { and } i \in A_{\beta, \delta_{\epsilon+1}^{2}}\right\} \\
B_{\epsilon}:=\left\{i<\kappa: W_{\epsilon, i} \in E_{\epsilon}^{+}\right\} .
\end{gathered}
$$

Finally, take a look on $W_{\epsilon}:=\cap\left\{\left[\delta_{\epsilon}^{2}, \delta_{\epsilon+1}^{2}\right) \backslash W_{\epsilon, i}: i \in \kappa \backslash B_{\epsilon}\right\}$. For every $\epsilon<\lambda, W_{\epsilon} \in E_{\epsilon}$, since E_{ϵ} is κ^{+}-complete, so clearly $W_{\epsilon} \neq \emptyset$.

Choose $\beta=\beta_{\epsilon} \in W_{\epsilon}$. If $i \in A_{\beta, \delta_{\epsilon+1}^{2}}$, then $W_{\epsilon, i} \in E_{\epsilon}^{+}$, so $A_{\beta, \delta_{\epsilon+1}^{2}} \subseteq B_{\epsilon}$ (by the definition of B_{ϵ}). But, $A_{\beta, \delta_{\epsilon+1}^{2}} \in D$, so $B_{\epsilon} \in D$, and consequently $A_{*} \cap B_{\epsilon} \in D$, for any $\epsilon<\lambda$.
Choose $i_{\epsilon} \in A_{*} \cap B_{\epsilon}$, for every $\epsilon<\lambda$. You choose λi_{ϵ}-s from A_{*}, and $\left|A_{*}\right|=\kappa$, so we can arrange a fixed $i_{*} \in A_{*}$ such that the set $Y=\{\epsilon<\lambda: \epsilon$ is even ordinal, and $\left.i_{\epsilon}=i_{*}\right\}$ has cardinality λ.

The last step will be as follows:
define $Z=\left\{\delta_{\epsilon+1}^{2}: \epsilon \in Y\right\}$. Clearly, $Z \in\left[\delta^{*}\right]^{\lambda} \subseteq\left[\lambda^{+}\right]^{\lambda}$. We will show that for $\alpha<\beta$ from Z we get $\mathbf{B}_{i_{*}} \models a_{i_{*}}^{\alpha}<a_{i_{*}}^{\beta}$. The idea is that if $\alpha<\beta$ and $\alpha, \beta \in Z$, then $i_{*} \in A_{\alpha, \beta}$.

Why? Recall that $\alpha=\delta_{\epsilon+1}^{2}$ and $\beta=\delta_{\zeta+1}^{2}$, for some $\epsilon<\zeta<\lambda$ (that's the form of the members of Z). Define:
$U_{1}=S_{\left\{\delta_{\epsilon+1}^{2}\right\}} \cap\left[\delta_{\zeta}^{2}, \delta_{\zeta+1}^{2}\right) \in \mathfrak{A}_{\zeta} \subseteq E_{\zeta}$.
$U_{2}=\left\{\gamma: \delta_{\zeta}^{2} \leq \gamma<\delta_{\zeta+1}^{2}\right.$ and $\left.i_{*} \in A_{\gamma, \delta_{\zeta+1}^{2}}\right\} \in E_{\zeta}^{+}$.
So, $U_{1} \cap U_{2} \neq \emptyset$.
Choose $\iota \in U_{1} \cap U_{2}$.
Now the following statements hold:
(a) $\mathbf{B}_{i_{*}} \models a_{i_{*}}^{\alpha}<a_{i_{*}}^{\iota}$
[Why? Well, $\iota \in U_{1}$, so $A_{\delta_{\epsilon+1, \iota}^{2}}=A_{\delta_{\epsilon+1}^{2}}=A_{*}$. But, $i_{*} \in A_{*}$, so $i_{*} \in A_{\delta_{\epsilon+1, \iota}^{2}}$, which means that $\left.\mathbf{B}_{i_{*}} \models a_{i_{*}}^{\delta_{\epsilon+1}^{2}}\left(=a_{i_{*}}^{\alpha}\right)<a_{i_{*}}^{\iota}\right]$.
(b) $\mathbf{B}_{i_{*}} \models a_{i_{*}}^{\iota}<a_{i_{*}}^{\beta}$
[Why? Well, $\iota \in U_{2}$, so $i_{*} \in A_{\iota, \delta_{\zeta+1}^{2}}$, which means that $\mathbf{B}_{i_{*}} \models$ $\left.a_{i_{*}}^{\iota}<a_{i_{*}}^{\delta_{\zeta+1}^{2}}\left(=a_{i_{*}}^{\beta}\right)\right]$.
(c) $\mathbf{B}_{i_{*}} \models a_{i_{*}}^{\alpha}<a_{i_{*}}^{\beta}$
$[$ Why? By (a)+(b)].
So, we are done.

Without a compact cardinal, we may have a 'jump' of the Depth ${ }^{+}$in the ultraproduct of the Boolean Algebras (see [She02, §5]). So, we can have $\kappa<\lambda, \operatorname{Depth}^{+}\left(\mathbf{B}_{i}\right) \leq \lambda$ for every $i<\kappa$, and $\operatorname{Depth}^{+}(\mathbf{B})=\lambda^{+}$. We can show that if there exists such an example for κ and λ, then you can create an example for every regular θ between κ and λ.

Claim 1.7. Assume
(a) $\kappa<\lambda, D$ is an ultrafilter on κ
(b) $\operatorname{Depth}^{+}\left(\mathbf{B}_{i}\right) \leq \lambda$, for every $i<\kappa$
(c) $\operatorname{Depth}^{+}(\mathbf{B})=\lambda^{+}$
(d) $\theta \in \operatorname{Reg} \cap[\kappa, \lambda)$.

Then there exist Boolean algebras $\mathbf{C}_{j}, j<\theta$, and a uniform ultrafilter E on θ, such that $\operatorname{Depth}^{+}\left(\mathbf{C}_{j}\right) \leq \lambda$ for every $j<\theta$ and $\operatorname{Depth}^{+}(\mathbf{C}):=$ $\operatorname{Depth}^{+}\left(\prod_{j<\theta} \mathbf{C}_{j} / E\right)=\lambda^{+}$.

Proof. Break θ into θ sets $\left(u_{\alpha}: \alpha<\theta\right)$ such that for every $\alpha<\theta$:
(a) $\left|u_{\alpha}\right|=\kappa$,
(b) $\bigcup_{\alpha<\theta} u_{\alpha}=\theta$,
(c) $\alpha \neq \beta \Rightarrow u_{\alpha} \cap u_{\beta}=\emptyset$.

For every $\alpha<\theta$, let $f_{\alpha}: \kappa \rightarrow u_{\alpha}$ be one to one, onto and order preserving. Define D_{α} on u_{α} in the following way: If $A \subseteq u_{\alpha}$, then $A \in D_{\alpha}$ iff $f_{\alpha}^{-1}(A) \in$ D. For θ itself, define a filter E_{*} on θ in the following way: If $A \subseteq \theta$, then $A \in E_{*}$ iff $A \cap u_{\alpha} \in D_{\alpha}$ for every (except, maybe $<\theta$ ordinals) $\alpha<\theta$. Now, choose any ultrafilter E on θ, such that $E_{*} \subseteq E$.

Define $\mathbf{C}_{f_{\alpha}(i)}=\mathbf{B}_{i}$, for every $\alpha<\theta$ and $i<\kappa$. You will get $\left(\mathbf{C}_{j}: j<\right.$ $\theta)$ such that $\operatorname{Depth}^{+}\left(\mathbf{C}_{j}\right) \leq \lambda$ for every $j<\theta$. But, we will show that $\operatorname{Depth}^{+}(\mathbf{C}) \geq \lambda^{+}\left(\right.$remember that $\left.\mathbf{C}=\prod_{j<\theta} \mathbf{C}_{j} / E\right)$.

Well, let $\left(a_{\xi}: \xi<\lambda\right)$ testify $\operatorname{Depth}^{+}(\mathbf{B})=\lambda^{+}$. Recall, a_{ξ} is $\left\langle a_{i}^{\xi}: i<\right.$ $\kappa\rangle / D$. We may write $f_{\alpha}\left(a_{\xi}\right)$ for $\left\langle f_{\alpha}\left(a_{i}^{\xi}\right): i<\kappa\right\rangle / D_{\alpha}$, where $\alpha<\theta$. Clearly, $\left(f_{\alpha}\left(a_{\xi}\right): \xi<\lambda\right)$ testifies $\operatorname{Depth}^{+}\left(\mathbf{C}^{\alpha}\right)=\lambda^{+}$where $\mathbf{C}^{\alpha}:=\prod_{i<\kappa} \mathbf{C}_{f_{\alpha}(i)} / D_{\alpha}$.

Now, $\left\langle\left(f_{\alpha}\left(a_{\xi}\right): \alpha<\theta\right): \xi<\lambda\right\rangle / E$ is an increasing sequence in \mathbf{C}.

Remark 1.8. (1) Claim 1.7 applies, in a similar fashion, to the Depth invariant.
(2) Claim 1.7 is useful for comparing $\operatorname{Depth}(\mathbf{C})$ to $\prod_{j<\theta} \operatorname{Depth}\left(\mathbf{C}_{j}\right) / E$, when $\lambda^{\theta}=\lambda$.

References

[Mon96] J. Donald Monk, Cardinal invariants on Boolean algebras, Progress in Mathematics, vol. 142, Birkhäuser Verlag, Basel, 1996.
[MS98] Menachem Magidor and Saharon Shelah, Length of Boolean algebras and ultraproducts, Math. Japon. 48 (1998), no. 2, 301-307, arXiv: math/9805145. MR 1674385
[RS01] Andrzej Rosłanowski and Saharon Shelah, Historic forcing for depth, Colloq. Math. 89 (2001), no. 1, 99-115, arXiv: math/0006219. MR 1853418
$\left[\mathrm{S}^{+}\right] \quad$ S. Shelah et al., Tba, In preparation. Preliminary number: Sh:F754.
[She02] Saharon Shelah, More constructions for Boolean algebras, Arch. Math. Logic 41 (2002), no. 5, 401-441, arXiv: math/9605235. MR 1918108
[She03] , On ultraproducts of Boolean algebras and irr, Arch. Math. Logic 42 (2003), no. 6, 569-581, arXiv: math/0012171. MR 2001060
[She05] , The depth of ultraproducts of Boolean algebras, Algebra Universalis 54 (2005), no. 1, 91-96, arXiv: math/0406531. MR 2217966

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel

Email address: shimonygarty@hotmail.com
Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA

Email address: shelah@math.huji.ac.il
URL: http://www.math.rutgers.edu/~shelah

