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THEORIES WITH EF-EQUIVALENT NON-ISOMORPHIC
MODELS
SH897

SAHARON SHELAH

ABSTRACT. Our “long term and large scale” aim is to characterize the first
order theories T (at least the countable ones) such that: for every ordinal
« there are A\, M7, Mo such that M;j, Ma are non-isomorphic models of T' of
cardinality A which are EF;A-equivalent. We expect that as in the main
gap ([She90, ?]) we get a strong dichotomy, so in the non-structure side we
have stronger, better examples, and in the structure side we have a parallel of
[She90, Ch.XIII]. We presently prove the consistency of the non-structure side
for T which is Np-independent (= not strongly dependent), even for PC(Ty,T).

Anotated Content
§0  Introduction

81  Games, equivalences and the question

[We discuss what are the hopeful conjectures concerning versions of EF-
equivalent non-isomorphic models for a given complete first order T, i.e.
how it fits classification. In particular we define when M, My are EF, x-
equivalent and when they are EF,JYr 0, y-equivalent and discuss those notions.]

§2  The properties of T and relevant indiscernibility

[We recall the definitions of “T" strongly dependent”, “T is strongly, de-
pendent” ; and prove the existence of models of such T suitable for proving
non-structure theory.|

§3  Forcing EF T-equivalent non-isomorphic models

[We force such an example.]

§4  Theories with order

[We prove in ZFC, that for A regular there are quite equivalent non-isomorphic
models of cardinality A™.]
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§ 0. INTRODUCTION

§ 0(A). Motivation.

We first give some an introduction for non-model theorists. A major theme in
the author’s work in model theory is to find “main gap theorems”. This means,
considering the family of elementary classes (e.g. the classes of the form Mody =
the class of models of a (complete) first order theory T, each such class is either
very “simple” or is very complicated; expecting that we have much knowledge to
gain on the “very simple” ones and even on approximations to them.

Of course, this depends on the criterion for “simple”. Essentially the main
theorem of [She90] does this for countable T, with “complicated” interpreted as
“I(X\,T)”, the number of models in Mody of cardinality A, is maximal, i.e. 2*, for
every . See more e.g. in [Sheb]. Here we are interested with interpreting “com-
plicated” as “for arbitrarily large cardinals, there are models My, My € Modyp of
cardinality A which are “very similar” but not isomorphic”, where “very similar” is
interpreted as a relative of the game of the following form. The isomorphism player
constructs during the play, partial isomorphism of cardinality < A, in each move
the anti-isomorphism player demands some elements to be in the domain or the
range, the isomorphism player has to extend the partial isomorphism accordingly;
in the play there are a moves, a < A; and the isomorphism player wins the play if
he has a legal move in each stage (see Definition 1.5, 1.7).

In the present paper we try to deal with suggesting the “right” variant of the
game, (see Definition 1.6), and give quite weak sufficient conditions for Modr being
complicated.

* * *
Our aim is to prove (on PC(T1,T), see Definition 0.3(3))

X if T' C Ty are complete first order theories such that 7' is not strongly stable,
a is an ordinal and A > |T| (or at least for many such \’s) then
(%) there are My, My € PC(Ty,T) of cardinality A which are EFi/\—
equivalent for every o < A but not isomorphic (for the definition of
EF;r > see Definition 1.7 below, it is a somewhat stronger relative of
EF, x-equivalent).

§ 0(B). Related Works.

Concerning constructing non-isomorphic EF;|r y-equivalent models M, M, (with
no relation to T') we have intended to continue [She06], or see more Havlin-Shelah
[HS07] and see history in Vaananen in [Vaa95]. Those works leave the case A = ¥
open; a recent construction [She08] resolve this but whereas it applies to every
regular uncountable ), it seems less amenable to generalizations.

By [She90] we essentially know for T a countable complete first order when there
are Lo x(7r)-equivalent non-isomorphic models of T' of cardinality A for some A,
see §4; this is exactly when T is superstable with NDOP, NOTOP; (see [She87a]).

On restricting ourselves to models of 1" for “EF, y-equivalent non-isomorphic”,
Hyttinen-Tuuri [HT91] started, then Hyttinen-Shelah [HS94], [HS95], [HS99]. The
notion “EF; y-équivalent” is introduced here, in Definition 1.7.

By [HS94], if T is stable unsuperstable, complete first order theory, A = p™, u =
cf(p) > |T'|, then there are EF ), ., x-equivalent non-isomorphic models of T' (even
in PC(Ty,T)) of cardinality A. But by the variant EFZ‘ y-€quivalent, such results
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are excluded; by it we define our choice test problem the version of being fat/lean,
see Definition 0.1.

Why EF*? See Discussion 1.6.

Concerning variants of strongly dependent theories see [She09b, §3],[Shel4] (and
maybe [Stal]), most relevant is [Shel4, §5], part (F). The best relative for us is
“strongly, dependent”, a definition of it is given below but we delay the treatment
to a subsequent paper, [STb]. There we also deal with the relevant logics and more.

We prove here that if T' is not strongly stable then T is consistently fat. More
specifically, for every u = p<* > |T| there is a p-complete class forcing notion P
such that in V¥ the theory T is fat. The result holds even for PC(Ty,T). This
gives new cases even for PC(T') by 0.2.

Also if T is unstable or has the DOP or OTOP (see 0.7 below or [She90]) then
it is fat, i.e. already in V.

Of course, forcing the example is a drawback, but note that for proving there is
no positive theory it is certainly enough. Hence it gives us an upper bound on the
relevant dividing lines.

On Eherenfeucht-Mostowski models, see [Shear, Ch.III] or [She90, Ch.VII] or
[She09a], [Shear, Ch.IIL§1]. I thank a referee for pointing out on earlier version
that Hyttinen-Shelah [HS94] was forgotten hence as Definition 1.7 was not yet
written, the main result 3.1 had not said anything new.

I also thank referees for many helpful remarks.

§ 0(C). Notations and Basic Definitions.

Definition 0.1. Let T be a complete first order theory.

1) We say T is fat when for every ordinal x, for some (regular) cardinality A\ > &
there are non-isomorphic models M7, My of T of cardinality A\ which are EF;H’m A"
equivalent for every S < A (see Definition 1.7 below).

2) If T is not fat, we say it is lean.

3) We say the pair (T, T}) is fat/lean when (77 is first order 2 T and) PC(T1,T) :=
{M | 77 : M a model of T} } is as above.

4) We say (T, ) is fat when for every first order 77 2O T the pair (T,7) is fat. We
say (T, x) is lean otherwise.

Our claims (mainly 3.1) seem to make it clear that some stable 7' has NDOT
and NOTOP which falls under 3.1, but a referee asks for an example, see [Shel4,
§5(F)] for details.

Example 0.2. 1) There is a stable NDOP,NOTOP countable complete theory
which is not strongly dependent; (moreover not is not strongly, stable), see [Shel4,
§5(G)].

2) T = Th(¥(Zs), En)n<wy is as above where Zy = Z/27 as an additive group,
E, = {(n,v) : n,v € “1(Zy) are such that n[(wn) = v[(wn) where we interpret
Zs as the additive group (Z/2Z,+,0) and “*(Zs) as its wi-th power as an abelian
group.

* * *
The reader may look at the definitions below only when used.

Definition 0.3. 1) Modr(A) = ECp(A) is the class of models of T' of cardinality
A and Modr = ECrp is U{EC7(A) : A a cardinality}.
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2) PC.(T) = {M | 7 : M a model of T} where T is a theory or a sentence, in
whatever logic, in a vocabulary 70 D 7; if 7 = 70 we may omit 7.
3) If T' C Ty are complete first order theories then PC(71,T) = PC (1) (T1).

Notation 0.4. 1) £g(a) is the length of a sequence a.
2) @ < b means that @ is an initial segment of a.
3) @ | « is the unique initial segment of a of length « for o < £g(a).

Definition 0.5. 1) For a regular uncountable cardinal A let I\ = {S C \: some
pair (E,a) witnesses S € I()), see below}.
2) We say that (F,u) is a witness for S € I[\] when:

(a) E is a club of the regular cardinal A

(b) = (up:a<A),a, Caand 8 €ay = ag=pFNagy

(¢) for every 6 € EN S, us is an unbounded subset of ¢ of order-type < § (and
0 is a limit ordinal).

Notation 0.6. 1) For a model M,a € *M,B C M and A a set of formulas, we are
interested in formulas of the form ¢(Z,9),Z7 = (x; : i < @), so o may be infinite,
but the formulas here are normally first order, so all but finitely many of the x;’s
are dummy variables.

1A) tpa(a, B, M) = {p(z,a) : p(Z,5) € A and b € 9P A and M = ¢la, b]}.

2) If A is the set of quantifier-free formulas in L(7as), we may write tpyr instead
of tpa.

3) I(\,T) is the number of isomorphic types of models of T of cardinality .

4) I (X, T) is the number of isomorphic types of M | 7, M a model of T of cardinality
A

5) IE.(\,T) is the supremum of {|K|: K € PC.(T) and M € K = |M|| = X no
M € K has an elementary embeding into any N € K\{M}, writing I[E.(\,T) =% x
we mean the supremum is obtained if not said otherwise.

6) IE(\T) = IE,(1y(\, T).

Definition 0.7. Let T be a first order complete theory.

1) T has OTOP when T is stable and for some n,m letting z = (zy : £ < n),y =
(ye : £ < n),Z = (20 : £ < m), there are complete types p(Z,7, Z) such that: for
every A there is a model M of T' and a, € "M for a < A such that:

(a) (G@q : @ < A) is an indiscernible set
(b) for aw # B < A the type (p(@q, ap, Z) is realized in M iff o < 5.

1A) T has the NOTOP when it is stable but fail the OTOP.

2) T has NDOP when T is stable and we can find |T'|"-saturated models M, of
T for ¢ < 3 such that My < My < M3 for £ = 1,2 and tp(M;, Ms) does not fork
over My, M3 is |T|*-prime over Mj U M but not |T'|*-minimal over it; equivalently
for every ¢ € “>(M3) the type tp(c, M1 U My, M3) is |T|*-isolated but there is no
infinite I C M3 which is indiscernible over M; U Ms.

2A) T has DOP when T is stable and fail to have the NDOP.

Definition 0.8. 1) For a complete first order theory T, we can say that ¢ is a
(u, k, T')-candidate when:

(a) ¢ € L+ (1) for some vocabulary 7. 2 77 of cardinality < &
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(b) PCriry(v) S EC(T)
(¢) for some! ® € T satisfying 7 2 7 and EM(“Z\, ®) |= ¢ for every
(equivalent some) A and ® witness T' is not superstable.

Recall that by [She90, Ch.VII]:

Claim 0.9. If a first order complete theory T is not superstable, then for some
® € Yo%, see Definition 2.2, 7o 2 T(¢) of cardinality k,® witness T is not
superstable, i.e. for some formulas p,(x,§n) € L(tr), if I = “A\, M = EM(I, D)
then forn € “A,;n < w and o < X\ we have M |= onlay, a@min)-<as] iff o =n(n).

Definition 0.10. 1) For any structure I we say that (a; : ¢ € I) is indiscernible
(in the model €, over A, if A = we may omit it) when: (a; € “(@)¢ and) ¢g(a,),
which is not necessarily finite depends only on the quantifier-free type of ¢ in I and:

ifn < wand 5 = (s0,81,..+,80-1),t = (to,-..,tn—1) realize the same
quantifier-free type in I then a;:=a;," ... a, , and as = as, ... Qs,_,
realizes the same type (over A) in €.

2) We say that (@, : u € [I]<"0) is indiscernible (in €, over A) similarly:

ifn <w,wo,...,wm-1 C{0,...,n—1}and §=(sp: £ <n),t = (t;: £ <n)
realize the same quantifier-free types in I and uy = {sg : k € wp},ve = {t :

k € we} then @y, ... Gy, _,,0p ... Gy,_, realize the same type in €
(over A).

3) If I is a linear order then we let incr(®]) = incr, () = incr(a, ) be {p: pis an
increasing sequence of length a of members of I'}; similarly incr(*> I)-incr., (1) =
incr(< o, I) := U{incrg(I) : B < a}. So instead [I]<N we may use incr<,(I);
clearly the difference is notational only.

Le @ proper for K¢, i.e. normal trees with w 4 1 level, with linear order on the successor of

each node of finite level, see Definition 2.2(7) or [She90, Ch.VII]



Paper Sh:897, version 2012-12-17_12. See https://shelah.logic.at/papers/897/ for possible updates.

6 SAHARON SHELAH

§ 1. GAMES, EQUIVALENCES AND QUESTIONS

What is the meaning in using EF;/\? Consider for various v’s the game 0., (M7, M)
where My, My € Modr(X), T complete first order L(7)-theory. During a play we
can consider dependence relations on “short” sequences from M, (where < 2l71+Ro
is the default value), definable in a suitable sense. So if T" is a well understood unsu-
perstable T like Th(“w, Ey, )n<w with E, :={(n,v) : n,v € “wand n [ n =v | n},
then even for v = w + 2 we have E,j \- equivalence implies being isomorphic. This
fits the thesis:

Thesis 1.1. The desirable dichotomy characterized, on the family of first order
T, by the property “My, My € Modr()\) are long game EF-equivalent iff they are
isomorphic”, is quite similar to the one in [She90, Ch.XIII]; the structure side is
e.g.: T is stable and every M € Modr is prime over some U{M,, : n € I}, where
T is a subtree of *r(T)>|M|| and nav = M, < M, < M,||M,| < 2/7I and
nav € I = tp(My,U{M,:p€ T,pl (lg(v)+1) #n | (lg(v) + 1)) does not
fork over M, i.e. M = (M, : n € 7) is a non-forking tree of models with < r,.(T)
many levels.

We think the right (variant of the) question is from 1.2. Probably a reasonable
analog is the situation in [She90, Ch.XILXIII]: the original question was on the
function X\ — I(\,T), the number of non-isomorphic models; but the answer is
more transparent for A — IE(X, T).

IfXN=pt,u=p"l = cf(u), T = Th(“w, E,)n<, then by Hyttinen-Shelah
[HS94, Th4.4]; for v > uw we get equivalence = isomorphic, but not for v < pw;
now 1.9 is parallel to that. This seems to indicate that EFj » is suitable for the
questions we are asking: it uses the game EFT, which is more complicated but the
length of the game is much “smaller” in the relevant results.

So the natural question concerning such equivalences is (see [She90], [Sheb]):
Question 1.2. Classify first order complete T, or at least the countable ones by:

Version (A);: For every ordinal «, there are a cardinal A and non-isomorphic
My, My € Modz(A) which are EF;"/\—equivalent (at least, e.g. in some VF P is
2171+l *_complete forcing notion).

Version (A)g: Similar version for EF, .

Version (B);: For every cardinal x > |T'| and vocabulary 7 D 7r and ¢ € L, (1)

such that PC,(1)) € ECr has members of arbitrarily large cardinality we have
(a) = (b) where

(a) for every cardinal p in PC(¢) := {M | 7 : M a model of ¢} there is a
p-saturated member

(b) for every a for arbitrarily large A there are My, My € PC, () of cardinality
A with non-isomorphic 7-reducts which are EFI y-equivalent.

Version (B)g: Like (B); for EF, .
Version (C);: Like (B); using ¢ = ATy where Tj is first order D 7.
Version (C)g: Like (B)o using » = ATy where T} is a first order D T
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Discussion 1.3. 1) For reasons to prefer version (B) over (C) - see [Sheb].

2) Now by the works quoted above, (see [HS95, 3.19] quoted in 4.1 below): T
satisfies (A)g iff T' is superstable NDOP, OTOP iff (B)o. Of course if we change
the order of the quantifier (to “for aribitrarily large some A for every a < A,...”)
this is not so, but we believe solving (A); and/or (B); will eventually do much also
for this.

So all this means
Conjecture 1.4. 1) For a complete (first order) T the following are equivalent:

(a) for every ordinal « for some A there are non-isomorphic, EFI \-equivalent
models My, My € ECr(N)

(b) for arbitrarily large A for every @ < A there are non-isomorphisms, EF;‘ A"
equivalent models M7, Ms € ECp(\)

(¢) for every large enough regular A there are non-isomorphisms M, My €
ECr(X) which are E, x-equivalent for every a < A.

2) Similarly for “some Ty 2 T, PC(T1,T) is lean.

We conjecture that proving that if we prove that a (countable) fat T' is close
enough to superstable, will enable us to generalize proofs in [She90, Ch.XII] only
now the tree has < wj levels rather than w.

We can also return to the ordinals a € (Aw, A™).

* * *
Now we shall actually look at the games.

Definition 1.5. 1) We say that My, My are EF ,-equivalent if M7, My are models
(with same vocabulary) and « is an ordinal such that the isomorphism player has
a winning strategy in the game ¢ (M;y, M>) defined below.

1A) Replacing a by < o means: for every 8 < «; similarly below.

2) We say that M, M, are EF, ,-equivalent or glf—equivalent when My, My are
models with the same vocabulary, o an ordinal, p a cardinal such that the isomor-
phism player has a winning strategy in the game ¥ (My, Mz) defined below.

3) For My, Ms, «, v as above and partial isomorphism f from M into My we define
the game 9 (f, M1, M) between the players ISO, the isomorphism player and AIS,
the anti-isomorphism player as follows:

(a) a play lasts @ moves

(b) after 5 moves a partial isomorphism fg from M; into Ms is chosen, increas-
ing continuous with 8

(¢) in the (8 + 1)-th move, the player AIS chooses Ag1 C My, Ag 2 C My such
that |Ag 1| + |[Ag2| < 14 p and then the player ISO chooses fg+1 2 fa
such that Ag1 C Dom(fs+1) and Ag o C Rang(fz+1)

(d) if B =0, ISO chooses fo = f; if B is a limit ordinal ISO chooses fz = U{f, :
v < B}

The ISO player loses if he had no legal move for some 8 < «a, otherwise he wins the
play.

4) If f = ) we may write & (M1, Ma). If p1is 1 we may omit it. We may write < p
instead of pu™.
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Discussion 1.6. 1) Why do we need EFT?

First, if we like a parallel of [She90, Ch.XIII], i.e. a game in which set of small

cardinality are chosen, say |T'| or 2/71 or whatever rather than just < A\ = || M|,
clearly EF, , cannot help.
2) Also, consider A = pu*, u = cf(n) > |T| and an ordinal o < X and ask for which
T: for any two models M;, My of T of cardinality A, EF, y-equivalence implies
isomorphisms? (The EF, x-equivalence means that the isomorphism player wins in
the game of length «, in each step adding < u elements to the domain and range
of the partial isomorphism.)

Now we know (by earlier works, see 4.5) for countable T that if o € [w, p X w]
that the answer (for the pair (o, \)) is as in the main gap for IE (T superstable
with NDOP and NOTOP). But for larger o« < X this is not so, as e.g. for the
prototypical stable unsuperstable T for o = p x (w + 2) we get yes, “it is low”.

3) Looking at the reason for this, i.e. why we need u x (w + 2) moves, not (w + 2)
moves we formulate EF . We think that with EFI,@,#,A for small «, 0, u and just A =
||My|| we get the desired dichotomy. In general, we expect the results will be robust
under choosing such an exact game; and will resolve the case o € (p % (w,2),A)
case above.

4) More specifically, the reason EF,, x-equivalence does not imply isomorphisms for
My, Ms € EC)(T), even in the case T'= Th(“w, E,,)m<w, is that: assume we fix a
winning strategy st for &, x(M;, My), if we let (a’/E}* : o < \) list M,/ E}* and
R = {(«, f): in some short initial segment x of a play of ¥, (M1, M>) in which the
player ISO uses the strategy st, we have f*(al)EM? a3}, we have to find a function
h from A onto A whose graph is C R.

Now being in a winning position is enough to show the existence of such h, only
when the game is long enough. For EF;O this is different.

5) Note: we use the case k =1 from 1.7. If we shall have good structure theorems
then even k = 2 is O.K. For k = k it expresses the logic in [She90, Ch.XIII] when
we add the game quantifier of appropriate length.

6) Of course, the case k = 0 is easier for ISO then the case k = 2 which is easier
than & = 1, so the relevant implications holds.

Definition 1.7. 1) For k € {0,1,2} the models My, M, are EF! 7 -equivalent,
but if £ = 1 we may omit it, when the isomorphism player, ISO, has a winning
strategy in the game ¥, (M, My) defined below.

We always assume Rg < 0 < p. If p = min{||M;|], || M2]|} then we may omit it.
If also = (2/7(Ma)l+R0)+ we may omit it, too.

2) For an ordinal ~, cardinals 8 < p, vocabulary 7 and 7-models M;, M5 and partial
isomorphism f from M to My, we define a game 4% = f{j_(;]fﬂ’)\(f, My, M), between
the player ISO (isomorphism) and AIS (anti-isomorphism).

A play last v moves; in the 8-th move a partial isomorphism fz from M; to M,
is chosen by ISO, extending f, for a < g such that fy = f and for limit 5 we
have fz = U{fs : @ < 8} and for every 8 < « the set Dom(fs4+1)\ Dom(f3) has
cardinality < 1+ p; let f§ be fgif € =1, 5" if £ =2.

During a play, the player ISO loses if he has no legal move and he wins in the
end of the play iff he always had a legal move.

In the (8 + 1)-th move, the AIS player does one of the following cases:
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Case 1: The AIS player chooses A, = Ag C My for ¢ = 1,2 such that |Aq| + |A2| <
1+ p and then ISO chooses f3 as above such that A, C Dom(fg) for £ =1,2.

Case 2: First the AIS player chooses? a pre-dependence relation Ry on > (M) (see
Definition 1.8 below) and 7 C (M) of cardinality < A for £ = 1,2 such that:

® (a) if k=0 then Ry = [?>(M;)]<N0, so really an empty case
(b) if k=1,2 then Ry is a 1-dependence relation (see 1.8(4)(b)(B)
below)
(¢ ifk=1,2and¢=1,2and n <w and ag,...,a,—1 € (M) then
the truth value of {ao,...,a,—1} € Ry depends just on the

complete first order type which (ao, ..., a,—1) realizes on
Dom(fé) inside the model M,.

Second, the ISO does one of the following:

Subcase 2A: First, assume k& = 2. The player ISO chooses ((d%,&%) : ¢ < A) such
that for £ =1,2:

(o) for each ¢ < A for some € < 6 we have dé € °(My)
(B8) <d€ : ¢ < A) is independent for Ry
(v) each a € o does Ry-depend on {&f (< AL

Then AIS chooses ¢ < A and ISO chooses fz11 2 fg such that fg(dé) = &g.

Second, assume k = 1. Then the ISO player chooses equivalence relations Ej
on 9>(M,;) which the dependence relation, i.e. Eg,, i.e. 1.8(6) and equality of
length refine for £ = 1,2 and choose a function h from the family of E-equivalence
classes onto the family of Es-equivalence classes which preserve cardinality up to
A; that is, if h(a1/E1) = aa/FE> then Lg(a;) = Lg(az)and min{dim(a,/E1),\) =
min{dim(as/E>3), A}.

Then the AIS player chooses a pair (@, as) such that a, € 9> (M) for £ = 1,2
such that h(a;/E1) = (a2/E2) and ISO has to choose fg+1 2 fs such that f(a;) =
as.

Subcase 2B: The player ISO chooses fzy1 2 fs as required such that for some
n < w and a; € “Dom(fg) for £ < n we have: {a},...,al_,} is Ri-dependent iff
{fs(@j),..., fa(@t_,)} is not Ra-dependent.

Definition 1.8. 1) We say R is a pre-dependence relation on X when R is a
subset of [X]<Ro,

2) For X, R as above, we say Y C X is R-independent when [Y]<® N R = (); of
course, an index set with repetitions is considered dependent.

3) We say R or (X,R) has character < xk when for every R-independent ¥ C X
and {z} C X for some Z € [Y]<* the set (Y\Z) U {z} is R-independent.

4) We say that R is a k-dependence relation on X (if £k = 1 we may omit it) when:

2note that for k = 0,1 we require “L(7r)-definable Ry such that f maps the definition of R
to the one of Ry”; moreover we expect that we can demand it is as in the case of using regular

types.
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(a) R is a subset of [X]<No
(b) () if k=0 then R = [X]<%0
(8) if k=1 then R-independence satisfies the exchange principle
(so dimension is well defined, as for regular types).

5) We say R is trivial when for every Y C XY is R-independent iff every Z C
[Y]=2, is R-independent.

6) For R as in (a), (b)(5) let Er = {{z1,22} : 1 =22 € X on {A\1},{z2} € R or
{z1,22} € RA{x1} ¢ RA{x2} ¢ R} is an equivalence relation on X; pedantically
we should write Ex, R.

Claim 1.9. My, M5 are isomorphic when :

(a) My, Ms are models of T of cardinality A
(b) My, Ms are EFIJrz’NO’NO’)\—equivalent

(¢) T=Th(*w, En)n<w and E, ={(n,v) :n € “w,v € “w and nin = vin}.

Proof. Step A: We choose a winning strategy st of the isomorphism player in the
game 4, 125,801 (M1, M2).

Step B: By the choice of T for £ = 1,2 we can find ;,a, such that:

X (a) p is a subtree of ¥~ A
(b) ac={ay:n€ )
(c) afeM,
(d) ifne F and Lg(n) = n then (af/E%fl 1V € sucg,(n)) list
{b/ENe be My,be af,/E)*} without repetitions.

Let o ={n€ 4 :4g(n) =n}andlet F, ={ne€“rX:n|ne . forevery
n < w}.

Lastly, let fip = (uf; :n € Jiw), where

Mf, =|{beM;:be af;rn/EM‘ for every n < w}|.

Step C:
Clearly

B8 M, Ms are isomorphic iff there is an isomorphism A from 77 onto % (i.e.
h maps J ,, onto Js ., h preserves the length, n<v and n ¢4 v) such that
letting hy, = h [ 91, and h,, be the mapping from 73 ., onto %, which h
induces (s0 hw(n) = U hn(n [ n)) we have n € Tu = py = 4,

n<w

Step D:
By induction on n we choose h,,, X, such that

@® (a) hy is a one-to-one mapping from 7 ,, onto F
(b) iftm<nandne A,y then hy(n [ m) = (hn(n)) [ m
() Xn=(x}:n€ Tn)
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(d) (o) xj isaninitial segment of a play of the game O, 12 8, 10,2 (M1, M2)

(B) in x; only finitely many moves have been played

(can specify), the last one is m(x;;)

(v)  in xj, the player ISO uses his winning strategy st

(e) iftm € A, and n2 = hy(n1), then for some b; € Dom(f;’éxn))
n
we have

() by €ay/EN
(B) fm?xz,)(bﬁ € ain(n)/ET]yz
(f) ifvane F, then x4 is an initial segment of x; .
Why can we carry the induction?

For n =0:

Note that hg is uniquely determined. As for x%_, any x as in ®(d) is O.K., as
long as at least one move was done (note that Eéw has one and only one equivalence
class.

For n =m + 1: So h,,,X,, has been chosen.
Let 1 € Z m and let 2 = hy, (1) and

F,, :={(v1,12): 11 € sucg (m), 2 € sucg,(n2)
and there is x as in ® (d) such that
X, is an initial segment of x and for some
b1 € Dom(f} ) we have
by € al, /B and fX(bn) € a2, /EY}.

Now

©® to do the induction step, it suffices to prove that: if n, € J ,, then there
is a one-to-one function h,, ,,, from sucz, (11) onto sucg, (n2) such that v €

sucg, (m) = (Vs hnp, (V) € Fy,.

However by case 2 in Definition 1.7 this holds.

Stage E:

So we can find (h, : n < w),(x, : n € F) as in ®. Let h := U{h, : n < w},
clearly it is an isomorphism from 77 onto 95 and h,, is well defined, see B from
Stage C.

So it is enough to check the sufficient condition for M; = My then, ie. 7 €
N = M1y = Ha,h, () But if n € 71, then (x,1, : n < w) is a sequence of initial
segments of a play of ¢ with ISO using his winning strategy st, increasing with n,
each with finitely many moves. So x,,, defined as the limit (x,, : n < w), is an
initial segment of the play ¢, with < w moves and f::(xn) = U{f;”(;"mm in <wh.

Clearly n < w = f(a}7 M)Eﬂ/[2 afl"(nm). As we have one move left and can use
case 2 in Definition 1.7(2) we are done. Oig

The following claim says that the game in 1.5, 1.7 when A = p*,a < X divisible
enough are equivalent, i.e. the ISO player wins one iff he wins the other.
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Claim 1.10. 1) My, My are EF;Q)M)A—equivalentm:
(a) My, Ms are T-models
B A=A\ >pand 0 < p < Xandy < pand cf(p) < p = A\ > p and
X € I[)], see Definition 0.5
(¢) My, My are EF ., ,-equivalent where (%) = A1 X (see Definition 1.5(2))

(d) [|Mel = A=< for £ =1,2

2) My, My are EFj7M-equivalent when they are EF, g, »-equivalent.

3) My, Ms are EFjl,el’Ml))\l—equivalent when they are EF;’;GQ’M’/\Q—equivalent and
Y1 < 2,01 < b1 < pos A < Ao

Proof. 1) First, we do not save on v(x), say use A\; X A1 X 7.

Let st be a winning strategy of the ISO player in the game %Y(*). We try to use
it as a winning strategy of the ISO player in the game ¥, g , x(M;, My). Well, the
f& may have too large a domain, so “on the side” in the 8-th move ISO play xz for
Y, 0.2 and Ay C Dom(f*#) of cardinality < p (or < pif > cf(u) A B> cf(p))
and he actually plays f*# | A};, i.e. is an initial segment of a play of ¢, , of length
£ in which the ISO player uses the strategy st such that [51 < § = xg, is an initial
segment of xga].

The only problem is when 8 = a + 1 and in Definition 1.7, Case 2 occurs, i.e.
with the AIS player choosing Ré,R%. We may for notational simplicity choose
e < 0 and deal only with A, N (M) for £ =1,2.

We can consider xg extending x,; if it is as required in subcase (2B) of Definition
1.7 we are done. Let

Fj = {(a1,az): for some e < 6,a, € °(My) for £ =1,2
and there is a candidate xg for the
B-th move such that f*5(a;) = as}.

Let
F3 = {(a2,a1) : (a1,82) € F}}
ot =
AP ={a € o : the number of b such that (a,b) € F% is <A}

P = U{a: for some b€ o , we have (a,b) € Fg}

So || < A by clause (d) of the assumption and let <&’é : ¢ < ) list 72 possibly
with repetitions

() it is enough to take care of @/ N < for £ = 1,2.

[Why? By the basic properties of dependence relation.

So we can continue.

Let S be the set of limit ordinals § < A such that: for a club of §, € [4, \) of
cofinality Ry we can find (Eé : ¢ €[0,0,)) for £ = 1,2 such that:
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() ¥ € {at : € € [5.6))

(8) (31.%) € F}

(7) (b%: ¢ €[6,0.)) is Ry-independent over {af : ¢ < 0}

() 1{2%?}5* and df € 7 then df does Ry-depend on {@g (<Ot U {Bg s

If S is not stationary we can easily finish (we start by playing w moves in ¢). So
assume S is stationary, hence for some regular o < A; the set S’ ={§ € S : cf(d) =
o} is stationary. By playing o +w moves (recalling A € I[\]) we get a contradiction
to the definition of S.

2),3) Obvious. 0112

Remark 1.11. In 1.10(1), to get the exact 7y(x), we combine partial isomorphisms.
So we simulate two plays and use the composition of the f*#’s from two plays where
in each ISO use a winning strategy st.

Claim 1.12. We can use a variant of Definition 1.7(2) as follows: we can in case
2 make a Ry dependence relation on k x > (My), but equivalently C x *>(M,) for
a set C of cardinality < k, but

(a) it seems to help presently relevant only for k < 217 (M1)]+Ro
(b) if K < 2<% we get an equivalent game.

Remark 1.13. 1) We can replace 2<% by a larger cardinal in clause (b) for “inter-
esting” cases of My, Ms.
2) Anyhow we use only (b).

Proof. Clause (a) is obvious.

For clause (b), without loss of generality ||[My| > 1, now let (n, : a < k) be
a sequence of pairwise distinct members of *>2. now we define F, : 9> (M,) —
(2<9) x 9> (M) as follows: for a € 7> (M,) let

i(@) = min{i: 2i > fg(a) or 2i + 1 < Lg(a) A az; # azit1}

Na = <T.V(a2i(a)+2+2j = agi(a)+2+2j+1) . ] Z 0 and 2i(d> + 2 + 2_] + 1< Kg(d)>
where T.V. stands for “truth value”.
a(@) = Min{a < k: if @ < & then 1, =nz}.

Finally, Fy(a) is (a(a), (az; : j < i(a))) if i(a) < €g(a) A a(a) < k, and is (0,a) if
otherwise.
Let

R, ={o: o C%(My)and {F(a):ac 4} R
or for some @ # @’ € &/ we have F(a') =a’"}.

Now check. Oz

Claim 1.14. My, My are EF;g’M)\-equivalent when :
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(a) K a class of to-structures and ® € Y[K], see 2.2(8), used here for K =
K, = the class of linear orders and K ,;, see Definition 2.1

(b) the structures I, I € K are EFj’HyﬂyA—equivalent
(¢) My =EM,(I;,®) for £ =1,2 for some T C 79
(d) p>No and |Te] < 6.
Proof. Let St be a winning strategy of the ISO player in the game gy—te,u,x(lh L).
We define a strategy st, of the ISO player in the game g;fe%)\(Ml, M) as follows.
During a play of it after § moves a partial isomorphism f2 from M; to My has

been chosen, but the ISO player also simulates a play of E{ie u A1, I2) in which we
call the function h,, and in which he uses the winning strategy st and

B fo C ha where hy is defined by
ho(o™(ayy, ... a4, ,)) = oMt (Ahoto)s -+ Qho(tn_r)) forn <w,o(x0,. .., 20_1)
a term of 7¢ and tg,...,t,—1 € Dom(hg).

Why can the player ISO carry this strategy st,? Suppose we arrive to the g-th
move. The point to check is Case 2 in Definition 1.7(2), so the AIS player has
chosen R, Ro, &7, <75 as there.

Let {G¢(z¢) : ¢ < 2<% list {5(z) : 5(z) = (04(7) : i < £g(5)),Lg(5) < 0,L9(Z) <
6 and each o; is a Tx-term.

Clearly %> (M,) = {6?15 (£): ¢ <2< and £ € “9(<) (1)}, so by clause (b) of 1.12,
we can assume “Ry is a dependence relation on {((, %) : ¢ < 2<% %, € 9(Iy) and
lg(t) = Ly(tc)}-

That is

R, ={u: {oé‘/["'(f) : (¢, 1) € u} € Ry} or there are (¢1,11) # (2, 2)
from u such that Ué\ff (ag,) = aé\fe(@&)}.

The rest should be clear. Ur14
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§ 2. THE PROPERTIES OF 7' AND RELEVANT INDISCERNIBILITY

In [She90, Ch.VIII], [Shear, Ch.VI] we use as indiscernible sets trees with w + 1
levels, suitable for dealing with unsuperstable (complete first order) theories.
Here instead we use a linear order and family of w-sequences from it, suitable

[1PN-2

for our case. The letters “oi” stands for order + increasing (w-sequences).

Definition 2.1. 1) K¥! is the class of structures J of the form (J,Q, P <, Fj,)n<w =

(|3], PY,Q7, <7, FJ), where J = |J| is a set of cardinality A, <” a linear order

on Q7 C J,PYT = |J|\ Q,F a unary function, FJ | Q7 = the identity and

a€J\Q = Fla) € QY and n # m = FJ(a) # FJ}(a) and for simplicity

a#be PM = \/ F,(a) # F,(b); lastly, we add n < m = FJ(a) <? FJ(a) (there
n<w

is a small price). We stipulate FJ = the identity on |J| and I7 = (Q7, <7).

1A) Ko = U{K{ : X a cardinal}.

2) For a linear order I and & C inc(“I) (see Definition 0.10(3)), we let J = J; & be

the derived member of Ky which means: |J| = TU&, (QY, <7) =TI, F(n) = n(n)

forn <w,FJ(t)=tfortel.

3) K§lis the class of linear order of cardinality A, Ko = U{K§" : X a cardinal}.

Definition 2.2. 1) For a vocabulary 71 let T2 be the class of functions ® with
domain {tp.(t,0,J) : £ € “>|J|,J € K°'}, see 0.3 and if ¢(z0, . .., 5m—1) € Dom(®)
then ®(q) is a complete quantifier free n-type in (71 ) with the natural compatibility
functions.

2) Let T = {®: ® € TY for some vocabulary 71 of cardinality x}.

3) For ® € Y9! let 7(®) = 7o be the vocabulary 7 such that ® € T,

4) For ® € T2 J € K° let EM(J, ®) be “the” T-model M; generated by {a; : t €
J}such that: n <w,t €I = tpy({aty,---»at,_,),0, M) = ®(tpy((to, -, tn-1),0,J).
5) If 7 C 79 then EM,(J, ®) is the 7-reduct of EM(J, ®).

6) Let Y9, Yo" and EM(I, ®), EM, (I, ®) be defined similarly for J a linear order.
7) Let T, Y% and EM(Z, ®), EM, (I, ®) be defined similarly for J € Ky, i.e.
trees with w -+ 1 levels (with a linear order on the successor of any member of level
< w).

8) We can above replace K,; by any class K of 7x-structures.

Definition 2.3. 1) A (complete first order) T is Ngp-independent = not strongly
dependent (this is from [She09b, §3], see [Shel4, §1]) when: there is a sequence
® = (pn(x,Un) : n < w), (may use finite Z, as usual does not matter by [Sheld,

2.1]) of (first order) formulas such that T is consist with I'y for some (= every
A > Rg) where

I = {wn(xmgg)if(a:n(n)) ne w)\,Oé <An< w}.

2) T is strongly stable when it is stable and strongly dependent.

Claim 2.4. If T is first order complete, Ty O T is first order complete, without
loss of generality with Skolem functions and T is not strongly dependent then we
can find @ = (on(T,Yn) : 1 < w), Y L Ynt1 and on(,Yn) € L(rr) for n <w such
that

® for any J € K,; we can find M,{a; : t € J) such that
(a) M is the Skolem hull of {a, : t € J}
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(b) a € “M forte I, a, = (a,) € My forne PI

(c) forme Pl t e Q) and n < w we have M = ¢y, [ay, @) iff Fn(n) = t;
(pedantically we should write @, (ay,a: | £9(Fn)))

(d) (@t : t € J) is indiscernible in M for the index model J

(e) M is a model of Ty

(f) in fact (not actually used, see 2.2) there is ® € Tl"{;l‘ depending on
Ty, ¢ only such that M = EM(J, ®), in fact if n < w,t = (t; : £ <n) €
J then tpgs(as, ... "ayg,_,,0, M) = ®(tp (t,0,T)).

Proof. Let I = (Q7,<3). By an assumption, i.e. 2.3 there is a sequence (¢, (, 7y ) :
n < w) as in Definition 2.3 and let &k, = £g(gn).

Let I be an infinite linear order. Easily we can find M; = T; and a sequence
(a; : t € I) with a; € “(M;) such that for every n € “I, the set {,(z, a;)T"™M=1
t € l,n<w}isa type, i.e. finitely satisfiable in Mj.

Now by Ramsey theorem without loss of generality (a; : ¢t € I) is an indiscernible
sequence in M;. Without loss of generality M; is AT-saturated, we then expand

v
M, to M;" by function folel (n < w), (of finite arity) such that for tg <z ... <g

tn—1 from Q7 the element F,(ay,,at,,...a,_,) or more exactly F,(as, | ko,a:, |
ki,...,a, , | kn—1) realizes in My the type {apz(x,dt)if("(e):t) ct e 1,0 < n}.
Let M, be an expansion of M;" by Skolem functions such that |T1V[2+| = |T1|,

(natural, though not strictly required). Without loss of generality (a; : t € I) is an
indiscernible sequence also in M.

Let D be a non-principal ultrafilter on w and in M;" = (M;")*/D, we let @} =
(@t :n < w)/D for t € I, and L_L;7 = <Fn((_ln(0),(_1n(1),...,(_ln(n_l)) :n < wy/D for
n € incr(“I) and a; = EL’<FJ(t):n<w> for t € PJ.

Let M; be the submodel of M~ generated by {a} : t € J} and M be M, |7(T1).
Now M, (a; : t € J) are as required. Os 4

Claim 2.5. Assume Jy € K,;, and My, p,T1,T as in 2.4 for £ =1,2. A sufficient
condition for My | 70 2 Ms | T is:

(x) if f is a function from Jy (i.e. its universe) into M7, x,(J2) (i-e. the free
algebra generated by {x; : t € Jo} in the vocabulary Ty n, = {Fy :n <w

(03

and o < |T1|}, FY has arity n, see more in [Shear, Ch.III,§1] = [Shea])

we can find t € PV, n < w, and s1,50 € QI and k,o,rf(f = 1,2 and

i < k),m,o* such that:

(@) Fr(t) = s1# 59

(B) for £ € {1,2} we have f(s;) = o(rl,...,r5_1) so k < w,rf € Iy for
i <k and o is a Ti1y| x,-term not dependent on {

(v) f(t) =0"(ro,...,"m-1),0" 5 a T|p,| x,-term and ro, ... ,Tm_1 € J2

(0) the sequences

(ri i< k)" {ri:i<m)

(rZi<k)(ri:i<m)
realize the same quantifier free type in Jo (note: we should close by the
FJ27s, but no need to iterate as F2[Q72 is the identity so quantifier
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free type mean the truth value of the inequalities F,, (r") # F,,(r')
(including F,,) and the order between those terms).

Proof. Straight (or as in [Shear, Ch.III] = [Shea]). Oa5

Remark 2.6. We could have replaced Q7 by the disjoint union of (Q : n < w), <7
linearly order each Q) (and <?= U{<] Q)1 : n < w} and use Q,, to index param-
eters for o, (x, ¥,)). Does not matter at present.

But for our aim we can replace “not strongly stable” by a weaker demand, though
this will not be carried here, we present it. Recall (from [Shel4, §5(G)], i.e. [Shel4,
5.39=dw5.35tex(2A)]) the following, an equivalent definition to “a (complete first
order theory) T is strongly, dependent”.

Definition 2.7. 1) A (complete first order) T is not strongly, dependent if there
is a sequence @ = (@, (T, ¥n) : n < w), (finite Z of length m < w, as usual)
of (first order) formulas from L(7r), an infinite linear order I, a sequence (a, :
n € incre,(I)) indiscernible in M with fg(a,) < w and letting B = U{a, : n €
incr<,, (1)) for some m < w and p € 8™ (B, M) for every k < w there is n < w,
satisfying: for no linear order I extending I and subset Iy of I with < k members,
do we have:

® if ¢',#* are increasing sequences from I of the same length n realizing
the same quantifier-free type over Iy in I and for i = 1,2 we let bt =
(. .. A(a<t%(l):g<g‘g(n)> r ’I’L)A .. ')716 incfw(n) then ¢ < nAu - eg(bl) A |'LL| =
Lg(ge) = we(x,b" [ u) € p = @o(T,0% [ u) € p.

1A) In (1) without loss of generality ¥, < gn+1 for n < w.
2) T is strongly, stable if it is stable and strongly dependent.

Remark 2.8. 1) We can write the condition in 2.7(1) without It speaking on finite
sets as done in (x) in the proof of 2.9 below.
2) In 2.7 by compactness we can get such (@, : p € inc<,(I’)) for any infinite linear
order I'.

Next we deduce a consequence of being non-strongly,-dependent, see Definition
2.7 helpful in proving non-structure results.

Claim 2.9. IfT is first order complete, T1 O T 1is first order complete, without loss
of generality with Skolem functions and T is not stronglyy dependent as witnessed
by @ = (pn(Z,9n) : n < w), i.e. as in Definition 2.7(14), then there is 71 2
Ty, T = |Th] and 6,(2n) = (one(Zn) : € < Lg(Gy)), 0 is a Ti-term such that:

® if I,6 and J = J1.& are as in Definition 2.1(2), then there are My and

(a; : t € I) and (@, : n € &) such that:

(o) My is a Ti-model and is the Skolem hull of {a; : t € I} U{a, : n € &}
(we write a; fort € & C J for uniformity)

(8) (Gt :t € J) is indiscernible in My,

(7) if n € & and k < w then for large enough n(x) we have:
(x)  if u Cn(x),|u| <k, then we can find 5,t and n, < n(x) and &
such that

(i) 3,t are sequences of members of {F3(n) :n < n(*)}
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(i1) Lg(s) = Lg(t) < n(x)

(191) s; <185t <pt; fori,j <{lg(s)

(iv) ifi < Lg(8) = Ly(t) then
(Vn € w)(Fyl(n) <1 si = Fl(n) <1 t;)

(v) & =A(0i(g):i<Lg(Yn,)),0i a T1-term

(i) My = on [y, .. 00 (g, Gty s -2y - Jictg(gn,) =
s 0 sy sy ), - i<t )

(6) My is a model of Ty so Ty 2 Ty .

Proof. Fix I,S; without loss of generality I is dense with neither first nor last
element and is Nj-homogeneous hence there are infinite increasing sequences of
members of I.

Let I,{¢n(Z,9n) : n < w), (@, : n € increy,(I)) and p € S™(U{a, : n €
incr<,,(I)}) exemplify T is not strongly, dependent, i.e. be as in the Definition
so m = Lg(z). For notational simplicity (and even without loss of generality by
[Shel4, §5]) assume m = 1.

Now in 2.7 we can add:

(%) there is a sequence ((ng, mg,I}) : k < w) such that k < ni < my, mi <
mp+1, I}, C I has my members, for no Iy C I} with < k members does ®
from 2.7 holds for £!,# € incre,, (I}) and (k,n) here standing for k, n.

[Why? By compactness.]

Without loss of generality I is the reduct to the vocabulary {<}, i.e. to just a
linear order of an ordered field F and ¢, € F for ¢ € Q are such that 0 <g t,, (t,)* <r
ty, for q1 <p g2 (hence n < w = n <p ty, <p ty,). By easy manipulation without
loss of generality I} = {t;:9i=0,1,...,my}.

Now for each m < w and n € incry,(I) we can choose ¢, such that if m = my,
then for some automorphism h of I mapping I} onto Rang(n), letting h be an
automorphism of M; mapping a, to a(, for v € incr,(I), the element ¢, realizes
h(p) and (¢, : ) € incro,(I)) is without repetitions.

Now without loss of generality ((c,) a, :n € incre,(I)) is an indiscernible se-
quence and let a; = c<¢> be such that My be a model of T} satisfying U{(c;)"a,, :

n € incre,(I)} € My | 7 < €. Without loss of generality ((¢,) @, : n € incre,(I))

is indiscernible in My and we can find an expansion M7 of My such that |7az,| = |11 |
such that a, = <Fig(n),i(dn(0)v ceey dr](n—l)) 1< fg(dn», Cpy = Flg(n) (dn(o), ceey dn(n—l))
if n € incr,(I) and M; has Skolem functions.

By manipulating I without loss of generality we can find I, C I of order type
w.

So for some H,, € 11 for n < w,

© if tg < t1 < ... list I, for every k < w large enough, for every u C n(x)
satisfying |u| < k for every n large enough HM1(ay,,ay,, ..., a:,_,) satisfies
the demand (on the singleton &, from clause (vy) in the claim).

Let D be a non-principal ultrafilter on w such that {my, : k < w} € D, let M3 be
isomorphic to My’ /D over My, i.e. My < My and there is an isomorphism f from
M5 onto M{ /D extending the canonical embedding.

If n is an increasing w-sequence of members of I, we let
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ay = H,Jyl(an(o), ey Opm—1)) € My
and let
an :j_1(<a2,a,17,...,a:;,... :n <w)/D) € Ms.

Let My be the Skolem hull of {a; : t € I} U{a, : n € &} inside Ms. It is easy to
check that it is as required. oo

Naturally it is helpful to have a sufficient condition for the non-isomorphism of two
such models:

Claim 2.10. Assume J, € K°, and My, ,T1,T as in 2.9 for £ = 1,2. A sufficient
condition for My % Ms is

(x) if f is a function from Jy (i.e. its universe) into M7, | x,(J2) (i-e. the free
algebra generated by {z; : t € J1} the vocabulary i1y n, = {Fy :n <w
and o < |Ty|}, F? has arity n), we can find t € P11 and k. < w such that
for every n, <w we can find 1,52 such that:

(a) 51,52 €F " (Q7) are increasing, 51 = (F(t) :n < n.) and n < k, =
S2n = S1,n and S1p.—1 <1 S2.k,

(B) f(5e) =0a(rl,....rh_1) sok <w,rf €Tz fori <k sooc isar|r-
term not dependent on £

(v) f(t) =0"(ro,...,"m-1),0" 5 a T|p,| x,-term and ro, ... ,Tm_1 € J2

(0) the sequences

(ri i< k)" {r;:i<m)

(r? i <k)"(r;:i<m)
realize the same quantifier free type in Jo (note: we should close by the
FJ2 50 type mean the truth value of the inequalities F,, (') # Fy,(r")
(including F,,) and the order between those terms).

Proof. As in [She87b, Ch.III] or better in [Shear, Ch.III] = [Sheal, called unembed-
dablhty Dg.lo
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§ 3. FORCING EFT-EQUIVALENT CONSISTENCY NON-ISOMORPHIC MODELS
The following result is not optimal, but it is enough to prove necessary conditions
on T for being lean and even on (7, %). As for unstable T', see below in §4. So our
main result is
Claim 3.1. Assume (¢, T, Ty, ®) is as in 2.4, T stable and X = A< > Ny + |1}
and p = At > \. Then for some \-complete AT -c.c. forcing notion Q we have: kg

“there are models My, My of T of cardinality \* such that My | 7(T), Ms | 7(T)
are EFgA v+ -equivalent for every a < X but are not isomorphic”.

Remark 3.2. 1) It should be clear that we can improve it allowing o < A* and
replacing forcing by e.g. 2* = AT and A = A<*, but we shall continue in [S*h].

Proof. We define Q as follows:

®1 p € Q iff p consist of the following objects satisfying the following condi-
tions:
(@) u=uP € [u]<* such that a +i € uANi< A= a €u

(b) <P a linear order of u such that

a,feEuna+A<f=a<?f

(c) for £ =1,2 &% isasubset of {n € “u:n(n)+A <nn+1) forn < w}
such that n # v € &} = Rang(n) N Rang(v) is finite; note that in
particular 7 € &7 is without repetitions and is <P-increasing

(d) AP a set of < X increasing sequences of ordinals from {«a € u? : A|a}
hence of length < A

(e) [P =(f5:peAP)
such that

(f) f% is a partial automorphism of the linear order (u”,<P) such that
o€ Dom(fg) = o+ = fg(oz)—i—/\ and we let f;’p = g,fpz’p = (f}j)_1

(9) if n € &),p € AP, 0 € {1,2} then Rang(n) is included in Dom(f/*) or
is almost disjoint to it (i.e. except finitely many “errors”)

(h) if p<ao € AP then p € AP and f§ C f7

(1) fﬁ’i is the empty function and if p € AP has limit length then

fy =51 <tg(p)}

(j) if p € AP has length i 4+ 1 then Dom(fﬁvp) Cp(i) for £=1,2
(k) if p € A? and n € “(Dom(f%)) thenn € &) < (fH(n(n)) :n <w) € &

(0) if p, € AP for n < w and p, <pp41 and A > Vg then U{p, : n <w} € A
®2 We define the order <=<g on Q as follows: p < ¢ iff (p,¢ € Q and)

(a) uP Cul

(b) szgq[ uP

(c) 6} C 6] fort=1,2
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(d) AP C A¢
(e) if p € AP then fF C f1
(f) if n € 6} \ &} then Rang(n) Nu” is finite
(9) if p € AP and f§ # fI then u” Nsup Rang(p) C Dom(ff;’q) for £ =1,2

(h) if p € AP and ¢ € {1,2}, 0 € wP \ Dom( ﬁ’p) and a € Dom( /f’q) then
foP(a) & u?
Having defined the forcing notion Q we start to investigate it.
®3 Q is a partial order of cardinality ;<* = A*.
[Why? Obviously.]

®4 (1) ifp=(p;i:i<d)is <%increasing, § alimit ordinal < X of uncountable
cofinality then ps := U{p; : i < §} defined naturally is an upper bound of p

(#i) if 6 < A is a limit ordinal of cofinality 8y and the sequence
p = (p; : i < 9) is increasing (in Q), then it has an upper bound.

Why (7)? Think or see (ii); why the case cf(d) > Ng is easier? Because of clause
®1(7) and ®1(¢). Why (i)? We define ps € Q as follows: uPs = U{uPi : i < 4},
<Po= U{<Pi: i < §},APs = U{APi : ¢ < 0} U{p : p is an increasing sequence of
ordinals from uPe of length a limit ordinal of cofinality Yo such that ¢ < fg(p) =
pleeU{APi i< d}}.

Let frs = (fBs : p € A7) where: if i < ¢ and p € AP*\ U {AP/ : j < i}, then
fE=U{fy :j € i,0)} and if p € AP\{AP" : i < 6} then f2° = U{fir. e <
Lg(p)} is well defined as ¢ < Llg(p) = p“(e) € U{APi;j < §}. Clearly clauses
(a)7(b)7(d)’(e)’(f)’(h)7(i)7(j>7(€> from ®; for ps € Q hold.

Lastly, let 6° = U{&})* : a < 6} for £ =1,2.

Note

©1 if p € AP\ U {AP : o < 6} then Dom(f2?) = wP5 N sup Rang(p) =
Rang(f?) and for every o < ¢ for some 8 < & we have f2°[uP C fﬁﬁ- for
some i < £g(p).

[Why? Clearly, cf(€g(p)) = No.

Assume a < ¢ and i < £g(p). Clearly for some 5 € (a,d) we have p[i € AP5.
Also the set {j < £g(p) : plj € AP#} is an initial segment of £g(p) and cannot be
Lg(p) ecause p ¢ AP? by clause ®@1(¢). So for some j < £g(p) we have plj ¢ AP# but
by the choice of p for some v < ¢ we have p[j € AP7, so necessarily 5 < v. As po <g
ps <qg Dy by clause (g) of @2, as p[i € AP*\AP# we know that u”? N sup Rang(p[1)

is included in Dom(fﬁ’f;”) for £ = 1,2 by po <g pg hence uP> N sup Rang(pli) is
included in Dom(fﬁ’ri-’:) which C Dom(fﬁ’ri“) for £ =1,2.

As this holds for any o < § and i < £g(p) and v’ N sup Rang(p[i) = U{uP> N
sup Rang(p) : a < ¢} it follows that for £ = 1,2 we have € € uP? N sup Rang(p) =
(3o < 6)(e € uP> N sup Rang(p)) = (38 < §)[e € Dom(f?)] = e € Dom(f5??)
so are done.]

®2 if p € U{AP~ : o < §} then exactly one of the following occurs:
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(a) there is a unique oo = a(p) < ¢ such that p € AP~ (VG)(a < <=
p" = fhe) and (VB < a)(p € AP# — f57 # fbe)

(b) Dom(fh?) = uP® N sup Rang(p) = Rang(f}?) and (Vo < 6)(38 <
8)(f57 TuP= C f").

[Why? Similarly to the proof of ®1.]
To finish proving ps € Q, i.e. verifying ®; holds, we have to check clauses

(©),(g), (k).

Clause (c): Obvious by the choice of &¥°.

Clause (g):

So let n € &9°,p € AP» where ¢ € {1,2} and we should prove that Rang(n) C
Dom(fg’p";) or Rang(n)N Dom(fg’p) is finite. For some o < § we have n € &}~ If
p € U{AP5 : < 0} then we apply ®2, now if clause (a) there holds so a = a(p) < §
is well defined and we use po, € Q and if clause (b) there holds then trivially
Rang(n) € u?* € Dom(f5?) so assume p € AP*\ U {AP? : § < §}.

By ®; we finish as in the case ®2(b) holds.
Clause (k):

By the choice of &P¢ and the proof of clause (g).
Checking p, <q ps: (where a < d)

We should check that the pair (p,,ps) satisfies the demands in ®5 which is

straight. ®o.
So we have proved ®4.

®5 if < pthen £ == {p € Q : @ € wP} is dense and open as well as
Fe={peQ:if § € uP, \|§ and cf(d) < A then § = sup(d Nu)}.

[Why? Straight. For the first, .Z!, given p € Q we define ¢ € Q by

(a) uliswP U{B<a:B+X=a+ A}, so clause ®;(a) holds
(b) <1 is the following linear order on u?
a1 < ag iff oy <P ag or g < as Afar,as} € uP A{on, an} Cul
(c) 6§ =6} for £ =1,2
(d) A7 = AP and
(e) fi= [} for pe Al
Now check.
For the second, .#, use the first and ®4.]

®g if 0 € A* := {p: p is an increasing sequence of ordinals < AT divisible by A

of length < A} then 2 = {p € Q: ¢ € AP} is dense open.
[Why? Let p € Q, by ®5 + ®4 there is ¢ > p (from Q) such that Rang(p) C u?.
If o € AY we are done, otherwise define ¢’ as follows: ud = ud, <q/:<q,6‘él =
GI A = A U{o | e:e < lglo} and if i < Lg(o),0 | i ¢ AY then we let
fg;i = U{f:p € A?and p<p [ i}. We should check all the clauses of ®; for

“qg € Q" and e.g. clause (k) there holds because ¢ satisfies clause (¢). Then we
should check all the clauses of ® for “q <g ¢'”]
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®7 if g is as in ®g and o < AT and £ € {1,2} then

Iar={peQ:ac Dom(fg’p) so ¢ € AP, € uP} is dense open.

[Why? By @5 + ®.]

®g if p € Q and ¢ € AP then for some ¢ we have p <q ¢ A fI # fEAN{a+X:
acul}={a+A:acut}

Why? For each 6 € u N sup Rang(p) divisible by A let us = u N [6,d + A). So
gs = [} | us is a partial function from us into us and f2 = U{gs : § as above}.
Now, for § as above we can find fs such that:

(a) f

() 95 = fF Tus C fs

(c) fae Dom(fs) iff & € us Vv f5(a) € us

d) Dom(fs5)\us is an initial segment [a}, a?) of [4,5 + A)\us
)
)
)

s is a one-to-one function
c

(
(e) Rang(fs)\u is an initial segment [a2, a3) of [0, + A)\u\ Dom(fs)
(f) fs maps [a},a?) onto us\ Rang(f2 [ us)
(9) fs maps us\ Dom(f? [ uy) onto [aF, af).
Now we can find a linear order <; on us U [}, f] such that f5 is order preserving

(as the class of linear orders has amalgamation).
Lastly, we define ¢:

() ui =uP U{[a},af): d as above}

(8) <?is defined by a <? g iff (35)(x <5 B) or a+ A < 8

() A

(0) 6} = U{( “nn)) :n<w):Le{1,2},p€ AP and n € &}_,}.

Now we have to check g € Q, i.e. all the clauses of ®;. This is straight; e.g. for
clause (c), assume 1 # v € &} and we have to prove that Rang(n) N Rang(v) is
finite.

Now we have four cases: first 7, € &, so use p € Q, clause ®;(c) for £.
Second, n,v € 6{\&Y, so n,v are images by f3*€’q of members of &%_,, as this
function is one-to-one, this follows from p, &% , satisfying clause ®1(c ) Third,
ne6lAre Gq\Gf,’, then v = (f37%9(/(n)) : n < w) for some v/ € &}_,
satisfying Rang(v') € Dom(f5~ P hence for some n, < w we have n € [n,,w) =

V(n) ¢ Dom(f3~%P) = v(n) ¢ u? but Rang(n) C uP so we are done. Fourth,
n e 6\&) Av e &} the proof is dual.

The proof of clause (g) is similar.

Also we have to check that p <g ¢, i.e. all the clauses of ®3 for the pair (p,q).
This is straight, clause (f) is sproved as in the proof of ®;(c) above and clause (h)
holds by our choice of the fs’s.

Now check that ¢ is as required.]

Let

@1 QF ={peQ:ifl e {1,2} and p € A? then Dom(f/?) = uPN sup Rang(p)}
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M2 QT is a dense subset of Q, moreover (Vp € Q)(Ig € QM) (p < gA{a+ X:
acul} ={a+A:acul}.

[Why? Let p € Q,k = |Al,d = k X k and {p; : i < i, < A} list AP each appearing
unboundedly often. We choose p; by induction on ¢ < ¢ such that

(a) pi €Q

(b) Jj<i=p; <Qp]

(¢) po =

() A7

OF

(f) {a—|—/\ CMEUPI}*{OZ—F)\ o € uP}.
For i = 0 use clause (c) for ¢ limit use ®4, for ¢ = j + 1 use ®s. Now ps is as
required.]

®3 for p € Q and § < AT divisible by A,p | § is naturally defined, belongs to

Qand v? Cé=pléd =pand p|d <gp, where ¢ =p [ § be defined by:

(a) ut=uPN§

() <i=<P|§
() &1 = {n € &}:Rang(n) C 3}
(d) = {p € AP : sup Rang(p) < §}
(€) J=(f1:pe A7) where f1 = f7.

[Why? Check.]

@4 if 6 < AT is divisible by A\,p € Qt and (p]d) <g ¢ € QF but u? C § then
p,q are compatible in Q, moreover has a common upper bound 7 = p + ¢
such that r[§d = g Au" = uP Uul.

[Why? Note that if p € AP N A7 then sup Rang(p) < § by clause (i) + (j) of ®1;
also AP N A? = Ap5. We define r as follows:

(a) u" =uP Uul
(b) <" is defined by: for o, 8 € u" we have a <? Biff a + A < B or a <7 3 or
a<Pf
(c) 6} is 6y UG] for £ =1,2
(d) A" = AP UA1
(e) fr= (fp :p €A") where f] is:
e fl when p € A1
o fRUU{f) 17 < tg(p) and pli € A%} when p € AP\AY.

Why r € Q7 We should check all the clauses in ®;, which are easy. E.g. in clause
(c), n # v € &) = Xy > |[Rang(n) N Rang(v)|, the only new caseis n € &) < v ¢
&Y so without loss of generality n € &)\&] A v € {&}], hence sup(n) > § hence
Rang(n) N ¢ is finite but Rang(v) C u? C 4.

Also clauses (g) + (k) should be checked only when f; is new so necessarily
p € AP so fy = foU U{f,fu : pli € A%}, but recalling that any n € &} is an
increasing w-sequence, clearly if sup Rang(n) > § we use “p satisfies clauses (g) +
(k)” and if sup Rang(n) < § we use “q satisfies clauses (g) +(k) and (¢)”.



Paper Sh:897, version 2012-12-17_12. See https://shelah.logic.at/papers/897/ for possible updates.

THEORIES WITH EF-EQUIVALENT NON-ISOMORPHIC MODELS SH897 25

Why p <g 7 Ap <g 7?7 We should check all the clauses in ®, for both pairs.
They are easy, e.g. clause (f) holds because: if n € &7\&] then n € &7\ S} hence
sup Rang(n) > ¢ and it should be clear; if n € 6;\&} then n € G]\&} and we can
use pld <g ¢, i.e. clause (f) for this pair.

Concerning clause (g) for p <g r, recall that p,qg € Qt so £ € {1,2} Ap € A? =
uP = Dom(fg’p) C Dom(ff;”) so clause (g) is O.K. and similarly clause (g) for

q SQ ’I".]
@5 Q satisfies the A\T-c.c.

[Why? Let p, € Q for @« < AT, so by ®;¢ there are g, such that p, <g ¢a €
QT, now use the A-sytem lemma that is first S§‘+ = {6 < A\T: cf(§) = A}; now
J € Sf‘\+ = pl6 € QAsup(uPl?) < and A > [{p € Q : wP = u} for any u.
Hence for some stationary S C S§+ and p, we have 6 € S = ¢s[6 = p. and
d1 < 02 € S = sup(uz) < d2. So for any Jo < o from S by @4 the condition
s, , s, are compatible.]

H; define J, € K"ji, a Q-name as follows:

(a) Q¥ =p

<Je=U{<P: p € Gg}

Fiisa unary function, the identity on AT and

<Je—cp

Ea (n) = n(n)

(a) Ihg “Js € KSL7

(b) kg “for each § < AT divisible by A the linear order ([5,8 + \), <J¢
[(6,6 + A)) is a saturated linear order and a + A < 8 < AT = a <¥¢ 7

(€) peQ=plrg “J0 C Jyfor £ =1,2".
[Why? Think]

B, if § < AT is divisible by A then IF “J, [ 6 € K§' where J, [ § = (U (P7¢ N
“8), QI N, Pl [ 5, F 1 (§U(PT*N“H)))pew”
Bs5 kg “EM;(7y(J1, @), EM (1 (J2, @) are EF;\r \+-equivalent

(so the games of length < A, and the player INC chooses sets of cardinality < A™).
[Why? To show the EF;\r’H—equivalence, it suffices to show that IFg “Jq,Jo are
EF, y+-equivalent” by 1.14 as A > ®; + |T|. From ®g, recall A* = {p : p is an
increasing sequence of ordinals < A* divisible by A of length < A}, (is the same in
Vand V). For p € A* let f, = U{f? : p € G,p € AP} and by @1 (f)+(j)and®; (e)
easily IFg “f, a partial isomorphism from J; | sup Rang(p) into J> [ sup Rang(p)”,
see Definition inside Hy.
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”

Now IFg “Dom(f,) = sup Rang(p)” as if G C Q is generic over V, for any
a < sup Rang(p) for some p € G we have a € u? A p € AP by ®; and there is ¢
such that p < ¢ € G,p # ¢ by ®s, so recalling ®3(g) we are done.

Similarly IFq “Rang(f,) = sup Rang(p)”.

Also p< g =g f, € f,. For the EFt-version we have to analyze dependence
relations, which is straight as in the proof in 4.2. So (fp : p € A*) exemplify the
equivalence. |

Bs kg “M1 = EM,(1)(J1,®), My = EM,(1)(J2, ®) are not isomorphic”.
Why? Let M} = EM(Jy, ®) so M [7(T) = M, for £ = 1,2, and assume toward
contradiction that p € Q, and p I-q “g is an isomorphism from M, onto M»”. For
each 0 € S§+ = {0 < AT : cf(6) = A} by ®4 we can find ps € Q above p and g
such that:

M (@) p<ps,d€ub

(b) sk “gs is g | EM(J}°, ®)”
(¢) g5 is an isomorphism from EM_ (1 (J7, ®) onto EM. (p) (JE, ®).

We can find stationary S C S§‘+ and p* such that

o (a) ps |0, defined in @3 is p* for 6 € S

(b) for 01,02 € S, uPs1, uP% has the same order type and the order
preserving mapping 7s, 5, from uP% onto u”%1 induce an
isomorphism from ps, onto ps,

(c) if 01 < Jy € S then sup(uPsr) < ds.
Now choose n* = (6% : n < w) such that
B3 (a) 65 <05
(b) 6x =sup(SNdk)and €S
(¢) let 6* = sup{d} : n < w}.
We define ¢ € Q as follows

By (@) u?=U{ps: :n <w}
) <={(a,B):a <P B for some nor a+ A< BA{a,f} Cul,
equivalently for some m < n,« € uP%» \ 6}, and 8 € uP%% \ §}}

() &1=U{&," :n<wlu{y}
(d) &1=U{65" :n<w}
(e) AT =U{AP% :n <w}
(f) fi=f" i pe AP,

So there is a pair (g.,g") such that:

Bs (a) ¢ <q g
(b) g lg “g" =g EMJ{", @)
(¢) g7 is an isormorphism from EM, 1 (J{*, ®) onto EM, 1y (J5", ®).
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. +
So gt (a,<) € EM(J4, ®) hence is of the form o2 (ay,,...,a, ) forsometg,...,t,—1 €
J% and a Tg-term o(xg, ..., Tp_1).

Note that by the definition of <g in ®,:
Ll if n € &% then Rang(n) Nu? is bounded in §*.

[Why? If n € &1 this holds by our choice of ¢ and if n € &1\ &2 then Rang(n) Nu?
is finite so as u? C ¢ it follows that Rang(n) Nu? is bounded in ¢*.]
We can find n(*) < w such that:

[J; for each k < n and £ < n we have
(a) if t, € Q72" ie. t; € u® C AT then t, <9 Oy (wy OF 0 < g (hence
Aoy, <9 t)

* qx
(b) if t, € P& ie. t, € &% then {F? () : n < w} is disjoint to

[0, (15 0%) Mt
Now using “T" is stable”, the rest is as in 2.5, 2.9. Usq

Discussion 3.3. (2012.11.23) 1) Can we do it in ZFC? It is natural to use (W, :
a € Sf ) be stationary pairwise almost disjoint, see [STc].

2) Instead of “not strongly stable” it suffices to assume “not strongly? stable”, see
[Shel4]. In [S*d] even much less.
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§ 4. THEORIES WITH ORDER
Recall from [HS95, 3.19]:

Claim 4.1. If A = p*, cf(u), N = X<,k = cf(k) < k(T) and T 1is unstable then
there are EF . x+-equivalent non-isomorphic models of T of cardinality \.

The new point in 4.2 is the EFT rather than EF.

Claim 4.2. Assume A = A\<Y and X is reqular uncountable, T C Ty are complete
first order theories of cardinality < A.
1) If T is unstable then there are models My, My of Ty of cardinality AT, EF;\F’O’M-
equivalent with non-isomorphic Tr-reducts.
2) Assume ® € Yo" is proper for linear orders, & = (o;(x) : i < i(x)) a sequence of
terms from 1o, 7t = (xf 11 <i(x)),i(x) < X\, p(zt, 72) is a formula in L(tr), 7 < 71
(any logic) and for every linear order I letting M = EM(I, ®),b; = (oM (a;) : i <
i(x)) we have (M | 7) |= @[bs, be]5<Y) for every s,t € I. Then there are linear
orders I, 15 of cardinality AT such that My, My are EF;G’H—equivalent but not
isomorphic where My = EM, (Ip, ®) for £ =1,2.
3) If every EM.(I,®) is a model of Ty then in (2) the models My, My are in
PC(T3,T).
Proof. 1) Let ¢(&,%) € L(7r) order some infinite subset of ™M for some M ET.
Let ® be as in Definition 2.3, i.e. [She90, Ch.VILVIII], i.e. proper for linear
orders such that 7, C 7(®), |7(®)| = |T1| and for every linear order I,EM(I, ®)
(we allow the skeleton to consist of m-tuples rather than elements) is a model of
T, satisfying plas, as] iff s <y t. Now we can apply part (2) with i(x) = m.
2) We choose I such that
@® (a) I is a linear order of cardinality A (yes, not A™)
(b) ifa,p € (1, then (I x a)+ (I x )* =1 (equivalently every «,
Bel,Ah)

(¢) I isisomorphic to its inverse

(d) I has cofinality .
For every S C S§+ ={d < At :cf(6) = A} we define Is = 5 Ig, where Ig, is

a<it
isomorphic to I if « € AT\S and isomorphic to the inverse of I x w otherwise. Now

®g if 51,5 C S’j\\+ then the models EM(Ig,, ®), EM(Ig,,®) are EFj\“ﬁ’H—
equivalent.
[Why? Let Joy = Y. Is, .. Let & := {f: for some non-zero ordinal v < A*, f €

a<y
F. and [y € S1 & v € Sp]} where %, := {f is an isomorphism from ) Ig, , onto

a<y
Z ISz,Oé}'
a<ly

Now

()1 Fy #0 for v < AT
(x)2 if fe F,and [y € S1 =7 € Sy] and v < B < A then f can be extended to
some g € F3}



Paper Sh:897, version 2012-12-17_12. See https://shelah.logic.at/papers/897/ for possible updates.

THEORIES WITH EF-EQUIVALENT NON-ISOMORPHIC MODELS SH897 29

(x)3 if v < A, Xy C I, has cardinality < A" for £ = 1,2 then for some successor
B,"y <pB< AT and X, C Jgﬁ for £ =1,2
(%)g if v; € 51 & 7; € Sy for i < 6,6 a limit ordinal < A and (y; : ¢ < J) is
increasing then ~s := U{v; : i < d§} satisfies v5 € S1 =75 € 5.
Lastly, we have to deal with case 2 in Definition 1.7(2) so assume

(%)5 fe € Fyy[7x € S1 = s € So] and Ry C 9> (M) for £ = 1,2 are as there
for f,

This holds because the strategy is simple, e.g. with no memory. Now if f does not
map the definition of Ry in M; to the definition of Ry in My we can use subcase
2B there, so we assume this does not occur. Let ¢ € {1,2}.

(*)s Let e, = {(5,%) : 5, € %> (I;) and some automorphism of I, over I, . maps
5 to t}.
(¥)7 Let Y, be the set of es-~equivalence classes.

Note

©1 for £ €{1,2},n <w and yq,...,y, € Yz the following are equivalent:
(a) some @ € y,, depend (by Rj) onyoU...Uyp_1
(b) every a €y, depend (by Ry) on yoU...Uy,_1.

So R; induce a 1-dependence relation on Y7, so let (y; : ¢ < (%)) be a maximal
independent subset of Y7 such that [i < i(x) Aa € y; = @ does not depend on
Wy, 1 J <i(x),j # i}

So

®2 it is enough to deal with one y;.

Now we can find ¢; , € y; such that Rang(t; ,)\I¢,y. € Ir~4+2\Ir,4+1 for each
v € [v+,AT) as I; has enough automorphisms

©3 if {ti 17 € [+, AT)} is not Ry-independent, then dim(y;) is finite, in fact
1or0.

So we choose S, such that

O4 Y5 < Be < AT and B, € S1 = B, € Sy and for every i < i(x), if dim(Xy,) is
finite then y; has a maximal R;-independent set included in 8(yi)(Jlﬁ*).

[Why possible? Because for any such . is an automorphism of I over Ji -,

mapping Ig, 19 onto I, 49.]
Let g € F4, extend f and using it we can choose ((d%, C_L%) : ¢ < ¢*) as required.

®3 if S1,899 C S’j\\+ and S1\Ss is stationary, then EM, (Ig,,®), EM,(Is,, ®)

are not isomorphic.

[Why? By the proof in [She87b, Ch.I11,83] (or [Shear, Ch.II1,§3] = [Shea, §3]) only
easier. In fact, immitating it we can represent the invariants from there. If £k = 2
we have to work somewhat more.]

2) As in [HS95].

3) Obvious. Oy
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Conclusion 4.3. Assume T is a (first order complete) theory.

1) If T is unstable, then (T, x) is fat.

2) If T is unstable or stable with DOP, or stable with OTOP, then T is fat.

3) For every u there is a p-complete, class forcing P such that in VF we have: if T
is not strongly dependent or just not strongly stable then T is fat, moreover (T, *)
is fat.

Proof. 1) By 4.2.

2) Similar, the only difference is that the formula defining the “order” is not first
order and the length of the relevant sequences may be infinite but still < |T'| (see
[She90, Ch.XIII]).

3) By parts (1),(2) we should consider only stable - not strongly stable T. Choose
a class C of regular cardinals such that A € C = (2<")* < Min(C\\*) and
Min(C) > p. We iterate with full support (P,,,Q,, : u € C) with @, asin 3.1. [y3

Claim 4.4. Assume T C T1,\ = A" is not necessary reqular and k = cf(r) < k(T),
e.g. T is unstable. Then there are EF;‘XH \ o+ ~€quivalent non-isomorphic models

from PC(T,T) of cardinality \*.
Proof. As in [HS95], seeing the proof of 4.2. Oy

As said in the introduction by the old results (note: 4.5 is on elementary classes
and 4.6 on small enough pseudo elementary classes).

Conclusion 4.5. (ZFC) For first order countable complete first order theory T the
following conditions are equivalent:

(A) T is superstable with NDOP and NOTOP

(B)1 if A = cf(X) > |T| and My, My € Modr(X) are Lo x(T7)-equivalent then
My, M5 are isomorphic

(B)y like (B)y for some X = cf(X) > |T)|

(C) if X = cf(A) > |T| and My,My € Modr(A\T) are EF,, \-equivalent then
My, M5 are isomorphic

(D) for some regular X > |T|, if My, M € Modyp(A") are EFy y+-equivalent
then they are isomorphic.

Proof. Clause (A), clause (B);, clause (B)2 are equivalent because: as proved in
[She90, Ch.XIII,Th.1.11], we have (A) = (B)iand(B)2 and the inverse implication
holds by [She87a]. Now by the definitions trivially (B); = (C) = (D).

Lastly, by [HS95], i.e. by 4.1 we have =(A) = —(D), i.e. (D) = (A) so we have
the circle. Cas

So 4.5 tells us what we know about Qustion (A)y of 1.2. Similarly concerning
(B)o of Question 1.2.

Conclusion 4.6. (ZFC) For first order countable complete first order theory T and
K > 2% the following conditions are equivalent:

(A) T is unsuperstable
(B)y for every A > k > |T| and (k,T)-candidate v (see Definition 0.8), and or-
dinal o < X satisfying |a|t = X = |a < |a| X w, there are EF, -equivalent
non-isomorphic models My, My € PCr(1)(¢) of cardinality A
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(C) for some X > k > |T|, for no (k,T)-candidate v is the class PCrr)(1))
categorical in .

Proof. First, assume T is superstable, so clause (A) holds. By the proofs of [She90,
Ch.VIL,§4] thereis a (#, T')-candidate 1), PC.(7)(¢) is the class of saturated models of
T, (in details, if n < w,a € "€, tp(b, a, €) is stationary, ¢ = tp(b,,€),p = p(z,7) =
tp({a)"b, 0, €) then let 1, , be such that M = v, , iff for every b’ € "M realizing

the type ¢(gy), the function ¢ F%(q b') is one-to-one and if k < w,co,...,c, €
M are pairwise distinct then tpy(ry) (Fph(ck), {Fpt (co), ..., FM (ce—1)} UV, M)

extends p(z,b’) and does not fork over M.

Lastly, v = AN{4pq : p,q as above} so € L+ . So in the present case also
(B)x, (C)x, (D), holds.

Second, assume 7' is not superstable, so clause (A) holds and we shall prove the
rest. Let ¢ be a (k,T)-candidate.

By 0.9 and let there is ® € T%'"*" witnessing this hence witnessing unsupersta-
bility and now we can use Theorem 4.1 quoted above. Las
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