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Abstract. We consider the random graph Mn
p̄ on the set [n], were the prob-

ability of {x, y} being an edge is p|x−y|, and p̄ = (p1, p2, p3, ...) is a series

of probabilities. We consider the set of all q̄ derived from p̄ by inserting 0

probabilities to p̄, or alternatively by decreasing some of the pi. We say that
p̄ hereditarily satisfies the 0-1 law if the 0-1 law (for first order logic) holds in

Mn
q̄ for any q̄ derived from p̄ in the relevant way described above. We give a

necessary and sufficient condition on p̄ for it to hereditarily satisfy the 0-1 law.

1. Introduction

In this paper we will investigate the random graph on the set [n] = {1, 2, ..., n}
were the probability of a pair i 6= j ∈ [n] being connected by an edge depends only
on their distance |i− j|. Let us define:

Definition 1.1. For a sequence p̄ = (p1, p2, p3, ...) where each pi is a probability
i.e. a real in [0, 1], let Mn

p̄ be the random graph defined by:

• The set of vertices is [n] = {1, 2, ..., n}.
• For i, j ≤ n, i 6= j the probability of {i, j} being an edge is p|i−j|.
• All the edges are drawn independently.

If L is some logic, we say that Mn
p̄ satisfies the 0-1 law for the logic L if for

each sentence ψ ∈ L the probability that ψ holds in Mn
p̄ tends to 0 or 1, as n

approaches ∞. The relations between properties of p̄ and the asymptotic behavior
of Mn

p̄ were investigated in [1]. It was proved there that for L, the first order logic
in the vocabulary with only the adjacency relation, we have:

Theorem 1.2. (1) Assume p̄ = (p1, p2, ...) is such that 0 ≤ pi < 1 for all i > 0
and let fp̄(n) := log(

∏n
i=1(1 − pi))/ log(n). If limn→∞ fp̄(n) = 0 then Mn

p̄

satisfies the 0-1 law for L.
(2) The demand above on fp̄ is the best possible. Formally for each ε > 0, there

exists some p̄ with 0 ≤ pi < 1 for all i > 0 such that |fp̄(n)| < ε but the 0-1
law fails for Mn

p̄ .

Part (1) above gives a necessary condition on p̄ for the 0-1 law to hold in Mn
p̄ , but

the condition is not sufficient and a full characterization of p̄ seems to be harder.
However we give below a complete characterization of p̄ in terms of the 0-1 law in
Mn
q̄ for all q̄ ”dominated by p̄”, in the appropriate sense. Alternatively one may

ask which of the asymptotic properties of Mn
p̄ are kept under some operations on

p̄. The notion of ”domination” or the ”operations” are taken from examples of the
failure of the 0-1 law, and specifically the construction for part (2) above. Those

The authors would like to thank the Israel Science Foundation for partial support of this
research (Grant no. 242/03). Publication no. 953 on Saharon Shelah’s list.

1

Paper Sh:953, version 2010-04-04 11. See https://shelah.logic.at/papers/953/ for possible updates.



2 SAHARON SHELAH AND MOR DORON

are given in [1] by either adding zeros to a given sequence or decreasing some of
the members of a given sequence. Formally define:

Definition 1.3. For a sequence p̄ = (p1, p2, ...):

(1) Gen1(p̄) is the set of all sequences q̄ = (q1, q2, ...) obtained from p̄ by adding
zeros to p̄. Formally q̄ ∈ Gen1(p̄) iff for some increasing f : N → N we
have for all l > 0

ql =

{
pi F (i) = l
0 l 6∈ Im(f).

(2) Gen2(p̄) := {q̄ = (q1, q2, ...) : l > 0⇒ ql ∈ [0, pl]}.
(3) Gen3(p̄) := {q̄ = (q1, q2, ...) : l > 0⇒ ql ∈ {0, pl}}.

Definition 1.4. Let p̄ = (p1, p2, ...) be a sequence of probabilities and L be some
logic. For a sentence ψ ∈ L denote by Pr[Mn

p̄ |= ψ] the probability that ψ holds in
Mn
p̄ .

(1) We say that Mn
p̄ satisfies the 0-1 law for L, if for all ψ ∈ L the limit

limn→∞ Pr[Mn
p̄ |= ψ] exists and belongs to {0, 1}.

(2) We say that Mn
p̄ satisfies the convergence law for L, if for all ψ ∈ L the

limit limn→∞ Pr[Mn
p̄ |= ψ] exists.

(3) We say that Mn
p̄ satisfies the weak convergence law for L, if for all ψ ∈ L,

lim supn→∞ Pr[Mn
p̄ |= ψ]− lim infn→∞ Pr[Mn

p̄ |= ψ] < 1.
(4) For i ∈ {1, 2, 3} we say that p̄ i-hereditarily satisfies the 0-1 law for L, if

for all q̄ ∈ Geni(p̄), Mn
q̄ satisfies the 0-1 law for L.

(5) Similarly to (4) for the convergence and weak convergence law.

The main theorem of this paper is the following strengthening of theorem 1.2:

Theorem 1.5. Let p̄ = (p1, p2, ...) be such that 0 ≤ pi < 1 for all i > 0, and
j ∈ {1, 2, 3}. Then p̄ j-hereditarily satisfies the 0-1 law for L iff

(∗) lim
n→∞

log(

n∏
i=1

(1− pi))/ log n = 0.

Moreover we may replace above the ”0-1 law” by the ”convergence law” or ”weak
convergence law”.

Note that the 0-1 law implies the convergence law which in turn implies the
weak convergence law. Hence it is enough to prove the ”if” direction for the 0-1 law
and the ”only if” direction for the weak convergence law. Also note that the ”if”
direction is an immediate conclusion of Theorem 1.2 (in the case j = 1 it is stated
in [1] as a corollary at the end of section 3). The case j = 1 is proved in section 2,
and the case j ∈ {2, 3} is proved in section 3. In section 4 we deal with the case
U∗(p̄) := {i : pi = 1} is not empty. We give an almost full analysis of the hereditary
0− 1 law in this case as well. The only case which is not fully characterized is the
case j = 1 and |U∗(p̄)| = 1. We give some results regarding this case in section 5.
The case j = 1 and |U∗(p̄)| = 1 and the case that the successor relation belongs to
the dictionary, will be dealt with in [2]. The following table summarizes the results
in this article regarding the j-hereditary laws.
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|U∗| =∞ 2 ≤ |U∗| <∞ |U∗| = 1 |U∗| = 0

The 0-1 law holds See

j = 1 m section limn→∞
log(

∏n
i=1(1−pi))
logn = 0

The weak {l : 0 < pl < 1} = ∅ 5 m
The 0-1 law holds The 0-1 law holds

j = 2 convergence m m
|{l : pl > 0}| ≤ 1 The convergence law holds

law fails The 0-1 law holds m
j = 3 m The weak convergence law holds

{l : 0 < pl < 1} = ∅
Convention 1.6. Formally speaking Definition 1.1 defines a probability on the
space of subsets of Gn := {G : G is a graph with vertex set [n]}. If H is a sub-
set of Gn we denote its probability by Pr[Mn

p̄ ∈ H]. If φ is a sentence in some
logic we write Pr[Mn

p̄ |= φ] for the probability of {G ∈ Gn : G |= φ}. Similarly if
An is some property of graphs on the set of vertexes [n], then we write Pr[An] or
Pr[An holds in Mn

p̄ ] for the probability of the set {G ∈ Gn : G has the property An}.
Notation 1.7. (1) N is the set of natural numbers (including 0).

(2) n,m, r, i, j and k will denote natural numbers. l will denote a member of
N∗ (usually an index).

(3) p, q and similarly pl, ql will denote probabilities i.e. reals in [0, 1].
(4) ε, ζ and δ will denote positive reals.
(5) L = {∼} is the vocabulary of graphs i.e ∼ is a binary relation symbol. All

L-structures are assumed to be graphs i.e. v is interpreted by a symmetric
non-reflexive binary relation.

(6) If x ∼ y holds in some graph G, we say that {x, y} is an edge of G or that
x and y are ”connected” or ”neighbors” in G.

2. Adding zeros

In this section we prove theorem 1.5 for j = 1. As the ”if” direction is immediate
from Theorem 1.2 it remains to prove that if (∗) of 1.5 fails then the 0-1 law for L
fails for some q̄ ∈ Gen1(p̄). In fact we will show that it fails ”badly” i.e. for some
ψ ∈ L, Pr[Mn

q̄ |= ψ] approaches both 0 and 1 simultaneously. Formally:

Definition 2.1. (1) Let ψ be a sentence in some logic L, and q̄ = (q1, q2, ...)
be a series of probabilities. We say that ψ holds infinitely often in Mn

q̄ if
lim supn→∞ Prob[Mn

q̄ |= ψ] = 1.
(2) We say that the 0-1 law for L strongly fails in Mn

q̄ , if for some ψ ∈ L both
ψ and ¬ψ hold infinitely often in Mn

q̄ .

Obviously the 0-1 law strongly fails in some Mn
q̄ iff Mn

q̄ does not satisfy the weak
semi 0-1 law. Hence in order to prove Theorem 1.5 for j = 1 it is enough if we
prove:

Lemma 2.2. Let p̄ = (p1, p2, ...) be such that 0 ≤ pi < 1 for all i > 0, and assume
that (∗) of 1.5 fails. Then for some q̄ ∈ Gen1(p̄) the 0-1 law for L strongly fails in
Mn
q̄ .

In the remainder of this section we prove Lemma 2.2. We do so by inductively
constructing q̄, as the limit of a series of finite sequences. Let us start with some
basic definitions:
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Definition 2.3. (1) Let P be the set of all, finite or infinite, sequences of
probabilities. Formally each p̄ ∈ P has the form 〈pl : 0 < l < np̄〉 where
each pl ∈ [0, 1] and np̄ is either ω (the first infinite ordinal) or a member
of N \ {0, 1}. Let Pinf = {p̄ ∈ P : np̄ = ω}, and Pfin := P \Pinf .

(2) For q̄ ∈ Pfin and increasing f : [nq̄]→ N, define q̄f ∈ Pfin by nq̄f = f(nq̄),

(q̄f )l = qi if f(i) = l and (q̄f )l = 0 if l 6∈ Im(f).
(3) For p̄ ∈ Pinf and r > 0, let Genr1(p̄) := {q̄ ∈ Pfin : for some increasing f :

[r + 1]→ N, (p̄|[r])f = q̄}.
(4) For p̄, p̄′ ∈ P denote p̄ C p̄′ if np̄ < np̄′ and for each l < np̄, pl = p′l.
(5) If p̄ ∈ Pfin and n > np̄, we can still consider Mn

p̄ by putting pl = 0 for all
l ≥ np̄.

Observation 2.4. (1) Let 〈p̄i : i ∈ N〉 be such that each p̄i ∈ Pfin, and assume
that i < j ∈ N ⇒ p̄i C p̄j. Then p̄ = ∪i∈Np̄i (i.e. pl = (pi)l for some p̄i
with np̄i > l) is well defined and p̄ ∈ Pinf .

(2) Assume further that 〈ri : i ∈ N〉 is non-decreasing and unbounded, and that
p̄i ∈ Genri1 (p̄′) for some fixed p̄′ ∈ Pinf , then ∪i∈Np̄i ∈ Gen1(p̄′).

We would like our graphs Mn
q̄ to have a certain structure, namely that the

number of triangles in Mn
q̄ is o(n) rather then say o(n3). we can impose this

structure by making demands on q̄. This is made precise by the following:

Definition 2.5. A sequence q̄ ∈ P is called proper (for l∗), if:

(1) l∗ and 2l∗ are the first and second members of {0 < l < nq̄ : ql > 0}.
(2) Let l∗∗ = 3l∗ + 2. If l < nq̄, l 6∈ {l∗, 2l∗} and ql > 0, then l ≡ 1 (mod l)∗∗.

For q̄, q̄′ ∈ P we write q̄ Cprop q̄′ if q̄ C q̄′, and both q̄ and q̄′ are proper.

Observation 2.6. (1) If 〈p̄i : i ∈ N〉 is such that each p̄i ∈ P, and i < j ∈
N⇒ p̄i Cprop p̄j, then p̄ = ∪i∈Np̄i is proper.

(2) Assume that q̄ ∈ P is proper for l∗ and n ∈ N. Then the following event
holds in Mn

q̄ with probability 1:
(∗)q̄,l∗ If m1,m2,m3 ∈ [n] and {m1,m2,m3} is a triangle in Mn

q̄ , then {m1,m2,m3} =
{l, l + l∗, l + 2l∗} for some l > 0.

We can now define the sentence ψ for which we have failure of the 0-1 law.

Definition 2.7. Let k be an even natural number. Let ψk be the L sentence ”say-
ing”: There exists x0, x1, ..., xk such that:

• (x0, x1, ..., xk) is without repetitions.
• For each even 0 ≤ i < k, {xi, xi+1, xi+2} is a triangle.
• The valency of x0 and xk is 2.
• For each even 0 < i < k the valency of xi is 4.
• For each odd 0 < i < k the valency of xi is 2.

If the above holds (in a graph G) we say that (x0, x1, ..., xk) is a chain of triangles
(in G).

Definition 2.8. Let n ∈ N, k ∈ N be even and l∗ ∈ [n]. For 1 ≤ m < n − k · l∗
a sequence (m0,m1, ...,mk) is called a candidate of type (n, l∗, k,m) if it is without
repetitions, m0 = m and for each even 0 ≤ i < k, {mi,mi+1,mi+2} = {l, l+ l∗, l+
2l∗} for some l > 0. Note that for given (n, l∗, k,m), there are at most 4 candidates
of type (n, l∗, k,m) (and at most 2 if k > 2).
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Claim 2.9. Let n ∈ N, k ∈ N be even, and q̄ ∈ P be proper for l∗. For 1 ≤
m < n − k · l∗ let Enq̄,m be the following event (on the probability space Mn

q̄ ): ”No
candidate of of type (n, l∗, k,m) is a chain of triangles.” Then Mn

q̄ satisfies with
probability 1: Mn

q̄ |= ¬ψk iff Mn
q̄ |=

∧
1≤m<n−k·l∗ E

n
q̄,m

Proof. The ”only if” direction is immediate. For the ”if” direction note that by
2.6(2), with probability 1, only a candidate can be a chain of triangles, and the
claim follows immediately. �

The following claim shows that by adding enough zeros at the end of q̄ we can
make sure that ψk holds in Mn

q̄ with probability close to 1. Note that we do not
make a ”strong” use of the properness of q̄, i.e we do not use item (2) of Definition
2.5.

Claim 2.10. Let q̄ ∈ Pfin be proper for l∗, k ∈ N be even, and ζ > 0 be some
rational. Then there exists q̄′ ∈ Pfin such that q̄ Cprop q̄′ and Pr[M

nq̄′

q̄′ |= ψk] ≥
1− ζ.

Proof. For n > nq̄ denote by q̄n the member of P with nq̄n = n and (qn)l is ql if
l < nq̄ and 0 otherwise. Note that q̄ Cprop q̄n, hence if we show that for n large
enough we have Pr[Mn

q̄n |= ψk] ≥ 1 − ζ then we will be done by putting q̄′ = q̄n.
Note that (recalling Definition 2.3(5)) Mn

q̄ = Mn
q̄n so below we may confuse between

them. Now set n∗ = max{nq̄, k · l∗}. For any n > n∗ and 1 ≤ m ≤ n− n∗ consider
the sequence s(m) = (m,m+l∗,m+2l∗, ...,m+k ·l∗) (note that s(m) is a candidate
of type (n, l∗, k,m)). Denote by Em the event that s(m) is a chain of triangles (in
Mn
q̄ ). We then have:

Pr[Mn
q̄ |= Em] ≥ (ql∗)

k · (q2l∗)
k/2 · (

nq̄−1∏
l=1

(1− pl))2(k+1).

Denote the expression on the right by p∗q̄ and note that it is positive and depends
only on k and q̄ (but not on n). Now assume that n > 6 ·n∗ and that 1 ≤ m < m′ ≤
n−n∗ are such that m′−m > 2 ·n∗. Then the distance between the sequences s(m)
and s(m′) is larger than nq̄ and hence the events Em and Em′ are independent. We

conclude that Pr[Mn
q̄ 6|= ψk] ≤ (1 − p∗q̄)n/(2·n

∗+1) →n→∞ 0 and hence by choosing
n large enough we are done. �

The following claim shows that under our assumptions we can always find a
long initial segment q̄ of some member of Gen1(p̄) such that ψk holds in Mn

q̄ with
probability close to 0. This is where we make use of our assumptions on p̄ and the
properness of q̄.

Claim 2.11. Let p̄ ∈ Pinf , ε > 0 and assume that for an unbounded set of n ∈ N we
have

∏n
l=1(1− pl) ≤ n−ε. Let k ∈ N be even such that k · ε > 2. Let q̄ ∈ Genr1(p̄) be

proper for l∗, and ζ > 0 be some rational. Then there exists r′ > r and q̄′ ∈ Genr′1 (p̄)

such that q̄ Cprop q̄′ and Pr[M
nq̄′

q̄′ |= ¬ψk] ≥ 1− ζ.

Proof. First recalling Definition 2.5 let l∗∗ = 3l∗ + 2, and for l ≥ nq̄ define r(l) :=
d(l−nq̄ +1)/l∗∗e. Now for each n > nq̄ + l∗∗ denote by q̄n the member of P defined
by:

(qn)l =

 ql 0 < l < nq̄
0 nq̄ ≤ l < n and l 6≡ 1 mod l∗∗

pr+r(l) nq̄ ≤ l < n and l ≡ 1 mod l∗∗.
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Note that nq̄n = n, q̄n ∈ Genr
′

1 (p̄) where r′ = r + r(n − 1) > r and q̄ Cprop q̄n.
Hence if we show that for some n large enough we have Pr[Mn

q̄n |= ¬ψk] ≥ 1 − ζ
then we will be done by putting q̄′ = q̄n. As before let n∗ := max{kl∗, nq̄ + l∗}.
Now fix some n > n∗ and for 1 ≤ m < n− k · l∗ let s(m) be some candidate of type
(n, l∗, k,m). Denote by E = E(s(m)) the event that s(m) is a chain of triangles in
Mn
q̄n . We then have:

Pr[Mn
q̄n |= E] ≤ (ql∗)

k · (q2l∗)
k/2 · (

b(n−n∗)/2c∏
n∗+1

(1− (qi)l))
k.

Now denote:

p∗q̄ := (ql∗)
k · (q2l∗)

k/2 · (
n∗∏
l=1

(1− (qi)l))
−k

and note that it is positive and does not depend on n. Together we get:

Pr[Mn
q̄n |= E] ≤ p∗ · (

b(n−n∗)/2c∏
l=1

(1− (qi)l))
k ≤ p∗q̄ · (

b(n−n∗)/(2l∗∗)c∏
l=1

(1− pl))k.

For each 1 ≤ m < n − k · l∗ the number of candidates of type (n, l∗, k,m) is at
most 4, hence the total number of candidates is no more then 4n. We get that the
expected number (in the probability space Mn

q̄n) of candidates which are a chain

of triangles is at most p∗q̄ · (
∏b(n−n∗)/(2l∗∗)c
l=1 (1− pl))k · 4n. Let E∗ be the following

event: ”No candidate is a chain of triangles”. Then using Claim 2.9 and Markov’s
inequality we get:

Pr[Mn
q̄ |= ψk] = Pr[Mn

q̄ 6|= E∗] ≤ p∗q̄ · (
b(n−n∗)/(2l∗∗)c∏

l=1

(1− pl))k · 4n.

Finally by our assumptions, for an unbounded n we have
∏b(n−n∗)/(2l∗∗)c
l=1 (1 −

pl) ≤ (b(n − n∗)/(2l∗∗)c)−ε, and note that for n large enough we have (b(n −
n∗)/(2l∗∗)c)−ε ≤ n−ε/2. Hence for unbounded n ∈ N we have Pr[Mn

q̄ |= ψk] ≤
p∗q̄ · 4 ·n1−ε·k/2, and as ε · k > 2 this tends to 0 as n tends to ∞, so we are done. �

We are now ready to prove Lemma 2.2. First as (∗) of 1.5 does not hold we have
some ε > 0 such that for an unbounded set of n ∈ N, we have

∏n
l=1(1− pl) ≤ n−ε.

Let k ∈ N be even such that k · ε > 2. Now for each i ∈ N we will construct a pair
(q̄i, ri) such that the following holds:

(1) For i ∈ N, q̄i ∈ Genri1 (p̄) and put ni := nq̄i .
(2) For i ∈ N, q̄i Cprop q̄i+1.
(3) For each odd i > 0, Pr[Mni

q̄i |= ψk] ≥ 1− 1
i and ri = ri−1.

(4) For each even i > 0, Pr[Mni
q̄i |= ¬ψk] ≥ 1− 1

i and ri > ri−1.

Clearly if we construct such 〈(q̄i, ri) : i ∈ N〉 then by taking q̄ = ∪i∈Nq̄i (recall
observation 2.4), we have q̄ ∈ Gen1(p̄) and both ψk and ¬ψk holds infinitely often
in Mn

q̄ , thus finishing the proof. We turn to the construction of 〈(q̄i, ri) : i ∈ N〉,
and naturally we use induction on i ∈ N.
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Case 1: i = 0. Let l1 < l2 be the first and second indexes such that pli > 0.
Put r0 := l2. If l2 ≤ 2l1 define q̄0 by:

(q0)l =

 pl l ≤ l1
0 l1 ≤ l ≤ 2l1
pl2 l = 2l1.

Otherwise if l2 > 2l1 define q̄0 by:

(q0)l =


0 l < dl2/2e
pl1 l = dl2/2e
0 dl2/2e < l < 2dl2/2e
pl2 l = 2dl2/2e.

clearly q̄0 ∈ Genr01 (p̄) as desired, and note that q̄0 is proper (for either l1 or dl2/2e).
Case 2: i > 0 is odd. First set ri = ri−1. Next we use Claim 2.10 where we

set: q̄i−1 for q̄, 1
i for ζ and q̄i is the one promised by the claim. Note that indeed

q̄i−1 Cprop q̄i, q̄i ∈ genri(p̄) and Pr[Mni
q̄i |= ψk] ≥ 1− 1

i .

Case 3: i > 0 is even. We use Claim 2.11 where we set: q̄i−1 for q̄, 1
i for

ζ and (ri, q̄i) are (r′, q̄′) promised by the claim. Note that indeed q̄i−1 Cprop q̄i,
q̄i ∈ Genri1 (p̄) and Pr[Mni

q̄i |= ψk] ≥ 1− 1
i . This completes the proof of Lemma 2.2.

3. Decreasing coordinates

In this section we prove Theorem 1.5 for j ∈ {2, 3}. As before, the ”if” direction
is an immediate conclusion of Theorem 1.2. Moreover as Gen3(p̄) ⊆ Gen2(p̄)
it remains to prove that if (∗) of 1.5 fails then the 0-1 strongly fails for some
q̄ ∈ Gen3(p̄). We divide the proof into two cases according to the behavior of∑n
l=1 pi, which is an approximation of the expected number of neighbors of a given

node in Mn
p̄ . Define:

(∗∗) lim
n→∞

log(

n∑
i=1

pi)/ log n = 0.

Assume that (∗∗) above fails. Then for some ε > 0, the set {n ∈ N :
∑n
i=1 pi ≥ nε}

is unbounded, hence we finish by Lemma 3.1. On the other hand if (∗∗) holds then∑n
i=1 pi increases slower then any positive power of n, formally for all δ > 0 for

some nδ ∈ N we have n > nδ implies
∑n
i=1 pi ≤ nδ. As we assume that (∗) of

Theorem 1.5 fails we have for some ε > 0 the set {n ∈ N :
∏n
i=1(1 − pi) ≤ n−ε}

is unbounded. Together (with −ε/6 as δ) we have that the assumptions of Lemma
3.2 hold, hence we finish the proof.

Lemma 3.1. Let p̄ ∈ Pinf be such that pl < 1 for l > 0. Assume that for some
ε > 0 we have for an unbounded set of n ∈ N:

∑
l≤n pl ≥ nε. Then for some

q̄ ∈ Gen3(p̄) and ψ = ψisolated := ∃x∀y¬x ∼ y, both ψ and ¬ψ holds infinitely
often in Mn

q̄ .

Proof. We construct a series, (q̄1, q̄2, ...) such that for i > 0: q̄i ∈ Pfin, q̄i C q̄i+1

and ∪i>0q̄i ∈ Gen3(p̄). For i ≥ 1 denote ni := nq̄i . We will show that:

∗even For even i > 1: Pr[Mni
q̄i |= ψ] ≥ 1− 1

i .

∗odd For odd i > 1: Pr[Mni
q̄i |= ¬ψ] ≥ 1− 1

i .
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Taking q̄ = ∪i>0q̄i will then complete the proof. We construct q̄i by induction on
i > 0:

Case 1 i = 1: Let n1 = 2 and (q1)1 = p1.
Case 2 even i > 1: As (q̄i−1, ni−1) are given, let us define q̄i were ni > ni−1 is to

be determined later: (qi)l = (qi−1)l for l < ni−1 and (qi)l = 0 for ni−1 ≤ l < ni. For
x ∈ [ni] let Ex be the event: ”x is an isolated point”. Denote p′ := (

∏
0<l<ni−1

(1−
(qi−1)l)

2 and note that p′ > 0 and does not depend on ni. Now for x ∈ [ni],
Pr[Mni

q̄i |= Ex] ≥ p′, furthermore if x, x′ ∈ [ni] and |x−x′| > ni−1 then Ex and Ex′

are independent in Mni
q̄i . We conclude that Pr[Mni

q̄i |= ¬ψ] ≤ (1 − p)bni/(ni−1+1)c

which approaches 0 as ni →∞. So by choosing ni large enough we have ∗even.
Case 3 odd i > 1: As in case 2 let us define q̄i were ni > ni−1 is to be

determined later: (qi)l = (qi−1)l for l < ni−1 and (qi)l = pl for ni−1 ≤ l < ni.
Let n′ = max{n < ni/2 : n = 2m for some m ∈ N}, so ni/4 ≤ n′ < ni/2. Denote
a =

∑
0<l≤n′(qi)l and a′ =

∑
0<l≤bn/4c(qi)l. Again let Ex be the event: ”x is

isolated”. Now as n′ < ni/2, Pr[Mni
q̄i |= Ex] ≤

∏
0<l≤n′(1 − (qi)l). By a repeated

use of: (1− x)(1− y) ≤ (1− x+y
2 )2 we get Pr[Mni

q̄i |= Ex] ≤ (1− a
n′ )

n′ which for n′

large enough is smaller then 2 · e−a, and as a′ ≤ a, we get Pr[Mni
q̄i |= Ex] ≤ 2 · e−a′ .

By the definition of a′ and q̄i we have a′ =
∑bn1/4c
l=1 pl −

∑
l<ni−1

(pl − (qi−1)l).

By our assumption for an unbounded set of ni ∈ N we have a′ ≥ (bni/4c)ε −∑
l<ni−1

(pl − (qi−1)l). But as the sum on the right is independent of ni we have

(again for ni large enough): a′ ≥ (ni/5)ε. Consider the expected number of isolated
points in the probability space Mni

q̄i , denote this number by X(ni). By all the above
we have:

X(ni) ≤ ni · 2 · e−a ≤ ni · 2 · e−a
′
≤ 2ni · e−(ni/5)ε .

The last expression approaches 0 as ni →∞. So by choosing ni large enough (while
keeping a′ ≥ (ni/5)ε we have ∗odd.

Finally notice that indeed ∪i>0q̄i ∈ Gen3(p̄), as the only change we made in the
inductive process is decreasing pl to 0 for ni−1 < l ≤ ni and i is even. �

Lemma 3.2. Let p̄ ∈ Pinf be such that pl < 1 for l > 0. Assume that for some
ε > 0 we have for an unbounded set of n ∈ N:

(α)
∑
l≤n pl ≤ nε/6.

(β)
∏
l≤n(1− pl) ≤ n−ε.

Let k = d 6
ε e + 1 and ψ = ψk be the sentence ”saying” there exists a connected

component which is a path of length k, formally:

ψk := ∃x1...∃xk
∧

1≤i6=j≤k

xi 6= xj∧
∧

1≤i<k

xi ∼ xi+1∧∀y(
∧

1≤i≤k

xi 6= y)→ (
∧

1≤i≤k

¬xi ∼ y).

Then for some q̄ ∈ Gen3(p̄), both ψ and ¬ψ holds infinitely often in Mn
q̄ .

Proof. The proof follows the same line as the proof of 3.1. We construct an increas-
ing series, (q̄1, q̄2, ...), and demand ∗even and ∗odd as in 3.1. Taking q̄ = ∪i>0q̄i will
then complete the proof. We construct q̄i by induction on i > 0:

Case 1 i = 1: Let l(∗) := min{l > 0 : pl > 0} and define n1 = l(∗) + 1 and
(q1)l = pl for l < n1.

Case 2 even i > 1: As before, for ni > ni−1 define: (qi)l = (qi−1)l for l < ni−1

and (qi)l = 0 for ni−1 ≤ l < ni. For 1 ≤ x < ni − k · l(∗) let Ex be the event:
”(x, x+l(∗), ..., x+l(∗)(k−1)) exemplifies ψ.” Formally Ex holds in Mni

q̄i iff {(x, x+
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l(∗), ..., x+ l(∗)(k−1))} is isolated and for 0 ≤ j < k−1, {x+ jl(∗), x+(j+1)l(∗)}
is an edge of Mni

q̄i . The remainder of this case is similar to case 2 of Lemma 3.1 so
we will not go into details. Note that Pr[Mni

q̄i |= Ex] > 0 and does not depend on

ni, and if |x−x′| is large enough (again not depending on ni) then Ex and Ex
′

are
independent in Mni

q̄i . We conclude that by choosing ni large enough we have ∗even.
Case 3 odd i > 1: In this case we make use of the fact that almost always, no

x ∈ [n] have to many neighbors. Formally:

Claim 3.3. Let q̄ ∈ Pinf be such that ql < 1 for l > 0. Let δ > 0 and assume that
for an unbounded set of n ∈ N we have,

∑n
l=1 ql ≤ nδ. Let Enδ be the event: ”No

x ∈ [n] have more than 8n2δ neighbors”. Then we have:

lim sup
n→∞

Pr[Enδ holds in Mn
q̄ ] = 1.

Proof. First note that the size of the set {l > 0 : ql > n−δ} is at most n2δ. Hence
by ignoring at most 2n2δ neighbors of each x ∈ [n], and changing the number of
neighbors in the definition of Enδ to 6n2δ we may assume that for all l > 0, ql ≤ n−δ.
The idea is that the number of neighbors of each x ∈ [n] can be approximated (or in
our case only bounded from above) by a Poisson random variable with parameter
close to

∑n
i=l ql. Formally, for each l > 0 let Bl be a Bernoulli random variable

with Pr[Bl = 1] = ql. For n ∈ N let Xn be the random variable defined by
Xn :=

∑n
l=1Bl. For l > 0 let Pol be a Poisson random variable with parameter

λl := − log(1 − ql) that is for i = 0, 1, 2, ... P r[Pol = i] = e−λl (λl)
i

i! . Note that
Pr[Bl = 0] = Pr[Pol = 0]. Now define Pon :=

∑n
i=1 Pol. By the last sentence we

have Pon ≥st Xn (Pon is stochastically larger than Xn) that is, for i = 0, 1, 2, ...
P r[Pon ≥ i] ≥ Pr[Xn ≥ i]. Now Pon (as the sum of Poisson random variables) is
a Poisson random variable with parameter λn :=

∑n
l=1 λl. Let n ∈ N be such that∑n

l=1 ql ≤ nδ, and define n′ = n′(n) := min{n′ ≥ n : n′ = 2m for some m ∈ N},
so n ≤ n′ < 2n. For 0 < l ≤ n′ let q′l be ql if l ≤ n and 0 otherwise, so we have:∏n
l=1 1− ql =

∏n′

l=1 1− q′l and
∑n
l=1 ql =

∑n′

l=1 q
′
l. Note that if 0 ≤ p, q ≤ 1/4 then

(1− p)(1− q) ≥ (1− p+q
2 )2 · 1

2 . By a repeated use of the last inequality we get that∏n′

i=l(1− q′l) ≥ (1−
∑n′
i=l q

′
l

n′ )n
′ · 1

n′ . We can now evaluate λn:

λn =
n∑
l=1

λl =

n∑
l=1

− log(1− ql) = − log(

n∏
l=1

(1− ql)) = − log(

n′∏
l=1

(1− q′l))

≤ − log[(1−
∑n′

l=1 q
′
l

n′
)n
′
· 1

n′
] = − log[(1−

∑n
l=1 ql
n′

)n
′
· 1

n′
]

≈ − log[e−
∑n
l=1 ql · 1

n′
] ≤ − log[e−n

δ

· 1

2n
] ≤ − log[e−n

2δ

] = n2δ.

Hence by choosing n ∈ N large enough while keeping
∑n
l=1 ql ≤ nδ (which is possible

by our assumption) we have λn ≤ n2δ. We now use the Chernoff bound for Poisson
random variable: If Po is a Poisson random variable with parameter λ and i > 0
we have Pr[Po ≥ i] ≤ eλ(i/λ−1) · (λi )i. Applying this bound to Pon (for n as above)
we get:

Pr[Pon ≥ 3n2δ] ≤ eλ
n(3n2δ/λn−1) · ( λn

3n2δ
)3n2δ

≤ e3n2δ

· ( λn

3n2δ
)3n2δ

≤ (
e

3
)3n2δ

.
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Now for x ∈ [n] let Xn
x be the number of neighbors of x in Mn

q̄ (so Xn
x is a

random variable on the probability space Mn
q̄ ). By the definition of Mn

q̄ we have
Xn
x ≤st 2 · Xn ≤st 2 · Pon. So for unbounded n ∈ N we have for all x ∈ [n],

Pr[Xn
x ≥ 6n2δ] ≤ ( e3 )3n2δ

. Hence by the Markov inequality for unbounded n ∈ N
we have,

Pr[En does not hold in Mn
q̄ ] = Pr[for some x ∈ [n], Xn

x ≥ 3n2δ] ≤ n · (e
3

)6n2δ

.

But the last expression approaches 0 as n approaches∞, Hence we are done proving
the claim. �

We return to Case 3 of the proof of 3.2, and it remains to construct q̄i. As
before for ni > ni−1 define: (qi)l = (qi−1)l for l < ni−1 and (qi)l = pl for ni−1 ≤
l < ni. By the claim above and (α) is our assumptions, for ni large enough we
have Pr[Eniε/6 holds in Mni

q̄i ] ≥ 1/2i, so assume in the rest of the proof that ni is

indeed large enough, and assume that Eniε/6 holds in Mni
q̄i , and all the probabilities

on the space Mni
q̄i will be conditioned to Eniε/6 (even if not explicitly said so). A

k-tuple x̄ = (x1, ..., xk) of members of [ni] is called a k-path (in Mni
q̄i ) if it is without

repetitions and for 0 < j < k we have Mni
q̄i |= xj ∼ xj+1. A k-path is isolated if in

addition no member of {x1, ..., xk} is connected to a member of [ni] \ {x1, ..., xk}.
Now (recall we assume Eniε/6) with probability 1: the number of k-paths in Mni

q̄i is

at most 8k · n1+kε/3. For each (x1, ..., xk) without repetitions we have:

Pr[(x1, ..., xk) is isolated in Mni
q̄i ] =

k∏
j=1

∏
y 6=xj

(1− (qi)|xj−y|) ≤ (

bni/2c∏
l=1

(1− (qi)l))
k.

By assumption (β) we have for unbounded set of ni ∈ N:

bni/2c∏
l=1

(1− (qi)l) ≤
bni/2c∏
l=ni−1

(1− pl) ≤
∏
l<ni

(1− ql) · (bni/2c)−ε ≤ (ni)
−ε/2.

Together letting Y (ni) be the expected number of isolated k tuples in Mni
q̄i we have:

Y (ni) ≤ 8k · (ni)1+kε/3 · (ni)−kε/2 = 8k · (ni)1−kε/6 →ni→∞ 0.

So by choosing ni large enough and using Markov’s inequality, we have ∗odd, and
we are done. �

4. Allowing some probabilities to equal 1

In this section we analyze the hereditary 0-1 law for p̄ where some of the pi-s
may equal 1. For p̄ ∈ Pinf let U∗(p̄) := {l > 0 : pl = 1}. The situation U∗(p̄) 6= ∅
was discussed briefly in the end of section 4 of [1], an example was given there of
some p̄ consisting of only ones and zeros with |U∗(p̄)| = ∞ such that the 0-1 law
fails for Mn

p̄ . We follow the lines of that example and prove that if |U∗(p̄)| = ∞
and j ∈ {1, 2, 3}, then the j-hereditary 0-1 law for L fails for p̄. This is done in
4.1. The case 0 < |U∗(p̄)| < ∞ is also studied and a full characterization of the
j-hereditary 0-1 law for L is given in 4.6 for j ∈ {2, 3}, and for j = 1, 1 < |U∗(p̄)|.
The case j = 1 and 1 = |U∗(p̄)| is discussed in section 5.

Theorem 4.1. Let p̄ ∈ Pinf be such that U∗(p̄) is infinite, and j be in {1, 2, 3}.
Then Mn

p̄ does not satisfy the j-hereditary weak convergence law for L.
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Proof. We start with the case j = 1. The idea here is similar to that of section 2.
We show that some q̄ ∈ Gen1(p̄) has a structure (similar to the ”proper” structure
defined in 2.5) that allows us to identify the sections ”close” to 1 or n in Mn

q̄ . It is
then easy to see that if q̄ has infinitely many ones and infinitely many ”long” sections
of consecutive zeros, then the sentence saying: ”there exists an edge connecting
vertexes close to the the edges”, will exemplify the failure of the 0-1 law for Mn

q̄ .

This is formulated below. Consider the following demands on q̄ ∈ Pinf :

(1) Let l∗ < l∗∗ be the first two members of U∗(q̄), then l∗ is odd and l∗∗ = 2·l∗.
(2) If l1, l2, l3 all belong to {l > 0 : ql > 0} and l1 + l2 = l3 then l1 = l2 = l∗.
(3) The set {n ∈ N : n− 2l∗ < l < n⇒ ql = 0} is infinite.
(4) The set U∗(q̄) is infinite.

We first claim that some q̄ ∈ Gen1(p̄) satisfies the demands (1)-(4) above. This is
straight forward. We inductively add enough zeros before each nonzero member of
p̄ guaranteing that it is larger than the sum of any two (not necessarily different)
nonzero members preceding it. We continue until we reach l∗, then by adding zeros
either before l∗ or before l∗∗ we can guarantee that l∗ is odd and that l∗∗ = 2 · l∗,
and hence (1) holds. We then continue the same process from l∗∗, adding at least
2l∗ zero’s at each step. This guaranties (2) and (3). (4) follows immediately form
our assumption that U∗(p̄) is infinite. Assume that q̄ satisfies (1)-(4) and n ∈ N.
With probability 1 we have:

{x, y, z} is a triangle in Mn
q̄ iff {x, y, z} = {l, l + l∗, l + l∗∗} for some 0 < l ≤ n.

To see this use (1) for the ”if” direction and (2) for the ”only if” direction. We
conclude that letting ψext(x) be the L sentence saying that x belongs to exactly
one triangle, for each n ∈ N and m ∈ [n] with probability 1 we have:

Mn
q̄ |= ψext[m] iff m ∈ [1, l∗] ∪ (n− l∗, n].

We are now ready to prove the failure of the weak convergence law in Mn
q̄ , but

in the first stage let us only show the failure of the convergence law. This will be
useful for other cases (see Remark 4.2 below). Define

ψ := (∃x∃y)ψext(x) ∧ ψext(y) ∧ x ∼ y.

Recall that l∗ is the first member of U∗(p̄), hence for some p > 0 (not depending
on n) for any x, y ∈ [1, l∗] we have Pr[Mn

q̄ |= ¬x ∼ y] ≥ p and similarly for any
x, y ∈ (n− l∗, n]. We conclude that:

Pr[(∃x∃y)(x, y ∈ [1, l∗] or x, y ∈ (n− l∗, n]) and x ∼ y] ≤ 1− p2(l
∗
2 ) < 1.

By all the above, for each l such that ql = 1 we have Pr[M l+1
q̄ |= ψ] = 1, as the

pair (1, l + 1) exemplifies ψ in M l+1
q̄ with probability 1. On the other hand if n is

such that n − 2l∗ < l < n ⇒ ql = 0 then Pr[Mn
q̄ |= ψ] ≤ 1 − p2(l

∗
2 ). Hence by (3)

and (4) above, ψ exemplifies the failure of the convergence law for Mn
q̄ as required.

We return to the proof of the failure of the weak convergence law. Define:

ψ′ = ∃x0...∃x2l∗−1[
∧

0≤i<i′<2l∗

xi 6= xi′ ∧ ∀y((
∧

0≤i<2l∗

y 6= xi)→ ¬ψext(y))

∧
∧

0≤i<2l∗

ψext(xi) ∧
∧

0≤i<l∗
x2i ∼ x2i+1].
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We will show that both ψ′ and ¬ψ′ holds infinitely often in Mn
q̄ . First let n ∈ N

be such that qn−l∗ = 1. Then by choosing for each 0 ≤ i < l∗, x2i := i + 1 and
x2i+1 := n− l∗+1+ i, we will get that the sequence (x0, ..., x2l∗−1) exemplifies ψ′ in
Mn
q̄ (with probability 1). As by assumption (4) above the set {n ∈ N : qn−l∗ = 1} is

unbounded we have lim supn→∞[Mn
q̄ |= ψ′] = 1. For the other direction let n ∈ N

be such that for each n − 2l∗ < l < n, ql = 0. Then Mn
q̄ satisfies (again with

probability 1) for each x, y ∈ [1, l∗] ∪ (n − l∗, n] such that x ∼ y: x ∈ [1, l∗] iff
y ∈ [1, l∗]. Now assume that (x0, ..., x2l∗−1) exemplifies ψ′ in Mn

q̄ . Then for each
0 ≤ i < l∗, x2i ∈ [1, l∗] iff x2i+1 ∈ [1, l∗]. We conclude that the set [1, l∗] is of even
size, thus contradicting (1). So we have Pr[Mn

q̄ |= ψ′] = 0. But by assumption (3)
above the set of natural numbers, n, for which we have n − 2l∗ < l < n implies
ql = 0 is unbounded, and hence we have lim supn→∞[Mn

q̄ |= ¬ψ′] = 1 as desired.
We turn to the proof of the case j ∈ {2, 3}, and as Gen3(p̄) ⊆ Gen2(p̄) it is

enough to prove that for some q̄ ∈ Gen3(p̄) the 0-1 law for L strongly fails in
Mn
q̄ . Motivated by the example mentioned above appearing in the end of section

4 of [1], we let ψ be the sentence in L implying that each edge of the graph is
contained in a cycle of length 4. Once again we use an inductive construction of
(q̄1, q̄2, q̄3, ...) in Pfin such that q̄ =

⋃
i>0 q̄i ∈ Gen3(p̄) and both ψ and ¬ψ hold

infinitely often in Mn
q̄ . For i = 1 let nq̄1 = n1 := min{l : pl = 1} + 1 and define

(q1)l = 0 if 0 < l < n1 − 1 and (q1)n1−1 = 1. For even i > 1 let nq̄i = ni :=
min{l > 4ni−1 : pl = 1} + 1 and define (qi)l = (qi−1)l if 0 < l < ni−1, (qi)l = 0 if
ni−1 ≤ l < ni − 1 and (q1)n1−1 = 1. For odd i > i recall n1 = min{l : pl = 1}+ 1
and let nq̄i = ni := ni−1 + n1. Now define (qi)l = (qi−1)l if 0 < l < ni−1 and

(qi)l = 0 if ni−1 ≤ l < ni. Clearly we have for even i > 1, Pr[Mni+1
q̄ni+1

|= ψ] = 0 and

for odd i > 1 Pr[Mni
q̄ni
|= ψ] = 1. Note that indeed

⋃
i>0 q̄i ∈ Gen3(p̄), hence we

are done. �

Remark 4.2. In the proof of the failure of the convergence law in the case j =
1 the assumption |U∗(p̄)| = ∞ is not needed, our proof works under the weaker
assumption |U∗(p̄)| ≥ 2 and for some p > 0, {l > 0 : pl > p} is infinite. See below
more on the case j = 1 and 1 < |U∗(p̄)| <∞.

Lemma 4.3. Let q̄ ∈ Pinf and assume:

(1) Let l∗ < l∗∗ be the first two members of U∗(q̄) (in particular assume
|U∗(q̄)| ≥ 2) then l∗∗ = 2 · l∗.

(2) If l1, l2, l3 all belong to {l > 0 : ql > 0} and l1 + l2 = l3 then {l1, l2, l3} =
{l, l + l∗, l + l∗∗} for some l ≥ 0.

(3) Let l∗∗∗ be the first member of {l > 0 : 0 < ql < 1} (in particular assume
|{l > 0 : 0 < ql < 1}| ≥ 1) then the set {n ∈ N : n ≤ l ≤ n + l∗∗ + l∗∗∗ ⇒
ql = 0} is infinite.

Then the 0-1 law for L fails for Mn
q̄ .

Proof. The proof is similar to the case j = 1 in the proof of Theorem 4.1, hence we
will not go into detail. Below n is some large enough natural number (say larger
than 3 · l∗∗ · l∗∗∗) such that (3) above holds, and if we say that some property holds
in Mn

q̄ we mean it holds there with probability 1. Let ψ1
ext(x) be the formula in L

implying that x belongs to at most two distinct triangles. Then for all m ∈ [n]:

Mn
q̄ |= ψ1

ext[m] iff m ∈ [1, l∗∗] ∪ (n− l∗∗, n].
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Similarly for any natural t < n/3l∗∗ define (using induction on t):

ψtext(x) := (∃y∃z)x ∼ y ∧ x ∼ z ∧ y ∼ z ∧ (ψt−1
ext (y) ∨ ψt−1

ext (z))

we then have for all m ∈ [n]:

Mn
q̄ |= ψtext[m] iff m ∈ [1, tl∗∗] ∪ (n− tl∗∗, n].

Now for 1 ≤ t < n/3l∗∗ letm∗(t) be the minimal number of edges inMn
q̄ |[1,t·l∗∗]∪(n−t·l∗∗,n]

i.e only edges with probability one and within one of the intervals are counted, for-
mally

m∗(t) := 2 · |{(m,m′) : m < m′ ∈ [1, t · l∗∗] and qm′−m = 1}|.

Let 1 ≤ t∗ < n/3l∗∗ be such that l∗∗∗ < l∗∗ · t∗ (it exists as n is large enough). Note
that m∗(t∗) depends only on q̄ and not on n hence we can define

ψ := ”There exists exactly m∗(t∗) couples {x, y} s.t. ψt
∗

ext(x) ∧ ψt
∗

ext(y) ∧ x ∼ y.”

We then have Pr[mn
q̄ |= ψ] ≤ (1−ql∗∗∗)2 < 1 as we have m∗(t∗) edges on [1, t∗l∗∗]∪

(n−t∗l∗∗, n] that exist with probability 1, and at least two additional edges (namely
{1, l∗∗∗ + 1} and {n− l∗∗∗, n}) that exist with probability ql∗∗∗ each. On the other
hand if we define:

p′ :=
∏
{1− qm′−m : m < m′ ∈ [1, t∗ · l∗∗] and qm′−m < 1}

and note that p′ does not depend on n, then (recalling assumption (3) above) we
have Pr[mn

q̄ |= ψ] ≥ (p′)2 > 0 thus completing the proof. �

Lemma 4.4. Let q̄ ∈ Pinf be such that for some l1 < l2 ∈ N \ {0} we have:
0 < pl1 < 1, pl2 = 1 and pl = 0 for all l 6∈ {l1, l2}. Then the 0-1 law for L fails for
Mn
q̄ .

Proof. Let ψ be the sentence in L ”saying” that some vertex has exactly one neigh-
bor and this neighbor has at least three neighbors. Formally:

ψ := (∃x)(∃!y)x ∼ y ∧ (∀z)x ∼ z → (∃u1∃u2∃u3)
∧

0<i<j≤3

ui 6= uj ∧
∧

0<i≤3

z ∼ ui.

We first show that for some p > 0 and n0 ∈ N, for all n > n0 we have Pr[Mn
q̄ |=

ψ] > p. To see this simply take n0 = l1+l2+1 and p = (1−pl1)(pl1). Now for n > n0

in Mn
q̄ , with probability 1− pl1 the node 1 ∈ [n] has exactly one neighbor (namely

1 + l2 ∈ [n]) and with probability at least pl1 , 1 + l2 is connected to 1 + l1 + l2, and
hence has three neighbors (1, 1 + 2l2 and 1 + l1 + l2). This yields the desired result.
On the other hand for some p′ > 0 we have for all n ∈ N, Pr[Mn

q̄ |= ¬ψ] > p′. To
see this note that for all n, only members of [1, l2]∪(n−l2, n] can possibly exemplify
ψ, as all members of (l2, n − l2] have at least two neighbors with probability one.
For each x ∈ [1, l2] ∪ (n − l2, n], with probability at least (1 − p1)2, x dose not
exemplify ψ (since the unique neighbor of x has less then three neighbors). As the
size of [1, l2] ∪ (n − l2, n] is 2 · l2 we get Pr[Mn

q̄ |= ¬ψ] > (1 − p1)2l2 := p′ > 0.
Together we are done. �

Lemma 4.5. Let p̄ ∈ Pinf be such that |U∗(p̄)| < ∞ and pi ∈ {0, 1} for i > 0.
Then Mn

p̄ satisfy the 0-1 law for L.
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14 SAHARON SHELAH AND MOR DORON

Proof. Let Sn be the (not random) structure in vocabulary {Suc}, with universe
[n] and Suc is the successor relation on [n]. It is straightforward to see that any
sentence ψ ∈ L has a sentence ψS ∈ {Suc} such that

Pr[Mn
p̄ |= ψ] =

{
1 Sn |= ψS

0 Sn 6|= ψS .

Also by a special case of Gaifman’s result from [3] we have: for each k ∈ N there

exists some nk ∈ N such that if n, n′ > nk then Sn and Sn
′

have the same first
order theory of quantifier depth k. Together we are done. �

Conclusion 4.6. Let p̄ ∈ Pinf be such that 0 < |U∗(p̄)| <∞.

(1) The 2-hereditary 0-1 law holds for p̄ iff |{l > 0 : pl > 0}| > 1.
(2) The 3-hereditary 0-1 law holds for p̄ iff {l > 0 : 0 < pl < 1} 6= ∅.
(3) If furthermore 1 < |U∗(p̄)| then the 1-hereditary 0-1 law holds for p̄ iff
{l > 0 : 0 < pl < 1} 6= ∅.

Proof. For (1) note that if indeed |{i > 0 : pl > 0}| > 1 then some q̄ ∈ Gen2(p̄)
is as in the assumption of Lemma 4.4, otherwise any q̄ ∈ Gen2(p̄) has at most 1
nonzero member hence Mn

q̄ satisfy the 0-1 law by either 4.5 or 1.2.
For (2) note that if {i > 0 : 0 < pl < 1} 6= ∅ then some q̄ ∈ Gen3(p̄) is as in the

assumption of Lemma 4.4, otherwise any q̄ ∈ Gen3(p̄) is as in the assumption of
Lemma 4.5 and we are done.

Similarly for (3) note that if 1 < |U∗(p̄)| and {l > 0 : 0 < pl < 1} 6= ∅ then some
q̄ ∈ Gen1(p̄) satisfies assumptions (1)-(3) of Lemma 4.3, otherwise any q̄ ∈ Gen1(p̄)
is as in the assumption of Lemma 4.5 and we are done. �

5. When exactly one probability equals 1

In this section we assume:

Assumption 5.1. p̄ is a fixed member of Pinf such that |U∗(p̄)| = 1 hence denote
U∗(p̄) = {l∗}, and assume

(∗)′ lim
n→∞

log(
∏

l∈[n]\{l∗}

(1− pl))/ log(n) = 0.

We try to determine when the 1-hereditary 0-1 law holds. The assumption of
(∗)′ is justified as the proof in section 2 works also in this case and in fact in any
case that U∗(p̄) is finite. To see this replace in section 2 products of the form∏
l<n(1 − pl) by

∏
l<n,l 6∈U∗(p̄)(1 − pl), sentences of the form ”x has valency m”

by ”x has valency m + 2|U∗(p̄)|”, and similar simple changes. So if (∗)′ fails then
the 1-hereditary weak convergence law fails, and we are done. It seems that our
ability to ”identify” the l∗-boundary (i.e. the set [1, l∗]∪(n− l∗, n]) in Mn

p̄ is closely
related to the holding of the 0-1 law. In Conclusion 5.6 we use this idea and give a
necessary condition on p̄ for the 1-hereditary weak convergence law. The proof uses
methods similar to those of the previous sections. Finding a sufficient condition
for the 1-hereditary 0-1 law seems to be harder. It turns out that the analysis of
this case is, in a way, similar to the analysis when we add the successor relation
to our vocabulary. This is because the edges of the form {l, l + l∗} appear with
probability 1 similarly to the successor relation. There are, however, some obvious
differences. Let L+ be the vocabulary {∼, S}, and let (M+)

n
p̄ be the random L+
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structure with universe [n], ∼ is the same as in Mn
p̄ , and S(M+)

n
p̄ is the successor

relation on [n]. Now if for some l∗∗ > 0, 0 < pl∗∗ < 1 then (M+)np̄ does not satisfy

the 0-1 law for L+. This is because the elements 1 and l∗∗ + 1 are definable in L+

and hence some L+ sentence holds in (M+)
n
p̄ iff {1, l∗∗ + 1} is an edge of (M+)

n
p̄

which holds with probability pl∗∗ . In our case, as in L we can not distinguish edges
of the form {l, l+ l∗} from the rest of the edged, the 0-1 law may hold even if such
l∗ exists. In Lemma 5.10 below we show that if, in fact, we can not ”identify the
edges” in Mn

p̄ then the 0-1 law, holds in Mn
p̄ . This is translated in Theorem 5.14

to a sufficient condition on p̄ for the 0-1 law holding in Mn
p̄ , but not necessarily

for the 1-hereditary 0-1 law. The proof uses ”local” properties of graphs. It seems
that some form of ”1-hereditary” version of 5.14 is possible. In any case we could
not find a necessary and sufficient condition for the 1-hereditary 0-1 law, and the
analysis of this case is not complete.

We first find a necessary condition on p̄ for the 1-hereditary weak convergence
law. Let us start with a definition of a structure on a sequence q̄ ∈ P that enables
us to ”identify” the l∗-boundary in Mn

q̄ .

Definition 5.2. (1) A sequence q̄ ∈ P is called nice if:
(a) U∗(q̄) = {l∗}.
(b) If l1, l2, l3 ∈ {l < nq̄ : ql > 0} then l1 + l2 6= l3.
(c) If l1, l2, l3, l4 ∈ {l < nq̄ : ql > 0} then l1 + l2 + l3 6= l4.
(d) If l1, l2, l3, l4 ∈ {l < np̄ : ql > 0}, l1 + l2 = l3 + l4 and l1 + l2 < nq̄ then
{l1, l2} = {l3, l4}.

(2) Let φ1 be the following L-formula:

φ1(y1, z1, y2, z2) := y1 ∼ z1 ∧ z1 ∼ z2 ∧ z2 ∼ y2 ∧ y2 ∼ y1 ∧ y1 6= z2 ∧ z1 6= y2.

(3) For k ≥ 0 define by induction on k the L-formula φ1
k(y1, z1, y2, z2) by:

• φ1
0(y1, z1, y2, z2) := y1 = y2 ∧ z1 = z2 ∧ y1 6= z1.

• φ1
1(y1, z1, y2, z2) := φ1(y1, z1, y2, z2).

• φ1
k+1(y1, z1, y2, z2) :=

(∃y∃z)[(φ1
k(y1, z1, y, z)∧φ1(y, z, y2, z2))∨(φ1

k(y2, z2, y, z)φ
1(y1, z1, y, z))].

(4) For k1, k2,∈ N let φ2
k1,k2

be the following L-formula:

φ2
k1,k2

(y, z) := (∃x1∃x2∃x3∃x4)[φ1
k1

(y, z, x1, x2) ∧ φ1
k2

(x2, x1, x3, x4) ∧ ¬x3 ∼ x4].

(5) For k1, k2,∈ N let φ3
k1,k2

be the following L formula:

φ3
k1,k2

(x) := (∃!y)[x ∼ y ∧ ¬φ2
k1,k2

(x, y)].

Observation 5.3. Let q̄ ∈ P be nice and n ∈ N be such that n < nq̄. Then the
following holds in Mn

q̄ with probability 1:

(1) For y1, z1, y2, z2 ∈ [n], if Mn
q̄ |= φ1[y1, z1, y2, z2] then y1 − z1 = y2 − z2.

(Use (d) in the definition of nice).
(2) For k ∈ N and y1, z1, y2, z2 ∈ [n], if Mn

q̄ |= φ1
k[y1, z1, y2, z2] then y1 − z1 =

y2 − z2. (Use (1) above and induction on k).
(3) For k1, k2 ∈ N and y, z ∈ [n], if Mn

q̄ |= φ2
k1,k2

[y, z] then |y − z| 6= l∗. (Use

(2) above and the definition of φ2
k1,k2

(y, z)).

(4) For k1, k2 ∈ N and x ∈ [n], if Mn
q̄ |= φ3

k1,k2
[x] then x ∈ [1, l∗] ∪ (n− l∗, n].

(Use (3) above).
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16 SAHARON SHELAH AND MOR DORON

The following claim shows that if q̄ is nice (and have a certain structure) then,
with probability close to 1, φ3

3,0[y] holds in Mn
q̄ for all y ∈ [1, l∗]∪ (n− l∗, n]. This,

together with (4) in the observation above gives us a ”definition” of the l∗-boundary
in Mn

q̄ .

Claim 5.4. Let q̄ ∈ Pfin be nice and denote n = nq̄. Assume that for all l > 0,
ql > 0 implies l < bn/3c. Assume further that for some ε > 0, 0 < ql < 1 ⇒ ε <
ql < 1 − ε. Let y0 ∈ [1, l∗] ∪ (n − l∗, n]. Denote m := |{0 < l < np̄ : 0 < ql < 1}|.
Then:

Pr[Mn
q̄ |= ¬φ3

3,0[y0]] ≤ (
∑

{y∈[n]:|y0−y|6=l∗}

q|y0−y|)(1− ε
11)m/2−1.

Proof. We deal with the case y0 ∈ [1, l∗], the case y0 ∈ (n − l∗, n] is symmetric.
Let z0 ∈ [n] be such that l0 := z0 − y0 ∈ {0 < l < n : 0 < ql < 1} (so l0 6= l∗

and l0 < bn/3c), and assume that Mn
q̄ |= y0 ∼ z0. For any l1, l2 < bn/3c denote

(see diagram below): y1 := y0 + l1, y2 := y0 + l2, y3 := y2 + l1 = y1 + l2 =
y0 + l1 + l2 and symmetrically for z1, z2, z3 (so yi and zi for i ∈ {0, 1, 2, 3} all

belong to [n]). y0
l0

l1

l2

z0

l1

l2

y1

l2

z1

l2

y2
l0

l1

z2

l1

y3
l0

z3

The following holds in

Mn
q̄ with probability 1: If for some l1, l2 < bn/3c such that (l0, l1, l2) is without

repetitions, we have:

(∗)1 (y0, y1, y3, y2), (z0, z1, z3, z2) and (y2, y3, z3, z2) are all circles in Mn
q̄ .

(∗)2 {y1, z1} is not an edge of Mn
q̄ .

Then Mn
q̄ |= φ2

0,3[y0, z0]. Why? As (y1, y0, z0, z1), in the place of (x1, x2, x3, x4),

exemplifies Mn
p̄ |= φ2

0,3[y0, z0]. Let us fix z0 = y0 + l0 and assume that Mn
q̄ |= y0 ∼

z0. (Formally we condition the probability space Mn
q̄ to the event y0 ∼ z0.) Denote

Ly0,z0 := {(l1, l2) : ql1 , ql2 > 0, l0 6= l1, l0 6= l2, l1 6= l2}.
For (l1, l2) ∈ Ly0,z0 , the probability that (∗)1 and (∗)2 holds, is (1−ql0)(ql0)2(ql1)4(ql2)4.
Denote the event that (∗)1 and (∗)2 holds by Ey0,z0(l1, l2). Note that if (l1, l2), (l′1, l

′
2) ∈

Ly0,z0 are such that (l1, l2, l
′
1, l
′
2) is without repetitions and l1 + l2 6= l′1 + l′2 then the

events Ey0,z0(l1, l2) and Ey0,z0(l′1, l
′
2) are independent. Now recall that m := |{l >

0 : ε < ql < 1− ε}|. Hence we have some L′ ⊆ Ly0,z0 such that: |L′| = bm/2− 1c,
and if (l1, l2), (l′1, l

′
2) ∈ L′ then the events Ey0,z0(l1, l2) and Ey0,z0(l′1, l

′
2) are inde-

pendent. We conclude that

Pr[Mn
q̄ |= ¬φ2

0,3[y0, z0]|Mn
q̄ |= y0 ∼ z0] ≤

(1− (1− ql0)(ql0)2(ql1)4(ql2)4)m/2−1 ≤ (1− ε11)m/2−1.
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This is a common bound for all z0 = y0 + l0, and the same bound holds for all
z0 = y0 − l0 (whenever it belongs to [n]). We conclude that the expected number
of z0 ∈ [n] such that: |z0 − y0| 6= l∗, Mn

q̄ |= y0 ∼ z0 and Mn
q̄ |= ¬φ2

0,3[y0, z0] is

at most (
∑
{y∈[n]:|y0−y|6=l∗} q|y0−y|)(1 − ε11)m/2−1. Now by (3) in Observation 5.3,

Mn
q̄ |= φ2

0,3[y0, y0 + l∗]. By Markov’s inequality and the definition of φ3
0,3(x) we are

done. �

We now prove two lemmas which allow us to construct a sequence q̄ such that
for ϕ := ∃xφ3

0,3(x) both ϕ and ¬ϕ will hold infinitely often in Mn
q̄ .

Lemma 5.5. Assumep̄ satisfy
∑
l>0 pl = ∞, and let q̄ ∈ Genr1(p̄) be nice. Let

ζ > 0 be some rational number. Then there exists some r′ > r and q̄′ ∈ Genr′1 (p̄)

such that: q̄′ is nice, q̄ C q̄′ and Pr[M
nq̄′

q̄′ |= ϕ] ≤ ζ.

Proof. Define p1 := (
∏
l∈[nq̄ ]\{l∗}(1 − pl))

2, and choose r′ > r large enough such

that
∑
r<l≤r′ pl ≥ 2l∗ · p1/ζ. Now define q̄′ ∈ Genr′1 (p̄) in the following way:

q′l =


ql 0 < l < nq̄
0 nq̄ ≤ l < (r′ − r) · nq̄
pr+i l = (r′ − r + i) · nq̄ for some 0 < i ≤ (r′ − r)
0 (r′ − r) · nq̄ ≤ l < 2(r′ − r) · nq̄ and l 6≡ 0 (mod nq̄).

Note that indeed q̄′ is nice and q̄ C q̄′. Denote n := nq̄′ = 2(r′ − r) · nq̄. Note
further that every member of Mn

q̄′ have at most one neighbor of distance more

more than n/2, and all the rest of its neighbors are of distance at most nq̄. We now
bound from above the probability of Mn

q̄′ |= ∃xφ3
0,3(x). Let x be in [1, l∗]. For each

0 < i ≤ (r′ − r) denote yi := x+ (r′ − r+ i) · nq̄ (hence yi ∈ [n/2, n]) and let Ei be
the following event: ”Mn

q̄′ |= yi ∼ z iff z ∈ {x, yi + l∗, yi − l∗}”. By the definition

of q̄′, each yi can only be connected to either x of to members of [y − nq̄, y + nq̄],
hence we have

Pr[Ei] = q′(r′−r+i)·nq̄ · p
1 = pr+i · p1.

As i 6= j ⇒ n/2 > |yi − yj | > nq̄ we have that the Ei-is are independent events.
Now if Ei holds then by the definition of φ2

0,3 we have Mn
q̄′ |= ¬φ2

0,3[x, yi], and

as Mn
q̄′ |= ¬φ2

0,3[x, x + l∗] this implies Mn
q̄′ |= ¬φ3

0,3[x]. Let the random variable

X denote the number of 0 < i ≤ (r′ − r) such that Ei holds in Mn
q̄′ . Then by

Chebyshev’s inequality we have:

Pr[Mn
q̄′ |= φ3

0,3[x]] ≤ Pr[X = 0] ≤ V ar(X)

Exp(X)2
≤ 1

Exp(X)
≤ p1∑

0<i≤(r′−r)

pr+i
≤ ζ

2l∗
.

This is true for each x ∈ [1, l∗] and the symmetric argument gives the same bound
for each x ∈ (n − l∗, n]. Finally note that if x, x + l∗ both belong to [n] then
Mn
q̄′ |= ¬φ2

0,3[x, x + l∗] (see 5.3(4)). Hence if x ∈ (l∗, n − l∗] then Mn
q̄′ |= ¬φ3

0,3[x].
We conclude that:

Pr[Mn
q̄′ |= ∃xφ3

0,3(x)] = Pr[Mn
q̄′ |= φ] ≤ ζ

as desired. �

Lemma 5.6. Assume p̄ satisfy 0 < pl < 1 ⇒ ε < pl < 1 − ε for some ε > 0,
and

∑∞
n=1 pn = ∞. Let q̄ ∈ Genr1(p̄) be nice, and ζ > 0 be some rational number.
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Then there exists some r′ > r and q̄′ ∈ Genr′1 (p̄) such that: q̄′ is nice, q̄ C q̄′ and

Pr[M
nq̄′

q̄′ |= ϕ] ≥ 1− ζ.

Proof. This is a direct consequence of Claim 5.4. For each r′ > r denote m(r′) :=
|{0 < l ≤ r′ : 0 < pl < 1}|. Trivially we can choose r′ > r such that m(r′)(1 −
ε11)m(r′)/2−1 ≤ ζ. As q̄ is nice there exists some nice q̄′ ∈ Genr′1 (p̄) such that q̄ C q̄′.
Note that ∑

{y∈[n]:|1−y|6=l∗}

q′|1−y| ≤
∑

{0<l<nq̄′ :l 6=l∗}

q′l ≤ m(r′)

and hence by 5.4 we have:

Pr[Mn
q̄′ |= ¬φ] ≤ Pr[Mn

q̄′ |= ¬φ3
2,0[1]] ≤ m(r′)(1− ε11)m(r′)/2−1 ≤ ζ

as desired. �

From the last two lemmas we conclude:

Conclusion 5.7. Assume that p̄ satisfy 0 < pl < 1⇒ ε < pl < 1−ε for some ε > 0,
and

∑∞
n=1 pn =∞. Then p̄ does not satisfy the 1-hereditary weak convergence law

for L.

The proof is by inductive construction of q̄ ∈ Gen1(p̄) such that for ϕ :=
∃xφ3

0,3(x) both ϕ and ¬ϕ hold infinitely often in Mn
q̄ , using Lemmas 5.5, 5.6 as

done on previous proofs.
From Conclusion 5.7 we have a necessary condition on p̄ for the 1-hereditary weak

convergence law. We now find a sufficient condition on p̄ for the (not necessarily
1-hereditary) 0-1 law. Let us start with definitions of distance in graphs and of
local properties in graphs.

Definition 5.8. Let G be a graph on vertex set [n].

(1) For x, y ∈ [n] let distG(x, y) := min{k ∈ N : G has a path of length k from x to y}.
Note that for each k ∈ N there exists some L-formula θk(x, y) such that for
all G and x, y ∈ [n]:

G |= θk[x, y] iff distG(x, y) ≤ k.
(2) For x ∈ [n] and r ∈ N let BG(r, x) := {y ∈ [n] : distG(x, y) ≤ r} be the ball

with radius r and center x in G.
(3) An L-formula φ(x) is called r-local if every quantifier in φ is restricted to

the set BG(r, x). Formally each appearance of the form ∀y... in φ is of the
form (∀y)θr(x, y)→ ..., and similarly for ∃y and other variables. Note that
for any G, x ∈ [n], r ∈ N and an r-local formula φ(x) we have:

G |= φ[x] iff G|B(r,x) |= φ[x].

(4) An L-sentence is called local if it has the form

∃x1...∃xm
∧

1≤i≤m

φ(xi)
∧

1≤i<j≤m

¬θ2r(xi, xj)

where φ = φ(x) is an r-local formula for some r ∈ N.
(5) For l, r ∈ N and an L-formula φ(x) we say that the l-boundary of G is

r-indistinguishable by φ(x) if for all z ∈ [1, l] ∪ (n− l, n] there exists some
y ∈ [n] such that BG(r, y) ∩ ([1, l] ∪ (n− l, n]) = ∅ and G |= φ[z]↔ φ[y]

We can now use the following famous result from [3]:
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Theorem 5.9 (Gaifman’s Theorem). Every L-sentence is logically equivalent
to a boolean combination of local L-sentences.

We will use Gaifman’s theorem to prove:

Lemma 5.10. Assume that for all k ∈ N and k-local L-formula ϕ(z) we have:

lim
n→∞

Pr[The l∗-boundary of Mn
p̄ is k-indistinguishable by ϕ(z)] = 1.

Then the 0-1 law for L holds in Mn
p̄ .

Proof. By Gaifman’s theorem it is enough if we prove that the 0-1 law holds in Mn
p̄

for local L-sentences. Let

ψ := ∃x1...∃xm
∧

1≤i≤m

φ(xi)
∧

1≤i<j≤m

¬θ2r(xi, xj)

be some local L-sentence, where φ(x) is an r-local formula.
Define H to be the set of all 4-tuples (l, U, u0, H) such that: l ∈ N, U ⊆ [l],

u0 ∈ U and H is a graph with vertex set U . We say that some (l, U, u0, H) ∈ H is
r-proper for p̄ (but as p̄ is fixed we usually omit it) if it satisfies:

(∗1) For all u ∈ U , distH(u0, u) ≤ r.
(∗2) For all u ∈ U , if distH(u0, u) < r then u+ l∗, u− l∗ ∈ U .
(∗3) Pr[M l

p̄|U = H] > 0.

We say that a member of H is proper if it is r-proper for some r ∈ N.
Let H be a graph on vertex set U ⊆ [l] and G be a graph on vertex set [n]. We

say that f : U → [n] is a strong embedding of H in G if:

• f in one-to one.
• For all u, v ∈ U , H |= u ∼ v iff G |= f(u) ∼ f(v).
• For all u, v ∈ U , f(u)− f(v) = u− v.
• If i ∈ Im(f), j ∈ [n] \ Im(f) and |i− j| 6= l∗ then G |= ¬i ∼ j.

We make two observations which follow directly from the definitions:

(1) If (l, U, u0, H) ∈ H is r-proper and f : U → [n] is a strong embedding of
H in G then Im(f) = BG(r, f(u0)). Furthermore for any r-local formula
φ(x) and u ∈ U we have, G |= φ[f(u)] iff H |= φ[u].

(2) Let G be a graph on vertex set [n] such that Pr[Mn
p̄ = G] > 0, and x ∈ [n]

be such that BG(r−1, x) is disjoint to [1, l∗]∪ (n− l∗, n]. Denote by m and
M the minimal and maximal elements of BG(r, x) respectively. Denote by
U the set {i − m + 1 : i ∈ BG(r, x)} and by H the graph on U defined
by H |= u ∼ v iff G |= (u + m − 1) ∼ (v + m − 1). Then the 4-tuple
(M −m+ 1, U, x−m+ 1, H) is an r-proper member of H. Furthermore for
any r-local formula φ(x) and u ∈ U we have, G |= φ[u−m+1] iff H |= φ[u].

We now show that for any proper member of H there are many disjoint strong
embeddings into Mn

p̄ . Formally:

Claim 5.11. Let (l, U, u0, H) ∈ H be proper, and c > 1 be some fixed real. Let Enc
be the following event on Mn

p̄ : ”For any interval I ⊆ [n] of length at least n/c there
exists some f : U → I a strong embedding of H in Mn

p̄ ”. Then

lim
n→∞

Pr[Enc holds in Mn
p̄ ] = 1.
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We skip the proof of this claim an almost identical lemma is proved in [1] (see
Lemma at page 8 there).

We can now finish the proof of Lemma 5.10. Recall that φ(x) is am r-local
formula. We consider two possibilities. First assume that for some r-proper
(l, U, u0, H) ∈ H we have H |= φ[u0]. Let ζ > 0 be some real. Then by the claim
above, for n large enough, with probability at least 1 − ζ there exists f1, ..., fm
strong embeddings of H into Mn

p̄ such that 〈Im(fi) : 1 ≤ i ≤ m〉 are pairwise
disjoint. By observation (1) above we have:

• For 1 ≤ i < j ≤ m, BM
n
p̄ (r, fi(u0)) ∩BM

n
p̄ (r, fj(u0)) = ∅.

• For 1 ≤ i ≤ m, Mn
p̄ |= φ[fi(u0)].

Hence f1(u0), ..., fm(u0) exemplifies ψ in Mn
p̄ , so Pr[Mn

p̄ |= ψ] ≥ 1− ζ and as ζ was
arbitrary we have limn→∞ Pr[Mn

p̄ |= ψ] = 1 and we are done.
Otherwise assume that for all r-proper (l, U, u0, H) ∈ H we have H |= ¬φ[u0].

We will show that limn→∞ Pr[Mn
p̄ |= ψ] = 0 which will finish the proof. Towards

contradiction assume that for some ε > 0 for unboundedly many n ∈ N we have
Pr[Mn

p̄ |= ψ] ≥ ε. Define the L-formula:

ϕ(z) := (∃x)(θr−1(x, z) ∧ φ(x)).

Note that ϕ(z) is equivalent to a k-local formula for k = 2r − 1. Hence by the
assumption of our lemma for some (large enough n ∈ N) we have with probability
at least ε/2: Mn

p̄ |= ψ and the l∗-boundary of Mn
p̄ is k-indistinguishable by ϕ(z).

In particular for some n ∈ N and G a graph on vertex set [n] we have:

(α) Pr[Mn
p̄ = G] > 0.

(β) G |= ψ.
(γ) The l∗-boundary of G is k-indistinguishable by ϕ(z).

By (β) for some x0 ∈ [n] we have G |= φ[x0]. If x0 is such that BG(r − 1, x0) is
disjoint to [1, l∗] ∪ (n− l∗, n] then by (α) and observation (2) above we have some
r-proper (l, U, u0, H) ∈ H such that H |= φ[u0] in contradiction to our assumption.
Hence assume that BG(r−1, x0) is not disjoint to [1, l∗]∪ (n− l∗, n] and let z0 ∈ [n]
belong to their intersection. So by the definition of ϕ(z) we have G |= ϕ[z0] and
by (γ) we have some y0 ∈ [n] such that BG(k, y0) ∩ ([1, l∗] ∪ (n − l∗, n]) = ∅ and
G |= ϕ[y0]. Again by the definition of ϕ(z), and recalling that k = 2r − 1 we have
some x1 ∈ [n] such that BG(r− 1, x1)∩ ([1, l∗]∪ (n− l∗, n]) = ∅ and G |= φ[x1]. So
again by (α) and observation (2) we get a contradiction. �

Remark 5.12. Lemma 5.10 above gives a sufficient condition for the 0-1 law. If
we are only interested in the convergence law, then a weaker condition is sufficient,
all we need is that the probability of any local property holding in the l∗-boundary
converges. Formally:

Assume that for all r ∈ N and r-local L-formula, φ(x), and for all 1 ≤ l ≤ l∗ we
have: Both 〈Pr[Mn

p̄ |= φ[l] : n ∈ N〉 and 〈Pr[Mn
p̄ |= φ[n − l + 1] : n ∈ N〉 converge

to a limit. Then Mn
p̄ satisfies the convergence law.

The proof is similar to the proof of Lemma 5.10. A similar proof on the conver-
gence law in graphs with the successor relation is Theorem 2(i) in [1].

We now use 5.10 to get a sufficient condition on p̄ for the 0-1 law holding in Mn
p̄ .

Our proof relays on the assumption that Mn
p̄ contains few circles, and only those

that are ”unavoidable”. We start with a definition of such circles:
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Definition 5.13. Let n ∈ N.

(1) For a sequence x̄ = (x0, x1, ..., xk) ⊆ [n] and 0 ≤ i < k denote lx̄i :=
xi+1 − xi.

(2) A sequence (x0, x1, ..., xk) ⊆ [n] is called possible for p̄ (but as p̄ is fixed we
omit it and similarly below) if for each 0 ≤ i < k, p|lx̄i | > 0.

(3) A sequence (x0, x1, ..., xk) is called a circle of length k if x0 = xk and
〈{xi, xi+1} : 0 ≤ i < k〉 is without repetitions.

(4) A circle of length k, is called simple if (x0, x1, ..., xk−1) is without repeti-
tions.

(5) For x̄ = (x0, x1, ..., xk) ⊆ [n], a pair (S∪·A) is called a symmetric partition
of x̄ if:
• S∪·A = {0, ..., k − 1}.
• If i 6= j belong to A then lx̄i + lx̄j 6= 0.

• The sequence 〈lx̄i : i ∈ S〉 can be partitioned into two sequences of
length r = |S|/2: 〈li : 0 ≤ i < r〉 and 〈l′i : 0 ≤ i < r〉 such that
li + l′i = 0 for each 0 ≤ i < r.

(6) For x̄ = (x0, x1, ..., xk) ⊆ [n] let (Sym(x̄), Asym(x̄)) be some symmetric
partition of x̄ (say the first in some prefixed order). Denote Sym+(x̄) :=
{i ∈ Sym(x̄) : lx̄i > 0}.

(7) We say that p̄ has no unavoidable circles if for all k ∈ N there exists some
mk ∈ N such that if x̄ is a possible circle of length k then for each i ∈
Asym(x̄), |lx̄i | ≤ mk.

Theorem 5.14. Assume that p̄ has no unavoidable circles,
∑∞
l=1 pl = ∞ and∑∞

l=1(pl)
2 <∞. Then Mn

p̄ satisfies the 0-1 law for L.

Proof. Let φ(x) be some r-local formula, and j∗ be in {1, 2, ..., l∗}∪{−1,−2, ...,−l∗}.
For n ∈ N let z∗n = z∗(n, j∗) equal j∗ if j∗ > 0 and n−j∗+1 if j∗ < 0 (so z∗n belongs
to [1, l∗]∪ (n− l∗, n]). We will show that with probability approaching 1 as n→∞
there exists some y∗ ∈ [n] such that BM

n
p̄ (r, y∗) ∩ ([1, l∗] ∪ (n − l∗, n]) = ∅ and

Mn
p̄ |= φ[z∗n]↔ φ[y∗]. This will complete the proof by Lemma 5.10. For simplicity

of notation assume j∗ = 1 hence z∗n = 1 (the proof of the other cases is similar).
We use the notations of the proof of 5.10. In particular recall the definition of the
set H and of an r-proper member of H. Now if for two r-proper members of H,
(l1, x1, U1, H1) and (l2, x2, U2, H2) we have H1 |= φ[x1] and H2 |= ¬φ[x2] then by
Claim 5.11 we are done. Otherwise all r-proper members of H give the same value
to φ[x] and without loss of generality assume that if (l, x, U,H) ∈ H is a r-proper
then H |= φ[x] (the dual case is identical). If limn→∞ Pr[Mn

p̄ |= φ[1]] = 1 then
again we are done by 5.11. Hence we may assume that:

� For some ε > 0, for an unbounded set of n ∈ N, Pr[Mn
p̄ |= ¬φ[1]] ≥ ε.

In the construction below we use the following notations: 2 denotes the set {0, 1}.
k2 denotes the set of sequences of length k of members of 2, and if η belongs to k2
we write |η| = k. ≤k2 denotes

⋃
0≤i≤k

k2 and similarly <k2. 〈〉 denotes the empty

sequence, and for η, η′ ∈ ≤k2, η̂η′ denotes the concatenation of η and η′. Finally
for η ∈ k2 and k′ < k, η|k′ is the initial segment of length k′ of η.

Call ȳ a saturated tree of depth k in [n] if:

• ȳ = 〈yη ∈ [n] : η ∈ ≤k2〉.
• ȳ is without repetitions.
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• {y〈0〉, y〈1〉} = {y〈〉 + l∗, y〈〉 − l∗}.
• If 0 < l < k and η ∈ l2 then {yη + l∗, yη − l∗} ⊆ {yη̂〈0〉, yη̂〈1〉, yη|l−1

}.
Let G be a graph with set of vertexes [n], and i ∈ [n]. We say that ȳ is a circle

free saturated tree of depth k for i in G if:

(i) ȳ is a saturated tree of depth k in [n].
(ii) G |= i ∼ y〈〉 but |i− y〈〉| 6= l∗.

(iii) For each η ∈ <k2, G |= yη ∼ yη̂〈0〉 and G |= yη ∼ yη̂〈1〉.
(iv) None of the edges described in (ii),(iii) belongs to a circle of length ≤ 6k

in G.
(v) Recalling that p̄ have no unavoidable circles let m2k be the one from

definition 5.13(7). For all η ∈ ≤k2 and y ∈ [n] if G |= yη ∼ y and
y 6∈ {yη̂〈0〉, yη̂〈1〉, yη|l−1

, i} then |y − yη| > m2k.

For I ⊆ [n] we say that 〈ȳi : i ∈ I〉 is a circle free saturated forest of depth k for
I in G if:

(a) For each i ∈ I, ȳi is a circle free saturated tree of depth k for i in G.
(b) As sets 〈ȳi : i ∈ I〉 are pairwise disjoint.

(c) If i1, i2 ∈ I and x̄ is a path of length k′ ≤ k in G from yi1〈〉 to i2, then for

some j < k′, (xj , xj+1) = (yi1〈〉 , i1).

Claim 5.15. For n ∈ N and G a graph on [n] denote by I∗k(G) the set ([1, l∗] ∪
(n− l∗, n]) ∩ BG(1, k). Let En,k be the event: ”There exists a circle free saturated
forest of depth k for I∗k(G)”. Then for each k ∈ N:

lim
n→∞

Pr[En,k holds in Mn
p̄ ] = 1.

Proof. Let k ∈ N be fixed. The proof proceeds in six steps:
Step 1. We observe that only a bounded number of circles starts in each vertex

of Mn
p̄ . Formally For n,m ∈ N and i ∈ [n] let E1

n,m,i be the event: ”More than
m different circles of length at most 12k include i”. Then for all ζ > 0 for some
m = m(ζ) (m depends also on p̄ and k but as those are fixed we omit them from
the notation and similarly below) we have:

~1 For all n ∈ N and i ∈ [n], PrMn
p̄

[E1
n,m,i] ≤ ζ.

To see this note that if x̄ = (x0, ..., xk′) is a possible circle in [n], then

Pr[x̄ is a weak circle in Mn
p̄ ] := p(x̄) =

∏
i∈Asym(x̄)

p|lx̄i | ·
∏

i∈Sym+(x̄)

(plx̄i )2.

Now as p̄ has no unavoidable, circles let m12k be as in 5.13(7). Then the expected
number of circles of length ≤ 12k starting in i = x0 is∑
k′≤12k,x̄=(x0,...,xk′ )

is a possible circle

p(x̄) ≤ (m12k)12k·
∑

0<l1,...,l6k<n

6k∏
i=1

(pli)
2 ≤ (m12k)12k·(

∑
0<l<n

(pl)
2)6k.

But as
∑

0<l<n(pl)
2 is bounded by

∑∞
l=1(pl)

2 := c∗ <∞, if we take m = (m12k)12k ·
(c∗)6k/ζ then we have ~1 as desired.

Step 2. We show that there exists a positive lower bound on the probability
that a circle passes through a given edge of Mn

p̄ . Formally: Let n ∈ N and i, j ∈ [n]

be such that p|i−j| > 0. Denote By E2
n,i,j the event: ”There does not exists a circle
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of length ≤ 6k containing the edge {i, j}”. Then there exists some q2 > 0 such
that:

~2 For any n ∈ N and i, j ∈ [n] such that p|i−j| > 0, PrMn
p̄

[E2
n,i,j |i ∼ j] ≥ q2.

To see this call a path x̄ = (x0, ..., xk′) good for i, j ∈ [n] if x0 = j, xk′ = i, x̄
does not contain the edge {i, j} and does not contain the same edge more than
once. Let E′2n,i,j be the event: ”There does not exists a path good for i, j of length
< 6k”. Note that for i, j ∈ [n] and G a graph on [n] such that G |= i ∼ j we have:
(i, j, x2, ..., xk′) is a circle in G iff (j, x2, ..., kk′) is a path in G good for i, j. Hence
for such G we have: E2

n,i,j holds in G iff E′2n,i,j holds in G. Since the events i ∼ j

and E′2n,i,j are independent in Mn
p̄ we conclude:

PrMn
p̄

[E2
n,i,j |i ∼ j] = PrMn

p̄
[E′2n,i,j |i ∼ j] = PrMn

p̄
[E′2n,i,j ].

Next recalling Definition 5.13(7) let mk be as there. Since
∑
l>0(pl)

2 < ∞, (pl)
2

converges to 0 as l approaches infinity, and hence so does pl. Hence for some m0 ∈ N
we have l > m0 implies pl < 1/2. Let m∗k := max{m6k,m

0}. We now define for
a possible path x̄ = (x0, ...xk′), Large(x̄) = {0 ≤ r < k′ : |lx̄r | > m∗k}. Note that
as p̄ have no unavoidable circles we have for any possible circle x̄ of length ≤ 6k,
Large(x̄) ⊆ Sym(x̄), and |Large(x̄)| is even. We now make the following claim:

For each 0 ≤ k∗ ≤ bk/2c let E′2,k
∗

n,i,j be the event: ”There does not exists a path, x̄,

good for i, j of length < 6k with |Large(x̄)| = 2k∗”. Then there exists a positive
probability q2,k∗ such that for any n ∈ N and i, j ∈ [n] we have:

PrMn
p̄

[E′2,k
∗

n,i,j ] ≥ q2,k∗ .

Then by taking q2 =
∏

0≤k∗≤bk/2c q2,k∗ we will have ~2. Let us prove the claim.

For k∗ = 0 we have (recalling that no circle consists only of edges of length l∗):

PrMn
p̄

[E′2,0n,i,j ] =
∏

k′≤6k, x̄=(i=x0,j=x1,...,xk′ )
is a possible circle, |Large(x̄)|=0

(1−
k′−1∏
r=1

p|lx̄r |)

≥ (1−max{pl : 0 < l ≤ m∗k, l 6= l∗})6k·(m∗k)6k−1

.

But as the last expression is positive and depends only on p̄ and k we are done.
For k∗ > 0 we have:

PrMn
p̄

[E′2,k
∗

n,i,j ] =
∏

k′≤6k, x̄=(i=x0,j=x1,...,xk′ )
is a possible circle, |Large(x̄)|=k∗

(1−
k′−1∏
m=1

p|lx̄m |)

=
∏

k′≤6k, x̄=(i=x0,j=x1,...,xk′ )
is a possible circle,

|Large(x̄)|=k∗ ,06∈Large(x̄)

(1−
k′−1∏
m=1

p|lx̄m |) ·
∏

k′≤6k, x̄=(i=x0,j=x1,...,xk′ )
is a possible circle,

|Large(x̄)|=k∗ ,0∈Large(x̄)

(1−
k′−1∏
m=1

p|lx̄m |).

But the product on the left of the last line is at least

[
∏

l1,...,lk∗>m
∗
k

(1−
k∗∏
m=1

(plm)2)](m
∗
k)(6k−2k∗)·(6k)2k∗

,

Paper Sh:953, version 2010-04-04 11. See https://shelah.logic.at/papers/953/ for possible updates.



24 SAHARON SHELAH AND MOR DORON

and as
∑
l>m∗k

(pl)
2 ≤ c∗ < ∞ we have

∑
l1,...,lk∗>m

∗
k

∏k∗

m=1(plm)2 ≤ (c∗)k
∗
< ∞

and hence
∏
l1,...,lk∗>m

∗
k
(1 −

∏k∗

m=1(plm)2) > 0 and we have a bound as desired.

Similarly the product on the right is at least

[
∏

l1,...,lk∗−1>m
∗
k

(1−
k∗−1∏
m=1

(plm)2) · 1/2](m
∗
k)(6k−2k∗−1)·(6k)2k∗

,

and again we have a bound as desired.
Step 3. Denote

E3
n,i,j := E2

n,i,j ∧
∧

r=1,...,k

(E2
n,j+(r−1)l∗,j+rl∗ ∧ E

2
n,j,j−(r−1)l∗,j−rl∗)

and let q3 = q
(2l∗+1)
2 . We then have:

~3 For any n ∈ N and i, j ∈ [n] such that p|i−j| > 0 and j + kl∗, j − kl∗ ∈ [n],

PrMn
p̄

[E3
n,i,j |i ∼ j] ≥ q3.

This follows immediately from ~2, and the fact that if i, i′, j, j′ all belong to [n] then
the probability PrMn

p̄
[E2
n,i,j |E2

n,i′,j′ ] is no smaller then the probability PrMn
p̄

[E2
n,i,j ].

Step 4. For i, j ∈ [n] such that j + kl∗, j − kl∗ ∈ [n] denote by E4
n,i,j the event:

”E3
n,i,j holds and for x ∈ {j + rl∗ : r ∈ {−k,−k + 1, ..., k}} and y ∈ [n] \ {i} we

have x ∼ y ⇒ (|x− y| = l∗ ∨ |x− y| > m2k)”. Then for some q4 > 0 we have:

~4 For any n ∈ N and i, j ∈ [n] such that p|i−j| > 0 and j + kl∗, j − kl∗ ∈ [n],

PrMn
p̄

[E4
n,i,j |i ∼ j] ≥ q4.

To see this simply take q4 = q3 · (
∏
l∈{1,...,m2k}\{l∗}(1− pl))

2k+1, and use ~3.

Step 5. For n ∈ N, S ⊆ [n], and i ∈ [n] let E5
n,S,i be the event: ”For some

j ∈ [n] \ S we have i ∼ j, |i− j| 6= l∗ and E4
n,i,j”. Then for each δ > 0 and s ∈ N,

for n ∈ N large enough (depending on δ and s) we have:

~5 For all i ∈ [n] and S ⊆ [n] with |S| ≤ s, PrMn
p̄

[E5
n,S,i] ≥ 1− δ.

First let δ > 0 and s ∈ N be fixed. Second for n ∈ N, S ⊆ [n] and i ∈ [n] denote by

Jn,Si the set of all possible candidates for j, namely Jn,Si := {j ∈ (kl∗, n− kl∗] \S :

|i− j| 6= l∗}. For j ∈ Jn,∅i let Uj := {j + rl∗ : r ∈ {−k,−k + 1, ..., k}}. For m ∈ N
and G a graph on [n] call j ∈ Jn,Si a candidate of type (n,m, S, i) in G, if each
j′ ∈ U(j), belongs to at most m different circles of length at most 6k in G. Denote

the set of all candidates of type (n,m, S, i) in G by Jn,Si (G). Now let Xn,m
i be the

random variable on Mn
p̄ defined by:

Xn,m
i (Mn

p̄ ) =
∑
{p|i−j| : j ∈ Jn,Si (Mn

p̄ )}.

Denote Rn,Si :=
∑
{p|i−j| : j ∈ Jn,Si }. Trivially for all n,m, S, i as above, Xn,m

i ≤
Rn,Si . On the other hand, by ~1 and the definition of a candidate, for all ζ > 0 we

can findm = m(ζ) ∈ N such that for all n, S, i as above and j ∈ Jn,Si , the probability
that j is a candidate of type (n,m, S, i) in Mn

p̄ is at least 1 − ζ. Then for such m

we have: Exp(Xn,m
i ) ≥ Rn,Si (1− ζ). Hence we have PrMn

p̄
[Xn,m

i ≤ Rn,Si /2] ≤ 2ζ.

Recall that δ > 0 was fixed, and let m∗ = m(δ/4). Then for all n, S, i as above

we have with probability at least 1 − δ/2, Xn,m∗

i (Mn
p̄ ) ≥ Rn,Si /2. Now denote

m∗∗ := (2l∗ + 1)(m∗ + 2m2k)6k(m∗ + 1), and fix n ∈ N such that
∑

0<l<n pl >
2 ·((m∗∗/(q4 ·δ) ·2m2k(2l∗+1)+(s+2kl∗+2)). Let i ∈ [n] and S ⊆ [n] be such that
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|S| ≤ s. We relatives our probability space Mn
p̄ to the event Xn,m∗

i (Mn
p̄ ) ≥ Rn,Si /2,

and all probabilities until the end of Step 5 will be conditioned to this event. If
we show that under this assumption we have, PrMn

p̄
[E5
n,S,i] ≥ 1− δ/2 then we will

have ~5.

Let G be a graph on [n] such that, Xn,m∗

i (G) ≥ Rn,Si /2. For j ∈ Jn,Si let Cj(G)
denote the set of all the pairs of vertexes which are relevant for the event E4

n,i,j .
Namely Cj(G) will contain: {i, j}, all the edges {u, v} such that : u ∈ U(j), v 6= i
and |u−v| < m2k, and all the edges that belong to a circle of length ≤ 6k containing
some member of U(j). We make some observations:

(1) Xn,m∗

i (G) ≥ (m∗∗/(q4 · δ)) · 2m2k(2l∗ + 1).

(2) There exists J1(G) ⊆ Jn,Si such that:
(a) The sets U(j) for j ∈ J1(G) are pairwise disjoint. Moreover if j1, j2 ∈

J1(G), ul ∈ U(jl) for l ∈ {1, 2} and j1 6= j2 then |u1 − u2| > m2k.
(b) Each j ∈ J1(G) is a candidate of type (n,m∗, S, i) in G.
(c) The sum

∑
{p|i−j| : j ∈ J1(G)} is at least m∗∗/(q4 · δ).

[To see this use (1) and construct J1 by adding the candidate with the
largest p|i−j| that satisfies (a). Note that each new candidate excludes at
most m2k(2l∗ + 1) others.]

(3) Let j belong to J1(G). Then the set {j′ ∈ J1(G) : Cj(G)∩Cj′(G) 6= ∅} has
size at most m∗∗. [To see this use (2)(b) above, the fact that two circles
of length ≤ 6k that intersect in an edge give a circle of length ≤ 12k and
similar trivial facts.]

(4) From (3) we conclude that there exists J2(G) ⊆ j1(G) and 〈j1, ...jr〉 an
enumeration of J2(G) such that:
(a) For any 1 ≤ r′ ≤ r the sets C(jr′) and ∪1≤r′′<r′C(jr′′) are disjoint.
(b) The sum

∑
{p|i−j| : j ∈ J2(G)} is greater or equal 1/(q4 · δ).

Now for each j ∈ Jn,Si let E∗j be the event: ”i ∼ j and E4
n,i,j”. By ~4 we have

for each j ∈ Jn,Si , PrMn
p̄

[E∗j ] ≥ q4 · p|i−j|. Recall that we condition the probability

space Mn
p̄ to the event Xn,m∗

i (Mn
p̄ ) ≥ Rn,Si /2, and let 〈j1, ...jr〉 be the enumeration

of J2(Mn
p̄ ) from (4) above. (Formally speaking r and each jr′ is a function of

Mn
p̄ ). We then have for 1 ≤ r′ < r′′ ≤ r, PrMn

p̄
[E∗jr′ |E

∗
jr′′

] ≥ PrMn
p̄

[E∗jr′ ], and

PrMn
p̄

[E∗jr′ |¬E
∗
jr′′

] ≥ PrMn
p̄

[E∗jr′ ]. To see this use (2)(a) and (4)(a) above and the

definition of Cj(G).
Let the random variables X and X ′ be defined as follows. X is the number of

j ∈ J2(Mn
p̄ ) such that E∗j holds in Mn

p̄ . In other words X is the sum of r random
variables 〈Y1, ..., Yr〉, where for each 1 ≤ r′ ≤ r, Yr′ equals 1 if E∗jr′ holds, and 0

otherwise. X ′ is the sum of r independent random variables 〈Y ′1 , ..., Y ′r 〉, where for
each 1 ≤ r′ ≤ r Y ′r′ equals 1 with probability q4 · p|i−jr′ | and 0 with probability
1− q4 · p|i−jr′ |. Then by the last paragraph for any 0 ≤ t ≤ r,

PrMn
p̄

[X ≥ t] ≥ Pr[X ′ ≥ t].

But Exp(X ′) = Exp(X) = q4 ·
∑

1≤r′≤r p|i−jr′ | and by (4)(b) above this is grater

or equal 1/δ. Hence by Chebyshev’s inequality we have:

PrMn
p̄

[¬E5
n,S,i] ≤ PrMn

p̄
[X = 0] ≤ Pr[X ′ = 0] ≤ V ar(X ′)

Exp(X ′)2
≤ 1

Exp(X ′)
≤ δ

as desired.
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Step 6. We turn to the construction of the circle free saturated forest. Let ε > 0,
and we will prove that for n ∈ N large enough we have Pr[En,k holds in Mn

p̄ ] ≥ 1−ε.
Let δ = ε/(l∗2k+2) and s = 2l∗((k + 2k)(2l∗k + 1)). Let n ∈ N be large enough
such that ~5 holds for n, k, δ and s. We now choose (formally we show that with
probability at least 1−ε such a choice exists) by induction on (i, η) ∈ I∗k(Mn

p̄ )×≤k2

(ordered by the lexicographic order) yiη ∈ [n] such that:

(1) 〈yiη ∈ [n] : (i, η) ∈ I∗k(Mn
p̄ )× ≤k2〉 is without repetitions.

(2) If η = 〈〉 then Mn
p̄ |= i ∼ yiη, but |i− yiη| 6= l∗.

(3) If η 6= 〈〉 then Mn
p̄ |= yiη ∼ yiη||η|−1

.

(4) If η = 〈〉 then Mn
p̄ satisfies E4

n,i,yiη
else, denoting ρ := η||η|−1, Mn

p̄ satisfies

E4
n,yiρ,y

i
η
.

Before we describe the choice of yiη, we need to define sets Siη ⊆ [n]. For a graph G
on [n] and i ∈ I∗k(G) let S∗i (G) be the set of vertexes in the first (in some pre fixed
order) path of length ≤ k from 1 to i in G. Now let S∗(G) =

⋃
i∈I∗k(G) S

∗
i (G). For

(i, η) ∈ I∗k(Mn
p̄ )× ≤k2 and 〈yi′η′ ∈ [n] : (i′, η′) <lex (i, η)〉 define:

Siη(G) = S∗(G) ∪ {[yi
′

η′ − kl∗, yi
′

η′ + kl∗] : (i′η′) <lex (i, η)}.

Note that indeed |S∗(G)| ≤ s for all G. In the construction below when we write

Siη we mean Siη(Mn
p̄ ) where 〈yi′η′ ∈ [n] : (i′, η′) <lex (i, η)〉 were already chosen. Now

the choice of yiη is as follows:

• If η = 〈〉 by ~5 with probability at least 1 − δ, E5
n,Siη,i

holds in Mn
p̄ hence

we can choose yiη that satisfies (1)-(4).

• If η = 〈0〉 (resp. η = 〈1〉) choose yiη = yi〈〉 − l
∗ (resp. yiη = yi〈〉 + l∗). By the

induction hypothesis and the definition of E4
n,i,j this satisfies (1)-(4) above.

• If |η| > 1, |yiη||η|−1
− yiη||η|−2

| 6= l∗ and η(|η|) = 0 (resp. η(|η|) = 1) then

choose yiη = yiη||η|−1
− l∗ (resp. yiη = yiη||η|−1

+ l∗). Again by the induction

hypothesis and the definition of E4
n,i,j this satisfies (1)-(4).

• If |η| > 1, yiη||η|−1
− yiη||η|−2

= l∗ (resp. yiη||η|−1
− yiη||η|−2

= −l∗) and

η(|η|) = 0, then choose yiη = yiη||η|−1
− l∗ (resp. yiη = yiη||η|−1

+ l∗).

• If |η| > 1, |yiη||η|−1
− yiη||η|−2

| = l∗ and η(|η|) = 1. Then by ~5 with

probability at least 1 − δ, E5
n,Siη,y

i
η||η|−1

holds in Mn
p̄ , and hence we can

choose yiη that satisfies (1)-(4).

At each step of the construction above the probability of ”failure” is at most δ,
hence with probability at least 1− (l∗2k+2)δ = 1− ε we compleat the construction.
It remains to show that indeed 〈yiη : i ∈ In, η ∈ ≤k2〉 is a circle free saturated
forest of depth k for I∗k in Mn

p̄ . This is straight forward from the definitions.

First each 〈yiη : η ∈ ≤k2〉 is a saturated tree of depth k in [n] by its construction.
Second (ii) and (iii) in the definition of a saturated tree holds by (2) and (3) above
(respectively). Third note that by (4) each edge (y, y′) of our construction satisfies
E2
n,y,y′ and E4

n,y,y′ hence (iv) and (v) (respectively) in the definition of a saturated

tree follows. Lastly we need to show that (c) in the definition of a saturated forest
holds. To see this note that if i1, i2 ∈ i∗k(Mn

p̄ ) then by the definition of Siη(Mn
p̄ )

there exists a path of length ≤ 2k from i1 to i2 with all its vertexes in Siη(Mn
p̄ ).
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Now if x̄ is a path of length ≤ k from yi1〈〉 to i2 and (yi1〈〉 , i1) is not an edge of x̄, then

necessarily {yi1〈〉 , i1} is included in some circle of length ≤ 3k + 2. A contradiction

to the choice of yi1〈〉 . This completes the proof of the claim. �

By � and the claim above we conclude that, for some large enough n ∈ N, there
exists a graph G = ([n],∼) such that:

(1) G |= ¬φ[1].
(2) Pr[Mn

p̄ = G] > 0.

(3) There exists 〈ȳi : i ∈ I∗r (G)〉, a circle free saturated forest of depth r for
I∗r (G) in G.

Denote B = BG(1, r), I = I∗r (G), and we will prove that for some r-proper
(l, u0, U,H) ∈ H we have (B, 1) ∼= (H,u0) (i.e. there exists a graph isomorphism
from G|B to H mapping 1 to u0). As φ is r-local we will then have H |= ¬φ[u0]
which is a contradiction of our assumption and we will be done. We turn to the
construction of (l, u0, U,H). For i ∈ I let r(i) = r − distG(1, i). Denote

Y := {yiη : i ∈ I, η ∈ <r(i)2}.

Note that by (ii)-(iii) in the definition of a saturated tree we have Y ⊆ B. We first
define a one-to-one function f : B → Z in three steps:

Step 1. For each i ∈ I define

Bi := {x ∈ B : there exists a path of length ≤ r(i) from x to i disjoint to Y }

and B0 := I ∪
⋃
i∈I Bi. Now define for all x ∈ B0, f(x) = x. Note that:

•1 f |B0 is one-to-one (trivially).
•2 If x ∈ B0 and distG(1, x) < r then x + l∗ ∈ [n] ⇒ x + l∗ ∈ B0 and

x− l∗ ∈ [n]⇒ x− l∗ ∈ B0 (use the definition of a saturated tree).

Step 2. We define f |Y . We start by defining f(y) for y ∈ ȳ1, so let η ∈ ≤r2
and denote y = y1

η. We define f(y) using induction on η were ≤r2 is ordered by
the lexicographic order. First if η = 〈〉 then define f(y) = 1 − l∗. If η 6= 〈〉 let
ρ : η||η|−1, and consider u := f(y1

ρ). Denote F = Fη := {f(y1
η′) : η′ <lex η}.

Now if u − l∗ 6∈ F define f(y) = u − l∗. If u − l∗ ∈ F but u + l∗ 6∈ F define
f(y) = u+ l∗. Finally, if u− l∗, u+ l∗ ∈ F , choose some l = lη such that pl > 0 and
u − l < minF − rl∗ − n, and define f(y) = u − l. Note that by our assumptions
{l : pl > 0} is infinite so we can always choose l as desired. Note further that we
chose f(y) such that f |ȳ1 is one-to-one. Now for each i ∈ I ∩ [1, l∗] and η ∈ <r(i)2,
define f(yiη) = f(y1

η) + (f(i) − 1) (recall that f(i) = i was defined in Step 1,

and that k(i) ≤ k(1) so f(yiη) is well defined). For i ∈ I ∩ (n − l∗, n] preform a

similar construction in ”reversed directions”. Formally define f(yi〈〉) = i + l∗, and

the induction step is similar to the case i = 1 above only now choose l such that
u+ l > maxF + rl∗ + n, and define f(y) = u+ l. Note that:

•3 f |Y is one-to-one.
•4 f(Y ) ∩ f(B0) = ∅. In fact:
•+4 f(Y ) ∩ [n] = ∅.
•5 If i ∈ I ∩ [1, l∗] then i− l∗ ∈ f(Y ) (namely i− l∗ = f(yi〈〉)).

•′5 If i ∈ I ∩ (n− l∗, n] then i+ l∗ ∈ f(Y ) (namely i+ l∗ = f(yi〈〉)).
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•6 If y ∈ Y \ {yi〈〉 : i ∈ I} and distG(1, y) < r then f(y) + l∗, f(y)− l∗ ∈ f(Y ).

(Why? As if distG(1, yiη) < r then |η| < r(i), and the construction of Step
2).

Step 3. For each i ∈ I and η ∈ <r(i)2, define

Biη := {x ∈ B : there exists a path of length ≤ r(i) from x to yiη disjoint to Y \{yiη}}

and B1 :=
⋃
i∈I,η∈<r(i)2B

i
η.

We now make a few observations:

(α) If i1, i2 ∈ I then, in G there exists a path of length at most 2r from i1 to
i2 disjoint to Y . Why? By the definition of I and (c) in the definition of a
saturated forest.

(β) B0 and B1 are disjoint and cover B. Why? Trivially they cover B, and by
(α) and (iv) in the definition of a saturated tree they are disjoint.

(γ) 〈Biη : i ∈ I, η ∈ <r(i)2〉 is a partition of B1. Why? Again trivially they

cover B1, and by (iv) in the definition of a saturated tree they are disjoint.
(δ) If {x, y} is an edge of G|B then either x, y ∈ B0, {x, y} = {i, yi〈〉} for some

i ∈ I, {x, y} ⊆ Y or {x, y} ⊆ Biη for some i ∈ I and η ∈ <r(i)2. (Use the
properties of a saturated forest.)

We now define f |B1 . Let 〈(Bj , yj) : j < j∗〉 be some enumeration of 〈(Biη, yiη) :

i ∈ I, η ∈ <r(i)2〉. We define f |Bj by induction on j < j∗ so assume that f |(∪j′<jBj′ )
is already defined, and denote: F = Fj := f(B0) ∪ f(Y ) ∪ f(∪j′<jBj′). Our
construction of f |Bj will satisfy:

• f |Bj is one-to-one.
• f(Bj) is disjoint to Fj .
• If y ∈ Bj then either f(y) = y or f(y) 6∈ [n].

Let 〈zjs : s < s(j)〉 be some enumeration of the set {z ∈ Bj : G |= yj ∼ z}. For each
s < s(j) choose l(j, s) such that pl(j,s) > 0 and:

⊗ If k ≤ 4r, (m1, ...,mk) are integers with absolute value not larger than 4r
and not all equal 0, and (s1, ...sk) is a sequence of natural numbers smaller
than j(s) without repetitions. Then |

∑
1≤i≤m(mi · l(j, si))| > n+max{|x| :

x ∈ Fj}.
Again as {l : pl > 0} is infinite we can always choose such l(j, s). We now define
f |Bj . For each y ∈ Bj let x̄ = (x0, ...xk) be a path in G from y to yj , disjoint to
Y \ {yj}, such that k is minimal. So we have x0 = y, xk = yj , k ≤ r and x̄ is
without repetitions. Note that by the definition of Bj such a path exists. For each
0 ≤ t < k define

lt = lt(x̄)

 l(j, s) lx̄t = |yj − zjs | for some s < s(j)
−l(j, s) lx̄t = −|yj − zjs | for some s < s(j)
lx̄t otherwise.

Now define f(y) = f(yj) +
∑

0≤t<k lt. We have to show that f(y) is well defined.

Assume that both x̄1 = (x0, ...xk1
) and x̄2 = (x′0, ...x

′
k1

) are paths as above. Then
k1 = k2 and x̄ = (x0, ..., xk1

, x′k2−1, ..., x
′
0) is a circle of length k1 + k2 ≤ 2r. By

(v) in the definition of a saturated tree we know that for each s < s(j), |yj − zjs | >
m2r. Hence as p̄ is without unavoidable circles we have for each s < s(j) and
0 ≤ t < k1 + k2, if |lx̄t | = |yj − zjs | then t ∈ Sym(x̄). (see definition 5.13(6,7)).
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Now put for w ∈ {1, 2} and s < s(j), m+
w(s) := |{0 ≤ t < kw : lx̄wt = yj − zjs}|

and similarly m−w(s) := |{0 ≤ t < kw : −lx̄wt = yj − zjs}|. By the definition of x̄ we
have, m+

1 (s) −m−1 (s) = m+
2 (s) −m−2 (s). But from the definition of lt(x̄) we have

for w ∈ {1, 2},∑
0≤t<kw

lt(x̄w) =
∑

0≤t<kw

lx̄wt +
∑
s<s(j)

(m+
w(s)−m−w(s))(l(j, s)− (yj − zjs)).

Now as
∑

0≤t<k1
lx̄1
t =

∑
0≤t<k2

lx̄2
t we get

∑
0≤t<k1

lt(x1) =
∑

0≤t<k2
lt(x2) as

desired.
We now show that f |Bj is one-to-one. Let y1 6= y2 be in Bj . So for w ∈ {1, 2}

we have a path x̄w = (xw0 , ...x
w
kw

) from yw to yj . as before, for s < s(j) denote

m+
w(s) := |{0 ≤ t < kw : lx̄wt = yj − zjs}| and similarly m−w(s). By the definition of

fBj we have

f(y1)− f(y2) = y1 − y2 +
∑
s<s(j)

[(m+
1 (s)−m−1 (s))− (m+

2 (s)−m−2 (s))] · l(j, s).

Now if for each s < s(j), m+
1 (s)−m−1 (s) = m+

2 (s)−m−2 (s) then we are done as y1 6=
y2. Otherwise note that for each s < s(j), |m+

1 (s)−m−1 (s) = m+
2 (s)−m−2 (s)| ≤ 4r.

Note further that |{s < s(j) : m+
1 (s)−m−1 (s) = m+

2 (s)−m−2 (s) 6= 0}| ≤ 4r. Hence
by ⊗, and as |y1 − y2| ≤ n we are done.

Next let y ∈ Bj and x̄ = (x0, ..., xk) be a path inG from y to yj . For each s < s(j)
define m+(s) and m−(s) as above, hence we have f(y) = yj +

∑
s<s(j)(m

+(s) −
m−(s))l(j, s). Consider two cases. First if (m+(s)−m−(s)) = 0 for each s < s(j)
then f(y) = y. Hence f(y) 6∈ f(B0) = B0 (by (β) above), f(y) 6∈ f(Y ) (as
f(Y ) ∩ [n] = ∅) and f(y) 6∈ f(∪j′<jBj′) (by (γ) and the induction hypothesis). So
f(y) 6∈ Fj . Second assume that for some s < s(j), (m+(s)−m−(s)) 6= 0. Then by
the ⊗ we have f(y) 6∈ [n] and furthermore f(y) 6∈ Fj . In both cases the demands
for f |Bj are met and we are done. After finishing the construction for all j < j∗ we
have f |B1 such that:

•7 f |B1 is one-to-one.
•8 f(B1) is disjoint to f(B0) ∪ f(Y ).
•9 If y ∈ B1 and distG(1, y) < r then f(y) + l∗, f(y) − l∗ ∈ f(B1). In fact

f(y + l∗) = f(y) + l∗ and f(y − l∗) = f(y) − l∗. (By the construction of
Step 3.)

Putting •1 − •9 together we have constructed f : B → Z that is one-to-one and
satisfies:

(◦) If y ∈ B and distG(1, y) < r then f(y) + l∗, f(y)− l∗ ∈ f(B). Furthermore:
(◦◦) {y, f−1(f(y)− l∗)} and {y, f−1(f(y) + l∗)} are edges of G.

For (◦◦) use: •2 with the definition of f |B0 , •5 + •′5 with the fact that G |= i ∼ yi〈〉,

•6 with the construction of Step 2 and •9.
We turn to the definition of (l, u0, U,H) and the isomorphism h : B → H. Let

lmin = min{f(b) : b ∈ B} and lmax = max{f(b) : b ∈ B}. Define:

• l = lmin + lmax + 1.
• u0 = lmin + 2.
• U = {z + lmin + 1 : z ∈ Im(f)}.
• For b ∈ B, h(b) = f(b) + lmin + 1.
• For u, v ∈ U , H |= u ∼ v iff G |= h−1(u) ∼ h−1(v).
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As f was one-to-one so is h, and trivially it is onto U and maps 1 to u0. Also
by the definition of H, h is a graph isomorphism. So it remains to show that
(l, u0, U,H) is r-proper. First (∗)1 in the definition of proper is immediate from
the definition of H. Second for (∗)2 in the definition of proper let u ∈ U be
such that distH(u0, u) < r. Denote y := h−1(u) then by the definition of H we
have distG(1, y) < r, hence by (◦), f(y) + l∗, f(y) − l∗ ∈ f(B) and hence by the
definition of h and U , u+ l∗, u− l∗ ∈ U as desired. Lastly to see (∗)3 let u, u′ ∈ U
and denote y = h−1(u) and y′ = h−1(u′). Assume |u − u′| = l∗ then by (◦◦) we
have G |= y ∼ y′ and by the definition of H, H |= u ∼ u′. Now assume that
H |= u ∼ u′ then G |= y ∼ y′. Using observation (δ) above and rereading 1-3 we
see that |u− u′| is either l∗, |y − y′|, lη for some η ∈ <r2 (see Step 2) or l(j, s) for
some j < j∗, s < s(j) (see step 3). In all cases we have P|u−u′| > 0. Together we
have (∗)3 as desired. This completes the proof of Theorem 5.14. �
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