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1 Introduction

In this paper we continue with study of forcing notions having a simple defi-
nition. We began this study in [JS1] and [JS2]. In [BJ] we gave more results
about Souslin forcing notions and in this paper we will give some examples
of Souslin forcing notions answering a question of [JS1] and a question of
H.Woodin.

A forcing notion P is Souslin if P ⊆ R is a Σ1
1-set, {(p, q) : p ≤P q} is a

Σ1
1-set and {(p, q) : p is incompatible with q} is a Σ1

1-set.
More information on Souslin forcing notion can be found in [JS1]. A

related work is [BJ]. In [JS1] we prove that if P is Souslin ccc and Q is any
forcing notion then VQ |=“P satisfies ccc”. A natural question was: does
“P is Souslin ccc” imply “P has Knaster property”. Recall that P satisfies
Knaster property if and only if

(∀A∈ [P]ω1)(∃B∈ [A]ω1)(∀p, q ∈ B)(p is compatible with q).

In the second section we will give a model where there is a ccc Souslin
forcing which does not satisfy the Knaster condition. Recall that under the
assumption of MA every ccc notion of forcing has Knaster property.

Many simple forcing notions P satisfy the following condition:

`P “P̂ is σ-centered”.

This property is connected with the homogeneity of the forcing notion. The
example of a totally nonhomogeneous Souslin forcing will be constructed in
the third section.

In the next section we present a model where there is a σ-linked not σ-
centered Souslin forcing such that all its small subsets are σ-centered but
Martin Axiom fails for this order.

In section 5 we will give an example of a σ-centered Souslin forcing notion
and a model of the negation of CH in which the union of less than continuum
meager subsets of R is meager but Martin Axiom fails for this notion of
forcing.

In the last session of the MSRI Workshop on the continuum (October
1989) H.Woodin asked if “P has a simple definition and does not satisfy
ccc”implies that there exists a perfect set of mutually incompatible condi-
tions. Clearly Mathias forcing satisfies such a requirement. In section 6 we
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will find a Souslin forcing which is Proper but not ccc that does not contain
a perfect set of mutually incompatible conditions.

The last section will show that ccc Σ1
2-notions of forcing may not be

indestructible ccc.
Our notation is standard and derived from [Je]. There is one exception,

however. We write p ≤ q to say that q is a stronger condition then p.

2 On the Knaster condition

In this section we will build a Souslin forcing satisfying the countable chain
condition but which fails the Knaster condition.

Fix a sequence < σi : i ∈ ω > of functions from ω into ω such that

(*) if N < ω, φi : N −→ω (for i < N) then there are distinct n0, . . . , nN−1

such that

(∀i, j0, j1 < N)(φi(j0) = j1 ⇒ σi(nj0) = nj1).

Note that there exists a sequence < σi : i ∈ ω > satisfying (*):

Suppose we have defined σi|m0 : m0 −→ m0 for i < m0. We
want to ensure (*) for n0 + 1, φi (i ≤ n0). Define σi(m0 + j0) =
m0+φi(j0) for i, j0 ≤ n0. Take large m1 and extend all σi (i ≤ n0)
on m1 in such a way that rng(σi) ⊆ m1.

Next we define functions fi : ωω −→ ωω for i ∈ ω by

fi(x)(k) =

{
x(k) if k < i
σi(x(k)) otherwise

Clearly all functions fi are continuous. Put F (x) = {fi(x) : i ∈ ω} for
x ∈ ωω.

Lemma 2.1 Suppose that xα, yα ∈ ωω are such that there is no repetition
in {xα, yα : α ∈ ω1}. Then there exists A ∈ [ω1]ω1 such that

(∀α, β ∈ A)(α < β ⇒ xα 6∈ F (yβ)).

3

Paper Sh:373, version 1996-03-17 10. See https://shelah.logic.at/papers/373/ for possible updates.



Proof For α < ω1 let nα = min{n : xα(n) 6= yα(n)}. We find
n ∈ ω, and s, t ∈ ωn such that the set A0 = {α < ω1 : n = nα + 1 & xα|n =
s & yα|n = t} is stationary in ω1. Clearly s 6= t and s|(n − 1) = t|(n − 1).
Thus α, β ∈ A0 and xα ∈ F (yβ) imply xα ∈ {fi(yβ) : i ≤ n}. Consequently
the set {α ∈ A0 ∩ β : xα ∈ F (yβ)} is finite for each β ∈ A0.

We define the regresive function ψ : A0 −→ ω1 by ψ(β) = max{α ∈
A0 ∩ β : xα ∈ F (yβ)} (with the convention that max ∅ = 0). By Fodor’s
lemma there are γ < ω1 and a stationary set A1 ⊆ A0 such that ψ(β) = γ
for all β ∈ A1. Put A = A1\(γ + 1). Now, if α, β ∈ A, α < β then ψ(β) < α
and hence xα 6∈ F (yβ).

Lemma 2.2 Suppose that {Wα : α < ω1} is a family of disjoint finite
subsets of ωω. Then there exist β < ω1 and an infinite set A ⊆ β such that

(∀α∈A)(∀x∈Wα)(∀y∈Wβ)(x 6∈ F (y)).

Proof We may assume that all sets Wα are of the same cardinality,
say |W | = n for α < ω1. For α = λ+ k, where λ < ω1 is a limit ordinal and
k ∈ ω we define Xα = Wλ+2k and Yα = Wλ+2k+1. Let Xα = {xαi : i < n},
Yα = {yαi : i < n}. Choose by the induction on l = l1 ·n + l2 < n2, l1, l2 < n
uncountable sets Al ⊆ ω1 satisfying

• Al+1 ⊆ Al and

• if l = l1 ·n+ l2, l1, l2 < n, α, β ∈ Al and α < β then xαl1 6∈ F (yβl2).

Since there is no repetition in {xαl1 , y
α
l2

: α ∈ Al−1} we may apply lemma 2.1
to get Al from Al−1.

Consider An2−1. Choose β0 ∈ An2−1 such that the set

A = {λ+ 2k < β0 : λ+ k ∈ An2−1 & k ∈ ω & λ is a limit ordinal }

is infinite. Let β0 = λ0+k0 where k0 ∈ ω and λ0 is limit. Put β = λ0+2k0+1.
Since β0 < β we have A ⊆ β. Suppose α = λ + 2k ∈ A. Let x ∈ Wα,
y ∈ Wβ. Then λ + k ∈ An2

1
, Wα = Xλ+k and Wβ = Yλ0+k0 = Yβ0 . Thus for

some l1, l2 < n we have x = xλ+k
l1

and y = yβ0

l2
. Since λ + k, β0 ∈ Al1·n+l2 ,

λ+ k < β0 we get x 6∈ F (y). The lemma is proved.

Let relations Ri on ω< ω be defined by
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sRit if and only if
i < |s| = |t|, s|i = t|i and (∀l∈ [i, |s|))(s(l) = σi(t(l))).

Note that if x, y ∈ ωω are such that (∀n > i)(x|nRiy|n) then x = fi(y).
We define the following forcing notion Q. A member q of Q is a finite

function such that:

α) dom(q) ∈ [ω1]< ω, rng(q) ⊆ ω< ω,

β) (∀α, β ∈ dom(q))(α 6= β ⇒ q(α) 6= q(β)),

γ) there is n(q) ∈ ω such that q(α) ∈ ωn(q) for all α ∈ dom(q).

The order is defined as follows:

q ≤ p if and only if

1. dom(q) ⊆ dom(p) and

2. (∀α ∈ dom(q))(q(α) ⊆ p(α)) and

3. if α, β ∈ dom(q), α < β, i < n(q) and q(α)Riq(β) then p(α)Rip(β).

Lemma 2.3 Q satisfies ccc.

Proof Suppose {qα : α < ω1} ⊆ Q. We find γ < ω1 and A ∈ [ω1]ω1

such that for each α, β ∈ A, α < β we have

• n(qα) = n(qβ),

• dom(qα) ∩ γ = dom(qβ) ∩ γ, (dom(qα)\γ) ∩ (dom(qβ)\γ) = ∅,

• qα|(dom(qα) ∩ γ) = qβ|(dom(qβ) ∩ γ).

Suppose α, β ∈ A. Clearly q̄ = qα∪qβ is a function. The only problem is that
there may exist γ0 ∈ dom(qα) and γ1 ∈ dom(qβ) such that qα(γ0) = qβ(γ1).
Therefore to get a condition above both qα and qβ we have to extend all q̄(γ).
Let dom(q̄) = {γj : j < N} be an increasing enumeration. For i < n(qα)
choose φi : N −→ ω such that
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if j1 < j0 < N and q̄(γj1)Riq̄(γj0) and either γj0 , γj1 ∈ dom(qα)
or γj0 , γj1 ∈ dom(qβ)
then φi(j0) = j1.

Note that q̄(γj1)Riq̄(γj0), q̄(γj2)Riq̄(γj0) imply q̄(γj1) = q̄(γj2). Hence if j2 <
j1 < j0 are as above then γj2 ≥ γ and consequently only one pair (j1, j0) or
(j2, j0) will be considered in the definition of φi. Apply condition (*) to find
distinct n0, . . . , nN−1 such that

(∀i < n)(qα)(∀j0, j1 < N)(φi(j0) = j1 ⇒ σi(nj0) = nj1).

Put q(γj) = q̄(γj )̂ nj for j < N . Clearly q ∈ Q. Suppose γj1 , γj0 ∈ dom(qα),
j1 < j0 and qα(γj1)Riqα(γj0) for some i < n(qα). Then φi(j0) = j1 and hence
σi(nj0) = nj1 . Thus q(γj1)Riq(γj0). It shows that qα ≤ q. Similarly qβ ≤ q.
Thus we have proved that Q satisfies Knaster condition.

Let G ⊆ Q be generic over V. In V[G] we define xGα =
⋃{q(α) : q ∈

G & α ∈ dom(q)} for α < ω1. Obviously each xGα is a sequence of integers. As
in the proof of lemma 2.3 we can show that for each q ∈ Q there is p ≥ q such
that n(p) = n(q) + 1. Consequently xGα ∈ ωω for every α < ω1. Moreover
xGα 6= xGβ for α < β < ω1 (recall that q(α) 6= q(β) for distinct α, β ∈ dom(q)).

Note that if α < β, α, β ∈ dom(q), q ∈ Q and i < n(q) then

q(α)Riq(β) implies q ` ẋα = fi(ẋβ) and
¬q(α)Riq(β) implies q ` ẋα 6= fi(ẋβ).

Lemma 2.4 Suppose G ⊆ Q is generic over V. Then

V[G] |= (∀A∈ [ω1]ω1)(∃α,β∈A)(α < β & xGα ∈ F (xGβ )).

Proof Let Ȧ be a Q-name for an uncountable subset of ω1. Given
p ∈ Q. Find A0 ∈ [ω1]ω1 and qα ≥ p for α ∈ A0 such that α ∈ dom(qα) and
qα ` α ∈ Ȧ. We may assume that for each α, β ∈ A0 we have n = n(qα) =
n(qβ) and qα(α) = qβ(β). Now we repeat the procedure of lemma 2.3 with one
small change. We choose suitable A1 ∈ [A0]ω1 , γ < ω1 and we take α, β ∈ A1,
α < β. Defining integers n0, . . . , nN−1 we consider functions φi : N −→ ω
(for i < n) as in 2.3 and a function φn : N −→ ω such that φn(k) = l, where
α = γl, β = γk. Then we get a condition q ∈ Q above both qα and qβ and
such that σn(q(β)(n)) = q(α)(n). Since q(β)|n = q(α)|n and n(q) = n + 1
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we have q(α)Rnq(β) and consequently q ` ẋα = fn(ẋβ). Since q ≥ qα, qβ we
get q ` “α, β ∈ Ȧ & ẋα ∈ F (ẋβ)”.

Fix a Borel isomorphism (π0, π1, π2) : ωω −→ (ωω)ω×2ω × ω×ωω. Thus
if x ∈ ωω then π1(x) is a relation on ω and π0(x) is a sequence of reals. Let
Γ consists of all reals x ∈ ωω such that

1. (∀n 6= m)(π0(n) 6= π0(m))

2. π1(x) is a linear order on ω

3. π2(x) ∈ Ax = {π0(n) : n ∈ ω} and it is the π1(x)-last element of Ax.

Note that in 3 we think of π1(x) as an order on Ax. We define relations <Γ

and ≡Γ on Γ by

x <Γ y if and only if
Ax is a proper π1(y)-initial segment of Ay and π1(y)|Ax = π1(x).

x ≡Γ y if and only if
Ax = Ay and π1(y) = π1(x) (we treat π1(x), π1(y) as orders on
Ax, Ay, respectively).

Clearly Γ is a Borel subset of ωω, <Γ is a Borel transitive relation on Γ and
≡Γ is a Borel equivalence relation on Γ.

Now we define a forcing notion P1. Conditions in P1 are finite subsets p
of Γ such that

if x, y ∈ p, x <Γ y then π2(x) 6∈ F (π2(y)).

P1 is ordered by the inclusion.

Lemma 2.5 P1 is a ccc Souslin forcing.

Proof P1 is Souslin since it can be easily coded as a Borel subset
of ωω in such a way that the order is Borel too. We have to show that P1

satisfies the countable chain condition. First let us note some properties of
the incompability in P1. Suppose p, q ∈ P1 are incompatible. Clearly p\q
and q\p are incompatible. If x ∈ p and x ≡Γ x

′ then (p\{x}) ∪ {x′} and q
are incompatible.

Suppose now that {pα : α < ω1} is an antichain in P1. By the ∆-lemma
and by the above remarks we may assume that
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1) pα ∩ pβ = ∅ for α < β < ω1

2) if x, x′ ∈ ⋃
α<ω1

pα, x 6= x′ then x 6≡Γ x
′.

Note that if p ∈ P1 then the set {[y]≡Γ
: y ∈ Γ & (∃x ∈ p)(y <Γ x)} is

countable. Hence, due to 2, we may assume that

3) (∀α<β<ω1)(∀x∈pα)(∀y∈pβ)(¬y <Γ x)

Claim: Let d ∈ [ωω]< ω. Then d = {π2(x) : x ∈ pα} for at most
countably many α < ω1.

Indeed, assume not. Then we find β < ω1 such that {π2(x) : x ∈ pβ} = d
and the set B = {α < β : {π2(x) : x ∈ pα} = d} is infinite. Note that if
x′, x′′ <Γ x and π2(x′) = π2(x′′) then x′ ≡Γ x

′′. Hence if x ∈ pβ then for at
most |d| elements x′ of

⋃
α∈A pα we have x′ <Γ x. Thus we find α ∈ A such

that (∀x′∈pα)(∀x∈pβ)(¬x′ <Γ x). It follows from 3 that

(∀x∈pβ)(∀x′∈pα)(¬x <Γ x
′)

and hence conditions pα and pβ are compatible – a contradiction.
Let dα = {π2(x) : x ∈ pα}. By the above claim we may assume that

dα 6= dβ for all α < β < ω1. Applying the ∆-lemma we may assume that

4) {dα : α < ω1} forms a ∆-system with the root d.

Since the set
⋃
w∈d F (w) is countable w.l.o.g.

5) (∀α<ω1)(∀v ∈ dα\d)(v 6∈ ⋃
w∈d F (w)).

Apply lemma 2.2 for the family {dα\d : α < ω1} to get β < ω1 and an infinite
set A ⊆ β such that

6) (∀α∈A)(∀v ∈ dα\d)(∀w ∈ dβ\d)(v 6∈ F (w)).

Let y ∈ pβ. As in the claim the set

{x ∈
⋃
α∈A

pα : π2(x) ∈ d & x <Γ y}

is finite. Consequently we find α ∈ A such that

7) (∀x∈pα)(∀y∈pβ)(π2(x) ∈ d⇒ ¬x <Γ y).
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We claim that pα and pβ are compatible. Let x ∈ pα and y ∈ pβ. By 7 we
have that if π2(x) ∈ d then ¬x <Γ y. If π2(x) 6∈ d and π2(y) 6∈ d then 6
applies and we get π2(x) 6∈ F (π2(y)). Finally if π2(x) 6∈ d and π2(y) ∈ d
then we use 5 to conclude that π2(x) 6∈ F (π2(y)). Hence x ∈ pα, y ∈ pβ and
x <Γ y imply π2(x) 6∈ F (π2(y)). Consequently pα ∪ pβ ∈ P1.

Lemma 2.6 Assume that there exists a sequence {xα : α < ω1} of ele-
ments of ωω such that

(∀A∈ [ω1]ω1)(∃α,β∈A)(α < β & xα ∈ F (xβ)).

Then the forcing notion P1 does not satisfy the Knaster condition.

Proof For α < ω1 choose yα ∈ Γ such that

• Ayα = {π0(yα)(n) : n ∈ ω} = {xγ : γ ≤ α}

• π1(yα) is the natural order on Ayα , xγ <π1(yα) xβ iff γ < β.

• π2(yα) = xα.

Let pα = {yα} for α < ω1. Then {pα : α < ω1} does not have an uncountable
subset of pairwise compatible elements.

Putting together lemmas 2.5, 2.6 and 2.4 we get

Theorem 2.7 It is consistent that there exists a ccc Souslin forcing notion
which does not satisfy the Knaster condition.

It is not difficult to see that this example does not satisfy the following
requirement:

“The generic object is encoded by a real”

The next theorem says that also we can require such a condition. This
answers a question of J.Bagaria.

Theorem 2.8 It is consistent that there exists a ccc Souslin forcing notion
Q such that `Q V[G] = V[ṙ] for some Q-name ṙ for a real and Q does not
satisfy the Knaster condition.
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Proof We follow the notation of the previous results. We work in the
model of 2.7. Let Q = {(p, w) : p ∈ P & w ∈ [ω< ω]< ω} be ordered by

(p, w) ≤ (q, v) if and only if
p ≤ q, w ⊆ v and x|n 6∈ v\w for every x ∈ p and n ∈ ω.

Q may be easily represented as a Souslin forcing notion (remember that “for
each x in p” is a quantification on natural numbers). Note that if p ≤ q,
p, q ∈ P and w ∈ [ω< ω]< ω then (p, w) ≤ (q, w). Hence Q satisfies the
countable chain condition. If Q satisfied the Knaster condition then P would
have satisfied it. We show that the Q-generic object is encoded by a real.
Let ṙ be a Q-name for a subset of ω< ω (a real) such that for any Q-generic
G we have ṙG =

⋃{w : (∃p)((p, w) ∈ G)}. Now in V[ṙG] define

H = {(p, w) ∈ Q : w ⊆ ṙG & (∀x∈p)(∀n∈ω)(x|n ∈ ṙG ⇔ x|n ∈ w)}.

Note that H includes G since x ∈ p, x|n 6∈ w imply (p, w) ` x|n 6∈ ṙ. H
is a filter - suppose (p0, w0), (p1, w1) ∈ H. For each x ∈ p0 ∪ p1 we find
(px, wx) ∈ G such that (px, wx) ` (∀n ≥ N)(x|n 6∈ ṙ) for some N . If
x 6∈ px we could take large n and add x|n to wx. Then we would have
(px, wx) ≤ (px, wx ∪ {x|n}) and (px, wx ∪ {x|n}) ` x|n ∈ ṙ. Thus x ∈ px for
all x ∈ p0 ∪ p1. Let p =

⋃
x∈p0∪p1

px, w =
⋃
x∈p0∪p1

wx. Then (p, w) ∈ G ⊆ H
and (p0, w0), (p1, w1) ≤ (p, w). Consequently H = G and the theorem is
proved.

In the same time when the forcing notion P1 was constructed S.Todorcevic
found another example of this kind.

Let F be the family of all converging sequences s of real numbers such
that lim s /∈ s. Todorcevic’s forcing notion P∗1 consists of finite subsets p of
F with property that

(∀s, t ∈ p)(s 6= t⇒ lim s /∈ t).

Todorcevic proved that P∗1 satisfies ccc and that if b = ω1 then P∗1 does not
have Knaster property (see [To]).

3 A nonhomogeneous example

In this section we give an example of ccc Souslin forcing notion which is very
nonhomogeneous. Our forcing P2 will satisfy the following property:
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there is no p ∈ P2 such that p ` “ P̂2|p is σ-centered”.

Recall that if Q is the Amoeba Algebra for Measure or the Measure Algebra
then `Q “Q̂ is σ-centered” (see [BJ]). The Todorcevic example P∗1 has this
property too.

Proposition 3.1 `P∗1 “P̂∗1 is σ-centered”

Proof For a rational number d ∈ Q let φd : P∗1 −→ P∗1 be the trans-
lation by d. Thus φd(p) = {s+ d : s ∈ p}. Note that φd is an automorphism
of P∗1. Moreover if p1, p2 ∈ P∗1 then

⋃{s − r : s ∈ p1, r ∈ p2} is a nowhere
dense set. Hence we find a rational d such that

−d /∈ {a− b : a ∈ s∪{lim s}, b ∈ r∪{lim r}, s ∈ p1, r ∈ p2}.

Then the conditions φd(p1) and p2 are compatible. Thus we have proved that
for each p ∈ P∗1 the set {φd(p) : d ∈ Q} is predense in P∗1. This implies that

`P∗1 “P̂∗1 =
⋃
d∈Q

φd[Γ̇] and each φd[Γ̇] is centered”,

where Γ̇ is the canonical name for a generic filter.

We do not know if

`P1 “P̂1 is σ-centered”.

One can easily construct a ccc Souslin forcing P which does not force that
P̂ is σ-centered. An example of such a forcing notion is the disjoint union of
Cohen forcing and the measure algebra, P = ({0} ×C) ∪ ({1} ×B). In this
order we have (0, ∅) ` “{1} × B̂ is not σ-centered”. But in this example we
can find a dense set of conditions p ∈ P such that

p `P “P̂|p = {q ∈ P̂ : q ≥ p} is σ-centered”.

Define T ∗ ⊆ ω< ω, f, g : T ∗ −→ ω in such a way that:

(α) T ∗ is a tree,

(β) if η ∈ T ∗ then succT ∗(η) = f(η),
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(γ) if lhη < lhν or lhν = lhη but (∃k< lhη)(η|k = ν|k & η(k) < ν(k)) then
f(η) < f(ν),

(δ) g(η) > |T ∗ ∩ ωlhη| ·∏{f(ν) : f(ν) < f(η)} · (100 + lhη) ,

(ε) f(η) > g(η) ·∏{2f(ν) : f(ν) < f(η)}

For η ∈ T ∗ and and a set A ⊆ succT ∗(η) = f(η) we define a norm of A:

norη(A) =
g(η)

|f(η)\A|
.

Lemma 3.2 Suppose that η ∈ T ∗ and Al ⊆ f(η) for l < m. Let ζ =
min{norη(Al) : l < m}. Then
1) norη(

⋂
l<mAl) ≥ ζ/m,

2) if ζ ≥ 1 and m ≤ ∏{2f(ν) : f(ν) < f(η)} then
⋂
l<mAl 6= ∅.

Proof 1) Note that

|f(η)\
⋂
l<m

Al| = |
⋃
l<m

f(η)\Al| ≤
∑
l<m

|f(η)\Al| ≤ m · g(η)/ζ

Hence

norη(
⋂
l<m

Al) =
g(η)

|f(η)\⋂l<mAl|
≥ ζ/m.

2) Applying 1) we get norη(
⋂
l<mAl) ≥ 1/m. Hence

|f(η)\
⋂
l<m

Al| ≤ g(η) ·m ≤ g(η) ·
∏
{2f(ν) : f(ν) < f(η)} < f(η)

(the last inequality is guaranteed by condition (ε)). Consequently the set⋂
l<mAl is nonempty.

Let P2 consists of all trees T ⊆ T ∗ such that

lim
n→∞

min{norη(succT (η)) : η ∈ T ∩ ωn} =∞.

The order is the inclusion.
Recall that a forcing notion Q is σ-k-linked if there exist sets Rn ⊆ Q (for

n ∈ ω) such that
⋃
n∈ω Rn = Q and each Rn is k-linked (i.e. any k members

of Rn has a common upper boud in Q).
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Proposition 3.3 For every k < ω the forcing notion P2 is σ-k-linked.

Proof Let n ∈ ω be such that for each η ∈ T ∗ ∩ ωn

k <
∏
{2f (ν) : f(ν) < f(η)}.

Note that the set

{T ∈ P2 : lh(rootT ) ≥ n & (∀η∈T )(rootT ⊆ η ⇒ norη(succT (η)) ≥ 1)}

is dense in P2. For η ∈ T ∗, lhη ≥ n define

Dη = {T ∈P2 : rootT = η & (∀nu∈T )(η ⊆ ν ⇒ norν(succT (ν)) ≥ 1)}.

Since
⋃{Dη : lhη ≥ n} is dense in P2 it is enough to show that each Dη is

k-linked. Suppose T0, . . . , Tk−1 ∈ Dη. Since k <
∏{2f (ν) : f(ν) < f(η)} we

may apply lemma 3.2 2) to conclude that if ν ∈ T = T0 ∩ . . . ∩ Tk−1, ν ⊇ η
then succT (ν) 6= ∅. By 3.2 1) we get T ∈ P2.

For η ∈ T ∗ we define the forcing notion Qη:

Qη = {t ⊆ T ∗ : t is a finite tree of the height n ∈ ω,
roott = η and

(∀ν∈ t∩ω< n)(η ⊆ ν ⇒ norν(succt(ν)) ≥ lhν)}.

Since Qη is countable and atomless it is isomorphic to Cohen forcing C. Let
P =

∏{Qi,η : i < ω1, η ∈ T ∗} be the finite support product such that each
Qi,η is a copy of Qη.

Theorem 3.4 Let G ⊆ P be a generic filter over V. Then, in V[G], there
is no S ∈ P2 such that

S `P2 “ P̂2|S is σ-centered”.

Proof We work in V[G].
Assume S `“P̂2|S is σ-centered”. Let Ṙn (n ∈ ω) be P2-names for subsets
of P2 such that

S `P2 “ P̂2|S ⊆
⋃
n∈ω

Ṙn & each Ṙn is directed”.

13

Paper Sh:373, version 1996-03-17 10. See https://shelah.logic.at/papers/373/ for possible updates.



Take n ∈ ω such that

(∀η∈S)(n ≤ lhη ⇒ norη(succS(η)) ≥ 1).

Fix any η ∈ S ∩ ωn and choose l,m ∈ succS(η), l < m. For i < ω1 put

Ti =
⋃
{t : {((i, ηˆm), t)} ∈ G}.

Each Ti is the tree added by G∩Qi,ηˆm and it is an element of P2. Moreover
rootTi = ηˆm and for each ν ∈ Ti if ηˆm ⊆ ν then norν(succTi(ν)) ≥ lhν.
Hence, by lemma 3.2, Ti ∩ S ∈ P2 for each i ∈ ω1.
Now we work in V.
We find pi, Ṡi, ηi, ni such that for each i ∈ ω1:

• pi ∈ P, ni ∈ ω, ηi ∈ T ∗ and Ṡi is a P-name for a member of P2,

• `P (∀ν∈ Ṡi)(rootṠi ⊆ ν ⇒ norν(succṠi(ν)) ≥ 1),

• pi `P “η l̂ ⊆ ηi = rootṠi & Ṡi `P2 Ṫi ∈ Ṙni”,

• (i, ηˆm) ∈ dompi.

Next we find a set I ∈ [ω1]ω1 such that {dompi : i ∈ I} forms a ∆-system
with the root d and for each i ∈ I:

• ηi = η∗ and ni = n∗,

• pi|d = p∗,

• pi(i, ηˆm) = t, (i, ηˆm) /∈ d.

Let n# be the height of the tree t. Clearly we may assume that n# > lhη∗.

Fix an enumeration {ρk : k < k#} of t ∩ ωn
#

. Put

H = {(ak : k < k#) : ak ⊆ f(ρk) & norρk(ak) ≥ n#}.

Choose distinct iā ∈ I for ā ∈ H. We define a condition q ∈ P extending all
piā (ā ∈ H):

domq =
⋃{dompiā : ā ∈ H};

if (i, ν) ∈ dompiā , (i, ν) 6= (iā, ηˆm) then q(i, ν) = piā(i, ν);
q(iā, ηˆm) = t ∪ {ρk ĉ : k < k#, c ∈ ā(k)}.
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Now we take r ≥ q such that r decides all Ṡiā|(n# + 1). Thus we have finite
trees sā (for ā ∈ H) such that r `P Ṡiā|(n# + 1) = sā.

Claim: : There exists H ′ ⊆ H such that

(i)
⋂

ā∈H′(sā ∩ ωn
# + 1) 6= ∅ and

(ii) for each k < k# the set
⋂{ā(k) : ā ∈ H ′} is empty.

Indeed, let Hρ = {ā ∈ H : ρ ∈ sā} for ρ ∈ T ∗ ∩ωn
# + 1, η l̂ ⊆ ρ. Clearly

ρ ∈ ⋂
ā∈Hρ sā, so it is enough to show that for some ρ the family Hρ satisfies

(ii). Suppose that for each ρ ∈ T ∗ ∩ ωn
# + 1, ρ ⊇ η l̂ we can find kρ < k#

and cρ such that cρ ∈
⋂{ā(kρ) : ā ∈ Hρ}. Put

ā∗(k) = f(ρk)\{cρ : ρ ∈ T ∗ ∩ ωn
# + 1 & η l̂ ⊆ ρ}.

Let ρ+ ∈ T ∗ ∩ ωn
#

be such that

f(ρ+) = max{f(ρ) : ρ ∈ T ∗ ∩ ωn
#
, η l̂ ⊆ ρ}.

By condition (γ) we get

|{ρ ∈ T ∗ ∩ ωn
# + 1 : η l̂ ⊆ ρ}| ≤

∏
{f(ν) : f(ν) ≤ f(ρ+)}.

Now, for each k < k# we have f(ρ+) < f(ρk) (recall that η l̂ ⊆ ρ+, ηˆm ⊆ ρk
and l < m so condition (γ) works). Hence

norρk(ā
∗(k)) ≥ g(ρk)∏{f(ν) : f(ν) ≤ f(ρ+)}

≥ g(ρk)∏{f(ν) : f(ν) < f(ρk)}
> n#

Thus ā∗ ∈ H. Since cρ /∈ ā∗(kρ) we have ā∗ /∈ Hρ for every ρ ∈ T ∗∩ωn
# + 1,

η l̂ ⊆ ρ. Since
⋃{Hρ : ρ ∈ T ∗∩ωn

# + 1, η l̂ ⊆ ρ} = H we get a contradiction.
The claim is proved.

Now let H ′ ⊆ H be a family given by the claim. Condition (ii) implies
that

r `P “the family {Tiā : ā ∈ H ′} has no upper bound in P2”.

Since |H| ≤ ∏{2f(ρk) : k < k#} we have that for each ρ ∈ T ∗ ∩ ωn
# + 1

|H ′| ≤
∏
{2f(ν) : f(ν) < f(ρ)}.
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Hence we may apply 3.2 2) to conclude that for every ρ ⊇ η l̂ , lhρ ≥ n# + 1:

r `P “if ρ ∈
⋂

ā∈H′
Ṡiā then

⋂
ā∈H′

succṠiā (ρ) 6= ∅”.

Thus
r `P “the family {Ṡiā : ā ∈ H ′} has an upper bound”.

Since r `P “Ṡiā `P2 Ṫiā ∈ Ṙn∗” we get a contradiction.

Remark: 1) In the above theorem we worked in the model V[G] for
technical reasons only. The assertion of the theorem can be proved in ZFC.

2) The forcing notion P2 is a special case of the forcing studied in [Sh1].

Problem 3.5 Does there exist a ccc Souslin forcing P such that
1) P is homegeneous (i.e. for each p ∈ P, `P“there exists a generic filter
G over V such that p ∈ G”)
2) 6 `P“P̂ is σ-centered”?

4 On “small subsets of P are σ-centered”.

Our next example is connected with the following, still open, question:

Problem 4.1 Assume that for each ccc Souslin forcing P every set Q ∈
[P]ω1 is σ-centered (in P).

Does MAω1(Souslin) hold true?

As an illustration of this subject let us recall a property of Random (Solovay)
Algebra B (see [BaJ]):

if every B ∈ [B]ω1 is σ-centered
then the real line can not be covered by ω1 null sets and conse-
quently MAω1(B) holds true.

Our example shows that the above property of the algebra B does not extend
for other forcing notions. Let

P3 = {(n, T ) : n ∈ ω & T ⊆ 2<ω is a tree & (∀t∈T ∩ 2n)(µ([Tt]) > 0)}.

The order is defined by
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(n1, T1) ≤ (n2, T2) if and only if
n1 ≤ n2, T2 ⊆ T1 and T1|n1 = T2|n1.

Lemma 4.2 P3 is a σ-linked Souslin forcing which is not σ-centered.

Proof Note that `P3“there exists a perfect set of random reals over
V”. Hence P3 is not σ-centered. To show that it is σ-linked define sets
U(W,n,m) for n < m < ω and finite trees W ⊆ 2≤m:

U(W,n,m) = {(n, T )∈P3 : T |m=W & (∀t ∈ T∩2n)(µ([Tt]) > W (t)/2m+1)}

where W (t) = |{s ∈ W ∩2m : t ⊆ s}| (for t ∈ W ∩2n). Clearly each set
U(W,n,m) is linked (i.e. each two members of it are compatible in P3) and

P3 =
⋃{U(W,n,m) : n < m < ω & W ⊆ 2≤m}. Since obviously P3 is

Souslin we are done.

Let B(κ) stand for Random Algebra for adding κ many random reals.
This is the measure algebra of the space 2κ.

Theorem 4.3 Assume V |= CH. Let G ⊆ B(ω2) be a generic set over
V. Then, in V[G]

(i) Martin axiom fails for P3 but

(ii) each Q ∈ [P3]ω1 is σ-centered (in P3).

Proof Cichon proved that one random real does not produce a perfect
set of random reals (see [BaJ]). Hence in V[G] there is no perfect set of
random reals over V. Consequently the first assertion is satisfied in V[G].
Since V[G] |= “each B ∈ [B]ω1 is σ-centered in B” (compare section 3) it is
enough to show the following

Claim: Suppose that each B ∈ [B]ω1 is σ-centered. Then every set
Q ∈ [P3]ω1 is σ-centered.

Indeed, let Q ∈ [P3]ω1 . For n ∈ ω and t ∈ 2n put

B(t, n) = {[Tt] : (n, T ) ∈ Q & t ∈ T}.

By our assumption we find sets B(t, n, k) for k, n ∈ ω, t ∈ 2n such that
B(t, n) =

⋃
k∈ω B(t, n, k) and for each A1, A2 ∈ B(t, n, k) the set A1 ∩ A2
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is of positive measure. Now define sets Q(n,W, σ) for n ∈ ω, a finite tree

W ⊆ 2≤ n and a function σ : W ∩ 2n −→ ω:

Q(n,W, σ) = {(n, T ) ∈ Q : T |n = W & (∀t ∈ T ∩ 2n)([Tt] ∈ B(t, n, σ(t)))}.

Note that if (n, T1), (n, T2) ∈ Q(n,W, σ) then for each t ∈ W ∩ 2n the set
[(T1)t]∩ [(T2)t] is of positive measure. Consequently each Q(n,W, σ) is linked
and we are done.

5 A σ-centered example

In this section we define a very simple σ-centered Souslin forcing notion.
Next we show that in any generic extension of some model of CH via finite
support iteration of the Dominating (Hechler) Algebra, Martin Axiom fails
for this forcing notion. Consequently we get the consistency of the following
sentence:

any union of less than continuum meager sets is meager + ¬CH
+ MA fails for some σ-centered Souslin forcing.

Our example P4 consists of all pairs (n, F ) such that n ∈ ω, F ∈ [2ω]< ω

and all elements of the list {x|n : x ∈ F} are distinct. P4 is ordered by

(n, F ) ≤ (n′, F ′) if and only if
n ≤ n′, F ⊆ F ′ and {x|n : x ∈ F} = {x|n : x ∈ F ′}.

Lemma 5.1 P4 is a σ-centered Souslin forcing.

Proof Clearly P4 is Souslin (even Borel). To show that P4 is σ-
centered note that if {x|n : x ∈ F0} = . . . = {x|n : x ∈ Fk} then the condi-
tions (n, F0), . . . , (n, Fk) are compatible (if m is large enough then (m,F0 ∪
. . . ∪ Fk) is a witness for this).

Now we want to define the model we will start with. At the beginnig
we work in L. Applying the technology of [Sh] we can construct a sequence
(Pξ : ξ ≤ ω1) of forcing notions such that for each α, β < ω1, ξ ≤ ω1:

(1) if α < β then Pα is a complete suborder of Pβ,
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(2) there is γ > β such that Pγ+1 = Pγ ∗ Ḋα, where Ḋα is the Pγ-name for
finite support, α in length, iteration of Hechler forcing,

(3) Pξ satisfies ccc,

(4) if ξ is limit then Pξ =
−→
limζ<ξ Pζ ,

(5) Pω1 ` “every projective set of reals has Baire property”

(for details see also [JR]). Recall that Hechler forcing D consits of all pairs
(n, f) such that n ∈ ω, f ∈ ωω. These pairs are ordered by

(n, f) ≤ (n′, f ′) if and only if
n ≤ n′, f |n = f ′|n′ and f(k) ≤ f ′(k) for all k ∈ ω.

Suppose G ⊆ Pω1 is a generic set over L. We work in L[G]. For distinct
x, y ∈ 2ω we define h(x, y) = min{n : x(n) 6= y(n)}. Easy calculations show
the following

Lemma 5.2 Let b ⊆ ω. Then the following conditions are equivalent:

(i) there exists a Borel equivalence relation R on 2ω with countable many
equivalence classes such that {h(x, y) : x, y ∈ 2ω∩L & x 6= y & R(x, y)} ⊆ b,

(ii) there exists an equivalence relation R on 2ω with countable many equiv-
alence classes such that {h(x, y) : x, y ∈ 2ω ∩ L & x 6= y & R(x, y)} ⊆ b,

(iii) there exist sets Yn ⊆ 2ω (for n ∈ ω) such that L ∩ 2ω ⊆ ⋃
n∈ω Yn and⋃

n∈ω{h(x, y) : x 6=y & x, y ∈ Yn} ⊆ b,

(iv) (∃f :2< ω→2)(∀x∈2ω∩L)(∃m∈ω)(∀n>m)(n /∈ b⇒ f(x|n) = x(n)).

The Raisonnier filter F consists of all sets b ⊆ ω satisfying one of the
conditions of 5.2 (cf [Ra]). F is a proper filter on ω. Directly from (iv)
of 5.2 one can see that F is a Σ1

3-subset of 2ω. Consequently it has Baire
property (recall that we are in L[G]).

Theorem 5.3 (Talagrand, [Ta]) For any proper filter F on ω the following
conditions are equivalent:

(i) F does not have Baire property,
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(ii) for every increasing sequence (nk : k ∈ ω) of integers there exists b ∈ F
such that (∃∞k )(b ∩ [nk, nk+1) = ∅).

Applying the above theorem we can find an increasing function r ∈ ωω∩L[G]
such that (in L[G])

(∀b ∈ F)(∀∞k )(b ∩ [r(k), r(k + 1)) 6= ∅)

Let ṙ be the Pω1-name for r and let α0 < ω1 be such that ṙ is a Pα0-name.
Our basic model will be L[r]

Theorem 5.4 Let κ be a regular cardinal. Let Dκ be the finite support
iteration of Hechler forcing of the length κ. Suppose H ⊆ Dκ is a generic set
over L[r]. Then

L[r][H] |=“there is no P4-generic over L[r].”

Proof Assume not. Let H∗ ∈ L[r][H] be a P4-generic over L[r]. Put
T =

⋃{F : (∃n∈ω)((n, F ) ∈ H∗)}. Then in L[r][H∗] we have:

(6) T is a closed subset of 2ω,

(7) (∃∞k )(∀x, y ∈ T )(x 6= y ⇒ h(x, y) /∈ [r(k), r(k + 1))) and

(8) (∀x ∈ 2ω ∩ L)(∃q ∈ Q)(q + x ∈ T )

(Q stands for the set of all sequences eventually equal 0, + denotes the
addition modulo 2). Since both (7) and (8) are absolute (Π1

2) sentences they
are satisfied in L[r][H] too. Let Ṫ ∈ L[r] be a Pκ-name for T . Since T is a
closed subset of 2ω we can think of Ṫ as a name for a real.

Now we work in L[r]. Let p ∈ Dκ ∩ L[r] be such that

p `“Ṫ satisfies (6), (7) and (8)”.

By Souslin forcing properties (see §1 of [JS1]) we find a (closed) countable
set S ⊆ κ such that:

(9) Ṫ is a Dκ|S-name, p ∈ Dκ|S and

(10) Dκ|S is a complete suborder of Dκ.
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Since (6)-(8) are absolute we get

(11) p `Dκ|S“Ṫ satisfies (6), (7) and (8)”.

But Dκ|S is isomorphic to finite support iteration of Hechler forcing of the
countable length α (α < ω1). Thus we can treat Ṫ as a Dα-name and p as a
condition in Dα. Then, in L[r]

(12) p `Dα|S“Ṫ satisfies (6), (7) and (8)”.

By (2) we find β > α0 such that

(13) Pγ+1 = Pγ ∗ Ḋα and

(14) p ≡ (1, p) interpreted as a member of Pγ+1 belongs to G.

By Souslin forcing properties (12) holds true in L[G ∩Pγ] and hence

(15) L[G ∩Pγ+1] |=“ṪG satisfies (6), (7) and (8)”

(we treat here Ṫ as a Pγ+1-name). Let b = {h(x, y) : x 6= y & x, y ∈ ṪG} ∈
[ω]< ω ∩ L[G]. By (15) and by Shoenfield absoluteness we have

(16) L[G] |=“ṪG satisfies (6), (7) and (8)”.

Since {h(x, y) : x 6= y & x, y ∈ ṪG} = {h(x, y) : x 6= y & x, y ∈ ṪG + q} we
conclude that

(17) L[G] |=“sets ṪG + q (for q ∈ Q) witness that b ∈ F” and

(18) L[G] |= (∃∞k )(b ∩ [r(k), r(k + 1)) = ∅).

The last condition contradicts our choice of r.

Since `Dκ“any union of less than κ meager sets is meager” we get

Corollary 5.5 The following theory is consistent:
ZFC + ¬CH + “Martin Axiom fails for some σ-centered Souslin forcing”
+ “any union of less than continuum meager sets is meager”.
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6 On Souslin not ccc

In this section we will give a negative answer to the following question of
Woodin:

If P is a Souslin forcing notion which is not ccc
then there exists a perfect set T ⊆ P such that each distinct
t1, t2 ∈ T are incompatible.

Recall that in the case of non-ccc partial orders we do not require Souslin
forcings to satisfy the condition:

“the set {(p, q) : p is incompatible with q} is Σ1
1”.

Thus a forcing notion P is is Souslin not ccc if both P and ≤P are analytic
sets. The reason for this is that we want to cover in our definition various
standard forcing notions with simple definitions for which incompatibility is
not analytic (e.g. Laver forcing).

Let Q be the following partially ordered set:

W ∈ Q if W is a finite set of pairs (α, β), α ≤ β < ω1 such that if
(α1, β1), (α2, β2) are in W , then β1 < α2 or β2 < α1.

Q is ordered by the inclusion.

It follows from [Je1] that Q is proper. Clearly |Q| = ω1. Next define a
forcing notion P5. It consists of all r ∈ ωω such that r codes a pair (Er, wr)
where

1. Er is a relation on ω such that (ω,Er) |= ZFC− and Er encodes all
elements of ω ∪ {ω}.

2. wr ∈ ω and Er |=“wr ∈ Q”.

We say that a one-to-one function f ∈ ωω interprets Er1 in Er2 if there
exists n ∈ ω such that rng(f) = {k ∈ ω : Er2(k, n)} and Er1(l, k) ≡
Er2(f(l), f(k)).

If f interprets Er1 in Er2 then Er2 may “discover” that some of the
ordinals of Er1 are not ordinals (i.e. not well-founded). Let w(r1, r2, f) =
wr1 ∩ {(α, β) : α ≤ β are ordinals in Er2}. Then, in Er2 , w(r1, r2, f) is an
initial segment of wr1 and it is in QEr2 .

Now we can define the order ≤ on P5:
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r1 ≤ r2 if and only if r1 = r2 or
there exists f ∈ ωω which interprets Er1 in Er2 and such that

(ω,Er2) |= w(r1, r2, f) ⊆ wr2 .

Obviously both P5 and the order ≤ are Σ1
1-sets.

For r ∈ P5 we define W (r) as wr ∩ {(α, β) : α ≤ β are well founded }.
Note that W (r1) = W (r2) implies r1 and r2 are equivalent in P5 (i.e they
have the same compatible elements of P5). Consequently Q may be densely
embedded into the complete Boolean algebra determined by P5. It follows
from [Je1] that P is proper, it is Souslin and it does not satisfy the countable
chain condition. Moreover, if ω1 < 2ω then P does not contain a perfect set
of pairwise incompatible elements (recall |Q| = ω1).

An interesting question appears here:

Suppose P is ω-proper and Souslin.
Does there exists a perfect set of pairwise incompatible elements
of P?

The negative answer to this question is given by the following result.

Theorem 6.1 Assume ω1 < cf(2ω). There exists an ω-proper Souslin not
ccc forcing notion P∗5 with no perfect set of pairwise incompatible elements.

Proof Let δ ≤ ω1 be additively indecomposable. Let Q∗ be the order
defined by:

W ∈ Q∗ if and only if
W is a countable set of pairs (α, β), α ≤ β < ω1 such that

• (α1, β1), (α2, β2) ∈ W ⇒ β1 < α2 or β2 < α1,

• {(α, β) ∈ W : α 6= β} is finite,

• the order type of the set {α : (∃β)((α, β) ∈ W )} is less than
δ.

Q∗ is ordered by the inclusion.

It follows from Chapter XVII, §3 of [Sh 2] that Q∗ is α-proper for each
α < ω1.
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Now we can repeat the coding procedure that we applied to define the
forcing notion P5. Thus we get the Souslin forcing notion P∗5 such that Q∗

can be densely embedded in the Boolean algebra determined by P∗5.
For W ∈ Q∗ let heart(W ) = {(α, β) ∈ W : α 6= β}.
Assume that {(Erη , wrη : η ∈ 2ω} ⊆ P∗5 is a perfect set of pairwise

incompatible elements. Let Wη be the well-founded part of wrη . Since w.l.o.g
we can assume that sup{β : (∃α)((α, β) ∈ Wη)} is constant and heart(Wη)
is constant we easily get a contradiction.

7 On ccc Σ1
2

Souslin ccc notions of forcing are indestructible ccc (see [JS1]):

Suppose P is a ccc Souslin notion of forcing. Let Q be a ccc
forcing notion. Then `Q“ P̂ is ccc ”.

The above property does not hold true for more complicated forcing notions.
In this section we show that there may exist two ccc Σ1

2-notions of forcing
P6 and P∗6 such that P6 ×P∗6 does not satisfy ccc.

We start with V = L. Let Q be a ccc notion of forcing such that

`Q MA + ¬CH

Let G ⊆ Q be a generic set over L and let r be a random real over L[G]. Re-
call that by theorem of Roitman (cf [Ro]) we have L[G][r] |= MA(σ-centered).

Fix a sequence (fα : α < ω1) ∈ L of one-to-one functions fα : α
1–1−→ ω

and define in L[r] sets E1, E2 by

Ei = {{α, β} ∈ [ω1]2 : β < α & r(fα(β)) = i} for i = 0, 1.

We define forcing notions P6,P
∗
6:

P6 = {H ∈ [ω1]2 : [H]2 ⊆ E0},

P∗6 = {H ∈ [ω1]2 : [H]2 ⊆ E1}.

Orders are inclusions.
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Both P6 and P∗6 are elements of L[r]. Moreover they can be thought of as
subsets of L[r] ∩ 2ω. Applying MA(σ-centered) we get that (cf [Je]):

L[G][r] |= “any subset of L[r] ∩ 2ω is a relative Σ0
2-set”.

Consequently

L[G][r] |= “any subset of L[r] ∩ 2ω is Σ1
2”.

Thus P6 and P∗6 are Σ1
2-notions of forcing in L[G][r] (i.e. both P6, P∗6 and

orders and the relations of incompatibility are Σ1
2-sets). Roitman proved the

following

Theorem 7.1 (Roitman, Prop.4.6 of [Ro]) In L[G][r] both P6 and P∗6 sat-
isfy ccc and P6 ×P∗6 does not satisfy ccc.

Corollary 7.2 The following theory is consistent:
ZFC + MA(σ-centered) + ¬CH + “there exist ccc Σ1

2-notions of forcing
P6, P∗6 such that P∗6 `“ P̂6 is not ccc”.

Problem 7.3 Is there a ccc Souslin forcing notion P such that MA(P)
always fails after adding a random real?
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