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1 Introduction

In this paper we continue with study of forcing notions having a simple defi-
nition. We began this study in [JS1] and [JS2]. In [BJ] we gave more results
about Souslin forcing notions and in this paper we will give some examples
of Souslin forcing notions answering a question of [JS1] and a question of
H.Woodin.

A forcing notion P is Souslin if P C R is a Xi-set, {(p,q) : p <p ¢} is a
Yi-set and {(p,q) : p is incompatible with ¢} is a 3{-set.

More information on Souslin forcing notion can be found in [JS1]. A
related work is [BJ]. In [JS1] we prove that if P is Souslin ccc and Q is any
forcing notion then VQ =“P satisfies ccc”. A natural question was: does
“P is Souslin ccc” imply “P has Knaster property”. Recall that P satisfies
Knaster property if and only if

(VA€ [P|*")(3B€[A]“*)(Vp,q € B)(p is compatible with ¢).

In the second section we will give a model where there is a ccc Souslin
forcing which does not satisfy the Knaster condition. Recall that under the
assumption of MA every ccc notion of forcing has Knaster property.

Many simple forcing notions P satisfy the following condition:

IFp “P is o-centered”.

This property is connected with the homogeneity of the forcing notion. The
example of a totally nonhomogeneous Souslin forcing will be constructed in
the third section.

In the next section we present a model where there is a o-linked not o-
centered Souslin forcing such that all its small subsets are o-centered but
Martin Axiom fails for this order.

In section 5 we will give an example of a o-centered Souslin forcing notion
and a model of the negation of CH in which the union of less than continuum
meager subsets of R is meager but Martin Axiom fails for this notion of
forcing.

In the last session of the MSRI Workshop on the continuum (October
1989) H.Woodin asked if “P has a simple definition and does not satisfy
ccc”implies that there exists a perfect set of mutually incompatible condi-
tions. Clearly Mathias forcing satisfies such a requirement. In section 6 we
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will find a Souslin forcing which is Proper but not ccc that does not contain
a perfect set of mutually incompatible conditions.

The last section will show that ccc Yi-notions of forcing may not be
indestructible ccc.

Our notation is standard and derived from [Je]. There is one exception,
however. We write p < ¢ to say that ¢ is a stronger condition then p.

2 On the Knaster condition

In this section we will build a Souslin forcing satisfying the countable chain
condition but which fails the Knaster condition.
Fix a sequence < o; : i € w > of functions from w into w such that

(*) if N <w, ¢ : N—w (for i < N) then there are distinct ng,...,nyx_1
such that

(Y, jo, j1 < N)(¢:(Jo) = 1 = 0i(nj,) = ny,).

Note that there exists a sequence < o; : i € w > satisfying (*):

Suppose we have defined o;|mg : mg — mg for i < my. We
want to ensure (*) for ng + 1, ¢; (i < ng). Define o;(mo + jo) =
mo—+@;(jo) for 7, jo < ng. Take large m; and extend all o; (i < ng)
on my in such a way that rmg(c;) C m;.

Next we define functions f; : w* — w% for i € w by

z(k) itk <i
oi(z(k)) otherwise

e = {

Clearly all functions f; are continuous. Put F(x) = {fi(z) : i € w} for
T € wv.

Lemma 2.1 Suppose that T, ys € WY are such that there is no repetition
in {To, Yo : @ € wi}. Then there exists A € [w1]*" such that

(Vo, B € A)(o < B = o & F(yp)).
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ProorF  For a < wy let n, = min{n : z,(n) # yo(n)}. We find
n € w, and s,t € w' such that the set Ag = {a <w;:n=n,+1& z4|n =
s & ya|n = t} is stationary in wy. Clearly s # ¢ and s|(n — 1) = t|(n — 1).
Thus «, 8 € Ap and z, € F(yp) imply z, € {fi(ys) : ¢ < n}. Consequently
the set {a € AgN B : 2, € F(yp)} is finite for each g € Ay.

We define the regresive function ¢ : Ag — w; by ¥(8) = max{a €
AoN Bz, € F(yg)} (with the convention that max®) = 0). By Fodor’s
lemma there are v < w; and a stationary set A; C Ay such that ¥(8) = v
forall € A;. Put A= A;\(y+1). Now, if o, 5 € A, a < B then ¥(f) < «
and hence z, € F(yz). =

Lemma 2.2 Suppose that {W,, : a < wi} is a family of disjoint finite
subsets of w¥. Then there exist 3 < wy and an infinite set A C 3 such that

(VaecA)(VeeW,)(VyeWs)(x & F(y)).

Proor  We may assume that all sets W, are of the same cardinality,
say |[W|=n for a« <w;. For a« = A + k, where A < w; is a limit ordinal and
k € w we define X, = Wy o, and Y, = Wy ior1. Let X, = {2 : i < n},
Y, = {y® : i < n}. Choose by the induction on [ = l;-n +1ly <n? lj,lo <n
uncountable sets A; C w; satisfying

[ Al+1 g Al aIld
o if [ =1l1n+ly Il <n,a B €A and a < 3 then zf ¢F(yg)

Since there is no repetition in {zf!,yf : o € A;_1} we may apply lemma 2.1
to get A; from A;_q.
Consider A,2_;. Choose By € A,2_; such that the set

A={ +2k<fop: A+ ke Az 1 &kew& Ais alimit ordinal }

is infinite. Let 8y = A\g+ko where kg € w and \g is limit. Put § = A\g+2ko+1.
Since By < 8 we have A C . Suppose a« = A+ 2k € A. Let x € W,,
Yy € Wg. Then A+ k € An%a W, = X)\—HC and WB = Y>\0+k0 = Ygo. Thus for

some l,ly < n we have x = xl’\l+k and y = ylio. Since A + k, Bo € Al iy,
A+ k < By we get © € F(y). The lemma is proved. =

Let relations R; on w™= % be defined by

4
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sR;t if and only if
i < |s| =|t|, s|li = t|i and (VI€[i,]|s]))(s(l) = o;(t(1))).

Note that if z,y € w* are such that (Vn > i)(z|nR;y|n) then z = fi(y).
We define the following forcing notion Q. A member ¢ of Q is a finite
function such that:

<w w<w

a) dom(q) € [wi]
B) (Yo, B € dom(q))(a # B = q(a) # q(B)),

7v) there is n(q) € w such that g(a) € W™ for all o € dom(q).

, mg(q) C

Y

The order is defined as follows:
q < p if and only if
1. dom(q) € dom(p) and
2. (Va € dom(g))(q(e) € p(e)) and

3. if a, B8 € dom(q), @ < B, i < n(q) and q(a)R;q(B) then p(a)Rip(S3).
Lemma 2.3 Q satisfies ccc.

PROOF  Suppose {q, : @ < w1} € Q. We find 7 < w; and A € [w;]"
such that for each a, 8 € A, o < 8 we have

e 1(qa) = n(gp),
e dom(g,) Ny = dom(gg) N, (dom(ga)\7y) N (dom(gs)\7y) = 0,
® qo|(dom(ga) Ny) = gg|(dom(gs) N ).

Suppose «, 3 € A. Clearly ¢ = q,Ugg is a function. The only problem is that
there may exist 7y € dom(q,) and v, € dom(gs) such that ¢.(70) = ¢s(71)-
Therefore to get a condition above both ¢, and gz we have to extend all g(7y).
Let dom(q) = {v; : 7 < N} be an increasing enumeration. For i < n(¢,)
choose ¢; : N — w such that
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if j1 < jo < N and q(v;,)Riq(v),) and either v;,,v;, € dom(q,)
Or Vjo, Vir € d0m<q5)
then gbz(]()) = jl-

Note that Q(le)Riq<7jo)v q(ij)Riq(Vjo) imply q_(fyjl) = (j(’Y]'z)' Hence if j; <
J1 < jo are as above then ~;, > v and consequently only one pair (ji,jo) or
(J2, jo) will be considered in the definition of ¢;. Apply condition (*) to find
distinct ng, ..., ny_1 such that

(Vi <n)(ga)(Vjo, j1 < N)(@i(jo) = 51 = 0i(njo) = njy)-

Put ¢(v;) = G(v;)"n; for j < N. Clearly ¢ € Q. Suppose 7;,,7j, € dom(q,),
J1 < jo and ¢a (74, ) Riga(7;,) for some ¢ < n(q,). Then ¢;(jo) = j1 and hence
oi(nj,) = n;,. Thus q(v;,)Riq(vj,)- It shows that ¢, < ¢. Similarly ¢z < gq.
Thus we have proved that Q satisfies Knaster condition. m

Let G C Q be generic over V. In V[G] we define 2¢ = J{q(a) : ¢ €
G & a € dom(q)} for a < wy. Obviously each z€ is a sequence of integers. As
in the proof of lemma 2.3 we can show that for each ¢ € Q there is p > ¢ such
that n(p) = n(q) + 1. Consequently 2¢ € w% for every a < w;. Moreover
xS # x§ for o < f < wy (recall that g(a) # ¢(B) for distinct a, 3 € dom(q)).
Note that if « < 3, a, f € dom(q), ¢ € Q and i < n(q) then

q(@)R;q(B) implies ¢ IF &, = fi(s) and
—q(a) Rig(B3) implies g1 dq # fi(ip).

Lemma 2.4 Suppose G C Q 1is generic over V. Then
VIG] E (VA€ w1 ]*)(FafeA)(a < B & 1§ € F(x)).

PROOF  Let A be a Q-name for an uncountable subset of w;. Given
p € Q. Find Ay € [w]** and ¢, > p for a € A such that a € dom(g,) and
go IF o € A. We may assume that for each o, 8 € Ay we have n = n(qa) =
n(gs) and ¢ (o) = gs(5). Now we repeat the procedure of lemma 2.3 with one
small change. We choose suitable A; € [A]“!, v < wy and we take «, 5 € Aj,
a < . Defining integers ng,...,ny_1 we consider functions ¢; : N — w
(for i < n) as in 2.3 and a function ¢, : N — w such that ¢, (k) = [, where
a =, B = Then we get a condition ¢ € Q above both ¢, and gg and
such that ,(q(8)(n)) = q(a)(n). Since q(B)|n = g(a)n and n(q) = n + 1

6
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we have g(a)R,q() and consequently q I i, = f,.(5). Since ¢ > qa,qs We
get qIF “a,f e A& &, € F(ip)". m

Fix a Borel isomorphism (7, 711, m2) : w¥ — (w¥)¥ x 2% X Wx ¥ Thus
if z € w* then m (x) is a relation on w and m(x) is a sequence of reals. Let
I consists of all reals x € w* such that

L (¥n # m)(m(n) # mo(m))
2. m(z) is a linear order on w
3. my(x) € A, = {mo(n) : n € w} and it is the m (x)-last element of A,.

Note that in 3 we think of m;(z) as an order on A,. We define relations <r
and = on I' by

x <r y if and only if
A, is a proper 7 (y)-initial segment of A, and m(y)|A, = m(x).

x =r y if and only if
A, = A, and m(y) = m(x) (we treat m(x),m(y) as orders on
A,, Ay, respectively).

Clearly I is a Borel subset of w", <r is a Borel transitive relation on I" and
=r is a Borel equivalence relation on T'.

Now we define a forcing notion P;. Conditions in P; are finite subsets p
of T" such that

if z,y € p, x <p y then my(z) € F(m(y)).
P, is ordered by the inclusion.

Lemma 2.5 Py is a ccc Souslin forcing.

Proor  P; is Souslin since it can be easily coded as a Borel subset
of w¥ in such a way that the order is Borel too. We have to show that P,
satisfies the countable chain condition. First let us note some properties of
the incompability in Py. Suppose p,q € P; are incompatible. Clearly p\¢
and ¢\p are incompatible. If x € p and x =r 2’ then (p\{z}) U {2’} and ¢
are incompatible.

Suppose now that {p, : @ < w;} is an antichain in P;. By the A-lemma
and by the above remarks we may assume that

7
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1) paNpsg=0fora<pf <uw
2) if 2,2 € Upew, Par © # 2’ then o #r 2.

Note that if p € Py then the set {[yl=, : v € T & (3z € p)(y <r z)} is
countable. Hence, due to 2, we may assume that

3) (Va<fB<w)(Vrepa)(Vy€ps)(~y <r x)

Cramm: Let d € [w¥]<%. Then d = {my(z) : = € p,} for at most
countably many a < ws.

Indeed, assume not. Then we find § < w; such that {m(z) : z € pg} =d
and the set B = {a < f : {m(x) : © € p,} = d} is infinite. Note that if
o', 2" <p x and my(a’) = ma(2”) then 2’ =p 2”. Hence if x € pg then for at
most |d| elements &’ of Uyea Pa We have 2/ <p x. Thus we find o € A such
that (Va' €p,)(Vr €pg) (-2’ <p z). It follows from 3 that

(Va €pg) (V' €py)(—x <p )

and hence conditions p, and pg are compatible — a contradiction.
Let dy, = {m(x) : * € p,}. By the above claim we may assume that
do # dg for all @ < f < w;. Applying the A-lemma we may assume that

4) {d,:a < w;} forms a A-system with the root d.
Since the set U,eq F'(w) is countable w.l.o.g.
5) (Va<w) (Vo € da\d)(v & Uyea F'(w)).

Apply lemma 2.2 for the family {d,\d : & < w;} to get 8 < wy and an infinite
set A C 3 such that

6) (VacA)(VYv e d,\d)(Vw € dg\d)(v & F(w)).

Let y € pg. As in the claim the set

{z € Upa:m(x)ed&x<py}

a€cA

is finite. Consequently we find a € A such that

7) (Vzepa.)(Yyeps)(m(x) € d = —x <r y).

8
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We claim that p, and pg are compatible. Let x € p, and y € pg. By 7 we
have that if m(x) € d then -~z <p y. If my(x) & d and ma(y) € d then 6
applies and we get mo(x) € F(ma(y)). Finally if mo(z) € d and ms(y) € d
then we use 5 to conclude that my(x) € F(ma(y)). Hence x € p,, y € ps and
x <p y imply mo(z) &€ F(m2(y)). Consequently p, Upg € P1.  m

Lemma 2.6 Assume that there exists a sequence {x, : o < wi} of ele-
ments of w¥ such that

(VA€ [w ") (FafeA)(a < B & x4 € F(zp)).
Then the forcing notion P does not satisfy the Knaster condition.
ProorF  For a < w; choose y, € I' such that
o Ay, = {m(ya)(n) :n € w} ={z,: 7y < a}
o 71 (Ya) is the natural order on A, , x, <r ) 5 iff v < B.

o T9(Yo) = Za-

Let po = {ya} for @ < wy. Then {p, : @ < w;} does not have an uncountable
subset of pairwise compatible elements. =

Putting together lemmas 2.5, 2.6 and 2.4 we get

Theorem 2.7 [t is consistent that there exists a ccc Souslin forcing notion
which does not satisfy the Knaster condition. m

It is not difficult to see that this example does not satisfy the following
requirement:
“The generic object is encoded by a real”

The next theorem says that also we can require such a condition. This
answers a question of J.Bagaria.

Theorem 2.8 [t s consistent that there exists a ccc Souslin forcing notion
Q such that Fq V|G| = V|[r] for some Q-name 7 for a real and Q does not
satisfy the Knaster condition.
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ProoF  We follow the notation of the previous results. We work in the
model of 2.7. Let Q = {(p,w) : p € P & w € [w< ¥|< ¥} be ordered by

(p,w) < (g, v) if and only if
p<q, wCwvand z|n &€ v\w for every x € p and n € w.

Q may be easily represented as a Souslin forcing notion (remember that “for
each z in p” is a quantification on natural numbers). Note that if p < g,
p,g € Pand w € [wS¥<Y then (p,w) < (q,w). Hence Q satisfies the
countable chain condition. If Q satisfied the Knaster condition then P would
have satisfied it. We show that the Q-generic object is encoded by a real.
Let 7 be a Q-name for a subset of w< % (a real) such that for any Q-generic
G we have 7% = J{w : (3p)((p,w) € G)}. Now in V[¢] define

H={(p,w) € Q:wCr%& (Veep)(Vncw)(zln € 7¥ < zjn € w)}.

Note that H includes G since z € p, z|n € w imply (p,w) - z|n € 7. H
is a filter - suppose (po,wo), (p1,w1) € H. For each = € py U p; we find
(pz,wz) € G such that (p,,w,) I+ (Vn > N)(xz|n & ) for some N. If
x & p, we could take large n and add x|n to w,. Then we would have
(Pas W) < (poyw, U{z|n}) and (py, w, U {zn}) - zjn € 7. Thus = € p, for
all v € po Upr. Let p = Upepoupy Pes W = Uzepoup, We- Then (p,w) € G € H
and (pg,wp), (p1,w1) < (p,w). Consequently H = G and the theorem is
proved. =

In the same time when the forcing notion Py was constructed S.Todorcevic
found another example of this kind.

Let F be the family of all converging sequences s of real numbers such
that lims ¢ s. Todorcevic’s forcing notion P} consists of finite subsets p of
F with property that

(Vs,t €p)(s #t=lims &t).

Todorcevic proved that P7 satisfies ccc and that if b = w; then P does not
have Knaster property (see [To]).

3 A nonhomogeneous example

In this section we give an example of cce Souslin forcing notion which is very
nonhomogeneous. Our forcing P, will satisfy the following property:

10
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there is no p € Py such that p I+ “ ].52|p is o-centered”.

Recall that if Q is the Amoeba Algebra for Measure or the Measure Algebra
then I-q “Q is o-centered” (see [BJ]). The Todorcevic example P} has this
property too.

Proposition 3.1  IFp: “Pj is o-centered”

PrOOF  For a rational number d € @ let ¢4 : P — P7 be the trans-
lation by d. Thus ¢4(p) = {s +d : s € p}. Note that ¢, is an automorphism
of Pj. Moreover if p;,py € P§ then U{s —r : s € p;,7 € pa} is a nowhere
dense set. Hence we find a rational d such that

—d¢{a—0b:aesU{lims},beru{limr},s e p,rec p}.

Then the conditions ¢4(p1) and py are compatible. Thus we have proved that
for each p € P7 the set {¢q(p) : d € Q} is predense in Pj. This implies that

=p: “Pr = |J #4[l'] and each ¢4[I] is centered”,
deq

where I is the canonical name for a generic filter. m

We do not know if
IFp, “f’l is o-centered”.

One can easily construct a ccc Souslin forcing P which does not force that
P is o-centered. An example of such a forcing notion is the disjoint union of
Cohen forcing and the measure algebra, P = ({0} x C) U ({1} x B). In this
order we have (0,0) I- “{1} x B is not o-centered”. But in this example we
can find a dense set of conditions p € P such that

plFp “f’|p ={q€ P:g> p} is o-centered”.
Define T* C w< %, f,¢: T* —> w in such a way that:
() T*is a tree,

(B) if n € T* then succy«(n) = f(n),

11
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() if lhn < lhv or lhy = lhn but (3k <lhn)(n|k = vk & n(k) < v(k)) then
fn) < fv),

8) g(n) > |T* n™ | TH{f(v) : f(v) < F(n)} - (100 + Ihn)

() f(n) > g(n) - TI{2' + f(v) < f()}
For n € T* and and a set A C succy«(n) = f(n) we define a norm of A:

nor(A) — 9
o = TFanar

Lemma 3.2 Suppose that n € T* and A, C f(n) for I < m. Let { =
min{nor,(4;) : l <m}. Then

1) mor,(Micm A1) = ¢/m,

2) if ¢>1and m <[{2FW : f(v) < f(n)} then My A1 # 0.

Proor 1) Note that

PN (Al =1 U FONAL < D0 1fFmNAL < m-g(n)/¢

l<m l<m l<m
Hence )
a\n
nor A)) = > (/m.
A= A, Al =Y
2) Applying 1) we get nor, (N;<,, 4;) > 1/m. Hence

LFN\ () Al < g(n) -m < g(n) - T2 f(v) < f)} < f(n)

l<m

(the last inequality is guaranteed by condition (¢)). Consequently the set
Ni<m A; is nonempty. ]

Let P, consists of all trees T' C T™ such that
lim min{nor,(succy(n)) : n € TNw"} = .

The order is the inclusion.

Recall that a forcing notion Q is o-k-linked if there exist sets R,, C Q (for
n € w) such that U,c, R, = Q and each R, is k-linked (i.e. any k& members
of R, has a common upper boud in Q).

12
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Proposition 3.3  For every k < w the forcing notion Py is o-k-linked.

PROOF  Let n € w be such that for each n € T* Nw'
k<TI{2/(v): f(v) < f(n)}.
Note that the set
{T € Py : Ih(rootT) > n & (VneT)(rootT C n = nor,(succr(n)) > 1)}
is dense in Py. For n € T, lhn > n define
D, ={TePy:ro0tT =n & (VnueT)(n C v = nor,(succr(r)) > 1)}.

Since U{D,, : lhn > n} is dense in P, it is enough to show that each D, is
k-linked. Suppose Tp,...,Ti_1 € D,. Since k < [T{2/(v) : f(v) < f(n)} we
may apply lemma 3.2 2) to conclude that if v € T =TyN...NTy_1, v 27
then sucer(v) #0. By 3.2 1) weget T € Py, m

For nn € T we define the forcing notion Q,:

Q, ={t CT*: tis a finite tree of the height n € w,
roott = 7 and
(Vv etnw< ™)(n C v = nor,(succ,(v)) > 1hv)}.

Since Q,, is countable and atomless it is isomorphic to Cohen forcing C. Let
P =TI{Qi, : i <wi,n € T*} be the finite support product such that each

Q;,, is a copy of Q,,.

Theorem 3.4 Let G C P be a generic filter over V. Then, in V[G], there
is no S € Py such that

Sikp, © f’2|S 18 o-centered”.

Proor  We work in VI[G]. _
Assume S IF“Py|S is o-centered”. Let R, (n € w) be Py-names for subsets
of Py such that

Sikp, ¢ 152]5 C U R, & each R, is directed”.

new

13
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Take n € w such that
(VneS)(n < lhn = nor,(succg(n)) > 1).
Fix any n € S Nw' and choose I,m € succg(n), I < m. For i < w; put
T; = U{t - {(i,n'm), 1)} € G}

Each T; is the tree added by GN Q- and it is an element of Py. Moreover
rootT; = n"m and for each v € T; if nm C v then nor,(succr,(v)) > lhv.
Hence, by lemma 3.2, T; N .S € Py for each i € w;.

Now we work in V.

We find p;, S;, 1;, n; such that for each i € ws:

e p,eP.n;cw,meT” and SZ is a P-name for a member of Ps,
o IFp (YresS;)(roots; C v = nor, (succg (v)) > 1),

e p;lFp “n’l Cn; =rootS; & S; Fp, T, € Rni”,

e (i,n"m) € domp;.

Next we find a set I € [w;]*“! such that {domp; : i € [} forms a A-system
with the root d and for each ¢ € I:

e 1, =n" and n; = n",
® pild=p",
i pz(%?fm) = t? (7‘77]Am) ¢ d.

Let n” be the height of the tree t. Clearly we may assume that n# > lhn*.
Fix an enumeration {py, : k < k#} of t N s Put

H={(ax: k <k?):a, C f(pr) & nor,, (ay) > n*}.

Choose distinct iz € I for a € H. We define a condition ¢ € P extending all
pi. (@€ H):

domg = U{domp,, :a € H};

if (7’7 l/) € dOHlpié, (7’7 V) 7é (iéa 77Am) then Q(Za V) = pia(i> V);

q(ia,mm) =t U{py'c: k < k¥ c e a(k)}.
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Now we take 7 > ¢ such that r decides all Si.|(n# +1). Thus we have finite
trees sz (for a € H) such that rI-p S, |(n* + 1) = sa.
CrAIM: : There exists H' C H such that

(1) Nacr(sa N+ 1y 22 ¢ and
(ii) for each k < k¥ the set N{a(k):a € H'} is empty.

Indeed, let H, ={ae H:p¢€ sz} forpeT* A + 1, 1l C p. Clearly
p € Nacn, Sa, 50 it is enough to show that for some p the family H, satisfies

.. N # 11 R
(ii). Suppose that for each p € T*Nw™" T 1 p D 1l we can find k, < k*
and ¢, such that ¢, € N{a(k,) : a € H,}. Put

. . # )
a* (k) = f(p)\{c, : pe T ™ T L& i p).
Let pt € T*N w”# be such that

F(p) = max{f(p) : p € T* N 711 C p}.

By condition () we get

{per nw™ T1opic o} <T[{F0) : Fv) < F(p0)}.

Now, for each k < k% we have f(p*) < f(pr) (recall that n°l C p*, n"m C py
and [ < m so condition () works). Hence

> nt

B 9(px) 9(pr)
ROt &) 2 1760 1) < 7G0T = W) 1) < 7o)

Thus a* € H. Since ¢, ¢ a*(k,) we have a* ¢ H, for every p € T* nw” + 1

n'l C p. Since U{H, : pe T* N+ 1, n'l C p} = H we get a contradiction.
The claim is proved.

Now let H" C H be a family given by the claim. Condition (i) implies
that

rIkp “the family {T;, : a € H'} has no upper bound in Py”.
Since |H| < JJ{27¥) : k < k#} we have that for each p € T* N S
(2| < T[{2"™): f(v) < f(0)}-

15
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Hence we may apply 3.2 2) to conclude that for every p 2 1l , Thp > n# + 1:
riFp “if p € ﬂ Sla then ﬂ succg, (p) 0.
acH' acH'’ a

Thus )
rI-p “the family {S;, : a € H'} has an upper bound”.

Since r IFp “S,-é IFp, Tla € Rn*” we get a contradiction. [ |

REMARK: 1) In the above theorem we worked in the model V[G] for
technical reasons only. The assertion of the theorem can be proved in ZFC.
2) The forcing notion Py is a special case of the forcing studied in [Sh1].

Problem 3.5  Does there exist a ccc Souslin forcing P such that

1) P is homegeneous (i.e. for each p € P, IFp “there exists a generic filter
G over V such that p € G”)

2) Wp “P is o-centered”?

4 On “small subsets of P are o-centered”.

Our next example is connected with the following, still open, question:

Problem 4.1  Assume that for each ccc Souslin forcing P every set Q) €
[P|“1 is o-centered (in P).
Does MA,, (Souslin) hold true?

As an illustration of this subject let us recall a property of Random (Solovay)
Algebra B (see [BalJ]):

if every B € [B]|“! is o-centered
then the real line can not be covered by w; null sets and conse-
quently MA,, (B) holds true.

Our example shows that the above property of the algebra B does not extend
for other forcing notions. Let

Ps={(n,T):necw&T C2%isatree & (Vt€T N2")(u([T;]) > 0)}.

The order is defined by

16



Paper Sh:373, version 1996-03-17_10. See https://shelah.logic.at/papers/373/ for possible updates.

(n1,T1) < (ng,Ty) if and only if
nq S nag, TQ Q T1 and T1|7’Ll = T2|n1.

Lemma 4.2 P; is a o-linked Souslin forcing which is not o-centered.

PROOF  Note that I-p, “there exists a perfect set of random reals over
V7. Hence Ps is not o-centered. To show that it is o-linked define sets
U(W,n,m) for n < m < w and finite trees W C 257

UW,n,m) ={(n,T)EPs: Tim=W & (Vt € TN2")(u([T}]) > W(t)/2™ 1)}

where W(t) = [{s € WN2™ : t C s}| (for t € WN2"). Clearly each set
U(W,n,m) is linked (i.e. each two members of it are compatible in P3) and

Py = U{UW,n,m) :n <m < w& W C 25™} Since obviously Py is
Souslin we are done. ®

Let B(k) stand for Random Algebra for adding x many random reals.
This is the measure algebra of the space 2".

Theorem 4.3  Assume V = CH. Let G C B(ws) be a generic set over
V. Then, in V|[G]

(1) Martin axiom fails for P3 but
(i) each Q € [P3]“" is o-centered (in P3).

Proor  Cichon proved that one random real does not produce a perfect
set of random reals (see [BalJ]). Hence in V|G| there is no perfect set of
random reals over V. Consequently the first assertion is satisfied in V[G].
Since V[G] = “each B € [B]*! is o-centered in B” (compare section 3) it is
enough to show the following

CrAaiM:  Suppose that each B € [B|¥! is o-centered. Then every set
Q € [P3]¥1 is o-centered.

Indeed, let Q € [P3]¥1. For n € w and ¢ € 2" put
B(t,n)={[Li]: (n.T) e Q &t €T}

By our assumption we find sets B(t,n, k) for k,n € w, t € 2" such that
B(t,n) = Ugeo B(t,n, k) and for each A;, Ay € B(t,n,k) the set A; N Ay
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is of positive measure. Now define sets Q(n, W, o) for n € w, a finite tree
W C 9= " and a function o : W N 2" — w:

Qn,W,0) ={(n,T) €Q :Tn =W & (Vt € TN2")([T;] € B(t,n,o(t)))}.

Note that if (n,T}), (n,T2) € Q(n, W, o) then for each t € W N 2" the set
[(T1):] N[(T),] is of positive measure. Consequently each Q(n, W, o) is linked
and we are done. ®

5 A o-centered example

In this section we define a very simple o-centered Souslin forcing notion.
Next we show that in any generic extension of some model of CH via finite
support iteration of the Dominating (Hechler) Algebra, Martin Axiom fails
for this forcing notion. Consequently we get the consistency of the following
sentence:

any union of less than continuum meager sets is meager + ~CH
+ MA fails for some o-centered Souslin forcing.

Our example P, consists of all pairs (n, F') such that n € w, F € [2¥]< ¥
and all elements of the list {z|n : x € F'} are distinct. Py is ordered by

(n, F') < (n/, F') if and only if
n<n,FCF and{zn:z € F}={zn:z € F'}.

Lemma 5.1 Py is a o-centered Souslin forcing.

Proor  Clearly Py is Souslin (even Borel). To show that P, is o-

centered note that if {zjn: 2z € Fy} = ... = {z|n: x € F}} then the condi-
tions (n, Fo), ..., (n, F)) are compatible (if m is large enough then (m, Fy U
... UFy) is a witness for this). m

Now we want to define the model we will start with. At the beginnig
we work in L. Applying the technology of [Sh] we can construct a sequence
(P¢ : € < wy) of forcing notions such that for each a, f < wy, £ < wy:

(1) if a < S then P, is a complete suborder of P,
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(2) thereisy > § such that P,y =P, = D, where D, is the P,-name for
finite support, « in length, iteration of Hechler forcing,

(3) Py satisfies ccc,
H
(4) if £ is limit then Pe =lim..¢ P,
(5) P, IF “every projective set of reals has Baire property”

(for details see also [JR]). Recall that Hechler forcing D consits of all pairs
(n, f) such that n € w, f € w*’. These pairs are ordered by

(n, f) < (n/, f) if and only if
n<n', fln=f'|n" and f(k) < f'(k) for all k € w.

Suppose G C P, is a generic set over L. We work in L[G]. For distinct
z,y € 2% we define h(x,y) = min{n : z(n) # y(n)}. Easy calculations show
the following

Lemma 5.2 Let b C w. Then the following conditions are equivalent:

(i) there exists a Borel equivalence relation R on 2% with countable many
equivalence classes such that {h(z,y) : z,y € 2YNL & x # y & R(x,y)} C b,

(ii) there exists an equivalence relation R on 2% with countable many equiv-
alence classes such that {h(z,y) : v,y € 2 NL & z#y & R(x,y)} C b,

(iii) there exist sets Y, C 2% (for n € w) such that LN 2Y C U, Y, and
Unew{h(xvy) : l'?éy & z,y € Yn} g b7
(iv) (3f:2< Y 52)(Vze2YnL)(3mecw)(Yn>m)(n ¢ b= f(z|n) = z(n))m

The Raisonnier filter F consists of all sets b C w satisfying one of the
conditions of 5.2 (cf [Ra]). F is a proper filter on w. Directly from (iv)
of 5.2 one can see that F is a Xi-subset of 2%. Consequently it has Baire
property (recall that we are in L[G]).

Theorem 5.3 (Talagrand, [Ta])  For any proper filter F' on w the following
conditions are equivalent:

(i) F does not have Baire property,
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(ii) for every increasing sequence (ny : k € w) of integers there exists b € F
such that (3°)(b N [ng,ngy1) =0). =

Applying the above theorem we can find an increasing function r € w*NL[G]
such that (in L[G])

(Vo e F)V2)bn[rk),r(k+1)) #0)

Let 7 be the P,,-name for r and let oy < w; be such that 7 is a P, -name.
Our basic model will be L]r]

Theorem 5.4 Let k be a reqular cardinal. Let D, be the finite support
iteration of Hechler forcing of the length k. Suppose H C D, is a generic set
over L[r|. Then

L[r][H] [ “there is no P4-generic over Lr].”

PROOF  Assume not. Let H* € L[r][H] be a P4-generic over L[r|. Put
T=U{F:(3ncw)((n,F) e H*)}. Then in L[r|[H*] we have:

(6) T is a closed subset of 2%,
(7) @)Va,y e T)(w #y = h(z,y) & [r(k),r(k+1))) and
8) Vze2YnNL)(FqeQ)(q+zeT)

(Q stands for the set of all sequences eventually equal 0, + denotes the
addition modulo 2). Since both (7) and (8) are absolute (II3) sentences they
are satisfied in L[r][H] too. Let T € L[r] be a P, -name for T. Since T is a
closed subset of 2% we can think of 7' as a name for a real.

Now we work in L[r|. Let p € D, N L|r| be such that

pI-“T satisfies (6), (7) and (8)”.

By Souslin forcing properties (see §1 of [JS1]) we find a (closed) countable
set S C k such that:

(9) T isa D,|S-name, p € D,|S and

(10) D,|S is a complete suborder of D,.
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Since (6)-(8) are absolute we get
(11) plkp,s“T satisfies (6), (7) and (8).

But D,|S is isomorphic to finite support iteration of Hechler forcing of the
countable length o (v < wy). Thus we can treat T' as a D,-name and p as a
condition in D,. Then, in L[r]

(12) pH—Da|S“T satisfies (6), (7) and (8)”.

By (2) we find 8 > aq such that

(13) P, =P, xD, and

(14) p = (1,p) interpreted as a member of P, belongs to G.

By Souslin forcing properties (12) holds true in L[G N P.,| and hence
(15) L[GNP., ] =T satisfies (6), (7) and (8)”

(we treat here T as a P,y -name). Let b= {h(z,y) 1z #y & x,y € T} €
(W] “NL[G]. By (15) and by Shoenfield absoluteness we have

(16) L[G] =“T€ satisfies (6), (7) and (8)”.

Since {h(z,y) :x #y & z,y € T} = {h(z,y) :x #y & x,y € TC + ¢} we
conclude that

(17) L[G] E=“sets T + ¢ (for ¢ € Q) witness that b € F” and
(18) LG = &F)@nr(k),r(k+1)) =0).
The last condition contradicts our choice of r. ®
Since IFp, “any union of less than x meager sets is meager” we get

Corollary 5.5  The following theory is consistent:
ZFC + —-CH + “Martin Axiom fails for some o-centered Souslin forcing”
+ “any union of less than continuum meager sets is meager”. W
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6 On Souslin not ccc

In this section we will give a negative answer to the following question of
Woodin:

If P is a Souslin forcing notion which is not ccc
then there exists a perfect set T' C P such that each distinct
t1,ty € T are incompatible.

Recall that in the case of non-ccc partial orders we do not require Souslin
forcings to satisfy the condition:

“the set {(p, q) : p is incompatible with ¢} is ¥1”.
Thus a forcing notion P is is Souslin not ccc if both P and <p are analytic
sets. The reason for this is that we want to cover in our definition various
standard forcing notions with simple definitions for which incompatibility is
not analytic (e.g. Laver forcing).

Let Q be the following partially ordered set:

W € Q if W is a finite set of pairs (o, ), o < < w; such that if
(a1, 1), (2, B2) are in W, then 8; < ap or B < .
Q is ordered by the inclusion.

It follows from [Jel] that Q is proper. Clearly |Q| = w;. Next define a
forcing notion Pj5. It consists of all r € w* such that r codes a pair (E",w")
where

1. E" is a relation on w such that (w, E") = ZFC™ and E" encodes all
elements of w U {w}.

2. w" ewand E" Erw” € Q7.

We say that a one-to-one function f € w® interprets E™ in E™ if there
exists n € w such that rmg(f) = {k € w : E™(k,n)} and E™(l,k) =
Er((1), f(K)).

If f interprets E™ in E™ then E™ may “discover” that some of the
ordinals of E™ are not ordinals (i.e. not well-founded). Let w(ry, 79, f) =
w NA{(c,B) : @« < fare ordinals in £™}. Then, in E™, w(ry,re, f) is an
initial segment of w™ and it is in QF™.

Now we can define the order < on Pj:
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r1 < ry if and only if r; = r5 or
there exists f € w* which interprets £ in E™ and such that

(w, E™) = w(ry,re, f) Cw™.

Obviously both P5 and the order < are Yi-sets.

For r € P5 we define W(r) as w" N {(«a, 8) : @ <  are well founded }.
Note that W (r;) = W (ry) implies r; and ry are equivalent in Pj (i.e they
have the same compatible elements of P5). Consequently Q may be densely
embedded into the complete Boolean algebra determined by P5. It follows
from [Jel] that P is proper, it is Souslin and it does not satisfy the countable
chain condition. Moreover, if w; < 2% then P does not contain a perfect set
of pairwise incompatible elements (recall |Q| =w;). m

An interesting question appears here:

Suppose P is w-proper and Souslin.
Does there exists a perfect set of pairwise incompatible elements
of P?

The negative answer to this question is given by the following result.

Theorem 6.1  Assume wy < cf(2¥). There exists an w-proper Souslin not
cce forcing notion PE with no perfect set of pairwise incompatible elements.

PrOOF  Let 0 < w; be additively indecomposable. Let Q* be the order
defined by:

W e Q* if and only if

W is a countable set of pairs (a, 8), @ < 8 < wy such that
o (a1, 1), (a2, B2) €W = B < agor By < ay,
o {(a,8) € W:a«a# p} is finite,

e the order type of the set {a : (38)((a, B) € W)} is less than
8.

Q" is ordered by the inclusion.

It follows from Chapter XVII, §3 of [Sh 2] that Q* is a-proper for each
o < wq.
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Now we can repeat the coding procedure that we applied to define the
forcing notion P5. Thus we get the Souslin forcing notion P} such that Q*
can be densely embedded in the Boolean algebra determined by P}.

For W € Q* let heart(W) = {(«, B) € W : a # 5}.

Assume that {(E™,w™ : n € 2¥} C P is a perfect set of pairwise
incompatible elements. Let W, be the well-founded part of w™. Since w.l.o.g
we can assume that sup{f : (3a)((c, §) € W,))} is constant and heart(1,)
is constant we easily get a contradiction. m

7 On ccc X}

Souslin ccc notions of forcing are indestructible ccc (see [JS1]):

Suppose P is a ccc Souslin notion of forcing. Let Q be a ccc
forcing notion. Thenl-q “P is ccc 7.

The above property does not hold true for more complicated forcing notions.
In this section we show that there may exist two ccc Yj-notions of forcing
P and Pg such that P x P§ does not satisty ccc.

We start with V. = L. Let Q be a ccc notion of forcing such that

H—Q MA + _‘CH

Let G C Q be a generic set over L and let  be a random real over L[G]. Re-
call that by theorem of Roitman (cf [Ro]) we have L|G][r] = M A (o-centered).

Fix a sequence (f, : @ < w;) € L of one-to-one functions f, : @ — w
and define in L[r] sets Ey, Ey by

E,={{a,B} €lw)’: B<a&r(f.(B)) =i} fori=0,1.
We define forcing notions Pg, Pg:
P6 = {H S [w1]2 : [H]Q Q E()},

P;={H € [w])*: [H]? C E\}.

Orders are inclusions.
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Both Pg and P§ are elements of L[r]. Moreover they can be thought of as
subsets of L[r] N 2%. Applying MA (o-centered) we get that (cf [Je]):

L[G][r] = “any subset of L[r] N 2% is a relative ¥9-set”.
Consequently
L[G][r]  “any subset of L[r] N 2% is ¥i".

Thus Pg and P} are X1-notions of forcing in L[G][r] (i.e. both Pg, P§ and
orders and the relations of incompatibility are ¥3-sets). Roitman proved the
following

Theorem 7.1 (Roitman, Prop.4.6 of [Ro]) In L[G][r] both P and P} sat-
1sfy ccc and Pg x P§ does not satisfy ccc. m

Corollary 7.2  The following theory is consistent:
ZFC + MA (o-centered) + ~CH + “there exist ccc Y-notions of forcing
Pg, P§ such that Pg 1= Pg is not ccc”. =

Problem 7.3  Is there a ccc Souslin forcing notion P such that MA(P)
always fails after adding a random real?
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