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2 SAHARON SHELAH

Annotated Content

§1 Jonsson algebras on higher Mahlos and idγrk(λ).

[We return to the ideal of subsets ofA ⊆ λ of ranks< γ (for self-containment;
see [Sh:g, IV],1.1-1.6) for γ < λ+; we deal again with guessing of clubs
(1.11). Then we prove that there are Jonsson algebras on λ for λ inaccessi-
ble not (λ× ω)-Mahlo (0.1, 0.25)].

§2 Back to Successor of Singulars.

[We deal with λ = µ+, µ singular of uncountable cofinality. We give suf-

ficient conditions for µ+ 9
[
µ+

]<n
θ

, (2.6, 2.7), in particular on i+
ω there

is a Jonsson algebra and if cf(µ) < µ < 2<µ < 2µ then on µ+ there is

a Jonson algebra. Also if cf(µ) ≤ κ, 2κ
+

< µ, idp(C̄, Ī) is a proper ideal
not weakly κ+-saturated and each Iδ is κ-based, then λ is close to being
“cf(µ)-supercompact” (note that such C̄ exists if λ→ [λ]2κ+)].

§3 More on Guessing Clubs.

[We prove that, e.g. if λ = ℵ1, S ⊆ {δ < ℵ2 : cf(δ) = ℵ1} is stationary, then
we can find a strict λ-club system C̄ = 〈Cδ : δ ∈ S〉 and
hδ : Cδ → ω such that for every club E of ℵ2 for stationarily many δ ∈ S,
nacc(Cδ) ∩ E ∩ h−1

δ {n} is unbounded in δ for each n. Also we have such
C̄ with a property like the one in Fodor’s Lemma. Also we have such C̄’s
satisfying: for every club E of λ, for stationarily many δ ∈ S ∩ acc(E) we
have {sup(E ∩ Cδ ∩ α) : α ∈ E ∩ nacc(Cδ)} is a stationary subset of δ].

The sections are independent.
This paper is continued in [EiSh 535] getting e.g. Pr1(λ, λ, λ,ℵ0) for e.g. λ = i+

ω . It
is further continued in [Sh 572] getting e.g. Pr1(ℵ2,ℵ2,ℵ2,ℵ0) and more on guessing
of clubs. We thank Todd Eisworth for detecting various mistakes and errors.
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MORE JONSSON ALGEBRAS 3

§1 JONSSON ALGEBRAS ON HIGHER MAHLOS AND idγrk(λ)

We continue [Sh:g, III], [Sh:g, IV], see history there, and we use some theorems
from there.

Our main result: if λ is inaccessible not λ×ω-Mahlo then on λ there is a Jonsson
cardinal. If the reader is willing to lose 0.29 he can ignore also 0.6(1), 0.7, 0.8(2), 0.9,
0.11, 0.12, 0.13, 0.15, 0.16(2), 0.28, 0.29; also, 0.12 is just for “pure club guessing
interest”. Why “< λ < ω” just as γ 6= λ+ γ ⇒ γ < λ× ω.

0.1 Theorem. 1) Suppose λ is inaccessible and λ is not (λ× ω)-Mahlo.
Then on λ there is a Jonsson algebra.
2) Instead of “λ not (λ× ω)-Mahlo” it suffices to assume there is a stationary set
A of singulars satisfying (on idγrk(λ) see below):
{δ < λ : δ inaccessible , A ∩ δ stationary} ∈ idγrk(λ), A /∈ idγrk(λ) and γ < λ× ω.

Proof. 1) If λ is not λ-Mahlo, use [Sh:g, IV,2.14,p.212]. Otherwise this is a partic-
ular case of 0.25 as there are n < ω and E ⊆ λ, a club of λ such that µ ∈ E & µ
inaccessible ⇒ µ is not µ × n-Mahlo. So S = {δ ∈ E : cf(δ) < δ} is as required in
0.25.
2) Look at 0.25. �0.1

0.2 Definition. We say ē is a strict (or strict∗ or almost strict) λ+-club system if:

(a) ē = 〈ei : i < λ+ limit〉,
(b) ei a club of i

(c) otp(ei) = cf(i) for the strict case and otp(ei) ≤ λ for the strict∗ case
and i ≥ λ ⇒ otp(ei) < i for the almost strict case (so in the strict∗ case,
cf(i) < λ⇒ otp(ei) < λ and cf(i) = λ⇒ otp(ei) = λ).

0.3 Definition. 1) For λ inaccessible, γ < λ+, let S ∈ idγrk(λ) iff for every1 strict∗

λ+-club system ē, the following sequence 〈Ai : i ≤ γ〉 of subsets of λ defined below
satisfies “Aγ is not stationary”:

(i) A0 = S ∪ {δ < λ : S ∩ δ stationary in δ}
(ii) Ai+1 = {δ < λ : Ai ∩ δ stationary in δ so cf(δ) > ℵ0}
(iii) if i is a limit ordinal, then for the club ei of i of order type ≤ λ we have2:

1equivalently some — see 0.4
2We may consider adding a second clause: (b) if f is inaccessible, ℵ0 < i < λ then cf(δ) > i;

this influences 0.5(6); true, it has only “local” effect that is the two definitions agree for γ except
when for some inaccessible i,ℵ0 < i ≤ γ < i+ ω < λ; in [Sh:g, IV] we use the version with clause

(b)
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4 SAHARON SHELAH

Ai =
{
δ < λ : if j ∈ ei, and [ cf(i) = λ⇒ otp(j ∩ ei) < δ] then δ ∈ Aj}

2) We define rkλ(A) as Min{γ : A ∈ idγrk(λ)} for A ⊆ λ.

3) id<γrk (λ) =
⋃
β<γ

idβrk(λ).

4) Let A[i,ē] be Ai from part (1) for our ē and S =: A; if i < λ× ω we may omit ē
meaning eδ = {j : λ+ j ≥ δ} for limit δ ≤ i.
5) For λ a cardinal of uncountable cofinality and ordinal γ < λ we define idγrk(λ), rkλ(A)

and A[i] as above (so eδ = δ for limit δ ≤ γ)

0.4 Claim. Let λ be inaccessible or a limit cardinal of uncountable cofinality.
0) If α < β < λ+, S, ē, A[i,ē] are as in Definition 0.3 then A[β,ē]\A[α,ē] is a non-
stationary3 subset of λ and {ζ < λ : ζ /∈ A[α,ē], cf(ζ) > ℵ0 but A[α,ē] is a stationary
subset of ζ} is not stationary in λ, (in fact, both are empty if β < α+ λ).
1) If γ < λ+, S ⊆ λ and for some strict∗ λ+-club system ē, the condition in
Definition 0.3 holds, then S ∈ idγrk(λ) (i.e. this holds for every such ē).
2) If ē, 〈Ai : i ≤ γ〉 are as in Definition 0.3 then i+ rkλ(Ai) = rkλ(A0).
3) If δ ∈ A[γ,ē] so a limit ordinal and λ > γ > 0, then cf(δ) ≥ ℵγ and if γ ≥ λ then
λ is inaccessible.
4) Let ē be a strict∗ λ+-club system. If γ < µ = cf(µ) < cf(λ) and 〈Ai : i < µ〉
is an increasing sequence of subsets of λ with union A and (∀δ ∈ A)(cf(δ) > µ) or

(∀δ < λ)(cf(δ) = µ→ A ∩ δ not stationary in δ), then A[γ,ē] =
⋃
i<µ

A
[γ,ē]
i , note also

that 〈A[γ,ē]
i : i < µ〉 is increasing.

5) Let ē be a strict∗ λ+-club system. If λ is inaccessible, 〈Ai : i < λ〉 is an

increasing sequence of subsets of λ and A = {δ < λ : δ ∈
⋃
i<δ

Ai} and γ < cf(λ)

then A[γ,ē]\(γ + 1) ⊆ ∪{δ < λ : δ ∈
⋃
i<δ

A
[γ,ē]
i and δ > γ}.

6) If cf(λ) ≤ ℵγ < λ, then idγrk(λ) = P(λ).

Proof. 0) By induction on β.
1) For ` = 1, 2 let ē` be a strict∗ club system and let 〈A`i : i ≤ γ〉 be defined as in
Definition 0.3 using ē`. We can prove by induction on β ≤ γ that

(∗)β there is a club Cβ of λ such that for each α ≤ β, the symmetric difference
of A1

α ∩ Cβ and A2
α ∩ Cβ is bounded (in λ).

3in fact, bounded
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MORE JONSSON ALGEBRAS 5

2) Check.
3) By induction on γ.
4) We prove this by induction on γ. For γ = 0 this is trivial. For γ successor, by
Definition 0.4(1)(iii) this is easy by the last assumption. For γ limit, by clause (a) in
0.3(1)(iii), if δ ∈ A[γ,ē] then (∀j ∈ eγ)[δ ∈ A[j,ē]], recalling γ < µ < λ. So for j ∈ eγ
as 〈A[j,ē]

i : i < µ〉 is increasing with union A[j,ē] by the induction hypothesis for some

i(j, δ) < µ we have i ∈ [i(j, δ), µ)⇒ δ ∈ A[j,ē]
i . As |eγ | ≤ γ < µ = cf(µ) necessarily

i(δ) = sup{i(j, δ) : j ∈ eδ} < µ, so δ ∈
⋂
j∈eδ

A
[j,ē]
i(δ) which means δ ∈ A[γ,ē]

i(δ) . As δ was

any member of A[γ,ē] we can conclude that A[γ,ē] ⊆
⋃
i<µ

A
[γ,ē]
i , but by monotonicity

of the function B 7→ B[γ,ē] we get A
[γ,ē]
i ⊆ A[γ,ē], hence we are done.

5) Similar proof.
6) By part (3). �0.4

0.5 Claim. Let λ be inaccessible or a limit cardinal of uncountable cofinality.
0) For γ < λ+, the family idγrk(λ) is an ideal on λ including all non-stationary
subsets of λ.
1) If S ⊆ λ, γ = rkλ(S), ζ < γ, S′ = S[ζ,ē] (ē as in Definition 0.3(1)) then
ζ + rkλ(S′) = γ.
2) In (1) if ζ < γ = ζ + γ (e.g. ζ < λ ≤ γ) then rkλ(S′) = γ.
3) Assume S ⊆ λ, ζ < λ and δ is a limit ordinal δ ∈ S[ζ,ē] and let ε = ζ + 1 except
that when ζ < ω or ζ = i+ n & 0 < i < λ & [i inaccessible] we let ε = ζ. Then
we have: cf(δ) ≥ ℵζ , moreover
cf(δ) ≥ Min{cf(α)+ζ : α ∈ S}.
4) Assume

(a) µ ≤ λ inaccessible

(b) γ = λ× n+ β, n < ω, β < µ

(c) A ⊆ λ.

Then A[γ] ∩ µ = (A ∩ µ)[µ×n+β], recalling Definition 0.3(4).
5) Assume γ < cf(µ) ≤ µ < λ,A ⊆ λ then A[γ] ∩ µ = (A ∩ µ)[γ].
6) If µ = cf(µ) < cf(λ) and γ < µ then idγrk(λ) + {δ < λ : cf(δ) ≤ µ} is µ-
indecomposable (see Definition 0.6(2) below and Claim 0.4(4) above).
7) If γ < cf(λ) then idγrk(λ) is a weakly normal ideal (see Definition 0.6(1) below,
possibly it is P(λ)).
8) For λ inaccessible and γ < λ+ we have: λ is γ-Mahlo iff λ /∈ idγrk(λ).
9) For λ inaccessible, n < ω, β < λ and A ⊆ λ we have: rkλ(A) ≤ λ× n+ β iff for
some club E of λ we have µ ∈ E & cf(µ) > ℵ0 ⇒ rkµ(A ∩ µ) < λ× n+ β.
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6 SAHARON SHELAH

Proof. Straight (parts (6), (7) like the proof of 0.11(6)). �0.7

Recall

0.6 Definition. 1) An ideal I on a cardinal λ of uncountable cofinality is called
weakly normal if it contains all bounded subsets of λ and: for every f : λ → λ
satisfying f(α) < 1 +α and A ∈ I+, for some β < λ we have {α ∈ A : f(α) < β} ∈
I+.
2) An ideal I is µ-indecomposable when: for any sequence 〈Ai : i < µ〉 of subsets

of λ if
⋃
i<µ

Ai ∈ I+ then for some w ⊆ µ of cardinality < µ we have
⋃
i∈w

Ai ∈ I+;

clearly if µ is regular then without loss of generality 〈Ai : i < µ〉 is increasing.

0.7 Observation. Suppose 〈Ii : i < λ〉 is an increasing sequence of
µ-indecomposable ideals on the regular cardinal λ, each including the bounded
subsets of λ, µ < λ is regular and

I =

{
A ⊆ λ : there is a pressing down function h on A such that

for each α < λ, {β ∈ A : h(β) < α} ∈
⋃
i<λ

Ii

}
.

Then I ′ =: I + {δ < λ : cf(δ) ≤ µ} is weakly normal and µ-indecomposable.

Remark. If I is an ideal on λ and I is κ-indecomposable for every regular κ < µ,
then I is µ-complete.

Proof. I ′ is weakly normal by its definition (first note that for every club C of λ
the set λ\C belongs to I: use hC where hC(α) = sup(α∩C); then we use a pairing
function < −,− > such that 〈α, β〉 < Min{δ : α, β < δ = ω × δ < λ}).

For µ-indecomposability, assume 〈Ai : i < µ〉 is an increasing continuous se-

quence of members of I ′, Aµ =
⋃
i<µ

Ai and we shall prove that Aµ ∈ I ′, this suffices

as µ is regular. Without loss of generality Aµ is disjoint to {δ < λ : cf(δ) ≤ µ}
hence i < µ ⇒ Ai ∈ I. Let hi be a pressing down function witnessing Ai ∈ I, so
for α < λ for some ζ(α, i) < λ we have {β ∈ Ai : hi(β) < α} ∈ Iζ(α,i).
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MORE JONSSON ALGEBRAS 7

For each α < λ let ζ(α) =
⋃
i<µ

ζ(α, i), so as µ < λ clearly ζ(α) < λ. Let us

define a function h with Dom(h) = Aµ by setting h(α) = ∪{hi(α) : α ∈ Ai and i <
µ}. Let α < λ, so for each i < µ we have {β ∈ Ai : h(β) < α} ⊆ {β ∈ Ai :
hi(β) < α} ∈ Iζ(α,i) ⊆ Iζ(α) (remember 〈Ii : i < λ〉 is increasing). For i ≤ µ let
Bαi =: {β ∈ Ai : h(β) < α}, so 〈Bαi : i ≤ µ〉 is increasing continuous, and for
i < µ we have Bαi ⊆ {β ∈ Ai : hi(β) < α} ∈ Iζ(α). So as Iζ(α) is µ-indecomposable
{β ∈ Aµ : h(β) < α} ∈ Iζ(α). So if α ∈ Aµ, as Aµ is disjoint to {δ < λ : cf(δ) ≤ µ}
then h(α) < α hence h witnesses Aµ ∈ I ⊆ I ′. So clearly I ′ = I+{δ < λ : cf(δ) ≤ µ}
is µ-indecomposable. �0.7

0.8 Observation. Let 〈Ii : i < δ〉 be an increasing sequence of ideals on λ, each Ii
is µ-indecomposable, µ regular.

(1) If cf(δ) 6= µ, then
⋃
i<δ

Ii is a µ-indecomposable ideal.

(2) If each Ii is weakly normal, δ < λ then
⋃
i<δ

Ii is a weakly normal ideal

on λ.

Proof. Check.

∗ ∗ ∗

0.9 Definition. 1) Let λ be a limit cardinal of uncountable cofinality, γ = λ×n+β
(where [cf(λ) < λ ⇒ n = 0 & γ = β < cf(λ)] and [cf(λ) = λ ⇒ β < λ]). We
define idγ(λ), an ideal on λ (temporarily — a family of subsets of λ, see 0.11); this
is defined by induction on λ:

(a) if γ = 0 it is the family of non-stationary subsets of λ

(b) if γ < λ it is the family of A ⊆ λ such that:

{µ < λ : A ∩ µ /∈
⋃
α<γ

idα(µ)} is not a stationary subset of λ.

(c) If n > 0, β = 0 it is the family of A ⊆ λ such that for some pressing down
function h on A, for each i < λ the set{
µ : µ < λ inaccessible, h(µ) = i and A ∩ µ /∈

⋃
α<µ×n

idα(µ)

}
is not a stationary subset of λ.
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8 SAHARON SHELAH

(d) If n > 0, β > 0 it is the family of A ⊆ λ such that{
µ : µ < λ inaccessible and A ∩ µ /∈

⋃
α<β

idµ×n+α(µ)

}
is not a stationary subset of λ.

2) rk∗λ(A) = Min{γ : A ∈ idγ(λ), γ < λ× ω or γ = λ+}.
3) id<γ(λ) = ∪{idβ(λ) : β < λ}, an ideal too (well for γ > 0)

0.10 Remark. 1) If in clause (c) we imitate clause (d), we get the ideal from
Definition 0.3. We can continue this to all γ < λ+.
2) Also this definition can be continued for γ ∈ [λ × ω, λ+] using a strictly∗ λ+-
club system ē, proving its choice is immaterial, idγrk(λ) ⊆ idγ(λ)) and other parts
of 0.11.
3) We can replace the closure to normal ideal to one for weakly normal ideal.
4) Also we can divide the ordinals< λ×ω differently between those three operations:
reflecting, normality and weak normality. All are O.K. in 0.16, but no need here.
5) Trivially, idγ(λ) increase with γ and is an ideal on λ (possibly equal to P(λ)).

0.11 Observation. 0) idγ(λ) is an ideal on λ.
1) For λ of uncountable cofinality, γ < λ, S ⊆ λ we have:
S ∈ idγrk(λ)⇔ S ∈ idγ(λ), i.e. idγrk(λ) = idγ(λ).
2) If λ is inaccessible, λ ≤ γ < λ× ω and S ⊆ λ then idγrk(λ) ⊆ idγ(λ).
3) Assume λ is inaccessible (> ℵ0), λ ≤ γ < λ×ω, γ = rkλ(λ) and θ = cf(θ) < λ,
S = {δ < λ : cf(δ) = θ} then we have (∗)S where

(∗)S for some β < λ× ω we have S /∈
⋃
i<λ

idβ+i(λ), but

{µ : µ inaccessible, S ∩ µ stationary} ∈ idβ(λ).

4) For λ inaccessible, S ⊆ λ and rkλ(S) < λ× ω then Min{λ, rk∗λ(S)} ≤ rkλ(S).
5) Let λ be inaccessible and S ⊆ {δ < λ : cf(δ) = θ} be stationary

(a) if λ ≤ γ = rk∗λ(S) < λ× ω then (∗)S from part (3) holds

(b) if λ ≤ rkλ(S) < λ × ω then for some γ, λ ≤ γ = rk∗λ(S) < λ × ω hence
(∗)S of part (3) holds

(c) if λ is γ-Mahlo not (γ + 1)-Mahlo and λ ≤ γ < λ × ω then for some
γ, λ ≤ γ ≤ γ1 < λ× ω we have (∗)S from part (3).
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MORE JONSSON ALGEBRAS 9

6) For λ inaccessible and γ = λ×n+β, β < λ, the ideal idγ(λ)+{δ < λ : cf(δ) ≤ σ}
and also id<γ(λ) is σ-indecomposable for any σ = cf(σ) ∈ [|β|+, λ) and is weakly
normal.
7) If λ is inaccessible, S ⊆ λ, rk∗λ(S) = λ × n∗ + γ, γ < λ then we can find a club
E of λ such that

(a) if δ ∈ E, cf(δ) > ℵ0 then rk∗δ(S) ≤ δ × n∗ + γ

(b) if γ > 0, δ ∈ E, cf(δ) > ℵ0 then rk∗δ(S) < δ × n∗ + γ.

8) Assume S ⊆ λ and S+ = {δ : δ is inaccessible and δ ∈ S ∨ (δ ∩S is stationary)}.
Then rk∗λ(S) ≤ rk∗λ(S) + λ.
9) If rk∗λ(S) = γ + 1 then for some club C of λ, {δ < λ: rk∗δ(S ∩ C) ≥ γ} is a
stationary nonreflecting subset of λ.

Proof. Let ē be a strict λ+-club system as in 0.3(4).
0) Should be clear.
1) Clearly also idγ(λ) is an ideal which includes all bounded subsets of λ. We prove
the equality by induction on λ and then by induction on γ.

So if γ < λ,A ⊆ λ; let for any B,B[i] be defined as in Definition 0.3 (for ē), we can
discard the case γ = 0; and without loss of generality λ = sup(A) & A∩(γ+1) = ∅;
now (ignoring the case γ is inaccessible for simplicity)

A ∈ idγ(λ)⇔

{
µ < λ : µ > γ and µ ∩A /∈

⋃
α<γ

idα(µ)

}
is not stationary ⇔

{
µ < λ : µ > γ and

∧
α<γ

[µ ∩A /∈ idα(µ)]

}
is not stationary ⇔

{
µ < λ : µ > γ and

∧
α<γ

[µ ∩A /∈ idαrk(µ)]

}
is not stationary ⇔

{
µ < λ :

∧
α<γ

[(µ ∩A)[α] is stationary in µ]

}
is not stationary ⇔

{
µ < λ :

∧
α<γ

[(µ ∩A) ∩A[α] is stationary in µ]

}
is not stationary ⇔
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10 SAHARON SHELAH

{
µ < λ :

∧
α<γ

[µ ∩A[α] is stationary in µ]

}
is not stationary ⇔

{
µ < λ : µ ∈

⋂
α<γ

A[α+1]

}
is not stationary ⇔

A[γ] not stationary ⇔

A ∈ idγrk(λ).

2) We prove this by induction on λ, and for each λ by induction on γ. For γ < λ
use part (1). For γ ≥ λ successor ordinal, read the definitions (and 0.10(3)). So
assume γ ∈ [λ, λ × ω) is a limit ordinal. For every A ∈ idγrk(λ), we know A[γ,ē] is

not stationary, so for some club E of λ,A[γ,ē] ∩ E = ∅. So if we define h : E → λ
by h(δ) = Min{otp(j ∩ eγ) : j ∈ eγ , δ /∈ A[j,ē], otp(j ∩ eγ) < δ}, by the definition of

A[γ,ē] it is well defined, and h(δ) < δ & h(δ) < otp(eγ). Let γ = λ×n+β, β < λ,
so n ≥ 1.

Clearly, possibly replacing E by a thinner club of λ

� for every δ ∈ E
(α) δ > β is a limit cardinal and δ = sup(A)

(β) if cf(δ) > ℵ0 & γ = λ then A ∩ δ ∈ id
h(δ)
rk (δ)

(γ) if δ is inaccessible, γ = λ × n, n > 1 (so β = 0) then A ∩ δ ∈
id
δ×(n−1)+h(δ)
rk (δ) and h(δ) < δ

(ε) if δ is inaccessible, γ = λ × n + β > λ × n, n ≥ 1 then A ∩ δ ∈
id
δ×n+h(δ)
rk (δ) and h(δ) < β.

Now we can case by case prove that A ∈ idγ(λ), using the induction hypothesis on
λ and on γ (or part (1)) and the definition of idγ(−).
3), 4) Check.
5) For the second statement note that by parts (1) + (2) we have λ ≤ rk∗λ(S) ≤
rkλ(S) < λ× ω so γ =: rkλ(S) is as required.
6) We prove this by induction on λ and for a fix λ by induction on γ.

Case 1: γ < λ.
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MORE JONSSON ALGEBRAS 11

By part (1) we know that idγ(λ) = idγrk(λ) and the latter +{δ < λ : cf(δ) ≤ σ}
is weakly normal by 0.5(7) and is σ-indecomposable for any regular σ ∈ (|γ|+, λ)
by 0.5(6). Alternatively, the proofs are similar to those of case (3).

Case 2: γ = λ× n, 1 ≤ n < ω.
By Definition 0.9 clause (c) obviously idγ(λ) contains the family of bounded

subsets of λ and is even normal hence λ-complete hence σ-indecomposable for any
σ < λ.

Case 3: γ = λ× n+ β, 1 ≤ n < ω, 1 ≤ β < λ.
First we prove the indecomposability part, so let σ = cf(σ) ∈ [|β|+, λ) and

assume 〈Ai : i ≤ σ〉 is an increasing continuous sequence of subsets of λ and assume
Aσ /∈ idγ(λ) and we should prove that for some i < σ we have Ai /∈ idγ(λ).

Let us define for i ≤ σ:

Bi =: {µ < λ : µ inaccessible and Aσ ∩ µ /∈
⋃
α<β

idµ×n+α(µ)}.

For each inaccessible µ < λ which is > σ and α < β we apply the induction
hypothesis with λ′ = µ, γ′ = µ × n + α and 〈A′i : i ≤ σ〉 = 〈Ai ∩ µ : i ≤ σ〉 and
get: for every µ ∈ Bσ for some i(µ, α) < σ we have Ai(µ,α) ∩ µ /∈ idµ×n+α(µ), but
γ < σ hence i(µ) =: sup{i(µ, α) : α < γ} < σ, and clearly µ ∈ Bi(µ), as the Aj ’s
are increasing. As σ < λ and Bσ stationary (by assumptions) we have: Bσ is a

stationary subset of λ and Bσ ⊆
⋃
i<σ

Bi ∪ σ+, hence for some i(∗) < σ the set Bi(∗)

is stationary, hence Ai(∗) /∈ idλ×n+γ(λ) is as required.
Second we prove the weak normality part. So let A ⊆ λ,A /∈ idγ(λ) and h a

function with domain A, h(i) < 1 + i, and let Aj = {α ∈ A : h(α) < j}. We define

Bi =: {µ < λ : µ inaccessible > i, and A /∈
⋃
α<β

idµ×n+α(µ)}, B =: {µ < λ :

µ inaccessible and Ai ∩ µ /∈
⋃
α<β

idµ×n+α(µ)}.

Again we assume that B is stationary and has to prove that some Bj is stationary.
For every inaccessible µ ∈ B and α < β applying the induction hypothesis to µ,A∩
µ, h � (A ∩ µ) for some i(µ, α) < µ the set {µ′ < µ : µ′ inaccessible, Aµi(µ,α) ∩ µ

′ /∈
idµ
′×n+α(µ′)} is stationary where Aµi(µ,α) = {ζ ∈ A∩µ : (h � (A∩µ))(ζ) < i(µ, α)}.

Let i(µ) = sup{i(µ, α) : α < β} so it is < µ, and clearly Ai(µ)∩µ /∈
⋃
α<β

idµ×n+β(λ).

So B ⊆
⋃
j<λ

Bj , and we easily finish.
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12 SAHARON SHELAH

7) By induction on the rank.
8) By induction on λ.
9) Easy. �0.11

∗ ∗ ∗

0.12 Claim. Suppose λ is inaccessible, S ⊆ λ a stationary set of inaccessibles > σ,
S1 ⊆ {δ < λ : δ a limit cardinal > σ of cofinality > ℵ0 and 6= σ} is stationary,
λ > σ = cf(σ) and for δ ∈ S the ideal Iδ is a weakly normal σ-indecomposable
ideal on δ ∩ S1 and J is a weakly normal σ-indecomposable ideal on S, (and of
course both are proper ideals which contains the bounded subsets of their domain;
of course we demand δ ∈ S ⇒ δ = sup(S1 ∩ δ) so δ ∈ S ⇒ δ > σ). Further let
C̄1 = 〈C1

α : α ∈ S1〉 be a strict S1-club system satisfying:

(∗) for every club E of λ{
δ ∈ S : {α ∈ S1 ∩ δ : E ∩ δ\C1

α unbounded in α} ∈ I+
δ

}
∈ J+.

Then: (1) We can find an S1-club system C̄2 = 〈C2
α : α ∈ S1〉 such that for every

club E of λ the set of δ ∈ S satisfying the following is not in J :

{
α < δ :α ∈ S1 ∩ E and {cf(β) : β ∈ nacc(C2

α) and β ∈ E}

is unbounded in α

}
∈ I+

δ .

(2) Suppose in addition ∪{cf(α) : α ∈ S1} < λ. Then we can demand that for some
θ < λ, α ∈ S1 ⇒ |C2

α| < θ. Also if C̄1 is almost strict then we can demand that C̄2

is almost strict.
(3) Suppose ∪{cf(α) : α ∈ S1} < λ and for arbitrarily large regular κ < λ we have
{δ ∈ S : Iδ not κ-indecomposable} ∈ J .

Then we can strengthen the conclusion to: C̄2 is a nice strict S1-club system
such that for every club E of λ the set of δ ∈ S satisfying the following is not in J :{

α < δ : α ∈ S1 ∩ E and C2
α\E is bounded in α

}
6= ∅ mod Iδ.

(4) In part (1) (and (2), (3)) instead of “Iδ weakly normal σ-indecomposable” it
suffices to assume: if δ belongs to S and h1 : δ ∩ S1 → δ is pressing down and
h2 : δ ∩ S1 → σ then for some j1 < δ, ζ < σ we have
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MORE JONSSON ALGEBRAS 13

{α ∈ δ ∩ S1 : h1(α) < j and h2(α) < ζ} ∈ I+
δ .

5) We can replace 〈{δ : δ < λ, cf(δ) ≥ θ} : θ < λ〉 by 〈Sθ : θ < λ〉 such that

(i)
⋂
θ<λ

Sθ = ∅,

(ii) Sθ decreasing in θ and

(iii) for no δ ∈ λ\Sθ do we have cf(δ) > ℵ0 and Sθ ∩ δ stationary subset of δ;
and

(iv) Min(Sθ) > θ.

6) Assume A ⊆ λ is stationary such that A[0,ē] = A (any ē will do).
Then in part (1) we can add nacc(C2

α) ⊆ A and waive δ ∈ S ⇒ cf(δ) > ℵ0.

0.13 Remark. 1) This is similar to [Sh:g, IV,1.7,p.188]. We can replace “S is a
set of inaccessibles > σ” by “S is a set of cardinals of cofinality 6= σ” and get a
generalization of [Sh:g, IV,1.7,p.188].
2) Note that (∗) of 0.12 holds if S1 is a set of singulars and otp(C1

α) < α for every
α ∈ S1.
Concerning (∗) see [Sh 276, 3.7,p.370] or [Sh:g, III,2.12,p.134], it is a very weak
condition, a strong version of not being weakly compact.
3) This claim is not presently used here (but its relative 0.14 will be used) but still
has interest.

Proof. 1) Let ē be a strict λ-club system.
It suffices to show that for some regular θ < λ and club E2 of λ the sequence

C̄2,E2,θ = 〈C2,E2,θ
α = g`1θ(C

1
α, E

2, ē) : θ < α ∈ S1〉 satisfies the conclusion (on g`1θ
see [Sh 365], Definition 2.1(2) and uses in §2 there). So we shall assume that this
fails. This means that for every club E2 of λ and regular cardinal θ < λ some

club E = E(E2, θ) exemplifies the “failure” of C̄2,E2,θ. This means that for some
Y = Y (E2, θ) ∈ J for every δ ∈ S\Y we have{

α < δ :α ∈ S1 ∩ E and {cf(β) : β ∈ nacc(C2,E2,θ
α ) and β ∈ E} is

unbounded in α

}
∈ Iδ.

We now define by induction on ζ ≤ σ a club Eζ of λ:

for ζ = 0: Eζ =: λ
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14 SAHARON SHELAH

for ζ limit: Eζ =:
⋂
ξ<ζ

Eξ

for ζ = ξ + 1:

Eζ =:

{
δ : δ a limit cardinal < λ, δ ∈ Eξ, δ > σ and :

θ = cf(θ) < δ ⇒ δ ∈ E(Eξ, θ)

}
.

Let E+ =

{
i < λ : i a cardinal , i ∈ Eσ, moreover i = otp(Eσ ∩ i)

}
.

By (∗) (in the assumption)

B =: {δ ∈ S : Aδ ∈ I+
δ } ∈ J

+

and let

A =
⋃
δ∈S

Aδ

where for δ ∈ S

Aδ =: {α ∈ S1 ∩ δ : E+ ∩ α\C1
α unbounded in α}.

Note that if δ ∈ B or δ ∈ A then δ = sup(δ ∩ E+) ∈ E+; note also that A ⊆ S1

and B ⊆ S. Now as α ∈ S1 ⇒ cf(α) 6= σ, for each α ∈ A there are ζ(α) < σ and
θ(α) = cf[θ(α)] < α such that:

(∗)0 θ(α) ≤ θ = cf(θ) < α & ζ(α) ≤ ζ < σ ⇒

α = sup

{
cf(β) : β ∈ nacc(C

2,Eζ ,θ
α ) ∩ Eζ+1

}
.

[Why? We can find an increasing sequence 〈αi, βi : i < cf(α)〉, αi increasing with i
with limit α, αi ∈ C1

α, βi ∈ Eσ, αi < cf(βi) ≤ βi < Min
(
C1
α\(αi + 1)

)
(possible by

the definition of the set Aδ and of the club E+). For each i < cf(α) we can find

ζi < σ, θi <
⋃
j<i

αj and γi such that ζi ≤ ζ < σ & θi ≤ θ <
⋃
j<i

αj & θ = cf(θ)⇒

Min(C
2,Eζ ,θ
α \βi) = γi
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MORE JONSSON ALGEBRAS 15

(check definition of g`1θ!). So by the definition of g`1θ we have αi ≤ γi ≤ βi and

cf(γi) ≥
⋃
j<i

αj and ζi ≤ ζ < σ & θi ≤ θ = cf(θ) <
⋃
j<i

αj ⇒ γi ∈ nacc
(
C

2,Eζ ,θ
α

)
,

this implies the statement (∗)0].
Now if δ ∈ B, we have: Aδ ∈ I+

δ and Aδ is the union of 〈{α ∈ Aδ : ζ(α) ≤ ζ} :
ζ < σ〉 which is increasing.
As Iδ is σ-indecomposable, and Aδ ∈ I+

δ for some ξ = ξ(δ) < σ,

Aδ,ξ =: {α ∈ Aδ : ζ(α) ≤ ξ} ∈ I+
δ .

Similarly, as Iδ is weakly normal, for some regular cardinal τ = τ(δ) < δ, we have

Aτδ,ξ = {α ∈ Aδ : ζ(α) ≤ ξ and θ(α) ≤ τ} ∈ I+
δ .

Similarly, as the ideal J is σ-indecomposable weakly normal ideal on S ⊆ λ, for
some ε < σ and τ∗ < λ we have:

B+ =: {δ ∈ B : Aτ
∗

δ,ε ∈ I+
δ } ∈ J

+.

In particular B+ cannot be a subset of Y (Eε, τ
∗) (as the latter is a member of

J , it was chosen in the first paragraph of the proof). Choose δ ∈ B+\Y (Eε, τ
∗),

which is > τ∗.
By the definition of Y (Eε, τ

∗),

{
α < δ :α ∈ S1 ∩ E(Eε, τ

∗) and

α = sup{cf(β) : β ∈ nacc(C2,Eε,τ
∗

α ) ∩ E(Eε, τ
∗)}
}
∈ Iδ.

If α ∈ Aτ∗δ,ε\τ∗ + 1 then α ∈ S1 ∩ E(Eε, τ
∗) and since ζ(α) ≤ ε and θ(α) ≤ τ∗, we

have by (∗)0

α = sup{cf(β) : β ∈ nacc(C2,Eε,τ
∗

α ) ∩ Eε+1}

hence

α = sup{cf(β) : β ∈ nacc(C2,Eε,τ
∗

α ) ∩ E(Eε, τ
∗)}.

Since Aτ
∗

δ,ε\τ∗ + 1 /∈ Iδ, we have a contradiction.

2) By the proof of part (1) for some regular θ < λ and club E2 of λ, C̄2 = C̄2,E2,θ
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16 SAHARON SHELAH

is as required. So |C2
α| < θ + |C1

α|+ as we repeat the proof of part (1) for such C̄1,
so the second phrase (in 0.12(2)) follows. For the first phrase θ+ sup

α∈S1

|C1
α|+ < λ is

as required (remember C̄1 is a strict S1-club system).
3) Let C̄2, θ be as in part (2). Let κ be regular be such that θ < κ < λ, α ∈ S1 ⇒
|C2
α| < κ and {δ ∈ S : Iδ not κ-indecomposable} ∈ J .

For any club E of λ we define C̄3,E = 〈C̄3,E
α : α ∈ S1〉 as follows: if C2

α∩E is a club
of α and α = ∪{cf(β) : β ∈ nacc(C2

α ∩ E)} then C3,E
α = C2

α ∩ E, otherwise C3,E
α

is a club of α of order type cf(α) with nacc(C3,E
α ) consisting of successor cardinals

(remember each α ∈ S1 is a limit cardinal).
If for some club E of λ, C̄3,E satisfies: for every club E1 of λ the set

{
δ ∈ S :

{β ∈ S1 ∩α : C3,E
β \E1 bounded in β} ∈ I+

δ

}
∈ J+ then we essentially finish, as we

can choose C3
α ⊆ C3,E

α which is closed of order type cf(α) and
[β ∈ nacc|C3

α| ⇒ cf(β) > sup(C3
α ∩ β)], and 〈C3

β : β ∈ S1〉 is as required. So

assume that for every club E of λ for some club E′ = E′(E) this fails. We choose
by induction on ζ < κ, a club Eζ of λ, as follows:

E0 = λ

Eζ+1 = E′(Eζ)

Eζ =
⋂
ξ<ζ

Eξ for ζ limit

and recalling the choice of κ we easily get a contradiction.
4), 5) Same proof.
6) In the proof of part (1) choose ē such that:

for limit α < λ, α /∈ A⇒ eα ∩A = ∅.

Then we replace the definition of C2,E2,θ
α by C2,E2,A

α = g`1A(C1
α, E

2, ē). �0.12

0.14 Claim. Assume

(a) λ inaccessible

(b) A ⊆ λ is a stationary set of limit ordinals and δ < λ & (A ∩ δ stationary
in δ) ⇒ δ ∈ A

(c) J is a σ-indecomposable ideal on λ containing the nonstationary ideal

(d) S ∈ J+ and S ∩A = ∅

(e) σ = cf(σ) < λ and δ ∈ S ⇒ cf(δ) 6= σ.
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MORE JONSSON ALGEBRAS 17

Then for some S-club system C̄ = 〈Cδ : δ ∈ S〉 we have

� for every club E of λ
{δ ∈ S : δ = sup(E ∩ nacc(Cδ) ∩A)} ∈ J+.

Proof. As usual let ē = 〈eα : α < λ〉 be a strict λ-club system but such that for
every limit δ ∈ λ\A we have eδ ∩ A = ∅. For any set C ⊆ λ and club E of λ we
define g`2n(C,E, ē, A) by induction on n < ω as follows: for n = 0, g`2n(C,E, ē, A) =
{sup(α ∩ E) : α ∈ C} and

g`2n+1(C,E, ē, A) =g`2n(C,E, ē, A) ∪ {sup(α ∩ E) : for some

β ∈ nacc(g`2n(C,E, ē, A)) we have β /∈ A, and

sup(α ∩ E) > sup(β ∩ g`2n(C,E, ē, A)) and

sup(α ∩ E) ≥ sup(α ∩ eβ) and α ∈ eβ}

and

g`2(C,E, ē, A) =
⋃
n<ω

g`2n(C,E, ē, A).

If C is a club of some δ ∈ acc(E), clearly g`2n(C,E, ē, A), g`2(C,E, ē, A) are clubs
of δ.
If for some club E of λ, letting Cδ,E be g`2(eδ, E, ē, A) when δ ∈ acc(E), and
letting Cδ,E be eδ otherwise, the sequence C̄E =: 〈Cδ,E : δ ∈ S〉 is as required, then
fine, we are done. Assume not, so for any club E of λ for some club E(E) of λ the
set YE =: {δ ∈ S : δ = sup(E(E) ∩A ∩ nacc(Cδ,E))} belongs to J .

As we can replace E(E) by any club E′ ⊆ E(E) of λ, without loss of generality
E(E) ⊆ E.
We choose Eε by induction on ε < σ such that:

(i) Eε is a club of λ

(ii) ζ < ε⇒ Eε ⊆ Eζ
(iii) if ε = ζ + 1 then Eε ⊆ E(Eζ).

For ε = 0 let Eε = λ, for ε limit let Eε =
⋂
ζ<ε

Eζ , for ε = ζ+ 1 let Eε = E(Eζ)∩Eζ .

This is straightforward and let E =
⋂
ε<σ

Eε, it is a club of λ hence E ∩ A is

stationary hence E′ = {δ ∈ E : δ = sup(E ∩ A ∩ δ)} is a club of λ hence
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λ\E′ ∈ J . Now for each δ ∈ E′ ∩ S, choose an increasing sequence 〈βδ,i : i <
cf(δ)〉 of members of A ∩ E ∩ δ with limit δ; as δ ∈ S clearly δ /∈ A hence
eδ ∩ A = ∅ hence {βδ,i : i < cf(δ)} ∩ eδ = ∅. Now for each i < cf(δ) and
ε < σ, we can prove by induction on n that g`2n(eδ, Eε, ē, A) ∩ βδ,i is bounded
in βδ,i and 〈min(g`2n(eδ, Eε, ē, A)\βδ,i) : n < ω〉 is decreasing hence eventually
constant say for n ≥ n(δ, ε, i) hence min(g`2n(eδ, Eε, ē, A)\βδ,i) is a member of

Cδ,Eε =
⋃
n

g`2n(eδ, Eε, ē, A) moreover of nacc(Cδ,Eε) and so necessarily ∈ A as only

the demand “β /∈ A” prevent g`2n+1 having unboundedly many members below
min(g`2n(eδ, Eε, ē, A)\βδ,i).

Also as usual for each i < cf(δ) for some εi,δ < σ we have εi,δ ≤ ζ < σ ⇒
Min(Cδ,Eζ\βδ,i) = Min(Cδ,Eεi,δ \βδ,i) as for each n, the sequence 〈Min(g`2n(eδ, Eε, ē, A)\βδ,i) :

ε < σ〉 is nonincreasing hence eventually constant. But cf(δ) ∈ {cf(δ′) : δ′ ∈ S}
hence cf(δ) 6= σ, so for some εδ we have cf(δ) = sup{i : εi,δ ≤ εδ}. So easily
εδ ≤ ε < σ ⇒ δ ∈ YEε .

Let Yε = ∩{YEζ : ζ ≥ ε and ζ < σ}. Clearly Yε ⊆ YEε ∈ J so Yε ∈ J and

ε1 < ε2 ⇒ Yε1 ⊆ Yε2 . As J is σ-indecomposable, necessarily
⋃
ε<σ

Yε ∈ J , but by

the previous paragraph δ ∈ E′ ∩ S &
∧
ε≥εδ

δ ∈ YEε ⇒ δ ∈ Yεδ ⇒ δ ∈
⋃
ε<σ

Yε, so

E′ ∩ S ⊆
⋃
ε<σ

Yε ∈ J but S ∈ J+, λ\E′ ∈ J , a contradiction. �0.14

0.15 Claim. 1) Suppose λ > θ+σ, λ inaccessible, θ regular uncountable, σ regular,
σ 6= θ, S ⊆ {δ < λ : cf(δ) = θ} stationary, J a weakly normal σ-indecomposable
ideal on S (proper, of course).

Then for some S-club system 〈Cδ : δ ∈ S〉:

(a) δ ∈ S & α ∈ nacc(Cδ)⇒ cf(α) > sup(α ∩ Cδ)
(b) for every club E of λ, {δ ∈ S : δ = sup(E ∩ nacc(Cδ))} ∈ J+

(c) sup
δ∈S
|Cδ| < λ.

2) If in addition {κ < λ : cf(κ) = κ, J is κ-indecomposable} is unbounded in λ we
can demand C̄ is nice and strict.

Proof. Like 0.12 or 0.14 but easier (and see [Sh:g, III,2.7,p.128]). More specifically
part (1) is proved like 0.12(1) (but simpler) and part (2) like 0.12(3).

�0.15
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0.16 Claim. 1) Assume λ is an inaccessible Jonsson cardinal, n∗ < ω, θ = ℵγ(∗) <

λ, S ⊆ λ, and S+ = {δ < λ : S ∩ δ is stationary and δ is inaccessible}, satisfy
δ ∈ S ⇒ θ ≤ cf(δ) < δ and

(∗)(α) λ× n∗ ≤ rkλ(S) < λ× (n∗ + 1) and

(β) rkλ(S+) < rkλ(S)

(γ) if θ > ℵ0 then n∗ > 0 or at least γ(∗)× ω < rkλ(S),
(note: if θ = ℵ0 this holds trivially; similarly for clause (δ))

(δ) if θ > ℵ0, then for some α(∗) we have γ(∗) + rkλ(S+) ≤ α(∗) < rkλ(S)

(recall θ = ℵγ(∗)), and id
α(∗)
rk (λ) � S is θ-complete (of course, θ = ℵγ(∗)).

(∗∗)(α) C̄ is an S-club system,

(β) λ /∈ idp(C̄, Ī), see definition below, where Ī = 〈Iδ : δ ∈ S〉, Iδ =: {A ⊆ Cδ :
for some σ < δ and α < δ, (∀β ∈ A)(β < α ∨ cf(β) < σ ∨ β ∈ acc(Cδ)},
moreover

(γ) for every club E of λ we have α(∗) < rkλ({δ ∈ S : for every σ < δ we have δ =
sup(E ∩ nacc(Cδ) ∩ {α < δ : cf(α) > σ})).

Then idjθ(C̄) is a proper ideal (see 0.18 below).
2) Like part (1) using idγ , rk∗λ instead of idγrk, rkλ respectively.

0.17 Remark. The ideals idj(C̄), idjθ(C̄) are defined below; they are from [Sh:g,

IV,Definition 1.8(2),(3),p.190]4 but idj(λ) = idjℵ0(λ) and the definition of rkjθ(λ)

is repeated in the proof below, and the ideal idp(C̄, Ī) in [Sh:g, III,3.1,p.139] is.

0.18 Definition. For λ regular > ℵ0, C̄ = 〈Cδ : δ ∈ S〉, Cδ ⊆ δ = sup(Cδ), S ⊆
λ = sup(S), Ī = 〈Iδ : δ ∈ S〉, Iδ an ideal on Cδ let idp(C̄, Ī) be the family {A ⊆ λ :
for some club E of λ for no δ ∈ Dom(C̄) ∩ acc(E) do we have A ∩ E ∩ Cδ /∈ Iδ}.

0.19 Definition. 1) For λ an inaccessible Jonsson cardinal, C̄ = 〈Cδ : δ ∈ S〉, Cδ ⊆
δ, S ⊆ λ = sup(S) and θ = cf(θ) < λ let idjθ(C̄) be the family of A ⊆ λ such that:

for every χ > λ and x ∈H (χ) there is a sequence M̄ exemplifying A ∈ idjθ(λ) for
x (and C̄, χ) where:

2) M̄ exemplify A ∈ idjθ(λ) for x ∈H (χ) (and χ > λ and λ) if:

�0 M̄ = 〈Mζ : ζ < ξ〉, ξ < θ,

4but the “same x” in line 4 should be “every x”
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�1 ξ < θ, θ + 1 ⊆Mζ ≺ (H (χ),∈, <∗χ) and |Mζ ∩ λ| = λ and

x ∈Mζ which means λ ∈Mζ , C̄ ∈Mζ , S ∈Mζ and λ *Mζ

�2 for some α∗ < λ for no δ ∈ S\α∗ do we have:

(a) δ = sup(Mζ ∩ δ) for ζ < ξ

(b) for every β < δ for some α we have: α ∈ nacc(Cδ)\β, cf(α) ≥ β and

~ for every ζ < ξ we have: α ∈Mζ or Min(Mζ\α) is singular.

Proof of 0.16. 1) Recall θ = ℵγ(∗), note that γ(∗) + rkλ(S+) < rkλ(S), if θ > ℵ0

by clause (∗)(δ), if θ = ℵ0 trivially.
Without loss of generality δ < λ ⇒ rkδ(S ∩ δ) < δ × ω and even rkδ(S ∩ δ) <
δ × n∗ + (rkλ(S)− λ× n∗) < δ × n∗ + δ (in part (2) the first inequality is ≤).

Toward contradiction assume λ ∈ idjθ(C̄) let x = 〈λ, C̄, S〉 and let 〈Mζ : ζ < ξ〉
exemplify λ ∈ idjθ(C̄) for x which means that �0,�1,�2 of Definition 0.19(2) hold
and let α∗ be as in �2.

Let: E = {δ < λ : δ * Mζ and δ = sup(Mζ ∩ δ) for every ζ < ξ and δ > α∗ for
the α∗ from �2 of 0.19(2)} and let

S∗ = {δ ∈ S : for every σ < δ, {α ∈ E∩ nacc(Cδ) : cf(α) > σ} is unbounded in δ}.

So E is a club of λ with every member a limit cardinal, S∗ ⊆ S is stationary (as

λ /∈ idp(C̄, Ī)) and even S∗ /∈ id
α(∗)
rk (λ) (see clause (∗∗)(γ) in the assumption) and

using �2 of Definition 0.19(2) we shall look only at δ ∈ S∗.
For each i < λ and ζ < ξ let βiζ =: Min(Mζ\i). As 〈Mζ : ζ < ξ〉 exemplifies

λ ∈ idjθ(C̄), we have

�3 for each δ ∈ S∗ for some ζ < ξ, βδζ = cf(βδζ ) > δ hence βδζ is inaccessible.

Proving this will take some steps. First for some β∗ < δ we have:

�4 α ∈ nacc(Cδ)\β∗ & cf(α) ≥ β∗ → (∃ζ < ξ)[Min(Mζ\α) is an inaccessible
> α].

[Why? In the definition of idjθ, i.e. clause (b) of �2 of Definition 0.19(2) we do not

speak on βδζ for δ ∈ S, we speak on βαζ , for α ∈ nacc(Cδ) ∩ E. As δ ∈ S∗ we have

δ ∈ E so δ > α∗ hence δ cannot satisfy (a) + (b) of �2, but as δ ∈ E it satisfies
(a) hence for some β∗ < δ, we have �4.]
Next note

�5 βδζ = δ & α ∈ E ∩ nacc(Cδ)⇒ βαζ = α.
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[Why? So we have δ = βδζ ∈ Mζ hence Cδ ∈ Mζ so (∀γ ∈ δ ∩Mζ)[Min(Cδ\γ) ∈
Mζ ], and now for every α ∈ E ∩ nacc(Cδ) we can find γ ∈ Mζ ∩ α satisfying
γ > sup(Cδ ∩ α) so α = Min(Cδ\γ) ∈Mζ as required in �5.]

�6 βδζ singular & α ∈ E ∩ nacc(Cδ) & cf(α) > cf(βδζ )⇒ βαζ = α.

[Why? Fix such α. There is a club e of βδζ of order type cf(βδζ ) which belongs

to Mζ ; also cf(βδζ ) ∈ Mζ ∩ δ so cf(βδζ ) < δ. Also for every δ′ ∈ e0 = {δ′ ∈
e ∩ S : α /∈ acc(Cδ′)} there is γδ′ such that sup(Cδ′ ∩ α) < γδ′ < α, hence
γ∗ = sup{γδ′ : δ′ ∈ e0} < α (as cf(α) > cf(βδζ ) by assumption). As α ∈ acc(E)

there is γ1 ∈Mζ ∩ α, γ1 > γ∗. So α is the minimal ordinal α′ satisfying
γ1 < α′ & (∃δ′ ∈ e ∩ S)[α′ ∈ nacc(Cδ′)] & (∀δ′ ∈ e ∩ S)[δ′ ∈ nacc(Cδ′) →
sup(α′ ∩ Cδ′) < γ1]
hence α ∈Mζ hence βαζ = α as required.]

Of course, [βδζ singular ⇒ cf(βδζ ) < δ] as cf(βδζ ) ∈ Mζ ∩ βδζ = Mζ ∩ δ; so together
�3 actually holds.

Letting S∗ζ =: {δ ∈ S∗ : βδζ = cf(βδζ ) > δ}, we have S∗ =
⋃
ζ<ξ

S∗ζ , hence for some

ζ(∗) < ξ the set S∗ζ(∗) is stationary. Moreover, if θ > ℵ0 by clause (δ) of (∗) in our

assumption and if θ = ℵ0 by 0.5(0) (for the idγrk case) or 0.11(0) (for the idγ case)
we can choose ζ(∗) such that rkλ(S∗ζ(∗)) > α(∗).

So to get the contradiction it suffices to prove rkλ

(
S∗ζ(∗)

)
≤ α(∗). Stipulate

βλζ(∗) = λ.

Let αδζ(∗) =: rkβδ
ζ(∗)

(
S+ ∩ βδζ(∗)

)
for δ ≤ λ.

Let αδζ(∗) = βδζ(∗) × n
δ
ζ(∗) + γδζ(∗) where γδζ(∗) < βδζ(∗) (see the assumption in the

beginning of the proof). For δ < λ, as {λ, S} ⊆ Mζ(∗) and βδζ(∗) ∈ Mζ(∗) clearly

αδζ(∗) ∈Mζ(∗) hence γδζ(∗) ∈Mζ(∗) ∩ δ hence γδζ(∗) < δ.

We now prove by induction on i ∈ E ∪ {λ} that

⊗
rki

(
S∗ζ(∗) ∩ i ∩ E

)
≤ i× niζ(∗) + γiζ(∗).

This suffices as for i = λ (as αiζ(∗) ≤ α(∗)) it gives: rkλ

(
S∗ζ(∗)

)
= rkλ(S∗ζ(∗) ∩E) =

rkλ(S∗ζ(∗) ∩ λ ∩ E) ≤ αλζ(∗) ≤ rkλ(S+) ≤ α(∗), contradicting the choice of ζ(∗)
(and α(∗)).

Proof of ⊗. The case cf(i) ≤ ℵ0 ∨ i ∈ nacc(E) ∨ i ∈ nacc(acc(E)) is trivial; so we
assume
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~1 i ∈ acc( acc(E)) & cf(i) > ℵ0 hence rki

(
S∗ζ(∗) ∩ i ∩ E

)
= rki

(
S∗ζ(∗) ∩ i

)
.

For a given i, clearly for every club e of βiζ(∗) which belongs to Mζ(∗) we have

i = sup(e∩ i) (as Mζ “think” e is an unbounded subset of βiζ(∗) and i = sup(i∩Mζ)

as i ∈ E) and for a given i, by the definition of rk there is a club e of βiζ(∗) satisfying

Min(e) > γiζ(∗) such that one of the following occurs:

(a) αiζ(∗) = 0 and ε ∈ e⇒ rkε(S
+ ∩ ε) = 0 & S+ ∩ e = ∅

(b) αiζ(∗) > 0 and ε ∈ e⇒ rkε(S
+ ∩ ε) < ε× niζ(∗) + γiζ(∗).

As S+, βiζ(∗) ∈Mζ(∗) without loss of generality e ∈Mζ(∗) hence i ∈ acc(e). Neces-

sarily

~2 if ε ∈ i ∩ acc(e) ∩ acc(E), then βεζ(∗) ∈ e.

[Why? Otherwise sup(βεζ(∗)∩ e) is a member of e (as e is closed, βεζ(∗) ≥ ε ∈ acc(e)

so βεζ(∗) > Min(e)), is ≥ ε as ε ∈ acc(e)) and is < βεζ(∗) and it belongs to Mζ(∗)
(as e, βεζ(∗) ∈Mζ(∗)), contradicting the choice of βεζ(∗).]

Hence one of the following occurs:

(A) αiζ(∗) = 0 and e is disjoint to S+

(B) αiζ(∗) > 0 and rkβε
ζ(∗)

(
S+ ∩ βεζ(∗)

)
< βεζ(∗) × niζ(∗) + γiζ(∗) for every ε ∈

acc(e) ∩ acc(E).

First assume (A). Now for any δ ∈ acc(E)∩ S∗ζ(∗) we have βδζ(∗) is inaccessible (as

δ ∈ S∗ζ(∗) and the definition of S∗ζ(∗)) and βδζ(∗) ∩ S is stationary in βδζ(∗) (otherwise

there is a club e′ ∈ Mζ(∗) of βδζ(∗) disjoint to S, but necessarily δ ∈ e′ but our

present assumption is δ ∈ S∗ζ(∗) ⊆ S, contradiction); together βδζ(∗) ∈ S+ hence

βδζ(∗) /∈ e (e from above, after ~1), so necessarily δ 6= βiζ(∗) ⇒ δ /∈ acc(e). So

acc(e) ∩ acc(E) ∩ i is a club of i disjoint to S∗ζ(∗) hence rki

(
S∗ζ(∗) ∩ i

)
= 0 which

suffices for ⊗.

If (B) above occurs, then for ε ∈ acc(e) ∩ acc(E) we have βεζ(∗) × n
ε
ζ(∗) + γεζ(∗) <

βεζ(∗) × n
i
ζ(∗) + γiζ(∗).

Since γiζ(∗) < Min(e), we have (nεζ(∗), γ
ε
ζ(∗)) <lex (niζ(∗), γ

i
ζ(∗)), hence ε × nεζ(∗) +

γεζ(∗) < ε×niζ(∗) +γiζ(∗) for all ε ∈ acc(e)∩ acc(E). Using the induction hypothesis,

we see for ε ∈ e ∩ acc(E)\ Min(e) that
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rkε(S
∗
ζ(∗) ∩ ε ∩ E) ≤ ε× nεζ(∗) + γεζ(∗) < ε× niζ(∗) + γiζ(∗)

hence by the definition of rki the statement ⊗ holds for i; which as said above is
enough.
2) We repeat the proof of part (1), replacing rki by rk∗i up to and including the
phrasing of ⊗ and the explanation of why it suffices. For any ordinal i < λ and
ζ < ξ let Mζ,i be the Skolem Hull in (H (χ),∈, <∗χ) of Mζ ∪ {j : j ≤ βiζ}. But

δ ∈ S∗ζ(∗) ⇒ cf(βδζ(∗)) = βδζ(∗) > δ hence clearly

�7 Mζ,i increases with i,Mζ,i ≺ (H (χ),∈, <∗χ), and

�8 δ ∈Mζ & cf(δ) > βiζ ⇒ sup(Mζ,i ∩ δ) = sup(Mζ ∩ δ).

But δ ∈ S∗ζ(∗) ⇒ cf(βδζ(∗)) = βδζ(∗) > δ hence clearly j < δ ∈ S∗ζ(∗) ⇒ j < δ & δ =

sup(Mζ(∗) ∩ βδζ(∗)) ⇒ j < δ & δ = sup(Mζ(∗),j ∩ βδζ(∗)) ⇒ βδζ(∗) = Min(Mζ(∗),j ∩
λ\δ). Now for j < λ let Wj = {w : w belongs to Mζ(∗),j and w ⊆ S} and for

w ∈ Wj we let w+ = {δ < λ : δ inaccessible and w ∩ δ is a stationary subset of δ},
let βiζ(∗),j,w = βiζ(∗),j = Min(Mζ(∗),j∩λ\i). Also for j < λ,w ∈ Wj and i > βjζ(∗),j,w
let αiζ(∗),j,w = rk∗

βi
ζ(∗),j,w

(w+ ∩ βiζ(∗),j,w), so as w+ ⊆ S+ necessarily αiζ(∗),j,w =

βiζ(∗),j,w × niζ(∗),j,w + γiζ(∗),j,w with niζ(∗),j,w < ω and γiζ(∗),j,w < βiζ(∗),j . By the

definition of Mζ,j and βiζ(∗),j,w clearly βiζ(∗),j,w decrease with j and by �8 we have

βjζ(∗) < i ∈ E & cf(i) > βjζ(∗) ⇒ βiζ(∗),j,w = βiζ(∗). Now we prove by induction on

i ∈ E ∪ {λ} that

⊗+ if j < λ, βjζ(∗) < i ∈ E,w ∈ Wj then

rki(S
∗
ζ(∗) ∩ w ∩ i ∩ E) ≤ i× niζ(∗),j,w + γiζ(∗),j,w.

This clearly suffices (for w = S we shall get ⊗ for each Mζ(∗),j which is more than
enough).

Proof of ⊗+. The case cf(i) ≤ ℵ0 ∨ i ∈ nacc(E)∨ i ∈ nacc(acc(E)) is trivial; so we
assume

~3 i ∈ acc(acc(E)) & cf(i) > ℵ0 hence rk∗i

(
S∗ζ(∗) ∩ w ∩ i ∩ E

)
= rk∗i

(
S∗ζ(∗) ∩ w ∩ i

)
.

For a given w ∈ Wj and i ∈ E\βjζ(∗),j,w clearly for every club e of βiζ(∗),j,w which

belongs to Mζ(∗),j we have i = sup(i ∩ e); (this because “Mζ thinks” e is an

unbounded subset of βiζ(∗) and i ∈ E implies i = sup(i ∩Mζ) as a limit ordinal);
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so i ∈ acc(e) even i ∈ acc(acc(e)), etc. By the definition of rk∗
βi
ζ(∗),j,w

, for our i,

there is a club e of βiζ(∗),j,w with Min(e) > γiζ(∗),j,w and h (for case (c)) such that

one of the following cases occurs:

(a) γiζ(∗),j,w = 0 & niζ(∗),j,w = 0 that is αiζ(∗),j,w = 0 and w+ ∩ e = ∅ so

ε ∈ e⇒ rk∗ε (w
+ ∩ ε) = 0 &

(b) γiζ(∗),j,w > 0 and ε ∈ e⇒ rk∗ε(w
+ ∩ ε) < ε× niζ(∗),j,w + γiζ(∗),j,w

(c) γiζ(∗),j,w = 0 & niζ(∗),j,w > 0, h a pressing down function on w+ ∩ i such

that for each j < i we have j < ε ∈ e & h(ε) = j ⇒ rk∗ε(w
+ ∩ ε) <

ε× niζ(∗),j,w + γiζ(∗),j,w.

For j < λ,w ∈ Wj and i < λ, clearly βiζ(∗),j,w and w belongs to Mζ(∗),j hence

also αiζ(∗),j,w ∈ Mζ(∗),j and so also (niζ(∗),j,w and) γiζ(∗),j,w belongs to Mζ(∗),j . So

without loss of generality to clauses (a), (b), (c) we can add:

~4 e ∈Mζ(∗) and h ∈Mζ(∗) when defined (and i = sup(i ∩ e)).

Necessarily

~5 if ε ∈ i ∩ acc() ∩ acc(E) then βεζ(∗),j,w ∈ e.

[Why? Otherwise:

(i) βεζ(∗),j,w < i (as ε < i & i ∈ acc(E) and the definition of βεζ(∗),j,w and the

choice of E)

(ii) sup(βεζ(∗),j,w ∩ e) is a member of e (as e is a closed unbounded subset of

βiζ(∗),j,w and Min(e) < βεζ(∗),j,w < i ≤ βiζ(∗),j,w)

(iii) sup(βεζ(∗),j,w ∩ e) ≥ ε (as ε ∈ acc(e) & ε ≤ βεζ(∗),j,w)

(iv) βεζ(∗),j,w ∈Mζ(∗),j (by its definition)

(v) sup(βεζ(∗),j,w ∩ e) ∈Mζ(∗),j (as e, βεζ(∗) ∈Mζ(∗),j).

So sup(βεζ(∗),j,w ∩ e) ∈ λ∩Mζ(∗),j\ε hence is ≥ Min(λ∩Mζ(∗),j\ε) = βεζ(∗),j,w, but

trivially sup(βεζ(∗),j,w∩e) ≤ β
ε
ζ(∗),j,w so we get the βεζ(∗),j,w = sup(βεζ(∗),j,w∩e) and

it belongs to e by (ii) so we have proved ~5.]
So by the choice of e, one of the following cases occurs:

(A) αiζ(∗),j,w = 0 and e is disjoint to w+

(B) γiζ(∗),j,w > 0 and rk∗βε
ζ(∗),j,w

(
w+ ∩ βεζ(∗),j,w

)
< βεζ(∗),j,w×n

i
ζ(∗),j,w + γiζ(∗),j,w

for every ε ∈ acc(e) ∩ acc(E)
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(C) γiζ(∗),j,w = 0, niζ(∗),j,w > 0, h ∈ Mζ(∗),j a pressing down funtion on e such

that: ε < µ ∈ e & (µ inaccessible)⇒ rk∗µ({γ < µ : γ ∈ w+∩ e and h(γ) =

ε}) < µ×niζ(∗),j,w (read Definition 0.9(1) clause (c) and use diagonal inter-

section; remember that for singular µ, rk∗µ(µ) = rkµ(µ) < µ).

First assume (A). Now for any δ ∈ acc(E) ∩ S∗ζ(∗) ∩w necessarily βδζ(∗),j,w is inac-

cessible (as δ ∈ S∗ζ(∗) and the definition of S∗ζ(∗)) and βδζ(∗),j,w ∩ w is stationary in

βδζ(∗),j,w (otherwise there is a club e′ ∈Mζ(∗),j of βδζ(∗),j,w disjoint to w, but neces-

sarily δ ∈ e′ and δ ∈ w, contradiction); together βδζ(∗),j,w ∈ w
+ hence βδζ(∗),j,w /∈ e

(e from above), so as e ∈ Mζ(∗),j necessarily δ 6= βiζ(∗),j,w ⇒ δ /∈ acc(e). So

acc(e)∩ acc(E)∩ i is a club of i disjoint to S∗ζ(∗) ∩w hence rk∗i

(
S∗ζ(∗) ∩ w ∩ i

)
= 0

which suffices for ⊗+.

Secondly, assume clause (B) occurs; then for every ε ∈ acc(e) ∩ acc(E) we have
βεζ(∗),j,w × n

ε
ζ(∗),j,w + γεζ(∗),j,w < βεζ(∗),j,w × n

i
ζ(∗),j,w + γiζ(∗),j,w. Since γiζ(∗),j,w ≤

Min(e) we have (nεζ(∗),j,w, γ
ε
ζ(∗),j,w) <`ex (niζ(∗),j,w, γ

i
ζ(∗),j,w) hence ε × nεζ(∗),j,w +

γεζ(∗),j,w < ε×niζ(∗),j,w+γiζ(∗),j,w for every ε ∈ acc(e)∩ acc(E). Using the induction

hypothesis we get for every ε ∈ acc(e) ∩ acc(E) that

rk∗ε(S
∗
ζ(∗),j,w ∩ i ∩ E) ≤ ε× nεζ(∗),j,w + γεζ(∗),j,w < ε× niζ(∗),j,w + γiζ(∗),j,w.

Lastly, assume that clause (C) holds and let e, h ∈ Mζ(∗),j be as there, without
loss of generality i is inaccessible (otherwise the conclusion is trivial), so e∩ i, E ∩ i
are clubs of i, and let j∗ =: h(i), j1 = Max{j, j∗} so j ≤ j1 < i and Mζ(∗),j1 is

well defined (and j1 ∈ Mζ(∗),j1). Clearly βiζ(∗),j∗,w = βiζ(∗),j,w [because βiζ(∗),j,w is

inaccessible (as otherwise αiζ(∗),j,w < βiζ(∗),j,w contradicting our case) hence j ≤
j′ < i⇒ βiζ(∗),j∗,w = βiζ(∗),j,w as in previous cases.]

Let uj1 = {α ∈ w ∩ e : h(α) = j∗} ∈ Mζ(∗),j1 and as j1 < i ≤ βiζ(∗),j,w clearly

δ ∈ e ⇒ rk∗δ(S
∗
ζ(∗),j ∩ uj1 ∩ δ) < niζ(∗),j,w × δ hence by the induction hypothesis

δ ∈ i∩ acc(e)∩ acc(E)⇒ rk∗δ(S
∗
ζ(∗),j1 ∩uj ∩ δ) < niζ(∗),j,w× δ, hence rki(S

∗
ζ(∗),j1 ∩

w ∩ i) ≤ niζ(∗),j,w × i as required. �0.16

0.20 Claim. Assume

(a)(i) cf(λ) > µ

(ii) S ⊆ {δ < λ : µ < cf(δ) < δ}
(iii) rkλ(S) = γ∗ = λ× n∗ + ζ∗ where ζ∗ < λ, n∗ < ω
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(b)(i) J an ℵ1-complete ideal on µ containing the singletons

(ii) if A ∈ J+, (i.e. A ⊆ µ,A /∈ J) and f ∈ Aλ then ‖f‖J�A < λ
(if e.g. J = Jbd

µ , µ regular, then A = µ suffices as J � A ∼= J)

(iii) if A ∈ J+ and f ∈ A(ζ∗) then ‖f‖J�A < ζ∗.

Then id<γ
∗

rk (λ) � S is J-indecomposable (see Definition 0.21 below).

0.21 Definition. An ideal I on λ is J-indecomposable where J is an ideal on µ,
if: for any Sµ ⊆ λ, Sµ /∈ I, and f : Sµ → J there is i < µ such that Si =: {α ∈
Sµ : i /∈ f(α)} /∈ I; note that given Sµ, f can be defined from 〈Si : i < µ〉 and vice
versa.

Clearly

0.22 Claim. 1) If J = Jbd
µ , µ regular then “I is Jbd-indecomposable” is equivalent

to “I is µ-indecomposable”.
2) If J is a |ζ∗|+-complete ideal on µ, then the assumption (b)(iii) of 0.20 holds
automatically.

Proof of Claim 0.20. We prove this by induction on γ∗. Assume toward contradic-
tion that the conclusion fails as exemplified by Sµ, f, Si (for i < µ), so f : Sµ → J
we have Si = {α ∈ Sµ : i /∈ f(α)} and without loss of generalitySµ ⊆ S such that

Sµ /∈ id<γ
∗

rk (λ), but Si ∈ id<γ
∗

rk (λ) for each i < µ. Now let rkλ(Si) = λ×ni+ζi with
ζi < λ; clearly δ ∈ Sµ ⇒ {i < µ : δ /∈ Si} = f(δ) ∈ J . Without loss of generality

S = Sµ and clearly Si ⊆ Sµ =
⋃
j<µ

Sj . By our assumption toward contradiction

clearly ni < n∗ ∨ (ni = n∗ & ζi < ζ∗) for each i < µ.
As we can replace S by S ∩ E for any club E of λ, without loss of generality

(∗)0 if δ < λ then rkδ(S ∩ δ) < δ × n∗ + (rkλ(S) − λ × n∗) = δ × n∗ + ζ∗ and
rkδ(Si ∩ δ) < δ × ni + ζi and Min(S) > ζ∗, ζi for i < µ.

Recalling 0.3(1),(4), for δ ∈ S
[0]
µ ∪ {λ} and n ≤ n∗ let: Aδn = {i < µ : δ × n ≤

rkδ(Si∩δ) < δ×(n+1)} and let fδn : Aδn → δ be defined by fδn(i) =: rkδ(Si∩δ)−δ×n
and let n(δ) = Min{n : Aδn /∈ J} so by (∗)0 clearly n(δ) is well defined and ≤ n∗.

For i < µ and δ < λ let rkδ(Si∩δ) = δ×mδ,i+εδ,i, where mδ,i ≤ n∗ and εδ,i < δ;
so for some E0

(∗)1 E0 is a club of λ, and if δ < λ,Aδn /∈ J and n ≤ n∗, then
‖fδn‖J�Aδn < Min(E0\(δ + 1))
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(possible as fδn : Aδn → δ ⊆ λ and hypothesis (b)(ii)).
Now we shall prove for δ ∈ S[0] ∪ {λ} that recalling S[0] = {δ : δ ∈ S or S ∩ δ is
stationary in δ}:⊗

δ rkδ(Sµ ∩ E0 ∩ δ) ≤ δ × n(δ) + ‖fδn(δ)‖J�Aδn(δ)
< δ × n(δ) + δ.

Why does this suffice? For δ = λ, first note: if n(λ) < n∗ then rkλ(Sµ) ≤ λ ×
n(λ) + ‖fδn(δ)‖J�Aδn(δ)

≤ λ× (n∗− 1) + ‖fδn(δ)‖J�Aδn(δ)
< λ× (n∗− 1) + λ ≤ λ×n∗ ≤

rkλ(S) = rkλ(Sµ) [why? first inequality by ⊗λ, second inequality by n(λ) < n∗

(see above), third inequality by assumption (b)(ii), as for i ∈ An(λ), f
δ
n(δ)(i), that

is fλn(λ)(i) is ζi < λ by our assumption toward contradition; the fourth inequality

is an ordinal addition and the fifth we have assumed] and this is a contradiction.

So we can assume n(λ) = n∗, but then by ⊗λ, we know rkλ(Sµ) ≤ λ × n(λ) +
‖fδn(δ)‖J�Aδn(δ)

.

But for i ∈ Aδn(δ) = Aλn∗ , by the definition of the Aδn’s we know that ni = n(δ) =

n(λ) = n∗, and so we know λ × ni + ζi = rkλ(Si) < rk(Sµ) = γ = λ × n∗ + ζ∗

so we know fδn(δ)(i) = rkδ(Si ∩ δ) − δ × n(δ) = ζi < ζ∗ so by assumption (b)(iii),

‖fδn(δ)‖J�Aδn(δ)
< ζ∗, so by ⊗λ, rkλ(Sµ) < λ× n∗ + ζ∗, contradiction.

So it actually suffices to prove ⊗δ. We prove it by induction on δ.

If cf(δ) = ℵ0, or δ /∈ acc(E0) or more generally Sµ ∩ δ is not a stationary subset δ,
then rkδ(Sµ ∩ δ) = 0, and rkδ(Si ∩ δ) = 0 hence ‖fδn(δ)‖ = 0 so the inequality ⊗δ
holds trivially.

So assume otherwise; for each i < µ, for some club ei of δ we have:

(∗)2 δ(1) ∈ ei ⇒ (mδ(1),i < mδ,i) ∨ (mδ(1),i = mδ,i & εδ(1),i < εδ,i).

Without loss of generality ei ⊆ E0. As Sµ∩δ is a stationary in δ (as we are assuming
“otherwise”) by hypothesis (a)(ii) of the claim, cf(δ) ≥ Min{cf(α) : α ∈ S} > µ,

so e =:
⋂

i∈Aδ
n(δ)

ei is a club of δ.

As εδ,i < δ (see its choice) and cf(δ) > µ (by hypothesis (a)(ii)) clearly ε =
sup
i<µ

εδ,i < δ, hence sup(Rang(fδn(δ))) < δ hence ‖fδn(δ)‖J�Aδn(δ)
< δ (see (∗)1, as

δ ∈ E0), so the second inequality in ⊗δ holds; so without loss of generality εδ,i <
min(e) and ‖fδn(δ)‖J�Aδn(δ)

< min(e).

Suppose the first inequality in ⊗δ fails, so rkδ(Sµ ∩ E0 ∩ δ) > δ × n(δ) +
‖fδn(δ)‖J�Aδn(δ)

, hence
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B =

{
δ(1) ∈ e : rkδ(1)(Sµ ∩ E0 ∩ δ(1)) ≥ δ(1)× n(δ) + ‖fδn(δ)‖J�Aδn(δ)

}
is a stationary subset of δ; note that
δ(1) ∈ B ⇒ δ(1) ∈ e⇒ ‖fδn(δ)‖J�Aδn(δ)

< min(e)⇒ ‖fδn(δ)‖J�Aδn(δ)
< δ(1).

But by the induction hypothesis

δ(1) ∈ B ⇒ rkδ(1)(Sµ ∩ E0 ∩ δ(1)) ≤

δ(1)× n(δ(1)) + ‖fδ(1)
n(δ(1))‖J�Aδ(1)

n((δ)(1))

< δ(1)× n(δ(1)) + δ(1).

Let δ(1) ∈ B; putting this together with the definition of “δ(1) ∈ B” we get

(∗)3 δ(1)× n(δ) + ‖fδn(δ)‖J�Aδn(δ)
≤ δ(1)× n(δ(1)) + ‖fδ(1)

n(δ(1))‖J�Aδ(1)
n(δ(1))

.

Now by (∗)2 necessarily n(δ(1)) ≤ n(δ) so by (∗)3 we have n(δ(1)) = n(δ) (remem-

ber ‖fδ(1)
n(δ(1))‖J�Aδ(1)

n(δ(1))

< δ(1) by the induction hypothesis). So

(∗)4 ‖fδn(δ)‖J�Aδn(δ)
≤ ‖fδ(1)

n(δ(1))‖J�Aδ(1)
n(δ(1))

.

Now by (∗)2 (as we have n(δ) = n(δ(1))){
i ∈ Aδn(δ) : i /∈ Aδ(1)

n(δ(1))

}
⊆

⋃
n<n(δ(1))

Aδ(1)
n

now as n(δ(1)) = Min{i : A
δ(1)
n /∈ J} and J an ideal, clearly

⋃
n<n(δ(1))

Aδ(1)
n ∈ J .

So we have shown Aδn(δ)\A
δ(1)
n(δ(1)) ∈ J . Also for i ∈ Aδn(δ) ∩ A

δ(1)
n(δ(1)), we have

fδn(δ)(i) = εδδ,i > εδ(1),i = f
δ(1)
n(δ(1))(i). Together (and by the properties of ‖ − ‖−)

‖fδn(δ)‖J�Aδn(δ)
= ‖fδn(δ) � (Aδn(δ) ∩A

δ(1)
n(δ(1)))‖J�(Aδ

n(δ)
∩Aδ(1)

n(δ(1))
)

> ‖fδ(1)
n(δ(1)) � (Aδn(δ) ∩A

δ(1)
n(δ(1)))‖J�(Aδ

n(δ)
∩Aδ(1)

n(δ(1))
)

≥ ‖fδ(1)
n(δ(1)) � A

δ(1)
n(δ(1))‖J�Aδ(1)

n(δ(1))

contradicting (∗)4. �0.20
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0.23 Claim. If J is an ideal on µ, µ < λ, γ a limit ordinal, J is µ-complete, γ < µ,
then I = id<γrk (λ) � S is J-indecomposable.

Proof. Assume Sµ ∈ I+ and f : Sµ → J and Si =: {α ∈ Sµ : i /∈ f(α)}.
Now we prove by induction on β < γ that: if δ < λ, rkδ(Sµ ∩ δ) ≥ 2β and

cf(δ) 6= µ, then Aβ =: {i : rkδ(Si ∩ δ) ≥ β} = µ mod J . Note that we have “≥ 2β”
in the assumption but ≥ β in the conclusion; we can “get away” with this as γ is
a limit ordinal. As J is µ-complete, µ > |γ| this implies that {i : rkδ(Si ∩ δ) ≥
γ} = µ mod J . So let us carry the induction; if β = 0 this is trivial and for β limit
use β < γ < µ and the induction hypothesis (and J being µ-complete). So assume
β = α + 1, δ < λ, cf(δ) 6= µ, rkδ(Sµ ∩ δ) ≥ 2β = 2α + 2, hence S′ =: {δ′ < δ:
rkδ′(Sµ ∩ δ′) ≥ 2α+ 1} is a stationary subset of δ.

So δ′ ∈ S′ & cf(δ′) 6= µ ⇒ δ′ ∈ A2α+1 by the induction hypothesis so if
{δ′ ∈ S′ : cf(δ′) 6= µ} is a stationary subset of δ we are done. Otherwise, still
[δ′ ∈ S′ ⇒ {δ′′ < δ′ : δ′′ ∈ A2α} is a stationary subset of δ′] hence S′′ = {δ′′ < δ :
cf(δ′′) < µ and δ′′ ∈ A2α} is a stationary subset of δ, and we can finish as before.

�0.23

0.24 Remark. 1) It is more natural to demand only J is κ-complete and κ > γ; and
allow γ to be a successor, but this is not needed and will make the statement more
cumbersome because of the “problematic” cofinalities in [κ, µ].
2) We can prove more in 0.23:

⊗ if β < µ, rkλ(Sµ) > β then {i < µ : rkλ(Si) ≥ β} = µ mod J .

0.25 Theorem. Assume λ is inaccessible and there is S ⊆ λ stationary such that
rkλ({κ < λ : κ is inaccessible and S ∩ κ is stationary in κ}) < rkλ(S).

Then on λ there is a Jonsson algebra.

Proof. Assume toward contradiction that there is no Jonsson algebra on λ. Let
S+ =: {δ < λ : δ inaccessible and S ∩ δ is stationary in δ}.
Note that without loss of generality

~ S is a set of singulars and rkλ(S) is a limit ordinal.

[Why? Let S′ = {δ ∈ S : δ a singular ordinal }, S′′ = {δ ∈ S : δ is a regular cardinal},
so rkλ(S) = rkλ(S′ ∪ S′′) = Max{rk(S′), rk(S′′)} by 0.5(0). Now if rkλ(S′′) <
rkλ(S), then necessarily rkλ(S′) = rkλ(S) so we can replace S by S′. If rkλ(S′′) =
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rk(S) then rkλ(S′′) > rkλ(S+) and clearly S′′ ∩ δ stationary ⇒ δ ∈ S+, so neces-
sarily rkλ(S′′) is finite hence λ has a stationary set which does not reflect and we
are done; see [Sh:g]. If rkλ(S) is a successor ordinal we are done similarly.]

By the definition of rkλ, γ∗ =: rkλ(S) < λ + rkλ(S+), but we have assumed
rkλ(S+) < rkλ(S) so rkλ(S) < λ+ rkλ(S), which implies rkλ(S) < λ× ω. So for
some n∗ < ω we have λ× n∗ ≤ rkλ(S) < λ× n∗ + λ.

Let rkλ(S+) = β∗ = λ×m∗+ε∗ with ε∗ < λ. We shall now prove 0.25 by induction
on λ. By [Sh:g, Ch.III], without loss of generalityβ∗ > 0. By 0.5(9) we can find a
club E of λ such that:

(A) δ ∈ E ⇒ rkδ(S ∩ δ) < δ × n∗ + ( rkλ(S)− λ× n∗)
(B) δ ∈ E ⇒ rkδ(S

+ ∩ δ) < δ ×m∗ + ε∗.

Note that δ ×m∗ + ε∗ > 0 for δ ∈ E (or just δ > 0) as β∗ > 0. Let A =: {δ ∈ E :
δ inaccessible, ε∗ < δ and rkδ(S ∩ δ) ≥ δ ×m∗ + ε∗}.
Clearly δ ∈ A implies S ∩ δ is a stationary subset of δ. By the induction hypothesis
and the choice of A and clause (B) every member of A has a Jonsson algebra on it
and by the definition of A (and 0.5(9)) we have [α < λ & A ∩ α is stationary in
α⇒ α ∈ A]; note that as A is a set of inaccessibles, any ordinal in which it reflects
is inaccessible. If A is not a stationary subset of λ, then without loss of generality
A = ∅, and we get rkλ(S) ≤ λ × m∗ + ε∗ = β∗ < rkλ(S), a contradiction. So
without loss of generality (using the induction hypothesis on λ):⊕

A is stationary, A[0] ⊆ A, i.e. (∀δ < λ)(A ∩ δ is stationary in δ ⇒ δ ∈ A),
each δ ∈ A is an inaccessible with a Jonsson algebra on it.

So by [Sh:g, IV,2.12,p.209] without loss of generality for arbitrarily large κ < λ
(even κ inaccessible):⊗

κ κ = cf(κ) > ℵ0, κ < λ and for every f ∈ κλ we have ‖f‖Jbd
κ
< λ.

So choose such κ < λ satisfying κ > rkλ(S)− λ× n∗. We shall show that

(∗) id<γ
∗

rk (λ) � S is Jbd
κ -indecomposable

hence it follows by 0.22(1)

(∗)′ id<γ
∗

rk (λ) � S is κ-indecomposable.

Why (∗) holds? If γ∗ ≥ λ by 0.5(1),(3) we know that rkλ({δ ∈ S[0] : cf(δ) > κ}) =
rkλ(S), so without loss of generality Min{cf(δ) : δ ∈ S} > κ and we can use 0.20

and the statement
⊗

above to get (∗). If γ∗ < λ use 0.23. So (∗) and (∗)′ holds.
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Note that S+ satisfies the assumptions on A in 0.14, i.e. clause (b) there and letting

σ = κ, the ideal id<γ
∗

rk (λ) is κ-indecomposable by (∗)′ above. Hence by 0.14 applied

to J = id<γ
∗

rk (λ), σ = κ, S,A, we get that for some S-club system C̄ we have:

(a) δ ∈ S ⇒ nacc(Cδ) ⊆ A
(b) for every club E of λ,

rkλ({δ ∈ S : δ = sup(E ∩ nacc(Cδ))}) ≥ γ∗.

We now apply 0.16(1) for our S, S+, n∗, λ and θ = ℵ0. Why its assumptions hold?
Now λ is a Jonsson cardinal by our assumption toward contradiction. Clauses
(∗)(α) + (∗)(β) hold by our choice of S, S+, clauses (∗)(γ) + (∗)(δ) holds as θ = ℵ0,
clause (∗∗)(α) holds by the choice of C̄, clause (∗∗)(β) holds by (∗∗)(γ). Last and
the only problematic assumption of 0.16 is clause (γ) of (∗∗) there, which holds
by clause (b) above because nacc(Cδ) ⊆ A, each α ∈ A is inaccessible. So the

conclusion of 0.16 holds, i.e. λ /∈ idjℵ0(C̄). Now if δ ∈ S, α ∈ nacc(Cδ) then α

is from A but by the choice of A (and the induction hypothesis on λ) this implies
that on α there is a Jonsson algebra, so we finish by 0.26(1) below.

�0.25

0.26 Claim. 1) Assume

(a) λ is inaccessible

(b) C̄ = 〈Cδ : δ ∈ S〉, S a stationary subset of λ

(c) idjℵ0(C̄) is a proper ideal

(d) if α ∈
⋃
δ∈S

nacc(Cδ) then on α there is a Jonsson algebra and α is inacces-

sible.

Then on λ there is a Jonsson algebra (so we get a contradiction to (c)).
2) We can replace (c) + (d) by

(c)+ idk(C̄, Ī) is a proper ideal5 and σ < δ & δ ∈ S ⇒ {α ∈ Cδ : α ∈
acc(Cδ) ∨ cf(α) < σ} ∈ Iδ

(d)′ if α ∈
⋃
δ∈S

nacc(Cδ) then on cf(α) there is a Jonsson algebra.

3) In clause (d) of part (1) we can omit “α is inaccessible”.

Proof. 1) Very similar to the proof of [Sh:g, IV,p.192].

5see [Sh:g, IV,Def.1.8(1),p.190], only in line 4 replace “some” by “every”; but not used
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Let χ be large enough, M an elementary submodel of (H (χ),∈, <∗χ) such that
λ ∈ M, |M ∩ λ| = λ, and it suffices to prove λ ⊆ M ; assume toward contradiction
that this fails. Without loss of generality C̄ ∈ M and let E = {δ < λ : δ a limit
ordinal, δ *M and δ = sup(M∩δ)}. Clearly E is a club of λ, so by the choice of C̄,

i.e. “idjℵ0(C̄) a proper ideal” there is δ ∈ S ∩ acc(E) such that δ = sup(Bδ) where

Bδ = {α ∈ nacc(Cδ) ∩ E : βα = α ∨ cf(βα) < βα} where βα =: Min(M ∩ λ\α),
it exists as |M ∩ λ| = λ and clearly cf(βδ) < δ ≡ cf(βδ) < βδ. But for α ∈ Bδ we
know that α is inaccessible so βα cannot be singular so βα = α, that is α ∈M . But
for α ∈ Bδ, α ∈ acc(E) by the definition of Bδ hence: α ∈ M, sup(α ∩M) = α, α
is inaccessible on which there is a Jonsson algebra hence α ⊆M . But δ = sup(Bδ)
so δ ⊆M , contradicting δ ∈ E.
2) Similar.
3) In the proof of part (1) we use E = {µ : µ a limit cardinal, µ = ℵµ = |M∩µ|, µ *
M}. Now if βα is singular (hence α is singular) we consider M ′, the Skolem Hull
of M ∪ {i : i ≤ cf(βα)} as in the proof of 0.16(2). �0.26

Minimal cases we do not know are
—> MARTIN WARNS: Label 1.16 on next line is also used somewhere else (Perhaps

should have used scite instead of stag?

0.27 Question. 1) Can the first λ which is λ× ω-Mahlo be a Jonsson cardinal?
2) Let λ be the first ω-Mahlo cardinal; is λ→ [λ]2λ consistent?
3) Is it enough to assume that for some set S of inaccessibles rkλ(S) < λ+ to deduce
that there is a Jonsson algebra on λ (or even have Pr1(λ, λ,ℵ0))?

0.28 Remark. 1) Instead of Jbd
µ we could have used [µ]<κ, κ ≤ µ, but there was no

actual need.
2) We can replace in 0.25, rkλ by rk∗λ. We can also axiomatize our demand on the
rank for the proof to work.

0.29 Theorem. Assume

(a) λ is inaccessible,

(b) S ⊆ λ is stationary, and let S+ = {µ < λ : S ∩ µ is stationary and µ is
inaccessible}

(c) if rk∗λ(S+) < rk∗λ(S).

Then on λ there is a Jonsson algebra.

Proof. In essence, we repeat the proof of 0.25, replacing rkλ by rk∗λ, and 0.16(2)
instead of 0.16(1) only the proof is shorter.
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As in the proof of 0.25 without loss of generality δ ∈ S ⇒ cf(δ) < δ and we
prove this by induction on λ.
If rk∗λ(S) < λ, then also rk∗λ(S+) < λ so rkλ(S) = rk∗λ(S), rkλ(S+) = rk∗λ(S+)
and so 0.25 apply so we are done, so we can assume rk∗λ(S) ≥ λ. Let γ∗ =
rk∗λ(S) be λ × n∗ + ζ∗, ζ∗ < λ and let σ ∈ (ℵ0 + |ζ∗|+, λ) be regular. Now

rk∗λ(S[σ+1]) ≥ γ∗ as γ∗ ≥ λ, so without loss of generality we have (∀δ ∈ S)(cf(δ) >

σ). By 0.11(6), the ideal id<γ
∗

is σ-indecomposable. Let A = S+ = {µ < λ : µ
inaccessible and S ∩ µ is stationary}, without loss of generalityA is a stationary
subset of λ (otherwise we are done by [Sh:g, Ch.III]), as in the proof of 0.25,
without loss of generalityµ ∈ A ⇒ on µ there is a Jonsson algebra. Now we can
apply claim 0.14 to λ,A, S, id<γ

∗
(λ), σ; its assumption holds as δ ∈ S ⇒ cf(δ) < δ,

while δ ∈ A⇒ δ inaccessible). Now we can repeat the last paragraph of the proof
of 0.25, using 0.16(2) + 0.26(1). �0.29

Remark. By 0.11(7), clause (b), usually assumption (d) of Theorem 0.29 holds.
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§2 Back to Successor of Singulars

Earlier we have that if λ = µ+, µ > cf(µ) and µ is “small” in the alephs sequence,
then on λ there is a Jonsson algebra. Here we show that we can replace “small in
the aleph sequence” by other notions of smallness, like “small in the beth sequence”.
This shows that on i+

ω there is a Jonsson algebra. Of course, we feel that being a
Jonsson cardinal is a “large cardinal property”, and for successor of singulars it is
very large, both in consistency strength and in relation to actual large cardinals.
We have some results materializing this intuition. If λ = µ+ is Jonsson µ > cf(µ),
then µ is a limit of cardinals close to being measurable (expressed by games). If in

addition cf(µ) > ℵ0, 2
(cf(µ))+ < µ, then λ is close to being cf(µ)-compact, i.e. there

is a uniform cf(µ)-complete ideal I on λ that is close to being an ultrafilter (the
quotient is small).

2.1 Definition. We define the game Gmn(λ, µ, γ) for λ ≥ µ cardinals, γ an ordinal
and n ≤ ω. A play last γ moves; in the α-th move the first player chooses a function
Fα from [λ]<n = {w ⊆ λ : |w| < n} into µ, and the second player has to choose

a subset Aα of λ such that Aα ⊆
⋂
β<α

Aβ , |Aα| = λ and Rang(Fα � [Aα]<n) is a

proper subset of µ. Second player loses if he has no legal move for some α < γ;
wins otherwise.

2.2 Claim. We can change the rules slightly without changing the existence of
winning strategies:

(a) instead of Rang(Fα) being ⊆ µ, just |Rang(Fα)| = µ and the demand on
Aα is changed to: Rang(Fα � [Aα]<n) is a proper subset of Rang(Fα).

and/or

(b) the second player can decide in the α−th move to make it void, but defining
the outcome of a play, if otp({α < γ : α-th move non-void}) < γ he loses

and/or

(c) in (a) instead of |Rang(Fα)| = µ, we can require just |Rang(Fα)| ≥ µ.

Proof. Easy.
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2.3 Claim. 1) If θ 9 [θ]<nκ,<κ (where θ ≥ κ ≥ ℵ0 ≥ n) then first player wins

Gmn(θ, κ, κ+) (where “θ 9 [θ]<nκ,<κ” means: there is F : [θ]<n → κ such that if
A ⊆ θ, |A| = θ then |Rang(F � A)| = κ).
2) If θ 9 [θ]<nκ,<σ (where θ ≥ κ > σ ≥ ℵ0 ≥ n) and κ > σ then for some τ ∈ [σ, κ]

first player wins Gmn(θ, τ, τ+) (where θ 9 [θ]<nκ,<σ means: there is F : [θ]<n → κ
such that if A ⊆ θ, |A| = θ then |Rang(F � [A]<n)| ≥ σ.

Proof. 1) Let F exemplify θ 9 [θ]<nκ,<κ. For any subset A of κ of cardinality κ let
hA : κ→ κ be hA(α) = otp(α ∩A) so hA � A is one to one from A onto κ. Now a
first player strategy is to choose Fα = hBα ◦ F where

Bα =: Rang(F � [
⋂
β<α

Aβ ]<n) so Fα(x) = hBα(Fα(x)) (note: we can instead use

(a) of 2.2). Note that |Rang(Fα)| = κ by the choice of F . So if 〈Fα, Aα : α < κ+〉 is
a play in which this strategy is used then 〈Rang(F � [Aα]<n) : α < κ+〉 is a strictly
decreasing sequence of subsets of κ, contradiction; i.e. for some α the second player
has no legal move hence he loses.
2) Let F : [θ]<n → κ exemplify θ 9 [θ]<nκ,<σ, and let B ⊆ θ, |B| = θ be with
|Rang(F � [B]<n)| minimal, so let τ =: |Rang(F � [B]<n)|, so B,F exemplify
θ 9 [θ]<nτ,<τ , and use part (1). �2.3

2.4 Claim. 1) If θ ≤ 2κ but (∀µ < κ)2µ < θ then θ 9 [θ]2κ,<κ.

2) If cf(κ) ≤ σ < κ < θ,pp+
σ (κ) > θ = cf(θ) then θ 9 [θ]2κ1,<κ1

for some κ1 ∈ [κ, θ).

3) If θ = µ+ and µ 9 [µ]nκ,<κ, then θ 9 [θ]n+1
κ,<κ. If in(κ) < λ ≤ in+1(κ) and

θ < κ⇒ in+1(θ) < λ then λ9 [λ]n+2
κ,<κ.

4) If κ + |T | < θ, T is a tree with κ levels and ≥ θ κ-branches and for any set
Y of κ-branches |Y | ≥ θ ⇒ |{η ∩ ν : η 6= ν ∈ Y }| ≥ κ0, then θ 9 [θ]2κ1,<κ1

for some κ1 ∈ [κ0, |T |] ⊆ [κ0, θ) hence the first player has a winning strategy in
Gm2(θ, κ1, κ

+
1 ).

5) Assume: fα : κ → σ, fα(i) < σi < σ for α < θ, i < κ and θ ≥ κ, τ ≤ σi and for
no Y ⊆ θ, |Y | = θ do we have i < κ⇒ σi > |{fα(i) : α ∈ Y }|. Then the first player
wins in Gm2(θ, τ, σ + 1). Hence if cf(κ) ≤ σ ≤ τ < κ < θ = cf(θ) < pp+

σ (θ) then
first player wins in Gm2(θ, τ, σ + 1).
6) If the first player does not win Gmn(λ, κ, γ), κ ≤ θ and [β < γ ⇒ β + θ+ ≤ γ],
(equivalently, there is a limit ordinal β such that θ+ × β = γ) then the first player
does not win in the following variant of Gmn(λ, θ, γ): the second player has to
satisfy |Rang(Fα � [Aα]<n)| < κ.
7) κ1 ≤ κ2 & γ1 ≥ γ2 & n1 ≥ n2 & second player wins Gmn1

(θ, κ1, γ1) ⇒
second player wins Gmn2(θ, κ2, γ2).
8) If κ1 ≤ κ2, γ1 ≥ γ2, n1 ≥ n2 and first player wins Gmn2(θ, κ2, γ2) then it wins
Gmn1(θ, κ1, γ1).
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Remark. On 2.4, 2.6, 2.7 see more in [EiSh 535], particularly on colouring theorems
(instead of, e.g., no Jonsson algebras).

Proof. 1) Let 〈Aα : α < θ〉 be a list of distinct subsets of κ, and define
F (α, β) =: Min{γ : γ ∈ Aα ≡ γ /∈ Aβ}.
2) Easy, too, but let us elaborate.

First Case. There is a set a of ≤ σ regular cardinals < θ, with no last element,
σ < min(a) and sup(a) ∈ [κ, θ) such that κ1 ∈ a ⇒ max pcf(a ∩ κ1) < κ1 and
max pcf(a) = θ. Clearly it suffices to prove θ 9 [θ]2sup a,<sup a.

Let J be an ideal on a extending Jbd
a such that θ = tcf(Πa, <J) and let 〈fα : α < θ〉

be a <J -increasing cofinal sequence in Πa such that for µ ∈ a, |{fα � µ : α < θ}| < µ
(exists by [Sh:g, II,3.5,p.65]). Let F (α, β) = fβ(i(α, β)) where i(α, β) = Min{i :
fα(i) 6= fβ(i)}.
The rest should be clear after reading the proof of Pr1(µ+, µ+, cf(µ), cf(µ))
in [Sh:g, II,4.1].

Second case. For some ordinal6 δ < κ we have pp+
Jbd
δ

(κ) > θ.

Hence (by [Sh:g, II,2.3(1)]) for some strictly increasing sequence 〈σi : i < δ〉 of

regulars with limit κ such that tcf
∏
i<δ

σi/J
bd
δ is equal to θ and let fα(α < θ)

exemplify this. Let F (α, β) = fβ(i(α, β)) where i = i(α, β) is maximal such that
α < β ≡ fα(i) > fβ(i) if there is such i and zero otherwise (or probably more
transparent i = sup{j + 1 : j < δ and α < β ≡ fα(i) ≥ fβ(i)}). The proof should
be clear after reading [Sh:g, II,4.1].

We finish by

2.5 Observation. At least one case holds.

Proof. As pp+
σ (κ) > θ, by [Sh:g, II,2.3] there is a′ ⊆ κ = sup(a′), |a′| ≤ σ such that

a′ is a set of regular cardinals > σ and there is an ideal J extending Jbd
a′ such that

tcf(Πa′/J) = θ; without loss of generality max pcf(a′) = θ and θ ∩ pcf(a′) has no
last element. If J<θ[a

′] ⊆ Jbd
a′ we use the second case. If not, we try to choose

inductively on i < σ+, τi ∈ pcf(a′)\{θ}\κ, such that τi > max pcf{τj : j < i}. As
J<θ[a

′] * Jbd
a′ we can choose for i = 0, for i successor pcf{τj : j < i} has a last

6of course, without loss of generality, δ is a regular cardinal
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element but pcf(a′)\{θ}\κ does not, so we can choose τi recalling that pcf({τj : j <
i}) ⊆ pcf(a′) by [Sh:g, I]. By localization (i.e. [Sh:g, VIII,3.4]) we cannot arrive to
i = |a′|+ ≤ σ+, so for some limit δ < |a′|+ ≤ σ+ we have: τi is defined iff i < δ. So
{τi : i < δ} is as required in the first case. So we can apply the first case.

Continuation of the proof of 2.4.
3) — 6) Left to the reader.

7) Let h : κ2 → κ1 be h(α) =

{
α if α < κ1

0 if κ1 ≤ α < κ2.

During a play 〈Fα, Aα : α < γ2〉 of Gmn2
(θ, κ2, γ2), the second player simulates (an

initial segment of) a play of Gmn1
(θ, κ1, γ1), where for t ⊆ θ, n1 ≤ |t| < n2 we let

h◦Fα(t) = 0 and in the simulated play 〈h◦Fα, Aα : α < γ2〉 the second player uses
a winning strategy.
8) During a play of Gmn1

(θ, κ1, γ1), the first player simulates a play of the game
Gmn2

(θ, κ2, γ2). The simulated play is 〈Fα, Aα : α < γ1〉, the actual one 〈h◦Fα, Aα :
α < γ1〉 (so first player wins before he must, if γ1 6= γ2). �2.4

2.6 Theorem. 1) If λ = µ+,cf(µ) < µ, γ∗ < µ, κ < µ and for every large enough
regular θ ∈ Reg ∩ µ the first player wins Gmω(θ, κ, γ∗) then λ9 [λ]<ωκ .
2) Instead of Gmω(θ, κ, γ) we can use Gmω(θ, κ(θ), γ∗) with κ = lim

θ∈ Reg ∩µ
κ(θ) ≤ µ;

e.g. 〈κ(θ) : θ ∈ Reg∩µ〉 is non-decreasing with limit κ ≤ µ (so possibly κ = µ; and
then we can get λ9 [λ]<ωλ ).

Proof of 2.6. (1) Compare with [Sh:g, III,§2,§3]. If κ ≤ cf(µ) we know this (see
[Sh:g, II,4.1(1),p.67]) so let κ > cf(µ). So let S ⊆ {δ < λ : cf(δ) = cf(µ)} be
stationary. If cf(µ) > ℵ0 let C̄1 be a nice strict S-club system with λ /∈ idp(C̄

1),
(exists by [Sh:g, III,2.6]) and let J̄ = 〈Jδ : δ ∈ S〉, Jδ = Jbd

C1
δ
. If cf(µ) = ℵ0,

without loss of generalityS is such that [δ ∈ S ⇒ µ divides δ], let C̄1 = 〈C1
δ : δ ∈ S〉

be such that: C1
δ ⊆ δ = sup(C1

δ ), otp(C1
δ ) = µ,C1

δ closed and λ /∈ idp(C̄
1, J̄)

where J̄ = 〈Jδ : δ ∈ S〉, Jδ = {A ⊆ C1
δ : for some β < δ and θ < µ, we have

(∀α)[α ∈ A & α ≥ β, α ∈ nacc(C1
δ )→ cf(α) < θ]}, (exists by [Sh:g, III,p.131]).

Let C̄2 = 〈C2
δ : δ < λ〉 be a strict λ-club system such that for every club E of λ,

we have:

{
δ < λ : (∀β < δ)(∃α ∈ E)[α ∈ nacc(C2

δ ) & α > β]

}
/∈ idp(C̄

1, J̄).
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[We can build together C̄1, C̄2 like this as in the proof of 0.12 or use [Sh:g, III,2.6]
as each Jδ is cf(µ)-based.]

Let µ =
∑

i<cf(µ)

µi where µi < µ. Let σ+ < µ, γ∗ < σ+, σ regular ≥ cf(µ). Let

µ∗ < µ be such that first player has a winning strategy in Gmω(θ, κ, γ∗) if µ∗ ≤
θ = cf(θ) < µ. For each δ < λ, if the first player has a winning strategy in
Gmω(cf(δ), κ, γ∗), let Stδ be a winning strategy for him in the variant of the play
where we use nacc(C2

δ ) instead of cf(δ) as domain, and allow the second player to
pass (see 2.2(b)); we let the play last σ+ moves (this is even easier for first player
to win). So Stδ is well defined if cf(δ) ≥ µ∗.

We try successively σ+ times to build an algebra on λ witnessing the conclusion,
while at the same time for each δ < λ of cofinality ≥ µ∗ playing on C2

δ a play of
Gmω(cf(δ), κ, σ+) in which the first player uses the strategy Stδ. In stage ζ < σ+

(i.e. the ζ-th try), initial segments of length ζ of all those plays have already been
defined; now for δ < λ, cf(δ) ≥ µ∗, first player chooses Fδ,ζ : [nacc(C2

δ )]<ω → κ.
Let Fζ code all those functions Fζ : [λ]<ω → λ (so δ is viewed as a variable) and
enough set theory; specifically we demand:

~1 if t ∈ [λ]<ω and then

(i) Fζ(t) belongs to Aζ,t, the Skolem Hull of t∪{Fδ,ζ(s) : δ ∈ t, s ⊆ t∩C2
δ }

in (H (λ+),∈, <∗λ+ , C̄1, C̄2, κ)

(ii) if x ∈ Aζ,t, then for infinitely many k < ω we have:

t / t+ ∈ [λ]k ⇒ Fζ(t
+) = x.

Now let F ′ζ be

F ′ζ(t) =

{
Fζ(t) if Fζ(t) ∈ κ
0 otherwise .

Let Bζ ∈ [λ]λ exemplify that F ′ζ is not as required in 2.6, that is κ * {F ′(t) : t ∈
[Bζ ]

<ℵ0}. Without loss of generality Bζ is closed under Fζ (possible by the choice
of Fζ).

Let Eζ =

{
δ : δ * Bζ and δ = sup(δ ∩Bζ)

}
∩
⋂
j<ζ

Ej .

It is a club of λ. For each δ ∈ Eζ such that cf(δ) ≥ µ∗, in the game Gmω(C2
δ , κ, σ

+),
second player has to make a move. The move is {α ∈ nacc(C2

δ ) : α ∈ Eζ} if this is
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a legal move and δ ∈ Bζ ; otherwise the second player makes it void; i.e. pass (see
2.2(b)).

Having our σ+ moves we shall get a contradiction. Let E be
⋂
ζ<σ+

acc(Eζ), this is

a club of λ, hence by the choice of C̄1, C̄2 for some δ(∗) ∈ S we have δ(∗) = sup(A1)
moreover A1 ∈ J+

δ(∗) where

A1 =:

{
δ : δ ∈ nacc(C1

δ(∗)) and (∀β < δ)(∃α ∈ E)[α ∈ nacc(C2
δ ) & α > β]

}
.

For ζ < σ+ define

i(ζ) = Min{i : µi ≥ cf [Min(Bζ\δ(∗))]}.

Since Bζ is closed under Fζ and Fζ codes enough set theory, the proof of [Sh:g,
III,1.9], (similar things are in §1 here) shows that

(∗) if δ ∈ A1, cf(δ) > µi(ζ) then δ ∈ Bζ and (∀α)[α ∈ nacc(C2
δ ) ∩ Eζ ⇒ α ∈ Bζ ].

Now as σ ≥ cf(µ) (whereas there are cf(µ) cardinals µi) for some i(∗) < cf(µ) we
have

σ+ = sup(U) where U =: {ζ < σ+ : i(ζ) ≤ i(∗)}.

Choose δ ∈ A1 with cf(δ) > µi(∗) (why is this possible? if cf(µ) = ℵ0 as δ(∗) =

sup(A1) and C̄1 is nice; if not as A1 ∈ J+
δ(∗) see [Sh:g, III,1.1]). By (∗) we have ζ ∈

U ⇒ δ ∈ Bζ and by the choice of E and δ(∗), δ clearly Eζ∩ nacc(C2
δ ) has cardinality

cf(δ); so for every ζ ∈ U the second player (in the play of Gmω(C2
δ , κ, σ

+)) make
a non-void move. As |U | = σ+, this contradicts “Stδ is a winning strategy for the
first player in Gmω(C2

δ , κ, σ
+)”.

(2) Similar proof (for κ = µ see [Sh:g, II,355].) �2.6

An example of an application is

2.7 Conclusion. 1) On i+
ω there is a Jonsson algebra.

2) If in+1(κ) < λ ≤ in+2(κ) then the first player wins in Gmn+2 (λ, κ+, (2κ)+).

3) If µ is singular not strong limit, σ < κ<σ < µ ≤ κσ and λ = µ+ but
∧
θ<κ

θσ < µ
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then λ9 [λ]<ωκ .
4) If µ singular not strong limit, λ = µ+, µ∗ + κ < µ ≤ κσ, σ ≤ κ and there is a
tree T κ = |T | < µ, T has ≥ µ σ-branches, and T ′ ⊆ T&|T ′| < κ ⇒ T ′ has ≤ µ∗

σ-branches then λ9 [λ]2κ.
5) Assume λ = µ+, cf(µ) < µ, and for every µ0 < µ there is a singular χ ∈ (µ0, µ)
satisfying pp(χ) ≥ µ. Then on λ there is a Jonsson algebra.
6) Assume λ = µ+, µ > cf(µ), cf(χ) ≤ κ < χ < χ+ < λ, pp+

κ (χ) > λ. Then
λ9 [λ]<ωχ .
7) If µ singular not strong limit, 2<κ ≤ µ ≤ 2κ, κ = Min{σ : 2σ ≥ µ} < µ then
µ+ 9 [µ+]<ωκ .
8) There is on µ+ a Jonsson algebra if cf(µ) < µ < 2<µ < 2µ (i.e. µ singular not
strong limit and 〈2λ : λ < µ〉 is not eventually constant).

Proof. 1) It is enough to prove for each n < ω that i+
ω 9 [i+

ω ]<ωin . By part 2) (and
monotonicity in n - see 2.4(8)) for every regular θ < iω large enough, first player
wins in Gmω(θ,i+

n ,i
+
n+1). So by 2.6 we get i+

ω 9 [i+
ω ]<ωin , and as said above, this

suffices.
2) Let κ1 be Min{σ : in+1(σ) ≥ λ}, so κ1 > κ (as in+1(κ) < λ) and 2κ ≥ κ1

(as in+1(2κ) = in+2(κ) ≥ λ), also λ ≤ in+1(κ1) (by the definition of κ1) and
in(κ1) < λ (as κ1 ≤ 2κ and in+1(κ) < λ), moreover µ < κ1 ⇒ in+1(µ) < λ by
the choice of κ1. By 2.4(3) the second phrase we have λ9 [λ]n+2

κ1,<κ1
. By 2.3(1) the

first player wins Gmn+2(λ, κ1, κ
+
1 ). By monotonicity properties (2.4(8)) the first

player wins Gmn+2 (λ, κ+, (2κ)+).
3) By 2.4(4) for every regular θ ∈ (κ<σ, κσ), first player wins in Gm2(θ, κ, (κ<σ)+).
Now apply 2.6.
4) Similar to (3).
5) If cf(χ) < χ, pp+(χ) > θ = cf(θ) > χ and τ < χ then the first player wins the
game Gm2(θ, τ, χ + 1) (by 2.4(5)). So by 2.6 if cf(χ) < χ < µ ≤ pp+(χ) we have
τ < χ⇒ λ9 [λ]<ωτ hence easily we are done.
6) Similar to (5).
7) If 2<κ < µ we apply 2.4(1) and then 2.3 + 2.6. So assume 2<κ = µ, so necessarily
κ is a limit cardinal < µ and cf(µ) = cf(κ) ≤ κ < µ. Now for every regular
θ ∈ (κ, µ) letting κ(θ) = Min{σ : 2σ ≥ θ} we get κ(θ) < κ hence by the regularity
of θ, 2<κ(θ) < θ, so by 2.4(1) + 2.3 player I wins Gm2(θ, κ(θ), κ(θ)+) hence he wins
Gm2(θ, κ(θ), κ). Use 2.6(2) to derive the conclusion.
8) By part (4) and [Sh 430, 3.4]. �2.7

2.8 Remark. In 2.9 below, remember, an ideal I is θ-based if for every A ⊆ Dom(I),
A /∈ I there is B ⊆ A, |B| < θ such that B /∈ I; also I is weakly κ-saturated if
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Dom(I) cannot be partitioned to κ sets not in I. The case we think of in 2.9 is
λ = µ+, µ singular of uncountable cofinality.

2.9 Claim. Suppose

(a) λ = cf(λ) > (2κ
+

)+ and θ = κ

(b) C̄ is an S-club system, S ⊆ λ stationary and Ī = 〈Iδ : δ ∈ S〉, Iδ an ideal
on Cδ containing Jbd

Cδ
and idp(C̄, Ī) is (see 0.17, a proper ideal and) weakly

κ+-saturated and

(c) (∗)2κ,θ
Iδ

if A ⊆ Dom(Iδ), A /∈ Iδ then for some Y ⊆ A, |Y | ≤ θ, Y /∈ Iδ
hence |P(Y )/Iδ| ≤ 2θ.

Then:

(i) P(λ)/idp(C̄, Ī) has cardinality ≤ 2κ

(ii) for every A ∈ P(λ)\idp(C̄, Ī), there is B ⊆ A, B ∈ P(λ)\idp(C̄, Ī) and
an embedding of P(λ)/

[
idp(C̄, Ī) + (λ\B)

]
into some P(Y )/Iδ with δ ∈

S, Y ⊆ Cδ, Y /∈ Iδ,
(iii) moreover, in (ii) we can find h : B → θ such that for every B′ ⊆ B for some

A′ ⊆ θ we have B′ ≡ h−1(A′) mod idp(C̄, Ī). (In fact for some g : Y → θ
and ideal J∗ on θ for every B′ ⊆ B we have: B′ ∈ idp(C̄, Ī)⇔ g−1(h(B′)) ∈
J∗.)

2.10 Remark. 1) The use of θ and κ though θ = κ is to help considering the case
they are not equal.
2) The point of 2.9 is that e.g. if λ = µ+, µ > cf(µ), S ⊆ λ, then we can find
C̄ = 〈Cδ : δ ∈ S〉 and Ī = 〈Iδ : δ ∈ C〉 such that λ /∈ idp(C̄, Ī) and Iδ is
(cf(µ))-based and δ ∈ S, β < δ, θ < µ ⇒ {α ∈ Cδ : α ∈ acc(Cδ) or α < β or
cf(α) < θ} ∈ Iδ. Now if idp(C̄, Ī) is not weakly χ-saturated then λ 9 [λ]<ωχ and
more; see [Sh:g, III].

Proof. There is a sequence 〈Ai : i < i∗〉 such that: A0 = ∅, Ai ⊆ λ, [i 6= j ⇒ Ai 6=
Aj mod idp(C̄, Ī)] and: i∗ = (2κ)

+
or: i∗ < (2κ)

+
and for every B ⊆ λ for some

i < i∗ we have B ≡ Ai mod idp(C̄, Ī). Let P be the closure of {Ai : i < i∗} under
finitary Boolean operations and the union of ≤ κ+ members. So in particular P

includes the family of sets of the form (Ai\Aj)\
⋃
ζ<κ+

(
Aiζ\Ajζ

)
(where i, j, iζ , jζ <

i∗), clearly |P| ≤ 2κ
+

+ (2κ)
+
< µ and if |i∗| ≤ 2κ then |P| ≤ 2κ

+

.
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For each A ∈ P which is in idp(C̄, Ī), choose a club EA of λ witnessing it (and if
A ∈P\idp(C̄, Ī) let EA = λ).

As (2κ
+

)+ < λ clearly |P| < λ hence E =:
⋂
A∈P

EA is a club of λ.

So S∗ = {δ ∈ S : E∩Cδ /∈ Iδ} is a stationary subset of λ. For proving (i) suppose

i∗ = (2κ)
+

and eventually we shall get a contradiction. We now choose by induction
on ζ < κ+ ordinals i1(ζ), i2(ζ) < i∗ and δζ ∈ S∗ and sets Yζ ⊆ Ai2(ζ)\Ai1(ζ)∩E∩Cδζ
such that Yζ /∈ Iδζ , |P(Yζ)/Iδζ | ≤ 2κ, |Yζ | ≤ θ,Ai2(ζ)\Ai1(ζ) /∈ idp(C̄, Ī) and ξ <

ζ ⇒
(
Ai2(ζ)\Ai1(ζ)

)
∩ Yξ = ∅.

Why can we choose i1(ζ), i2(ζ) and Yζ? There is a natural equivalence relation ≈ζ
on i∗:

i ≈ζ j iff for every ξ < ζ,Ai ∩ Yξ = Aj ∩ Yξ

and it has ≤ (2θ)κ = 2κ equivalence classes. So for some j1 6= j2 we have j1 ≈ζ j2.
By assumption Aj1 6= Aj2 mod idp(C̄, Ī), so without loss of generality
Aj2 * Aj1 mod idp(C̄, Ī), hence Aj2\Aj1 /∈ idp(C̄, Ī). By this for some δζ ∈
S∗ ∩ acc(E) we have (Aj2\Aj1) ∩ Cδζ ∩ E /∈ Iδζ , so there is Yζ ⊆ (Aj2\Aj1) ∩ Cδζ
satisfying |Yζ | ≤ θ and |P(Yζ)/Iδζ | ≤ 2κ and Yζ /∈ Iδζ .
Let i2(ζ) = j2, i1(ζ) = j1.

So 〈Ai1(ζ), Ai2(ζ), δζ , Yζ : ζ < κ+〉 is well defined. Let B1
ζ =: Ai2(ζ)\Ai1(ζ), Bζ =:

B1
ζ\

⋃
ξ∈(ζ,κ+)

B1
ξ (for ζ < κ+). So each Bζ is in P, and they are pairwise disjoint.

Also Yζ ⊆ B1
ζ (by the choice of Yζ) and ζ < ξ < κ+ ⇒ Yζ∩B1

ξ = ∅ (see the inductive

choice of Ai2(ζ), Ai1(ζ)) hence Yζ ⊆ Bζ . Next we prove that Bζ /∈ idp(C̄, Ī), but
otherwise E ⊆ EBζ , and δζ , Yζ ⊆ E contradict the choice of EBζ . Now 〈Bζ : ζ <

κ+〉 contradicts “idp(C̄, Ī) is weakly κ+-saturated”. So i∗ < (2κ)
+

, i.e. (i) holds.
Let B be the Boolean Algebra of subsets of λ generated by {Ai : i < i∗}. Now we
prove clause (ii), so let A ⊆ λ, A /∈ idp(C̄, Ī).

Let i2 < i∗ be such that A ≡ Ai2 mod idp(C̄, Ī), choose δ ∈ S ∩ acc(E)
such that A ∩ Ai2 ∩ Cδ ∩ E /∈ Iδ, and choose Y ⊆ A ∩ Ai2 ∩ Cδ such that
|Y | ≤ θ, Y /∈ Iδ, |P(Y )/Iδ| ≤ 2κ. Now we try to choose by induction on ζ <
κ+, 〈i1(ζ), i2(ζ), δζ , Yζ〉 as before, except that we demand in addition that Y ∩(
Ai2(ζ)\Ai1(ζ)

)
= ∅. Necessarily for some ζ(∗) < κ+ we are stuck. Let B =

Ai2\
⋃

ζ<ζ(∗)

(
Ai2(ζ)\Ai1(ζ)

)
, it belongs to P (as Ai2 = Ai2\A0, remember A0 = ∅),

also Y ⊆ B, but E ⊆ EB hence B /∈ idp(C̄, Ī). The mapping H : P(B) → P(Y )
defined by H(X) = X ∩ Y induce a homomorphism H1 = H � B from B
into P(Y ). Now if X ∈ B ∩ idp(C̄, Ī) then X ∈ P (as B ⊆ P because
Ai = Ai\A0 ∈ P and P closed under the (finitary) Boolean operations). Hence
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ζ < ζ(∗)&X ∈ B ∩ idp(C̄, Ī) ⇒ X ∩ Y ∈ Iδ. Hence H1 induces a homomorphism
H2 from B/idp(C̄, Ī) into P(Y )/Iδ. By the choice of B, this homomorphism is one
to one on (P(B) ∩ B)/idp(C̄, Ī) and as P(λ)/

[
idp(C̄, Ī) + (λ\B)

]
is essentially

equal to (P(B) ∩B)/idp(C̄, Ī), we have finished proving clause (ii).
We are left with clause (iii).

Let B∗ be the closure of {Ai : i < i∗} under finitary Boolean operations and
unions of ≤ θ sets. So |B∗| ≤ 2θ. For each A ∈ B∗ ∩ idp(C̄, Ī) let EA witness this,
and let E∗ =: ∩{EA : A ∈ B∗ ∩ idp(C̄, Ī)}. Without loss of generality E∗ = E.
For any A ∈P(λ)\idp(C̄, Ī) choose δ, Y,B as in the proof of (ii), fix them.

Let B∗ =

{
α ∈ B : for no γ ∈ Y do we have

∧
i<i∗

α ∈ Ai ≡ γ ∈ Ai
}

.

Now

(∗) B∗ ∈ idp(C̄, Ī)
[why? if not, there is δ(1) ∈ S such that B∗ ∩ E∗ ∩ Cδ(1) /∈ Iδ(1) hence
there is Y1 ⊆ B∗ ∩ E∗ ∩ Cδ(1) such that Y1 /∈ Iδ(1), |Y1| ≤ θ. By the
definition of B∗ for every α ∈ Y1, β ∈ Y (as necessarily α ∈ B∗) there is
Aα,β ∈ {Ai : i < i∗} ⊆ B∗, such that α ∈ Aα,β & β /∈ Aα,β . Hence

A∗1 = B ∩
⋃
α∈Y1

⋂
β∈Y

Aα,β belongs to B∗ and Y1 ⊆ A∗1,

(as α ∈ Y1 & β ∈ Y ⇒ α ∈ Aα,β) and Y ∩ A∗1 = ∅ (because for each
β ∈ Y we have α ∈ Y1 & β ∈ Y ⇒ β /∈ Aα,β). As A∗1 ⊆ B, Y ∩ A∗1 = ∅
by the choice of B we have A∗1 ∈ idp(C̄, Ī). But Y1 (and E∗) witness
A∗1 /∈ idp(C̄, Ī), contradiction.]

Define h0 : (B\B∗) → Y/ ≈ by h(α) is

{
γ ∈ Y :

∧
i<i∗

α ∈ Ai ≡ γ ∈ Ai
}

where for

γ1, γ2 ∈ Y we let γ1 ≈ γ2 ⇔
∧
i<i∗

γ1 ∈ Ai ≡ γ2 ∈ Ai. The rest should be clear.

�2.9

2.11 Remark. 1) In 2.9 we can replace κ+ by κ, then instead of 2κ < λ we have
2<κ < λ and in (i) we get ≤ 2θ for some θ < κ.
2) If Iδ = Jbd

nacc(Cδ)
, θ = κ, and [δ ∈ S ⇒ cf(δ) ≤ κ] then the demand “θ based ideal

on Cδ containing Jbd
Cδ

” on Ī holds.
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§3 More on Guessing Clubs

Here we continue the investigation of guessing clubs in a successor of regulars.

3.1 Claim. Assume e.g.
S ⊆ {δ < ℵ2 : cf(δ) = ℵ1 and δ is divisible by (ω1)2} is stationary.
There is C̄ = 〈Cδ : δ ∈ S〉, a strict club system such that ℵ2 /∈ idp(C̄) and [α ∈
nacc(Cδ) ⇒ cf(α) = ℵ1]; moreover, there are hδ : Cδ → ω for δ ∈ S such that for
every club E of ℵ2, for some δ,∧

n<ω

δ = sup
[
h−1
δ ({n}) ∩ E ∩ nacc(Cδ)

]
.

Proof. Let C̄ = 〈Cδ : δ ∈ S〉 be a strict S-club system such that λ /∈ idp(C̄) and
[α ∈ nacc(Cδ) ⇒ cf(δ) = ℵ1] (exist by [Sh:g, III,2.4,p.126]). For each δ ∈ S let
〈ηαδ : α ∈ Cδ〉 be a sequence of pairwise distinct members of ω2. We try to define
by induction on ζ < ω1, Eζ , 〈T ζα : α ∈ Eζ〉 such that:

Eζ is a club of ℵ2, decreasing with ζ,

T ζδ =

{
ν ∈ ω>2 : δ = sup{α : α ∈ Eζ ∩ nacc(Cδ) and ν E ηαδ }

}

Eζ+1 is such that

{
δ ∈ S : T ζδ = T ζ+1

δ and δ ∈ acc(Eζ+1)

}
is not stationary .

We necessarily will be stuck say for ζ < ω1. Then for each δ ∈ S ∩ acc(Eζ) let

{νδn : n < ω} ⊆ T ζδ be a maximal set of pairwise incomparable (exist as T ζδ has ≥ ℵ1

branches), and let hδ(α) = the n such that νδn / η
α
δ if there is one, zero otherwise.

�3.1

3.2 Remark. 0) Where is “δ divisible by (ω1)2 used? If not, then there is no club
C of δ such that α ∈ nacc(Cδ)⇒ cf(α) = ℵ1.
1) We can replace ℵ0,ℵ1,ℵ2 by σ, λ, λ+ when λ = cf(λ) > κ ≥ σ and for some tree
T, |T | = κ, T has ≥ λ branches, such that: if T ′ ⊆ T has ≥ λ branches then T ′ has
an antichain of cardinality ≥ σ. We can replace “branches” by “θ-branches” for
some fixed θ. More in [Sh 572].
2) In the end of the proof no harm is done if hδ is a partial function. Still we
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could have chosen νδn so that it always exists: e.g. if without loss of generality
{ηδα : α ∈ Cδ} contains no perfect subset of ω2, we can choose νδ ∈ ω2\{ηδα : α ∈ Cδ}
such that n < ω ⇒ νδ � n ∈ T ζ(∗)δ & (∃ρ)[νδ � n/ρ ∈ T ζ(∗)δ & ¬(ρ/νδ)], and then

we can choose {ηαδ : α ∈ Cδ} be ηαδ = (νδ � kn)ˆ〈1− νδ(kn)〉 where kn < kn+1 < k

and (νδ � k)ˆ〈1− νδ(k)〉 ∈ T ζ(∗)δ iff (∃n)(k = kn).

3.3 Claim. Suppose λ is regular uncountable and S, S0 ⊆ {δ < λ+ : cf(δ) = λ}
are stationary. Then:
1) We can find C̄ = 〈Cδ : δ ∈ S〉 such that:

(A) Cδ is a club of δ

(B) for every club E of λ+ and function f from λ+ to λ+ satisfying f(α) < 1+α
there are stationarily many δ ∈ S ∩ acc(E) such that for some ζ < λ+ we
have δ = sup{α ∈ nacc(Cδ) : α ∈ E ∩ S0 and ζ = f(α)}

(C) for each α < λ+ the set {Cδ ∩ α : δ ∈ S} has cardinality ≤ λ<λ; moreover,
for any chosen strict λ+-club system ē we can demand:

(α)

[ ∧
α<λ+

|{eδ ∩ α : δ < λ+}| ≤ λ⇒
∧

α<λ+

|{Cδ ∩ α : δ < λ+}| ≤ λ

]
and

(β)

[ ∧
α<λ+

|{eδ ∩ α :α ∈ nacc(eδ), δ < λ+}| ≤ λ

⇒
∧

α<λ+

|{Cδ ∩ α : α ∈ nacc(Cδ), δ < λ+}| ≤ λ
]
.

2) Assume λ = λ<λ. We can find C̄ = 〈Cδ : δ ∈ S〉 such that:
(A),(B),(C) as above and

(D) For some partition 〈Sξ : ξ < λ〉 of S0, for every club E of λ+, there are
stationarily many δ ∈ S ∩ acc(E) such that for every ξ < λ, we have δ =
sup{α ∈ nacc(Cδ) : α ∈ E ∩ Sξ}.

3.4 Remark. 1) The main point is (B) and note that otp(Cδ) may be > λ.
2) In clause (B) we can make ζ not depend on δ.
3) In clause (D) we can have nacc(Cδ) ∩E ∩ Sξ has order type divisible say by λn

for any fixed n.

Proof. 1) Let ē be a strict λ+-club system (as assumed for clause (C)); note
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(∗) δ < λ+ & α ∈ acc(eδ)⇒ cf(α) < λ
α = β + 1 < λ+ ⇒ eα = {0, β}.

For each β < λ+ and n < ω we define Cnβ , by induction on n : C0
β = eβ , C

n+1
β =

Cnβ ∪
{
α : α ∈ eMin(Cnβ \α)

}
. Clearly β =

⋃
n

Cnβ (as for α ∈ β\
⋃
n

Cnβ , the sequence

〈Min(Cnβ \α) : n < ω and α /∈ Cnβ 〉 is a strictly decreasing sequence of ordinals

hence is finite), [also this is a case of the well known paradoxical decomposition as
otp(Cn+1

β ) ≤ λn (ordinal exponentiation)]. Also clearly Cnβ is a closed subset of β
and if β is a limit ordinal then it is unbounded in β.
Note:

(∗)′ β < λ+ & α < β & cf(α) = λ⇒ (∃n)

[
α ∈ Cnβ \

⋃
`<n

C`β & α ∈ nacc(Cnβ )

]
.

Now for some n < ω, 〈Cnδ : δ ∈ S〉 is as required; why? we can prove by induction
on n < ω that for every α < λ+ we have |{Cnδ ∩ α : δ ∈ S}| ≤ λ<λ, moreover also
the second phrase of clause (C) is easy to check; we have noted above that clause
(A) holds. So clause (C) holds for every n; also clause (A) holds for every n. So if
the sequence fails we can choose En, fn such that En, fn exemplify 〈Cnδ : δ ∈ S〉 is
not as required in clause (B).

Now E =:
⋂
n<ω

En is a club of λ+, and f(δ) =: sup{fn(δ) + 1 : n < ω} satisfies:

(∗)′′ if δ < λ+, cf(δ) > ℵ0 then f(δ) < δ :

hence by Fodor’s Lemma for some α∗ < λ+ we have S1 =: {α ∈ S0 : f(α) = α∗}
is stationary (remember: δ ∈ S0 ⇒ cf(δ) = λ > ℵ0). Let α∗ =

⋃
ζ<λ

Aζ , |Aζ | < λ,Aζ

increasing in ζ, so easily for some ζ we have S2 =:

{
δ ∈ S1 : n < ω ⇒ fn(δ) ∈ Aζ

}
is a stationary subset of λ+ (remember λ = cf(λ) > ℵ0). Note that if (∀α)[α <
λ→ |α|ℵ0 < λ] we can shorten the proof a little.
So also E∩S2 is stationary, hence for some δ ∈ S we have: δ = sup(E∩S2). Hence
(remembering (∗)′) for some n, δ = sup(E∩S2∩nacc(Cnδ )). Now as cf(δ) = λ > |Aζ |
there is B ⊆ E ∩S1 ∩ nacc(Cnδ ) unbounded in δ such that fn � B is constant, con-
tradicting the choice of En.
2) For simplicity we ignore here clause (B). Let ē, 〈< Cnα : n < ω >: α < λ+〉 be
as in the proof of part (1). We prove a preliminary fact. Let κ < λ, let κ∗ be κ if
cf(κ) > ℵ0, κ

+ if cf(κ) = ℵ0 and 〈S0,ε : ε < κ∗〉 be a sequence of pairwise disjoint
stationary subsets of S0. For every club E of λ+, let
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E′ = {δ < λ : for every ε < κ∗, δ = sup(E ∩ S0,ε)}, it too is a club of λ+.
Now for every δ ∈ E′ ∩ S and ε < κ∗ for some nE(δ, ε) < ω we have δ =

sup(S0,ε ∩ E ∩ nacc(C
nE(δ,ε)
δ )) hence (as cf(κ∗) > ℵ0, see its choice) for some

nE(δ) < ω, uδE =: {ε < κ∗ : nE(δ, ε) = nE(δ)} has cardinality κ∗. Without loss of
generality, nE(δ, ε), nE(δ) are minimal. So for some n∗ for every club E of λ+, for
stationarily many δ ∈ E ∩ S, we have δ ∈ E′ and nE(δ) = n∗. Now if cf(κ) = ℵ0,
for some ε(∗) < κ∗ for every club E of λ+ for stationarily many δ ∈ E ∩ S we
have nE(δ) = n∗ and |uδE ∩ ε(∗)| = κ. If cf(κ) > ℵ0 let ε(∗) = κ. Now there is a
club E of λ+ such that: if E0 ⊆ E is a club then for stationarily many δ ∈ S ∩ E,
nE(δ) = nE0

(δ) = n∗, uδE∩ε(∗) = uδE0
∩ε(∗) and it has cardinality κ (just remember

ε(∗) < λ in all cases so after ≤ λ tries of E0 we succeed). As κ < λ = λ<λ, we
conclude:

(∗) for some w ⊆ κ∗, |w| = κ (in fact w ⊆ ε(∗)), for every club E
of λ+ for stationarily many δ ∈ S ∩ E, for every
ε ∈ w we have δ = sup{α ∈ nacc(Cn

∗

δ ) : α ∈ S0,ε ∩ E}.

Let 〈S1,ξ : ξ < λ〉 be pairwise disjoint stationary subsets of S0. For each ξ we can
partition S1,ξ into |ξ+ω|+ pairwise disjoint stationary subsets 〈S1,ξ,ε : ε < |ξ+ω|+〉,
and apply the previous discussion (i.e. S1,ξ, |ξ + ω|, S1,ξ,ε here stand for S0, κ, S0,ε

there) hence for some n∗ξ , 〈S1,ξ,ε : ε < ξ〉

(∗)ξ n∗ξ < ω, 〈S1,ξ,ε : ε < ξ〉 is a sequence of pairwise disjoint stationary subsets

of S1,ξ such that for every club E of λ+ for stationarily many

δ ∈ S ∩ E, for every ε < ξ we have

δ = sup

{
α ∈ nacc(C

n∗ξ
δ ) : α ∈ S1,ξ,ε ∩ E

}
.

This is not what we really want but it will help. We shall next prove that

(∗)′ for some n, for every club E of λ+, for stationarily many
δ ∈ S ∩ E we have; letting S2,ε = ∪{S1,ξ,ε : ξ ∈ (ε, λ)}: for every ε < λ,

δ = sup

{
α : α ∈ E ∩ nacc(Cnδ ) ∩ S2,ε

}
.

If not for every n, there is a club En of λ+ such that for some club E′n of λ no
δ ∈ S ∩ E′n is as required in (∗)′ for δ.

Let E =:
⋂
n<ω

En ∩
⋂
n<ω

E′n, it is a club of λ+. Now for each ξ < λ, by the choice of

〈S1,ξ,ε : ε < ξ〉 we have

Sξ =:

{
δ ∈ S : for every ε < ξ we have δ = sup{α ∈ nacc(C

n∗ξ
δ ) : α ∈ S1,ξ,ε ∩E}

}
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is a stationary subset of λ+, so

E+ = {δ < λ+ : δ ∈ acc(E) is divisible by λ2 and δ ∩ Sξ ∩ E
has order type δ for every ξ < λ}

is a club of λ+.
Let us choose δ∗ ∈ S∩E+, and let eδ∗ = {α∗i : i < λ} (α∗i increasing continuous).

We shall show that for some n, δ∗ is in E′n and is as required in (∗)′ for En, thus
deriving a contradiction. Let for ξ < λ

Aξ = {i < λ : (α∗i , α
∗
i+1) ∩ Sξ 6= ∅}.

As δ∗ = otp(δ∗ ∩ Sξ ∩ E) clearly Aξ is an unbounded subset of λ; hence we can
choose by induction on ξ < λ, a member i(ξ) ∈ Aξ such that i(ξ) > ξ & i(ξ) >⋃
ζ<ξ

i(ζ). Now for each ξ we have
(
αi(ξ), αi(ξ)+1

)
⊆
⋃
n<ω

Cnαi(ξ)+1
hence for some

m(ξ) < ω we have
(
αi(ξ), αi(ξ)+1

)
∩ Sξ ∩

Cm(ξ)
αi(ξ)+1

\
⋃

`<m(ξ)

C`αi(ξ)+1

 6= ∅ so choose

δξ in this intersection; as δξ ∈ Sξ ⊆ S clearly cf(δξ) = λ. Looking at the induc-

tive definition of the Cnδ ’s, it is easy to check that
(
αi(ξ), αi(ξ)+1

)
∩ Cm(ξ)+n∗ξ+1

δ∗ ∩
δξ contains an end-segment of C

n∗ξ
δξ

hence for every ε < ξ,
(
αi(ξ), αi(ξ)+1

)
∩ E ∩

nacc(C
m(ξ)+n∗ξ+1

δ∗ )∩S1,ξ,ε 6= ∅ hence by the definition of S2,ε we have (αi(ξ), αi(ξ)+1)∩
E ∩ nacc(C

m(ξ)+n∗ξ+1

δ∗ ) ∩ S2,ε 6= ∅. Now for some k < ω we have B = {ξ < λ :

m(ξ) + n∗ξ + 1 = k} is unbounded in λ, hence for each ε < λ, S2,ε ∩ E ∩ nacc(Ckδ∗)

is unbounded in δ∗, contradicting δ∗ ∈ E ⊆ E′k. �3.3

3.5 Claim. If λ = µ+, µ = κ+ and S ⊆ {δ < λ : cf(δ) = µ} stationary then
for some strict S-club system C̄ with Cδ = {αδ,ζ : ζ < µ}, (where αδ,ζ is strictly
increasing continuous in ζ) we have: for every club E ⊆ λ for stationarily many
δ ∈ S,

{ζ < µ : αδ,ζ+1 ∈ E} is stationary (as subset of µ).

Remark. So this is stronger than previous statements saying that this set is un-
bounded in µ. A price is the demand that µ is not just regular but is a successor
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cardinal (for inaccessible we can get by the proof a less neat result, see more [Sh
572]).

Proof. We know that for some strict S-club system C̄0 = 〈C0
δ : δ ∈ S〉 we have

λ /∈ idp(C̄
0) (exists, e.g. as in 3.1). Let C0

δ = {αδζ : ζ < µ} (increasing continuously

in ζ). We claim that for some sequence of functions h̄ = 〈hδ : δ ∈ S〉 with hδ : µ→ κ
we have:

(∗)h̄ for every club E of λ for stationarily many δ ∈ S ∩ acc(E),
for some ε < κ the following subset of µ is stationary

Aδ,εE =

{
ζ < µ : αδζ ∈ E and the ordinal Min{αδξ : ξ > ζ, hδ(ξ) = ε}

belongs to E

}
.

This suffices: for each ε < κ let Cε,δ be the closure in C0
δ of {αδξ ∈ E : ξ <

µ, hδ(α
δ
ξ) = ε}, so for each club E of λ for stationarily many δ ∈ S ∩ acc(E) for

some ordinal ε the set Aδ,εE is stationary hence for one εE this holds for stationarily
many δ ∈ E; but E1 ⊆ E2 implies εE1 is O.K. for E2 hence for some ε the sequence
〈Cε,δ : δ ∈ S〉 is as required.

So assume for no h̄ does (∗)h̄ holds, and we define by induction on n < ω,En, h̄
n =

〈hnδ : δ ∈ S〉, ēn = 〈enδ : δ ∈ S〉 with En a club of λ, enδ club of µ and hnδ : µ→ κ as
follows:
let E0 = λ, h0

δ(ζ) = 0, enδ = µ.
If E0, ..., En, h̄

0, ..., h̄n, ē0, ..., ēn are defined, necessarily (∗)h̄n fails, so for some club
En+1 ⊆ acc(En) of λ for every δ ∈ S ∩ acc(En+1) and ε < κ there is a club
eδ,ε,n ⊆ enδ of µ, such that:

ζ ∈ eδ,ε,n ⇒ Min{αδξ : ξ > ζ and hδ(ξ) = ε} /∈ En+1.

Choose hn+1
δ : µ→ κ such that

[
hn+1
δ (ζ) = hn+1

δ (ξ)⇒ hnδ (ζ) = hnδ (ξ)

]
and

[
[ζ 6= ξ & ζ < κ & ξ < κ &

∨
ε<κ

Min{γ ∈ eδ,n,ε : γ > ζ} = Min{γ ∈ eδ,n,ε : γ > ξ}]

⇒ hn+1
δ (ζ) 6= hn+1

δ (ξ)

]
.
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Note that we can do this as µ = κ+.

Lastly let en+1
δ =

⋂
ε<κ

eδ,ε,n ∩ acc(enδ ).

There is no problem to carry out the definition. By the choice of C̄0 for some

δ ∈ acc(
⋂
n<ω

En) we have δ = sup(A′) where A′ = acc(
⋂
n<ω

En) ∩ nacc(C0
δ ). Let

A ⊆ µ be such that A′ = {αδζ : ζ ∈ A} with αδζ increasing with ζ and let

ξ =: sup

{
sup{β ∈ A :hnδ (β) = ε} : n < ω, ε < κ and {β ∈ A : hnδ (β) = ε}

is bounded in A

}
.

(so we get rid of the uninteresting ε’s).
As A′ is unbounded in δ, clearly A is unbounded in µ and µ = cf(µ) = κ+ > κ,
whereas the sup is on a set of cardinality ≤ ℵ0 × κ < µ, clearly ξ < sup(A) = µ,
so choose ζ ∈ A, ζ > ξ and ζ > Min(enδ ) for each n. Now 〈sup(enδ ∩ ζ) : n < ω〉
is non-increasing (as enδ decreases with n) hence for some n(∗) < ω : n > n(∗) ⇒
sup(enδ ∩ ζ) = sup(e

n(∗)
δ ∩ ζ); and for n(∗) + 1 we get a contradiction. �3.5

3.6 Remark. If we omit “µ = κ+” in 3.5, we can prove similarly a weaker statement
(from it we can then derive 3.5):

(∗) if λ = µ+, µ = cf(µ) > ℵ0, S ⊆ {δ < λ : cf(δ) = µ} is stationary, C̄0 is a
strict S-club system, C0

δ = {αδ,ζ : ζ < µ} (with αδ,ζ strictly increasing with
ζ), and λ /∈ idp(C̄

0) then we can find ē = 〈eδ : δ ∈ S〉 such that:

(a) eδ is a club of δ with order type µ

(b) for every club E of λ for stationarily many δ ∈ S we have δ ∈ acc(E)
and for stationarily many ζ < µ we have:
ζ ∈ eδ and (∃ξ)[ζ < ξ + 1 < Min(eδ\(ζ + 1)) & αδ,ξ+1 ∈ E]

3.7 Remark. In 3.5 we can for each δ ∈ S have hδ : µ → κ such that for every
club E of λ, for stationarily many δ ∈ S, for every ε < κ, for stationarily many
ζ ∈ h−1

δ ({ε}) we have αδ,ζ+1 ∈ E.
Use Ulam’s proof.
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3.8 Claim. Suppose λ = µ+, S ⊆ λ stationary, C̄ = 〈Cδ : δ ∈ S〉 an S-club system,
λ /∈ idp(C̄), µ > κ =: sup{cf(α)+ : α ∈ nacc(Cδ), δ ∈ S}.
Then there is ē, a strict λ-club system such that:

(∗) for every club E of λ, for stationarily many δ ∈ S,
δ = sup{α ∈ nacc(Cδ) : α ∈ E, moreover eα ⊆ E}.

Proof. Let ē be a strict λ-club system.
Clearly for some θ < κ for every club E of λ, for stationarily many δ ∈ S, δ =

sup{α : α ∈ E,α ∈ nacc(Cδ) and cf(α) = θ}. For any club E of λ and ε < θ
we let eεE = 〈eδE,α : α < λ〉 be: {sup(γ ∩ E) : γ ∈ ei and otp(γ ∩ ei) < ε} if

α ∈ acc(E) & cf(α) = θ and eεE,α = eα otherwise. It is enough to show that for
some club E of λ and ε < θ the sequence ēεE is as required. If this fails, we choose
by induction on ζ < κ a club Eζ of λ such that ζ1 < ζ2 ⇒ Eζ2 ⊆ acc(Eζ1).

For ζ + 1, for each ζ < κ, ε < θ, let Eζ,ε be a club of λ such that ēεEζ is not as

required. Let E′ζ,ε a club of λ disjoint to {δ ∈ S : δ = sup{α ∈ nacc(Cδ): cf(α) = θ

and eεEζ ,α ⊆ E\ min(sup(Cδ ∩α)} and lastly Eζ+1 =
⋂
ε<θ

Eε,ζ ∩
⋂
θ<θ

E′ε,ζ ∩ acc(Eζ).

By the choice of θ we can find δ∗ ∈ S ∩
⋂
ζ<κ

Eζ such that the set A = {α ∈

nacc(Cδ∗) : cf(α) = θ, α ∈
⋂
ε<κ

Eε} is unbounded in δ∗. We can easily find ε <

θ, ζ < κ giving contradiction. �3.8

3.9 Claim. Let λ = µ+, µ > cf(µ) = κ, θ = cf(θ) < µ, θ 6= κ and S ⊆ {δ < λ :
cf(δ) = θ and δ divisible by µ} be stationary.
1) For any limit ordinal γ(∗) < µ of cofinality θ there is an S-club system C̄γ(∗) =

〈Cγ(∗)
δ : δ ∈ S〉 satisfying λ /∈ ida

(
C̄γ(∗)) with otp

(
C̄γ(∗)) = γ(∗). Let C

γ(∗)
δ =

{αγ(∗),δ
i : i < γ(∗)}, αγ(∗),δ

i increasing continuous with i.
2) Assume further κ > ℵ0, and γ(∗) is divisible by κ and let ē be a strict λ-club
system.

Then for some σ regular σ < µ, and club E0 of λ, C̄ = C̄γ(∗),σ,ē,E0

= 〈g`1σ(C
γ(∗)
δ , E0, ē) :

δ ∈ S〉 satisfies:

(∗)a for every club E ⊆ E0 of λ for stationarily many δ ∈ S, for arbitrarily large

i < γ(∗) we have µ = sup

{
cf(γ) : γ ∈ nacc(Cδ) ∩ [α

γ(∗),δ
i , α

γ(∗),δ
i+κ ) ∩ E

}
.

3) We can add in (2): for some club E1 ⊆ E0 of λ,
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(∗)b for every club E ⊆ E1 of λ for some δ ∈ S we have E ∩ Cδ = E1 ∩ Cδ
and for arbitrarily large i < γ(∗),

µ = sup

{
cf(γ) : γ ∈ Cδ ∩ [α

γ(∗),δ
i , α

γ(∗),δ
i+κ ) ∩ E

}
.

4) In part (1), if S ∈ I[λ] then without loss of generality |{Cγ(∗)
δ ∩α : δ ∈ S and α ∈

nacc(C
γ(∗)
δ )}| < λ for every α < λ.

Proof. 1) Let µ =
∑
ε<κ

λε with 〈λε : ε < κ〉 increasing continuous, λε < µ. Let

for each α ∈ [µ, λ), 〈aαε : ε < κ〉 be an increasing sequence of subsets of α, |aαε | =

λε, α =
⋃
ε<κ

aαε . Now

(∗)1 there is an ε < κ such that

(∗)1,ε for every club E of λ we have

S1
ε [E] =: {δ ∈ S :aδε ∩ E is unbounded in δ

and otp(aδε ∩ E) is divisible by γ(∗)}

is stationary in λ
[Why? If not, for every ε < κ there is a club E1

ε of λ such that S1
ε [E1

ε ] is not

stationary, so let it be disjoint to the club E2
ε of λ. Let E =

⋂
ε<κ

(E1
ε ∩E2

ε ),

clearly it is a club of λ, hence E1 = {δ < λ : otp(δ ∩E) = δ and is divisible
by µ hence by γ(∗)} is a club of λ and choose δ∗ ∈ E1 ∩ S. Now for every
ε < κ, as δ∗ ∈ E1 ⊆ E ⊆ E2

ε , clearly sup(aδ
∗

ε ∩ E1
ε ) < δ or otp(aδ

∗

ε ∩ E1
ε ) is

not divisible by γ(∗) hence sup(aδ
∗

ε ∩E) < δ∨ [otp(aδ
∗

ε ∩E) not divisible by
γ(∗)]. Choose γε < δ∗ such that aδ

∗

ε ∩ E ⊆ βε or otp(aδ
∗

ε ∩ E\βε) < γ(∗),
so always the second holds.
As θ 6= κ are regular cardinals, and cf(δ) = θ necessarily for some β∗ < δ∗

we have: b∗ = {ε < κ : βε ≤ β∗} is unbounded in κ. So

E ∩ δ∗\β∗ ⊆
⋃
ε∈b∗

(E ∩ aδ
∗

ε \β∗)

hence

|E ∩ δ∗\β∗| ≤
∑
ε∈b∗
|E ∩ aδ

∗

ε \β∗| ≤ |b∗| × |γ(∗)| < µ.

But δ∗ ∈ E1 hence otp(E ∩ δ∗) = δ∗ and is divisible by µ, so now E ∩ δ∗\β∗
has order type ≥ µ, a contradiction.]
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Let ε from (∗)1 be ε(∗).

(∗)2 There is a club E∗ of λ+ such that for every club E of λ the set {δ ∈
Sε(∗)[E

∗] : aδε(∗) ∩ E
∗ ⊆ E} is stationary recalling

Sε[E
∗] = {δ ∈ S :aδε ∩ E∗ is unbounded in δ

and otp(aδε ∩ E∗) is divisible by γ(∗)}

[Why? If not, we choose by induction on ζ < λ+
ε(∗) a club Eζ of λ+ as

follows:

(a) E0 = λ

(b) if ζ is limit, Eζ =
⋂
ξ<ζ

Eζ

(c) if ζ = ξ + 1 as we are assuming (∗)2 fails, Eξ cannot serve as E∗ so
there is a club E1

ξ of λ such that the set

{δ ∈ Sε[Eξ] : aδε ∩ Eξ ⊆ E1
ξ}

is not stationary, say disjoint to the club E2
ξ of λ, (Sε[Eξ] is defined

above).

Let Eζ = Eξ+1 =: Eξ ∩ E1
ξ ∩ E2

ξ . So E =
⋂

ζ<λ+
ε(∗)

Eζ is a club of λ. By the

choice of ε(∗) for some δ ∈ E we have δ = sup(aδε(∗) ∩E) and otp(aδε(∗) ∩E)

is divisible by γ(∗). Now 〈(aδε(∗) ∩ Eζ) : ζ < λ+
ε(∗)〉 is necessarily strictly

decreasing sequence of subsets of aδε(∗), but |aδε(∗)| ≤ λε(∗), a contradiction.]

Let E∗ be as in (∗)2.

Let S′ = Sε(∗)[E
∗] and for δ ∈ S′ let C

γ(∗)
δ be a closed unbounded subset of aδε(∗)∩E

∗

of order type γ(∗) (possible as otp(aδε(∗) ∩ E
∗) is divisible by γ(∗), has cofinality θ

(as sup(aδε(∗) ∩ E
∗) = δ has cofinality θ) and cf(γ(∗)) = θ (by an assumption). For

δ ∈ S\Sε(∗)[E∗] choose any appropriate C
γ(∗)
δ , so we are done.

2) Assume not, so easily for every regular σ < µ and club E0 of λ there is a club
E = E(E0, σ) of λ such that:

(∗)1 the set SE,E0,σ =
{
δ ∈ S : for arbitrarily large i < γ(∗), µ = sup{cf(γ) :

γ ∈ nacc(C
γ(∗),σ,ē,E0

δ )∩ [α
γ(∗),δ
i , α

γ(∗),δ
i+1 )∩E}

}
is not a stationary subset of

λ so shrinking E further without loss of generality

(∗)+
1 the set SE,E0,σ is empty.
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Choose a regular cardinal χ < µ, χ > κ + θ + |γ(∗)|. We choose by induction on
ζ < χ a club Eζ of λ as follows:

for ζ = 0, E0 = λ

for ζ limit, Eζ =
⋂
ξ<ζ

Eζ

for ζ = ξ + 1 let Eζ = ∩{E(Eε, σ) : σ < µ regular}.

Let E =
⋂
ζ<χ

Eζ , E
′ = {δ ∈ E : otp(E ∩ δ) = δ} both are clubs of λ and by the

choice of C̄γ(∗) for some δ(∗) ∈ S we have C
γ(∗)
δ(∗) ⊆ E

′ and µ2 × µ divides δ(∗). For

each i < γ(∗), the set bδ∗,i = {β ∈ e
α
δ(∗)
i+1

: otp(E ∩ Min(eα
δ(∗)
i+1 \(β + 1)\β).

Let j < γ(∗) be divisible by κ (e.g. j = 0). For each ε < κ and σ < λε, ζ < χ we
look at

γj,ε,ζ,σ = Min
(
g`1σ[C

γ(∗)
δ(∗) , Eζ , ē]\(α

δ(∗)
j+ε + 1)

)
.

If we change only ζ < χ, for ζ < χ large enough it becomes constant (as in old
proofs). Choose ζ∗ < χ such that γj,ε,ζ,σ is the same for every ζ ∈ [ζ∗, χ), for any
choice of j < γ(∗) divisible by κ, ε < κ, σ ∈ {λξ : ξ < ε}. Also cf(γj,ε,ζ,σ) ≥ σ and
〈γj,ε,ζ,λξ : ξ < ε〉 is nonincreasing with ξ so for ε limit it is eventually constant say
γj,ε,ζ,λξ = γ∗j,ε,ζ,λξ for ξ ∈ [ξ∗(j, ε, ζ), ε). By Fodor for some ξ∗∗ = ξ∗∗(j, ζ) < κ, {ε :

ξ∗(j, ε, ζ) = ξ∗∗(j, ζ)} is a stationary subset of κ; and for some ξ∗∗∗ = ξ∗∗(ζ) < κ

γ(∗) = sup{j < γ(∗) : j divisible by κ, ξ∗∗(j, ζ) = ξ∗∗∗}

(recall cf(γ(∗)) = θ 6= κ). Now choosing σ = ξ∗∗∗(ζ∗) we are finished.
3) Based on (2) like the proof of (1).
4) Assume S ∈ I[λ], so let E1, b̄1 = 〈b1α : α < λ〉 witness it, i.e. b1α ⊆ α closed in
α, otp(b1α) ≤ θ, α ∈ nacc(b1β) ⇒ b1α = b1β ∩ α and E1 a club of λ such that δ ∈
S ∩E1 ⇒ δ = sup(bδ). Let κ+ θ+ γ(∗) < χ = cf(χ) < µ; by [Sh 420, §1] there is a
stationary S∗ ⊆ {δ < λ : cf(δ) = χ}, S∗ ∈ I[λ] and let E2, b̄2 = 〈b2α : α < λ〉 witness
it. There is a club E3 of λ such that for every club E of λ the set {δ ∈ S∗ : δ ∈
acc(E3), g`(b2α, E

3) ⊆ E} is stationary. Let S∗∗ = S∗ ∩ acc(E3), C2
α = g`(b2α, E

3)
for α ∈ S∗∗; clearly C2

α is a club of α of order type χ and

(∗) |{C2
α ∩ γ : γ ∈ nacc(C2

α)}| ≤ |{C2
β : β ≤ Min(E3\γ)}| ≤ µ.

Let b1α = {βα,ε : ε < θ}, βα,ε increasing continuous with ε. Fix fβ : β → µ be one to
one for β < λ. For each α ∈ S and club E of λ let b0α = b0α[E] = b1α∪{C2

β\(βδ,ε+1) :

ε < θ, β ∈ [βδ,ε, βδ,ε+1) and C2
β ⊆ E and for no such β′ is fβδ,ε+2

(β′) < β}. We
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shall prove that for some club E of λ, 〈b0α[E] : α ∈ S〉 satisfies: for every club E′ of
λ for stationarily many δ ∈ S,E′ ∩ b0[E] is an unbounded subset of δ of order type
χ× θ; this clearly suffices.

First note

(∗) for some ε < κ for every club E of λ for some δ ∈ S ∩ acc(E) we have:

θ = sup{ε < θ :for some β ∈ [βδ,ε + 1, βδ,ε+1) we have

C2
β ⊆ E and fβδ+ε+2

(β) < λε}.

[Why? If not, then for every ε < κ there is a club Eε of λ for which the

above fails, let E =
⋂
ε<κ

Eε, it is a club of λ. So E′ = {δ < λ : δ a limit

ordinal and for arbitrarily large α ∈ δ ∩ S∗∗ we have C2
α ⊆ E}.

Now E′ is a club of λ and so for some δ∗ ∈ S divisible by µ2 we have
otp(E′ ∩ δ∗) = δ∗ and we easily get a contradiction.]

Fix ε(∗), now:

(∗) for some club E0 of λ for every club E1 ⊆ E0 of λ for some δ ∈ S ∩ acc[E]
we have

(a) θ = sup{ε < κ : for some β ∈ [βδ,ε + 1, βδ,ε+1] we have
C2
β ⊆ E0 ∩ E1 and fβδ,ε+2

(β) < λε(∗)}
(b) if ε is as in (a) then

b0α[E1] = b0α[E0].

[Why? We try λ+
ε(∗) times.]

Now it is easy to check that 〈b0α[E0] : α ∈ S〉 is as required. �3.9

3.10 Conclusion. Assume λ = µ+, µ > cf(µ) = κ > ℵ0, κ 6= θ = cf(θ) < λ, γ∗ <
λ, cf(γ∗) = θ, S ⊆ {δ < λ : cf(δ) = θ}. Then we can find an S-club system C̄ such
that:

(a) λ /∈ ida(C̄)

(b) Cδ = {αδi : i < κ× γ∗} increasing, and for each i,
〈cf(αδi+j+1) : j < κ〉 is increasing with limit µ

(c) if S ∈ I[λ] then |{Cδ ∩ α : δ ∈ S and α ∈ nacc(C ′δ)}| < λ.
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