ADDENDUM TO "MAXIMAL CHAINS IN " ω AND ULTRAPOWERS OF THE INTEGERS"

SAHARON SHELAH AND JURIS STEPRĀNS

This note is intended as a supplement and clarification to the proof of Theorem 3.3 of [1]; namely, it is consistent that $\mathfrak{b} = \aleph_1$ yet for every ultrafilter U on ω there is a \leq^* chain $\{f_{\xi} : \xi \in \omega_2\}$ such that $\{f_{\xi}/U : \xi \in \omega_2\}$ is cofinal in ω/U .

The general outline of the the proof remains the same. In other words, a ground model is taken which satisfies $2^{\aleph_0} = \aleph_1$ and in which there is a \Diamond_{ω_2} sequence $\{D_{\xi} : \xi \in \omega_2\}$ such that for every $X \subseteq \omega_2$ there is a stationary set of ordinals, μ , such that $\operatorname{cof}(\mu) = \omega_1$ and such that $X \cap \mu = D_{\mu}$. Actually, a coding will be used to associate with subsets of ω_2 , names for subsets on ω in certain partial orders. The details of this coding will be ignored except to state that $c(D_{\eta})$ will denote the coded set and that if $\mathbb{P}_{\omega_2} = \lim \{\mathbb{P}_{\xi} : \xi \in \omega_2\}$ is the finite support iteration of ccc partial orders of size no greater than ω_1 and $1 \Vdash_{\mathbb{P}_{\omega_2}} "X \subseteq [\omega]_0^{\aleph}$ " then there is a stationary set $S_X \subseteq \omega_2$, consisting of ordinals of uncountable cofinality, such that $1 \Vdash_{\mathbb{P}_{\xi}} "X \upharpoonright \mathbb{P}_{\xi} = c(D_{\xi})"$ for each $\xi \in S_X$. Here $X \upharpoonright \mathbb{P}_{\xi}$ denotes the \mathbb{P}_{ξ} -name obtained by considering only those parts of X that mention conditions in $\mathbb{P}_{\mathcal{E}}$; to be more precise here would require providing the details of a specific development of names in the theory of forcing, and so this will not be done.

The partial order \mathbb{P}_{ω_2} is defined by induction using the \Diamond_{ω_2} sequence. Simultaneously, a partial ordering \prec will be defined on ω_2 by $\eta \prec \zeta$ if and only if

- 1 ⊨_{Pη} "c(Dη) is an ultrafilter on ω"
 1 ⊨_{Pζ} "c(Dζ) is an ultrafilter on ω"
- 1 $\Vdash_{\mathbb{P}\mathcal{L}}$ " $c(D_n) = c(D_{\mathcal{L}}) \cap V^{\mathbb{P}_n}$ "

If $\alpha \in \omega_2$ then the order type of $\{\beta \in \alpha : \beta \prec \alpha\}$ will be denoted by $o(\alpha)$. Furthermore, an enumeration $\{g_{\xi} : \xi \in \omega_2\}$ will be constructed by induction along with \mathbb{P}_{ω_2} which will list all \mathbb{P}_{ω_2} -names for functions from ω to ω .

If \mathbb{P}_{ξ} has been defined and $1 \Vdash_{\mathbb{P}_{\xi}} c(D_{\xi})$ is an ultrafilter on ω " then $\mathbb{P}_{\xi+1}$ is defined to be $\mathbb{P}_{\xi} * \mathbb{C}_{\xi} * \mathbb{Q}_{\xi}$ where \mathbb{C}_{ξ} is simply Cohen forcing which adds a single generic function $A_{\xi} : \omega \to 2$ and \mathbb{Q}_{ξ} adds a function $F_{\xi} : \omega \to \omega$ such that $F_{\xi} \geq^* F_{\mu}$ and $F_{\xi} \upharpoonright A_{\mu}^{-1}\{k\} \ge^* g_{o(\mu)} \upharpoonright A_{\mu}^{-1}\{k\}$, for a certain $k \in 2$, for all μ such that $\mu \prec \xi$. To be more precise, \mathbb{Q}_{ξ} is defined, in the forcing extension by \mathbb{P}_{ξ} , to consist of all pairs (f, Δ) such that f is a finite partial function from ω to ω and $\Delta \in [\xi]^{\langle \aleph_0}$, and the ordering is defined by $(f, \Delta) \leq (f', \Delta')$ if

- $f \subseteq f'$
- $\Delta \subset \Delta'$
- if $\mu \in \Delta$ and $\mu \prec \xi$ and $m \in \text{dom}(f' \setminus f)$ then $f'(m) \ge F_{\mu}(m)$
- if $\mu \in \Delta, \, \mu \prec \xi, \, m \in \operatorname{dom}(f' \setminus f), \, 1 \Vdash_{\mathbb{P}_{\xi}} ``A_{\mu}^{-1}\{k\} \in c(\overline{D_{\xi}})$ and $A_{\mu}^{-1}(m) = k$ then $f'(m) \ge g_{o(\mu)}(m)$

If $1 \Vdash_{\mathbb{P}_{\xi}} c(D_{\xi})$ is an ultrafilter on ω fails to be true then \mathbb{Q}_{ξ} is defined to be empty. At limits the iteration is with finite support.

SAHARON SHELAH AND JURIS STEPRĀNS

To see that for every ultrafilter on ω there is an increasing \leq^* chain which is cofinal in the ultrapower, let G be \mathbb{P}_{ω_2} generic over V and let \mathcal{U} be an ultrafilter on ω in V[G]. There must be some name U such that $1 \Vdash_{\mathbb{P}_{\omega_2}}$ "U is an ultrafilter on ω " and \mathcal{U} is the interpretation U in V[G]. It is well known that there is a set which is closed under increasing ω_1 sequences, C such that $1 \Vdash_{\mathbb{P}_{\varepsilon}} "U$ is an ultrafilter on ω " for each $\xi \in C$. It follows that if $\alpha \in \beta$ and $\{\alpha, \beta\} \subseteq C \cap S_U$ then $\alpha \prec \beta$. It is now easy to verify that $\{F_{\xi} : \xi \in C \cap S_U\}$ is an \leq^* -increasing sequence. Moreover, because $C \cap S_U$ is cofinal in ω_2 it follows that $\{o(\xi) : \xi \in C \cap S_U\} = \omega_2$ and hence $1 \Vdash_{\mathbb{P}_{\omega_2}}$ " $\{g_{o(\xi)} : \xi \in C \cap S_U\} = \omega \omega$ ". Therefore, if $1 \Vdash_{\mathbb{P}_{\omega_2}}$ " $g : \omega \to \omega$ " there is some $\xi \in C \cap S_U$ such that $1 \Vdash_{\mathbb{P}_{o(\xi)}}$ " $(g = g_{o(\xi)})$ " and so it follows that

$$1 \Vdash_{\mathbb{P}_{\omega_2}} "(\forall^{\infty} n \in A_{\xi}^{-1}\{k\}) F_{\eta}(n) \ge g_{o(\xi)}(n) \text{ and } A_{\xi}^{-1}\{k\} \in c(D_{\eta}) \subseteq U"$$

for any $\eta \in C \cap S_U \setminus \xi$ It follows immediately that $\{F_{\xi} : \xi \in C \cap S_U\}$ is cofinal in the ultrapower by \mathcal{U} .

The only thing which now has to be proved is that \mathbb{P}_{ω_2} is locally Cohen since this immediately implies that $\mathfrak{b} = \aleph_1$. A condition $p \in \mathbb{P}_{\omega_2}$ will be said to be determined if there is some $\Sigma_p \in [\omega_2]^{<\aleph_0}$ such that Σ_p is the support of p and for each $\sigma \in \Sigma_p$ there is a quadruple $(a_p^{\sigma}, f_p^{\sigma}, \Delta_p^{\sigma}, g_p^{\sigma})$ such that:

- $p \upharpoonright \sigma \Vdash_{\mathbb{P}_{\sigma}} "p(\sigma) = a_{p}^{\sigma} * (f_{p}^{\sigma}, \Delta_{p}^{\sigma})"$ for each $\sigma \in \Sigma_{p}$ $\Delta_{p}^{\sigma} \subseteq \Sigma_{p} \cap \sigma$ for each $\sigma \in \Sigma_{p}$
- $p \upharpoonright \sigma \Vdash_{\mathbb{P}_{\sigma}} "g_{o(\sigma)} \upharpoonright \operatorname{dom}(a_p^{\sigma}) = g_p^{\sigma} "$ for each $\sigma \in \Sigma_p$
- for each $\{\sigma, \tau\} \in [\Sigma_p]^2$ such that $\sigma \prec \tau$ there is some $k_p(\sigma, \tau) \in 2$ such that $p \upharpoonright \tau \Vdash_{\mathbb{P}_{\tau}} ``A_{\sigma}^{-1}\{k_p(\sigma,\tau)\} \in D_{\tau}"$
- $\operatorname{dom}(f_p^{\sigma}) \supseteq \operatorname{dom}(a_p^{\sigma})$ for each $\sigma \in \Sigma_p$
- $\operatorname{dom}(f_p^{\tau}) \subseteq \operatorname{dom}(f_p^{\sigma})$ for each $\{\sigma, \tau\} \in [\Sigma_p]^2$ such that $\sigma \prec \tau$

This definition of determined differs in a substantial way from the definition of somewhat determined in [1]. The next lemma shows that every condition can be extended to a determined condition; this is problematic for the somewhat determined conditions.

Lemma 0.1. The set of determined conditions is dense in \mathbb{P}_{ω_2} .

Proof: Induction on $\alpha \in \omega_2 + 1$ will be used to prove the following stronger statement: For each $m \in \omega$ and each $p \in \mathbb{P}_{\alpha}$ there is a determined condition $q \geq p$ such that if σ is the maximal element of Σ_q then $m \subseteq a_q^{\sigma}$ and σ is the maximal element of the support of p. Note that a_q^{σ} has the smallest domain of any function appearing in q so the requirement that $m \subseteq a_q^{\sigma}$ implies that m is in the domain of any function appearing in q.

To prove this, suppose the statement is true for all $\alpha \in \beta$. If β is a limit ordinal the result follows from the finite support of the iteration; therefore suppose that $\beta = \gamma + 1$. Then extend p so that $p \Vdash_{\mathbb{P}_{\gamma}} "p(\gamma) = a * (f, \Delta)"$. By extending, it may be assumed that $m \subseteq \operatorname{dom}(a) \subseteq \operatorname{dom}(f)$. Let \overline{m} be the maximal element of dom(f). Let $p' > p \upharpoonright \gamma$ be such that Δ is contained in the support of p'.

There are now two cases to consider: Either β is a successor in \prec or it is a limit. If it is a successor then let β^* be the predecessor of β in \prec . Otherwise, let β^* be such that β^* is greater than the support of p' and $\beta^* \prec \beta$ and β^* is the successor of β^{**} in the ordering \prec . In the first case, let $p'' \ge p'$ be such that $p'' \Vdash_{\mathbb{P}_{\gamma}} "A_{\beta^*}^{-1}k \in D_{\beta}"$. In the second case, choose p'' such that $p'' \Vdash_{\mathbb{P}_{\beta^*}} "A_{\beta^{**}}^{-1} k \in D_{\beta^*}$ " and such that β^{**} belongs to the support of p''.

2

ADDENDUM TO "MAXIMAL CHAINS IN $\omega \omega$ AND ULTRAPOWERS OF THE INTEGERS" 3

Now use the induction hypothesis to find a determined condition q such that if σ is the maximal element of Σ_q then $\bar{m} \in \text{dom}(a_q^{\sigma})$. Moreover, in the case that β is a limit of \prec , then the induction hypothesis can be used to ensure that $\sigma < \beta^*$. It will be shown that the transitivity of \prec guarantees that $q * p(\gamma) = r$ is a determined condition satisfying the extra induction requirements. Let $\Sigma_r = \Sigma_q \cup \{\beta\}$ and let f_r^{σ} , a_r^{σ} and Δ_r^{σ} have the values inherited from q and $p(\beta)$. Furthermore, $k_r(\alpha, \tau)$ can be defined to be $k_q(\alpha, \tau)$ unless $\beta = \tau$. Here the choice of p'' helps.

In the case that β is the successor of β^* , then p'' decides that $A_{\beta^*}^{-1}k \in D_{\beta^*}$ so $k_r(\beta^*,\beta)$ can be defined to be k and, moreover $k_r(\mu,\beta)$ can be defined to be k for each $\mu \in \Sigma_q$ such that $\mu \prec \beta^*$. Since β is the successor of β^* in \prec there are no new instances with which to deal. In the case that β is a limit in the partial order \prec , it is possible to define $k_r(\beta^{**},\beta) = k$ because of the transitivity of \prec . For the same reason it is possible to define $k_r(\mu,\beta)$ to be k for each $\mu \in \Sigma_q$ such that $\mu \prec \beta^{**}$. Since the support of q is contained in β^* and β^* is the successor of β^{**} in the partial order \prec , it follows that there are no new instances to consider in this case as well.

Lemma 0.2. The partial order \mathbb{P}_{ω_2} is locally Cohen.

Proof: Let $X \in [\mathbb{P}_{\omega_2}]^{\aleph_0}$. Let \mathfrak{M} be a countable elementary submodel of $H(\omega_3)$ which contains X and the \diamond -sequence $\{D_{\xi} : \xi \in \omega_2\}$ as well as \mathbb{P}_{ω_2} . It suffices to show that if $p \in \mathbb{P}_{\omega_2}$ and $D \subseteq \mathfrak{M} \cap \mathbb{P}_{\omega_2}$ is a dense subset of the partial order $\mathfrak{M} \cap \mathbb{P}_{\omega_2}$ then there is $q \in D$ and $r \in \mathbb{P}_{\omega_2}$ such that $r \geq p$ and $r \geq q$.

Given $p \in \mathbb{P}_{\omega_2}$, by using Lemma 0.1, it may, without loss of generality, be assumed that p is determined. Using the elementarity of \mathfrak{M} it follows that there is some determined condition p' which is isomorphic to p. In particular, there is an order preserving bijection $I: \Sigma_p \to \Sigma_{p'}$ such that I is the identity on $\Sigma p \cap \mathfrak{M}$, $a_p^{\sigma} = a_{p'}^{I(\sigma)}, f_p^{\sigma} = f_{p'}^{I(\sigma)}, g_p^{\sigma} = g^{I(\sigma)}$ and I preserve the partial ordering \prec . It is not required that $\Delta_p^{\sigma} = \Delta_{p'}^{I(\sigma)}$ because $\Delta_{p'}^{\sigma}$ will be defined to be $\Sigma_{p'} \cap \sigma$.

Now let $q \in D$ be a condition extending p'. Using Lemma 0.1 it may again be assumed that q is determined. It must be shown how to define $r \in \mathbb{P}_{\omega_2}$ extending both q and p. In order to do this, define $s(\alpha)$ to be the unique, minimal ordinal $\delta \in \mathfrak{M}$ such that $\alpha \prec \delta$ if such a unique ordinal exists. Notice that if $\alpha \notin \mathfrak{M}$ and there is some $\delta \in \mathfrak{M}$ such that $\alpha \prec \delta$ then $s(\alpha)$ exists. The reason for this is that the only way that $s(\alpha)$ can fail to exist in this context is that there are two minimal ordinals $\delta \in \mathfrak{M}$ and $\delta' \in \mathfrak{M}$ such that $\alpha \prec \delta$ and $\alpha \prec \delta'$. However, this means that the supremum of $\{\gamma : \gamma \prec \delta \text{ and } \gamma \prec \delta'\}$ belongs to \mathfrak{M} and hence there is some $\alpha' \in \mathfrak{M} \setminus \alpha$ such that $\alpha' \prec \delta$ and $\alpha' \prec \delta'$. From the easily verified fact that \prec is a tree ordering it follows $\alpha \prec \alpha'$ contradicting the minimality assumption on δ and δ' .

Now define r as follows:

- the domain of r is the union of the domains of q and p
- if $\alpha \in \mathfrak{M}$ then $r(\alpha) = a_q^{\alpha} * (f_q^{\alpha}, \Delta_q^{\alpha} \cup \Delta_p^{\alpha})$
- if $\alpha \notin \mathfrak{M}$ and there does not exist $\delta \in \operatorname{dom}(q)$ such that $\alpha \prec \delta$ then $r(\alpha) = p(\alpha)$
- if $\alpha \notin \mathfrak{M}$ and there exists $\delta \in \operatorname{dom}(q)$ such that $\alpha \prec \delta$ then recall that $s(\alpha)$ is defined and define $r(\alpha) = a_r^{\alpha} * (f_r^{\alpha}, \Delta_p^{\alpha})$ where the function a_r^{α} is defined

SAHARON SHELAH AND JURIS STEPRĀNS

by

4

$$a_r^{\alpha}(n) = \begin{cases} a_p^{\alpha}(n) & \text{if } n \in \operatorname{dom}(a_p^{\alpha}) \\ k_p(\alpha, s(\alpha)) + 1 \mod 2 & \text{if } n \notin \operatorname{dom}(a_p^{\alpha}) \end{cases}$$

(note that in this case $k_p(\alpha, s(\alpha))$ has a natural definition because \prec is a tree ordering) and the function f_r^{α} is defined by

$$f_r^{\alpha}(n) = \begin{cases} f_p^{\alpha}(n) & \text{if } n \in \operatorname{dom}(f_p^{\alpha}) \\ \min\{f_q^{\beta}(n) : \beta \in \Sigma_p \cap \mathfrak{M} \text{ and } \alpha \prec \beta\} & \text{if } n \notin \operatorname{dom}(a_p^{\alpha}) \end{cases}$$

The fact that $r \ge q$ is immediate because $a_r^{\mu} = a_q^{\mu}$ and $f_r^{\mu} = f_q^{\mu}$ for each $\mu \in \Sigma_q$ and, moreover, if $\alpha \in \text{dom}(q)$ then $\Delta_q^{\alpha} \subseteq \mathfrak{M}$; so there is no restriction on the points in the domain of r not in the domain of q.

It will be shown that $r \ge p$ by inductively proving that $r \upharpoonright \rho \ge p \upharpoonright \rho$ for each $\rho \in \omega_2$. If $\rho = 0$ there is nothing to do and at limits the finite support of the iteration makes the task easy. So suppose that $r \upharpoonright \rho \ge p \upharpoonright \rho$. Tt suffices to show that the following Key Condition is satisfied: If

- $\alpha \prec \beta \leq \rho$
- $\beta \in \Sigma_p$ $\alpha \in \Delta_p^\beta$
- n is in the domain of $f_r^\beta \setminus f_p^\beta$

then $f_r^{\beta}(n) \geq f_r^{\alpha}(n)$ and, in addition, if $a_r^{\alpha}(n) = k_r(\alpha, \beta)$ then $r \upharpoonright (\rho+1) \Vdash_{\mathbb{P}_{\rho+1}}$ " $f_r^{\beta}(n) \geq g_{o(\alpha)}(n)$ ". This will be established by considering various cases. Case 1

Suppose that α and β both belong to \mathfrak{M} . Since $q \geq p'$, from the definition of p' and the partial order \mathbb{Q}_{β} it easily follows that the Key Condition is satisfied. There is no need to use the induction hypothesis in this case. Case 2

Suppose now that β belongs to \mathfrak{M} but α does not. First it will be shown that $f_r^{\beta}(n) \geq f_r^{\alpha}(n)$. There are two subcases to consider; either n belongs to the domain of f_p^{α} or it does not. If it does, then $f_{p'}^{I(\alpha)}(n) = f_p^{\alpha}(n) = f_r^{\alpha}(n)$ and $I(\alpha) \in \Delta_{p'}^{\beta}$. Because $I(\alpha) \prec \beta$, it follows from the fact that $q \ge p'$ that $f_q^{\beta}(n) \ge f_{p'}^{I(\alpha)}(n) =$ $f_r^{\alpha}(n)$. The other possibility is that n does not belong to the domain of f_n^{α} . In this case, the definition of r asserts that

$$f_r^{\alpha}(n) = \min\{f_q^{\gamma}(n) : \alpha \prec \gamma \text{ and } \gamma \in \mathfrak{M} \cap \operatorname{dom}(p)\}$$

and, since β is in the support of p and $\alpha \prec \beta$, it follows that $f_r^{\alpha}(n) \leq f_q^{\beta}(n)$.

It must now be shown that, if $k_r(\alpha,\beta) = a_r(n)$ then $r \upharpoonright (\rho+1) \Vdash_{\mathbb{P}_{\rho+1}} "f_r^{\beta}(n) \ge 1$ $g_{o(\alpha)}(n)$ ". There are again two subcases to consider; either n belongs to the domain of a_p^{α} or it does not. If it does, then $g_{p'}^{I(\alpha)}(n) = g_p^{\alpha}(n)$ and $I(\alpha) \in \Delta_{p'}^{\beta}$. Because $I(\alpha) \prec \beta$, it follows from the fact that $q \ge p'$ that $q \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} "f_{q}^{\beta}(n) \ge g_{p'}^{I(\alpha)}(n)$ " while, on the other hand, $p \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}} "g_{o(\alpha)}(n) = g_{p}^{\alpha}(n)$ ". Since the induction hypothesis implies that $r \upharpoonright \alpha \ge p \upharpoonright \alpha$ and it has already been noted that $r \ge q$ it follows that $r \Vdash_{\rho+1} "f_{q}^{\beta}(n) \ge g_{p'}^{I(\alpha)}(n) = g_{p}^{\alpha}(n) = g_{o(\alpha)}(n)$ ". The other possibility is that n does not belong to the domain of a_{p}^{α} . In this case, the definition of rguarantees that $a_r^{\alpha}(n) \neq k_r(\alpha, s(\alpha))$ and, the minimality of $s(\alpha)$ guarantees that $s(\alpha) \prec \beta$ because $\alpha \prec \beta$ and $\beta \in \mathfrak{M}$. The transitivity of \prec , now guarantees that $k_r(\alpha,\beta) \neq a_r^{\alpha}(n)$ and so the Key Condition is vacuously satsified.

ADDENDUM TO "MAXIMAL CHAINS IN $\ ^{\omega}\omega$ AND ULTRAPOWERS OF THE INTEGERS" $\ 5$

Case 3

Suppose now that $\alpha \in \mathfrak{M}$ but $\beta \notin \mathfrak{M}$. It will first be shown that $f_r^{\beta}(n) \geq f_r^{\alpha}(n)$. To see this, recall that $f_r^{\beta}(n) = f_q^{\gamma}(n)$ for some γ such that $\beta \prec \gamma, \gamma \in \mathfrak{M}$ and γ belongs to the support of p— recall that it is being assumed that n is not in the domain of f_p^{β} and this function was only extended in the case that there was an appropriate γ . Recall also that this implies that $\Delta_{p'}^{\gamma} = \Sigma_{p'} \cap \gamma \cap \mathfrak{M}$ and hence $\alpha \in \Delta_{p'}^{\gamma}$. Because $\alpha \prec \beta \prec \gamma$ it follows from the fact that $q \geq p'$ that $f_q^{\alpha}(n) \leq f_q^{\gamma}(n) = f_r^{\beta}(n)$.

Now consider $g_{o(\alpha)}(n)$. Since $\alpha \in \Delta_{p'}^{\gamma}$ and $\alpha \prec \gamma$ it follows that

$$q \Vdash "g_{o(\alpha)} \leq f_q^{\gamma}(n)"$$

and, because it has already been noted that $r \ge q$ it follows that

$$r \upharpoonright (\rho+1) \Vdash_{\mathbb{P}_{\rho+1}} "g_{o(\alpha)} \leq f_q^{\gamma}(n)$$
"

Since $f_q^{\gamma}(n) = f_r^{\beta}(n)$ it follows that the Key Condition has been satisfied. **Case 4**

Finally, suppose that neither α nor β belongs to \mathfrak{M} . To show that $f_r^{\beta}(n) \geq f_r^{\alpha}(n)$ two cases must again be considered; either n belongs to the domain of f_p^{α} or it does not. If it does, then $f_r^{\beta}(n) = f_q^{\gamma}(n)$ for some γ such that $\beta \prec \gamma, \gamma \in \mathfrak{M}$ and γ belongs to the support of p. Since $\alpha \prec \beta \prec \gamma$ it follows that $I(\alpha) \prec \gamma$ and so $f_q^{\gamma}(n) \geq f_{p'}^{I(\alpha)}(n) = f_p^{\alpha}(n) = f_r^{\alpha}(n)$. On the other hand, if n does not belong to the domain of f_p^{α} then

$$f_r^{\alpha}(n) = \min\{f_q^{\gamma}(n) : \alpha \prec \gamma \text{ and } \gamma \in \mathfrak{M} \cap \operatorname{dom}(\mathfrak{p})\}$$

and, since this minimum is taken over a set which includes γ , it follows that $f_r^{\alpha}(n) \leq f_q^{\gamma}(n) = f_r^{\beta}(n)$.

To show that $r \upharpoonright (\rho + 1) \Vdash_{\mathbb{P}_{\rho+1}} "g_{o(\alpha)}(n) \leq f_r^{\beta}(n)$ " there are, once again, two cases to consider; either n belongs to the domain of a_p^{α} or it does not. If it does, then $g_{p'}^{I(\alpha)}(n) = g_r^{\alpha}(n)$ and $I(\alpha) \in \Delta_{p'}^{\gamma}$. Because $I(\alpha) \prec \gamma$, it follows from the fact that $q \geq p'$ that $q \Vdash "f_q^{\gamma}(n) \geq g_{p'}^{I(\alpha)}(n)$ ". On the other hand, $p \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}} "g_{o(\alpha)}(n) =$ $g_r^{\alpha}(n)$ " and so the, because the induction hypothesis yields that $r \upharpoonright \alpha \geq p \upharpoonright \alpha$ it follows that $r \upharpoonright (\rho+1) \Vdash_{\mathbb{P}_{\rho+1}} "f_q^{\beta}(n) = f_q^{\gamma}(n) \geq g_{p'}^{I(\alpha)}(n) = g_r^{\alpha}(n) = go(\alpha)(n)$ ". The other possibility is that n does not belong to the domain of a_p^{α} . In this case, the definition of r guarantees that $a_r^{\alpha}(n) \neq k_r(\alpha, s(\alpha))$. The fact that $\alpha \prec \beta$, together with the uniquenness of $s(\alpha)$ guarantees that $s(\alpha) = s(\beta)$. The transitivity of \prec , now guarantees that $k_r(\alpha, \beta) = k_r(\alpha, s(\beta)) = k_r(\alpha, s(\alpha)) \neq a_r^{\alpha}(n)$ and so the Key Condition is vacuously satisified. The use of $k_r(\alpha, s(\beta))$ and $k_r(\alpha, s(\alpha))$ here is a slight abuse of notation because there is no guarantee that $s(\alpha)$ belongs to the domain of r. Nevertherless, because $k_r(\alpha, \gamma)$ is defined for some γ such that $\alpha \prec s(\alpha) \prec \gamma$ there is no harm in this abuse.

References

^{1.} S. Shelah and J. Steprāns, Maximal Chains in $\omega \omega$ and Ultrapowers of the Integers, to appear in Arch. für Math. Log.

6

SAHARON SHELAH AND JURIS STEPRĀNS

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, GIVAT RAM, ISRAEL AND DE-PARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY

Department of Mathematics, York University, 4700 Keele Street, North York, Ontario, Canada $\qquad {\rm M3J}\ 1{\rm P3}$