ADDENDUM TO "MAXIMAL CHAINS IN ${ }^{\omega} \omega$ AND ULTRAPOWERS OF THE INTEGERS"

SAHARON SHELAH AND JURIS STEPRĀNS

This note is intended as a supplement and clarification to the proof of Theorem 3.3 of [1]; namely, it is consistent that $\mathfrak{b}=\aleph_{1}$ yet for every ultrafilter U on ω there is a \leq^{*} chain $\left\{f_{\xi}: \xi \in \omega_{2}\right\}$ such that $\left\{f_{\xi} / U: \xi \in \omega_{2}\right\}$ is cofinal in ω / U.

The general outline of the the proof remains the same. In other words, a ground model is taken which satisfies $2^{\aleph_{0}}=\aleph_{1}$ and in which there is a $\nabla_{\omega_{2}}$ sequence $\left\{D_{\xi}: \xi \in \omega_{2}\right\}$ such that for every $X \subseteq \omega_{2}$ there is a stationary set of ordinals, μ, such that $\operatorname{cof}(\mu)=\omega_{1}$ and such that $X \cap \mu=D_{\mu}$. Actually, a coding will be used to associate with subsets of ω_{2}, names for subsets on ω in certain partial orders. The details of this coding will be ignored except to state that $c\left(D_{\eta}\right)$ will denote the coded set and that if $\mathbb{P}_{\omega_{2}}=\lim \left\{\mathbb{P}_{\xi}: \xi \in \omega_{2}\right\}$ is the finite support iteration of ccc partial orders of size no greater than ω_{1} and $1 \Vdash_{\mathbb{P}_{\omega_{2}}}$ " $X \subseteq[\omega]_{0}^{\aleph}$ " then there is a stationary set $S_{X} \subseteq \omega_{2}$, consisting of ordinals of uncountable cofinality, such that $1 \Vdash_{\mathbb{P}_{\xi}}$ " $X \upharpoonright \mathbb{P}_{\xi}=c\left(D_{\xi}\right)$ " for each $\xi \in S_{X}$. Here $X \upharpoonright \mathbb{P}_{\xi}$ denotes the \mathbb{P}_{ξ}-name obtained by considering only those parts of X that mention conditions in \mathbb{P}_{ξ}; to be more precise here would requires providing the details of a specific development of names in the theory of forcing, and so this will not be done.

The partial order $\mathbb{P}_{\omega_{2}}$ is defined by induction using the $\diamond_{\omega_{2}}$ sequence. Simultaneously, a partial ordering \prec will be defined on ω_{2} by $\eta \prec \zeta$ if and only if

- $1 \Vdash_{\mathbb{P}_{\eta}}$ " $c\left(D_{\eta}\right)$ is an ultrafilter on ω "
- $1 \Vdash_{\mathbb{P}_{\zeta}}$ " $c\left(D_{\zeta}\right)$ is an ultrafilter on ω "
- $1 \Vdash_{\mathbb{P} \zeta} " c\left(D_{\eta}\right)=c\left(D_{\zeta}\right) \cap V^{\mathbb{P}_{\eta}}$ "

If $\alpha \in \omega_{2}$ then the order type of $\{\beta \in \alpha: \beta \prec \alpha\}$ will be denoted by $o(\alpha)$. Furthermore, an enumeration $\left\{g_{\xi}: \xi \in \omega_{2}\right\}$ will be constructed by induction along with $\mathbb{P}_{\omega_{2}}$ which will list all $\mathbb{P}_{\omega_{2}}$-names for functions from ω to ω.

If \mathbb{P}_{ξ} has been defined and $1 \Vdash_{\mathbb{P}_{\xi}}$ " $c\left(D_{\xi}\right)$ is an ultrafilter on ω " then $\mathbb{P}_{\xi+1}$ is defined to be $\mathbb{P}_{\xi} * \mathbb{C}_{\xi} * \mathbb{Q}_{\xi}$ where \mathbb{C}_{ξ} is simply Cohen forcing which adds a single generic function $A_{\xi}: \omega \rightarrow 2$ and \mathbb{Q}_{ξ} adds a function $F_{\xi}: \omega \rightarrow \omega$ such that $F_{\xi} \geq^{*} F_{\mu}$ and $F_{\xi} \upharpoonright A_{\mu}^{-1}\{k\} \geq^{*} g_{o(\mu)} \upharpoonright A_{\mu}^{-1}\{k\}$, for a certain $k \in 2$, for all μ such that $\mu \prec \xi$. To be more precise, \mathbb{Q}_{ξ} is defined, in the forcing extension by \mathbb{P}_{ξ}, to consist of all pairs (f, Δ) such that f is a finite partial function from ω to ω and $\Delta \in[\xi]^{<\aleph_{0}}$, and the ordering is defined by $(f, \Delta) \leq\left(f^{\prime}, \Delta^{\prime}\right)$ if

- $f \subseteq f^{\prime}$
- $\Delta \subseteq \Delta^{\prime}$
- if $\mu \in \Delta$ and $\mu \prec \xi$ and $m \in \operatorname{dom}\left(f^{\prime} \backslash f\right)$ then $f^{\prime}(m) \geq F_{\mu}(m)$
- if $\mu \in \Delta, \mu \prec \xi, m \in \operatorname{dom}\left(f^{\prime} \backslash f\right), 1 \vdash_{\mathbb{P}_{\xi}}$ " $A_{\mu}^{-1}\{k\} \in c\left(D_{\xi}\right)$ " and $A_{\mu}^{-1}(m)=k$ then $f^{\prime}(m) \geq g_{o(\mu)}(m)$
If $1 \Vdash_{\mathbb{P}_{\xi}}$ " $c\left(D_{\xi}\right)$ is an ultrafilter on ω " fails to be true then \mathbb{Q}_{ξ} is defined to be empty. At limits the iteration is with finite support.

To see that for every ultrafilter on ω there is an increasing \leq^{*} chain which is cofinal in the ultrapower, let G be $\mathbb{P}_{\omega_{2}}$ generic over V and let \mathcal{U} be an ultrafilter on ω in $V[G]$. There must be some name U such that $1 \vdash_{\mathbb{P}_{\omega_{2}}}$ " U is an ultrafilter on ω " and \mathcal{U} is the interpretation U in $V[G]$. It is well known that there is a set which is closed under increasing ω_{1} sequences, C such that $1 \Vdash_{\mathbb{P}_{\xi}}$ " U is an ultrafilter on ω " for each $\xi \in C$. It follows that if $\alpha \in \beta$ and $\{\alpha, \beta\} \subseteq C \cap S_{U}$ then $\alpha \prec \beta$. It is now easy to verify that $\left\{F_{\xi}: \xi \in C \cap S_{U}\right\}$ is an \leq^{*}-increasing sequence. Moreover, because $C \cap S_{U}$ is cofinal in ω_{2} it follows that $\left\{o(\xi): \xi \in C \cap S_{U}\right\}=\omega_{2}$ and hence $1 \Vdash_{\mathbb{P}_{\omega_{2}}}$ " $\left\{g_{o(\xi)}: \xi \in C \cap S_{U}\right\}={ }^{\omega} \omega$ ". Therefore, if $1 \Vdash_{\mathbb{P}_{\omega_{2}}} " g: \omega \rightarrow \omega$ " there is some $\xi \in C \cap S_{U}$ such that $1 \Vdash_{\mathbb{P}_{o(\xi)}}$ " $\left(g=g_{o(\xi)}\right.$ " and so it follows that

$$
1 \Vdash_{\mathbb{P}_{\omega_{2}}} "\left(\forall^{\infty} n \in A_{\xi}^{-1}\{k\}\right) F_{\eta}(n) \geq g_{o(\xi)}(n) \text { and } A_{\xi}^{-1}\{k\} \in c\left(D_{\eta}\right) \subseteq U "
$$

for any $\eta \in C \cap S_{U} \backslash \xi$ It follows immediately that $\left\{F_{\xi}: \xi \in C \cap S_{U}\right\}$ is cofinal in the ultrapower by \mathcal{U}.

The only thing which now has to be proved is that $\mathbb{P}_{\omega_{2}}$ is locally Cohen since this immediately implies that $\mathfrak{b}=\aleph_{1}$. A condition $p \in \mathbb{P}_{\omega_{2}}$ will be said to be determined if there is some $\Sigma_{p} \in\left[\omega_{2}\right]^{<\aleph_{0}}$ such that Σ_{p} is the support of p and for each $\sigma \in \Sigma_{p}$ there is a quadruple $\left(a_{p}^{\sigma}, f_{p}^{\sigma}, \Delta_{p}^{\sigma}, g_{p}^{\sigma}\right)$ such that:

- $p \upharpoonright \sigma \Vdash_{\mathbb{P}_{\sigma}} " p(\sigma)=a_{p}^{\sigma} *\left(f_{p}^{\sigma}, \Delta_{p}^{\sigma}\right) "$ for each $\sigma \in \Sigma_{p}$
- $\Delta_{p}^{\sigma} \subseteq \Sigma_{p} \cap \sigma$ for each $\sigma \in \Sigma_{p}$
- $p \upharpoonright \sigma \Vdash_{\mathbb{P}_{\sigma}}$ " $g_{o(\sigma)} \upharpoonright \operatorname{dom}\left(a_{p}^{\sigma}\right)=g_{p}^{\sigma}$ " for each $\sigma \in \Sigma_{p}$
- for each $\{\sigma, \tau\} \in\left[\Sigma_{p}\right]^{2}$ such that $\sigma \prec \tau$ there is some $k_{p}(\sigma, \tau) \in 2$ such that $p \upharpoonright \tau \Vdash_{\mathbb{P}_{\tau}} " A_{\sigma}^{-1}\left\{k_{p}(\sigma, \tau)\right\} \in D_{\tau} "$
- $\operatorname{dom}\left(f_{p}^{\sigma}\right) \supseteq \operatorname{dom}\left(a_{p}^{\sigma}\right)$ for each $\sigma \in \Sigma_{p}$
- $\operatorname{dom}\left(f_{p}^{\tau}\right) \subseteq \operatorname{dom}\left(f_{p}^{\sigma}\right)$ for each $\{\sigma, \tau\} \in\left[\Sigma_{p}\right]^{2}$ such that $\sigma \prec \tau$

This definition of determined differs in a substantial way from the definition of somewhat determined in [1]. The next lemma shows that every condition can be extended to a determined condition; this is problematic for the somewhat determined conditions.

Lemma 0.1. The set of determined conditions is dense in $\mathbb{P}_{\omega_{2}}$.
Proof: Induction on $\alpha \in \omega_{2}+1$ will be used to prove the following stronger statment: For each $m \in \omega$ and each $p \in \mathbb{P}_{\alpha}$ there is a determined condition $q \geq p$ such that if σ is the maximal element of Σ_{q} then $m \subseteq a_{q}^{\sigma}$ and σ is the maximal element of the support of p. Note that a_{q}^{σ} has the smallest domain of any function appearing in q so the requirement that $m \subseteq a_{q}^{\sigma}$ implies that m is in the domain of any function appearing in q.

To prove this, suppose the statement is true for all $\alpha \in \beta$. If β is a limit ordinal the result follows from the finite support of the iteration; therefore suppose that $\beta=\gamma+1$. Then extend p so that $p \Vdash_{\mathbb{P}_{\gamma}} " p(\gamma)=a *(f, \Delta)$ ". By extending, it may be assumed that $m \subseteq \operatorname{dom}(a) \subseteq \operatorname{dom}(f)$. Let \bar{m} be the maximal element of $\operatorname{dom}(f)$. Let $p^{\prime} \geq p \upharpoonright \gamma$ be such that Δ is contained in the support of p^{\prime}.

There are now two cases to consider: Either β is a successor in \prec or it is a limit. If it is a successor then let β^{*} be the predecessor of β in \prec. Otherwise, let β^{*} be such that β^{*} is greater then the support of of p^{\prime} and $\beta^{*} \prec \beta$ and β^{*} is the successor of $\beta^{* *}$ in the ordering \prec. In the first case, let $p^{\prime \prime} \geq p^{\prime}$ be such that $p^{\prime \prime} \Vdash_{\mathbb{P}_{\gamma}}$ " $A_{\beta^{*}}^{-1} k \in D_{\beta}$ ". In the second case, choose $p^{\prime \prime}$ such that $p^{\prime \prime} \vdash_{\mathbb{P}_{\beta^{*}}} " A_{\beta^{* *}}^{-1} k \in D_{\beta^{*}}$ " and such that $\beta^{* *}$ belongs to the support of $p^{\prime \prime}$.

Now use the induction hypothesis to find a determined condition q such that if σ is the maximal element of Σ_{q} then $\bar{m} \in \operatorname{dom}\left(a_{q}^{\sigma}\right)$. Moreover, in the case that β is a limit of \prec, then the induction hypothesis can be used to ensure that $\sigma<\beta^{*}$. It will be shown that the transitivity of \prec guarantees that $q * p(\gamma)=r$ is a determined condition satisfying the extra induction requirements. Let $\Sigma_{r}=\Sigma_{q} \cup\{\beta\}$ and let $f_{r}^{\sigma}, a_{r}^{\sigma}$ and Δ_{r}^{σ} have the values inherited from q and $p(\beta)$. Furthermore, $k_{r}(\alpha, \tau)$ can be defined to be $k_{q}(\alpha, \tau)$ unless $\beta=\tau$. Here the choice of $p^{\prime \prime}$ helps.

In the case that β is the successor of β^{*}, then $p^{\prime \prime}$ decides that $A_{\beta^{*}}^{-1} k \in D_{\beta^{*}}$ so $k_{r}\left(\beta^{*}, \beta\right)$ can be defined to be k and, moreover $k_{r}(\mu, \beta)$ can be defined to be k for each $\mu \in \Sigma_{q}$ such that $\mu \prec \beta^{*}$. Since β is the successor of β^{*} in \prec there are no new instances with which to deal. In the case that β is a limit in the partial order \prec, it is possibe to define $k_{r}\left(\beta^{* *}, \beta\right)=k$ because of the transitivity of \prec. For the same reason it is possible to define $k_{r}(\mu, \beta)$ to be k for each $\mu \in \Sigma_{q}$ such that $\mu \prec \beta^{* *}$. Since the support of q is contained in β^{*} and β^{*} is the successor of $\beta^{* *}$ in the partial order \prec, it follows that there are no new instances to consider in this case as well.

Lemma 0.2. The partial order $\mathbb{P}_{\omega_{2}}$ is locally Cohen.
Proof: Let $X \in\left[\mathbb{P}_{\omega_{2}}\right]^{\aleph_{0}}$. Let \mathfrak{M} be a countable elementary submodel of $H\left(\omega_{3}\right)$ which contains X and the \diamond-sequence $\left\{D_{\xi}: \xi \in \omega_{2}\right\}$ as well as $\mathbb{P}_{\omega_{2}}$. It suffices to show that if $p \in \mathbb{P}_{\omega_{2}}$ and $D \subseteq \mathfrak{M} \cap \mathbb{P}_{\omega_{2}}$ is a dense subset of the partial order $\mathfrak{M} \cap \mathbb{P}_{\omega_{2}}$ then there is $q \in D$ and $r \in \mathbb{P}_{\omega_{2}}$ such that $r \geq p$ and $r \geq q$.

Given $p \in \mathbb{P}_{\omega_{2}}$, by using Lemma 0.1 , it may, without loss of generality, be assumed that p is determined. Using the elementarity of \mathfrak{M} it follows that there is some determined condition p^{\prime} which is isomorphic to p. In particular, there is an order preserving bijection $I: \Sigma_{p} \rightarrow \Sigma_{p^{\prime}}$ such that I is the identity on $\Sigma p \cap \mathfrak{M}$, $a_{p}^{\sigma}=a_{p^{\prime}}^{I(\sigma)}, f_{p}^{\sigma}=f_{p^{\prime}}^{I(\sigma)}, g_{p}^{\sigma}=g^{I(\sigma)}$ and I preserve the partial ordering \prec. It is not required that $\Delta_{p}^{\sigma}=\Delta_{p^{\prime}}^{I(\sigma)}$ because $\Delta_{p^{\prime}}^{\sigma}$ will be defined to be $\Sigma_{p^{\prime}} \cap \sigma$.

Now let $q \in D$ be a condition extending p^{\prime}. Using Lemma 0.1 it may again be assumed that q is determined. It must be shown how to define $r \in \mathbb{P}_{\omega_{2}}$ extending both q and p. In order to do this, define $s(\alpha)$ to be the unique, minimal ordinal $\delta \in \mathfrak{M}$ such that $\alpha \prec \delta$ if such a unique ordinal exists. Notice that if $\alpha \notin \mathfrak{M}$ and there is some $\delta \in \mathfrak{M}$ such that $\alpha \prec \delta$ then $s(\alpha)$ exists. The reason for this is that the only way that $s(\alpha)$ can fail to exist in this context is that there are two minimal ordinals $\delta \in \mathfrak{M}$ and $\delta^{\prime} \in \mathfrak{M}$ such that $\alpha \prec \delta$ and $\alpha \prec \delta^{\prime}$. However, this means that the supremum of $\left\{\gamma: \gamma \prec \delta\right.$ and $\left.\gamma \prec \delta^{\prime}\right\}$ belongs to \mathfrak{M} and hence there is some $\alpha^{\prime} \in \mathfrak{M} \backslash \alpha$ such that $\alpha^{\prime} \prec \delta$ and $\alpha^{\prime} \prec \delta^{\prime}$. From the easily verified fact that \prec is a tree ordering it follows $\alpha \prec \alpha^{\prime}$ contradicting the minimality assumption on δ and δ^{\prime}.

Now define r as follows:

- the domain of r is the union of the domains of q and p
- if $\alpha \in \mathfrak{M}$ then $r(\alpha)=a_{q}^{\alpha} *\left(f_{q}^{\alpha}, \Delta_{q}^{\alpha} \cup \Delta_{p}^{\alpha}\right)$
- if $\alpha \notin \mathfrak{M}$ and there does not exist $\delta \in \operatorname{dom}(q)$ such that $\alpha \prec \delta$ then $r(\alpha)=p(\alpha)$
- if $\alpha \notin \mathfrak{M}$ and there exists $\delta \in \operatorname{dom}(q)$ such that $\alpha \prec \delta$ then recall that $s(\alpha)$ is defined and define $r(\alpha)=a_{r}^{\alpha} *\left(f_{r}^{\alpha}, \Delta_{p}^{\alpha}\right)$ where the function a_{r}^{α} is defined
by

$$
a_{r}^{\alpha}(n)=\left\{\begin{array}{ll}
a_{p}^{\alpha}(n) & \text { if } n \in \operatorname{dom}\left(a_{p}^{\alpha}\right) \\
k_{p}(\alpha, s(\alpha))+1 & \bmod 2
\end{array} \text { if } n \notin \operatorname{dom}\left(a_{p}^{\alpha}\right)\right.
$$

(note that in this case $k_{p}(\alpha, s(\alpha))$ has a natural definition because \prec is a tree ordering) and the function f_{r}^{α} is defined by

$$
f_{r}^{\alpha}(n)= \begin{cases}f_{p}^{\alpha}(n) & \text { if } n \in \operatorname{dom}\left(f_{p}^{\alpha}\right) \\ \min \left\{f_{q}^{\beta}(n): \beta \in \Sigma_{p} \cap \mathfrak{M} \text { and } \alpha \prec \beta\right\} & \text { if } n \notin \operatorname{dom}\left(a_{p}^{\alpha}\right)\end{cases}
$$

The fact that $r \geq q$ is immediate because $a_{r}^{\mu}=a_{q}^{\mu}$ and $f_{r}^{\mu}=f_{q}^{\mu}$ for each $\mu \in \Sigma_{q}$ and, moreover, if $\alpha \in \operatorname{dom}(q)$ then $\Delta_{q}^{\alpha} \subseteq \mathfrak{M}$; so there is no restriction on the points in the domain of r not in the domain of q.

It will be shown that $r \geq p$ by inductively proving that $r \upharpoonright \rho \geq p \upharpoonright \rho$ for each $\rho \in \omega_{2}$. If $\rho=0$ there is nothing to do and at limits the finite support of the iteration makes the task easy. So suppose that $r \upharpoonright \rho \geq p \upharpoonright \rho$. Tt suffices to show that the following Key Condition is satisfied: If

- $\alpha \prec \beta \leq \rho$
- $\beta \in \Sigma_{p}$
- $\alpha \in \Delta_{p}^{\beta}$
- n is in the domain of $f_{r}^{\beta} \backslash f_{p}^{\beta}$
then $f_{r}^{\beta}(n) \geq f_{r}^{\alpha}(n)$ and, in addition, if $a_{r}^{\alpha}(n)=k_{r}(\alpha, \beta)$ then $r \upharpoonright(\rho+1) \Vdash_{\mathbb{P}_{\rho+1}}$ " $f_{r}^{\beta}(n) \geq g_{o(\alpha)}(n)$ ". This will be established by considering various cases.

Case 1

Suppose that α and β both belong to \mathfrak{M}. Since $q \geq p^{\prime}$, from the definition of p^{\prime} and the partial order \mathbb{Q}_{β} it easily follows that the Key Condition is satisfied. There is no need to use the induction hypothesis in this case.

Case 2

Suppose now that β belongs to \mathfrak{M} but α does not. First it will be shown that $f_{r}^{\beta}(n) \geq f_{r}^{\alpha}(n)$. There are two subcases to consider; either n belongs to the domain of f_{p}^{α} or it does not. If it does, then $f_{p^{\prime}}^{I(\alpha)}(n)=f_{p}^{\alpha}(n)=f_{r}^{\alpha}(n)$ and $I(\alpha) \in \Delta_{p^{\prime}}^{\beta}$. Because $I(\alpha) \prec \beta$, it follows from the fact that $q \geq p^{\prime}$ that $f_{q}^{\beta}(n) \geq f_{p^{\prime}}^{I(\alpha)}(n)=$ $f_{r}^{\alpha}(n)$. The other possibility is that n does not belong to the domain of f_{p}^{α}. In this case, the definition of r asserts that

$$
f_{r}^{\alpha}(n)=\min \left\{f_{q}^{\gamma}(n): \alpha \prec \gamma \text { and } \gamma \in \mathfrak{M} \cap \operatorname{dom}(p)\right\}
$$

and, since β is in the support of p and $\alpha \prec \beta$, it follows that $f_{r}^{\alpha}(n) \leq f_{q}^{\beta}(n)$.
It must now be shown that, if $k_{r}(\alpha, \beta)=a_{r}(n)$ then $r \upharpoonright(\rho+1) \Vdash_{\mathbb{P}_{\rho+1}}$ " $f_{r}^{\beta}(n) \geq$ $g_{o(\alpha)}(n) "$. There are again two subcases to consider; either n belongs to the domain of a_{p}^{α} or it does not. If it does, then $g_{p^{\prime}}^{I(\alpha)}(n)=g_{p}^{\alpha}(n)$ and $I(\alpha) \in \Delta_{p^{\prime}}^{\beta}$. Because $I(\alpha) \prec \beta$, it follows from the fact that $q \geq p^{\prime}$ that $q \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} " f_{q}^{\beta}(n) \geq g_{p^{\prime}}^{I(\alpha)}(n)$ " while, on the other hand, $p \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}}$ " $g_{o(\alpha)}(n)=g_{p}^{\alpha}(n)$ ". Since the induction hypothesis implies that $r \upharpoonright \alpha \geq p \upharpoonright \alpha$ and it has already been noted that $r \geq q$ it follows that $r \Vdash_{\rho+1}$ " $f_{q}^{\beta}(n) \geq g_{p^{\prime}}^{I(\alpha)}(n)=g_{p}^{\alpha}(n)=g_{o(\alpha)}(n)$ ". The other possibility is that n does not belong to the domain of a_{p}^{α}. In this case, the definition of r guarantees that $a_{r}^{\alpha}(n) \neq k_{r}(\alpha, s(\alpha))$ and, the minimality of $s(\alpha)$ guarantees that $s(\alpha) \prec \beta$ because $\alpha \prec \beta$ and $\beta \in \mathfrak{M}$. The transitivity of \prec, now guarantees that $k_{r}(\alpha, \beta) \neq a_{r}^{\alpha}(n)$ and so the Key Condition is vacuously satsified.

Case 3

Suppose now that $\alpha \in \mathfrak{M}$ but $\beta \notin \mathfrak{M}$. It will first be shown that $f_{r}^{\beta}(n) \geq f_{r}^{\alpha}(n)$. To see this, recall that $f_{r}^{\beta}(n)=f_{q}^{\gamma}(n)$ for some γ such that $\beta \prec \gamma, \gamma \in \mathfrak{M}$ and γ belongs to the support of p - recall that it is being assumed that n is not in the domain of f_{p}^{β} and this function was only extended in the case that there was an appropriate γ. Recall also that this implies that $\Delta_{p^{\prime}}^{\gamma}=\Sigma_{p^{\prime}} \cap \gamma \cap \mathfrak{M}$ and hence $\alpha \in \Delta_{p^{\prime}}^{\gamma}$. Because $\alpha \prec \beta \prec \gamma$ it follows from the fact that $q \geq p^{\prime}$ that $f_{q}^{\alpha}(n) \leq f_{q}^{\gamma}(n)=f_{r}^{\beta}(n)$.

Now consider $g_{o(\alpha)}(n)$. Since $\alpha \in \Delta_{p^{\prime}}^{\gamma}$ and $\alpha \prec \gamma$ it follows that

$$
q \Vdash " g_{o(\alpha)} \leq f_{q}^{\gamma}(n) "
$$

and, because it has already been noted that $r \geq q$ it follows that

$$
r \upharpoonright(\rho+1) \Vdash_{\mathbb{P}_{\rho+1}} " g_{o(\alpha)} \leq f_{q}^{\gamma}(n) "
$$

Since $f_{q}^{\gamma}(n)=f_{r}^{\beta}(n)$ it follows that the Key Condition has been satisfied.

Case 4

Finally, suppose that neither α nor β belongs to \mathfrak{M}. To show that $f_{r}^{\beta}(n) \geq f_{r}^{\alpha}(n)$ two cases must again be considered; either n belongs to the domain of f_{p}^{α} or it does not. If it does, then $f_{r}^{\beta}(n)=f_{q}^{\gamma}(n)$ for some γ such that $\beta \prec \gamma, \gamma \in \mathfrak{M}$ and γ belongs to the support of p. Since $\alpha \prec \beta \prec \gamma$ it follows that $I(\alpha) \prec \gamma$ and so $f_{q}^{\gamma}(n) \geq f_{p^{\prime}}^{I(\alpha)}(n)=f_{p}^{\alpha}(n)=f_{r}^{\alpha}(n)$. On the other hand, if n does not belong to the domain of f_{p}^{α} then

$$
f_{r}^{\alpha}(n)=\min \left\{f_{q}^{\gamma}(n): \alpha \prec \gamma \text { and } \gamma \in \mathfrak{M} \cap \operatorname{dom}(\mathfrak{p})\right\}
$$

and, since this minimum is taken over a set which includes γ, it follows that $f_{r}^{\alpha}(n) \leq$ $f_{q}^{\gamma}(n)=f_{r}^{\beta}(n)$.

To show that $r \upharpoonright(\rho+1) \Vdash_{\mathbb{P}_{\rho+1}}$ " $g_{o(\alpha)}(n) \leq f_{r}^{\beta}(n)$ " there are, once again, two cases to consider; either n belongs to the domain of a_{p}^{α} or it does not. If it does, then $g_{p^{\prime}}^{I(\alpha)}(n)=g_{r}^{\alpha}(n)$ and $I(\alpha) \in \Delta_{p^{\prime}}^{\gamma}$. Because $I(\alpha) \prec \gamma$, it follows from the fact that $q \geq p^{\prime}$ that $q \Vdash$ " $f_{q}^{\gamma}(n) \geq g_{p^{\prime}}^{I(\alpha)}(n) "$. On the other hand, $p \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}} " g_{o(\alpha)}(n)=$ $g_{r}^{\alpha}(n) "$ and so the, because the induction hypothesis yields that $r \upharpoonright \alpha \geq p \upharpoonright \alpha$ it follows that $r \upharpoonright(\rho+1) \vdash_{\mathbb{P}_{\rho+1}} " f_{q}^{\beta}(n)=f_{q}^{\gamma}(n) \geq g_{p^{\prime}}^{I(\alpha)}(n)=g_{r}^{\alpha}(n)=g o(\alpha)(n) "$. The other possibility is that n does not belong to the domain of a_{p}^{α}. In this case, the definition of r guarantees that $a_{r}^{\alpha}(n) \neq k_{r}(\alpha, s(\alpha))$. The fact that $\alpha \prec \beta$, together with the uniquenness of $s(\alpha)$ guarantees that $s(\alpha)=s(\beta)$. The transitivity of \prec, now guarantees that $k_{r}(\alpha, \beta)=k_{r}(\alpha, s(\beta))=k_{r}(\alpha, s(\alpha)) \neq a_{r}^{\alpha}(n)$ and so the Key Condition is vacuously satisified. The use of $k_{r}(\alpha, s(\beta))$ and $k_{r}(\alpha, s(\alpha))$ here is a slight abuse of notation because there is no guarantee that $s(\alpha)$ belongs to the domain of r. Nevertherless, because $k_{r}(\alpha, \gamma)$ is defined for some γ such that $\alpha \prec s(\alpha) \prec \gamma$ there is no harm in this abuse.

References

1. S. Shelah and J. Steprāns, Maximal Chains in ω_{ω} and Ultrapowers of the Integers, to appear in Arch. für Math. Log.

Institute of Mathematics, Hebrew University, Jerusalem, Givat Ram, Israel and Department of Mathematics, Rutgers University, New Brunswick, New Jersey

Department of Mathematics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

