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0 Introduction

In 1979 Baumgartner and Laver proved that after adding ω2 Sacks reals (by
the countable support iteration) to a model of CH one gets a model in which
the Sacks forcing forces CH (see theorem 5.2 of [2]). The question arose
when the Sacks forcing may collapse cardinals and which of them. In 1989
Carlson and Laver posed a hypothesis that the Sacks forcing collapses the
continuum at least onto the dominating number d (see [3]). In the same
paper they proved that, assuming CH, the Sacks forcing forces ♦ω1 . In
the present paper we give an affirmative answer to the question of Carlson
and Laver proving that the continuum is collapsed at least onto a cardinal
number called here b+ε when a Sacks real is added. The cardinal b+ε is one
of the cardinal invariants laying between the unbounded number b and the
dominating number d which were introduced in [7]. After we got the answer
we proved that if b+ε = ω1 then the Sacks forcing forces ♦ω1 . That naturally
suggested the question if this is an accident and the answer we obtained says
that it is a reflection of a more general theorem.

The main result of this paper says that if a proper forcing notion P of
size not greater than the continuum collapses ω2 then 
P ♦ω1 .

Notation: Our notation is rather standard and is compatible with that
of [5] or [4]. However, there are some exceptions. In a forcing notion P we
write p ≤ q to say that “the condition q is stronger than p”. The canonical
P-name for a generic filter is denoted by ΓP or just Γ. For a formula ϕ of
the forcing language and a condition p ∈ P we say that p decides ϕ (p ‖ ϕ)
if either p 
 ϕ or p 
 ¬ϕ.

A forcing notion (P,≤) satisfies the Axiom A of Baumgartner (see [1]) if
there are partial orders ≤n on P (for n ∈ ω) such that

1. p ≤0 q if and only if p ≤ q

2. if p ≤n+1 q then p ≤n q

3. if a sequence 〈pn : n ∈ ω〉 ⊆ P satisfies (∀n ∈ ω)(pn ≤n pn+1) then
there exists a condition p ∈ P such that (∀n ∈ ω)(pn ≤ p).

4. if A ⊆ P is an antichain, p ∈ P, n ∈ ω then there exists a condition
q ∈ P such that p ≤n q and the set {r ∈ A : q and r are compatible}
is countable.
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It is well known that if P satisfies the Axiom A then P is proper.
The size of the continuum is denoted by c. We will use the quantifiers

(∀∞n) and (∃∞n) as abbreviations for

(∃m ∈ ω)(∀n > m) and (∀m ∈ ω)(∃n > m),

respectively. The Baire space ωω of all functions from ω to ω is endowed
with the partial order ≤∗:

f ≤∗ g ⇐⇒ (∀∞n)(f(n) ≤ g(n)).

A family F ⊆ ωω is unbounded in (ωω,≤∗) if

¬(∃g ∈ ωω)(∀f ∈ F )(f ≤∗ g)

and it is dominating in (ωω,≤∗) if

(∀g ∈ ωω)(∃f ∈ F )(g ≤∗ f).

The unbounded number b is the minimal size of an unbounded family in the
partial order (ωω,≤∗), the dominating number d is the minimal size of a
dominating family in that order (for more information about these cardinals
see [10] or [7]).

The set of all infinite subsets of ω is denoted by [ω]ω. A tree on X is a
set of finite sequences T ⊆ X< ω such that s ⊆ t ∈ T implies s ∈ T . A tree
T on X is perfect if for each s ∈ T there are t0, t1 ∈ T extending s, both in
T and such that neither t0 ⊆ t1 nor t1 ⊆ t0. The body [T ] of a tree T is the
set {x ∈ Xω : (∀n ∈ ω)(x�n ∈ T )}.

Acknowledgements: Special thanks are due to the referee for very valu-
able comments.

1 Antichains of skew trees

The Sacks forcing S consists of all perfect trees T ⊆ 2<ω. These trees are
ordered by inclusion (a stronger tree is the smaller one). For T ∈ S and t ∈ T
we say that t ramifies in T (or t is a ramification point in T ) whenever both
t̂ 0 and t̂ 1 are in T . For s ∈ T ∩ 2n, n < k we say that s ramifies in T below
k if there is t ∈ T of length less than k − 1 such that s ⊆ t and t ramifies in
T . A node t ∈ T is a ramification point of rank n in T if t ramifies in T and
exactly n initial segments of t ramify in T . Orders ≤n on S are defined by
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T ≤n T ′ if and only if
T ≤ T ′ and if t ∈ T is a ramification point of the rank ≤ n then
t ∈ T ′.

The Sacks forcing S together with orders ≤n (for n ∈ ω) satisfies Axiom A
of Baumgartner (see [1]).

For T ∈ S and t ∈ T we put (T )t = {s ∈ T : s ⊆ t or t ⊆ s}.

Definition 1.1 A tree T ∈ S is skew if for each n ∈ ω at most one node
from T ∩ 2n ramifies in T.

Clearly the set of all skew perfect trees is dense in S.

Carlson and Laver proved that CH implies 
S ♦ω1 . A detailed analysis
of their proof shows that the result can be formulated as follows.

Theorem 1.2 (T.Carlson, R.Laver, [3]) Assume that b = ω1 and ev-
ery maximal antichain A ⊆ S consisting of skew trees is of the size c.
Then 
S ♦ω1.

Since skew trees are very small (e.g. their bodies are both meager and null)
the question appeared if the second assumption is always satisfied. The
answer is negative:

Theorem 1.3 It is consistent that there exists a maximal antichain {Tα :
α < ω1} ⊆ S such that each tree Tα is skew while ω1 < c.

Proof: Let T̄ = 〈Tα : α < α0〉 be a sequence of skew trees, α0 < ω1 and
let S = {T ∈ S : (∀α < α0)(Tα, T are incompatible )}. We define a forcing
notion Q(T̄ ):

Conditions are triples (n, F, S̄) such that

F ⊆ 2≤n is a finite skew tree of height n ∈ ω,
S̄ = 〈St : t ∈ F ∩ 2n〉, t ⊆ root(St) and St ∈ S.

The order is defined by

(n0, F 0, S̄0) ≤ (n1, F 1, S̄1) if and only if
F 1�n0 = F 0 and (∀t ∈ F 0∩2n0)(∃s ∈ F 1∩2n1)(S1

s = (S0
t )s)
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Claim 1.3.1 The forcing notion Q(T̄ ) satisfies the ccc.

Why? Suppose that 〈(ni, F i, S̄i) : i < ω1〉 ⊆ Q(T̄ ). First we find A ∈ [ω1]ω1 ,

n ∈ ω and a finite skew tree F ⊆ 2≤n of the height n such that for each
i ∈ A we have ni = n, F i = F . Next we find A′ ∈ [A]ω1 , n∗ > n and a finite

skew tree F ∗ ⊆ 2n
∗

such that F ∗ ∩ 2n = F ∩ 2n and for each i ∈ A′

each node t ∈ F ∩ 2n ramifies in F ∗ (below n∗) and

Sit ∩ 2≤n
∗
⊇ (F ∗)t.

For each t ∈ F ∩ 2n choose two distinct l(t), r(t) ∈ (F ∗)t∩ 2n
∗
. Let i, j ∈ A′.

For t ∈ F ∩ 2n put S∗l(t) = (Sit)l(t) and S∗r(t) = (Sjt )r(t). Clearly (n∗, F ∗, S̄∗) ∈
Q(T̄ ) and this condition is stronger than both (ni, F i, S̄i) and (nj, F j, S̄j).
The claim is proved.

Suppose that G ⊆ Q(T̄ ) is a generic filter over V. Then a density argu-
ment shows that TG =

⋃{F : (∃n, S̄)((n, F, S̄) ∈ G)} is a skew perfect tree.
Let ṪΓ be the canonical Q(T̄ )-name for the tree TG.

Claim 1.3.2 If (n, F, S̄) ∈ Q(T̄ ), t ∈ F ∩ 2n

then (n, F, S̄) 
 “ṪΓ, St are compatible”.

Why? Suppose (n0, F 0, S̄0) ∈ Q(T̄ ), t0 ∈ F 0 ∩ 2n
0
. Take n1 such that t0

ramifies in S0
t0

below n1. Take two distinct extensions t00, t
1
0 of t0, t00, t

1
0 ∈

S0
t0
∩ 2n

1
and for t ∈ (F 0 ∩ 2n

0
) fix an extension t1 ⊇ t, t1 ∈ S0

t . Put

F 1 = {t1�m : m ≤ n1}∪{ti0�m : m ≤ n1, i = 0, 1}, S1
t1 = (S0

t )t1 , S
1
ti0

= (S0
t0

)ti0 .

Then (n1, F 1, S̄1) ∈ Q(T̄ ) is a condition stronger than (n0, F 0, S̄0) and

(n1, F 1, S̄1) 
 t00, t
1
0 ∈ ṪΓ ∩ S0

t0
.

Since S1
t00
, S1

t10
⊆ S0

t0
easy density argument proves the claim.

Claim 1.3.3 
Q(T̄ ) (∀α < α0)(Tα, ṪΓ are incompatible).
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Why? Let α < α0, (n, F, S̄) ∈ Q(T̄ ). Since each St (for t ∈ F ∩ 2n) is

incompatible with Tα we find n∗ > n and v(t) ∈ St ∩ 2n
∗

for t ∈ F ∩ 2n such
that v(t) /∈ Tα. Let

F ∗ = {v(t)�m : m ≤ n∗, t ∈ F ∩ 2n} and S∗v(t) = (St)v(t) for t ∈ F ∩ 2n.

Then (n∗, F ∗, S̄∗) ≥ (n, F, S̄) and (n∗, F ∗, S̄∗) 
 ṪΓ ∩ Tα ⊆ F ∗. The claim is
proved.

Now we start with V |= ¬CH. Let 〈Pα, Q̇α : α < ω1〉 be the finite support
iteration such that


α Q̇α = Q(〈Ṫβ : β < α〉)
where Ṫβ is the Pβ+1-name for the generic tree added by Q̇β. Let G ⊆ Pω1 be a
generic over V. Since Pω1 satisfies ccc (by claim 1.3.1) we have V[G] |= ¬CH.
By claim 1.3.3, 〈ṪGα : α < ω1〉 is an antichain in S. We claim that it is a
maximal antichain (in V[G]).
Suppose that Ṫ is a Pω1-name for an element of S. Then Ṫ is a Pα-name for
some α < ω1. Assume that p ∈ Pω1 is such that

p 
ω1 (∀α < ω1)(Ṫ , Ṫα are incompatible).

Take α0 > α such that p ∈ Pα0 . Since

p 
α0 (∀α < α0)(Ṫ , Ṫα are incompatible)

we can extend p to q = p ∪ {(α0, (0, {∅}, 〈Ṫ 〉))} ∈ Pω1 . It follows from claim
1.3.2 that q 
ω1 “Ṫα0 , Ṫ are compatible” - a contradiction. The theorem is
proved.

2 When Sacks forcing forces CH

In this section we show that if d = ω1 then 
SCH, and hence applying the
result of the next section we will be able to conclude 
S ♦ω1 provided d = ω1.
[To be more precise, if CH holds then 
S ♦ω1 by theorem 1.2 of Carlson and
Laver. If we are in the situation of d = ω1 < c then, by corollary 2.6, c is
collapsed to ω1 and hence ω2 is collapsed (by forcing with S). Now theorem
3.4 applies.] This answers the question of T.Carlson and R.Laver (see [3]).

We start with the following general observation.
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Lemma 2.1 Let P be a forcing notion, κ a cardinal. Suppose that there
exist antichains Aζ ⊆ P for ζ < κ such that

(*) (∀p ∈ P)(∃ζ < κ)(|{q ∈ Aζ : p ≤ q}| = |P|).

Then 
P |PV| ≤ κ.

Proof: For each ζ < κ, by an easy induction, one can construct a
function φζ : Aζ −→ P such that for every p, p′ ∈ P

if |{q ∈ Aζ : p ≤ q}| = |P|
then φζ(q) = p′ for some q ∈ Aζ , q ≥ p.

Now let φ̇ be a P-name for a function from κ into PV such that

q 
 φ̇(ζ) = φζ(q) for ζ < κ, q ∈ Aζ .

Clearly for each p, p′ ∈ P, if ζ < κ witnesses (*) for p then there is q ≥ p
such that q 
 φ̇(ζ) = p′. Consequently 
P rng(φ̇) = PV and we are done.

Thus to prove that the Sacks forcing collapses continuum we will construct
the respective sequence of antichains in S. The sequence will be produced
from a special family of subsets of [ω]ω

For a set X ∈ [ω]ω let µX : ω
onto−→ X be the increasing enumeration of

the set X.

Definition 2.2 (1) A family F ⊆ [ω]ω is dominating in [ω]ω if

(∀Y ∈ [ω]ω)(∃X∈F)(∀∞n)(|[µX(n), µX(n+ 1)) ∩ Y | ≥ 2).

(2) A family F ⊆ [ω]ω is weakly dominating in [ω]ω if for every set
Y ∈ [ω]ω

(∃X∈F)(∃∞i)(∀j<2i)(|[µX(2i+j), µX(2i+j+1)) ∩ Y | ≥ 2).

(3) b+ε = min{|F| : F ⊆ [ω]ω is weakly dominating}.
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Remarks: 1) Note that if F is a dominating family in [ω]ω then
{µX : X ∈ F} is a dominating family in the order 〈ωω,≤∗〉. And con-
versely, if F ⊆ ωω is a dominating family of increasing functions, Xf,n =
{f(n), f(f(n)), f(f(f(n))) . . .} (for f ∈F, n∈ω) then {Xf,n : f ∈F, n∈ω} is
a dominating family in [ω]ω. In particular the minimal size of a dominating
family in [ω]ω is the dominating number d. Clearly each dominating family
is weakly dominating. Consequently b+ε ≤ d.
2) We have the following inequalities:

b ≤ b+ε ≤ min{|X| : X ⊆ 2ω is not meager}.

Moreover, the inequality b < b+ε is consistent with ZFC (see [7]; b+ε is the
cardinal d(S+ε) of that paper).
3) One can replace “≥ 2” in the definition of a weakly dominating family
(and b+ε) by “≥ 1” (and replace the function i 7→ 2i by any other increasing
function) and still the results of this section could be carried on (with this
new b+ε). The reason why we use this definition of b+ε is that it fits to a
more general schema of cardinal invariants studied in [7]. For example note
that the unbounded number b equals to

min{|F| : F ⊆ [ω]ω & (∀Y ∈ [ω]ω)(∃X∈F)(∃∞i)(|[µX(i), µX(i+1))∩Y | ≥ 2)}

and “≥ 2” in the above cannot be replaced by “≥ 1”.

Definition 2.3 Let T ∈ S, X ∈ [ω]ω. We say that the condition T weakly
obeys the set X if

(∃∞i)(∀j<2i)(∀t∈T ∩ 2µX(2i+j))(t ramifies in T below µX(2i + j + 1)).

Lemma 2.4 Suppose X ∈ [ω]ω. Then there exists an antichain A ⊆ S
such that
(∗X) if T ∈ S weakly obeys X then |{S ∈ A : T ≤ S}| = c.

Proof: Let {Tα : α < c} = {T ∈ S : T weakly obeys X} be an enumera-
tion with c repetitions. Let {hα : α < c} ⊆ ωω be a family of functions such
that

(∀α< c)(∀i<ω)(hα(i) < 2i) and (∀α<β< c)(∀∞i)(hα(i) 6= hβ(i)).

Since Tα weakly obeys X we have that for infinitely many i, for each j < 2i

each node t ∈ Tα∩2µX(2i+j) ramifies in Tα below µX(2i+j+1). Consequently,
for each α < c we can construct a condition Sα ≥ Tα such that for every i ∈ ω:
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if some t ∈ Sα ∩ 2µX(2i+j) ramifies below µX(2i + j + 1), j < 2i

then j = hα(i).

Note that (∀∞n)(hα(n) 6= hβ(n)) implies that conditions Sα, Sβ are incom-
patible. Thus A = {Sα : α < c} is an antichain. Clearly this A works.

Theorem 2.5 
S c = |(b+ε)V|.

Proof: Since 
S c = |cV| it is enough to show that


S “there exists a function φ from (b+ε)V onto cV”.

By the definition of the cardinal b+ε there exists a sequence 〈Xζ : ζ < b+ε〉 ⊆
[ω]ω which is weakly dominating. Apply lemma 2.4 to construct antichains
Aζ ⊆ S such that

if T ∈ S weakly obeys Xζ then |{S ∈ Aζ : T ≤ S}| = c.
Since each tree T ∈ S weakly obeys some Xζ we can conclude the assertion
from lemma 2.1.

Corollary 2.6 Assume that d = ω1. Then 
SCH.

The Marczewski ideal S0 is a σ-ideal of subsets of the Cantor space 2ω.
This ideal is connected with the Sacks forcing. It consist of all sets A ⊆ 2ω

such that
(∀T ∈ S)(∃T ′ ≥ T )([T ′] ∩ A = ∅),

where [T ′] = {x ∈ 2ω : (∀n ∈ ω)(x�n ∈ T ′)}.
Some connections between the Marczewski ideal S0 and the Sacks forcing

S were established in [6].

Corollary 2.7 add(S0) ≤ b+ε

Proof: The crucial fact for this inequality is the existence of a sequence
〈A∗ζ : ζ < b+ε〉 ⊆ S of maximal antichains in S such that

(∀T ∈ S)(∃ζ < b+ε)([T ] \
⋃
{[S] : S ∈ A∗ζ} 6= ∅).
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For this first, as in the proof of theorem 2.5, find antichains Aζ ⊆ S for
ζ < b+ε such that

(∀T ∈ S)(∃ζ < b+ε)(|{S ∈ Aζ : T ≤ S}| = c).

Now fix ζ < b+ε. To construct A∗ζ take an enumeration {Tα : α < c} of S and
an enumeration {T ∗α : α < c} of {T ∈ S : |{S ∈ Aζ : T ≤ S}| = c}. Next by
induction on α < c choose trees Sα ∈ S and branches xα ∈ 2ω such that (for
α < c):

xα ∈ [T ∗α] \ ⋃β<α[Sβ],

either (∃S ∈ Aζ)(Sα ≥ S) or Aζ ∪ {Sα} is an antichain,

if Tα is incompatible with all Sβ (for β < α) then Sα ≥ Tα,

Sα is incompatible with each Sβ for β < α and

[Sα] ∩ {xβ : β ≤ α} = ∅.

At stage α < c we easily find a suitable xα ∈ [T ∗α] since continuum many
members of Aζ is stronger than T ∗α and each Sβ (for β < α) is either stronger
than some member ofAζ or incompatible with all elements ofAζ . (Remember
that two conditions S, T ∈ S are incompatible in S if and only if [S] ∩ [T ] is
countable.) If the condition Tα is compatible with some Sβ for β < α then we
put Sα = Sβ. Otherwise we choose S ∈ S such that Tα and S are compatible
and either S ∈ Aζ or S is incompatible with all members of Aζ . As each
perfect set contains continuum many disjoint perfect sets we can find a tree
Sα ≥ Tα, S such that [Sα] ∩ {xβ : β ≤ α} = ∅.
Then {Sα : α < c} = A∗ζ is a maximal antichain (note that there could be
repetitions in {Sα : α < c}). The points xα (for α < c) witness that no [T ∗α]
is covered by

⋃{[S] : S ∈ A∗ζ}.

Now, having antichains A∗ζ as above, we put Aζ =
⋃{[T ] : T ∈ A∗ζ}. Since

A∗ζ is a maximal antichain the complement of Aζ is in the ideal S0. Moreover,
for each T ∈ S there is ζ < b+ε with [T ]\Aζ 6= ∅. Hence

⋃
ζ<b+ε

(2ω\Aζ) /∈ S0.

Remark: Recently P. Simon has proved that in the results of these section
one can replace b+ε by the unbounded number b.
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3 Collapse ω2 – the continuum will fall down

In this section we will prove that if the Sacks forcing (or any proper forcing
of size ≤ c) collapses ω2 then it forces ♦ω1 . First we will give combinatorial
tools needed for the proof. Let us start with fixing some notation.

For an ordinal κ by IS(κ) we will denote the set of finite incresing sequences
with values in κ. χ stands for a “sufficiently large” cardinal, H(χ) is the
family of all sets hereditarily of the cardinality less than χ.

For ζ < ω1 let ζ = {eζn : n ∈ ω} be an enumeration.

Let S2
i = {δ < ω2 : cf(δ) = ωi} for i = 0, 1.

Lemma 3.1 (S.Shelah, see 2.3 of [9]) There exists a (“club–guessing”)
sequence C̄ = 〈Cδ : δ ∈ S2

0〉 such that

1. Cδ ⊆ δ, supCδ = δ,

2. the order type of Cδ is ω,

3. for every closed unbounded subset E of ω2 there exist δ ∈ S2
0 such that

Cδ ⊆ E.

We fix a club–guessing sequence C̄ = 〈Cδ : δ ∈ S2
0〉 as in 3.1. For δ ∈ S2

0 let
Cδ = {αδn : n ∈ ω} be the increasing enumeration.

Definition 3.2 Let δ ∈ S2
0 and let ζ < ω1 be limit.

1. A sequence 〈Nη : η ∈ IS(ω)〉 is a semi-(ζ, δ)-creature (for the sequence
C̄) if

α) Nη is a countable elementary submodel of H(χ), Nη ∩ ω1 ⊆ ζ and⋃
n∈ωNh�n ∩ ω1 = ζ for every increasing function h ∈ ωω,

β) if η ⊆ ν then Nη ≺ Nν,

γ) Nη ∩ ω2 ⊆ αδ0 ∪
⋃
n<lh(η)[α

δ
η(n), α

δ
η(n)+1),

δ) for each n < lh(η) the intersection Nη∩[αδη(n), α
δ
η(n)+1) is non empty.

2. Let P be a forcing notion, X ∈ H(χ). A (ζ, δ)-creature for P, X is a
system {(Nη, τη, kη) : η ∈ IS(ω)} such that
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α) the sequence 〈Nη : η ∈ IS(ω)〉 is a semi-(ζ, δ)-creature and
X,P,≤P, ω2, ω1, . . . ∈ N∅,

β) kη ∈ ω, {eζk : k < kη} ⊆ Nη, and for every increasing function
h ∈ ωω the sequence 〈kh�n : n ∈ ω〉 is unbounded,

γ) τη is a function such that dom(τη) ∈ [P × ω]≤ω, for each k ∈ ω
the set {p ∈ P : (p, k) ∈ dom(τη)} is an antichain in P and
rng(τη) ⊆ 2,

δ) if η ⊆ ν then kη ≤ kν and τη ⊆ τν.

3. Let CRζ
δ(P, X) be the family of all (ζ, δ)-creatures for P, X.

Remarks: 1. A P-name for a subset of ζ < ω1 can be thought of as a
function τ such that rngτ ⊆ 2 and domτ ⊆ P× ζ has the following property:

for each ξ ∈ ζ the set {p ∈ P : (p, ξ) ∈ domτ} is an antichain in
P

(and then for (p, ξ) ∈ τ : p 
 ξ ∈ τ if τ(p, ξ) = 1 and p 
 ξ /∈ τ otherwise).
If the forcing notion P is proper every such a name can be (above each
condition) forced to be equal to a countable name.

2. Thus in a (ζ, δ)-creature {(Nη, τη, kη) : η ∈ IS(ω)} for P the functions τη
can be thought of as approximations of a name for a subset of ζ. Note that
we demand no relations between functions τη and models Nη. The last are
only “side parameters”. The parameter will decide above which conditions
the name is described by the functions τ determined by a branch through
the creature.

Lemma 3.3 For every X ∈ H(χ) and a closed unbounded set D ⊆ ω1 for
some ζ ∈ D and δ ∈ S2

0 there exists a semi-(ζ, δ)-creature 〈N∗η : η ∈ IS(ω)〉
such that X ∈ N∗∅ .

Proof: The following special case of theorem 2.2 of [8] is a main tool for
constructing semi-creatures:
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Claim 3.3.1 (M.Rubin and S.Shelah, [8]) Suppose that T ⊆ ω< ω
2

is a tree such that for each node t ∈ T the set succT (t) of successors of t is
of the size ω2. Assume that φ : T −→ ω1. Then there exists a subtree T0 of
T such that

(∀t ∈ T0)(|succT0(t)| = ω2) and supφ[T0] < ω1.

If additionally φ is increasing (i.e. t ⊆ s ∈ T implies φ(t) ≤ φ(s)) then we
can demand that limn φ(x�n) is constant for all infinite branches x ∈ [T0].

For v ∈ IS(S2
1) choose Nv such that

(0) X ∈ N∅;

(1) Nv is an elementary countable submodel of H(χ);

(2) Nv ∩ ω1 ∈ D, [max(v), ω2) ∩Nv 6= ∅;

(3) if v ⊆ w then Nv ≺ Nw.

Now we will inductively define a tree T ⊆ IS(S2
1) and ordinals δv < ω2 for

v ∈ T such that:

(4) if v ∈ T then |succT (v)| = ω2 and

(5) if v ∈ T , φv : S2
1

onto−→ succT (v) is the increasing enumeration of succT (v)
then for every α ∈ S2

1 and w ∈ T , w ⊇ vˆφv(α)

Nw ∩ α ⊆ δv.

To start with we put ∅ ∈ T . For each v ∈ IS(S2
1) let ρv = sup(Nv ∩ v(0)).

Applying claim 3.3.1 for each α ∈ S2
1 we find a tree T 〈α〉 ⊆ IS(S2

1) and ρα < α
such that

(6) root(T 〈α〉) = 〈α〉;

(7) each node extending 〈α〉 has ω2 successors in T 〈α〉;

(8) for each v ∈ T 〈α〉, ρv < ρα.
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Applying Fodor’s lemma we find δ∅ and A∅ such that

(9) A∅ ∈ [S2
1 ]ω2 ;

(10) δ∅ = ρα for α ∈ A∅.

We put A∅ = succT (∅) and we decide that (T )〈α〉 ⊆ T 〈α〉 for each α ∈ A∅.
Note that at this moment we are sure that if 〈φ∅(α)〉 ⊆ w then Nw ∩ α ⊆
Nw ∩ φ∅(α) ⊆ δ∅ for each α ∈ S2

1 .
Suppose we have decided that v ∈ T and (T )v ⊆ T v.
Let φ′v : S2

1
onto−→ succT v(v) be the increasing enumeration. For each α ∈ S2

1

we apply claim 3.3.1 to find ρα < α and a tree T vˆφ′v(α) ⊆ T v such that

(11) root(T vˆφ′v(α)) = vˆφ′v(α);

(12) each node in T vˆφ′v(α) extending vˆφ′v(α) has ω2 successors in T vˆφ′v(α);

(13) for each w ∈ T vˆφ′v(α), w ⊇ vˆφ′v(α) we have sup(Nw ∩ α) < ρα.

Next we choose δv and Av such that

(14) Av ∈ [S2
1 ]ω2 ;

(15) δv = ρα for all α ∈ Av.

We put succT (v) = φ′v[Av] and we decide that for α ∈ Av

(T )vˆφ′v(α) ⊆ T vˆφ
′
v(α).

Note that at this moment we are sure that if w ∈ T , vˆφv(α) ⊆ w then
Nw ∩ α ⊆ Nw ∩ β ⊆ δv, where φ′v(β) = φv(α) (clearly α ≤ β). This finishes
the construction of the tree T (satisfying (4), (5)).

For v ∈ T let ζv = Nv ∩ ω1 ∈ D. We apply claim 3.3.1 once again to find
ζ < ω1 and a tree T ∗ ⊆ T such that each node in T ∗ has ω2 successors in T ∗
and for each ω-branch z through T ∗ we have sup{ζz�n : n ∈ ω} = ζ. Then

ζ ∈ D. For v ∈ T ∗ let ψv : S2
1

onto−→ succT ∗(v) be the increasing enumeration
and let δ∗v = sup(Nv ∩ ω2). Let

E = {δ<ω2 : δ is limit & (∀v∈ IS(δ) ∩ T ∗)(δv < δ & δ∗v < δ) &
& (∀v∈T ∗ ∩ IS(δ))(∀β<δ)(∃γ∈S2

1)(β < γ ≤ ψv(γ) < δ)}.
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Since E is a closed unbounded subset of ω2 we find δ ∈ E such that Cδ ⊆ E.

Now we may define the semi-(ζ, δ)-creature we are looking for by con-
structing an embedding π : IS(ω) −→ T ∗ such that lh(π(η)) = lh(η) and
choosing corresponding models Nπ(η). This is done by induction on the length
of a sequence η ∈ IS(ω):
Put π(∅) = ∅. Note that δ∅ < αδ0 (as αδ0 ∈ E).
Suppose we have defined π(η) ∈ T ∗ such that δπ(η) < αδnk−1+1, where η =
〈n0, n1, . . . , nk−1〉. Given nk > nk−1.
Take any γ ∈ (αδnk , α

δ
nk+1) ∩ S2

1 and put π(ηˆnk) = π(η)̂ ψπ(η)(γ) ∈ T ∗. By
the choice of γ we have δπ(ηˆnk) < αδnk+1.

Finally let N∗η = Nπ(η) for η ∈ IS(ω).

Since δ∅ < αδ0, δ∗π(〈n0〉) < αδn0+1 we have that for every n0 ∈ ω

N∗〈n0〉 ∩ ω2 ⊆ αδ0 ∪ [αδn0
, αδn0+1) and N∗〈n0〉 ∩ [αδn0

, αδn0+1) 6= ∅

(we use here (2) and (5)). Similarly, if η = 〈n0, . . . , nk−1, nk〉 ∈ IS(ω) then

N∗η ∩ αδni+1
⊆ αδni+1 for i < k and

N∗η ∩ [αδni , α
δ
ni+1) 6= ∅ for i ≤ k.

Consequently the sequence 〈N∗η : η ∈ IS(ω)〉 is a semi-(ζ, δ)-creature (and we
are done as X ∈ N∗∅ , ζ ∈ D).

Theorem 3.4 Assume P is a proper forcing notion, |P| ≤ c. Suppose

P |ωV

2 | = ω1. Then 
P ♦ω1.

Proof: Let P be a proper forcing notion collapsing ω2 and of size |P| ≤ c.
Since P collapses ω2 and |P| ≤ c we have c ≥ ω2. Let Θ be a P-name such
that


P “Θ : ω1 −→ ωV
2 is an increasing unbounded function”.

Our aim is to construct a sequence 〈Ȧζ : ζ < ω1〉 of P-names which
witnesses ♦ω1 in VP. In the construction we will use (ζ, δ)-creatures which
can be thought of as countable “trees” of possible fragments of names for
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subsets of ζ (together with some parameters for controlling their behaviour).
Each infinite branch through the creature will define a (countable) name for
a subset of ζ. Next we will choose continuum many branches together with
conditions in P. Our choice will ensure that the conditions form an antichain
in P and all antichains involved in the name determined by a single branch
(in important cases) are predense above the corresponding condition. This
will define the name Ȧζ for a subset of ζ. The main difficulty will be in
proving that the sequence 〈Ȧζ : ζ < ω1〉 is (a name for) a ♦ω1–sequence. But
this we will obtain right from the existence of creatures which was proved in
lemma 3.3.

Before we define the names Ȧζ we have to identify some creatures (as the

set CRζ
δ(P,Θ) can be very large):

For a (ζ, δ)-creature S = {(Nη, τη, kη) : η ∈ IS(ω)} ∈ CRζ
δ(P,Θ) let

U(S) =
⋃

η∈IS(ω)

Nη ∩ P.

Clearly U(S) is a countable subset of P and hence there is at most c possi-
bilities for U(S). Let Si = {(N i

η, τ
i
η, k

i
η) : η ∈ IS(ω)} ∈ CRζ

δ(P,Θ), i = 0, 1.
We say that the creatures S0, S1 are equivalent (S0 ≡ S1) whenever

(i) U(S0) = U(S1) and

(ii) for each η ∈ IS(ω): N0
η ∩ P = N1

η ∩ P, k0
η = k1

η, τ
0
η = τ 1

η and
{A0 ∩ U(S0) : A0 ∈ N0

η is a maximal antichain in P} =
= {A1 ∩ U(S1) : A1 ∈ N1

η is a maximal antichain in P}.

(Note that actually condition (ii) implies (i).) Since for each η ∈ IS(ω) there
is at most c possibilities for kη, τη, Nη ∩ P and {A ∩ U(S) : A ∈ Nη is a
maximal antichain in P} the relation ≡ has at most c equivalence classes.

The following claim should be clear:

Claim 3.4.1 Let Si = {(N i
η, τ

i
η, k

i
η) : η ∈ IS(ω)} ∈ CRζ

δ(P,Θ) (for i =
0, 1) be equivalent creatures. Let h ∈ ωω be an increasing function. Then

1.
⋃
n∈ωN

i
h�n is an elementary (countable) submodel of H(χ),

2.
⋃
n∈ωN

0
h�n ∩ P =

⋃
n∈ωN

1
h�n ∩ P,
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3. if A0 ∈ N0
h�n is a maximal antichain in P then for some maximal an-

tichain A1 ∈ N1
h�n we have A0 ∩ ⋃

n∈ωN
0
h�n = A1 ∩ ⋃

n∈ωN
1
h�n,

4. {A0 ∩ ⋃
n∈ωN

0
h�n : A0 ∈ ⋃

n∈ωN
0
h�n is a maximal antichain in P} =

= {A1 ∩ ⋃
n∈ωN

1
h�n : A1 ∈ ⋃

n∈ωN
1
h�n is a maximal antichain in P},

5. if p ∈ P is (
⋃
n∈ωN

0
h�n,P)-generic then it is (

⋃
n∈ωN

1
h�n,P)-generic.

Fix a limit ordinal ζ < ω1.

We are going to define a name Ȧζ for a subset of ζ.

Suppose that
⋃
δ∈S2

0
CRζ

δ(P,Θ) 6= ∅.
Let pi ∈ P, Si ∈ ⋃

δ∈S2
0

CRζ
δ(P,Θ) (for i < c) be such that {(pi, [Si]≡) : i <

c} lists of all members of P× (
⋃
δ∈S2

0
CRζ

δ(P,Θ)/≡) with c repetitions. Take

any family {hi : i < c} ⊆ ωω of increasing functions such that for distinct
i, j < c the intersection rng(hi) ∩ rng(hj) is finite.

Now for each i < c we put Mi =
⋃
n<ωN

i
hi�n, τi =

⋃
n∈ω τ

i
hi�n.

Each Mi is a countable elementary submodel of H(χ) and τi is a function.
Since P is proper we find pi ∈ P such that pi is (Mi,P)-generic. If we can
find such a condition pi above the condition pi then we also demand pi ≥ pi.
Note that Mi∩ω1 = ζ and Mi∩ω2 ⊆ δi is cofinal in δi (what is a consequence
of (γ), (δ) of definition 3.2(1)), where δi ∈ S2

0 is such that Si ∈ CRζ
δi

(P,Θ).
Hence

pi 
 “rng(Θ�ζ) ⊆Mi is unbounded in δi”.

If δi 6= δj then the conditions pi, pj force inconsistent sentences (unbound-
ness of rng(Θ�ζ) in δi, δj, respectively). If δi = δj but i 6= j then the choice
of the functions hi, hj guaranties (by (γ), (δ) of 3.2(1)) that sets Mi ∩ [α, δi)
and Mj ∩ [α, δi) are disjoint for some α < δi. Consequently if i 6= j then
pi, pj are incompatible.

Let Aζ be a maximal antichain in P extending {pi : i < c} and let Ȧζ be
a name for a subset of ζ such that for each (p, k) ∈ dom(τi)

pi 
 “if p ∈ ΓP then Ȧζ(e
ζ
k) = τi(p, k)”

(we identify a subset of ζ with its characteristic function).
If

⋃
δ∈S2

0
CRζ

δ(P,Θ) = ∅ then take any maximal antichain and a name for
a subset of ζ.
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We want to show that the sequence 〈Ȧζ : ζ < ω1〉 is a (name for a) ♦ω1-
sequence. For this suppose that Ȧ is a P-name for a subset of ω1, Ḋ is a
P-name for a closed unbounded subset of ω1, p ∈ P. We have to prove:

Claim 3.4.2 There exist a limit ordinal ζ < ω1 and a condition p∗ ∈ Aζ
such that p∗ ≥ p and p∗ 
“Ȧζ = Ȧ ∩ ζ & ζ ∈ Ḋ”.

To prove the claim we use lemma 3.3 to find a semi-(ζ, δ)-creature 〈N∗η : η ∈
IS(ω)〉 such that Θ, Ȧ, Ḋ,P, p, . . . ∈ N∗∅ . Next:

let kη = min{l : eζl /∈ N∗η}.
For each η ∈ IS(ω) and k < kη we fix a maximal antichain Bkη in P such

that Bkη ∈ N∗η and (∀p ∈ Bkη)(p ‖ eζk ∈ Ȧ). Moreover we demand that η ⊆ ν
implies Bkη = Bkν (for k < kη). Now we define functions τη for η ∈ IS(ω) by

dom(τη) =
⋃
k<kη((Bkη ∩N∗η )× {k}),

τη(p, k) = 1 if and only if p 
 eζk ∈ Ȧ.

It should be clear that S = {(N∗η , τη, kη) : η ∈ IS(ω)} is a (ζ, δ)-creature for

P,Θ. Thus we find i < c such that S ≡ Si and p = pi (where Si ∈ CRζ
δ(P,Θ),

pi ∈ P are as in the definition of the antichain Aζ and the name Ȧζ). Then
the condition p∗ = pi ∈ Aζ is (

⋃
n∈ωN

∗
hi�n,P)-generic, p∗ ≥ pi = p ∈ N∗∅ . The

name Ȧζ agrees with decissions of τhi�n (or Bkhi�n). By the genericity of p∗ we

conclude that p∗ 
“Ȧ ∩ ζ = Ȧζ & ζ ∈ Ḋ”. Thus the claim is proved.

The theorem follows from the claim.

4 Laver forcing, Miller forcing, Silver forc-

ing...

Results of the second section can be formulated for other forcing notions.
Without any problems we can prove the respective facts for the Silver forcing
(and generally for forcing notions consisting of compact trees).

Recall that the Silver forcing notion consists of partial functions p such
that dom(p) ⊆ ω, ω\dom(p) is infinite and rng(p) ⊆ 2. These functions are
ordered by the inclusion.
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Theorem 4.1 The Silver forcing notion forces “c = |(b+ε)V|”.

We have to be more carefull when we work with trees on ω. Nevertheless
even in this case we get the similar result

The Laver forcing L consists of infinite trees T ⊆ ω<ω such that for each
t ∈ T , root(T ) ⊆ t we have |succT (t)| = ω.

Definition 4.2 W say that a condition T ∈ L weakly obeys a set X ∈ [ω]ω

whenever for each ramification point t ∈ T

(∃∞i)(∀j < 2i)(succT (t) ∩ [µX(2i + j), µX(2i + j + 1)) 6= ∅).

Fix T ∈ L. Take X0 ∈ [ω]ω such that for each ramification point t ∈ T

(∀∞i)(succT (t) ∩ [µX0(i), µX0(i+ 1)) 6= ∅).

Suppose that X ∈ [ω]ω is such that

(∃∞i)(∀j < 2i)(|[µX(2i + j), µX(2i + j + 1)) ∩X0| ≥ 2).

Then clearly T weakly obeys X. Consequently if F ⊆ [ω]ω is a weakly
dominating family then T weakly obeys some X ∈ F .

Suppose now that T weakly obeys X ∈ [ω]ω and h : ω −→ ω is such that
(∀i)(h(i) < 2i). Then we can easily construct a condition T h ≥ T such that

if t ∈ T h is a ramification point in T h, t̂ n ∈ T h and j < 2i,
2i + j ≤ n < 2i + j + 1
then h(i) = j.

Moreover, if h0, h1 are such that (∀∞i)(h0(i) 6= h1(i)) then the respective
conditions T h0 , T h1 are incompatible – their intersection has no node with
infinitely many immediate successors. Consequently we can repeat the proof
of 2.4 and we get

Theorem 4.3 
L c = |(b+ε)V|.

The argument above applies for the Miller forcing too. Recall that this
order consists of perfect trees T ⊆ [ω]<ω such that

(∀t ∈ T )(∃s ∈ T )(t ⊆ s & |succT (s)| = ω).

Thus we can conclude
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Theorem 4.4 The Miller forcing collapses the continuum onto (b+ε)V.
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