Martin Goldstern¹ Miroslav Repický Saharon Shelah^{1,2} Otmar Spinas³

November, 1992/January, 1993 Version of August 1993

ON TREE IDEALS

Abstract. Let l^0 and m^0 be the ideals associated with Laver and Miller forcing, respectively. We show that $\mathbf{add}(l^0) < \mathbf{cov}(l^0)$ and $\mathbf{add}(m^0) < \mathbf{cov}(m^0)$ are consistent. We also show that both Laver and Miller forcing collapse the continuum to a cardinal $\leq \mathfrak{h}$.

Introduction and Notation In this paper we investigate the ideals connected with the classical tree forcings introduced by Laver [La] and Miller [Mi]. Laver forcing \mathbb{L} is the set of all trees p on ${}^{<\omega}\omega$ such that p has a stem and whenever $s \in p$ extends stem(p)then $Succ_p(s) := \{n : s \ n \in p\}$ is infinite. Miller forcing \mathbb{M} is the set of all trees p on ${}^{<\omega}\omega$ such that p has a stem and for every $s \in p$ there is $t \in p$ extending s such that $Succ_p(t)$ is infinite. The set of all these splitting nodes in p we denote by Split(p). For any $t \in Split(p), Split_p(t)$ is the set of all minimal (with respect to extension) members of Split(p) which properly extend t. For both \mathbb{L} and \mathbb{M} the order is inclusion.

The Laver ideal ℓ^0 is the set of all $X \subseteq {}^{\omega}\omega$ with the property that for every $p \in \mathbb{L}$ there is $q \in \mathbb{L}$ extending p such that $X \cap [q] = \emptyset$. Here [q] denotes the set of all branches of q. The Miller ideal m^0 is defined analogously, using conditions in \mathbb{M} instead of \mathbb{L} . By a fusion argument one easily shows that ℓ^0 and m^0 are σ -ideals.

The additivity (add) of any ideal is defined as the minimal cardinality of a family of sets belonging to the ideal whose union does not. The covering number (cov) is defined as the least cardinality of a family of sets from the ideal whose union is the whole set on which the ideal is defined $-\omega\omega$ in our case. Clearly $\omega_1 \leq \operatorname{add}(\ell^0) \leq \operatorname{cov}(\ell^0) \leq \mathfrak{c}$ and $\omega_1 \leq \operatorname{add}(m^0) \leq \operatorname{cov}(m^0) \leq \mathfrak{c}$ hold.

The main result in this paper says that there is a model of ZFC where $\mathbf{add}(\ell^0) < \mathbf{cov}(\ell^0)$ and $\mathbf{add}(m^0) < \mathbf{cov}(m^0)$ hold. The motivation was that by a result of Plewik [Pl] it was known that the additivity and the covering number of the ideal connected with Mathias forcing are the same and they are equal to the cardinal invariant \mathfrak{h} – the least cardinality of a family of maximal antichains of $\mathcal{P}(\omega)/fin$ without a common refinement. On the other hand, in [JuMiSh] it was shown that $\mathbf{add}(s^0) < \mathbf{cov}(s^0)$ is consistent, where

¹ Supported by DFG grant Ko 490/7-1, and by the Edmund Landau Center for research in Mathematical Analysis, supported by the Minerva Foundation (Germany)

² Publication 487.

³ Supported by the Basic Reasearch Foundation of the Israel Academy of Sciences and the Schweizer Nationalfonds

 s^0 is Marczewski's ideal – the ideal connected with Sacks forcing S. Intuitively, \mathbb{L} and \mathbb{M} sit somewhere between Mathias forcing and S. In [GoJoSp] it was shown that under Martin's axiom $\mathbf{add}(\ell^0) = \mathbf{add}(m^0) = \mathfrak{c}$, whereas this is false for s^0 (see [JuMiSh]).

The method of proof for $\operatorname{add}(s^0) < \operatorname{cov}(s^0)$ in [JuMiSh] is the following: For a forcing P denote by $\kappa(P)$ the least cardinal to which forcing with P collapses the continuum. In [JuMiSh] it is shown that $\operatorname{add}(s^0) \leq \kappa(\mathbb{S})$. In [BaLa] it was shown that in $V^{\mathbb{S}_{\omega_2}} \kappa(\mathbb{S}) = \omega_1$ holds – where \mathbb{S}_{ω_2} is the countable support iteration of length ω_2 of \mathbb{S} . Hence $V^{\mathbb{S}_{\omega_2}} \models \operatorname{add}(s^0) = \omega_1$. On the other hand, a Löwenheim-Skolem argument shows that $V^{\mathbb{S}_{\omega_2}} \models \operatorname{cov}(s^0) = \omega_2$.

Our method of proof is similar. Denoting by P_{ω_2} a countable support iteration of length ω_2 of \mathbb{L} and \mathbb{M} (each occurring on a stationary set), in §2 we prove the following:

Theorem

$$V^{P_{\omega_2}} \models \omega_1 = \mathbf{add}(\ell^0) = \mathbf{add}(m^0) < \mathbf{cov}(\ell^0) = \mathbf{cov}(m^0) = \omega_2$$

The crucial steps in the proof are to show that $\kappa(\mathbb{L})$, $\kappa(\mathbb{M})$ equal ω_1 and $\mathbf{add}(\ell^0) \leq \kappa(\mathbb{L})$, $\mathbf{add}(m^0) \leq \kappa(\mathbb{M})$ holds.

We will use the standard terminology for set theory and forcing. By \mathfrak{b} we denote the least cardinality of a family of functions in $\omega \omega$ which is unbounded with respect to eventual dominance and \mathfrak{d} will be the least cardinality of a dominating family in $\omega \omega$. Moreover \mathfrak{p} is the least cardinality of a filter base on $([\omega]^{\omega}, \subseteq^*)$ without any lower bound, and \mathfrak{t} is the least cardinality of a decreasing chain in $([\omega]^{\omega}, \subseteq^*)$ without any lower bound. It is easy to see that $\omega_1 \leq \mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathfrak{c}$.

1. Upper and lower bounds

1.1 Theorem (1) $\mathfrak{t} \leq \operatorname{add}(\ell^0) \leq \operatorname{cov}(\ell^0) \leq \mathfrak{b}$ (2) $\mathfrak{p} \leq \operatorname{add}(m^0) \leq \operatorname{cov}(m^0) \leq \mathfrak{d}$

Proof of (1): We have to prove the first and the third inequality. For the third inequality, let $\langle f_{\alpha} : \alpha < \mathfrak{b} \rangle$ be an unbounded family. Define

$$X_{\alpha} := \{ f \in {}^{\omega}\omega : (\exists^{\infty}k) f(k) < f_{\alpha}(k) \}$$

Clearly $\bigcup \{X_{\alpha} : \alpha < \mathfrak{b}\} = {}^{\omega}\omega$. We claim $X_{\alpha} \in \ell^{0}$. Let $p \in \mathbb{L}$. We define $q \in \mathbb{L}$ as follows: stem(q) := stem(p), and for any s extending stem(q) we have $s \in q$ if and only if $s \in p$ and $(\forall k)$ if $|stem(q)| \leq k < |s|$ then $s(k) \geq f_{\alpha}(k)$. Then clearly $q \in \mathbb{L}$, q extends p and $[q] \cap X_{\alpha} = \emptyset$. In order to prove the first inequality we use the following notation from [JuMiSh]: Let $Q := \{\bar{A} = \langle A_s : s \in {}^{<\omega}\omega \rangle : (\forall s) \ A_s \in [\omega]^{\omega}\}$. For $\bar{A} \in Q$ we define a sequence of Laver trees $\langle p_s(\bar{A}) : s \in {}^{<\omega}\omega \rangle$ as follows: $p_s(\bar{A})$ is the unique Laver tree such that $stem(p_s(\bar{A})) = s$ and if $t \in p_s(\bar{A})$ extends s then $Succ_{p_s(\bar{A})}(t) = A_t$.

For $\overline{A}, \overline{B} \in Q$ we define:

$$\bar{A} \subseteq \bar{B} \Leftrightarrow (\forall s) \ A_s \subseteq B_s$$
$$\bar{A} \subseteq^* \bar{B} \Leftrightarrow (\forall s) \ A_s \subseteq^* B_s$$
$$\bar{A} \leq^* \bar{B} \Leftrightarrow (\forall s) \ A_s \subseteq^* B_s \land (\forall^\infty s) \ A_s \subseteq B_s$$

Here \leq^* is a slight but important modification of \subseteq^* from [JuMiSh].

Fact 1.2 (Q, \leq^*) is t-closed.

Proof of 1.2 Suppose $\langle \bar{A}_{\alpha} : \alpha < \gamma \rangle$ where $\gamma < \mathfrak{t}$ is a decreasing sequence in (Q, \leq^*) . Let $\bar{A}_{\alpha} := \langle A_s^{\alpha} : s \in {}^{<\omega}\omega \rangle$. Since $\gamma < \mathfrak{t}$ there is $\bar{B}' = \langle B'_s : s \in {}^{<\omega}\omega \rangle \in Q$ such that $(\forall \alpha < \gamma) \ \bar{B}' \subseteq^* \bar{A}_{\alpha}$. Define $f_{\alpha} : {}^{<\omega}\omega \to \omega$ such that $(\forall s) \ B'_s \setminus f_s(\alpha) \subseteq A_s^{\alpha}$. Since $\mathfrak{t} \leq \mathfrak{b}$ there exists $f : {}^{<\omega}\omega \to \omega$ such that $(\forall \alpha)(\forall^{\infty}s) \ f_{\alpha}(s) \leq f(s)$. Now let $B_s := B'_s \setminus f(s)$ and $\bar{B} := \langle B_s : s \in {}^{<\omega}\omega \rangle$. It is easy to check that $(\forall \alpha < \gamma) \ \bar{B} \leq^* \bar{A}_{\alpha}$.

Fact 1.3 Suppose $X \in \ell^0$ and $\bar{A} \in Q$. There exists $\bar{B} \in Q$ such that $\bar{B} \subseteq \bar{A}$ and $(\forall s \in {}^{<\omega}\omega) [p_s(\bar{B})] \cap X = \emptyset$.

Proof of 1.3: First note that if $D := \{p \in \mathbb{L} : [p] \cap X = \emptyset\}$ then D is open dense and even 0-dense, i.e. for every $p \in \mathbb{L}$ there exists $q \in D$ extending p such that stem(q) = stem(p). The proof of this is similar to Laver's proof in [La] that the set of Laver trees deciding a sentence in the language of forcing with \mathbb{L} is 0-dense: Suppose $p \in \mathbb{L}$ has no 0-extension whose branches are not in X. Then inductively we can construct $q \in \mathbb{L}$ extending p such that every extension of q has a branch in X, contradicting $X \in \ell^0$.

Using this it is straightforward to construct \overline{B} as desired.

Fact 1.4: Suppose $X \subseteq {}^{\omega}\omega, \ \bar{A}, \bar{B} \in Q, \ \bar{B} \leq^* \bar{A} \ and \ (\forall s) \ [p_s(\bar{A})] \cap X = \emptyset$. Then $(\forall s) \ [p_s(\bar{B})] \cap X = \emptyset$.

Proof of 1.4: Clearly, if $F \subseteq p_s(\bar{B})$ is finite, then

$$[p_s(\bar{B})] = \bigcup \{ [p_t(\bar{B})] : t \in p_s(\bar{B}) \setminus F \}$$

But for almost all $t \in p_s(\bar{B})$, $p_t(\bar{B})$ extends $p_t(\bar{A})$. So clearly $[p_s(\bar{B})] \subseteq [p_s(\bar{A})]$ and hence $[p_s(\bar{B})] \cap X = \emptyset$.

End of the proof of 1.1(1). Suppose we are given $\langle X_{\alpha} : \alpha < \gamma \rangle$ and $q \in \mathbb{L}$, where $\gamma < \mathfrak{t}$ and $(\forall \alpha) X_{\alpha} \in \ell^0$. Choose $\bar{A} \in Q$ such that $p_{stem(q)}(\bar{A}) = q$ and let \bar{B}_0 be the \bar{B} given by 1.3 for \bar{A} and X_0 . If $\langle \bar{B}_{\alpha} : \alpha < \beta \rangle$ has been constructed for $\beta \leq \gamma$ and β is a successor, then choose \bar{B}_{β} as given by 1.3 for $\bar{A} = \bar{B}_{\beta-1}$ and $X = X_{\beta}$. If β is a limit, then by 1.2 choose first \bar{A} such that $(\forall \alpha < \beta) \bar{A} \leq^* \bar{B}_{\alpha}$ and then find $\bar{B}_{\beta} \subseteq \bar{A}$ as given by 1.3 for \bar{A} and $X = X_{\beta}$. Finally, if we have constructed $\bar{B}_{\gamma} = \langle B_s^{\gamma} : s \in {}^{<\omega}\omega \rangle$ define $\bar{B} := \langle B_s : s \in {}^{<\omega}\omega \rangle$ by $B_s := B_s^{\gamma} \cap Succ_q(s)$ if $s \in q$ extends stem(q) and $B_s := B_s^{\gamma}$ otherwise. It is easy to check that $\bar{B} \in Q$, $p_{stem(q)}(\bar{B})$ extends q and $(\forall \alpha < \gamma) [p_{stem(q)}(\bar{B})] \cap X_{\alpha} = \emptyset$.

Proof of 1.1(2) The proof is similar to (1). For the third inequality, let $\langle f_{\alpha} : \alpha < \mathfrak{d} \rangle$ be a dominating family. Define

$$X_{\alpha} := \{ f \in {}^{\omega}\omega : (\forall^{\infty}k) \ f(k) < f_{\alpha}(k) \}$$

Then $\bigcup \{X_{\alpha} : \alpha < \mathfrak{d}\} = {}^{\omega}\omega$ and in an analogous way as in (1) it can be seen that $X_{\alpha} \in m^0$.

In order to prove the first inequality we need the following concept from [GoJoSp]. Let R be the set of all $\bar{P} = \langle P_s : s \in {}^{<\omega}\omega \rangle$ where each $P_s \subseteq {}^{<\omega}\omega$ is infinite, $t \in P_s$ implies $s \subset t$ and if $t, t' \in P_s$ are distinct then $t(|s|) \neq t'(|s|)$. Given $\bar{P} \in R$ we can define $\langle p_s(\bar{P}) : s \in {}^{<\omega}\omega \rangle$ as follows: $p_s(\bar{P})$ is the unique Miller tree with stem s such that if $t \in Split(p_s(\bar{P}))$ then $Split_{p_s(\bar{P})}(t) = P_t$.

Define the following relations on R:

$$\bar{P} \leq \bar{Q} \Leftrightarrow (\forall s) \ p_s(\bar{P}) \leq p_s(\bar{Q})$$
$$\bar{P} \approx \bar{Q} \Leftrightarrow (\forall s) \ P_s =^* \ Q_s \land (\forall^\infty s) \ P_s = Q_s$$
$$\bar{P} \leq^* \bar{Q} \Leftrightarrow (\exists \bar{P}') \ \bar{P} \approx \bar{P}' \land \bar{P}' \leq \bar{Q}$$

Fact 1.5 [GoJoSp, 4.14] Assume $MA_{\kappa}(\sigma\text{-centered})$. If $\langle \bar{P}_{\alpha} : \alpha < \kappa \rangle$ is a \leq^* -decreasing sequence in R, then there exists $\bar{Q} \in R$ such that $(\forall \alpha < \kappa) \ \bar{Q} \leq^* \bar{P}_{\alpha}$.

The following two facts have similar proofs as 1.3 and 1.4.

Fact 1.6 Suppose $X \in m^0$ and $\bar{P} \in R$. There exists $\bar{Q} \leq \bar{P}$ such that $(\forall s) [p_s(\bar{Q})] \cap X = \emptyset$.

Fact 1.7 Suppose $X \in m^0$, $\bar{P}, \bar{Q} \in R$, $\bar{P} \leq \bar{Q}$ and $(\forall s) [p_s(\bar{Q})] \cap X = \emptyset$. Then $(\forall s) [p_s(\bar{P})] \cap X = \emptyset$.

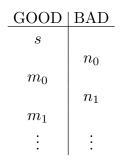
Now using 1.5, 1.6, 1.7 and the well-known result that for all $\kappa < \mathfrak{p} MA_{\kappa}(\sigma\text{-centered})$ holds, a similar construction as in 1.1(1) shows that $\mathfrak{p} \leq \mathbf{add}(m^0)$.

2 add and cov are distinct

Definition 2.1 A set $A \subseteq {}^{\omega}\omega$ is called *strongly dominating* if and only if

$$(\forall f \in {}^{\omega}\omega)(\exists \eta \in A)(\forall^{\infty}k) f(\eta(k-1)) < \eta(k)$$

Definition 2.2 For any set $A \subseteq {}^{\omega}\omega$, we define the domination game D(A) as follows: There are two players, GOOD and BAD. GOOD plays first. The game lasts ω moves.



The rules are: s is a sequence in ${}^{<\omega}\omega$, and the n_i and m_i are natural numbers. (Whoever breaks these rules first, loses immediately).

The GOOD player wins if and only if

- (a) For all $i, m_i > n_i$.
- (b) The sequence $s \frown m_0 \frown m_1 \frown \cdots$ is in A.

Lemma 2.3 Let $A \subseteq {}^{\omega}\omega$ be a Borel set. Then the following are equivalent:

- (1) There exists a Laver tree p such that $[p] \subseteq A$.
- (2) A is strongly dominating.
- (3) GOOD has a winning strategy in the game D(A).

Remark: Strongly dominating is not the same as dominating. For example, the closed set

$$A := \{ \eta \in {}^{\omega}\omega : (\forall k) \ \eta(2k) = \eta(2k+1) \}$$

is dominating but is not strongly dominating.

Proof of 2.3 We consider the following condition:

(4) (For all
$$F : {}^{<\omega}\omega \times \omega \to \omega)(\exists \eta \in A)(\forall^{\infty}k)(\forall i \le k) \ \eta(k) > F(\eta \upharpoonright k, i).$$

We will show $(1) \rightarrow (2) \rightarrow (4) \rightarrow (3) \rightarrow (1)$.

 $(1) \rightarrow (2)$ is clear.

 $(2) \rightarrow (4)$: Given F, define f by

$$f(m) := \max\{F(s,i) : i \le m, s \in m^{\le m+1}\} + m$$

f is increasing, $f(m) \ge m$ for all m.

Find η such that $\forall^{\infty} k \eta(k) > f(\eta(k-1))$. Then η is increasing. For almost all k we have, letting $m := \eta(k-1)$: $m \ge k-1$, so $\eta \upharpoonright k \in m+1^{m+1}$, so by the definition of f we get $f(m) \ge F(\eta \upharpoonright k, i)$ for any

 $m \ge k-1$, so $\eta \mid k \in m+1^{m+2}$, so by the definition of f we get $f(m) \ge F(\eta \mid k, i)$ for any $i \le k$. So $\eta(k) > f(\eta(k-1) \ge F(\eta \mid k, i))$.

(4) \rightarrow (3): Assume that GOOD has no winning strategy. Then BAD has a winning strategy σ (since the game D(A) is Borel, hence determined.)

We can find a function $F: {}^{<\omega}\omega \times \omega \to \omega$ such that for all s, m_0, \ldots, m_k we have

$$\sigma(s, m_0, \dots, m_k) = F(s \widehat{} m_0 \widehat{} \cdots \widehat{} m_k, |s|)$$

Find $\eta \in A$ as in (4). So there is k_0 such that $\forall k \geq k_0 \eta(k) \geq F(\eta \upharpoonright k, k_0)$. So in the play

player BAD followed the strategy σ , but player GOOD won, a contradiction.

 $(3) \to (1)$: Let *B* be the set of all sequences $s \frown m_0 \frown m_1 \frown \cdots$ that can be played when GOOD follows a specific winning strategy. Clearly $B \subseteq A$, and for some Laver tree *p*, B = [p].

Lemma 2.4 [Ke] Let $A \subseteq {}^{\omega}\omega$ be an analytic set. Then the following are equivalent: (1) There exists a Miller tree p such that $[p] \subseteq A$. (2) A is unbounded in $({}^{\omega}\omega, \leq^*)$.

Lemma 2.5 (1) Suppose $\mathfrak{b} = \mathfrak{c}$. For every dense open $D \subseteq \mathbb{L}$ there exists a maximal antichain $A \subseteq D$ such that

$$\forall q \in \mathbb{L}([q] \subseteq \bigcup \{[p] : p \in A\} \Rightarrow \exists A' \in [A]^{<\mathfrak{c}} \forall p \in A \setminus A' p \perp q) \tag{(*)}$$

(2) The same is true for \mathbb{M} .

Proof: Let $\mathbb{L} = \{q_{\alpha} : \alpha < \mathfrak{c}\}$. Inductively we will define a set $S \subseteq \mathfrak{c}$ and sequences $\langle x_{\gamma} : \gamma < \mathfrak{c} \rangle$ and $\langle p_{\gamma} : \gamma \in S \rangle$. Finally we will let $A = \{p_{\gamma} : \gamma \in S\}$.

Let $0 \in S$ and choose $x_0 \in [q_0]$ arbitrarily.

It can be easily seen that every Laver tree contains \mathfrak{c} extensions such that every two of them do not contain a common branch. So clearly we may find $p_0 \in D$ such that $x_0 \notin [p_0]$.

Now suppose that $\langle x_{\gamma} : \gamma < \alpha \rangle$ and $\langle p_{\gamma} : \gamma \in S \cap \alpha \rangle$ have been constructed for $\alpha < \mathfrak{c}$. First choose $x_{\alpha} \in [q_{\alpha}]$ arbitrarily, but such that, if $[q_{\alpha}] \not\subseteq \bigcup \{[p_{\gamma}] : \gamma < \alpha\}$ then $x_{\alpha} \notin \bigcup \{[p_{\gamma}] : \gamma < \alpha\}$.

In order to decide whether $\alpha \in S$ or not we distinguish the following two cases:

Case 1: q_{α} is compatible with some $p_{\gamma}, \gamma < \alpha$. In this case $\alpha \notin S$.

Case 2: q_{α} is incompatible with all p_{γ} , $\gamma < \alpha$. Now we let $\alpha \in S$, and we define p_{α} as follows:

By Lemma 2.3 for each $\gamma \in \alpha$ we may find $f_{\gamma} : \omega \to \omega$ such that

$$(\forall \eta \in [p_{\gamma}] \cap [q_{\alpha}])(\exists^{\infty}k) \ \eta(k) \le f_{\gamma}(\eta(k-1))$$
(**)

By our assumption on \mathfrak{b} there exists a strictly increasing f which dominates all the f_{γ} 's. Now define $p'_{\alpha} \in \mathbb{L}$ as follows: $stem(p'_{\alpha}) = stem(q_{\alpha})$, and for $t \in p'_{\alpha}$, if $t \supseteq stem(p'_{\alpha})$ and |t| =: n we require

$$Succ_{p'_{\alpha}}(t) = Succ_{q_{\alpha}}(t) \cap [f(t(n-1)), \infty)]$$

Clearly $p'_{\alpha} \in \mathbb{L}$, $p'_{\alpha} \subseteq q_{\alpha}$, and by (**) and our assumption on f we conclude $[p_{\gamma}] \cap [p'_{\alpha}] = \emptyset$ for every $\gamma < \alpha$.

By the remark above that every Laver tree contains \mathfrak{c} extensions such that every two of them do not contain a common branch, we may find $p_{\alpha} \in D$ such that p_{α} extends p'_{α} and $[p_{\alpha}]$ and $\{x_{\gamma} : \gamma \leq \alpha\}$ are disjoint.

This finishes the construction. Now let $A := \{p_{\gamma} : \gamma \in S\}.$

Since every q_{α} is either compatible with some p_{γ} , $\gamma < \alpha$ (in case 1) or contains the condition p_{α} (in case 2) and for $\alpha \neq \gamma$ with $\alpha, \gamma \in S$ we have $[p_{\alpha}] \cap [p_{\gamma}] = \emptyset$ we conclude that A is a maximal antichain.

A also satisfies condition (*): Let $q = q_{\alpha}$. By construction, if $[q_{\alpha}] \not\subseteq \bigcup \{ [p_{\gamma}] : \gamma \in S \cap \alpha \}$ then $[q_{\alpha}] \not\subseteq \bigcup \{ [p_{\gamma}] : \gamma \in S \}$.

The proof of (2) is analogous, but instead of Lemma 2.3 we use 2.4.

Lemma 2.6 Suppose $\mathfrak{b} = \mathfrak{c}$. Then $\operatorname{add}(\ell^0) \leq \kappa(\mathbb{L})$ and $\operatorname{add}(m^0) \leq \kappa(\mathbb{M})$.

Proof: We may assume $\kappa(\mathbb{L}) < \mathfrak{c}$. Let \dot{f} be a \mathbb{L} -name such that $\Vdash_{\mathbb{L}} "\dot{f} : \kappa(\mathbb{L}) \to \mathfrak{c}$ is onto". For $\alpha < \kappa(\mathbb{L})$ let

$$D_{\alpha} := \{ p \in \mathbb{L} : (\exists \beta) \ p \Vdash_{\mathbb{L}} \dot{f}(\alpha) = \beta \}$$

For $p \in D_{\alpha}$ will write $\beta_p = \beta_p(\alpha)$ for the unique β satisfying $p \Vdash_{\mathbb{L}} \dot{f}(\alpha) = \beta$.

Clearly D_{α} is dense and open. So we may choose a maximal antichain $A_{\alpha} \subseteq D_{\alpha}$ as in Lemma 2.5. Let

$$X_{\alpha} := {}^{\omega}\omega \setminus \bigcup \{ [p] : p \in A_{\alpha} \}$$

Then $X_{\alpha} \in \ell^0$. We claim that $X = \bigcup_{\alpha < \kappa(\mathbb{L})} X_{\alpha} \notin \ell^0$. Suppose on the contrary $X \in \ell^0$. So we may find $q \in \mathbb{L}$ such that $[q] \cap X = \emptyset$ and hence $[q] \subseteq \bigcup \{[p] : p \in A_{\alpha}\}$ for each α . By the choice of A_{α} each of the sets

$$B_{\alpha} := \{\beta_p(\alpha) : p \in A_{\alpha}, p \text{ compatible with } q\}$$

is bounded in \mathfrak{c} . Since \mathfrak{c} is regular by our assumption $\mathfrak{b} = \mathfrak{c}$ we can find $\nu < \mathfrak{c}$ such that for all $\alpha < \kappa(\mathbb{L}), B_{\alpha} \subseteq \nu$. So easily conclude that

$$q \Vdash_{\mathbb{L}}$$
"range $(f) \subseteq \nu < \mathfrak{c}$ "

This is a contradiction.

The proof for \mathbb{M} is similar.

Theorem 2.7 $\kappa(\mathbb{L}) \leq \mathfrak{h}$ and $\kappa(\mathbb{M}) \leq \mathfrak{h}$.

Proof: We prove it only for \mathbb{L} . The proof for \mathbb{M} is very similar. We work in V. Let $\langle \mathcal{A}_{\alpha} : \alpha < \mathbf{h} \rangle$ be a family of maximal almost disjoint families such that,

- (1) if $\alpha < \beta < \mathfrak{c}$ then \mathcal{A}_{β} refines \mathcal{A}_{α}
- (2) there exists no maximal almost disjoint family refining all the \mathcal{A}_{α}
- (3) $\bigcup \{ \mathcal{A}_{\alpha} : \alpha < \mathfrak{h} \}$ is dense in $([\omega]^{\omega}, \subseteq^*)$

That such a sequence exists was shown in [BaPeSi].

Since \mathfrak{h} is regular, for every $p \in \mathbb{L}$ there exists $\alpha < \mathfrak{h}$ such that for each $s \in Split(p)$ there is $A \in \mathcal{A}_{\alpha}$ with $A \subseteq^* Succ_p(s)$. Hence, writing \mathbb{L}_{α} for the set of those $p \in \mathbb{L}$ for which α has the property just stated, we conclude $\mathbb{L} = \bigcup \{\mathbb{L}_{\alpha} : \alpha < \mathfrak{h}\}.$

For each $A \in \mathcal{A}_{\alpha}$ choose $\mathcal{B}_A = \{B^A(p) : p \in \mathbb{L}\}$, an almost disjoint family on A.

Now we will define $\mathbb{L}'_{\alpha} := \{q^{\alpha}(p) : p \in \mathbb{L}_{\alpha}\}$ such that $q^{\alpha}(p)$ extends p for every $p \in \mathbb{L}_{\alpha}$ and $p_1 \neq p_2$ implies $q^{\alpha}(p_1) \perp q^{\alpha}(p_2)$. For $p \in \mathbb{L}_{\alpha}, q^{\alpha}(p)$ will be defined as follows:

For each $s \in Split(p)$ let $C_s^{\alpha}(p) := Succ_p(s) \cap B^A(p)$ where $A \in \mathcal{A}_{\alpha}$ is such that $A \subseteq^* Succ_p(s)$. So clearly $C_s^{\alpha}(p)$ is infinite. Now $q^{\alpha}(p)$ is the unique Laver tree $\subseteq p$ satisfying $stem(q^{\alpha}(p)) = stem(p)$ and for each $s \in Split(q^{\alpha}(p))$ we have $Succ_{q^{\alpha}(p)}(s) = C_s^{\alpha}(p)$.

It is not difficult to see that \mathbb{L}'_{α} has the stated properties.

Now we are ready to define a \mathbb{L} -name \dot{f} such that $\Vdash_{\mathbb{L}}$ " $\dot{f} : \mathfrak{h}^V \to \mathfrak{c}^V$ is onto": For each $p \in \mathbb{L}_{\alpha}$, let $\{r_{\xi}^{\alpha}(p) : \xi < \mathfrak{c}\} \subseteq \mathbb{L}$ be a maximal antichain below $q^{\alpha}(p)$, and define \dot{f}

in such a way that $r_{\xi}^{\alpha}(p) \Vdash_{\mathbb{L}} "\dot{f}(\alpha) = \xi$ ". As $\bigcup \{ \mathbb{L}'_{\alpha} : \alpha < \mathfrak{h} \}$ is dense in \mathbb{L} , it is easy to check that \dot{f} is as desired.

Theorem 2.8 Let $\omega_2 = S_{\mathbb{M}} \dot{\cup} S_{\mathbb{L}}$, where the sets $S_{\mathbb{M}}$ and $S_{\mathbb{L}}$ are disjoint and stationary. Let $(P_{\alpha}, Q_{\alpha} : \alpha < \omega_2)$ be a countable support iteration of length ω_2 such that for all α we have $\Vdash_{P_{\alpha}} Q_{\alpha} = \mathbb{M}$ whenever $\alpha \in S_{\mathbb{M}}$, and $\Vdash_{P_{\alpha}} Q_{\alpha} = \mathbb{L}$ otherwise. Also suppose that V satisfies CH. Then in V^P , $\mathfrak{h} = \omega_1$ holds.

Proof: Both \mathbb{M} and \mathbb{L} have the property $(*)_1$ of [JuSh]. (For \mathbb{L} , this was proved in [JuSh] and for \mathbb{M} this was proved in [BaJuSh].) [JuSh] also showed that this property is preserved under countable support iterations, so also P_{ω_2} has this property. Hence the reals of V do not have measure zero in V^P , so from $\mathfrak{h} \leq \mathfrak{s} \leq \operatorname{unif}(\mathcal{L})$ (where \mathfrak{s} is the splitting number and $\operatorname{unif}(\mathcal{L})$ is the smallest cardinality of a set of reals which is not null) we get the desired conclusion.

Theorem 2.9 Let P_{ω_2} be as in 2.8. Then

$$V^{P_{\omega_2}} \models \omega_1 = \mathbf{add}(\ell^0) = \mathbf{add}(m^0) < \mathbf{cov}(\ell^0) = \mathbf{cov}(m^0) = \omega_2$$

Proof: Since \mathbb{L} adds a dominating real, we have $V^{P_{\omega_2}} \models \mathfrak{b} = \mathfrak{c}$, so by 2.6, 2.7 and 2.8, it suffices to prove that the covering coefficients are ω_2 in the respective models. The proof of this is similar to the proof of [JuMiSh, Thm1.2] that **cov** of the Marczewski ideal is ω_2 in the iterated Sacks' forcing model.

We give the proof only for ℓ^0 . Suppose $\langle X_{\alpha} : \alpha < \omega_1 \rangle \in V^{P_{\omega_2}}$ is a sequence of ℓ^0 -sets. In $V^{P_{\omega_2}}$ let $f_{\alpha} : \mathbb{L} \to \mathbb{L}$ be such that for every $p \in \mathbb{L}$, $f_{\alpha}(p)$ extends p and $[f_{\alpha}(p)] \cap X_{\alpha} = \emptyset$. Since P_{ω_2} has the ω_2 -chain condition, by a Löwenheim-Skolem argument it is possible to find $\gamma < \omega_2$ such that

$$\langle f_{\alpha} \upharpoonright \mathbb{L}^{V_{\gamma}} : \alpha < \omega_1 \rangle \in V^{P_{\gamma}}$$

where $V_{\gamma} := V^{P_{\gamma}}$. Moreover, it is possible to find such a γ in $S_{\mathbb{L}}$. We claim that the Laver real x_{γ} (which is added by $Q_{\gamma} = \mathbb{L}^{V_{\gamma}}$) is not in $\bigcup_{\alpha < \omega_1} X_{\alpha}$, which will finish the proof. Otherwise, for some $p \in \mathbb{L}_{\gamma\omega_2}$ where $\mathbb{L}_{\gamma\omega_2} := \mathbb{L}_{\omega_2}/G_{\gamma}$ and some $\alpha < \omega_1$ we would have: $p \Vdash x_{\gamma} \in X_{\alpha}$. But letting $q := p(\gamma) \in \mathbb{L}$ and letting $r(\gamma) := f_{\alpha}(q)$ and $r(\beta) := p(\beta)$ for $\beta > \gamma$ we see that $r \Vdash x_{\gamma} \notin X_{\alpha}$, a contradiction.

References

- [BaJuSh] T. Bartoszynski, H. Judah, S. Shelah, Cichoń's Diagram, to appear in the Journal of Symbolic Logic.
- [BaPeSi] B. Balcar, J. Pelant, P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math., 110(1980), 11-24.
 - [BaLa] J.E. Baumgartner and R. Laver, Iterated perfect set forcing, Ann. Math. Logic, 17(1979), 271-288.
- [GoJoSp] M. Goldstern, M. Johnson and O. Spinas, Towers on trees, Proc. AMS, to appear.
- [JuMiSh] H. Judah, A. Miller, S. Shelah, Sacks forcing, Laver forcing and Martin's axiom, Arch. Math. Logic, 31(1992), 145-161.
 - [JuSh] H. Judah and S. Shelah, The Kunen-Miller chart, J. Symb. Logic, 55(1990), 909-927.
 - [Ke] A. Kechris, A notion of smallness for subsets of the Baire space, Trans. AMS, 229(1977), 191-207.
 - [La] R. Laver, On the consistency of Borel's conjecture, Acta Math., 137(1976), 151-169.
 - [Mi] A. Miller, Rational perfect set forcing, Contemporary Mathematics, vol.31(1984), edited by J.E. Baumgartner, D. Martin and S. Shelah, 143-159.
 - [Pl] S. Plewik, On completely Ramsey sets, Fund. Math. 127(1986), 127-132.

Addresses:

Martin Goldstern 2. Mathematisches Institut, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany. e-mail: goldstrn@math.fu-berlin.de
Miroslav Repický Matematický ústav SAV, Jesenná 5, 04154 Košice, Slovakia e-mail: repicky@ccsun.tuke.cs
Saharon Shelah Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel. e-mail: shelah@math.huji.ac.il
Otmar Spinas Departement Mathematik, ETH-Zentrum, 8092 Zürich, Switzerland and Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel (current address). e-mail: spinas@math.ethz.ch