The distributivity numbers of of $\mathcal{P}(\omega) /$ fin and its square

Saharon Shelah ${ }^{1}$

Institute of Mathematics, Hebrew University, Givat Ram, 91904 Jerusalem, ISRAEL Otmar Spinas ${ }^{2}$

Mathematik, ETH-Zentrum, 8092 Zürich, SWITZERLAND
Institut für Mathematik, Humboldt-Universität, Unter den Linden 6, 10099 Berlin, GERMANY (current address)

ABSTRACT: We show that in a model obtained by forcing with a countable support iteration of Mathias forcing of length ω_{2}, the distributivity number of $\mathcal{P}(\omega) /$ fin is ω_{2}, whereas the distributivity number of r.o. $(\mathcal{P}(\omega) / \text { fin })^{2}$ is ω_{1}. This answers an old problem of Balcar, Pelant and Simon, and others.

Introduction

A complete Boolean algebra (B, \leq) is called κ-distributive, where κ is a cardinal, if and only if for every family $\left\langle u_{\alpha i}: i \in I_{\alpha}, \alpha<\kappa\right\rangle$ of members of B
holds. It is well-known (see [J, p.152]) that every partially ordered set (P, \leq) which is separative can be densely embedded in a unique complete Boolean algebra, which is usually denoted with r.o. (P). The distributivity number of (P, \leq) is the defined as the least κ such that r.o. (P) is not κ-distributive. It is well-known (see [J, p.158]) that the following four statements are equivalent:
(1) r.o. (P) is κ-distributive.

[^0](2) The intersection of κ open dense sets in P is dense.
(3) Every family of κ maximal antichains of P has a refinement.
(4) Forcing with P does not add a new subset of κ.

The distributivity number of the Boolean algebra $\mathcal{P}(\omega) /$ fin is denoted with \mathfrak{h}. This cardinal was introduced in [BPS], where it has been shown that $\omega_{1} \leq \mathfrak{h} \leq 2^{\omega}$ and the axioms of ZFC do not decide where exactly \mathfrak{h} sits in this interval.

For λ a cardinal let $\mathfrak{h}(\lambda)$ be the distributivity number of $(\mathcal{P}(\omega) / \text { fin })^{\lambda}$, where by $(\mathcal{P}(\omega) / \text { fin })^{\lambda}$ we mean the full λ-product of $\mathcal{P}(\omega) /$ fin in the forcing sense. That is, $p \in$ $(\mathcal{P}(\omega) / \text { fin })^{\lambda}$ if and only if $p: \lambda \rightarrow \mathcal{P}(\omega) /$ fin $\backslash\{0\}$. The ordering is coordinatewise.

Trivially, $\mathfrak{h}(\lambda) \geq \mathfrak{h}(\gamma)$ holds whenever $\lambda<\gamma$. In fact, if $\left\langle D_{\alpha}: \alpha<\mathfrak{h}(\lambda)\right\rangle$ is a family of dense open subsets of $(\mathcal{P}(\omega) / \text { fin })^{\lambda}$ whose intersection is not dense, then, letting $D_{\alpha}^{\prime}=\left\{p \in(\mathcal{P}(\omega) / \text { fin })^{\gamma}: p \upharpoonright \lambda \in D_{\alpha}\right\}$, clearly the D_{α}^{\prime} are dense open in $(\mathcal{P}(\omega) / \text { fin })^{\gamma}$ and their intersection is not dense.

Since $\mathfrak{h} \leq 2^{\omega}$, this implies that under CH the sequence $\langle\mathfrak{h}(\lambda): \lambda \in \mathbf{C a r d}\rangle$ is constant with value \aleph_{1}. In [BPS, 4.14(2)] we read: "We do not know of any further properties of this sequence." The most elementary question which arises, and which was explicitly asked by several people, is whether consistently this sequence is not constant. In this paper we give a positive answer by proving the consistency of $\mathfrak{h}(2)<\mathfrak{h}$ with ZFC. In a sequel paper, for every $n<\omega$ we will construct a model for $\mathfrak{h}(n+1)<\mathfrak{h}(n)$. In all these models the continuum will be \aleph_{2}, and hence the above sequence will be two-valued. The question of whether more values are possible is tied up with the well-known problem of how to make the continuum bigger than \aleph_{2}, not using finite-support forcing iterations.

The natural forcing to increase \mathfrak{h} is Mathias forcing. We will show that in a model obtained by forcing with a countable support iteration of length ω_{2} of Mathias forcing over a model for CH, $\mathfrak{h}(2)$ remains ω_{1}.

There exists an equivalent game-theoretic definition of $\mathfrak{h}(\lambda)$, which we will use in the sequel. For any ordinal α and any partial ordering P let us consider the following game $G(P, \alpha)$ of length α : Player I and II alternately choose elements $p_{\beta}^{I}, p_{\beta}^{I I} \in P, \beta<\alpha$, such that for $\beta<\beta^{\prime}<\alpha: p_{\beta}^{I} \geq p_{\beta}^{I I} \geq p_{\beta^{\prime}}^{I} \geq p_{\beta^{\prime}}^{I I}$. In the end, player II wins if and only if the sequence of moves has no lower bound (this might happen if at some step $\beta<\alpha$, player I does not have a legal move).

We claim that $\mathfrak{h}(\lambda)$ is the minimal cardinal κ such that in the game $G\left((\mathcal{P}(\omega) / \text { fin })^{\lambda}, \kappa\right)$,
player II has a winning strategy. For one direction, suppose we are given dense open sets $\left\langle D_{\alpha}: \alpha<\kappa\right\rangle$ in $(\mathcal{P}(\omega) / \text { fin })^{\lambda}$ such that $D=\bigcap\left\{D_{\alpha}: \alpha<\kappa\right\}$ is not dense. By the homogeneity of $(\mathcal{P}(\omega) / \text { fin })^{\lambda}$ we may assume that D is empty. In fact, if D contains no extension of p, choose $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ such that $f_{\alpha}: p(\alpha) \rightarrow \omega$ is one-one and onto. Replace D_{α} by $D_{\alpha}^{\prime}=\left\{\left\langle f_{\alpha}[q(\alpha)]: \alpha<\lambda\right\rangle: q \in D_{\alpha}\right.$ and $\left.q \leq p\right\}$. Then the D_{α}^{\prime} are open dense and their intersection is empty. Now define a strategy for II in $G\left((\mathcal{P}(\omega) / \text { fin })^{\lambda}, \kappa\right)$ as follows: In his α th move let II play $p_{\alpha}^{I I} \in D_{\alpha}$ such that $p_{\alpha}^{I I} \leq p_{\alpha}^{I}$. This is clearly a winning strategy.

Conversely, let σ be a winning strategy for II in $G\left((\mathcal{P}(\omega) / \text { fin })^{\lambda}, \kappa\right)$. We will make use of (3) above. We define maximal antichains $\left\langle\mathcal{A}_{\alpha}: \alpha<\gamma \leq \kappa\right\rangle$ in $(\mathcal{P}(\omega) / \text { fin })^{\lambda}$ such that if $\alpha<\beta<\gamma$, then \mathcal{A}_{β} refines \mathcal{A}_{α}, and for every $p_{\beta} \in \mathcal{A}_{\beta}$, if $p_{\alpha} \in \mathcal{A}_{\alpha}$ is the unique member with $p_{\alpha} \geq p_{\beta}$, then $\left\langle p_{\alpha}: \alpha \leq \beta\right\rangle$ are responses by σ in an initial segment of a play consistent with σ. Suppose $\left\langle\mathcal{A}_{\alpha}: \alpha<\delta\right\rangle$ has been constructed and $\delta<\kappa$ is a limit. If this sequence has no refinement we are done, otherwise let \mathcal{B} be one. Now it is easy to construct \mathcal{A}_{δ} as desired, namely consisting of responses by σ to plays of length $\delta+1$ with last coordinate an extension of a member of \mathcal{B}. If δ is a successor, construct \mathcal{A}_{δ} similarly, where now $\mathcal{B}=\mathcal{A}_{\delta-1}$. It is clear that this construction stops at some $\gamma \leq \kappa$, as otherwise we could find a play consistent with σ in which II loses.

1. Mathias forcing and Ramsey ultrafilters

Conditions of Mathias forcing are pairs $(u, a) \in[\omega]^{<\omega} \times[\omega]^{\omega}$ such that $\max (u)<$ $\min (a)$. The ordering is defined as follows: $(u, a) \leq(v, b)$ if and only if $v \subseteq u \subseteq v \cup b$ and $a \subseteq b$. Mathias forcing will be denoted by Q in this paper. Given $p \in Q$ we will write $p=\left(u^{p}, a^{p}\right)$.

If D is a filter on ω containing no finite sets, then $Q(D)$ denotes Mathias forcing relativized to D, that is, $(u, a) \in Q(D)$ iff $(u, a) \in Q$ and $a \in D$, and the order is as for Q. Note that any two conditions in $Q(D)$ with the same first coordinate are compatible. Therefore, $Q(D)$ is σ-centered, that is, a countable union of centered subsets. It is wellknown that Mathias forcing can be decomposed as $Q=Q^{\prime} * Q^{\prime \prime}$, such that Q^{\prime} is $\mathcal{P}(\omega) /$ fin and ${\underset{\sim}{Q}}^{\prime \prime}=Q\left({\underset{\sim}{G}}^{\prime}\right)$, where ${\underset{\sim}{G}}^{\prime}$ is a name for the generic filter added by $\mathcal{P}(\omega) /$ fin. In fact, since Q^{\prime} is σ-closed and hence does not add reals, the map sending (u, a) to $(a,(u, a))$ is a dense embedding of Q in $Q^{\prime} *{\underset{\sim}{2}}^{\prime \prime}$. The generic filter for $\underline{Q}^{\prime \prime}$, which determines the Mathias real, will be denoted $G_{\sim}^{\prime \prime}$. Here and in the sequel we do not distinguish between a
member of $\mathcal{P}(\omega) /$ fin and its representatives in $\mathcal{P}(\omega)$. The above notation will be used throughout the paper.

The Rudin-Keisler order $\leq_{R K}$ for ultrafilters on ω is defined by: $D \leq_{R K} U$ iff there exists a function $f: \omega \rightarrow \omega$ such that $D=\left\{X \subseteq \omega: f^{-1}[X] \in U\right\}$. In this case D is called a projection of U and it is denoted by $f_{*}(U)$. If $D \leq_{R K} U$ and $U \leq_{R K} D$, we call U and D RK-equivalent. By a result of M.E. Rudin (see [R] or [J, 38.2., p.480]), in this case there exists a bijection $f: \omega \rightarrow \omega$ such that $D=f_{*}(U)$. Then we say that D and U are RK-equivalent by f.

A nonprincipal ultrafilter D on ω is called a Ramsey ultrafilter iff for every $n, k<\omega$ and every partition $F:[\omega]^{n} \rightarrow k$ there exists $H \in D$ homogeneous for F, that is, $F \upharpoonright[H]^{n}$ is constant. An equivalent definition is as follows (see [J, p.478]): D as above is Ramsey iff for every partition of ω into pieces not in the filter there exists a filter set which meets each piece at most once. Clearly such a filter is a p-point, that is, for every countable subset of the filter there exists a filter set which is almost contained in every member of it.

We will use yet another equivalent definition of Ramsey ultrafilter. Let D be a nonpricipal ultrafilter. A function $f \in{ }^{\omega} \omega$ is called unbounded modulo D if $\{n: f(n)>k\} \in D$ for every $k<\omega$; moreover f is called one-to-one modulo D if its restriction to some member of D is one-to-one. Then D is a Ramsey ultrafilter iff every function unbounded modulo D is one-to-one modulo D (see [J, 38.1.,p.479]).

In the following lemma, a forcing P is called ${ }^{\omega} \omega$-bounding iff every function in ${ }^{\omega} \omega$ in the extension V^{P} is bounded by some function in V. Moreover, an ultrafilter D in V is said to generate an ultrafilter in V^{P} iff the collection of subsets of ω which belong to V^{P} and contain an element of D is an ultrafilter in V^{P}.

Lemma 1.1. Suppose D_{1}, D_{2} are Ramsey ultrafilters which are not $R K$-equivalent. Let P be a proper, ${ }^{\omega} \omega$-bounding forcing such that for every filter $G \subseteq P$ which is P-generic over V, D_{1} and D_{2} generate ultrafilters in $V[G]$. Then in $V[G], D_{1}$ and D_{2} generate Ramsey ultrafilters which are not $R K$-equivalent.

Proof: Firstly, we show that D_{1}, D_{2} are Ramsey ultrafilters in $V[G]$. Here and in the sequel, we denote the ultrafilters generated by D_{1}, D_{2} in $V[G]$ by D_{1}, D_{2} as well. By properness, every $X \in[V]^{\omega} \cap V[G]$ is covered by a countable set in V. Hence D_{1}, D_{2} generate p-points in $V[G]$. In $V[G]$, let $\left\langle a_{n}: n<\omega\right\rangle$ be a partition of ω such that $a_{n} \notin D_{1}$, for all $n<\omega$. As D_{1} is a p-point, there exists $X \in D_{1} \cap V$ such that $\left|X \cap a_{n}\right|<\omega$, for
all $n<\omega$. Let $f \in{ }^{\omega} \omega$ be defined by: $f(n+1)>f(n)$ is minimal such that every a_{k} with $a_{k} \cap f(n) \neq \emptyset$ satisfies $a_{k} \cap(X \backslash f(n+1))=\emptyset$. As P is ${ }^{\omega} \omega$-bounding, we may find a strictly increasing $g \in{ }^{\omega} \omega \cap V$ such that for every $n<\omega,[g(n), g(n+1)) \cap$ range (f) has at least one element. D_{1} contains exactly one of the three sets $\bigcup\{[g(3 n+i), g(3 n+i+1)): n<\omega\}$, where $i \in\{0,1,2\}$. We denote this set by Y. As D_{1} is Ramsey in V, there exists $Z \in D_{1} \cap V$ such that $Z \subseteq X \cap Y$ and $|[g(n), g(n+1)) \cap Z| \leq 1$, for all $n<\omega$. We have to verify that $\left|Z \cap a_{n}\right| \leq 1$, for every n. Let $k, l \in Z \cap a_{n}$. Then $k, l \in X \cap a_{n}$. By construction of f, there is n_{1} such that $X \cap a_{n} \subseteq\left[f\left(n_{1}\right), f\left(n_{1}+2\right)\right)$. By construction of g and since f is increasing, there is n_{2} such that $f\left(n_{1}\right), f\left(n_{1}+1\right), f\left(n_{1}+2\right) \in\left[g\left(n_{2}\right), g\left(n_{2}+3\right)\right)$. By construction of Z, there is $n_{3} \in\left\{n_{2}, n_{2}+1, n_{2}+2\right\}$ such that $k, l \in\left[g\left(n_{3}\right), g\left(n_{3}+1\right)\right)$. Since $\left|\left[g\left(n_{3}\right), g\left(n_{3}+1\right)\right) \cap Z\right| \leq 1$, we have that $k=l$.

Secondly, we show that D_{1}, D_{2} do not become RK-equivalent in $V[G]$. Otherwise, in $V[G]$ we had a bijection $f: \omega \rightarrow \omega$ such that $f_{*}\left(D_{1}\right)=D_{2}$. Let $f_{1} \in{ }^{\omega} \omega$ be defined such that $f_{1}(n+1)>f_{1}(n)$ is minimal with

$$
f_{1}(n+1) \geq \max \left[\left\{f(k): k<f_{1}(n)\right\} \cup\left\{f^{-1}(k): k<f_{1}(n)\right\}\right] .
$$

As P is ${ }^{\omega} \omega$-bounding, we may find a strictly increasing $g \in{ }^{\omega} \omega \cap V$ such that for every $n<\omega,[g(n), g(n+1)) \cap$ range $\left(f_{1}\right)$ has at least two elements. Each of D_{1} and D_{2} contains one of the three sets

$$
C_{i}=\bigcup\{[g(3 n+i), g(3 n+i+1)): n<\omega\},
$$

where $i \in\{0,1,2\}$. Suppose $C_{i} \in D_{1}$ and $C_{j} \in D_{2}$. By Ramseyness in V, there exist $X \in D_{1} \cap V, Y \in D_{2} \cap V$ such that $X \subseteq C_{i}, Y \subseteq C_{j}$ and $|X \cap[g(3 n+i), g(3 n+i+1))| \leq 1$, $|Y \cap[g(3 n+j), g(3 n+j+1))| \leq 1$, for all $n<\omega$. Let x_{n} be the unique element of $X \cap[g(3 n+i), g(3 n+i+1))$ in the case that this set is not empty, and let y_{n} be the unique element of $Y \cap[g(3 n+i-1), g(3 n+i+1))$ if this set is not empty. Note that by construction, $f\left(x_{n}\right) \in[g(3 n+i-1), g(3 n+i+1))$. Hence $\left\{x_{n}: f\left(x_{n}\right)=y_{n}\right\} \in D_{1}$, as otherwise f would map a set in D_{1} to a set disjoint to a member of D_{2}. Consequently, $\left\{y_{n}: f\left(x_{n}\right)=y_{n}\right\} \in D_{2}$. Choose $X_{1} \in D_{1} \cap V$ and $Y_{1} \in D_{2} \cap V$ such that $X_{1} \subseteq\left\{x_{n}\right.$: $\left.f\left(x_{n}\right)=y_{n}\right\}$ and $Y_{1} \subseteq\left\{y_{n}: f\left(x_{n}\right)=y_{n}\right\}$. Define
$f^{\prime}=\left\{(x, y): \exists n\left(x \in[g(3 n+i), g(3 n+i+1)) \cap X_{1} \wedge y \in[g(3 n+i-1), g(3 n+i+2)) \cap Y_{1}\right)\right\}$

Then $f^{\prime} \in V$ and f^{\prime} is a map with $\operatorname{dom}\left(f^{\prime}\right)=f^{-1}\left[f\left[X_{1}\right] \cap Y_{1}\right] \in D_{1}$ and $f^{\prime}(x)=f(x)$ for all $x \in \operatorname{dom}\left(f^{\prime}\right)$. Therefore, f^{\prime} witnesses in V that D_{1}, D_{2} are RK-equivalent, a contradiction.

In the sequel we will have the following situation: Given are two models of ZFC, $V_{0} \subseteq V_{1}$, and in V_{1} we have D which is an ultrafilter on $\left([\omega]^{\omega}\right)^{V_{0}}$. That is, $D \subseteq\left([\omega]^{\omega}\right)^{V_{0}}$ is a filter and for every $a \in\left([\omega]^{\omega}\right)^{V_{0}}$, either $a \in D$ or $\omega \backslash a \in D$. Then we call D Ramsey if every function in V_{0} which is unbounded modulo D is one-to-one modulo D. We will say that some real $r \in\left([\omega]^{\omega}\right)^{V_{1}}$ induces D if $D=\left\{a \in\left([\omega]^{\omega}\right)^{V_{0}}: r \subseteq^{*} a\right\}$.

An easy genericity argument together with the σ-closedness of $\mathcal{P}(\omega) /$ fin shows that $\vdash_{\mathcal{P}(\omega) / \text { fin }} G_{\sim}^{\prime}$ is a Ramsey ultrafilter.

In $[\mathrm{M}]$, Mathias has shown that $r \in[\omega]^{\omega}$ is Mathias generic over V if and only if r is an almost intersection of a $\mathcal{P}(\omega) /$ fin-generic filter G^{\prime}, that is, $r \subseteq^{*} a$ for all $a \in G^{\prime}$. It follows that every infinite subset of a Mathias generic real is Mathias generic as well. This will be used in the proof of the following well-known fact.

Lemma 1.2. Let (N, \in) be a countable model of $Z F^{-}$(in particular, N must be able to prove the above mentioned result of Mathias). If $p \in Q \cap N$ there exists $q \in Q$ such that $q \leq p, u^{p}=u^{q}$, and for every $a \in[\omega]^{\omega}$ with $u^{q} \subseteq a \subseteq u^{q} \cup a^{q}$, a is Mathias generic over N. In particular, q is (N, Q)-generic below p.

Proof: Since N is countable, in V we may find $b \in[\omega]^{\omega}$ which is Mathias generic over N and contains p in its induced generic filter, that is, $u^{p} \subseteq b \subseteq u^{p} \cup a^{p}$. Let $q=\left(u^{p}, b \backslash u^{p}\right)$. Then every a as in the Lemma is an infinite subset of b, and hence Mathias generic over N.

2. Outline of the proof

Let V be a model of CH and let $\left\langle P_{\alpha}, Q_{\beta}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle$ be a countable support iteration of Mathias forcing, that is $\forall \alpha<\omega_{2}, \|-P_{\alpha}$ " Q_{α} is Mathias forcing". This notation will be kept throughout the paper.

The following theorem is folklore. In the proof, a set $C \subseteq \omega_{2}$ will be called ω_{1}-club if C is unbounded in ω_{2} and closed under increasing sequences of length ω_{1}.

Theorem 2.1. If G is $P_{\omega_{2}}$-generic over V, where $V \models C H$, then $V[G] \models \mathfrak{h}=\omega_{2}$.

Proof: In $V[G]$ let $\left\langle D_{\nu}: \nu<\omega_{1}\right\rangle$ be a family of open dense subsets of $\mathcal{P}(\omega) /$ fin $\backslash\{0\}$. By a standard Löwenheim-Skolem argument, for every α belonging to some ω_{1-} club $C \subseteq \omega_{2}$, for every $\nu<\omega_{1}$ it is true that $D_{\nu} \cap V\left[G_{\alpha}\right]$ belongs to $V\left[G_{\alpha}\right]$ and is open dense in $(\mathcal{P}(\omega) / \text { fin })^{V\left[G_{\alpha}\right]} \backslash\{0\}$. Now for given $A \in(\mathcal{P}(\omega) / \text { fin })^{V[G]} \backslash\{0\}$, by properness and genericity there exists $\alpha \in C$ such that $A \in G(\alpha)^{\prime}$, where $G(\alpha)$ is the ${\underset{\sim}{\alpha}}_{\alpha}\left[G_{\alpha}\right]$-generic filter determined by G and $G(\alpha)^{\prime}$ is its first component according to the decomposition of Mathias forcing defined in $\S 1$. As $\alpha \in C, G(\alpha)^{\prime}$ clearly meets every $D_{\nu}, \nu<\omega_{1}$. But now r_{α}, the ${\underset{\sim}{\alpha}}^{Q_{\alpha}}$-generic real (determined by $\left.G(\alpha)^{\prime \prime}\right)$ is below each member of $G(\alpha)^{\prime}$, hence below A and in $\bigcap_{\nu<\omega_{1}} D_{\nu}$. This proves that $\bigcap_{\nu<\omega_{1}} D_{\nu}$ is dense.

All the rest of this paper is to prove:
Theorem 2.2. In the notation of Theorem 2.1, $V[G] \models \mathfrak{h}(2)=\omega_{1}$.
The proof consists of the following two propositions. By S_{1}^{2} we will denote the ordinals in ω_{2} of cofinality ω_{1}. We will tacitly use the well-known results from $[\mathrm{B}, \S 5]$, where it has been shown that for $\alpha<\omega_{2}$ we can define a quotient forcing $P_{\omega_{2}} / G_{\sim}$, also denoted $P_{\alpha \omega_{2}}$, where G_{\sim} is a P_{α}-name for the P_{α}-generic filter.

Proposition 2.3. There exists an ω_{1}-club $C \subseteq S_{1}^{2}$ such that for every $\alpha \in C$ the following holds: If $\underset{\sim}{r}$ is a $P_{\omega_{2}} /{\underset{\sim}{\alpha}}^{G_{\alpha}}$-name such that $\Vdash_{P_{\omega_{2}} / G_{\sim}}{ }^{r} \underset{\sim}{r}$ induces a Ramsey ultrafilter on $\left([\omega]^{\omega}\right)^{V\left[G_{\sim}\right]}$ ", then $\Vdash_{P_{\omega_{2}} / G_{\sim}} \underset{\sim}{r} \in V\left[G_{\sim}^{\alpha+1}\right]$.

Proposition 2.4. Suppose that $V \models C H$ and $\underset{\sim}{r}$ is a Q-name such that $\|-Q$ " r induces a Ramsey ultrafilter $\underset{\sim}{D}$ on $\left([\omega]^{\omega}\right)^{V}$ ". Then $\|-_{Q}{ }_{\sim}^{D}$ and ${\underset{\sim}{\prime}}^{\prime}$ are RK-equivalent by some function $f \in\left({ }^{\omega} \omega\right) \cap V^{\prime}$.

It is easy to see that Theorem 2.2 follows from Propositions 2.3 and 2.4: Fix C as in Proposition 2.3. In $V[G]$ define a winning strategy for player II in the game $G\left((\mathcal{P}(\omega) / \text { fin })^{2}, \omega_{1}\right)$ as follows:

Play in such a way that whenever $\left\langle\left(p_{\nu}^{I}, p_{\nu}^{I I}\right): \nu<\omega_{1}\right\rangle$ is a play, there exists $\alpha \in C$ such that $\left\langle p_{\nu}^{I I}(0): \nu<\omega_{1}\right\rangle$ and $\left\langle p_{\nu}^{I I}(1): \nu<\omega_{1}\right\rangle$ generate Ramsey ultrafilters on $\left([\omega]^{\omega}\right)^{V\left[G_{\alpha}\right]}$ which are not RK-equivalent by any $f \in\left({ }^{\omega} \omega\right)^{V\left[G_{\alpha}\right]}$.
First we show that such a strategy exists in $V[G]$. Then we show that it is winning. We work in $V[G]$. For $x \in V[G]$, let $o(x)=\min \left\{\alpha<\omega_{2}: x \in V\left[G_{\alpha}\right]\right\}$. Let $\Gamma: \omega_{1} \rightarrow\left(\omega_{1}\right)^{2}$ be a bijection such that $\Gamma(\alpha)=(\beta, \delta)$ implies $\beta \leq \alpha$. For each $\alpha<\omega_{2}, V\left[G_{\alpha}\right] \models \mathrm{CH}$. Hence we can choose $g_{\alpha}: \omega_{1} \rightarrow V\left[G_{\alpha}\right]$ which enumerates all triples $(a, \pi, f) \in V\left[G_{\alpha}\right]$
such that $a \in[\omega]^{\omega}, \pi:[\omega]^{n} \rightarrow k$ for some $n, k<\omega$, and $f \in{ }^{\omega} \omega$. In his α th move, II plays $\left(p_{\alpha}^{I I}(0), p_{\alpha}^{I I}(1)\right) \leq\left(p_{\alpha}^{I}(0), p_{\alpha}^{I}(1)\right)$ such that, if $\Gamma(\alpha)=(\beta, \delta), \xi \in C$ is minimal with $\xi \geq \sup \left\{o\left(\left(p_{\nu}^{I}(0), p_{\nu}^{I}(1)\right)\right): \nu<\beta\right\}$, and $(a, \pi, f)=g_{\xi}(\delta)$, then for $i \in\{0,1\}$ we have:
(1) $p_{\alpha}^{I I}(i) \subseteq a$ or $p_{\alpha}^{I I}(i) \cap a=\emptyset$,
(2) $p_{\alpha}^{I I}(i)$ is homogeneous for π,
(3) $f\left[p_{\alpha}^{I I}(0)\right] \cap p_{\alpha}^{I I}(1)=\emptyset$.

As C is ω_{1}-club, it is easy to verify that this strategy is as desired.
Suppose that $\left\langle p_{\nu}: \nu<\omega_{1}\right\rangle$ are moves of player II which are consistent with this strategy. Suppose this play is won by I. Hence there exists $\left(r_{0}, r_{1}\right) \in\left([\omega]^{\omega}\right)^{2} \cap V[G]$ with $\left(r_{0}, r_{1}\right) \leq p_{\nu}$, for all $\nu<\omega_{1}$. So we get $\alpha \in C$, and Ramsey ultrafilters G_{i} on $\left([\omega]^{\omega}\right)^{V\left[G_{\alpha}\right]}$, for $i<2$, such that G_{i} is generated by $\left\langle p_{\nu}(i): \nu<\omega_{1}\right\rangle$, and G_{0} is not RK-equivalent to G_{1} by any $f \in{ }^{\omega} \omega \cap V\left[G_{\alpha}\right]$. Then G_{i} is generated by r_{i}. By Proposition 2.3 we obtain that r_{i} belong to $V\left[G_{\alpha+1}\right]$, and hence by Proposition 2.4, G_{0} and G_{1} are both RK-equivalent to $G(\alpha)^{\prime}$ by some $f \in{ }^{\omega} \omega \cap V\left[G_{\alpha}\right]$. By construction this is impossible. By the game-theoretic characterization of $\mathfrak{h}(2)$ (see Introduction), this implies $V[G] \models \mathfrak{h}(2)=\omega_{1}$.

3. Iteration of Mathias forcing

Throughout this section $\left\langle P_{\alpha},{\underset{\sim}{~}}_{\beta}: \alpha \leq \gamma, \beta<\gamma\right\rangle$ denotes a countable support iteration of Mathias forcing of length γ. By [Shb, p.96ff.] we may assume that elements of P_{γ} are hereditarily countable. We shall always assume this in the sequel. For $p \in P_{\gamma}$, the collection of $\beta \in \gamma$ such that in the transitive closure of p there exists a P_{β}-name for a condition in ${\underset{\sim}{~}}_{\beta}$, is denoted with $\operatorname{cl}(p)$. By our assumption, $\operatorname{cl}(p)$ is a countable subset of γ. Note that if $\left\langle r_{\alpha}: \alpha<\gamma\right\rangle$ is a sequence of P_{γ}-generic Mathias reals, then only $\left\langle r_{\alpha}: \alpha \in\right.$ $\operatorname{cl}(p)\rangle$ are needed in order to evaluate p. Letting $a^{*}=\operatorname{cl}(p)$, we can define $P_{a^{*}}$ as the countable support iteration of Mathias forcing with domain a^{*}. So $P_{a^{*}}$ is isomorphic to P_{δ}, where $\delta=$ o.t. $\left(a^{*}\right)$. The question arises whether we can view p as a condition in $P_{a^{*}}$. It should be noticed that this is not trivially the case.

In this section we prove that P_{γ} has a dense subset P_{γ}^{\prime} which can be equipped with an order \leq^{\prime}, such that forcing with $\left(P_{\gamma}, \leq\right)$ is equivalent to forcing with $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$, and the definition of $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$ is absolute for Π_{1}^{1}-correct models of ZF^{-}(up to some trivial restrictions). This will be used in the following sections to show that potential counterexamples to Propositions 2.3 and 2.4 must be added by an iteration of countable length (see Lemma
4.2). In particular, it will be obvious that if $p \in P_{\gamma}^{\prime}$, then $p \in P_{a^{*}}^{\prime}$, where $a^{*}=\operatorname{cl}(p)$.

We shall present these results for Mathias forcing only, although they can be generalized to include many more forcing notions. One reason is that the optimal level of generality is not clear.

Lemma 3.1. Let $\left\langle P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \gamma, \beta<\gamma\right\rangle$ be a countable support iteration of Mathias forcing. Let (N, \in) be a countable model of $Z F^{-}$. Let $a^{*} \subseteq \gamma$ be closed such that $a^{*} \in N$ and $a^{*} \subseteq N$ (so a^{*} is countable in V). Let $\left\langle P_{a^{*} \cap \alpha}, \dot{Q}_{\alpha}: \alpha \in a^{*}\right\rangle$ be a countable support iteration with domain a^{*} of Mathias forcing.

If $N \models p \in P_{a^{*}}$, there exists $q \in P_{\gamma}$ with $c l(q)=a^{*}$ such that q is $\left(N, P_{a^{*}}, p\right)$-generic, that is, if $\left\langle r_{\alpha}: \alpha<\gamma\right\rangle$ is a sequence of P_{γ}-generic Mathias reals over V with q belonging to its induced generic filter, then $\left\langle r_{\alpha}: \alpha \in a^{*}\right\rangle$ is $\left(P_{a^{*}}\right)^{N}$-generic over N, with p belonging to its induced filter.

Proof: The proof follows closely Shelah's proof [Shb, p.90] of preservation of properness by countable support iterations. By induction on $j \leq \max a^{*}, j \in a^{*}$, we prove the following:
(*) For every $i<j, i \in a^{*}$, for every \mathbf{p} a P_{i}-name for an element of $\left(P_{a^{*} \cap j}\right)^{N} \cap N$, and for every $q \in P_{i}$, if q is $\left(N, P_{a^{*} \cap i}, \mathbf{p}\left\lceil a^{*} \cap i\right)\right.$-generic with $\operatorname{cl}(q)=a^{*} \cap i$, then there exists $r \in P_{j}$ with $\operatorname{cl}(r)=a^{*} \cap j$ such that r is $\left(N, P_{a^{*} \cap j}, \mathbf{p}\right)$-generic, and $r \upharpoonright i=q$.
Case 1: $j=\min a^{*}$. Then $P_{a^{*} \cap j}=\{\emptyset\}$. We let $r=\emptyset$.
Case 2: $a^{*} \cap j=\left(a^{*} \cap \beta\right) \cup\{\beta\}$ for some $\beta<j$. By induction hypothesis we may assume $\beta=i$. Choose $\left\langle r_{\alpha}: \alpha<i\right\rangle P_{i}$-generic over V such that q belongs to the induced generic filter. Then $\left\langle r_{\alpha}: \alpha \in a^{*} \cap i\right\rangle$ is $\left(P_{a^{*} \cap i}\right)^{N}$-generic over N with $\mathbf{p}\left[r_{\alpha}: \alpha<i\right]\left\lceil a^{*} \cap i\right.$ belonging to the induced filter. Hence $x:=\left(\mathbf{p}\left[r_{\alpha}: \alpha<i\right](i)\right)\left[r_{\alpha}: \alpha \in a^{*} \cap i\right]$ is well-defined and $N\left[r_{\alpha}: \alpha \in a^{*} \cap i\right] \models$ " x is a Mathias condition". By Lemma 1.2, choose a Mathias condition $y \leq x$ which is $\left(N\left[r_{\alpha}: \alpha \in a^{*} \cap i\right],{\underset{\sim}{i}}_{i}\left[r_{\alpha}: \alpha \in a^{*} \cap i\right]\right)$-generic. In V we may choose a P_{i}-name $q(i)$ for y such that q forces the above to hold for $q(i)$. Then $r=q^{\wedge}\langle q(i)\rangle$ is as desired.

Case 3: $\bigcup a^{*} \cap j=j$. Let $\left\langle i_{n}: n<\omega\right\rangle$ be increasing and cofinal in $a^{*} \cap j$ with $i_{0}=i$. Let $\left\langle D_{n}: n \in \omega\right\rangle$ list all subsets of $\left(P_{a^{*} \cap j}\right)^{N}$ which belong to N and are dense in the sense of N. We define sequences $\left\langle q_{n}: n<\omega\right\rangle$ and $\left\langle\mathbf{p}_{n}: n<\omega\right\rangle$ such that $q_{0}=q, \mathbf{p}_{0}=\mathbf{p}$, and for all $n<\omega$ the following hold:
(1) \mathbf{p}_{n+1} is a $P_{i_{n}}$-name for an element of $\left(P_{a^{*} \cap j}\right)^{N}$.
(2) $q_{n} \in P_{i_{n}}$ and q_{n} is $\left(N, P_{a^{*} \cap i_{n}}, \mathbf{p}_{n} \upharpoonright a^{*} \cap i_{n}\right)$-generic.
(3) $q_{n+1} \upharpoonright i_{n}=q_{n}$.
(4) $q_{n} \Vdash_{P_{i_{n}}}$ " $\mathbf{p}_{n+1} \in D_{n} \cap N$ and $\mathbf{p}_{n+1} \leq \mathbf{p}_{n}$ ".

Suppose that we have already gotten q_{n} and \mathbf{p}_{n}. Choose $\left\langle r_{\alpha}: \alpha<i_{n}\right\rangle P_{i_{n}}$-generic over V with q_{n} belonging to its induced generic filter. Let $s=\mathbf{p}_{n}\left[r_{\alpha}: \alpha<i_{n}\right]$. Hence $s \in\left(P_{a^{*} \cap j}\right)^{N} \cap N$ by (4) in case $n>0$, and by assumption on \mathbf{p}_{0} otherwise. In N we can define

$$
D_{n}^{\prime}=\left\{t_{0} \in P_{a^{*} \cap i_{n}}: \exists t_{1}\left(t_{0}{ }^{\wedge} t_{1} \in D_{n} \text { and } t_{0}{ }^{\wedge} t_{1} \leq s\right)\right\}
$$

Then N thinks that D_{n}^{\prime} is dense below $s \upharpoonright i_{n}$ in $P_{a^{*} \cap i_{n}}$. By (2), $s \upharpoonright i_{n}$ belongs to the $\left(P_{a^{*} \cap i_{n}}\right)^{N}$-generic filter induced by $\left\langle r_{\alpha}: \alpha \in a^{*} \cap i_{n}\right\rangle$. By genericity this filter meets $D_{n}^{\prime} \cap N$, and hence there is $t \in D_{n} \cap N$ with $t \leq s$ and $t \upharpoonright i_{n}$ belonging to the filter. In V we find a $P_{i_{n}}$-name \mathbf{p}_{n+1} for t such that q_{n} forces the above properties of t to hold for \mathbf{p}_{n+1}.

By induction hypothesis, $(*)$ is true for $i=i_{n}, j=i_{n+1}$. Therefore there exists $q_{n+1} \in P_{i_{n+1}}$, such that (3) holds and (2) holds for $n+1$ instead of n.

This finishes the construction. Now let $r=\bigcup_{n<\omega} q_{n}$. Then r is as desired, as is easily seen.

Since a^{*} is closed, the three cases are exhaustive.
We start defining $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$. For α an ordinal, define P_{α}^{\prime} as follows:
$p \in P_{\alpha}^{\prime}$ iff p is a function, $\operatorname{dom}(p) \in[\alpha]^{\leq \omega}$, and for all $i \in \operatorname{dom}(p)$ there exists $u_{i}^{p} \in[i] \leq \omega$ such that $p(i)$ is the code of a Borel function with domain the set of all functions $r: u_{i}^{p} \rightarrow{ }^{\omega} \omega$ and target the set of Mathias conditions. For $i \notin \operatorname{dom}(p)$, we let $u_{i}^{p}=\emptyset$.
For any well-ordered set a^{*}, we can similarly define $P_{a^{*}}^{\prime}$. If $p \in P_{\alpha}^{\prime}$, we let $\operatorname{cl}(p)=$ $\bigcup\left\{u_{i}^{p}: i \in \operatorname{dom}(p)\right\} \cup \operatorname{dom}(p)$.

Remark 3.2. We can view P_{γ}^{\prime} as a subset of P_{γ}. Given $p \in P_{\gamma}^{\prime}$ and $i \in \operatorname{dom}(p)$, and $\left\langle r_{j}: j<i\right\rangle P_{i}$-generic over V, by absoluteness we have that $p(i)\left\langle r_{j}: j\left\langle u_{i}^{p}\right\rangle\right.$ is a Mathias condition in the extension. By the existential completeness of forcing, there exists a $P_{i^{-}}$ name τ_{i} such that $\Vdash_{P_{i}} p(i)\left\langle\mathbf{r}_{j}: j \in u_{i}^{p}\right\rangle=\tau_{i}$. Now we can identify p with $\left\langle\tau_{i}: i<\gamma\right\rangle \in P_{\gamma}$.
In the sequel we will tacitly make use of this identification.

We want to define a partial order \leq^{\prime} on P_{γ}^{\prime} such that forcing with $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$ will be equivalent to forcing with $\left(P_{\gamma}, \leq\right)$. First, for $p \in P_{\alpha}^{\prime}$ we define by induction on $\alpha \leq \gamma$ when some family of reals $\left\langle r_{j}: j \in u\right\rangle$ with $\operatorname{cl}(p) \subseteq u$ satisfies p :
$\alpha=0$: The only member of P_{0} is \emptyset, and we stipulate that every sequence of reals satisfies \emptyset; $\alpha=\beta+1:\left\langle r_{j}: j \in u\right\rangle$ satisfies p if $\left\langle r_{j}: j \in u\right\rangle$ satisfies $p \upharpoonright \beta$ and the filter of Mathias conditions induced by r_{β} contains $p(\beta)\left\langle r_{j}: j \in u_{\beta}^{p}\right\rangle$;
$\alpha=\bigcup \alpha:\left\langle r_{j}: j \in u\right\rangle$ satisfies p if $\left\langle r_{j}: j \in u\right\rangle$ satisfies $p \upharpoonright \beta$ for all $\alpha<\beta$.
Now let $p, q \in P_{\gamma}^{\prime}$. We define:
$p \leq^{\prime} q$ iff $\operatorname{dom}(q) \subseteq \operatorname{dom}(p), u_{i}^{q} \subseteq u_{i}^{p}$ for all $i \in \operatorname{dom}(p)$, and for every family of reals $\left\langle r_{j}: j \in u\right\rangle$ such that $\operatorname{cl}(p) \subseteq u$ and $\left\langle r_{j}: j \in u\right\rangle$ satisfies p, for every $i \in$ $\operatorname{dom}(q)$ we have:

$$
p(i)\left\langle r_{j}: j \in u_{i}^{p}\right\rangle \leq q(i)\left\langle r_{j}: j \in u_{i}^{q}\right\rangle,
$$

where \leq denotes the Mathias order.
Being a Borel code is a Π_{1}^{1} property (see [J, p. 538]). Therefore, by the definitions and absoluteness of Π_{1}^{1} statements we obtain that the definition of $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$ is very much absolute.

Fact 3.3. Let (N, \in) be a countable transitive model of $Z F^{-}$with $\gamma \in N$. Then $N \models p \in P_{\gamma}^{\prime}$ iff $p \in P_{\gamma}^{\prime} \cap N$ and $N \models c l(p)$ is countable. Moreover, for every $p, q \in\left(P_{\gamma}^{\prime}\right)^{N}$ we have that $N \models p \leq^{\prime} q$ iff $p \leq^{\prime} q$.

Later we will use variants of this Fact without proof. In particular we will have that γ is countable in N. Then " $N \models \operatorname{cl}(p)$ is countable" follows, and we do not have to assume that N is transitive.

We want to prove equivalence of the forcings $\left(P_{\gamma}, \leq\right)$ and $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$. We start with the following easy observation:

Lemma 3.4. If $p, q \in P_{\gamma}^{\prime}$, then $p \leq^{\prime} q$ implies $p \leq q$.
Proof: By induction on $\alpha \leq \gamma$ we prove that this is true for P_{α}^{\prime}.
$\alpha=0$: clear.
$\alpha=\beta+1: p \leq^{\prime} q$ clearly implies $p \upharpoonright \beta \leq^{\prime} q \upharpoonright \beta$. By induction hypothesis we conclude $p \upharpoonright \beta \leq q \upharpoonright \beta$. Let G_{β} be P_{β}-generic over V with $p \upharpoonright \beta \in G_{\beta}$. Let $\left\langle r_{j}: j<\beta\right\rangle$ be the sequence of Mathias reals determined by G_{β}. It is clear that $\left\langle r_{j}: j<\beta\right\rangle$ satisfies $p \upharpoonright \beta$. By
assumption we have $p(\beta)\left\langle r_{j}: j \in u_{\beta}^{p}\right\rangle \leq q(\beta)\left\langle r_{j}: j \in u_{\beta}^{q}\right\rangle$. By our identification (see Remark 3.2) we have $p(\beta)\left\langle r_{j}: j \in u_{\beta}^{p}\right\rangle=p(\beta)\left[G_{\beta}\right]$ and $q(\beta)\left\langle r_{j}: j \in u_{\beta}^{q}\right\rangle=q(\beta)\left[G_{\beta}\right]$. Consequently $p \upharpoonright \beta \Vdash{ }_{P_{\beta}} p(\beta) \leq q(\beta)$, and hence $p \leq q$. $\alpha=\bigcup \alpha$: clear by induction hypothesis and definition of the partial orders.

The next lemma shows that P_{γ}^{\prime} is a dense subset of P_{γ}. In the proof we will use the following coding of Mathias conditions by reals $x \in{ }^{\omega} \omega$ with the property $\forall i, j(0<i<$ $j \Rightarrow x(i)<x(j))$: such x codes the Mathias condition ($\operatorname{ran} x \upharpoonright[1, x(0)$), $\operatorname{ran} x \upharpoonright[x(0), \infty)$). Hence we may assume that a P_{i}-name for a Mathias condition is a sequence $\left\langle f_{n}: n<\omega\right\rangle$ such that $f_{n}: A_{n} \rightarrow \omega$, where A_{n} is a countable antichain of P_{i}.

For $p \in P_{\gamma}$ and sequence of reals $\bar{r}=\left\langle r_{j}: j \in u\right\rangle$ with $\operatorname{cl}(p) \subseteq u$, we define by induction on $i \leq \gamma, i \in \operatorname{dom}(p)$,
(a) \bar{r} evaluates $p(i)$;
(b) $p(i)[\bar{r}]$, if \bar{r} evaluates p.

Case 1: $i=0 . \bar{r}$ evaluates $p(i), p(i)[\bar{r}]=p(i)$.
Case 2: $i>0$. Then $p(i)=\left\langle f_{n}: n<\omega\right\rangle$, where $f_{n}: A_{n} \rightarrow \omega$ and $A_{n} \subseteq P_{i}$ is a countable antichain. We define that \bar{r} evaluates γ if:
(1) for every $n<\omega$, every $q \in A_{n}$, and every $\beta \in \operatorname{dom}(q), \bar{r}$ evaluates $q(\beta)$;
(2) for every $n<\omega$ there exists a unique $q \in A_{n}$ such that for all $\beta \in \operatorname{dom}(q), q(\beta)[\bar{r}]$ belongs to the filter on Q induced by r_{β};
(3) the real x defined by $x(n)=f_{n}(q)$, where $q \in A_{n}$ is the unique member as in (2), codes a Mathias condition (i.e. $\forall i, j(0<i<j<\omega \Rightarrow x(i)<x(j)))$.
If (1)-(3) hold, $p(i)[\bar{r}]$ is defined as the Mathias condition coded by x.
The set of sequences $\bar{r}=\left\langle r_{j}: j \in \operatorname{cl}(p(i))\right\rangle$ which evaluate $p(i)$ is a Borel set with code $p(i)$; for it is not difficult, though tedious, to show that it has a $\Delta_{1}^{1}(p(i))$-definition (see [JSp], where the details are worked out). First, \bar{r} evaluates $p(i)$ iff there exists a sequence of reals which are the evaluations by \bar{r} of all the names which belong to the transitive closure of $p(i)$, such that $p(i)$ can be evaluated from these using \bar{r}. Since $p(i)$ is hereditarily countable there is only one existential real quantifier, and the others are number quantifiers. Second, if such a sequence of reals exists, then it is unique, hence we can turn this statement into a universal statement. Now by Suslin's Theorem (see [J, p.502]) we are done.

By a similar argument, the map sending \bar{r}, which evaluates $p(i)$, to $p(i)[\bar{r}]$ has a Borel definition.

Lemma 3.5. For every $p \in P_{\gamma}$ there exists $p^{\prime} \in P_{\gamma}^{\prime}$ such that $p^{\prime} \leq p$.
Proof: For each $i \in \operatorname{dom}(p)$ let $u_{p}^{i}=\operatorname{cl}(p(i))$. Then u_{p}^{i} is countable. We define $p^{\prime}(i):\left\{\bar{r}: \bar{r}: u_{i}^{p} \rightarrow{ }^{\omega} \omega\right\} \rightarrow Q$ (Q is Mathias forcing) by cases as follows: If \bar{r} evaluates $p(i)$, we let $p^{\prime}(i)(\bar{r})=p(i)[\bar{r}]$, otherwise we let $p(i)(\bar{r})$ be the maximum element of Q. By the remarks above, $p^{\prime}(i)$ is a total Borel function as desired. Now let $p^{\prime}=\left\langle p^{\prime}(i): i \in\right.$ $\operatorname{dom}(p)\rangle$. Then clearly $p^{\prime} \in P_{\gamma}^{\prime}$. By induction on $i \in \operatorname{dom}\left(p^{\prime}\right)$ it is easy to prove that if $\bar{r}=\left\langle r_{j}: j<i\right\rangle$ is P_{i}-generic over V and contains $p^{\prime} \upharpoonright i$ in its generic filter, then \bar{r} evaluates $p(i)$ and $p^{\prime}(i)(\bar{r})=p(i)[\bar{r}]$; hence $p^{\prime} \upharpoonright i \Vdash_{P_{i}} p^{\prime}(i)=p(i)$.

In order to conclude that forcings $\left(P_{\gamma}, \leq\right)$ and $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$ are equivalent it is enough to prove the following:

Lemma 3.6. For all $p, q \in P_{\gamma}^{\prime}$ with $p \leq q$ there exists $r \in P_{\gamma}^{\prime}$ with $r \leq^{\prime} p$ and $r \leq^{\prime} q$.
Corollary 3.7. Forcings $\left(P_{\gamma}, \leq\right)$ and $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$ are equivalent.
Proof of 3.7: By Lemma 3.5 it is enough to show that $\left(P_{\gamma}^{\prime}, \leq\right)$ and $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$ are equivalent. Let D be dense open in ($P_{\gamma}^{\prime}, \leq$), and let $p \in P_{\gamma}^{\prime}$. Let $q \in D, q \leq p$. By Lemma 3.6 there is $r \in P_{\gamma}^{\prime}$ with $r \leq^{\prime} p$ and $r \leq^{\prime} q$. By 3.4 we have $r \leq q$, and hence $r \in D$. Therefore D is dense in $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$. Conversely, if D is dense in $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$, then D is dense in ($P_{\gamma}^{\prime}, \leq$) by Lemma 3.4.

From Lemma 3.6 it follows that for all $p, q \in P_{\gamma}^{\prime}, p, q$ are incompatible with respect to \leq iff they are incompatible with respect to \leq^{\prime}. Therefore every $\left(P_{\gamma}^{\prime}, \leq\right)$-name is a $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$-name and vice versa.

It follows that if G is a $\left(P_{\gamma}^{\prime}, \leq\right)$-generic filter, then G is also $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$-generic, and if G^{\prime} is $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$-generic, then $G=\left\{p \in P_{\gamma}^{\prime}: \exists q \in G^{\prime}(q \leq p)\right\}$ is $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$-generic, and then $V[G]=V\left[G^{\prime}\right]$.

The following will be crucial for proving Lemma 3.6:
Lemma 3.8. Let a^{*} be a countable closed set of ordinals, and let $p \in P_{a^{*}}^{\prime}$. Let (N, \in) be a countable elementary substructure of $(H(\chi), \in)$ for some large enough regular χ, such that $p, a^{*} \in N$. There exists $q \in P_{a^{*}}^{\prime}, q \leq^{\prime} p$, such that for every sequence of reals $\bar{r}=\left\langle r_{l}: l \in a^{*}\right\rangle$ which satisfies q, \bar{r} is $\left(P_{a^{*}}, \leq\right)$-generic over N.

Proof: By induction on $j \in a^{*}$ we prove the following:
(*) For every $i<j, i \in a^{*}$, for every $P_{a^{*} \cap i}$-name \mathbf{p} for a member of $N \cap P_{a^{*} \cap j}$, and for every $q \in P_{a^{*} \cap i}^{\prime}$, if every sequence of reals $\bar{r}=\left\langle r_{l}: l \in a^{*} \cap i\right\rangle$ which satisfies q is $P_{a^{*} \cap i}$-generic over N, and $q \|-P_{a^{*} \cap i} \mathbf{p} \upharpoonright i \in G_{a^{*} \cap i}$, then there exists $r \in P_{a^{*} \cap j}^{\prime}$ such that $r \upharpoonright a^{*} \cap i=q$, every $\left\langle r_{l}: l \in a^{*} \cap i\right\rangle$ which satisfies r is $P_{a^{*} \cap j}$-generic over N, and $r \Vdash_{P_{a^{*} \cap j}} \mathbf{p} \in G_{a^{*} \cap j}$.

Case 1: $j=\min a^{*}$. Let $r=\emptyset$.
Case 2: $a^{*} \cap j=\left(a^{*} \cap \beta\right) \cup\{\beta\}$ for some $\beta<j$. By induction hypothesis we may assume $\beta=i$. Let $\bar{r}=\left\langle r_{l}: l \in a^{*} \cap i\right\rangle$ satisfy q. By assumption, \bar{r} is $P_{a^{*} \cap i}$-generic over N and $\mathbf{p}[\bar{r}]\left\lceil a^{*} \cap i\right.$ belongs to the generic filter induced by \bar{r}. By absoluteness, $x:=(\mathbf{p}[\bar{r}](i))[\bar{r}]$ is a Mathias condition in V, say $x=\left(u^{x}, a^{x}\right)$. Using $N[\bar{r}]$ as a code we may effectively construct $u \in[\omega]^{\omega}$ which is Mathias-generic over $N[\bar{r}]$ with x belonging to the generic filter induced by u. Let $y=\left(u^{x}, a^{x} \cap u\right)$. Then every real r_{i} which satisfies y is Mathias-generic over $N[\bar{r}]$ (see Lemma 1.2). Moreover, the function sending \bar{r} to y is Borel. Denote it with $r(i)$. Then we may let $r=q^{\wedge}\langle r(i)\rangle$.

Case 3: $a^{*} \cap j$ is unbounded in $N \cap j$. We choose $\left\langle i_{n}: n<\omega\right\rangle$ increasing and cofinal in $N \cap j$ with $i_{0}=i$. Let $\left\langle D_{n}: n<\omega\right\rangle$ list all dense subsets of $P_{a^{*} \cap j}$ in N. We define two sequences $\left\langle q_{n}: n<\omega\right\rangle$ and $\left\langle\mathbf{p}_{n}: n<\omega\right\rangle$ such that $q_{0}=q, \mathbf{p}=\mathbf{p}_{0}$, and for all $n<\omega$ the following hold:
(1) \mathbf{p}_{n+1} is a $P_{i_{n}}$-name for a member of $P_{a^{*} \cap j} \cap N$;
(2) $q_{n} \in P_{a^{*} \cap i_{n}}^{\prime}$, and for every $\bar{r}=\left\langle r_{l}: l \in a^{*} \cap i_{n}\right\rangle$ which satisfies q_{n}, \bar{r} is $P_{a^{*} \cap i_{n}}$-generic over N, and $q_{n} \Vdash P_{P_{a} \cap_{i_{n}}} \mathbf{p}_{n} \upharpoonright a^{*} \cap i_{n} \in G_{a^{*} \cap i_{n}} ;$
(3) $q_{n+1} \upharpoonright i_{n}=q_{n}$;
(4) $q_{n} \Vdash P_{a^{*} \cap_{i n}} \mathbf{p}_{n+1} \in D_{n} \cap N$ and $\mathbf{p}_{n+1} \leq \mathbf{p}_{n}$.

The construction is analogous to the proof of Lemma 3.1.
Now let $r=\bigcup_{n<\omega} q_{n}$, and let $\bar{r}=\left\langle r_{l}: l \in a^{*} \cap j\right\rangle$ satisfy r. We have to show
 We have to show that $D_{n} \cap G \neq \emptyset$ for all $n<\omega$. Let $n<\omega$. We claim that $p_{n+1}:=$ $\mathbf{p}_{n+1}\left[\bar{r} \upharpoonright i_{n}\right] \in G \cap D_{n}$. By (2) and (3), $\bar{r} \upharpoonright i_{n}$ is $P_{a^{*} \cap i_{n}}$-generic over N, and hence $p_{n+1} \in D_{n}$ by (4). To prove $p_{n+1} \in G$ it is enough to show that $p_{n+1} \upharpoonright i_{m} \in G_{a^{*} \cap i_{m}}$ for all $n<m<\omega$. For this, by induction on m show (using (4)) that $p_{m} \leq p_{n+1}$. This suffices, since by (2), $p_{m} \upharpoonright a^{*} \cap i_{m} \in G_{a^{*} \cap i_{m}}$. This finishes the proof of (*).

Applying (*) for $i=\min \left(a^{*}\right)$ and $j=\max \left(a^{*}\right)$, we get $q \in P_{a^{*}}^{\prime}$ such that every $\bar{r}=\left\langle r_{l}: l \in a^{*}\right\rangle$ which satisfies q is $\left(P_{a^{*}}, \leq\right)$-generic over N and contains p in its induced filter. We have to show that $q \leq^{\prime} p$. By contradiction, suppose $\bar{r}=\left\langle r_{l}: l \in a^{*}\right\rangle$ satisfies q and there is $i \in \operatorname{dom}(q)$ such that $q(i)\left\langle r_{l}: l \in a^{*} \cap i\right\rangle \not \leq p(i)\left\langle r_{l}: l \in u_{i}^{p}\right\rangle$. We can choose r_{i}^{\prime} which satisfies $q(i)\left\langle r_{l}: l \in a^{*} \cap i\right\rangle$, but not $p(i)\left\langle r_{l}: l \in u_{i}^{p}\right\rangle$. Choose $\left\langle r_{l}^{\prime}: l \in a^{*} \backslash(i+1)\right\rangle$ arbitrary such that $\bar{r}^{\prime}:=\left\langle r_{l}: l \in a^{*} \cap i\right\rangle^{\wedge}\left\langle r_{l}^{\prime}: l \in a^{*} \backslash i\right\rangle$ satisfies q. By the above, \bar{r}^{\prime} is $P_{a^{*}-\text { generic over }} N$, containing p in its generic filter. But this is impossible by the choice of r_{i}^{\prime}.

We are now able to give the proof of Lemma 3.6.
Proof of 3.6: Let $p, q \in P_{\gamma}^{\prime}$ with $P_{\gamma} \models p \leq q$. Let $a^{*}=\operatorname{cl}(p)$. Hence we have $p, q \in P_{a^{*}}^{\prime} \subseteq P_{a^{*}}$. We need the following claim:

Claim: $P_{a^{*}} \models p \leq q$.
Proof of the Claim: Otherwise, let $i \in \operatorname{dom}(p)$ be minimal such that $\neg\left(p \upharpoonright i \|-P_{a^{*} \cap i}\right.$ $p(i) \leq q(i))$. Choose $r \in P_{a^{*} \cap i}$ such that $P_{a^{*} \cap i} \models r \leq p \upharpoonright i$ and $r \Vdash_{P_{a^{*} \cap i}} p(i) \not \leq q(i)$.

Let (N, \in) be a countable elementary substructure of $(H(\chi), \in)$, χ large enough and regular, containing everything relevant. By Lemma 3.1 there exists $q_{1} \in P_{i}$ which is $\left(N, P_{a^{*} \cap i}, r\right)$-generic. Let $\bar{r}=\left\langle r_{j}: j<i\right\rangle$ be P_{i}-generic over V with q_{1} belonging to the induced filter. Then $\left\langle r_{j}: j \in a^{*} \cap i\right\rangle$ is $P_{a^{*} \cap i}$-generic over N, with r belonging to the induced filter. We conclude that on the one hand, $V\left[r_{j}: j<i\right] \vDash p(i)\left[r_{j}: j<i\right] \leq q(i)\left[r_{j}: j<i\right]$, but on the other hand, $N\left[r_{j}: j \in a^{*} \cap i\right] \models p(i)\left[r_{j}: j \in a^{*} \cap i\right] \not \leq q(i)\left[r_{j}: j \in a^{*} \cap i\right]$. But $p(i)\left[r_{j}: j<i\right]=p(i)\left[r_{j}: j \in a^{*} \cap i\right]$, and similarly for $q(i)$. Since the Mathias order is absolute, we have a contradiction.

Let (N, \in) be as in the proof of the Claim. By Lemma 3.8, there exists $r \in P_{a^{*}}^{\prime}$ with $r \leq^{\prime} p$ such that every sequence of reals $\bar{r}=\left\langle r_{j}: j \in a^{*}\right\rangle$ which satisfies r is $P_{a^{*}}$-generic over N. Given such \bar{r} and $i \in \operatorname{dom}(p), p \upharpoonright i$ belongs to the generic filter on $P_{a^{*}} \cap N$ induced by $\bar{r} \upharpoonright a^{*} \cap i$, and hence by the Claim, $N\left[\bar{r} \upharpoonright a^{*} \cap i\right] \models p(i)\left[\bar{r} \upharpoonright a^{*} \cap i\right] \leq q(i)\left[\bar{r} \upharpoonright a^{*} \cap i\right]$. But $p(i)\left[\bar{r} \upharpoonright a^{*} \cap i\right]=p(i)\left(r_{j}: j \in u_{i}^{p}\right)$, and similarly for q. By absoluteness of the Mathias order and by $r \leq^{\prime} p$ we obtain $r(i)\left(r_{j}: j \in u_{i}^{r}\right) \leq p(i)\left(r_{j}: j \in u_{i}^{p}\right) \leq q(i)\left(r_{j}: j \in u_{i}^{q}\right)$. Since \bar{r} and i were arbitrary we conclude that $r \leq^{\prime} q$.

The proof of Corollary 3.7 now being complete, throughout the rest of this paper we identify $\left(P_{\gamma}, \leq\right)$ with $\left(P_{\gamma}^{\prime}, \leq^{\prime}\right)$.

Definition 3.9. If $u \subseteq \gamma$ is finite and $p, q \in P_{\gamma}$, then $q \leq_{u} p$ is defined by: $q \leq p$ and for all $\alpha \in u, q \upharpoonright \alpha \Vdash_{P_{\alpha}}$ " $q(\alpha)$ and $p(\alpha)$ have the same first coordinate".

By arguments which are standard by now, we obtain the following Lemma. Note that it makes sense only in the light of Corollary 3.7. For the proof, make a similar inductive construction as we did now several times. At successor steps use Lemma 1.2 to get generic conditions which are pure extensions, if required by u.

Lemma 3.10. Let (N, \in) be a countable model of $Z F^{-}$such that γ is countable in N. If $p \in P_{\gamma} \cap N$, and $u \in[\gamma]^{<\omega}$, there exists $q \in P_{\gamma}$ such that $q \leq_{u} p$ and q is $\left(N, P_{\gamma}\right)$-generic.

For the proof that potential counterexamples to Propositions 2.3 and 2.4 are added by an iteration of countable length, we will also need the following lemma.

Lemma 3.11. Suppose $a^{*} \subseteq \gamma$ is a countable closed set of ordinals, $P_{a^{*}}$ is a countable support iteration of Mathias forcing with domain a^{*}, and $p \in P_{a^{*}}$. Let (N, \in) be a countable model of $Z F^{-}$with $\gamma \in N$, and suppose that $a^{*} \subseteq N$, $a^{*} \in N, p \in N$, and $N \models p \in P_{a^{*}}$.

There exists $q \in P_{a^{*}}$ and a $P_{a^{*}-n a m e ~} \overline{\mathbf{r}}_{\gamma}^{\prime}=\left\langle\mathbf{r}_{l}^{\prime}: l<\gamma\right\rangle$ such that $q \leq p$ and, letting $\overline{\mathbf{r}}_{a^{*}}=\left\langle\mathbf{r}_{l}: l \in a^{*}\right\rangle$ be a name for the $P_{a^{*}-\text { generic sequence of Mathias reals, we have }}$

$$
q \Vdash_{P_{a^{*}}} " \overline{\mathbf{r}}_{\gamma}^{\prime} \text { is } P_{\gamma} \text {-generic over } N \text {, and } \forall l \in a^{*}\left(\mathbf{r}_{l}^{\prime}=\mathbf{r}_{l}\right) \text { ". }
$$

Proof: By induction on $j \leq \gamma, j \in N$, we prove the following:
(*) Suppose $i \in j, i \in N, q \in P_{a^{*} \cap i}$, and $\overline{\mathbf{r}}_{i}^{\prime}=\left\langle\mathbf{r}_{l}^{\prime}: l<i\right\rangle$ is a $P_{a^{*} \cap i}$-name such that $q \leq p \upharpoonright a^{*} \cap i$ and

$$
q \Vdash P_{a^{*} \cap i} \overline{\mathbf{r}}_{i}^{\prime} \text { is } P_{i} \text {-generic over } N \text { and } \forall l \in a^{*} \cap i\left(\mathbf{r}_{l}^{\prime}=\mathbf{r}_{l}\right)
$$

Then there exists $r \in P_{a^{*} \cap j}$ and $\overline{\mathbf{r}}_{j}^{\prime}=\left\langle\mathbf{r}_{l}^{\prime}: l<j\right\rangle$ such that $r \upharpoonright a^{*} \cap j=q$, $r \leq p \upharpoonright a^{*} \cap j, \overline{\mathbf{r}}_{j}^{\prime} \upharpoonright i=\overline{\mathbf{r}}_{i}^{\prime}$, and

$$
r \Vdash_{P_{a^{*} \cap j}} \text { " } \mathbf{r}_{j}^{\prime} \text { is } P_{j} \text {-generic over } N \text { and } \forall l \in a^{*} \cap j\left(\mathbf{r}_{l}^{\prime}=\mathbf{r}_{l}\right) \text {. }
$$

Case $A: N \cap j=(N \cap \beta) \cup\{\beta\}$, for some $\beta<j$: Then $j=\beta+1$, since $N \models \mathrm{ZF}^{-}$, and so $\beta+1 \in N$. Hence we may assume $\beta=i$.
Case A1: $i \in a^{*}$. Let $\bar{r}_{a^{*} \cap i}=\left\langle r_{l}: l \in a^{*} \cap i\right\rangle$ be $P_{a^{*} \cap i^{\prime}}$-generic over V with q in its generic filter. Let $\bar{r}_{i}^{\prime}=\overline{\mathbf{r}}_{i}^{\prime}\left[\bar{r}_{a^{*} \cap i}\right]$. Then $N\left[\bar{r}_{i}^{\prime}\right] \in V\left[\bar{r}_{a^{*} \cap i}\right]$ and $N\left[\bar{r}_{i}^{\prime}\right] \models \mathrm{ZF}^{-}$. By assumption we
have $p(i)\left[\bar{r}_{a^{*} \cap i}\right]=p(i)\left[\bar{r}_{i}^{\prime}\right]$. Let x be this common value. Then x is a Mathias condition. By Lemma 1.2, in $V\left[\bar{r}_{a^{*} \cap i}\right]$ we may choose a Mathias condition $y \leq x$ such that every $z \in[\omega]^{\omega}$ with $u^{y} \subseteq z \subseteq u^{y} \cup a^{y}$ is Mathias generic over $N\left[\bar{r}_{i}^{\prime}\right]$. In V we have a $P_{a^{*} \cap i}$-name q_{i} such that q forces that all the above holds for q_{i} instead of y. Now let $r=q^{\wedge}\left\langle q_{i}\right\rangle$ and $\mathbf{r}_{i}^{\prime}=\mathbf{r}_{i}$. Case A2: $i \notin a^{*}$. Then $P_{a^{*} \cap j}=P_{a^{*} \cap i}$. Since N is countable, in V there exists a $P_{a^{*} \cap i}$-name \mathbf{r}_{i}^{\prime} such that q forces that \mathbf{r}_{i}^{\prime} is Mathias generic over $N\left[\overline{\mathbf{r}}_{i}^{\prime}\right]$. We let $r=q$ and $\overline{\mathbf{r}}_{j}^{\prime}=\overline{\mathbf{r}}_{i}^{\prime}{ }^{\wedge}\left\langle\mathbf{r}_{i}^{\prime}\right\rangle$. Case B: $N \cap j$ is unbounded in $N \cap j$:

Case B1: $j \in a^{*}$. Since a^{*} is closed and $a^{*} \subseteq N$, we conclude that either $a^{*} \cap j$ is bounded in $a^{*} \cap j$, or else $a^{*} \cap j$ is unbounded in j. In the first case we may assume $i>\max \left(a^{*} \cap j\right)$, and proceed as in Case A2. In the latter case, a similar diagonalization as in 3.1 and 3.8 works.

Case B2: $j \notin a^{*}$. Since a^{*} is closed, $a^{*} \cap j$ is bounded below j. Hence we may assume $i>\max \left(a^{*} \cap j\right)$. Then $P_{a^{*} \cap j}=P_{a^{*} \cap i}$, and as in Case A2, in V there exists a $P_{a^{*} \cap i}$-name $\left\langle\mathbf{r}_{l}^{\prime}: i \leq l<j\right\rangle$ such that q forces that $\left\langle\mathbf{r}_{l}^{\prime}: i \leq l<j\right\rangle$ is $P_{j} / \overline{\mathbf{r}}_{i}^{\prime}$-generic over N. We let $r=q$ and $\overline{\mathbf{r}}_{j}^{\prime}=\overline{\mathbf{r}}_{i}^{\prime}{ }^{\wedge}\left\langle\mathbf{r}_{l}^{\prime}: i \leq l<j\right\rangle$.

4. Proof of Proposition 2.3

The following Lemma will give us the ω_{1}-club for Proposition 2.3.
Lemma 4.1. Suppose $V \models C H$. Let $\left\langle P_{\alpha}, Q_{\beta}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle$ be a countable support iteration of Mathias forcing. Let $G_{\omega_{2}}$ be $P_{\omega_{2}}$-generic over V and, for $\delta<\omega_{2}$, r_{δ} the $Q_{\delta}\left[G_{\delta}\right]$-generic real determined by $G_{\omega_{2}}$. Then the set S of $\delta \in S_{1}^{2}$ such that for some $\alpha_{\delta}<\delta$

$$
\begin{equation*}
\mathcal{P}(\omega)^{V\left[\left\{G_{\alpha_{\delta}}, r_{\delta}\right\}\right]}=\mathcal{P}(\omega)^{V\left[G_{\delta+1}\right]} \tag{*}
\end{equation*}
$$

is nonstationary.
Proof: Suppose that S is stationary. We will derive a contradiction. For $\delta \in S$ choose $p_{\delta} \in P_{\delta+1}$ forcing $(*)$. Since $\delta \in S_{1}^{2}$ and p_{δ} is hereditarily countable, without loss of generality we may assume that $p_{\delta}(\delta)$ is a $P_{\alpha_{\delta}}$-name and $\sup \left(\operatorname{dom}\left(p_{\delta} \mid \delta\right)\right)<\alpha_{\delta}$. Otherwise increase α_{δ}, and then $(*)$ still holds of course. By Fodor's Theorem and $V\left[G_{\alpha}\right] \models C H$ for $\alpha<\omega_{2}$, there exist $\alpha^{*}<\omega_{2}, p \in P_{\alpha^{*}}$ and a stationary $S_{1} \subseteq S$ such that $\forall \delta \in S_{1}\left(\alpha_{\delta}=\right.$ $\left.\alpha^{*} \wedge p_{\delta} \upharpoonright \delta=p\right)$. Hence in $V\left[G_{\alpha^{*}}\right]$ we can compute $p_{\delta}(\delta)\left[G_{\delta}\right]$ for $\delta \in S_{1}$. Again by the CH in
$V\left[G_{\alpha^{*}}\right]$ and the \aleph_{2}-completeness of the nonstationary ideal on ω_{2}, there exist a stationary $S_{2} \subseteq S_{1}$ and $q \in Q_{\alpha^{*}}\left[G_{\alpha^{*}}\right]$ such that $\forall \delta \in S_{2}\left(p_{\delta}(\delta)\left[G_{\delta}\right]=q\right)$.

Let $G\left(\omega_{2}\right)$ be $Q^{V\left[G_{\omega_{2}}\right]}$-generic over $V\left[G_{\omega_{2}}\right]$, where Q is Mathias forcing, such that $q \in$ $G\left(\omega_{2}\right)$. Let $r_{\omega_{2}}$ be the corresponding Mathias real, and let $G_{\omega_{2}+1}=G * G\left(\omega_{2}\right)$. By Theorem 2.1, $\mathcal{P}(\omega) /$ fin is \aleph_{1}-distributive in $V\left[G_{\omega_{2}}\right]$. Since Mathias forcing is the composition of $\mathcal{P}(\omega) /$ fin and some σ-centered forcing, it follows that $V\left[G_{\omega_{2}+1}\right] \models \mathfrak{c}=\omega_{2}$. By properness and $V \models C H$ we have $V\left[G_{\alpha^{*}}, r_{\omega_{2}}\right] \models C H$. (If you do not see this, let $V=L$ and use [J, 15.3., p.130].) Hence there exists $\alpha^{*}<\alpha<\omega_{2}$ such that $r_{\alpha} \notin V\left[G_{\alpha^{*}}, r_{\omega_{2}}\right]$. Hence in $V\left[G_{\omega_{2}}\right]$ there exists $q_{1} \in Q^{V\left[G_{\omega_{2}}\right]} \cap G\left(\omega_{2}\right), q_{1} \leq q$, forcing this. Let $\alpha<\gamma<\omega_{2}$ such that $q_{1} \in V\left[G_{\gamma}\right]$. By genericity there exists $\delta \in S_{2} \cap\left[\gamma, \omega_{2}\right)$ such that, if $q_{1}=(u, a)$ then $u \subseteq r_{\delta} \subseteq u \cup a$, that is, q_{1} belongs to the generic filter generated by r_{δ}. Let $q_{2}=\left(u, a \cap r_{\delta}\right)$. Then $q_{2} \in Q^{V\left[G_{\omega_{2}}\right]}$ and $q_{2} \leq q_{1}$.
 infinite subset of r_{δ}. By the remark preceding Lemma 1.2, we have that r is $Q^{V\left[G_{\delta}\right]}$-generic over $V\left[G_{\delta}\right]$. From $(*)$ and the choice of q we conclude that $r_{\alpha} \in V\left[G_{\alpha^{*}}, r\right]$. But on the other hand, q_{1} belongs to the generic filter induced by r, and we conclude $r_{\alpha} \notin V\left[G_{\alpha^{*}}, r\right]$, a contradiction.

Let $C \subseteq S_{1}^{2} \backslash S$ be ω_{1}-club, where S is as in Lemma 4.1. We claim that C serves for Proposition 2.3. By contradiction, suppose that this is false. Hence there exist $\alpha \in C$, $p^{*} \in P_{\omega_{2}} / G_{\sim}$, and $\underset{\sim}{r}$ such that

$$
\begin{equation*}
p^{*} \Vdash_{P_{\omega_{2}} / G_{\alpha}} \underset{\sim}{r} \text { induces a Ramsey ultrafilter on }\left([\omega]^{\omega}\right)^{V\left[G_{\sim}^{\alpha}\right]} \text { and } \underset{\sim}{r} \notin V\left[G_{\sim}^{\alpha+1}\right] . \tag{*}
\end{equation*}
$$

Since forcing $P_{\omega_{2}} / G_{\sim}$ is equivalent to a countable support iteration of length ω_{2} of Mathias forcing in $V\left[G_{\alpha}\right]$ (see $[\mathrm{B}, \S 5]$), for notational simplicity we assume $\alpha=0$ for the moment, and later we will remember that really $V=V\left[G_{\alpha}\right]$ for some $\alpha \in C$ and derive a final contradiction.

First we show that by the absoluteness results from $\S 3$ we may assume that \dot{r} is added by an iteration of countable length. Let $a^{*}=\operatorname{cl}\left(p^{*}\right)$. So $a^{*} \subseteq \omega_{2}$ is countable. We may assume that $0 \in a^{*}$ and a^{*} is closed.

Lemma 4.2 Assuming (*), it is true that $p^{*} \Vdash_{P_{a^{*}}} \underset{\sim}{r}$ induces a Ramsey ultrafilter on $\left([\omega]^{\omega}\right)^{V}$ and $\underset{\sim}{r} \notin V\left[G_{0}\right]$.

Proof: (a) $p^{*} \|-P_{a^{*}} \underset{\sim}{r}$ induces an ultrafilter on $\left([\omega]^{\omega}\right)^{V}$: Otherwise there exists $a \in$ $\left([\omega]^{\omega}\right)^{V}$ and $p \in P_{a^{*}}$ such that $p \leq p^{*}$ and $p \Vdash_{P_{a^{*}}} \underset{\sim}{r} \cap a$ and $\underset{\sim}{r} \cap(\omega \backslash a)$ are both infinite." Let χ be large enough and regular, and let $(N, \in) \prec(H(\chi), \in)$ be countable, containing everything relevant. By Lemma 3.1 choose $q \in P_{\omega_{2}}$ such that q is $\left(N, P_{a^{*}}, p\right)$-generic, and let $\left\langle r_{\alpha}: \alpha \in \omega_{2}\right\rangle$ be $P_{\omega_{2}}$-generic over V, with induced filter G, such that $q \in G$. Then $\left\langle r_{\alpha}: \alpha \in a^{*}\right\rangle$ is $P_{a^{*}}$-generic over N with p, and hence also p^{*}, in its generic filter, denoted $G_{a^{*}}$. Then clearly $p^{*} \in G$. We obtain that $V[G] \models " \underset{\sim}{r}[G] \subseteq^{*} a$ or $\underset{\sim}{r}[G] \subseteq^{*} \omega \backslash a$ ", and $N\left[G_{a^{*}}\right] \models\left|\underset{\sim}{r}\left[G_{a^{*}}\right] \cap a\right|=\left|\underset{\sim}{r}\left[G_{a^{*}}\right] \cap(\omega \backslash a)\right|=\omega$. But clearly $\underset{\sim}{r}[G]=\underset{\sim}{r}\left[G_{a^{*}}\right]$, a contradiction.
(b) $p^{*} \|-P_{a^{*}} \underset{\sim}{r} \notin V\left[G_{0}\right]$: Otherwise there is $p \in P_{a^{*}}, p \leq p^{*}$, such that $p \|-P_{a^{*}} \underset{\sim}{r} \in$ $V\left[G_{0}\right]$. Choose $(N, \in), q$ and G as in (a), and let $G_{a^{*}}$ be defined as there. Then $\underset{\sim}{r}[G] \notin$ $V\left[G_{0}\right], \underset{\sim}{r}\left[G_{a^{*}}\right] \in N\left[G_{0}\right]$ and $\underset{\sim}{r}[G]=\underset{\sim}{r}\left[G_{a^{*}}\right]$. Since $N\left[G_{0}\right] \in V\left[G_{0}\right]$, we have a contradiction.
(c) $p^{*} \Vdash_{P_{a^{*}}} \underset{\sim}{r}$ induces a Ramsey ultrafilter on $\left([\omega]^{\omega}\right)^{V}$: Otherwise there exist $p \in P_{a^{*}}$ and $f \in\left({ }^{\omega} \omega\right)^{V}$ such that if $\underset{\sim}{D}$ is a $P_{a^{*}}$-name for the filter induced by $\underset{\sim}{r}$ we have that $p \|_{P_{a^{*}}} f$ is unbounded but not one-to-one modulo $\underset{\sim}{D}$. Let (N, \in) be as above containing everything relevant. We can get $q \in P_{a^{*}}, q \leq p$, as in Lemma 3.11. Let $\bar{r}_{a^{*}}=\left\langle r_{l}: l \in a^{*}\right\rangle$ be $P_{a^{*}}$-generic over V containing q in its generic filter. By Lemma 3.11, in $V\left[\bar{r}_{a^{*}}\right]$ there exists $\bar{r}_{\omega_{2}}^{\prime}=\left\langle r_{l}^{\prime}: l<\omega_{2}\right\rangle$ such that $\bar{r}_{\omega_{2}}^{\prime}$ is $P_{\omega_{2}}$-generic over N and $r_{l}=r_{l}^{\prime}$, for all $l \in a^{*}$. We obtain that $\underset{\sim}{r}\left[\bar{r}_{\omega_{2}}^{\prime}\right]=\underset{\sim}{r}\left[\bar{r}_{a^{*}}\right]$. Let r be the common value. Then r induces the same filter, say D, in $V\left[\bar{r}_{a^{*}}\right]$ and in $N\left[\bar{r}_{\omega_{2}}^{\prime}\right]$, and also f is unbounded modulo D in both models. Hence by construction, on the one hand we have that $V\left[\bar{r}_{a^{*}}\right] \models f$ is not one-to-one modulo D, but one the other hand $N\left[\bar{r}_{\omega_{2}}^{\prime}\right] \models f$ is one-to-one modulo D. Since $N\left[\bar{r}_{\omega_{2}}^{\prime}\right] \in V\left[\bar{r}_{a^{*}}\right]$ we have a contradiction.

Continuing the proof of Proposition 1, let $\delta=$ o.t. $\left(a^{*}\right)$. Then $\delta<\omega_{1}$, and clearly $P_{a^{*}}$ and P_{δ} are isomorphic. Then our assumption (*) becomes:

$$
\begin{equation*}
p^{*} \Vdash_{P_{\delta}} r \text { induces a Ramsey ultrafilter on }\left([\omega]^{\omega}\right)^{V} \text { and } \underset{\sim}{r} \notin V\left[G_{0}\right] . \tag{**}
\end{equation*}
$$

Let $\underset{\sim}{D}$ be a P_{δ}-name for the filter on $\left([\omega]^{\omega}\right)^{V}$ induced by $\underset{\sim}{r}$. In V, let (N, \in) be a countable elementary substructure of $(H(\chi), \in)$, where χ is a large enough regular cardinal, such that $\delta, p^{*}, \underset{\sim}{D}, \underset{\sim}{r} \in N$. This N will be fixed for the rest of this section. Let G_{0} be Q_{0}-generic, containing a $\left(N, Q_{0}\right)$-generic condition below $p^{*}(0)$. In $V\left[G_{0}\right]$ we define:

$$
\mathcal{Y}=\left\{Y: \exists\left(N\left[G_{0}\right], P_{\delta} /{\underset{\sim}{\sim}}_{0}\right) \text {-generic } q\left(q \leq p^{*} \upharpoonright[1, \delta) \wedge q \Vdash_{P_{\delta} / G_{\sim}} \text { " } \underset{\sim}{D} \cap N=Y "\right)\right\}
$$

Since every Ramsey ultrafilter is a p-point (see $\S 1$), and every $Y \in \mathcal{Y}$ is a countable subset of the denotation of $\underset{\sim}{D}$ in a $P_{\delta} /{\underset{\sim}{0}}_{0}$-generic extension of $V\left[G_{0}\right]$, and $\underset{\sim}{D}$ is forced to be a Ramsey ultrafilter on $\left([\omega]^{\omega}\right)^{V}$, we conclude that such Y is definable from $\left([\omega]^{\omega}\right)^{N}$ and a member of $\left([\omega]^{\omega}\right)^{V}$, and hence $\mathcal{Y} \subseteq V$.

Lemma 4.3. \mathcal{Y} is a Σ_{2}^{1} set in $V\left[G_{0}\right]$.
Proof: We show that $Y \in \mathcal{Y}$ is equivalent to saying:
There exists a countable model (M, \in) such that $N\left[G_{0}\right] \cup\left\{N\left[G_{0}\right], Y\right\} \subseteq M$, $(M, \in) \models Z F^{-}$, and $(M, \in) \models \exists q \in P_{\delta} /{\underset{\sim}{x}}_{0}\left(q\right.$ is $\left(N\left[G_{0}\right], P_{\delta} /{\underset{\sim}{*}}_{0}\right)$-generic and $q \Vdash_{P_{\delta} / G_{0}} " \underset{\sim}{D} \cap\left([\omega]^{\omega}\right)^{N}=Y$ ")

It is well-known (see [J, the proof of 41.1., pp.527f.]) that the quantification over countable models as above is equivalent to quantifying over structures (ω, R), where R is a well-founded binary relation, - which makes the formula no worse (and no better) than $\Sigma_{2}^{1}-$, and that the rest is arithmetical.

If $Y \in \mathcal{Y}$, then choosing a countable (M, \in) which is elementarily embeddable into $\left(H(\chi)^{V\left[G_{0}\right]}, \in\right)$ and contains $N\left[G_{0}\right] \cup\left\{N\left[G_{0}\right], Y\right\}$, we easily see that one implication holds.

Conversely, if $(M, \in), Y, q$ are given as above, then by Lemma 3.10, in $V\left[G_{0}\right]$ choose $q_{1} \leq q$ which is $\left(M, P_{\delta} / \underset{\sim}{G_{0}}\right)$-generic. Here we use again the fact that $P_{\delta} /{\underset{\sim}{0}}_{0}$ is equivalent to a countable support iteration of Mathias forcing. Then clearly q_{1} is also $\left(N\left[G_{0}\right], P_{\delta} / G_{\sim}\right)$ generic, and $q_{1} \|-P_{\delta} /{\underset{\sim}{0}}$ " $\underset{\sim}{D} \cap\left([\omega]^{\omega}\right)^{N}=Y$ " holds in $V\left[G_{0}\right]$. In fact, let G_{1} be $P_{\delta} /{\underset{\sim}{0}}^{-}$ generic over $V\left[G_{0}\right]$, containing q_{1}. Then G_{1} is $P_{\delta} /{\underset{\sim}{0}}^{0}$-generic over M and contains q. By assumption on M, G_{1} is $P_{\delta} /{\underset{\sim}{0}}_{0}$-generic over N. Moreover, $\underset{\sim}{r}\left[G_{0} * G_{1}\right]$ is the same real in $V\left[G_{0} * G_{1}\right]$ and $N\left[G_{0} * G_{1}\right]$. Hence we are done.

The crucial fact, whose proof will require considerable space, is that \mathcal{Y} is uncountable. Then we obtain that in $V\left[G_{0}\right], \mathcal{Y}$ is an uncountable Σ_{2}^{1} set which is a subset of V. By a well-known result of descriptive set theory (see the remark after Corollary 4.10, below), either \mathcal{Y} has a perfect subset, or else \mathcal{Y} is the union of \aleph_{1} countable Borel sets. The first case will be ruled out by a theorem which says that Mathias forcing does not add a perfect set of old reals. In the second case we will remember that really $V=V\left[G_{\alpha}\right]$ for some $\alpha \in C$, and by the definition of C we will obtain a contradiction.

In order to prove that \mathcal{Y} is uncountable, by fusion we will build a perfect tree of $\left(N\left[G_{0}\right], P_{\delta} / \underset{\sim}{G}\right)_{0}$-generic conditions which all decide $\underset{\sim}{D} \cap N$ in different ways. This is much harder than it might seem at first glance. The crucial lemma will be Lemma 4.7 below.

Definition 4.4 (1) For $u \in[\delta]^{<\omega}$ and $p \in P_{\delta}$, let $E(p, u)=\left\{a \in\left([\omega]^{\omega}\right)^{V}: \exists q \leq_{u}\right.$ $\left.p\left(q \Vdash_{P_{\delta}} a \in \underset{\sim}{D}\right)\right\}$.
(2) Suppose $\bar{x}=\left\langle x_{\alpha}: \alpha \in u\right\rangle$ is such that every x_{α} is a P_{α}-name for a finite subset of ω with elements larger than the members of the first coordinate of $p(\alpha)$. Then by $p \cup \bar{x}$ we denote the condition $\bar{p} \in P_{\delta}$ with $\bar{p}(\alpha)=p(\alpha)$ for $\alpha \notin u$, and first coordinate of $\bar{p}(\alpha)=$ first coordinate of $p(\alpha)$, and second coordinate of $\bar{p}(\alpha)=$ (second coordinate of $p(\alpha)) \cup x_{\alpha}$, for $\alpha \in u$. Moreover, by $\bar{x} \cup p$ we denote the condition $\bar{q} \in P_{\delta}$ with $\bar{q}(\alpha)=p(\alpha)$ for $\alpha \notin u$, first coordinate of $\bar{q}(\alpha)=($ first coordinate of $p(\alpha)) \cup \dot{x}_{\alpha}$ and second coordinate of $\bar{q}(\alpha)=$ (second coordinate of $p(\alpha)) \backslash\left(\max \left(x_{\alpha}\right)+1\right)$ for $\alpha \in u$.

Lemma 4.5 The ordering \leq_{u} has the pure decision property, that is, for τ a P_{δ}-name for a member of $\{0,1\}$ and $p \in P_{\delta}$ there exists $q \leq_{u} p$ such that q decides τ.

Proof: We prove it by induction on $\max (u)$. Let $\alpha_{0}=\max (u)$ and $u_{0}=u \backslash\left\{\alpha_{0}\right\}$. We may regard τ as a $P_{\alpha_{0}}$-name for a $P_{\delta} / G_{\alpha_{0}}$-name. Firstly, if $\alpha_{0}=0$, then by the pure decision property of Mathias forcing (proved in [B, 9.3.]) there exists $q(0) \in Q$, $q(0) \leq_{\{0\}} p(0)$, deciding the disjunction " $\exists q_{1} \in P_{\delta} /{\underset{\sim}{~}}_{0}\left(q_{1} \leq p \upharpoonright[1, \delta) \wedge q_{1} \Vdash^{1 \delta} \tau=0\right) \vee \exists q_{1} \in$ $P_{\delta} /{\underset{\sim}{G}}_{0}\left(q_{1} \leq p \upharpoonright[1, \delta) \wedge q_{1} \|-_{1 \delta} \tau=1\right)$ ". By the maximum principle of forcing we may find q_{1} such that $q(0)^{\wedge} q_{1} \leq_{\{0\}} p$ and $q(0)^{\wedge} q_{1}$ decides τ.

For the inductive step, as in the case $\alpha_{0}=0$ we know that for some $q_{1} \in P_{\delta} /{\underset{\sim}{\alpha_{0}}}$, $q_{1} \leq_{\left\{\alpha_{0}\right\}} p \upharpoonright\left[\alpha_{0}, \delta\right), p \upharpoonright \alpha_{0} \|-{ }_{P_{\alpha_{0}}}$ " q_{1} decides τ "; moreover, by induction hypothesis there exists $q_{0} \leq u_{0} p, q_{0} \in P_{\alpha_{0}}$, which decides whether for such $q_{1}, q_{1} \|-\tau=0$ or $q_{1} \|-\tau=1$. Then $q_{0}{ }^{\wedge} q_{1}$ is as desired.

Lemma 4.6. Let $p \in P_{\delta}, u \in[\operatorname{dom}(p)]^{<\omega}, n \in \omega$ and $\bar{x}=\left\langle x_{\alpha}: \alpha \in u\right\rangle$ such that x_{\sim} is a P_{α}-name for the first n members of the infinite part of $p(\alpha)$. Suppose also that for no $q \leq p, E(q, u)$ is a filter.

Then for $i \in\{0,1\}$ there exist $q_{i} \leq_{u} p$ and disjoint $a_{i} \in[\omega]^{\omega}$ such that $q_{i} \cup \bar{x} \Vdash$ " $a_{i} \in$ D".

Proof: First note that if $q \leq p$, for every $k \in \omega$ we may find a disjoint sequence $\left\langle a_{i}: i<k\right\rangle$ of members of $[\omega]^{\omega}$ and $\left\langle q_{i}: i<k\right\rangle$ such that $q_{i} \leq_{u} q$ and $q_{i} \|-$ " $a_{i} \in \underset{\sim}{D}$ ". In fact, since $E(q, u)$ is not a filter there exist $a_{0}^{\prime}, a_{1}^{\prime} \in E(q, u)$ such that $a_{0}^{\prime} \cap a_{1}^{\prime} \notin E(q, u)$. Let $q_{i}^{\prime} \leq_{u} q$ force " $a_{i}^{\prime} \in \underset{\sim}{D}$ ". By the pure decision property of \leq_{u}, as proved in Lemma 4.5., there exists $q_{0} \leq_{u} q_{0}^{\prime}$ deciding whether $a_{0}:=a_{0}^{\prime} \backslash a_{1}^{\prime}$ or $a_{0}^{\prime} \cap a_{1}^{\prime}$ belongs to $\underset{\sim}{D}$. But then clearly $q_{0} \|-$ " $a_{0} \in \underset{\sim}{D}$ ". Hence we may let $q_{1}=q_{1}^{\prime}, a_{1}=a_{1}^{\prime}$. Now proceeding by induction
we easily construct $\left\langle a_{i}: i<k\right\rangle$ and $\left\langle q_{i}: i<k\right\rangle$ as desired.
For $\alpha \in u$ let $\left\langle{\underset{\sim}{\alpha}}_{i}^{i}: i<2^{n}\right\rangle$ be an enumeration (of names) of all the subsets of (the denotation) of x_{\sim}, and let $\left\langle\bar{y}_{i}: i<n^{*}\right\rangle$ enumerate all $\bar{y}_{\sigma}=\left\langle y_{\sim}^{\sigma(\alpha)}: \alpha \in u\right\rangle$, where $\sigma \in{ }^{u}\left(2^{n}\right)$. Now using the observation above we easily construct q_{τ} and $a_{\tau} \in[\omega]^{\omega}$, for every $\tau \in \leq n^{*}\left(n^{*}+1\right)$, such that the following requirements hold:
(1) $q_{\emptyset}=p, a_{\emptyset}=\omega$,
(2) $\left\langle a_{\tau^{\wedge}\langle i\rangle}: i<n^{*}+1\right\rangle$ is a partition of ω,
(3) $\tau \subseteq \sigma \Rightarrow q_{\tau} \geq_{u} q_{\sigma}$,
(4) $|\tau|>0 \Rightarrow \bar{y}_{|\tau|-1} \cup q_{\tau} \Vdash \Vdash^{\prime} a_{\tau} \in \underset{\sim}{D} "$.

Now choose $q_{0} \leq_{u} p$ such that for every $i<n^{*}$ and $\tau \in{ }^{<n^{*}}\left(n^{*}+1\right), \bar{y}_{i} \cup q_{0}$ decides for which $j, a_{\tau^{\wedge}\langle j\rangle}$ belongs to $\underset{\sim}{D}$. For this we use again the pure decision property of \leq_{u}. Then clearly we may find $\tau_{1} \in n^{*}\left(n^{*}+1\right)$ such that, letting $a_{1}:=\bigcup\left\{A_{\tau_{1} \mid j}: 1 \leq j \leq n^{*}\right\}$, $a_{0}:=\omega \backslash a_{1}$ and $q_{1}:=q_{\tau_{1}}$, the conclusion of the Lemma holds.

The following lemma shows that the assumption of Lemma 4.6 holds. As always, we implicitly regard $P_{\delta} / \underset{\sim}{G}$ as a countable support iteration of Mathias forcing.

Lemma 4.7. In $V\left[G_{0}\right]$, for no $q \in P_{\delta} /{\underset{\sim}{0}}$ with $q \leq p^{*} \upharpoonright[1, \delta)$, and for no $u \in$ $[\operatorname{dom}(q)]^{<\omega}$ is it true that $E(q, u)$ is a filter.

Proof: Suppose by way of contradiction that for some $q \leq p^{*} \upharpoonright[1, \delta)$ and $u \in[\operatorname{dom}(q)]^{\omega}$, $E(q, u)$ is a filter. By the pure decision property of \leq_{u}, then $E(q, u)$ is an ultrafilter. By the transitivity of the ordering \leq_{u} we have that for every $q^{\prime} \leq_{u} q, E\left(q^{\prime}, u\right) \subseteq E(q, u)$ and hence $E\left(q^{\prime}, u\right)$ is a filter. By the pure decision property again, we obtain $E\left(q^{\prime}, u\right)=E(q, u)$. This fact will be used several times in the sequel.

In V let $\underset{\sim}{E}, q$ be Q_{0}-names for $E(q, u), q$. Without loss of generality we may assume that the above properties of $E(q, u), q$ are forced by $p^{*}(0)$ to hold for $\underset{\sim}{E}, \underset{\sim}{q}$. Moreover we may certainly assume $\underset{\sim}{E}, q \in N$.

Let $G_{0}=G_{0}^{\prime} * G_{0}^{\prime \prime}$ be the decomposition of G_{0} according to the decomposition of Mathias forcing $Q_{0}=Q_{0}^{\prime} *{\underset{\sim}{0}}_{\prime \prime}$. Let $p^{*}(0)=\left(u^{p^{*}}, a^{p^{*}}\right)$. In $V\left[G_{0}^{\prime}\right]$ we can define:

$$
D_{1}=\left\{a \in[\omega]^{\omega}: \exists a^{\prime} \in G_{0}^{\prime}\left(u^{p^{*}}, a^{\prime}\right) \Vdash " a \in \underset{\sim}{E} "\right\}
$$

By hypothesis and as $Q\left(G_{0}^{\prime}\right)$ has the pure decision property (see [JSh]), we conclude that D_{1} is an ultrafilter. Working in $V\left[G_{0}^{\prime}\right]$, we distinguish two cases according to whether
G_{0}^{\prime} is a projection of D_{1} or not. In both cases we derive a contradiction:
Case 1: $G_{0}^{\prime} \leq_{R K} D_{1}$.
Let $f \in{ }^{\omega} \omega$ witness this. As Q_{0}^{\prime} is σ-closed and hence does not add new reals, $f \in V$. As $N^{\prime}:=N\left[G_{0}^{\prime}\right] \prec\left(H(\chi)^{V\left[G_{0}^{\prime}\right]}, \in\right)$ (see [Shb, 2.11., p.88]) and $D_{1} \in N^{\prime}$, we may assume $f \in N^{\prime}$, and hence $f \in N$ by properness. As $G_{0}^{\prime} \cap N$ is countable, there exists $a \in G_{0}^{\prime}$ such that $G_{0}^{\prime} \cap N=\left\{b \in N: a \subseteq^{*} b\right\}$.

We work in $V\left[G_{0}^{\prime}\right]$. By Case 1 there exists $b \in D_{1}$ such that $f[b] \subseteq a$. Let $x \in Q\left(G_{0}^{\prime}\right)$ with $u^{p^{*}}$ as its first coordinate be such that

$$
\begin{equation*}
x \Vdash_{Q\left(G_{0}^{\prime}\right)} b \in \underset{\sim}{E} . \tag{1}
\end{equation*}
$$

Note that x is trivially $\left(N\left[G_{0}\right], Q\left(G_{0}^{\prime}\right)\right)$-generic, since $Q\left(G_{0}^{\prime}\right)$ is $c c c$. By Lemma 3.10 there exists a $Q\left(G_{0}^{\prime}\right)$-name $\underset{\sim}{q_{1}}$ for a $\left(N\left[{\underset{\sim}{G}}_{0}\right], P_{\delta} /{\underset{\sim}{0}}_{0}\right)$-generic condition, such that $p^{*}(0) \|-Q\left(G_{0}^{\prime}\right)$ ${\underset{\sim}{1}}_{q_{u}}{\underset{\sim}{q}}^{q}$. By the remark at the beginning of this proof, we have

$$
\begin{equation*}
p^{*}(0) \Vdash_{Q\left(G_{0}^{\prime}\right)} E(\underset{\sim}{q}, u)=E\left({\underset{\sim}{1}}^{q_{1}}, u\right) . \tag{2}
\end{equation*}
$$

We conclude that $x * \dot{q}_{1}$ is a $\left(N\left[G_{0}^{\prime}\right], Q\left(G_{0}^{\prime}\right) *\left(P_{\delta} / G_{0}\right)\right)$-generic condition below p^{*}. By (1) and (2), there is a $Q\left(G_{0}^{\prime}\right)$-name ${\underset{\sim}{2}}_{2}$ such that $p^{*}(0) \|-{\underset{\sim}{q}}_{2} \leq_{u}{\underset{\sim}{\sim}}_{q_{1}}$ and $x * q_{2} \|-b \in \underset{\sim}{D}$. Clearly, $x *{\underset{\sim}{2}}_{2}$ is $\left(N\left[G_{0}^{\prime}\right], Q\left(G_{0}^{\prime}\right) *\left(P_{\delta} /{\underset{\sim}{G}}_{0}\right)\right)$-generic. Let G_{1} be $Q\left(G_{0}^{\prime}\right) *\left(P_{\delta} / G_{\sim}\right)$-generic over $V\left[G_{0}^{\prime}\right]$ such that $x *{\underset{\sim}{2}}_{2} \in G_{1}$. We conclude that $b \in \underset{\sim}{D}\left[G_{0}^{\prime} * G_{1}\right]$.

Clearly we have that $f_{*}\left(\underset{\sim}{D}\left[G_{0}^{\prime} * G_{1}\right]\right) \neq G_{0}^{\prime}$, since otherwise $\underset{\sim}{D}\left[G_{0}^{\prime} * G_{1}\right]$ could be computed from f and G_{0}^{\prime} in $V\left[G_{0}^{\prime}\right]$. For this we use that $\underset{\sim}{D}\left[G_{0}^{\prime} * G_{1}\right]$ is Ramsey. Hence this inequality holds in $N^{\prime}\left[G_{1}\right]$. Therefore there exists $a_{1} \in N \cap G_{0}^{\prime}$ such that $f^{-1}\left[a_{1}\right] \notin$ $\underset{\sim}{D}\left[G_{0}^{\prime} * G_{1}\right]$. Let $b_{1}=b \backslash f^{-1}\left[a_{1}\right]$. So $b_{1} \in \underset{\sim}{D}\left[G_{0}^{\prime} * G_{1}\right]$. We obtain that $f\left[b_{1}\right] \cap a_{1}=\emptyset$, $f\left[b_{1}\right] \subseteq a$, and $a \subseteq^{*} a_{1}$. Hence $f\left[b_{1}\right]$ is finite. But then $f\left[b_{1}\right] \notin G_{0}^{\prime}$, a contradiction.

Case 2: $G_{0}^{\prime} \not \mathbb{Z}_{R K} D_{1}$.
In V let ${\underset{\sim}{1}}_{1}$ be a Q_{0}^{\prime}-name for D_{1}, and let G_{0}^{\prime} be the canonical name for the Q_{0}^{\prime}-generic filter. Then by hypothesis there exists $t_{0} \in\left[a^{p^{*}}\right]^{\omega}$ such that:

$$
t_{0} \Vdash \vdash_{Q_{0}^{\prime}} "{\underset{\sim}{0}}_{\prime}^{\prime} \not \mathbb{Z}_{R K}{\underset{\sim}{D}}_{1} \text { ". }
$$

We may certainly assume $\underset{\sim}{D}, t_{0} \in N$.

In V let g be Q^{\prime}-generic over N such that $t_{0} \in g$, where Q is Mathias forcing and $Q=Q^{\prime} * Q^{\prime \prime}$ its canonical decomposition. In $N[g]$ let $d=\underset{\sim}{D_{1}}[g]$. By elementarity we conclude

$$
\begin{equation*}
N[g] \models d \text { is an u.f., } g \text { a Ramsey u.f. and } g \not \mathbb{Z}_{R K} d \text {. } \tag{3}
\end{equation*}
$$

In [GSh] it was shown that for any ultrafilter D on ω there exists a proper forcing Q_{D} such that whenever G is a Ramsey ultrafilter with $G \not{\underset{R}{R K}} D$, then after forcing with Q_{D}, G still generates an ultrafilter but D does not. Moreover Q_{D} is ${ }^{\omega} \omega$-bounding. Hence by Lemma 1.1, every such G generates a Ramsey ultrafilter in every Q_{D}-generic extension.

Definition 4.8. Conditions in Q_{D} are $f=\left\langle h, E ; E_{0}, E_{1}, \ldots\right\rangle$ where $h: \omega \rightarrow\{-1,1\}$, and the sets E, E_{0}, E_{1}, \ldots belong to the ideal dual to D and partition ω.

The ordering is defined as follows: $\left\langle h, E ; E_{0}, E_{1}, \ldots\right\rangle \leq\left\langle h^{\prime}, E^{\prime} ; E_{0}^{\prime}, E_{1}^{\prime}, \ldots\right\rangle$ if and only if
$E \supseteq E^{\prime}$,
E, E_{0}, E_{1}, \ldots is a coarser partition than $E^{\prime}, E_{0}^{\prime}, E_{1}^{\prime}, \ldots$,
$h \upharpoonright E^{\prime}=h^{\prime} \upharpoonright E^{\prime}$,
for all $i: h \upharpoonright E_{i}^{\prime} \in\left\{h^{\prime} \upharpoonright E_{i}^{\prime},-h^{\prime} \upharpoonright E_{i}^{\prime}\right\}$.
A Q_{D}-generic filter G determines a generic real $s=\bigcup\left\{h_{f}: f \in G\right\}$.
By standard arguments one proves that whenever $s \in{ }^{\omega}\{-1,1\}$ is Q_{D}-generic, f belongs to the generic filter which s generates, and s_{f} is defined by:

$$
s_{f}(n)= \begin{cases}s(n) & n \in E^{f} \tag{2}\\ -s(n) & n \notin E^{f}\end{cases}
$$

then s_{f} is Q_{D}-generic as well and f belongs to its generic filter. Here E^{f} is the second coordinate of f. Hence especially $-s$, where $(-s)(n)=-s(n)$, is also Q_{D}-generic.

In $N[g]$ we have the forcing Q_{d}. In V, choose $s \in^{\omega}\{-1,1\} Q_{d}$-generic over $N[g]$. By the properties of Q_{d} and (3), g generates a Ramsey ultrafilter in $N[g][s]$.

Finally, in V choose $t_{1} \subseteq t_{0} Q(g)$-generic over $N[g][s]$. Since every infinite subset of t_{1} is also $Q(g)$-generic and, as just noticed, $-s$ is also Q_{d}-generic, without loss of generality we may assume that

$$
V \models t_{1} \Vdash_{Q_{0}^{\prime}} " s^{-1}(1) \in \underset{\sim}{D_{1}} \text { ". }
$$

Otherwise work with some $t_{2} \in\left[t_{1}\right]^{\omega}$ and $-s$. Hence, by the definition of D_{1}, and since Q_{0}^{\prime} does not add reals, we may assume:

$$
\begin{equation*}
V \models\left(u^{p^{*}}, t_{1}\right) \Vdash Q_{Q_{0}} " s^{-1}(1) \in \underset{\sim}{E} " \tag{5}
\end{equation*}
$$

Claim 1. There exists a Q-name ${\underset{\sim}{q}}^{\prime} \in N\left[g, s, t_{1}\right]$ such that

Proof: Otherwise there exist $\left(u^{\prime}, t^{\prime}\right) \leq\left(u^{p^{*}}, t_{1}\right)$ and q_{\sim}^{\prime} such that in $N\left[g, s, t_{1}\right], q_{\sim}^{\prime}$ is a Q-name for a condition in $P_{\delta} /{\underset{\sim}{~}}_{0}$, and

$$
N\left[g, s, t_{1}\right] \models\left(u^{\prime}, t^{\prime}\right) \Vdash_{Q} \underline{\sim}_{\sim}^{q} \leq_{u} \underset{\sim}{q} \wedge{\underset{\sim}{q}}^{\prime} \Vdash_{P_{\delta} /{\underset{\sim}{0}}_{0}{ }^{\prime} r}^{r} \backslash s^{-1}(1) \text { is infinite"". }
$$

Such q^{\prime} exists by the existential completenes of forcing and the pure decision property of \leq_{u}.

By Lemma 3.10, in V there exists $\bar{q} \in P_{\delta}$ such that $\bar{q} \leq_{u}\left(u^{\prime}, t^{\prime}\right) *{\underset{\sim}{q}}^{\prime}$ and \bar{q} is $\left(N\left[g, s, t_{1}\right], P_{\delta}\right)$-generic. Since by the observation at the very beginning of the present proof we know that

$$
p^{*}(0) \Vdash_{Q} \text { " } \underset{\sim}{E}=E(\bar{q} \upharpoonright[1, \delta), u) ",
$$

by (5) and the definition of $\underset{\sim}{E}$, there exists $\overline{\bar{q}} \in P_{\delta}$ such that $\overline{\bar{q}} \leq_{u} \bar{q}$ and $\overline{\bar{q}} \|-P_{\delta}{ }^{\text {" }} \underset{\sim}{ } \subseteq^{*}$ $s^{-1}(1)$ ". Now choose $G P_{\delta}$-generic over V such that $\overline{\bar{q}} \in G$. Then clearly $V[G] \models \underset{\sim}{r}[G] \subseteq^{*}$ $s^{-1}(1)$ and $N\left[g, s, t_{1}\right][G] \models\left|r[G] \backslash s^{-1}(1)\right|=\omega$. But $\underset{\sim}{r}[G]$ is the same real in both models, a contradiction.

Let us abbreviate the formula "..." in (6) by $\phi\left(q^{\prime}, s\right)$.
Since t_{1} is $Q(g)$-generic and g generates a Ramsey ultrafilter in $N[g][s]$, there exists $\left(u^{\prime}, t^{\prime}\right) \in Q(g)$ such that $u^{\prime} \subseteq t_{1} \subseteq t^{\prime}$ and

$$
\begin{equation*}
N[g, s] \models\left(u^{\prime}, t^{\prime}\right) \Vdash_{Q(g)}{ }^{\prime}\left(u^{p^{*}}, \underset{\sim}{t}\right) \Vdash_{Q^{\prime}} \phi\left({\underset{\sim}{q}}^{\prime}, s\right)^{\prime} ", \tag{7}
\end{equation*}
$$

where $t \underset{\sim}{t}$ is the canonical name for the generic real added by $Q(g)$, and in the formula $\phi(s)$, q_{\sim}^{\prime} is now a $Q(g)$-name for the above q_{\sim}^{\prime}.

Since s is Q_{d}-generic over $N[g]$ and $\left(u^{\prime}, t^{\prime}\right) \in N[g]$, there exists $f \in Q_{d}$ such that f belongs to the Q_{d}-generic filter induced by s, and in $N[g]$ the following holds:

$$
f \Vdash \vdash_{Q_{d}} \text { " } N[g][s] \models\left(\left(u^{\prime}, t^{\prime}\right) \Vdash_{Q(g)}{ }^{\prime}\left(u^{p}, t\right) \Vdash_{Q} \phi\left({\underset{\sim}{q}}^{\prime}, s^{s}\right)^{\prime}\right) ",
$$

where s sis the canonical Q_{d}-name for the $Q_{d^{-}}$-generic real and in $\phi\left(q_{\sim}^{\prime}, \underset{\sim}{s}\right),{\underset{\sim}{l}}^{\prime}$ denotes now a $Q_{d} * Q(g)$-name for the ${\underset{\sim}{q}}^{\prime}$ in (7). By the definition of Q_{d} we have $\omega \backslash E^{f} \in d$.

Claim 2: $V \models t_{1} \Vdash_{Q^{\prime}} " \omega \backslash E^{f} \in \underset{\sim}{D_{1} "}$.
Proof: As g is Q^{\prime}-generic over $N, \omega \backslash E^{f} \in d={\underset{\sim}{D}}_{1}[g]$, and Q^{\prime} does not add reals, there exists $u \in g$ such that

$$
N \models u \Vdash Q_{Q^{\prime}} " \omega \backslash E^{f} \in \underset{\sim}{D_{1}} \text { ". }
$$

By elementarity we conclude that this is true in V. But clearly we have $t_{1} \subseteq^{*} u$.
Let s_{f} be defined as in definition 4.8. By the remarks after 4.8, s_{f} is Q_{d}-generic over $N[g]$, and clearly f belongs to the generic filter determined by s_{f}. Hence (5) holds if s is replaced by s_{f}. Clearly $N[g][s]=N[g]\left[s_{f}\right]$, and hence t_{1} is $Q(g)$-generic over $N[g]\left[s_{f}\right]$, and consequently $N[g][s]\left[t_{1}\right]=N[g]\left[s_{f}\right]\left[t_{1}\right]=: N^{*}$.

Let G^{*} be Q-generic over V, containing a $\left(N^{*}, Q\right)$-generic condition below $\left(u^{p^{*}}, t_{1}\right)$. Then by Claim 2, $\omega \backslash E^{f} \in \underset{\sim}{E}\left[G^{*}\right]$. But also $s^{-1}(1), s_{f}^{-1}(1) \in \underset{\sim}{E}\left[G_{0}^{*}\right]$. In fact, in $N^{*}\left[G^{*}\right]$ we have $q_{1}:={\underset{\sim}{q}}^{\prime}[s]\left[t_{1}\right]\left[G^{*}\right]$ and $q_{2}:={\underset{\sim}{q}}_{\prime}^{\prime}\left[s_{f}\right]\left[t_{1}\right]\left[G^{*}\right]$ with the property that $P_{\delta} /{\underset{\sim}{c}}_{0} \models q_{1}, q_{2} \leq_{u} q$, and $q_{1} \|-P_{P_{\delta} / G_{0}} \underset{\sim}{r} \subseteq^{*} s^{-1}(1)$, and $q_{2} \|-_{P_{\delta} / G_{0}} \underset{\sim}{r} \subseteq^{*} s_{f}^{-1}(1)$. Otherwise, as in the proof of Claim 1, in $V\left[G^{*}\right]$ we could find $\left(N\left[G^{*}\right], P_{\delta} /{\underset{\sim}{x}}^{G_{0}}\right.$)-generic conditions $\bar{q}_{1} \leq_{u} q_{1}$ and $\bar{q}_{2} \leq_{u} q_{2}$ forcing the opposite. By choosing filters which are $P_{\delta} /{\underset{\sim}{0}}^{G_{0}}$-generic over V and contain \bar{q}_{1}, \bar{q}_{2} respectively, we obtain a contradiction. Consequently, $s^{-1}(1), s_{f}^{-1}(1)$, and $\omega \backslash E^{f}$ belong to $\underset{\sim}{E}\left[G^{*}\right]$. But $s^{-1}(1), s_{f}^{-1}(1)$ are complementary on $\omega \backslash E^{f}$, and hence $\underset{\sim}{E}\left[G^{*}\right]$ is not a filter, a contradiction.

Using 4.6, 4.7 and [B, Lemma 7.3.], by standard arguments on proper forcing we obtain the following Corollary.

Corollary 4.9. In $V\left[G_{0}\right]$, there exist $\left\langle q_{s}: s \in{ }^{<\omega} 2\right\rangle,\left\langle a_{s}: s \in{ }^{<\omega} 2\right\rangle$ such that the following hold:
(1) if $s \subseteq t$, then $a_{s} \supseteq a_{t}$ and $a_{s^{\wedge}\langle 0\rangle} \cap a_{s^{\wedge}\langle 1\rangle}=\emptyset$,
(2) if $f \in{ }^{\omega} 2$, then $\left\langle q_{f \upharpoonright n}: n<\omega\right\rangle$ is a descending chain in P_{δ} / G_{\sim} which has a lower bound q_{f} such that:

- q_{f} is $\left(N\left[G_{0}\right], P_{\delta} /{\underset{\sim}{\sim}}\right)$-generic,
- $q_{f} \Vdash \forall n\left(a_{f \upharpoonright n} \in \underset{\sim}{D}\right)$,
- q_{f} decides $\underset{\sim}{D} \cap N$.

Corollary 4.10. \mathcal{Y} is uncountable.
From Lemma 4.3 and Corollary 4.10 we conclude that \mathcal{Y} is an uncountable Σ_{2}^{1} set in $V\left[G_{0}\right]$ which is a subset of V. By well-known results from descriptive set theory, \mathcal{Y} is the union of ω_{1} Borel sets, say $\left\langle B_{\alpha}: \alpha<\omega_{1}\right\rangle$, and this decomposition is absolute for models computing ω_{1} correct (see [J, Theorem 95, p.520, its proof on p. 526 using the Shoenfield tree, and Lemma 40.8, p.525, where its absoluteness is proved]). If one of the B_{α} is uncountable it contains a perfect subset (see [J, Theorem 94, p.507]). This case will be ruled out by the next Lemma 4.11.

Otherwise, each B_{α} is countable. Now \mathcal{Y} and hence $\left\langle B_{\alpha}: \alpha<\omega_{1}\right\rangle$ is coded by a real x. We may assume that x also codes $\left\langle q_{s}: s \in{ }^{<\omega_{2}} 2\right\rangle$ and $\left\langle a_{s}: s \in{ }^{<\omega} 2\right\rangle$ from 4.9. Now remember that V here is really $V\left[G_{\alpha}\right]$ where $\alpha \in C$ (coming from 4.1), and hence $V\left[G_{0}\right]=V\left[G_{\alpha+1}\right]$. Clearly there exists $\beta<\alpha$ such that $x \in V\left[G_{\beta}, r_{\alpha}\right]$. Then also $\left\langle B_{\alpha}: \alpha<\omega_{1}\right\rangle,\left\langle q_{s}: s \in{ }^{<\omega} 2\right\rangle,\left\langle a_{s}: s \in{ }^{<\omega} 2\right\rangle \in V\left[G_{\beta}, r_{\alpha}\right]$, and hence, as each B_{α} is countable, $\mathcal{Y} \subseteq V\left[G_{\beta}, r_{\alpha}\right]$. But from this we conclude $\mathcal{P}(\omega)^{V\left[G_{\beta}, r_{\alpha}\right]}=\mathcal{P}(\omega)^{V\left[G_{\alpha+1}\right]}$, as a new real in $V\left[G_{\alpha+1}\right] \backslash V\left[G_{\beta}, r_{\alpha}\right]$ would give a new branch through $\left\langle a_{s}: s \in{ }^{<\omega} 2\right\rangle$ and hence a new member in \mathcal{Y}. But $\alpha \in C$, and hence $(*)$ in 4.1 fails for it, a contradiction.

Therefore, in order to finish the proof of Proposition 2.3 it suffices to prove the following Lemma:

Lemma 4.11. Suppose $q \in Q$, where Q is Mathias-forcing, τ is a Q-name, and

$$
q \Vdash_{Q} " \tau \subseteq{ }^{<\omega} 2 \text { is a perfect tree". }
$$

Then $q \| Q_{Q} "[\tau] \nsubseteq V$ ".
Proof: By applying the pure decision property of Q repeatedly, without loss of generality we may assume that if $q=(s, a)$, then for every $t \in[a]^{<\omega}$ and $n \in \omega$ there exists $m \in \omega$ such that $(s \cup t, a \backslash m)$ decides the value of $\tau \cap{ }^{<n} 2$. Hence if we let

$$
T_{t}=\left\{\nu \in^{<\omega} 2: \exists n\left((s \cup t, a \backslash n) \Vdash_{Q} " \nu \in \tau "\right)\right\},
$$

then T_{t} is a tree with no finite branches.
We shall define a Q-name η for a real in $[\tau] \backslash V$. To this end, for every $t \in[b]^{<\omega}$, we construct $b \in[a]^{\omega}, \eta_{t} \in T_{t}$ and $n(t) \in \omega$ such that the following hold:
(1) $(s \cup t, b \backslash(\max (t)+1)) \Vdash_{Q}{ }^{\prime \prime} \eta_{t} \in \tau "$;
(2) if $T_{t} \cap\left[\eta_{t}\right]$ has infinitely many branches, hence by compactness a nonisolated one, and x_{t} is the lexicographically least such one, then for every $m \in b \backslash(\max (t)+1), \eta_{t \cup\{m\}}$ is not an initial segment of x_{t}, but $\eta_{t \cup\{m\}} \upharpoonright n(t \cup\{m\})$ is; moreover, $\lim _{m \rightarrow \omega} n(t \cup\{m\})=\infty$;
(3) if $T_{t} \cap\left[\eta_{t}\right]$ has finitely many branches, then for every $m \in b \backslash(\max (t)+1)$,

- if $T_{t \cup\{m\}}$ has a member extending η_{t} which does not belong to T_{t}, then $\eta_{t \cup\{m\}}$ is like that, say among the shortest the lexicographically least one;
- if $T_{t \cup\{m\}}$ has no such member, then $\eta_{t \cup\{m\}}=\eta_{t}$.

The construction of $b,\left\langle\eta_{t}: t \in[b]^{<\omega}\right\rangle$ and $\left\langle n(t): t \in[b]^{<\omega}\right\rangle$ is by fusion: Suppose that an initial segment of b, say t, has been fixed and for some $b^{\prime} \in[a \backslash t]^{\omega}$, for every $t^{\prime} \in \mathcal{P}(t)$ and $m \in b^{\prime}, \eta_{t^{\prime}}, n\left(t^{\prime}\right)$ and $\eta_{t^{\prime} \cup\{m\}}, n\left(t^{\prime} \cup\{m\}\right)$ have been defined such that (1), (2), (3) hold for $\eta_{t^{\prime}}, \eta_{t^{\prime} \cup\{m\}}, n\left(t^{\prime}\right), n\left(t^{\prime} \cup\{m\}\right)$ and b^{\prime}. Now the least element of b^{\prime}, say k, is put into b. Then successively for each $t^{\prime} \in \mathcal{P}(t)$, first count how many branches $T_{t^{\prime} \cup\{k\}} \cap\left[\eta_{t^{\prime} \cup\{k\}}\right]$ has, and then accordingly define $\eta_{t^{\prime} \cup\{k\} \cup\{m\}}$ and maybe $n\left(t^{\prime} \cup\{k\} \cup\{m\}\right.$) (if we are in case (2)) for $m \in b^{\prime}$, all the time shrinking b^{\prime} to make sure that in the end, for some $b^{\prime \prime} \in\left[b^{\prime}\right]^{\omega}$, for every $t^{\prime} \in \mathcal{P}(t \cup\{k\})(1),(2)$ and (3) hold for $\eta_{t^{\prime}}$ and $b^{\prime \prime}$. The construction is totally straightforward, so we leave the rest to the reader.

We define a Q-name as follows:

$$
\eta=\bigcup\left\{\eta_{t}: t \in[b]^{<\omega} \wedge((s \cup t, b \backslash(\max (t)+1)) \in \underset{\sim}{G})\right\} .
$$

Here $\underset{\sim}{G}$ is the canonical name for the Q-generic filter. By construction we conclude:

$$
(s, b) \vdash_{Q} " \eta \in[\tau] \cup \tau "
$$

Suppose now that some $\left(s \cup t, b^{*}\right) \leq(s, b)$ forces that η belongs to V, so, without loss of generality, there exists $\eta^{*} \in V$ such that

$$
\left(s \cup t, b^{*}\right) \vdash_{Q} " \eta=\eta^{* "} .
$$

From this we will derive a contradiction. Then the Lemma will be proved. Clearly we have $\eta^{*} \in{ }^{\omega} \omega \cup{ }^{<\omega} \omega$. We distinguish the following cases:

Case 1: $T_{t} \cup\left[\eta_{t}\right]$ has infinitely many branches.
Subcase 1a: $\eta^{*}=x_{t}$. By construction, if $m \in b^{*}$ then $\left(s \cup t \cup\{m\}, b^{*} \backslash(m+1)\right) \Vdash_{Q}$ " $\eta_{t \cup\{m\}} \subseteq \eta$ " and $\eta_{t \cup\{m\}} \nsubseteq x_{t}$, a contradiction.

Subcase 1b: $\eta^{*} \mid n \neq x_{t} \upharpoonright n$ for some n. If $m \in b^{*}$ with $n(t \cup\{m\}) \geq n$, then by construction $\left(s \cup t \cup\{m\}, b^{*} \backslash(m+1)\right) \Vdash \vdash_{Q} " \eta \upharpoonright n(t \cup\{m\})=x_{t} \upharpoonright n(t \cup\{m\})$ ", a contradiction.

Case 2: $T_{t} \cap\left[\eta_{t}\right]$ has only finitely many branches.
Subcase 2a: $\eta^{*} \in\left[T_{t}\right] \cup T_{t}$. Since τ is forced to be a perfect tree there exists $u \in\left[b^{*}\right]^{<\omega}$ such that $T_{t \cup u}$ has a member above η_{t} which is not in T_{t}. But then by construction $\left(s \cup t \cup u, b^{*} \backslash(\max (u)+1)\right) \vdash_{Q} " \eta \notin\left[T_{t}\right] \cup T_{t} "$, a contradiction.

Subcase 2b: $\eta^{*} \upharpoonright n \notin T_{t}$ for some n. By construction of T_{t}, there exists m such that $\left(s \cup t, b^{*} \backslash m\right) \vdash_{Q} " \tau \cap \leq n 2=T_{t} \cap \leq n 2$ ". But $\left(s \cup t, b^{*} \backslash m\right) \Vdash_{Q}$ " $\eta \upharpoonright n \in \tau$ ", a contradiction.

5. Proof of Proposition 2.4

The proof will use several ideas from the proof of Proposition 2.3. Suppose that Proposition 2.4 is false, that is, there exist Q-names $\underset{\sim}{D}$ and $\underset{\sim}{r}$, and $p \in Q$ such that p forces that $\underset{\sim}{r}$ induces a Ramsey ultrafilter $\underset{\sim}{D}$ on $\left([\omega]^{\omega}\right)^{V}$ which is not RK-equivalent to ${\underset{\sim}{c}}^{\prime}$ by any $f \in{ }^{\omega} \omega \cap V$.

First note that a σ-centered forcing P does not add such $\underset{\sim}{D}$. In fact, since $V \models C H$, such $\underset{\sim}{D}$ is forced to be generated by a \subseteq^{*}-descending chain $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$ of members of $\left([\omega]^{\omega}\right)^{V}$. For every $\alpha<\omega_{1}$, choose $p_{\alpha} \in P$ and $a_{\alpha} \in\left([\omega]^{\omega}\right)^{V}$ such that $p_{\alpha} \|-{ }_{P} a_{\sim} a_{\alpha}=a_{\alpha}$. Since P is σ-centered, there exists $X \in\left[\omega_{1}\right]^{\omega_{1}}$ such that p_{α}, p_{β} are compatible whenever $\alpha, \beta \in X$. By the $c c c$ of P, there exists a P-generic filter G which contains p_{α} for uncountably many $\alpha \in X$. Then clearly $\underset{\sim}{D}[G] \in V$, as $\underset{\sim}{D}[G]$ is generated by $\left\langle a_{\alpha}: \alpha \in X\right\rangle$. The argument shows that no condition in P forces that $\underset{\sim}{D}$ does not belong to V.

Since $Q\left(G^{\prime}\right)$ is forced to be σ-centered, by what we just proved we may assume that $\underset{\sim}{D}$ is a Q^{\prime}-name. As usual, we write $p=\left(u^{p}, a^{p}\right)$. For $t \in Q^{\prime}$ we define

$$
D_{t}=\left\{a \in\left([\omega]^{\omega}\right)^{V}: t \Vdash_{Q^{\prime}} " a \in{\underset{\sim}{D}}^{\prime}\right\}
$$

The following claim follows immediately from the definitions:
Claim 1. For all $t \in Q^{\prime}$ with $t \leq a^{p}$, we have that $a \in D_{t}$ if and only if $\left(u^{p}, t\right) \|-_{Q}$ " $\underset{\sim}{ } \subseteq^{*} a$ ".

Claim 2. Suppose that (N, \in) is a countable model of $Z F^{-}$such that $\underset{\sim}{r}, p \in N$, and $\underset{\sim}{r}$ is hereditarily countable in N. Then for every $a \in[\omega]^{\omega} \cap N$ and $t \in Q^{\prime} \cap N$ with $t \leq a^{p}$, it is true that $\left(u^{p}, t\right) \Vdash \vdash_{Q}$ " $\underset{\sim}{\subseteq^{*}}$ a" implies that $N \models\left(u^{p}, t\right) \Vdash \vdash_{Q} \underset{\sim}{r} \subseteq^{*} a$ ".

Proof of Claim 2: Otherwise there exists $q \in N \cap Q$ such that $q \leq\left(u^{p}, t\right)$ and $N \models$ $q \vdash_{Q}$ " $\underset{\sim}{r} \cap(\omega \backslash a)$ is infinite" $)$.

By Lemma 1.2 , there exists $q^{\prime} \in Q$ such that $q^{\prime} \leq q$ and q^{\prime} is (N, Q)-generic. Let G be Q-generic over V, containing q^{\prime}. Then by assumption $\underset{\sim}{r}[G] \subseteq^{*} a$. On the other hand, $N[G] \models|r[G] \cap(\omega \backslash a)|=\omega$. As $\underset{\sim}{r}[G]$ is the same real in $V[G]$ and $N[G]$ we have a contradiction.

By assumption, and since Q^{\prime} does not add reals, we conclude:

$$
a^{p} \vdash_{Q^{\prime}} \text { " } \underset{\sim}{D} \text { and }{\underset{\sim}{\prime}}^{\prime} \text { are Ramsey ultrafilters which are not } R K \text {-equivalent." }
$$

Choose a countable elementary substructure $(N, \in) \prec(H(\chi), \in)$ where χ is a large enough regular cardinal, such that $\underset{\sim}{D}, \underset{\sim}{r}, p \in N$.

In V, let g be Q^{\prime}-generic over N such that $a^{p} \in g$. In $N[g]$, let $d=\underset{\sim}{D}[g]$. By elementarity we conclude

$$
\begin{equation*}
N[g] \models \text { " } g \text { and } d \text { are Ramsey ultrafilters which are not } R K \text {-equivalent." } \tag{1}
\end{equation*}
$$

In V, choose $s \in{ }^{\omega}\{-1,1\} Q_{d}$-generic over $N[g]$, where Q_{d} is the forcing from 4.8, defined in $N[g]$ from the ultrafilter d. From (1), Lemma 1.1, and [GSh] we conclude that g generates a Ramsey ultrafilter in $N[g][s]$.

Finally, in V choose $t_{1} \leq a^{p} Q(g)$-generic over $N[g][s]$. Since every infinite subset of t_{1} is also $Q(g)$-generic and $-s$ is also $Q_{d^{-}}$-generic, without loss of generality we may assume that $s^{-1}(1) \in D_{t_{1}}$.

By Claims 1 and 2 we conclude:

$$
\begin{equation*}
N[g][s]\left[t_{1}\right] \models\left(u^{p}, t_{1}\right) \Vdash \vdash_{Q}{ }_{\sim} r \subseteq^{*} s^{-1}(1) " \tag{2}
\end{equation*}
$$

Since g generates a Ramsey ultrafilter in $N[g][s]$, by the remark preceding Lemma 1.2 we conclude that t_{1} is $Q(g)$-generic over $N[g][s]$. Since $Q(g)^{N[g]}$ is dense in $Q(g)^{N[g][s]}$, there exists $\left(u^{\prime}, t^{\prime}\right) \in Q(g)^{N[g]}$ such that $u^{\prime} \subseteq t_{1} \subseteq t^{\prime}$ and

$$
\begin{equation*}
\left.N[g, s] \models\left(u^{\prime}, t^{\prime}\right) \Vdash_{Q(g)} \text { " }\left(u^{p}, t\right) \Vdash_{Q}{ }^{‘} \underset{\sim}{r} \subseteq^{*} s^{-1}(1)\right)^{\prime} " \tag{3}
\end{equation*}
$$

Here $\underset{\sim}{t}$ is the canonical name for the generic real added by $Q(g)$.
Since s is Q_{d}-generic over $N[g]$ and all the parameters in the formula "..." of (3) belong to $N[g]$, there exists $f \in Q_{d}$ such that f belongs to the Q_{d}-generic filter induced by s, and in $N[g]$ the following holds:

$$
f \Vdash_{Q_{d}} " N[g][s] \models\left[\left(u^{\prime}, t^{\prime}\right) \Vdash_{Q(g)}{ }^{`}\left(u^{p}, t\right) \Vdash \vdash_{Q}{ }^{`} r \subseteq^{*} \dot{s}^{-1}(1) "\right] " \text {. }
$$

Here s is the canonical Q_{d}-name for the Q_{d}-generic real. By definition of $Q_{d}, \omega \backslash E^{f} \in d$.
Claim 3: $V \models \omega \backslash E^{f} \in D_{t_{1}}$.
Proof of Claim 3: As g is Q^{\prime}-generic over $N, \omega \backslash E^{f} \in d={\underset{\sim}{1}}_{1}[g]$, and Q^{\prime} does not add reals, there exists $w \in g$ such that

$$
N \models w \Vdash_{Q^{\prime}} " \omega \backslash E^{f} \in \underset{\sim}{D} "
$$

By elementarity we conclude that this is true in V, so by definition of $D_{w}, \omega \backslash E^{f} \in D_{w}$. Clearly we have $t_{1} \leq w$, so $\omega \backslash E^{f} \in D_{t_{1}}$.

Let s_{f} be defined as in the remark after 4.8. Then s_{f} is also $Q_{d^{-}}$-generic over $N[g]$, and clearly f belongs to the generic filter determined by s_{f}. Hence (3) holds if s is replaced by s_{f}.

Clearly $N[g][s]=N[g]\left[s_{f}\right]$, and hence t_{1} is $Q(g)$-generic over $N[g]\left[s_{f}\right]$, and consequently $N[g][s]\left[t_{1}\right]=N[g]\left[s_{f}\right]\left[t_{1}\right]$.

From (3) we conclude:

$$
\begin{equation*}
N[g]\left[s_{f}\right]\left[t_{1}\right] \models\left(u^{p}, t_{1}\right) \vdash_{Q}{ }_{\sim}^{r} \underset{\sim}{\subseteq^{*}} s_{f}^{-1}(1) " \text {. } \tag{4}
\end{equation*}
$$

From Claim 3 together with Claims 1 and 2 we conclude:

$$
\begin{equation*}
N[g]\left[s_{f}\right]\left[t_{1}\right] \models\left(u^{p}, t_{1}\right) \vdash_{Q} \text { "r} \underset{\sim}{\subseteq^{*}} \omega \backslash E^{f "} \tag{7}
\end{equation*}
$$

Since $s^{-1}(1), s_{f}^{-1}(1)$ are complementary on $\omega \backslash E^{f},(2),(4)$ and (5) imply that $\underset{\sim}{r}$ is forced to be finite, a contradiction.

References

[B] J.E.Baumgartner, Iterated forcing, in: Surveys in set theory, A.R.D. Mathias (ed.), London Math. Soc. Lect. Notes Ser. 8, Cambridge Univ. Press, Cambridge (1983), 1-59
[BPS] B. Balcar, J. Pelant, P.Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24
[GSh] M. Goldstern, S. Shelah, Ramsey ultrafilters and the reaping number - Con($\mathfrak{r}<$ \mathfrak{u}), Ann. Pure Appl. Logic 49 (1990), 121-142.
[J] T. Jech, Set theory, Academic Press, New York (1978).
[JSh] H. Judah, S. Shelah, Δ_{2}^{1}-sets of reals, Ann. Pure Appl. Logic 42 (1989), 207-233.
[JSp] H. Judah, O. Spinas, Large cardinals and projective sets, submitted.
[M] A.R.D. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111.
[R] M.E. Rudin, Partial orders on the types of βN, Trans. AMS 155 (1971), 353-362.
[Shb] S. Shelah, Proper forcing, Lecture Notes in Math., vol. 942, Springer (1982).
[ShSp] S. Shelah, O. Spinas, The distributivity numbers of finite products of $\mathcal{P}(\omega) /$ fin, in preparation

[^0]: ${ }^{1}$ The author is supported by the Basic Research Foundation of the Israel Academy of Sciences; publication 494.
 ${ }^{2}$ The author is supported by the Swiss National Funds.

