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Abstract

It is consistent for every 1 ≤ n < ω that 2ω = ωn and there is a
function F : [ωn]<ω → ω such that every finite set can be written at most
2n− 1 ways as the union of two distinct monocolored sets. If GCH holds,
for every such coloring there is a finite set that can be written at least
1
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∑n

i=1

(
n+i
n

)(
n
i

)
ways as the union of two sets with the same color.

0 Introduction

In [6] we proved that for every coloring F : [ωn]<ω → ω there exists a set
A ∈ [ωn]<ω which can be written at least 2n− 1 ways as A = H0 ∪H1 for some
H0 6= H1, F (H0) = F (H1) and that for n = 1 there is in fact a function F for
which this is sharp. Here we show that for every n < ω it is consistent that
2ω = ωn and for some function F as above for every finite set A there are at
most 2n − 1 solutions of the above equation. We use historic forcing which was
first used in [1] and [7] then in [5] and [4]. Under GCH, we improve the positive
result of [6] by showing that for every F as above some finite set can be written
at least Tn = 1

2
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)
ways as the union of two sets with the same F

value.
With the methods of [6] it is easy to show the following corollary of our

independence result. It is consistent that 2ω = ωn and there is a function
f : R→ ω such that if x is a real number then x cannot be written more than
2n− 1 ways as the arithmetic mean of some y 6= z with f(y) = f(z). ((y, z) and
(z, y) are not regarded distinct.) Another idea of [6] can be used to modify our
second result to the following. If GCH holds and V is a vector space over the
rationals with |V | = ωn, f : V → ω then some vector can be written at least Tn
ways as the arithmetic mean of two vectors with the same f -value.
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Notation We use the standard set theory notation. If S is a set, κ a cardinal,
then [S]κ = {A ⊆ S : |A| = κ}, [S]<κ = {A ⊆ S : |A| < κ}, [S]≤κ = {A ⊆
S : |A| ≤ κ}. P (S) is the power set of S. If f is a function, A a set, then
f [A] = {f(x) : x ∈ A}.

1 The independence result

Theorem 1 For 1 ≤ n < ω it is consistent that 2ω = ωn and there is a function
F : [ωn]<ω → ω such that for every A ∈ [ωn]<ω there are at most 2n−1 solutions
of A = H0 ∪H1 with H0 6= H1, F (H0) = F (H1).

For α < ωn fix a bijection ϕα : α → |α|. For x ∈ [ωn]<ω define γi(x) for
i < k = min(n, |x|) as follows. γ0(x) = max(x).

γi+1(x) = ϕ−1γ0(x)

(
γi
(
ϕγ0(x)[x ∩ γ0(x)]

))
.

γ(x) = {γ0(x), . . . , γk−1(x)}.
So, for example, if n = 0 then γ(x) = ∅, if n = 1, x 6= ∅, then γ(x) =

{γ0(x)} = {max(x)}.

Lemma 1 Given s ∈ [ωn]≤n there are at most countably many x ∈ [ωn]<ω such
that γ(x) = s.

Proof By induction on n.

Let Φ(s) =
⋃
{x : γ(x) ⊆ s}, a countable set for s ∈ [ωn]<ω.

Definition The two sets x, y ∈ [ωn]<ω are isomorphic if the structures (x;<
, γ0(x), . . . , γk−1(x)), (y;<, γ0(y), . . . , γk−1(y)), are isomorphic, i.e., |x| = |y|
and the positions of the elements γi(x), γi(y) are the same.

Notice that for every finite j there are just finitely many isomorphism types
of j-element sets.

The elements of P , the applied notion of forcing will be some structures of
the form p = (s, f) where s ∈ [ωn]<ω and f : P (s)→ ω.

The only element of P0 is 1P = (∅, 〈∅, 0〉), it will be the largest element of
P . The elements of P1 are of the form p = ({ξ}, f) where f(∅) = 0 6= f({ξ}) for
ξ < ωn.

Given Pt, p = (s, f) is in Pt+1 if the following is true. s = ∆ ∪ a ∪ b is a
disjoint decomposition. p′ = (∆ ∪ a, f ′) and p′′ = (∆ ∪ b, f ′′) are in Pt where
f ′ = f |P (∆∪ a), f ′′ = f |P (∆∪ b). There is π : ∆∪ a→ ∆∪ b, an isomorphism
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between (∆∪a,<, P (∆∪a), f ′) and (∆∪ b,<, P (∆∪ b), f ′). π|∆ is the identity.
For H ⊆ ∆ ∪ a the sets H and π[H] are isomorphic. a ∩ Φ(∆) = b ∩ Φ(∆) = ∅.
f − f ′ − f ′′ is one-to-one and takes only values outside Ran(f ′) (which is the
same as Ran(f ′′)). P =

⋃
{Pt : t < ω}. We make p ≤ p′, p′′ and the ordering

on P is the one generated by this.

Lemma 2 (P,≤) is ccc.

Proof Assume that pα ∈ P (α < ω1). We can assume by thinning and using the
∆-system lemma and the pigeon hole principle that the following hold. pα ∈ Pt
for the same t < ω. pα = (∆ ∪ aα, <, P (∆ ∪ aα), fα) where the structures
(∆ ∪ aα, <, fα) and (∆ ∪ aβ , <, fβ) are isomorphic for α, β < ω1, {∆, aα :
α < ω1} pairwise disjoint. We can also assume that if π is the isomorphism
between (∆ ∪ aα, <, fα) and (∆ ∪ aβ , <, fβ) then H and π[H] are isomorphic
for H ⊆ ∆ ∪ aα. Moreover, if we assume that ∆ occupies the same positions
in the ordered sets ∆ ∪ aα (α < ω1) then π will be the identity on ∆. As
Φ(∆) is countable, by removing countably many indices we can also assume
that Φ(∆) ∩ aα = ∅ for α < ω1. Now any pα and pβ are compatible as we can
take p = (∆ ∪ aα ∪ aβ , <, P (∆ ∪ aα ∪ aβ), f) ≤ pα, pβ where f ⊇ fα, fβ is an
appropriate extension, i.e., f − fα − fβ is one-to-one and takes values outside
Ran(fα).

Lemma 3 If (s, f) ∈ P , H0, H1 ⊆ s have f(H0) = f(H1) then H0, H1 are
isomorphic.

Proof Set (s, f) ∈ Pt. We prove the statement by induction on t. There is
nothing to prove for t < 2. Assume now that (s, f) ∈ Pt+1, s = ∆ ∪ a ∪ b,
π : ∆∪ a→ ∆∪ b as in the definition of (P,≤). As f(H0) is a value taken twice
by f , both H0 and H1 must be subsets of either ∆∪a or ∆∪ b. We are done by
induction unless H0 ⊆ ∆∪a and H1 ⊆ ∆∪ b (or vice versa). Now H0 and π[H0]
are isomorphic and f(H0) = f(π[H0]) = f(H1) so by the inductive hypothesis
π[H0] and H1 are ismorphic and then so are H0, H1.

Lemma 4 If (s, f) ∈ P , H0, H1 ⊆ s, f(H0) = f(H1), x ∈ H0 ∩ H1 then x
occupies the same position in the ordered sets H0, H1.

Proof Similarly to the proof of the previous Lemma, by induction on t, for
(s, f) ∈ Pt. With similar steps, we can assume that (s, f) = (∆ ∪ a ∪ b, f) ≤
(∆ ∪ a, f ′), (∆ ∪ b, f ′′), H0 ⊆ ∆ ∪ a, H1 ⊆ ∆ ∪ b. Notice that x ∈ ∆. Now, as
π(x) = x, x is a common element of π[H0] and H1 and also f ′′(π[H0]) = f ′′(H1).
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By induction we get that x occupies the same position in π[H0] and H1 so by
pulling back we get that this is true for H0 and H1.

Lemma 5 If (s, f) ∈ P , A ⊆ s, 0 ≤ j ≤ n then A can be written at most
2j−1 ways as A = H0∪H1 with H0, H1 distinct, f(H0) = f(H1), and |γ(H0)∩
γ(H1)| ≥ n− j.

Proof By induction on j and inside that induction, by induction on t, for
(s, f) ∈ Pt. The case t < 2 will always be trivial.

Assume first that j = 0. In this case our Lemma reduces to the following
statement. There are no H0 6= H1 such that γ(H0) = γ(H1). In the inductive
argument we assume as usual that s = ∆∪a∪b and so (s, f) ∈ Pt+1 was created
from (∆ ∪ a, f ′) and (∆ ∪ b, f ′′), H0 ⊆ ∆ ∪ a, H1 ⊆ ∆ ∪ b. As γ(H0) = γ(H1),
γ(H0) ⊆ ∆, but then, as Φ(∆) ∩ a = ∅, H0 can have no points outside ∆ and
similarly for H1, so we can go back, say to (∆∪ a, f ′) ∈ Pt which concludes the
argument.

Assume now that the statement is proved for j and we have p = (s, f) ∈ Pt+1,
s = ∆ ∪ a ∪ b and p was created from p′ = (∆ ∪ a, f ′) and p′′ = (∆ ∪ b, f ′′).
In A ⊆ ∆ ∪ a ∪ b we can assume that y = A ∩ a 6= ∅, z = A ∩ b 6= ∅ as
otherwise we can pull back to p′ or p′′. But then, if A = H0 ∪ H1, then,if,
say, H0 ⊆ ∆ ∪ a, H1 ⊆ ∆ ∪ b hold, then necessarily H0 ∩ a = y, H1 ∩ b = z,
so H0 = x0 ∪ y, H1 = x1 ∪ z where x0 ∪ x1 = x = A ∩ ∆. We can create
decompositions of B = x∪π[y]∪z by taking B = π[H0]∪H1. But some of these
decompositions will not be different and it may happen that we get non-proper
(i.e., one-piece) decomposition. This can only happen if π[y] = z, and then
the two decompositions A = (x0 ∪ y) ∪ (x1 ∪ z) and A = (x1 ∪ y) ∪ (x0 ∪ y)
produce the same decomposition of B, namely, B = (x0∪z)∪ (x1∪z) and there
is but one decomposition, A = (x ∪ y) ∪ (x ∪ z) which cannot be mapped to a
decomposition of B. If this (i.e., π[y] = z) does not happen, we are done by
induction. If this does happen, we know that γ(H0) = γ(x0 ∪ y) has an element
in y (by the argument at the beginning of the proof). As f(x0 ∪ y) = f(x1 ∪ z),
by Lemmas 3 and 4, both H0 = x0 ∪ y and H1 = x1 ∪ z have an element
in the γ-subset, at the same positions which are mapped onto each other by
π. We get that γ(x0 ∪ z) ∩ γ(x1 ∪ z) has at least n − j element, so by our
inductive assumption we have at most 2j − 1 decompositions, which gives at
most 2 · (2j − 1) + 1 = 2j+1 − 1 decompositions of A.

Let G ⊆ P be a generic subset. Set S =
⋃
{s : (s, f) ∈ G}, F =

⋃
{f :

(s, f) ∈ G}.

Lemma 6 There is a p ∈ P such that p ‖−− |S| = ℵn.
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Proof Otherwise 1 ‖−− sup(S) < ωn. By ccc, there is an ordinal ξ < ωn for
which 1 ‖−− sup(S) < ξ, but this is impossible as there are conditions in P1

forcing that ξ ∈ S.

Now we can conclude the proof of the Theorem. If G is generic, and p ∈ G
with the condition p of Lemma 6, then in V [G] F witnesses the theorem by
Lemma 5 (for j = n) on the ground set S. As |S| = ωn we can replace it by ωn.

2 The GCH result

Set

Tn =
1

2

n∑
i=1

(
n+ i

n

)(
n

i

)
.

So T1 = 1, T2 = 6, T3 = 31. In general, Tn is asymptotically c(3 + 2
√

2)n/
√
n

for some c.

Theorem 2 (GCH) If F : [ωn]<ω → ω then some A ∈ [ωn]<ω has at least Tn
decompositions as A = H0 ∪H1, H0 6= H1, F (H0) = F (H1).

Proof By the Erdős-Rado theorem (see [2, 3]) there is a set {xα : α < ω1}
which is (n − 1)-end-homogeneous, i.e., for some g : [ω1]<ω → ω, if α1 < · · · <
αk < β1 < · · · < βn−1 < ω1 then

f({xα1
, . . . , xαk

, xβ1
, . . . , xβn−1

}) = g(α1, . . . , αk).

Select S1 ∈ [ω1]ω1 in such a way that g(α) = c0 for α ∈ S1. Set γ1 = min(S1).
In general, if γi, Si are given (1 ≤ i < n) pick Si+1 ∈ [Si − (γi + 1)]ω1 so that
g(γ1, . . . , γi, α) = ci for α ∈ Si+1 and set γi+1 = min(Si+1). Given γ1, . . . , γn
and Sn let γn+1, . . . , γ2n be the n least elements of Sn − (γn + 1).

Our set will be A = {xγ1 , . . . , xγ2n}. For 0 ≤ i < n the color of any (n+ i)-
element subset of A containing xγ1 , . . . , xγi will be ci. We can select 1

2

(
2n−i
n

)(
n
i

)
different pairs of those sets which cover A. In toto, we get Tn decompositions
of A.
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Eötvös University
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