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Abstract

A subgroup G ≤ Zω exhibits the Specker phenomenon if every homomorphism G → Z
maps almost all unit vectors to 0. We give several combinatorial characterizations of the

cardinal se, the size of the smallest G ≤ Zω exhibiting the Specker phenomenon. We

also prove the consistency of b < e, where b is the unbounding number and e the evasion

number. Our results answer several questions addressed by Blass.
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Introduction

Specker [Sp] proved that given a homomorphism h from Zω to the infinite cyclic group

Z, where Zω denotes the direct product of countably many copies of Z, we have h(en) = 0

for all but finitely many unit vectors en ∈ Zω (in other words, the n–th component of

en is 1, and its other components are 0). Blass [Bl] studied the Specker–Eda number se,

the size of the smallest subgroup G ≤ Zω containing all unit vectors which still has the

property that every homomorphism h : G→ Z annihilates almost all unit vectors. We will

give various (mostly less algebraic) characterizations of se (some of which already play a

prominent role in Blass’ work); we will also study some related cardinal invariants of the

continuum.

To be more explicit, let ≤∗ denote the eventual domination order on the Baire space

ωω; i.e. f ≤∗ g iff f(n) ≤ g(n) for all but finitely many n. We shall usually abbreviate the

statement in italics by ∀∞n; similarly we will write ∃∞n for there are infinitely many n.

The unbounding number b is the smallest size of a ≤∗–unbounded family F of functions

in ωω (i.e., given any g ∈ ωω, there is f ∈ F with ∃∞n (f(n) > g(n))). Given a σ–ideal I
on ωω, the additivity add(I) is the least cardinality of a family F of members of I whose

union is not in I. We shall use this cardinal only in the cases I =M, the ideal of meager

sets, and I = L, the ideal of Lebesgue null sets. — While the preceding invariants have

been studied by a number of people in the last two decades, the following concept was

introduced only recently by Blass [Bl]. Given an at most countable set S, an S–valued

predictor is a pair π = (Dπ, 〈πn; n ∈ Dπ〉) where Dπ ⊆ ω is infinite and for each n ∈ Dπ,

πn is a function from Sn to S. π predicts f ∈ Sω iff for all but finitely many n ∈ Dπ,

we have f(n) = πn(f�n); otherwise f evades π. The evasion number e is the smallest size

of a family F of functions in ωω such that no ω–valued predictor predicts all f ∈ F . A

Z–valued predictor is linear iff all πn : Zn → Q are Q–linear maps. The corresponding

linear evasion number shall be denoted by e` (i.e., e` = min{|F|; F ⊆ Zω and no linear

Z–valued predictor predicts all f ∈ F}). (Blass’ definition of linear evading [Bl, section 4]

is slightly different; however, it gives rise to the same cardinal; we use the present definition

because we shall work with functions in Zω in 2.2.)

These notions enable us to phrase our main results.
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Theorem A. It is consistent with ZFC to assume b < e.

Theorem B. se = e` = min{e, b}.

They will be proved in sections 1 and 2 of our work. Section 2 also contains a further

purely combinatorial characterization of the cardinal se (subsections 2.4 and 2.5). To put

our results into a somewhat larger context, we point out the following consequences which

involve some earlier results, due mostly to Blass [Bl].

Corollary. (a) add(L) ≤ se ≤ add(M) ≤ b;

(b) any of the inequalities in (a) can be consistently strict;

(c) it is consistent with ZFC to assume e` < e.

Theorems A and B together with the Corollary give a complete solution to Questions (1)

through (3) in [Bl, section 5]. Note in particular that the cardinals (2) through (5) in

Corollary 8 in [Bl, section 3] are indeed equal.

Proof of Corollary. (a) This follows from Theorem B and Blass’ results [Bl,

Theorems 12 and 13]. The well–known inequality add(M) ≤ b is due to Miller [Mi].

(b) The consistency of add(M) < b is well–known (it holds e.g. in the Mathias or

Laver real models); for the consistency of add(L) < se see [Bl] (in particular [Bl, Theorem

9]); the consistency of se < add(M) follows from Theorem B and [Br, Theorem A].

(c) This is immediate from Theorems A and B.

A set of reals predicted by a single predictor is small in various senses; it belongs, in

particular, both toM and L. This motivates us to introduce the σ–ideal J on ωω generated

by such sets of reals (see [Br, section 4] for more on this). Clearly, the uniformity of J
(i.e., the size of the smallest set of reals not in J ) is closely related to the evasion number.

In fact, e ≤ e(ω) where e(ω) denotes the former cardinal. We shall show in section 3

that these two cardinals are equal under some additional assumption, thus giving a partial

answer to [Br, section 6, question (4)].

The results of this work are due to the second author. It was the first author’s task

to work them out and to write up the paper.

Notational remarks. A p.o. P is σ–centered iff there are Pn ⊆ P (n ∈ ω) so that

P =
⋃
n Pn and given n ∈ ω, F ⊆ Pn finite, there is p ∈ P extending all q ∈ F . P–names

are denoted by symbols like ḣ, π̇, Ḋ, ... | stands for divides; 6 | means does not divide.
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§ 1. Proof of Theorem A

1.1. We shall use a finite support iteration of ccc p.o.’s of length κ (where κ ≥ ω2 is a

regular cardinal) over a model V for CH to prove the consistency of e > b. In fact, in the

resulting model, b = ω1 and e = κ. We start with defining the p.o. P we want to iterate.

Notice that it is quite similar to the one used in [Br, 4.3.] for predicting below a given

function.

〈d, π, F 〉 ∈ P⇐⇒ d ∈ 2<ω is a finite partial function,

π = 〈πn; n ∈ d−1({1})〉 and πn : ωn → ω is a finite partial function,

F ⊆ ωω is finite and (f 6= g ∈ F −→ max{n; f�n = g�n} < |d|).

The order is given by:

〈d′, π′, F ′〉 ≤ 〈d, π, F 〉 ⇐⇒ d′ ⊇ d, π′ ⊇ π, F ′ ⊇ F and

(f ∈ F, n ∈ (d′)−1({1}) \ d−1({1}) −→ π′n(f�n) = f(n))

(in particular π′n(f�n) is defined).

Notice that we use the convention that stronger conditions are smaller in the p.o. — The

first two coordinates of a condition are intended as a finite approximation to a generic

predictor; the third coordinate then guarantees that functions are predicted from some

point on. Thus it is straightforward that P adjoins a predictor which predicts all ground–

model functions. Hence iterating P increases e.

Furthermore P is σ–centered (and thus in particular ccc). To see this simply notice

that conditions with the same initial segment in the first two coordinates are compatible.

So it remains to show that b = ω1 after iterating P. For this it suffices to show the

following:

(∗) whenever G ∈W is an unbounded family of functions from ω to ω, and P ∈W is the

p.o. defined above, then

‖−P“G is unbounded”.
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Using (∗) we can show that ωω∩V is still unbounded in the final model: (∗) guarantees that

it stays unbounded in successor steps of the iteration; and one of the usual preservation

results for finite support iterations (see, e.g., [JS, Theorem 2.2]) shows that it does so in

limit steps of the iteration as well. Now, V |= CH; hence ωω ∩ V is an unbounded family

of size ω1 in the final model.

To start with the proof of (∗), let ḣ be a P–name for a function in ωω. For each

d ∈ 2<ω, π = 〈πn; n ∈ d−1({1})〉 an initial segment of a predictor (as in the definition of

P), k ∈ ω and f̄∗ = 〈f∗` ∈ ω|d|; ` < k〉 we define h = hd,π,f̄∗ ∈ (ω + 1)ω by

h(n) := min{m ≤ ω; for no p ∈ P with p = 〈d, π, F 〉, F = {f`; ` < k}, f`�|d| = f∗` ,

do we have p ‖−P“ḣ(n) > m”}.

1.2. Main Claim. h ∈ ωω.

1.3. Proof of (∗) from the Main Claim. Let h∗ ∈ ωω such that for all d, π, f̄∗

as above we have hd,π,f̄∗ ≤∗ h∗. As G is unbounded we can find f ∈ G such that there are

infinitely many n with f(n) > h∗(n). We claim that ‖−P“∃∞n(f(n) > ḣ(n))”. This will

show (∗).
Assume m ∈ ω and p ∈ P are such that

p ‖−P“∀n ≥ m (f(n) ≤ ḣ(n))”.

Find d, π, f̄∗ such that p = 〈d, π, F 〉 where F = {f`; ` < k} and f`�|d| = f∗` . Find n ≥ m

such that f(n) > h∗(n) and h∗(n) ≥ hd,π,f̄∗(n). Then

p ‖−P“hd,π,f̄∗(n) < f(n) ≤ ḣ(n)”,

contradicting the definition of hd,π,f̄∗ .

1.4. Proof of the Main Claim (1.2.). Let d, π, k, f̄∗ = 〈f∗` ; ` < k〉 as above and

n ∈ ω be fixed. Now assume that we have pi = 〈d, π, {f i` ; ` < k}〉 with f i`�|d| = f∗` and

pi ‖−P“ḣ(n) > i”.

We shall reach a contradiction. As we can replace 〈pi; i ∈ ω〉 by a subsequence, if necessary,

we may assume that for all ` < k:

either (a)` for some g` ∈ ωω for all i (f i`�i = g`�i)

or (b)` for some i` ∈ ω and ĝ` ∈ ωi` (f i`�i` = ĝ` ∧ f i`(i`) > i).
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Notice that i` ≥ |d| in the latter case. — Let d∗ := d ∪ 0[|d|,max(i`; (b)` holds)+1); i.e. the

function d∗ takes value 0 between |d| and the maximum of the i`. Put F ∗ := {g`; (a)`

holds}. Then clearly p∗ = 〈d∗, π, F ∗〉 ∈ P. Now choose `∗ and q ≤ p∗ such that

q ‖−P“ḣ(n) = `∗”.

We shall find i > `∗ so that q and pi are compatible; this is a contradiction because q and

pi force contradictory statements.

Assume q = 〈dq, πq, F q〉. Choose i ≥ `∗ large enough such that:

(A) i ≥ |dq|;
(B) i ≥ max{max{σ(j); σ ∈ dom(πqm) ∧ j ∈ m}; m ∈ (dq)−1({1})}.

Notice that (A) implies that f i`�|dq| = g`�|dq| whenever (a)` holds, while f i`(i`) > max{max

{σ(j); σ ∈ dom(πqm) ∧ j ∈ m}; m ∈ (dq)−1({1})} by (B) in case (b)` holds. For such i

let qi = 〈di, πi, F i〉 where

— di = dq ∪0[|dq|,a), where a is large enough such that all functions in F i disagree before

a;

— πi ⊇ πq such that for all m ∈ (dq)−1({1}) \ d−1({1}) and all f i` so that (b)` holds, we

have

f i`(m) = πim(f i`�m). (?)

(This can be done because, by (B), πqm was not defined yet for sequences of the form

f i`�m.)

— F i = F q ∪ {f i` ; ` < k}.

Now we clearly have qi ∈ P and qi ≤ q. So we are left with checking qi ≤ pi. The

inclusion relations are all satisfied. Hence it suffices to see that for all ` < k and m ∈
(di)−1({1}) \ d−1({1}), we have

f i`(m) = πim(f i`�m). (+)

In case (b)` holds this is true by (?). In case (a)` holds we have f i`�(m+ 1) = g`�(m+ 1)

for all such m. As q ≤ p∗ we have πim(g`�m) = πqm(g`�m) = g`(m) for such m, and (+)

holds again. This completes the proof of the Main Claim.
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§ 2. Proof of Theorem B

2.1. Theorem. se ≤ e.

Proof. Let F ⊆ ωω, |F| < se. By Blass’ result se ≤ b [Bl, Theorem 2], there is g ∈ ωω

such that for all f ∈ F ∀∞n (f(n) < g(n)). Without loss g is strictly increasing. We let

〈pn; n ∈ ω〉 be a sequence of distinct primes such that pn >> g(n) and pn >>
∏
`<n p`.

For f ∈ F , let af ∈ ωω be defined by

af (n) := f(n) ·
∏
`≤n p`.

Let G ≤ Zω be the pure closure of the subgroup generated by the unit vectors en, n ∈ ω,

and the af , f ∈ F . Clearly |G| < se. Hence there is h : G −→ Z a homomorphism such

that W := {n; h(en) 6= 0} is infinite.

Let us define

W ∗ := {n ∈ ω; ∃i > n (pi|h(em) whenever m ∈ {n+ 1, ..., i− 1} but pi 6 |h(en))}.

We claim that W ∗ is an infinite subset of W . To see this, first note that trivially W ∗ ⊆W ,

by the clause pi 6 |h(en). Next, given n0 ∈W , find i > n0 so that pi 6 |h(en0
). Then clearly

there is n ≥ n0 so that n ∈ W and pi 6 |h(en) and for all m ∈ {n + 1, ..., i − 1}, pi|h(em).

Thus n ∈W ∗. This shows that W ∗ is infinite.

We introduce a predictor π = (W ∗, 〈πn; n ∈ W ∗〉) as follows. Given n ∈ W ∗ and

s ∈ ωn so that max rng(s) < g(n − 1), if there is f ∈ F with s ⊆ f and f(n) < g(n)

and |h(af )| < pn−1, then let πn(s) = f(n) for some f with the above property. Otherwise

πn(s) is arbitrary.

We claim that π predicts all f ∈ F . This clearly finishes the proof. Assume this

were false, i.e. there is f ∈ F which evades π. Let n ∈ W ∗ be large enough, such that

max rng(f�n) < g(n− 1), f(n) < g(n), |h(af )| < pn−1 and πn(f�n) 6= f(n). Then, by the

definition of π, there must be f ′ ∈ F with f ′�n = f�n, f ′(n) < g(n), |h(af ′)| < pn−1 and

πn(f ′�n) = f ′(n) 6= f(n). Now, for k ∈ {f, f ′}, we let

a0
k = (ak(0), ..., ak(n− 1), 0, ...)

a1
k = (0, ..., 0, ak(n), 0, ...)

a2
k = (0, ..., 0, ak(n+ 1), ..., ak(i− 1), 0, ...)

a3
k = (0, ..., 0, ak(i), ak(i+ 1), ...)
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where i witnesses that n ∈W ∗. So we have ak = a0
k + a1

k + a2
k + a3

k. Thus

h(af ′ − af ) = h(a0
f ′ − a0

f ) + h(a1
f ′ − a1

f ) + h(a2
f ′ − a2

f ) + h(a3
f ′ − a3

f ). (?)

Clearly h(a0
f ′ − a0

f ) = h(0) = 0. Next, pi ·
∏
`≤n p` divides h(a3

f ′ − a3
f ) by definition

of the ak; it also divides h(a2
f ′ − a2

f ) by definition of the ak and because pi|h(em) for

m ∈ {n+ 1, ..., i− 1} as i witnesses n ∈W ∗. Thus (?) yields the equation

h(af ′ − af ) = h(a1
f ′ − a1

f ) in Z/(pi ·
∏
`≤n

p`)Z. (??)

The right–hand side in (??) must be non–zero, because pi 6 |h(en) (as i witnesses n ∈W ∗)
and pi 6 |(af ′(n)− af (n)) =

∏
`≤n p` · (f ′(n)− f(n)) (as f ′(n), f(n) < g(n) << pn << pi).

However, it certainly is divisible by
∏
`≤n pn, whereas the left–hand side in (??) is not

unless it is zero (as |h(af )|, |h(af ′)| < pn−1 << pn). This shows that the equation (??)

cannot hold, the final contradiction.

Note that this result improves [Br, Theorem 3.2].

2.2. Lemma. e` ≥ min{e, b}.

Proof. Let F ⊆ Zω, |F| < min{e, b}. Find g ∈ ωω strictly increasing so that for all

f ∈ F , we have |f | <∗ g, where |f |(n) = |f(n)|. We partition ω into intervals In, n ∈ ω,

so that max(In) + 1 = min(In+1), as follows. I0 = {0}. Assume In is defined; choose In+1

so that |In+1| > [2 · g(max(In))]

∑
i≤n
|Ii|. For f ∈ F , define f̄ by f̄(n) := f�In, and let

F̄ = {f̄ ; f ∈ F}. Use |F̄ | < e to get a single predictor π̄ = (D̄, 〈π̄n; n ∈ D̄〉) predicting

all the f̄ ∈ F̄ . For n ∈ D̄, let Γn := rng(π̄n�(−g(max(In−1)), g(max(In−1)))
⋃
i<n

Ii)∩ZIn .

So |Γn| < |In|; hence for some in ∈ In, the vector x̄in = 〈t(in); t ∈ Γn〉 depends on the

vectors {x̄i = 〈t(i); t ∈ Γn〉; min(In) ≤ i < in}. Say x̄in =
∑

min(In)≤i<in q
n
i x̄i, where

qni ∈ Q. In particular, for fixed t ∈ Γn, we have t(in) =
∑

min(In)≤i<in q
n
i t(i). This allows

us to define a linear predictor π = (D, 〈πn; n ∈ D〉) with D = {in; n ∈ ω} and πin(s) =∑
min(In)≤i<in q

n
i s(i). Note that if n ∈ ω is such that max rng(|f |�∪i<nIi) < g(max(In−1))

and π̄n(f̄�n) = f̄(n), then πin(f�in) = f(in). Hence, as π̄ predicts all f̄ ∈ F̄ , π predicts

all f ∈ F .

2.3. Clearly, Theorem B follows from 2.1., 2.2. and Blass’ results e` ≤ se ≤ b [Bl,

Theorem 2, Corollary 8 and Theorem 10].
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2.4. Definition. Given D ⊆ ω infinite and ā = 〈an ∈ [ω]≤n; n ∈ D〉, the slalom SāD is

the set of all functions f in ωω with f(n) ∈ an for almost all n ∈ D.

Using this notion we can give a combinatorial characterization of the cardinal e` = se.

2.5. Lemma. min{e, b} = min{|F|; F ⊆ ωω and for all D ⊆ ω and ā = 〈an ∈
[ω]≤n; n ∈ D〉 there is f ∈ F \ SāD}.

Note. It is immediate that the cardinal on the right–hand side is bigger than or equal

to the additivity of Lebesgue measure add(L), by Bartoszyński’s characterization of that

cardinal ([Ba 1], [Ba 2]). We also note that the original proof of add(L) ≤ add(M) [Ba 1]

shows in fact that this cardinal is ≤ add(M) as well. This gives an alternative proof of

Blass’ min{e, b} ≤ add(M) [Bl, Theorem 13].

Proof. ” ≥ ”. By Theorem B, it suffices to show that e` is bigger than or equal to

the cardinal on the right–hand side. However, this is exactly like Blass’ original proof of

add(L) ≤ e` [Bl, Theorem 12], and we therefore leave details to the reader.

” ≤ ”. This argument is very similar to the one in Lemma 2.2. So we just stress the

differences.

Take F ⊆ ωω, |F| < min{e, b}. Find g strictly increasing and eventually dominating

all functions from F . As before, partition ω into intervals In, n ∈ ω; this time we require

that in+1 := g(max(In))

∑
i≤n
|Ii| ∈ In+1. f̄ , F̄ and π̄, D̄ are defined as before.

We put D := {in; n ∈ D̄} and ain = {π̄n(s)(in); s ∈ g(max(In−1))
⋃
i<n

Ii} ∈ [ω]≤in ,

and leave it to the reader to check that F ⊆ SāD.

2.6. The notion of linear predicting can be generalized as follows (see [Br, section 4]

for details). Let K be an at most countable field. A K–valued predictor π = (Dπ, 〈πn; n ∈
Dπ〉) is linear iff all πn : Kn → K are linear. eK is the corresponding linear evasion

number. We easily see eQ = e`. Rewriting the proof of 2.2. in this more general context

gives eK ≥ min{e, b} for arbitrary K and eK ≥ e in case K is finite. As eK ≤ b for infinite

K [Br, 5.4.], we get eK = min{e, b} for such fields — in particular all eK for K a countable

field are equal. We do not know whether this is true for finite K. Note that eK > e, b is

consistent for such fields [Br, section 4].
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§ 3. Some results on evasion ideals

3.1. Definition. We say a predictor π = (D, 〈πn; n ∈ D〉) predicts a function f ∈ ωω

everywhere if πn(f�n) = f(n) holds for all n ∈ D. We put e(ω) := min{|F|; F ⊆ ωω ∧
for all countable families of predictors Π there is f ∈ F evading all π ∈ Π}, the uniformity

of the evasion ideal J . — As usual, cov(M) denotes the covering number of the ideal M,

i.e. the smallest size of a family F ⊆M so that
⋃
F = ωω.

3.2. Observation. Assume 〈Dn; n ∈ ω〉 is a decreasing sequence of infinite subsets of

ω, and 〈πn = (Dn, 〈πnk ; k ∈ Dn〉); n ∈ ω〉 is a sequence of predictors. Then there are a

set D ⊆ ω, almost included in all Dn, and a predictor π = (D, 〈πk; k ∈ D〉) predicting all

functions which are predicted by one of the πn.

Proof. We can assume that each function which is predicted by some πn is pre-

dicted everywhere by some πm — otherwise go over to sequences 〈En; n ∈ ω〉 and

〈π̄n = (En, 〈π̄nk ; k ∈ En〉); n ∈ ω〉 such that (i) for all n ∈ ω there is m ∈ ω so that

Em ⊆ Dn and π̄mk = πnk for k ∈ Em and (ii) for all n,m ∈ ω there is ` ∈ ω so that

E` ⊆ En \m and π̄`k = π̄nk for k ∈ E`.
Choose dn ∈ Dn minimal with dn > dn−1, and put D = {dn; n ∈ ω}. Fix n ∈ ω and

s ∈ ωdn . To define πdn(s), choose, if possible, i ≤ n minimal so that for all k ∈ Di∩dn, we

have πik(s�k) = s(k), and let πdn(s) = πidn(s). If this is impossible, let πdn(s) be arbitrary.

To see that this works, take f ∈ ωω and i ∈ ω minimal so that πi predicts f every-

where. As the set of functions predicted everywhere by a single predictor is closed, there

are n ≥ i and s ∈ ωdn so that s ⊆ f and s is not predicted everywhere by any of the πj

where j < i. Then πdm(f�dm) = πidm(f�dm) for all m ≥ n, as required.

3.3. Theorem. e ≥ min{e(ω), cov(M)}; thus either e < cov(M) or e(ω) ≤ cov(M)

imply e = e(ω).

Remark. The statement is very similar to a recent result of Kamburelis who proved

s ≥ min{s(ω), cov(M)}, where s is the splitting number and s(ω) the ℵ0–splitting number.

Proof. The second statement easily follows from the first. To prove the latter, let

F ⊆ ωω, |F| < min{e(ω), cov(M)}. We shall show |F| < e. For σ ∈ ω<ω \ {〈〉}, we

construct recursively sets Dσ ⊆ ω and predictors πσ = (Dσ, 〈πσn; n ∈ Dσ〉) such that:
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(i) Dσ�i ⊇ Dσ for i ∈ |σ|;
(ii) for all f ∈ F and all σ ∈ ω<ω there is i ∈ ω so that f is predicted by πσ 〈̂i〉.

First construct π〈i〉 = (D〈i〉, 〈π〈i〉n ; n ∈ D〈i〉〉) satisfying (ii) by applying |F| < e(ω).

To do the recursion, assume πσ = (Dσ, 〈πσn; n ∈ Dσ〉) is constructed for some fixed

σ ∈ ω<ω. Given f ∈ ωω, define fσ by:

fσ(i) := f(kσi ),

where {kσi ; i ∈ ω} is the increasing enumeration of the set Dσ. Let Fσ = {fσ; f ∈ F}.

Again we get ω many predictors π̄σ 〈̂i〉 = (D̄σ 〈̂i〉, 〈π̄σ 〈̂i〉n ; n ∈ D̄σ 〈̂i〉〉), i ∈ ω, so that every

fσ ∈ Fσ is predicted by some π̄σ 〈̂i〉. Let Dσ 〈̂i〉 = {kσj ; j ∈ D̄σ 〈̂i〉}. Fix j ∈ D̄σ 〈̂i〉 and

s ∈ ωk
σ
j . Let s̄ ∈ ωj be defined by s̄(`) = s(kσ` ). Put π

σ 〈̂i〉
kσ
j

(s) := π̄
σ 〈̂i〉
j (s̄). Now it is

easy to see that πσ 〈̂i〉 predicts f whenever π̄σ 〈̂i〉 predicts fσ. Thus (i) and (ii) hold. This

completes the recursive construction.

Given f ∈ ωω, let Tf = {σ ∈ ω<ω; for all i ≤ |σ| (πσ�i does not predict f

everywhere)}. By the above construction, the sets [Tf ] are nowhere dense for f ∈ F .

As |F| < cov(M), there must be g ∈ ωω \
⋃
f∈F [Tf ]. Now use the Observation (3.2.) to

construct a new predictor from the 〈πg�n; n ∈ ω〉 which will predict all f ∈ F .

3.4. It is unclear whether e = e(ω) can be proved in ZFC. In view of Theorem 3.3 it

seems reasonable to ask first

Question. Is e > cov(M) consistent?

Of course, we may also consider the cardinal e`(ω), the smallest size of a family F of

functions from ω to ω such that no countable family of linear predictors predicts all f ∈ F .

However, it is now easy to see that e`(ω) = e`. This is so because e`(ω) ≤ min{e(ω), b} ≤
min{e, b} ≤ e`. To see the first inequality, note that the argument for e` ≤ b gives

e`(ω) ≤ b as well (see [Br, section 5.4] for a stronger result); for the second inequality,

min{e(ω), b} ≤ cov(M) by rewriting Blass’ min{e, b} ≤ cov(M) [Bl, Theorem 13] and thus

min{e(ω), b} = min{e(ω), cov(M), b} ≤ min{e, b} by Theorem 3.3; the third inequality is

Lemma 2.2.

3.5. Duality. Most of the cardinal invariants of the continuum come in pairs and results

about them usually can be dualized (see [Br, section 4.5] for details). In our situation,

the dual cardinals are: the dominating number d (dual to b), the smallest size of a family
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F ⊆ ωω such that given any g ∈ ωω there is f ∈ F with g ≤∗ f ; the (linear) covering

number cov(J ) (cov(J`)) of the ideal J (J`) (the first being dual to both e and e(ω), the

second being dual to e`), the least cardinality of a family of (linear) predictors Π such that

every function f ∈ ωω (Zω) is predicted by some π ∈ Π. Then we get:

Theorem. (a) It is consistent with ZFC to assume d > cov(J ).

(b) cov(J`) = max{ cov(J ), d} = min{|S|; S consists of slaloms SāD where ā = 〈an ∈
[ω]≤n; n ∈ D〉 and D ⊆ ω is infinite and ∀f ∈ ωω ∃SāD ∈ S ∀∞n ∈ D (f(n) ∈ an)}.

Proof. These dualizations are standard, and we therefore refrain from giving detailed

proofs. The model for (a) is gotten by iterating the p.o. P from § 1 ω1 times with finite

support over a model for MA+ ¬CH. (b) is the dual version of Theorem B and Lemma

2.5.

We close our work with a diagram showing the relations between the cardinal invari-

ants considered in this work (in particular, the Specker–Eda number se and the evasion

number e) and some other cardinal invariants of the continuum (in particular, those of

Cichoń’s diagram). We refer the reader to [Bl], [Br] or [Fr] for the cardinals not defined

here. A similar diagram was drawn in [Br, section 4].

cov(L) unif(M) cof(M) cov(J`) cof(L)

d cov(J )

e b

add(L) se add(M) cov(M) unif(L)

p

In the diagram, cardinals increase as one moves up and to the right. To enhance readability,

we omitted the relations e ≤ unif(L), and its dual cov(L) ≤cov(J ). The dotted lines give

the relations add(M) = min{b,cov(M) }, se = min{e, b}, and their dual versions.
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