Evasion and prediction II

Jörg Brendle ${ }^{1}$

Mathematisches Institut der Universität, Auf der Morgenstelle 10, 72076 Tübingen, Germany; email: jobr@michelangelo.mathematik.uni-tuebingen.de

Saharon Shelah ${ }^{2,3}$

Department of Mathematics, Hebrew University, Givat Ram, 91904 Jerusalem, Israel and

Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA

Abstract

A subgroup $G \leq \mathbb{Z}^{\omega}$ exhibits the Specker phenomenon if every homomorphism $G \rightarrow \mathbb{Z}$ maps almost all unit vectors to 0 . We give several combinatorial characterizations of the cardinal $\mathfrak{s e}$, the size of the smallest $G \leq \mathbb{Z}^{\omega}$ exhibiting the Specker phenomenon. We also prove the consistency of $\mathfrak{b}<\mathfrak{e}$, where \mathfrak{b} is the unbounding number and \mathfrak{e} the evasion number. Our results answer several questions addressed by Blass.

[^0]
Introduction

Specker [Sp] proved that given a homomorphism h from \mathbb{Z}^{ω} to the infinite cyclic group \mathbb{Z}, where \mathbb{Z}^{ω} denotes the direct product of countably many copies of \mathbb{Z}, we have $h\left(e_{n}\right)=0$ for all but finitely many unit vectors $e_{n} \in \mathbb{Z}^{\omega}$ (in other words, the n-th component of e_{n} is 1 , and its other components are 0). Blass [Bl] studied the Specker-Eda number $\mathfrak{s e}$, the size of the smallest subgroup $G \leq \mathbb{Z}^{\omega}$ containing all unit vectors which still has the property that every homomorphism $h: G \rightarrow \mathbb{Z}$ annihilates almost all unit vectors. We will give various (mostly less algebraic) characterizations of $\mathfrak{s e}$ (some of which already play a prominent role in Blass' work); we will also study some related cardinal invariants of the continuum.

To be more explicit, let \leq^{*} denote the eventual domination order on the Baire space ω^{ω}; i.e. $f \leq^{*} g$ iff $f(n) \leq g(n)$ for all but finitely many n. We shall usually abbreviate the statement in italics by $\forall^{\infty} n$; similarly we will write $\exists^{\infty} n$ for there are infinitely many n. The unbounding number \mathfrak{b} is the smallest size of a \leq^{*}-unbounded family \mathcal{F} of functions in ω^{ω} (i.e., given any $g \in \omega^{\omega}$, there is $f \in \mathcal{F}$ with $\exists^{\infty} n(f(n)>g(n))$). Given a σ-ideal \mathcal{I} on ω^{ω}, the additivity $\operatorname{add}(\mathcal{I})$ is the least cardinality of a family \mathcal{F} of members of \mathcal{I} whose union is not in \mathcal{I}. We shall use this cardinal only in the cases $\mathcal{I}=\mathcal{M}$, the ideal of meager sets, and $\mathcal{I}=\mathcal{L}$, the ideal of Lebesgue null sets. - While the preceding invariants have been studied by a number of people in the last two decades, the following concept was introduced only recently by Blass [Bl]. Given an at most countable set S, an S-valued predictor is a pair $\pi=\left(D_{\pi},\left\langle\pi_{n} ; n \in D_{\pi}\right\rangle\right)$ where $D_{\pi} \subseteq \omega$ is infinite and for each $n \in D_{\pi}$, π_{n} is a function from S^{n} to $S . \pi$ predicts $f \in S^{\omega}$ iff for all but finitely many $n \in D_{\pi}$, we have $f(n)=\pi_{n}(f \upharpoonright n)$; otherwise f evades π. The evasion number \mathfrak{e} is the smallest size of a family \mathcal{F} of functions in ω^{ω} such that no ω-valued predictor predicts all $f \in \mathcal{F}$. A \mathbb{Z}-valued predictor is linear iff all $\pi_{n}: \mathbb{Z}^{n} \rightarrow \mathbb{Q}$ are \mathbb{Q}-linear maps. The corresponding linear evasion number shall be denoted by \mathfrak{e}_{ℓ} (i.e., $\mathfrak{e}_{\ell}=\min \left\{|\mathcal{F}| ; \mathcal{F} \subseteq \mathbb{Z}^{\omega}\right.$ and no linear \mathbb{Z}-valued predictor predicts all $f \in \mathcal{F}\}$). (Blass' definition of linear evading [Bl, section 4] is slightly different; however, it gives rise to the same cardinal; we use the present definition because we shall work with functions in \mathbb{Z}^{ω} in 2.2.)

These notions enable us to phrase our main results.

Theorem A. It is consistent with $Z F C$ to assume $\mathfrak{b}<\mathfrak{e}$.
Theorem B. $\mathfrak{s e}=\mathfrak{e}_{\ell}=\min \{\mathfrak{e}, \mathfrak{b}\}$.
They will be proved in sections 1 and 2 of our work. Section 2 also contains a further purely combinatorial characterization of the cardinal $\mathfrak{s e}$ (subsections 2.4 and 2.5). To put our results into a somewhat larger context, we point out the following consequences which involve some earlier results, due mostly to Blass [Bl].

Corollary. (a) $\operatorname{add}(\mathcal{L}) \leq \mathfrak{s e} \leq \operatorname{add}(\mathcal{M}) \leq \mathfrak{b}$;
(b) any of the inequalities in (a) can be consistently strict;
(c) it is consistent with ZFC to assume $\mathfrak{e}_{\ell}<\mathfrak{e}$.

Theorems A and B together with the Corollary give a complete solution to Questions (1) through (3) in [Bl, section 5]. Note in particular that the cardinals (2) through (5) in Corollary 8 in [Bl, section 3] are indeed equal.

Proof of Corollary. (a) This follows from Theorem B and Blass' results [Bl, Theorems 12 and 13]. The well-known inequality $\operatorname{add}(\mathcal{M}) \leq \mathfrak{b}$ is due to Miller [Mi].
(b) The consistency of $\operatorname{add}(\mathcal{M})<\mathfrak{b}$ is well-known (it holds e.g. in the Mathias or Laver real models); for the consistency of $\operatorname{add}(\mathcal{L})<\mathfrak{s e}$ see [Bl] (in particular [Bl, Theorem $9]$); the consistency of $\mathfrak{s e}<\operatorname{add}(\mathcal{M})$ follows from Theorem B and [Br, Theorem A].
(c) This is immediate from Theorems A and B.

A set of reals predicted by a single predictor is small in various senses; it belongs, in particular, both to \mathcal{M} and \mathcal{L}. This motivates us to introduce the σ-ideal \mathcal{J} on ω^{ω} generated by such sets of reals (see [Br, section 4] for more on this). Clearly, the uniformity of \mathcal{J} (i.e., the size of the smallest set of reals not in \mathcal{J}) is closely related to the evasion number. In fact, $\mathfrak{e} \leq \mathfrak{e}(\omega)$ where $\mathfrak{e}(\omega)$ denotes the former cardinal. We shall show in section 3 that these two cardinals are equal under some additional assumption, thus giving a partial answer to $[\mathrm{Br}$, section 6, question (4)].

The results of this work are due to the second author. It was the first author's task to work them out and to write up the paper.

Notational remarks. A p.o. \mathbb{P} is σ-centered iff there are $\mathbb{P}_{n} \subseteq \mathbb{P}(n \in \omega)$ so that $\mathbb{P}=\bigcup_{n} \mathbb{P}_{n}$ and given $n \in \omega, F \subseteq \mathbb{P}_{n}$ finite, there is $p \in \mathbb{P}$ extending all $q \in F$. \mathbb{P}-names are denoted by symbols like $\dot{h}, \dot{\pi}, \dot{D}, \ldots \mid$ stands for divides; \Varangle means does not divide.

Acknowledgment. The first author thanks the Wrocław logic group for several discussions about the material presented here.

§ 1. Proof of Theorem A

1.1. We shall use a finite support iteration of $c c c$ p.o.'s of length κ (where $\kappa \geq \omega_{2}$ is a regular cardinal) over a model V for $C H$ to prove the consistency of $\mathfrak{e}>\mathfrak{b}$. In fact, in the resulting model, $\mathfrak{b}=\omega_{1}$ and $\mathfrak{e}=\kappa$. We start with defining the p.o. \mathbb{P} we want to iterate. Notice that it is quite similar to the one used in [Br, 4.3.] for predicting below a given function.

$$
\begin{aligned}
\langle d, \pi, F\rangle \in \mathbb{P} \Longleftrightarrow & \Longleftrightarrow d \in 2^{<\omega} \text { is a finite partial function, } \\
& \pi=\left\langle\pi_{n} ; n \in d^{-1}(\{1\})\right\rangle \text { and } \pi_{n}: \omega^{n} \rightarrow \omega \text { is a finite partial function, } \\
& F \subseteq \omega^{\omega} \text { is finite and }(f \neq g \in F \longrightarrow \max \{n ; f\lceil n=g\lceil n\}<|d|) .
\end{aligned}
$$

The order is given by:

$$
\begin{aligned}
\left\langle d^{\prime}, \pi^{\prime}, F^{\prime}\right\rangle \leq\langle d, \pi, F\rangle \Longleftrightarrow & d^{\prime} \supseteq d, \pi^{\prime} \supseteq \pi, F^{\prime} \supseteq F \text { and } \\
& \left(f \in F, n \in\left(d^{\prime}\right)^{-1}(\{1\}) \backslash d^{-1}(\{1\}) \longrightarrow \pi_{n}^{\prime}(f \upharpoonright n)=f(n)\right)
\end{aligned}
$$

(in particular $\pi_{n}^{\prime}(f\lceil n)$ is defined).
Notice that we use the convention that stronger conditions are smaller in the p.o. - The first two coordinates of a condition are intended as a finite approximation to a generic predictor; the third coordinate then guarantees that functions are predicted from some point on. Thus it is straightforward that \mathbb{P} adjoins a predictor which predicts all groundmodel functions. Hence iterating \mathbb{P} increases \mathfrak{e}.

Furthermore \mathbb{P} is σ-centered (and thus in particular $c c c$). To see this simply notice that conditions with the same initial segment in the first two coordinates are compatible.

So it remains to show that $\mathfrak{b}=\omega_{1}$ after iterating \mathbb{P}. For this it suffices to show the following:
(*) whenever $G \in W$ is an unbounded family of functions from ω to ω, and $\mathbb{P} \in W$ is the p.o. defined above, then

$$
\Vdash_{\mathbb{P}} " G \text { is unbounded". }
$$

Using ($*$) we can show that $\omega^{\omega} \cap V$ is still unbounded in the final model: (*) guarantees that it stays unbounded in successor steps of the iteration; and one of the usual preservation results for finite support iterations (see, e.g., [JS, Theorem 2.2]) shows that it does so in limit steps of the iteration as well. Now, $V \models C H$; hence $\omega^{\omega} \cap V$ is an unbounded family of size ω_{1} in the final model.

To start with the proof of $(*)$, let \dot{h} be a $\mathbb{P}-$ name for a function in ω^{ω}. For each $d \in 2^{<\omega}, \pi=\left\langle\pi_{n} ; n \in d^{-1}(\{1\})\right\rangle$ an initial segment of a predictor (as in the definition of $\mathbb{P}), k \in \omega$ and $\bar{f}^{*}=\left\langle f_{\ell}^{*} \in \omega^{|d|} ; \ell<k\right\rangle$ we define $h=h_{d, \pi, \bar{f}^{*}} \in(\omega+1)^{\omega}$ by

$$
\begin{gathered}
h(n):=\min \left\{m \leq \omega ; \text { for no } p \in \mathbb{P} \text { with } p=\langle d, \pi, F\rangle, F=\left\{f_{\ell} ; \ell<k\right\}, f_{\ell} \upharpoonright|d|=f_{\ell}^{*},\right. \\
\text { do we have } \left.p \Vdash_{\mathbb{P}} \text { " } \dot{h}(n)>m "\right\} .
\end{gathered}
$$

1.2. Main Claim. $h \in \omega^{\omega}$.
1.3. Proof of $(*)$ from the Main Claim. Let $h^{*} \in \omega^{\omega}$ such that for all d, π, \bar{f}^{*} as above we have $h_{d, \pi, \bar{f}^{*}} \leq^{*} h^{*}$. As G is unbounded we can find $f \in G$ such that there are infinitely many n with $f(n)>h^{*}(n)$. We claim that $\|-_{\mathbb{P}}$ " $\exists^{\infty} n(f(n)>\dot{h}(n))$ ". This will show ($*$).

Assume $m \in \omega$ and $p \in \mathbb{P}$ are such that

$$
p \Vdash_{\mathbb{P}} " \forall n \geq m(f(n) \leq \dot{h}(n)) " .
$$

Find d, π, \bar{f}^{*} such that $p=\langle d, \pi, F\rangle$ where $F=\left\{f_{\ell} ; \ell<k\right\}$ and $f_{\ell} \upharpoonright|d|=f_{\ell}^{*}$. Find $n \geq m$ such that $f(n)>h^{*}(n)$ and $h^{*}(n) \geq h_{d, \pi, \bar{f}^{*}}(n)$. Then

$$
p \Vdash_{\mathbb{P}^{\prime}} " h_{d, \pi, \bar{f}^{*}}(n)<f(n) \leq \dot{h}(n) ",
$$

contradicting the definition of $h_{d, \pi, \bar{f}^{*}}$.
1.4. Proof of the Main Claim (1.2.). Let $d, \pi, k, \bar{f}^{*}=\left\langle f_{\ell}^{*} ; \ell<k\right\rangle$ as above and $n \in \omega$ be fixed. Now assume that we have $p_{i}=\left\langle d, \pi,\left\{f_{\ell}^{i} ; \ell<k\right\}\right\rangle$ with $f_{\ell}^{i} \uparrow|d|=f_{\ell}^{*}$ and

$$
p_{i} \Vdash_{\mathbb{P}} " \dot{h}(n)>i " .
$$

We shall reach a contradiction. As we can replace $\left\langle p_{i} ; i \in \omega\right\rangle$ by a subsequence, if necessary, we may assume that for all $\ell<k$:

$$
\begin{aligned}
& \text { either }(a)_{\ell} \text { for some } g_{\ell} \in \omega^{\omega} \text { for all } i\left(f_{\ell}^{i} \upharpoonright i=g_{\ell} \upharpoonright i\right) \\
& \quad \text { or }(b)_{\ell} \text { for some } i_{\ell} \in \omega \text { and } \hat{g}_{\ell} \in \omega^{i_{\ell}}\left(f_{\ell}^{i} \upharpoonright i_{\ell}=\hat{g}_{\ell} \wedge f_{\ell}^{i}\left(i_{\ell}\right)>i\right) .
\end{aligned}
$$

Notice that $i_{\ell} \geq|d|$ in the latter case. - Let $d^{*}:=d \cup 0_{\left[|d|, \max \left(i_{\ell} ;(b)_{\ell} \text { holds }\right)+1\right)}$; i.e. the function d^{*} takes value 0 between $|d|$ and the maximum of the i_{ℓ}. Put $F^{*}:=\left\{g_{\ell} ;(a)_{\ell}\right.$ holds $\}$. Then clearly $p^{*}=\left\langle d^{*}, \pi, F^{*}\right\rangle \in \mathbb{P}$. Now choose ℓ^{*} and $q \leq p^{*}$ such that

$$
q \Vdash_{\mathbb{P}} " \dot{h}(n)=\ell^{*} " .
$$

We shall find $i>\ell^{*}$ so that q and p_{i} are compatible; this is a contradiction because q and p_{i} force contradictory statements.

Assume $q=\left\langle d^{q}, \pi^{q}, F^{q}\right\rangle$. Choose $i \geq \ell^{*}$ large enough such that:
(A) $i \geq\left|d^{q}\right|$;
(B) $i \geq \max \left\{\max \left\{\sigma(j) ; \sigma \in \operatorname{dom}\left(\pi_{m}^{q}\right) \wedge j \in m\right\} ; m \in\left(d^{q}\right)^{-1}(\{1\})\right\}$.

Notice that (A) implies that $f_{\ell}^{i} \upharpoonright\left|d^{q}\right|=g_{\ell} \upharpoonright\left|d^{q}\right|$ whenever $(a)_{\ell}$ holds, while $f_{\ell}^{i}\left(i_{\ell}\right)>\max \{\max$ $\left.\left\{\sigma(j) ; \sigma \in \operatorname{dom}\left(\pi_{m}^{q}\right) \wedge j \in m\right\} ; m \in\left(d^{q}\right)^{-1}(\{1\})\right\}$ by (B) in case $(b)_{\ell}$ holds. For such i let $q^{i}=\left\langle d^{i}, \pi^{i}, F^{i}\right\rangle$ where

- $d^{i}=d^{q} \cup 0_{\left[\left|d^{q}\right|, a\right)}$, where a is large enough such that all functions in F^{i} disagree before a;
- $\pi^{i} \supseteq \pi^{q}$ such that for all $m \in\left(d^{q}\right)^{-1}(\{1\}) \backslash d^{-1}(\{1\})$ and all f_{ℓ}^{i} so that $(b)_{\ell}$ holds, we have

$$
\begin{equation*}
f_{\ell}^{i}(m)=\pi_{m}^{i}\left(f_{\ell}^{i}\lceil m) .\right. \tag{*}
\end{equation*}
$$

(This can be done because, by (B), π_{m}^{q} was not defined yet for sequences of the form

$$
\begin{aligned}
& \left.f_{\ell}^{i} \upharpoonright m .\right) \\
- & F^{i}=F^{q} \cup\left\{f_{\ell}^{i} ; \ell<k\right\} .
\end{aligned}
$$

Now we clearly have $q^{i} \in \mathbb{P}$ and $q^{i} \leq q$. So we are left with checking $q^{i} \leq p_{i}$. The inclusion relations are all satisfied. Hence it suffices to see that for all $\ell<k$ and $m \in$ $\left(d^{i}\right)^{-1}(\{1\}) \backslash d^{-1}(\{1\})$, we have

$$
f_{\ell}^{i}(m)=\pi_{m}^{i}\left(f_{\ell}^{i} \upharpoonright m\right)
$$

In case $(b)_{\ell}$ holds this is true by (\star). In case $(a)_{\ell}$ holds we have $f_{\ell}^{i} \upharpoonright(m+1)=g_{\ell} \upharpoonright(m+1)$ for all such m. As $q \leq p^{*}$ we have $\pi_{m}^{i}\left(g_{\ell} \upharpoonright m\right)=\pi_{m}^{q}\left(g_{\ell} \upharpoonright m\right)=g_{\ell}(m)$ for such m, and $(+)$ holds again. This completes the proof of the Main Claim.

§ 2. Proof of Theorem B

2.1. Theorem. $\mathfrak{s e} \leq \mathfrak{e}$.

Proof. Let $\mathcal{F} \subseteq \omega^{\omega},|\mathcal{F}|<\mathfrak{s e}$. By Blass' result $\mathfrak{s e} \leq \mathfrak{b}$ [Bl, Theorem 2], there is $g \in \omega^{\omega}$ such that for all $f \in \mathcal{F} \forall^{\infty} n(f(n)<g(n))$. Without loss g is strictly increasing. We let $\left\langle p_{n} ; n \in \omega\right\rangle$ be a sequence of distinct primes such that $p_{n} \gg g(n)$ and $p_{n} \gg \prod_{\ell<n} p_{\ell}$. For $f \in \mathcal{F}$, let $a_{f} \in \omega^{\omega}$ be defined by

$$
a_{f}(n):=f(n) \cdot \prod_{\ell \leq n} p_{\ell} .
$$

Let $G \leq \mathbb{Z}^{\omega}$ be the pure closure of the subgroup generated by the unit vectors $e_{n}, n \in \omega$, and the $a_{f}, f \in \mathcal{F}$. Clearly $|G|<\mathfrak{s e}$. Hence there is $h: G \longrightarrow \mathbb{Z}$ a homomorphism such that $W:=\left\{n ; h\left(e_{n}\right) \neq 0\right\}$ is infinite.

Let us define
$W^{*}:=\left\{n \in \omega ; \exists i>n\left(p_{i} \mid h\left(e_{m}\right)\right.\right.$ whenever $m \in\{n+1, \ldots, i-1\}$ but $\left.\left.p_{i} \nmid h\left(e_{n}\right)\right)\right\}$.
We claim that W^{*} is an infinite subset of W. To see this, first note that trivially $W^{*} \subseteq W$, by the clause $p_{i} \not \backslash h\left(e_{n}\right)$. Next, given $n_{0} \in W$, find $i>n_{0}$ so that $p_{i} \not \backslash h\left(e_{n_{0}}\right)$. Then clearly there is $n \geq n_{0}$ so that $n \in W$ and $p_{i} \not X h\left(e_{n}\right)$ and for all $m \in\{n+1, \ldots, i-1\}, p_{i} \mid h\left(e_{m}\right)$. Thus $n \in W^{*}$. This shows that W^{*} is infinite.

We introduce a predictor $\pi=\left(W^{*},\left\langle\pi_{n} ; n \in W^{*}\right\rangle\right)$ as follows. Given $n \in W^{*}$ and $s \in \omega^{n}$ so that max $r n g(s)<g(n-1)$, if there is $f \in \mathcal{F}$ with $s \subseteq f$ and $f(n)<g(n)$ and $\left|h\left(a_{f}\right)\right|<p_{n-1}$, then let $\pi_{n}(s)=f(n)$ for some f with the above property. Otherwise $\pi_{n}(s)$ is arbitrary.

We claim that π predicts all $f \in \mathcal{F}$. This clearly finishes the proof. Assume this were false, i.e. there is $f \in \mathcal{F}$ which evades π. Let $n \in W^{*}$ be large enough, such that $\max r n g\left(f\lceil n)<g(n-1), f(n)<g(n),\left|h\left(a_{f}\right)\right|<p_{n-1}\right.$ and $\pi_{n}(f\lceil n) \neq f(n)$. Then, by the definition of π, there must be $f^{\prime} \in \mathcal{F}$ with $f^{\prime} \upharpoonright n=f \upharpoonright n, f^{\prime}(n)<g(n),\left|h\left(a_{f^{\prime}}\right)\right|<p_{n-1}$ and $\pi_{n}\left(f^{\prime} \upharpoonright n\right)=f^{\prime}(n) \neq f(n)$. Now, for $k \in\left\{f, f^{\prime}\right\}$, we let

$$
\begin{aligned}
& a_{k}^{0}=\left(a_{k}(0), \ldots, a_{k}(n-1), 0, \ldots\right) \\
& a_{k}^{1}=\left(0, \ldots, 0, a_{k}(n), 0, \ldots\right) \\
& a_{k}^{2}=\left(0, \ldots, 0, a_{k}(n+1), \ldots, a_{k}(i-1), 0, \ldots\right) \\
& a_{k}^{3}=\left(0, \ldots, 0, a_{k}(i), a_{k}(i+1), \ldots\right)
\end{aligned}
$$

where i witnesses that $n \in W^{*}$. So we have $a_{k}=a_{k}^{0}+a_{k}^{1}+a_{k}^{2}+a_{k}^{3}$. Thus

$$
h\left(a_{f^{\prime}}-a_{f}\right)=h\left(a_{f^{\prime}}^{0}-a_{f}^{0}\right)+h\left(a_{f^{\prime}}^{1}-a_{f}^{1}\right)+h\left(a_{f^{\prime}}^{2}-a_{f}^{2}\right)+h\left(a_{f^{\prime}}^{3}-a_{f}^{3}\right) .
$$

Clearly $h\left(a_{f^{\prime}}^{0}-a_{f}^{0}\right)=h(0)=0$. Next, $p_{i} \cdot \prod_{\ell \leq n} p_{\ell}$ divides $h\left(a_{f^{\prime}}^{3}-a_{f}^{3}\right)$ by definition of the a_{k}; it also divides $h\left(a_{f^{\prime}}^{2}-a_{f}^{2}\right)$ by definition of the a_{k} and because $p_{i} \mid h\left(e_{m}\right)$ for $m \in\{n+1, \ldots, i-1\}$ as i witnesses $n \in W^{*}$. Thus (\star) yields the equation

$$
h\left(a_{f^{\prime}}-a_{f}\right)=h\left(a_{f^{\prime}}^{1}-a_{f}^{1}\right) \quad \text { in } \quad \mathbb{Z} /\left(p_{i} \cdot \prod_{\ell \leq n} p_{\ell}\right) \mathbb{Z} . \quad(\star \star)
$$

The right-hand side in ($\star \star$) must be non-zero, because $p_{i} \nmid h\left(e_{n}\right)$ (as i witnesses $n \in W^{*}$) and $p_{i} X\left(a_{f^{\prime}}(n)-a_{f}(n)\right)=\prod_{\ell \leq n} p_{\ell} \cdot\left(f^{\prime}(n)-f(n)\right)\left(\right.$ as $\left.f^{\prime}(n), f(n)<g(n) \ll p_{n} \ll p_{i}\right)$. However, it certainly is divisible by $\prod_{\ell \leq n} p_{n}$, whereas the left-hand side in ($* *$) is not unless it is zero (as $\left|h\left(a_{f}\right)\right|,\left|h\left(a_{f^{\prime}}\right)\right|<p_{n-1} \ll p_{n}$). This shows that the equation ($\star \star$) cannot hold, the final contradiction.

Note that this result improves [Br, Theorem 3.2].
2.2. Lemma. $\mathfrak{e}_{\ell} \geq \min \{\mathfrak{e}, \mathfrak{b}\}$.

Proof. Let $\mathcal{F} \subseteq \mathbb{Z}^{\omega},|\mathcal{F}|<\min \{\mathfrak{e}, \mathfrak{b}\}$. Find $g \in \omega^{\omega}$ strictly increasing so that for all $f \in \mathcal{F}$, we have $|f|<^{*} g$, where $|f|(n)=|f(n)|$. We partition ω into intervals $I_{n}, n \in \omega$, so that $\max \left(I_{n}\right)+1=\min \left(I_{n+1}\right)$, as follows. $I_{0}=\{0\}$. Assume I_{n} is defined; choose I_{n+1} so that $\left|I_{n+1}\right|>\left[2 \cdot g\left(\max \left(I_{n}\right)\right)\right]^{\sum_{i \leq n}\left|I_{i}\right|}$. For $f \in \mathcal{F}$, define \bar{f} by $\bar{f}(n):=f \upharpoonright I_{n}$, and let $\overline{\mathcal{F}}=\{\bar{f} ; f \in \mathcal{F}\}$. Use $|\overline{\mathcal{F}}|<\mathfrak{e}$ to get a single predictor $\bar{\pi}=\left(\bar{D},\left\langle\bar{\pi}_{n} ; n \in \bar{D}\right\rangle\right)$ predicting all the $\bar{f} \in \overline{\mathcal{F}}$. For $n \in \bar{D}$, let $\Gamma_{n}:=r n g\left(\bar{\pi}_{n} \upharpoonright\left(-g\left(\max \left(I_{n-1}\right)\right), g\left(\max \left(I_{n-1}\right)\right)\right) \bigcup_{i<n} I_{i}\right) \cap \mathbb{Z}^{I_{n}}$. So $\left|\Gamma_{n}\right|<\left|I_{n}\right|$; hence for some $i_{n} \in I_{n}$, the vector $\bar{x}_{i_{n}}=\left\langle t\left(i_{n}\right) ; t \in \Gamma_{n}\right\rangle$ depends on the vectors $\left\{\bar{x}_{i}=\left\langle t(i) ; t \in \Gamma_{n}\right\rangle ; \min \left(I_{n}\right) \leq i<i_{n}\right\}$. Say $\bar{x}_{i_{n}}=\sum_{\min \left(I_{n}\right) \leq i<i_{n}} q_{i}^{n} \bar{x}_{i}$, where $q_{i}^{n} \in \mathbb{Q}$. In particular, for fixed $t \in \Gamma_{n}$, we have $t\left(i_{n}\right)=\sum_{\min \left(I_{n}\right) \leq i<i_{n}} q_{i}^{n} t(i)$. This allows us to define a linear predictor $\pi=\left(D,\left\langle\pi_{n} ; n \in D\right\rangle\right)$ with $D=\left\{i_{n} ; n \in \omega\right\}$ and $\pi_{i_{n}}(s)=$ $\sum_{\min \left(I_{n}\right) \leq i<i_{n}} q_{i}^{n} s(i)$. Note that if $n \in \omega$ is such that $\max r n g\left(|f| \upharpoonright \cup_{i<n} I_{i}\right)<g\left(\max \left(I_{n-1}\right)\right)$ and $\bar{\pi}_{n}(\bar{f} \mid n)=\bar{f}(n)$, then $\pi_{i_{n}}\left(f \upharpoonright i_{n}\right)=f\left(i_{n}\right)$. Hence, as $\bar{\pi}$ predicts all $\bar{f} \in \overline{\mathcal{F}}, \pi$ predicts all $f \in \mathcal{F}$.
2.3. Clearly, Theorem B follows from 2.1., 2.2. and Blass' results $\mathfrak{e}_{\ell} \leq \mathfrak{s e} \leq \mathfrak{b}[\mathrm{Bl}$, Theorem 2, Corollary 8 and Theorem 10].
2.4. Definition. Given $D \subseteq \omega$ infinite and $\bar{a}=\left\langle a_{n} \in[\omega]^{\leq n} ; n \in D\right\rangle$, the slalom $S_{D}^{\bar{a}}$ is the set of all functions f in ω^{ω} with $f(n) \in a_{n}$ for almost all $n \in D$.

Using this notion we can give a combinatorial characterization of the cardinal $\mathfrak{e}_{\ell}=\mathfrak{s e}$.
2.5. Lemma. $\min \{\mathfrak{e}, \mathfrak{b}\}=\min \left\{|\mathcal{F}| ; \mathcal{F} \subseteq \omega^{\omega}\right.$ and for all $D \subseteq \omega$ and $\bar{a}=\left\langle a_{n} \in\right.$ $[\omega] \leq n ; n \in D\rangle$ there is $\left.f \in \mathcal{F} \backslash S_{D}^{\bar{a}}\right\}$.

Note. It is immediate that the cardinal on the right-hand side is bigger than or equal to the additivity of Lebesgue measure $\operatorname{add}(\mathcal{L})$, by Bartoszyński's characterization of that cardinal ([Ba 1], [Ba 2]). We also note that the original proof of $\operatorname{add}(\mathcal{L}) \leq \operatorname{add}(\mathcal{M})[\mathrm{Ba} 1]$ shows in fact that this cardinal is $\leq \operatorname{add}(\mathcal{M})$ as well. This gives an alternative proof of Blass' $\min \{\mathfrak{e}, \mathfrak{b}\} \leq \operatorname{add}(\mathcal{M})[\mathrm{Bl}$, Theorem 13].

Proof. " \geq ". By Theorem B, it suffices to show that \mathfrak{e}_{ℓ} is bigger than or equal to the cardinal on the right-hand side. However, this is exactly like Blass' original proof of $\operatorname{add}(\mathcal{L}) \leq \mathfrak{e}_{\ell}[B 1$, Theorem 12], and we therefore leave details to the reader.
$" \leq "$. This argument is very similar to the one in Lemma 2.2. So we just stress the differences.

Take $\mathcal{F} \subseteq \omega^{\omega},|\mathcal{F}|<\min \{\mathfrak{e}, \mathfrak{b}\}$. Find g strictly increasing and eventually dominating all functions from \mathcal{F}. As before, partition ω into intervals $I_{n}, n \in \omega$; this time we require that $i_{n+1}:=g\left(\max \left(I_{n}\right)\right)^{\sum_{i \leq n}\left|I_{i}\right|} \in I_{n+1} . \bar{f}, \overline{\mathcal{F}}$ and $\bar{\pi}, \bar{D}$ are defined as before.

We put $D:=\left\{i_{n} ; n \in \bar{D}\right\}$ and $a_{i_{n}}=\left\{\bar{\pi}_{n}(s)\left(i_{n}\right) ; s \in g\left(\max \left(I_{n-1}\right) \bigcup_{i<n} I_{i}\right\} \in[\omega] \leq i_{n}\right.$, and leave it to the reader to check that $\mathcal{F} \subseteq S_{D}^{\bar{a}}$.
2.6. The notion of linear predicting can be generalized as follows (see [Br, section 4] for details). Let \mathbb{K} be an at most countable field. A \mathbb{K}-valued predictor $\pi=\left(D_{\pi},\left\langle\pi_{n} ; n \in\right.\right.$ $\left.\left.D_{\pi}\right\rangle\right)$ is linear iff all $\pi_{n}: \mathbb{K}^{n} \rightarrow \mathbb{K}$ are linear. $\mathfrak{e}_{\mathbb{K}}$ is the corresponding linear evasion number. We easily see $\mathfrak{e}_{\mathbb{Q}}=\mathfrak{e}_{\ell}$. Rewriting the proof of 2.2. in this more general context gives $\mathfrak{c}_{\mathbb{K}} \geq \min \{\mathfrak{e}, \mathfrak{b}\}$ for arbitrary \mathbb{K} and $\mathfrak{e}_{\mathbb{K}} \geq \mathfrak{e}$ in case \mathbb{K} is finite. As $\mathfrak{c}_{\mathbb{K}} \leq \mathfrak{b}$ for infinite $\mathbb{K}[\mathrm{Br}, 5.4$.$] , we get \mathfrak{e}_{\mathbb{K}}=\min \{\mathfrak{e}, \mathfrak{b}\}$ for such fields - in particular all $\mathfrak{c}_{\mathbb{K}}$ for \mathbb{K} a countable field are equal. We do not know whether this is true for finite \mathbb{K}. Note that $\mathfrak{e}_{\mathbb{K}}>\mathfrak{e}, \mathfrak{b}$ is consistent for such fields $[\mathrm{Br}$, section 4].

§ 3. Some results on evasion ideals

3.1. Definition. We say a predictor $\pi=\left(D,\left\langle\pi_{n} ; n \in D\right\rangle\right)$ predicts a function $f \in \omega^{\omega}$ everywhere if $\pi_{n}\left(f\lceil n)=f(n)\right.$ holds for all $n \in D$. We put $\mathfrak{e}(\omega):=\min \left\{|\mathcal{F}| ; \mathcal{F} \subseteq \omega^{\omega} \wedge\right.$ for all countable families of predictors Π there is $f \in \mathcal{F}$ evading all $\pi \in \Pi\}$, the uniformity of the evasion ideal \mathcal{J}. - As usual, $\operatorname{cov}(\mathcal{M})$ denotes the covering number of the ideal \mathcal{M}, i.e. the smallest size of a family $\mathcal{F} \subseteq \mathcal{M}$ so that $\bigcup \mathcal{F}=\omega^{\omega}$.
3.2. Observation. Assume $\left\langle D^{n} ; n \in \omega\right\rangle$ is a decreasing sequence of infinite subsets of ω, and $\left\langle\pi^{n}=\left(D^{n},\left\langle\pi_{k}^{n} ; k \in D^{n}\right\rangle\right) ; n \in \omega\right\rangle$ is a sequence of predictors. Then there are a set $D \subseteq \omega$, almost included in all D^{n}, and a predictor $\pi=\left(D,\left\langle\pi_{k} ; k \in D\right\rangle\right)$ predicting all functions which are predicted by one of the π^{n}.

Proof. We can assume that each function which is predicted by some π^{n} is predicted everywhere by some π^{m} - otherwise go over to sequences $\left\langle E^{n} ; n \in \omega\right\rangle$ and $\left\langle\bar{\pi}^{n}=\left(E^{n},\left\langle\bar{\pi}_{k}^{n} ; k \in E^{n}\right\rangle\right) ; n \in \omega\right\rangle$ such that (i) for all $n \in \omega$ there is $m \in \omega$ so that $E^{m} \subseteq D^{n}$ and $\bar{\pi}_{k}^{m}=\pi_{k}^{n}$ for $k \in E^{m}$ and (ii) for all $n, m \in \omega$ there is $\ell \in \omega$ so that $E^{\ell} \subseteq E^{n} \backslash m$ and $\bar{\pi}_{k}^{\ell}=\bar{\pi}_{k}^{n}$ for $k \in E^{\ell}$.

Choose $d^{n} \in D^{n}$ minimal with $d^{n}>d^{n-1}$, and put $D=\left\{d^{n} ; n \in \omega\right\}$. Fix $n \in \omega$ and $s \in \omega^{d^{n}}$. To define $\pi_{d^{n}}(s)$, choose, if possible, $i \leq n$ minimal so that for all $k \in D^{i} \cap d^{n}$, we have $\pi_{k}^{i}(s \upharpoonright k)=s(k)$, and let $\pi_{d^{n}}(s)=\pi_{d^{n}}^{i}(s)$. If this is impossible, let $\pi_{d^{n}}(s)$ be arbitrary.

To see that this works, take $f \in \omega^{\omega}$ and $i \in \omega$ minimal so that π^{i} predicts f everywhere. As the set of functions predicted everywhere by a single predictor is closed, there are $n \geq i$ and $s \in \omega^{d^{n}}$ so that $s \subseteq f$ and s is not predicted everywhere by any of the π^{j} where $j<i$. Then $\pi_{d^{m}}\left(f \upharpoonright d^{m}\right)=\pi_{d^{m}}^{i}\left(f \upharpoonright d^{m}\right)$ for all $m \geq n$, as required.
3.3. Theorem. $\mathfrak{e} \geq \min \{\mathfrak{e}(\omega), \operatorname{cov}(\mathcal{M})\}$; thus either $\mathfrak{e}<\operatorname{cov}(\mathcal{M})$ or $\mathfrak{e}(\omega) \leq \operatorname{cov}(\mathcal{M})$ imply $\mathfrak{e}=\mathfrak{e}(\omega)$.

Remark. The statement is very similar to a recent result of Kamburelis who proved $\mathfrak{s} \geq \min \{\mathfrak{s}(\omega), \operatorname{cov}(\mathcal{M})\}$, where \mathfrak{s} is the splitting number and $\mathfrak{s}(\omega)$ the \aleph_{0}-splitting number.

Proof. The second statement easily follows from the first. To prove the latter, let $\mathcal{F} \subseteq \omega^{\omega},|\mathcal{F}|<\min \{\mathfrak{e}(\omega), \operatorname{cov}(\mathcal{M})\}$. We shall show $|\mathcal{F}|<\mathfrak{e}$. For $\sigma \in \omega^{<\omega} \backslash\{\langle \rangle\}$, we construct recursively sets $D^{\sigma} \subseteq \omega$ and predictors $\pi^{\sigma}=\left(D^{\sigma},\left\langle\pi_{n}^{\sigma} ; n \in D^{\sigma}\right\rangle\right)$ such that:
(i) $D^{\sigma \upharpoonright i} \supseteq D^{\sigma}$ for $i \in|\sigma|$;
(ii) for all $f \in \mathcal{F}$ and all $\sigma \in \omega^{<\omega}$ there is $i \in \omega$ so that f is predicted by $\pi^{\sigma^{\wedge}\langle i\rangle}$.

First construct $\pi^{\langle i\rangle}=\left(D^{\langle i\rangle},\left\langle\pi_{n}^{\langle i\rangle} ; n \in D^{\langle i\rangle}\right\rangle\right)$ satisfying (ii) by applying $|\mathcal{F}|<\mathfrak{e}(\omega)$.
To do the recursion, assume $\pi^{\sigma}=\left(D^{\sigma},\left\langle\pi_{n}^{\sigma} ; n \in D^{\sigma}\right\rangle\right)$ is constructed for some fixed $\sigma \in \omega^{<\omega}$. Given $f \in \omega^{\omega}$, define f^{σ} by:

$$
f^{\sigma}(i):=f\left(k_{i}^{\sigma}\right),
$$

where $\left\{k_{i}^{\sigma} ; i \in \omega\right\}$ is the increasing enumeration of the set D^{σ}. Let $\mathcal{F}^{\sigma}=\left\{f^{\sigma} ; f \in \mathcal{F}\right\}$. Again we get ω many predictors $\bar{\pi}^{\sigma^{\wedge}\langle i\rangle}=\left(\bar{D}^{\sigma^{\wedge}\langle i\rangle},\left\langle\bar{\pi}_{n}^{\sigma^{\wedge}\langle i\rangle} ; n \in \bar{D}^{\sigma^{\wedge}\langle i\rangle}\right\rangle\right), i \in \omega$, so that every $f^{\sigma} \in \mathcal{F}^{\sigma}$ is predicted by some $\bar{\pi}^{\sigma^{\wedge}\langle i\rangle}$. Let $D^{\sigma^{\wedge}\langle i\rangle}=\left\{k_{j}^{\sigma} ; j \in \bar{D}^{\sigma^{\wedge}\langle i\rangle}\right\}$. Fix $j \in \bar{D}^{\sigma^{\wedge}\langle i\rangle}$ and $s \in \omega^{k_{j}^{\sigma}}$. Let $\bar{s} \in \omega^{j}$ be defined by $\bar{s}(\ell)=s\left(k_{\ell}^{\sigma}\right)$. Put $\pi_{k_{j}^{\sigma^{\alpha}}\langle i\rangle}(s):=\bar{\pi}_{j}^{\sigma^{\wedge}\langle\langle \rangle}(\bar{s})$. Now it is easy to see that $\pi^{\sigma^{\wedge}\langle i\rangle}$ predicts f whenever $\bar{\pi}^{\sigma^{\wedge}\langle i\rangle}$ predicts f^{σ}. Thus (i) and (ii) hold. This completes the recursive construction.

Given $f \in \omega^{\omega}$, let $T_{f}=\left\{\sigma \in \omega^{<\omega} ;\right.$ for all $i \leq|\sigma|\left(\pi^{\sigma \upharpoonright i}\right.$ does not predict f everywhere) $\}$. By the above construction, the sets $\left[T_{f}\right]$ are nowhere dense for $f \in \mathcal{F}$. As $|\mathcal{F}|<\operatorname{cov}(\mathcal{M})$, there must be $g \in \omega^{\omega} \backslash \bigcup_{f \in \mathcal{F}}\left[T_{f}\right]$. Now use the Observation (3.2.) to construct a new predictor from the $\left\langle\pi^{g \upharpoonright n} ; n \in \omega\right\rangle$ which will predict all $f \in \mathcal{F}$.
3.4. It is unclear whether $\mathfrak{e}=\mathfrak{e}(\omega)$ can be proved in $Z F C$. In view of Theorem 3.3 it seems reasonable to ask first

Question. Is $\mathfrak{e}>\operatorname{cov}(\mathcal{M})$ consistent?
Of course, we may also consider the cardinal $\mathfrak{e}_{\ell}(\omega)$, the smallest size of a family \mathcal{F} of functions from ω to ω such that no countable family of linear predictors predicts all $f \in \mathcal{F}$. However, it is now easy to see that $\mathfrak{e}_{\ell}(\omega)=\mathfrak{e}_{\ell}$. This is so because $\mathfrak{e}_{\ell}(\omega) \leq \min \{\mathfrak{e}(\omega), \mathfrak{b}\} \leq$ $\min \{\mathfrak{e}, \mathfrak{b}\} \leq \mathfrak{e}_{\ell}$. To see the first inequality, note that the argument for $\mathfrak{e}_{\ell} \leq \mathfrak{b}$ gives $\mathfrak{e}_{\ell}(\omega) \leq \mathfrak{b}$ as well (see [Br, section 5.4] for a stronger result); for the second inequality, $\min \{\mathfrak{e}(\omega), \mathfrak{b}\} \leq \operatorname{cov}(\mathcal{M})$ by rewriting Blass' $\min \{\mathfrak{e}, \mathfrak{b}\} \leq \operatorname{cov}(\mathcal{M})$ [Bl, Theorem 13] and thus $\min \{\mathfrak{e}(\omega), \mathfrak{b}\}=\min \{\mathfrak{e}(\omega), \operatorname{cov}(\mathcal{M}), \mathfrak{b}\} \leq \min \{\mathfrak{e}, \mathfrak{b}\}$ by Theorem 3.3; the third inequality is Lemma 2.2.
3.5. Duality. Most of the cardinal invariants of the continuum come in pairs and results about them usually can be dualized (see [Br, section 4.5] for details). In our situation, the dual cardinals are: the dominating number \mathfrak{d} (dual to \mathfrak{b}), the smallest size of a family
$\mathcal{F} \subseteq \omega^{\omega}$ such that given any $g \in \omega^{\omega}$ there is $f \in \mathcal{F}$ with $g \leq^{*} f$; the (linear) covering number $\operatorname{cov}(\mathcal{J})\left(\operatorname{cov}\left(\mathcal{J}_{\ell}\right)\right)$ of the ideal $\mathcal{J}\left(\mathcal{J}_{\ell}\right)$ (the first being dual to both \mathfrak{e} and $\mathfrak{e}(\omega)$, the second being dual to \mathfrak{e}_{ℓ}), the least cardinality of a family of (linear) predictors Π such that every function $f \in \omega^{\omega}\left(\mathbb{Z}^{\omega}\right)$ is predicted by some $\pi \in \Pi$. Then we get:

Theorem. (a) It is consistent with $Z F C$ to assume $\mathfrak{d}>\operatorname{cov}(\mathcal{J})$.
(b) $\operatorname{cov}\left(\mathcal{J}_{\ell}\right)=\max \{\operatorname{cov}(\mathcal{J}), \mathfrak{d}\}=\min \left\{|\mathcal{S}| ; \mathcal{S}\right.$ consists of slaloms $S_{D}^{\bar{a}}$ where $\bar{a}=\left\langle a_{n} \in\right.$ $[\omega] \leq n ; n \in D\rangle$ and $D \subseteq \omega$ is infinite and $\left.\forall f \in \omega^{\omega} \exists S_{D}^{\bar{a}} \in \mathcal{S} \forall^{\infty} n \in D\left(f(n) \in a_{n}\right)\right\}$.

Proof. These dualizations are standard, and we therefore refrain from giving detailed proofs. The model for (a) is gotten by iterating the p.o. \mathbb{P} from $\S 1 \omega_{1}$ times with finite support over a model for $M A+\neg C H$. (b) is the dual version of Theorem B and Lemma 2.5.

We close our work with a diagram showing the relations between the cardinal invariants considered in this work (in particular, the Specker-Eda number $\mathfrak{s e}$ and the evasion number \mathfrak{e}) and some other cardinal invariants of the continuum (in particular, those of Cichon's diagram). We refer the reader to $[\mathrm{Bl}],[\mathrm{Br}]$ or $[\mathrm{Fr}]$ for the cardinals not defined here. A similar diagram was drawn in [Br, section 4].

$$
\begin{equation*}
\operatorname{cov}(\mathcal{L}) \tag{unif}
\end{equation*}
$$

$\operatorname{cov}\left(\mathcal{J}_{\ell}\right)$
$\operatorname{cof}(\mathcal{L})$
\mathfrak{d} $\operatorname{cov}(\mathcal{J})$

$$
\mathfrak{e}
$$

\mathfrak{b}
$\operatorname{add}(\mathcal{L}) \quad \mathfrak{s e} \quad \operatorname{add}(\mathcal{M}) \quad \operatorname{cov}(\mathcal{M}) \quad u n i f(\mathcal{L})$
\mathfrak{p}

In the diagram, cardinals increase as one moves up and to the right. To enhance readability, we omitted the relations $\mathfrak{e} \leq \operatorname{unif}(\mathcal{L})$, and its dual $\operatorname{cov}(\mathcal{L}) \leq \operatorname{cov}(\mathcal{J})$. The dotted lines give the relations $\operatorname{add}(\mathcal{M})=\min \{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}, \mathfrak{s e}=\min \{\mathfrak{e}, \mathfrak{b}\}$, and their dual versions.

References

[Ba 1] T. Bartoszyński, Additivity of measure implies additivity of category, Transactions of the American Mathematical Society, vol. 281 (1984), pp. 209-213.
[Ba 2] T. Bartoszyński, Combinatorial aspects of measure and category, Fundamenta Mathematicae, vol. 127 (1987), pp. 225-239.
[Bl] A. Blass, Cardinal characteristics and the product of countably many infinite cyclic groups, Journal of Algebra (to appear).
[Br] J. Brendle, Evasion and prediction - the Specker phenomenon and Gross spaces, Forum Mathematicum (to appear).
[Fr] D. Fremlin, Cichoń's diagram, Séminaire Initiation à l'Analyse (G. Choquet, M. Rogalski, J. Saint Raymond), Publications Mathématiques de l'Université Pierre et Marie Curie, Paris, 1984, pp. 5-01-5-13.
[JS] H. Judah and S. Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), Journal of Symbolic Logic, vol. 55 (1990), pp. 909-927.
[Mi] A. Miller, Some properties of measure and category, Transactions of the American Mathematical Society, vol. 266 (1981), pp. 93-114.
[Sp] E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugaliae Mathematica, vol. 9 (1950), pp. 131-140.

[^0]: 1991 Mathematics subject classification. 03E05 03E35 20K20 20K25
 Key words and phrases. Specker phenomenon, Cardinal invariants of the continuum, Forcing, Evading and predicting

 1 Supported by DFG-grant Nr. Br 1420/1-1.
 2 Supported by the Edmund Landau Center for research in Mathematical Analysis (sponsored by the MINERVA-foundation (Germany)).

 3 publication number 540

