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2 SAHARON SHELAH

§0 INTRODUCTION

Juhasz has asked on the spectrums ¢ — sp(X) = {|Y] : Y an infinite closed
subspace of X} and w — sp(X) = {w(Y) : Y a closed subspace of X}. He proved
[Ju93 | that if X is a compact Hausdorff space, then |X| > k = ¢ — sp(X) N

Z 22 # 0 and w(X) > k = w — sp(X) N[k, 2<%] # (. So under GCH the

A<k
cardinality spectrum of a compact Hausdorff space does not omit two successive

regular cardinals, and omit no inaccessible. Of course, the space 5(w)\w, the space
of nonprincipal ultrafilters on w, satisfies ¢ — sp(X) = {32}. Now Juhasz Shelah
[JuSh 612] shows that we can omit many singular cardinals, e.g. under GCH for
every regular A > k, there is a compact Hausdorff space X with ¢ — sp(X) = {u :
p < A cf(u) > k}; see more there and in [Sh 652]. In fact [JuSh 612] constructs a
Boolean Algebra, so relevant to the parallel problems of Monk [M]. Here we deal
with the noncompact case and get a strong existence theorem. Note that trivially
for a Hausdorff space X, |X| > k = ¢ — sp(X) N [x,22"] # 0, using the closure of
any set with s points, so our result is in this respect best possible.

We prove

0.1 Theorem. For every infinite cardinal \ there is a T3 topological space X, even

with clopen basis, with 92" points such that every closed subset with > X points has
| X| points.

In §1 we prove a somewhat weaker theorem but with the main points of the proof
present, in §2 we complete the proof of the full theorem.
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1.1 Theorem. Assume A = cf(\) > Rg. Let u = 2* k = Min{x : 2% > u}. There
is a Hausdorff space X with a clopen basis with | X| = 2% such that: if for Y C X is
closed and |Y| < |X| then |Y| < A.

Proof. Let S C {§ < k : ¢ limit} be stationary. Let T, = *u for a < k and let
T=|JTn Let (o =U{ud+p:6€SN(a+1)} and let (o =U{(s: B < a}.

a<lk

Stage A: We shall choose sets u¢ C T}, (for ¢ < p x k). Those will be clopen sets

generating the topology. For each ¢ we choose (I¢, J¢) such that: I is a <-antichain

of ("~ u, <) such that for every p € T,., (3la)(p [ a € I¢) and J: C I and we shall let

uc = | J (Tn)" where (T,)" = {p € Tn : vap}. Let Inc = ToNIe, Joc =TaNJ;
vede

but we shall have a ¢ S = Ip ¢ =0 = Ju .

Stage B: Let Cd : p — * >(T«,) be onto such that for every z € Rang(Cd) we
have otp{a < p: Cd(a) =z} = p.
We say a codes z (by Cd) if Cd(a) = .

Stage C:Definition: For § < k we call 7 a é-candidate if

(@) n=(mi:i<A)
(b) ni € Ts
(€) Gy<& N\ mily#n )
1<j<A
(d) for every odd 8 < 6, we have
Cdma(B)) = (mi [ B:i < A)
(e) mx(0) codes (n; [ v:i < A), wherey =~v(n [ A) = Min{y <d:i<j<
A= [v#mn; [ v}, it is well defined by clause (c) and

(f) mxa(0) > sup{n;(0) : i < A}.

Stage D:Choice: Choose A¢ . C A for { < p1 X K,e < A such that:

E<puxk & g1 <ea < A= |Age, NAee,| < Xandeven =10
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and

n
E1<...<& < UXEKEl...6p < A= m Ag¢, c, 1s a stationary subset of A.
=1

Let = = {{(51,51),...,(§n,6n)} 2 &,..., & < p X Kk is with no repetitions and

n

Elyevnyn < )\} and for x € Z let A, = ﬂ Ag¢, e,- Let Dy be a maximal filter on A

(=1
extending the club filter such that z € Z = A, # () mod Dy.
For A C X let

B (A)={xe€Z:ANA, =0 mod Dy but y S = AN A, # 0 mod Dy}

B(A) = B+ (A)UB(M\A).

Fact: B(A) =: BT(A)U LB+ (A\A) is predense in = i.e.

(Vx CE)(Ty € B(A)(zUy € =).

Proof. If x € = contradict it then we can add to Dy the set A\(A; N A) getting
Dj,. Now D{, thus properly extends Dy otherwise A, N A = () mod Dy hence, let
2’ C x be minimal with this property so 2’ € 7 (A) and = by assumption satisfies:
-(Jy € E)(x Uy € B(A)) so try y = z. For every z € = we have A, # ) mod D.

Fact: |Z(A)| < X for A C A

Proof. Let B be the Boolean Algebra freely generated by {z¢ : & < px k,e < A},
by A-system argument, except x¢ ., Nx¢, = 0 if €1 # e9; clearly By satisfies
AT-c.c.

Let B* be the completion of By. Let f* be a homomorphism from &(\) into B*
such that C € Dy = f*(C) = 1g~ and

f(Age) = e e

[Why exists? Look at the Boolean Algebra Z(\) let Iy = {A C A : A\\A € Dy}
and Ao = I, U{A\A : A € I,} is a subalgebra of &(\), and let I U {A¢. : £ <



Paper Sh:606, version 2000-04-14_10. See https://shelah.logic.at/papers/606/ for possible updates.

ON T3-TOPOLOGICAL SPACE OMITTING MANY CARDINALS 5

i X k,e = A} generate a subalgebra 2 of Z2(\); it extends 24y. Let f§ : Ao — By
be the homomorphism with kernel I. Let f; be the homomorphism from 2{ into
By extending fy such that f{(A¢.) = x¢., clearly exists and is onto. Now as B*
is a complete Boolean Algebra, f; can be extended to a homomorphism f5 from
Z(N) into B*. Clearly Ker(fy) = Ker(fy) = Ker(fy) = I so f{ induces an
isomorphism from Z(\)/Dy onto Rang(f;) € B*, so the problem translates to
B*. So By satisfies the AT-c.c and is a dense subalgebra of B* hence of range(f3),
so this range is a A*-c.c. Boolean Algebra hence Z2(\)/ Dy satisfies the fact.]

Let B be the complete Boolean subalgebra of B* generated (as a complete sub-
algebra) by {z¢. : £ < v,e < A}. Clearly B* = U B’ and B is increasing with

Y<K

7.
Stage E: We choose by induction on ¢ € S the following

(A) ws,c € Ts (for ¢ < pué + p) and Jsc C Isc C wsye

(B) for each d-candidate 7 = (n; : i < A), a uniform filter D5 on A extending
the filter Dy

(C) for each vy # vy in T for some ¢ < p % 6 + p we have {vq,v2} C ws ¢ and:
(35’ esSn (5 + 1))(V1 € st/:C) = (35/ esSn (5 + 1))(1/2 € ']5',()

(D)ifn <w,pxd+pu <& <...<& <pxkandeg,...,eq < A then

ﬂ A¢, e, # 0 mod Dy
=1

(E) if 61 € SN§, 7 is a d-candidate and 771 61 = (n; | 01 : @ < \) is a d1-candidate
then _Dﬁ 181 g Dﬁ
(F)1 newse iff (307)(0' e SN(6+1) & nldelsyy)
(F)g if 7= (m; : i < \) is a d-candidate and 1y € ws ¢ then {i < XA :n; € wsc} €
Dy and
(3 e SN0 +1))(nx 16 € Jsc)) =
LIMp, (36" € SN (6 +1))(ni [ 6" € Jsr¢) :i < A)
(F)3 ws, satisfies the following
(a) it is empty if ¢ < (<5
(b) has < X members if ¢ € [(<5,(s)
(¢) otherwise w; ¢ is the disjoint union wy . Uw; . Uwj . where
wgc = {77 €Ts: (30 €SNd)(n1d cws )}
ws . ={n€Ts5:n¢wj and for no x-candidate 7 is n <4y}
wi . ={neTs:n¢w) Uws, and for some d-candidate
n,my =nand (Vi < X)(36" € SN (n; [ 6" € wsr )
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and the set {i < X: (38 € SN (n; [ &' € J5¢)}
or its compliment belongs to Dy;s+ for some 6* < 6 }

(Fa Is¢ = wj e Uwg
(@) if 77is a 0-candidate and B C A, f*(B) € B
Dy.
We can ask more explicitly: there is an ultrafilter D% on the Boolean Algebra
B’ (511) such that Dy = {B C A: f*(B) € Dg}.

The rest of the proof is split into carrying the construction and proving it is enough.

Stage F:This is Enough: First for every s-candidate 7 lets Dy = U{Dy 5 :6 € S, v
is a 0-candidate and i < A = v;<n;}. Easily Dy is a uniform ultrafilter on A. Let us
define the space. The set of points of the space is T, = " and a subbase of clopen
sets will be ug: for ¢ < p x k where u¢ is defined as ue =: U{(T,) : v € J:} and

Jo =t U Js,c. Now note that
oes

(o) I = U{l5 : 60 € S} is an antichain and Vp € T,;3'9(p | 6 € I5.¢)

[Why? We prove this by induction on p(0) and is straight. In details, it is
an antichain by the choice I5¢ = w§7<,w§’< C Tg\wg,c. As for the second
phrase by the first there is at most one such §; let p € T,; and assume we
have proved it for every p’ € T, such that p’(0) < p(0). By the definition
of k-candidate, if there is no k-candidate n with 1y, = p, then for every
large enough 6 € S, there is no d-candidate n with ny = p [ J, hence
for any such 6,p | § belongs to wg’c or to wg’c, in the first case for some
0 €o6nS wehave (p[0) [ €lycsopld € ly and we are done,
in the second case p [ § € wg’g C Is¢ and we are done. So assume that
there is a k-candidate 1 with n) = p, by the definition of a candidate it is
unique and i < A = 1;(0) < p(0), so for each i < A there is 6; € S such
that n; [ §; € I, ¢ and let v = Min{y < p: (n; [ v : 4 < A) is with no
repetition}. Let A = {i < A :mn; [ §; € Js¢} so for some § < p we have
f3(A) € Bj. For 6 € S, which is > sup[{v,d; : i < A}] we get p [ § € ws¢
and we can finish as before.]

(B) X is a T5 space
[why? as we use a clopen basis we really need just to separate points which
holds by clause (C), i.e. if 14 # vo € X then for some § € S we have
v1 [ 6 # o |6 and apply clause (C) to vy [ 6,vs | 0]

(v) [X]=p~=2"
[why? as T} is the set of points of X]|
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(6) suppose Y ={m; :i < A} C X =T, and /\ n; # 1j. We need to show that
i<j
|cl(Y)| large, i.e. has cardinality 2*.
Choose v such that (n; [ v :4 < A) is with no repetitions.

Let

Wy = {<>} U {p for some a < k, p € T, p(0) code (m; [ 77 < ),
p(0) > sup{n;(0) : i < A} and
(V3 < Lg(p))(B odd = p(B) code (n; [ B:i<A)(p|B))}

So clearly:
(i) WanTy #0

(i) Wy is a subtree of (U T,,<) (i.e. closed under initial segments, closed
a<k
under limits),

(i1i) every p € Wi NT, where a@ < k has a successor and if « is even has p
SUCCessors.

So |Wﬁ ﬂT,Ql = ,LLH.
So enough to prove
(%) if p € Wy NT, then p € cl{n; : i < A}

Let = (i : i < A),nx = p,7 = 7" (p) and the filter Dy = U{D/16:<0) + 0 €
S and 6 > v} is a filter by clause (E) and even ultrafilter by clause (G).

Now for every (, by clause (F), for ¢ large enough

Truth Value(p € u¢) = limp Truth Value(n; € u¢) : i < ).

.15;¢§5><

As {u¢ : ( < p x k} is a clopen basis of the topology, we are done.

Stage G: The construction:
We arrive to stage § € S. So for every d-candidate 7 = (n; : i < \), let

Di = U{Dp 15,50 101 € 6N S and (n; 161 : i < A) a dy-candidate} U Dy.
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Note: |T5| = p by the choice of k.
Let <} be a well ordering of Ts such that: v1(0) < 12(0) = v1 <} vs.

Hence

(%) (n; :3 < A) a d-candidate = /\ ni <5 M-

i<

So let {(v1¢,v0,¢) (s < ¢ < (5} list {(v1,v2) : v1 <j 12}; such a list exists as
(s > C<s + p and |T5| = p. Now we choose by induction on ¢ < (5 the following

() D% for 77 a §-candidate when ¢ > (5

(B) wi s sy Jsc

(7) fo“ is Dy which was defined above

such that

(0) D% for ¢ in [(<s, (5] is increasing continuous

E)ifn<w(s<(<&E<EHE<S. .. <& <pxrkandeq,...,e, < AT then
n

ﬂ Ag, -, # 0 mod D
=1

<) D%H,IM, Js,¢c satisfies the requirement (F),
(77) Vi¢ € J5,C = V¢ §§ J57C Oor V1 ¢,Va,c¢ € wf;)’g
(0) D% is D+ {A¢ en(co) : G1 < ¢} for some function €5 : [(<5,() = A

Note: For ¢ = 0, condition (¢) holds by the induction hypothesis (i.e. clause (D))
and choice of D; (and choice of the A¢ /’s if for no d1,7 [ 01 is a §;-candidate).

(¢) if ¢ < (<5 then:
_ 0 1 2 .
ws ¢ = ws o Uws - Uws - are defined as in (F)2
I5, = wi . Uw?
5.¢ = Woc D Wag
J§< ={neTls:de wg’c and for some J-candidate 1 we have ny =7

hence (Vi < \)(30' € SNd)[n; |8 € wy ]
and {i < A: (36" € SN)[n; [ 6" € Js ¢]} belongs to Dy}
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[Note in the context above, by the induction hypothesis (36" € SNd)[n; | ¢ € ws ¢]
is equivalent to (36" € SN)[n; [ ¢’ € Is ¢] and thus ¢’ is unique. Of course, they
have to satisfy the relevant requirements from (A)-(G)].

The cases ¢ < (-4, limit are easy.
The crucial point is: we have (Df7 : 77 a 6-candidate) and ¢ € [(<s, (5) and we should
define ws ¢, Is,¢ and D%H to which the last stage is dedicated.

Stage H: Define by induction on n < w,
¢ _
we = {v1cvach

wflﬂ ={nf:i <\ pée€w, and 7” is a é-candidate with 7§ = p}.

Note that ! <} p.

Let w = ws¢c = Is¢c = U w$, so |wsc| < A (note that this is the first “time” we
deal with (). -

We need: to choose J, ¢ N ws,¢ so that the cases of condition (¢) (i.e. (F)sz) for
n”, p € w hold and condition (1) (i.e. (C) for vy ¢, ¢) holds.

Let wgs . = {p € ws,¢ : 7° is well defined}, (so wj , C ws ). Let ws, = {p[C,e] 1 e <
e* < A}. Now we define DCJrl as DC 4 + A¢e, clearly “legal”.

7pl el
Let A :{z<)\ zeAggandz>5andnl gé{np[CEl te1 < i and i) < i}

and np[c # V1 Vot

Observe

(¥)1 A¢\AL is not stationary by Fodor’s lemma as (nf[e] 14 < A) is with no
repetition.

Now we shall prove that

()2 the sets {nf[g] i€ AL} for € > ¢* are pairwise disjoint.

[C e1]

So toward contradiction suppose 71 € A yig € AL g1 < g9 < €* and 7721 =

[C e2] ..
771 and try to get a contradiction.

g2

Case 1: 49 > 4.
As iy € AL, we have i; > ¢ similarly iy > €3 but €1 < €2 50 ia > €2 > €1, and

(¢.e1] (C.e]
by the assumption iy > 1. So 1] " belongs to the set {nf e<iy & i<ia}

SO 7712 7é 7711C 1) as 7722[ “2l Joes not belong to this set as iy € AL
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Case 2: i9 < i7.

. . . . . [¢,e2] [e]
As iy € A’C’62 necessarily €3 < ip. So €2 < dp < i1 S0 7] * e {nf :e<
, o [¢e1] . .
i1 & 0" <y} but np, " does not belong to this set as i1 € AL hence nz[f’al], 771[2’52]

cannot be equal.

Case 3: i1 = is.
As iy € A we have i; € A¢ ., similarly io € A¢ ., but those sets are disjoint; a
contradiction.

So ()2 holds.

Now define wg’z for £ =1,2,n < w by induction on

n: wg’g ={vc}
[¢oe]
wfb’fl ={n?"" :pl¢e] €ewsfand i € AL and € < £},

3 ,
Let w®¢ = U w$’, now by (%)2, wS! NwS? = () (note the clause n!  # vy ¢ in
n<w

the definition of AL).
So we define

J57< = wc’z.

Now it is easy to check clause (F), i.e. ({) and we have finished the induction on
¢ < 5. Now choose Dj to satisfy clause (G) and to extend U D%, so we are done.

(<Cs
Dl.l
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§2 THE SINGULAR CASE AND THE FULL RESULT

2.1 Theorem. Assume A > cf()\). Let u = 2*k = Min{x : 2 > u}. There is a
Hausdorff space X with a clopen basis with |X| = 2" such that for Y C X closed
Y| < |X|= Y] <A

Proof. For X singular we should replace the filter Dy on A. So let A = Z Ay A

j<cf(N)
strictly increasing A = (X; : j < cf(\)). Let Df = {A C X : forevery j <
cf(\) large enough, the set AN )\;' contains a club of )\;r}

We can find a partition (47 : o < Aj) of )\;r\)\j to stationary sets; let us stipulate
Aﬁ;:(i)when/\;'§a</\andlet[1*:<Aa: U Al a < A) (so Ay #

j< cf(N)
) mod D} and o < B < A= Ay N Ay =0). Let {fe : £ < u x k} be a family of
functions from A to A such that if n < w,& < ... <&, <puxrkandey,...,e, < A

then {a < A : f.,(a) = gy for £ = 1,...,n} is not empty (exists by [EK]). Now
for € < pxkande < XAwelet Ag. = U{Ay : fe(a) =€}, Clearly € < pxk &
g1 < e < A= Aey NAee, = 0, and also: if n < w, & < ... <& < u Xk

and €1,...,6, < A then m A¢, ey # () mod Dy. Let Dy be a maximal filter on
/=1

A extending D3 and still satisfying ﬂ A¢, e, # 0 mod Dy for m,&p,e0(f < n) as

=1
above.

Now the proof proceeds as before. All is the same except in stage H where we use
A regular, Dy contains all clubs of .

The point is that we define AL as before, the main question is: why AL = A. mod
Dz,
Choose j* < cf(A) such that:

e < )\j*.

So it is enough to show

() if 7* < j < cf(A\) then
ALN [N, AT) = A-N [\, A) mod D, +

7% J
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(where D, +-the club filter on )\j)
J
Looking at the definition of A’

¢,e?

/C,a n P‘j?Aj) = {Z < [)‘37)‘;r) e AC,S N P‘jv )‘j)

and nfl[g’s] ¢ {nfl[g’sl] :e1 < 4 and
’il < ’L} and nf[g] 7& Vl»C}

[¢,e] L o
as (N <i< )\j> is with no repetition and Fodor’s theorem holds (can

formulate the demand on D). Just check that the use of A _ in §1 still works.

2.2 Conclusion: If A > Ng,x = Min{x : 2% > 2*}, then there is a T3-space \, | X| =
2" with no closed subspace of cardinality € [A,2%). s 1

* * *
We still would like to replace 2 by 22

2.3 Theorem. For \ > Ny there is a T3 space X with clopen basis such that: no
closed subspace has cardinality in |\, 22A].

Proof. For A = N it is known so let A > Ny. Like the proof of 1.1 with k = 2.

The only problem is that T5 = °u may have cardinality > 2* so we have to redefine
a d-candidate (as there are too many 7; | v to code) and in the crucial Stages
G and H we have the list {(v)_,18,) : € < |T5|} but possibly |T5| > 2~. Still
I T5| < plol < 2#; so instead dedicating one ¢ € [(<s,(s) to deal with any such pair
we just do it for each “kind” of pairs such that the number of kinds is < p, (but
we can deal with all of them at once).

Stage B’
Let Cd : p — -5+ () be such that for every x € S \+(u) for p ordinals o < p
we have Cd(a) = x.

Stage C’:
For limit ¢ < k we call 7 a d-candidate if:

(@) n=(mi:i<A)
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(0) ni €T

(c) for some v, (n; [ v:i < ) is with no repetition

(d) for odd B < § we have
Cd(na(B)) = ((m(B = 1),m(B)) :i < A)

(e) Cd(nxa(0)) = {(%, 4,v,mi(7),n;(7)) : i < j < Xand for some i; < j; <
A,y minimal such that n;, () # n;,(7)}

(f) na(0) > sup{ni(0) : & < A}

()1 if (n; : ¢ < A) is a d1-candidate, g < d1 limit and (Fy < Jo)((m; [ 77 < A)
with no repetitions then (n; [ dg : i < \) is a dp-candidate

() if m; € T, for i < k are pairwise distinct then for 2* sequences 1) € T,, we
have (n; : i < \) is a k-candidate.

Stage H’:
For each € < |Ts| we can choose v5. = U{v5.en : n < w} where we define vs. 5,
by induction on n as follows:

V560 = {I/ia, 1/376},1)5,5,”“ = Usen U{n’ : p € V5., and 77” is a d-candidate such
that n§ = p}. We choose u. = us. € [0]=* such that: if 7 is a 5-candidate satisfying
Mx € Vse (SO M € v5e for i < X) then 0 € u. & i < j < A= Min{y:n(y) #

n;7)} € Ue.

As |Ts| < 2# and p* = u by Engelking Karlowic [EK] there are functions H$ :
Ts — s+ (p) for T € [C<5,(s) such that for every w € [T5] and h : w —
5+ () there is T € [C<s,Cs) such that h C H®.

As pp = p* = |+ (n)|, without loss of generality [Rang(H$)| < A (divide H} to
< 2* =y functions).

For each ¢ < |Ts| let A5 : vs. — Ayt (p) be h5(n) = (A5 (), A5 (), 5 (1))
where

hs’(n) = otp({v € w§ : v <§ 0}, <§)

hst(n) = {(v,n(7)) : v € us,}

h5?(n) = truth value of 1) € vs. o

(the function h§ belongs to JZ+ (1) as |vse| < A); let
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Y. = Min{Y € [C<5,¢) : h§ € HY}

(well defined). Let 74 =: sup{y < AT : v is the first cardinal in some sequence
A from (Rang(H$)}, let g4 be a one-to-one function from 4 into .

Next we can define the D% for 7 a d-candidate; for T < u:
T+1 _ Y
Dy ™ =Dy + Ay 5.

In Stage T € [(<s,(s5) we deal with all € < |T5| such that Y. = T. Now we treat
the choice of I5¢, J5¢, wsc. We can finish as before (but dealing with many cases
at once). O 3
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