ON T_{3}-TOPOLOGICAL SPACE OMITTING MANY CARDINALS

Saharon Shelah
Institute of Mathematics
The Hebrew University
Jerusalem, Israel
Rutgers University
Mathematics Department
New Brunswick, NJ USA

Abstract. We prove that for every (infinite cardinal) λ there is a T_{3}-space X with clopen basis, 2^{μ} points where $\mu=2^{\lambda}$, such that every closed subspace of cardinality $<|X|$ has cardinality $<\lambda$.

This research was supported by the Israel Science Foundation and I would like to thank Alice Leonhardt for the beautiful typing.
Done Sept. 1995
Latest Revision - 00/Apr/14
Publ. No. 606

§0 Introduction

Juhasz has asked on the spectrums $c-s p(X)=\{|Y|: Y$ an infinite closed subspace of $X\}$ and $w-\operatorname{sp}(X)=\{w(Y): Y$ a closed subspace of $X\}$. He proved [Ju93] that if X is a compact Hausdorff space, then $|X|>\kappa \Rightarrow c-s p(X) \cap$ $\left[\kappa, \sum_{\lambda<\kappa} 2^{2^{\lambda}}\right] \neq \emptyset$ and $w(X)>\kappa \Rightarrow w-\operatorname{sp}(X) \cap\left[\kappa, 2^{<\kappa}\right] \neq \emptyset$. So under GCH the cardinality spectrum of a compact Hausdorff space does not omit two successive regular cardinals, and omit no inaccessible. Of course, the space $\beta(\omega) \backslash \omega$, the space of nonprincipal ultrafilters on ω, satisfies $c-\operatorname{sp}(X)=\left\{\beth_{2}\right\}$. Now Juhasz Shelah [JuSh 612] shows that we can omit many singular cardinals, e.g. under GCH for every regular $\lambda>\kappa$, there is a compact Hausdorff space X with $c-s p(X)=\{\mu$: $\mu \leq \lambda, \operatorname{cf}(\mu) \geq \kappa\}$; see more there and in [Sh 652]. In fact [JuSh 612] constructs a Boolean Algebra, so relevant to the parallel problems of Monk [M]. Here we deal with the noncompact case and get a strong existence theorem. Note that trivially for a Hausdorff space $X,|X| \geq \kappa \Rightarrow c-\operatorname{sp}(X) \cap\left[\kappa, 2^{2^{\kappa}}\right] \neq \emptyset$, using the closure of any set with κ points, so our result is in this respect best possible.

We prove
0.1 Theorem. For every infinite cardinal λ there is a T_{3} topological space X, even with clopen basis, with $2^{2^{\lambda}}$ points such that every closed subset with $\geq \lambda$ points has $|X|$ points.

In $\S 1$ we prove a somewhat weaker theorem but with the main points of the proof present, in $\S 2$ we complete the proof of the full theorem.
1.1 Theorem. Assume $\lambda=\operatorname{cf}(\lambda)>\aleph_{0}$. Let $\mu=2^{\lambda}, \kappa=\operatorname{Min}\left\{\kappa: 2^{\kappa}>\mu\right\}$. There is a Hausdorff space X with a clopen basis with $|X|=2^{\kappa}$ such that: if for $Y \subseteq \lambda$ is closed and $|Y|<|X|$ then $|Y|<\lambda$.

Proof. Let $S \subseteq\{\delta<\kappa: \delta$ limit $\}$ be stationary. Let $T_{\alpha}={ }^{\alpha} \mu$ for $\alpha \leq \kappa$ and let $T=\bigcup_{\alpha \leq \kappa} T_{\alpha}$. Let $\zeta_{\alpha}=\cup\{\mu \delta+\mu: \delta \in S \cap(\alpha+1)\}$ and let $\zeta_{<\alpha}=\cup\left\{\zeta_{\beta}: \beta<\alpha\right\}$.

Stage A: We shall choose sets $u_{\zeta} \subseteq T_{\kappa}($ for $\zeta<\mu \times \kappa)$. Those will be clopen sets generating the topology. For each ζ we choose $\left(I_{\zeta}, J_{\zeta}\right)$ such that: I_{ζ} is a \triangleleft-antichain of $\left({ }^{\kappa>} \mu, \triangleleft\right)$ such that for every $\rho \in T_{\kappa},(\exists!\alpha)\left(\rho \upharpoonright \alpha \in I_{\zeta}\right)$ and $J_{\zeta} \subseteq I_{\zeta}$ and we shall let $u_{\zeta}=\bigcup_{\nu \in J_{\zeta}}\left(T_{\kappa}\right)^{[\nu]}$ where $\left(T_{\kappa}\right)^{[\nu]}=\left\{\rho \in T_{\kappa}: \nu \triangleleft \rho\right\}$. Let $I_{\alpha, \zeta}=T_{\alpha} \cap I_{\zeta}, J_{\alpha, \zeta}=T_{\alpha} \cap J_{\zeta}$ but we shall have $\alpha \notin S \Rightarrow I_{\alpha, \zeta}=\emptyset=J_{\alpha, \zeta}$.

Stage B: Let $C d: \mu \rightarrow^{\lambda^{+}>}\left(T_{<\kappa}\right)$ be onto such that for every $x \in \operatorname{Rang}(C d)$ we have $\operatorname{otp}\{\alpha<\mu: \operatorname{Cd}(\alpha)=x\}=\mu$.
We say α codes x (by $\operatorname{Cd)~if~} \operatorname{Cd}(\alpha)=x$.
Stage C:Definition: For $\delta \leq \kappa$ we call $\bar{\eta}$ a δ-candidate if
(a) $\bar{\eta}=\left\langle\eta_{i}: i \leq \lambda\right\rangle$
(b) $\eta_{i} \in T_{\delta}$
(c) $(\exists \gamma<\delta)\left(\bigwedge_{i<j<\lambda} \eta_{i} \upharpoonright \gamma \neq \eta_{j} \upharpoonright \gamma\right)$
(d) for every odd $\beta<\delta$, we have

$$
C d\left(\eta_{\lambda}(\beta)\right)=\left\langle\eta_{i} \upharpoonright \beta: i \leq \lambda\right\rangle
$$

(e) $\eta_{\lambda}(0)$ codes $\left\langle\eta_{i} \upharpoonright \gamma: i<\lambda\right\rangle$, where $\gamma=\gamma(\eta \upharpoonright \lambda)=\operatorname{Min}\{\gamma<\delta: i<j<$ $\left.\lambda \Rightarrow \eta_{i} \upharpoonright \gamma \neq \eta_{j} \upharpoonright \gamma\right\}$, it is well defined by clause (c) and
(f) $\eta_{\lambda}(0)>\sup \left\{\eta_{i}(0): i<\lambda\right\}$.

Stage D:Choice: Choose $A_{\xi, \varepsilon} \subseteq \lambda$ for $\xi<\mu \times \kappa, \varepsilon<\lambda$ such that:

$$
\xi<\mu \times \kappa \& \varepsilon_{1}<\varepsilon_{2}<\lambda \Rightarrow\left|A_{\xi, \varepsilon_{1}} \cap A_{\xi, \varepsilon_{2}}\right|<\lambda \text { and even }=\emptyset
$$

and

$$
\xi_{1}<\ldots<\xi_{n}<\mu \times \kappa, \varepsilon_{1} \ldots \varepsilon_{n_{1}}<\lambda \Rightarrow \bigcap_{\ell=1}^{n} A_{\xi_{\ell}, \varepsilon_{\ell}} \text { is a stationary subset of } \lambda
$$

Let $\Xi=\left\{\left\{\left(\xi_{1}, \varepsilon_{1}\right), \ldots,\left(\xi_{n}, \varepsilon_{n}\right)\right\}: \xi_{1}, \ldots, \xi_{n}<\mu \times \kappa\right.$ is with no repetitions and $\left.\varepsilon_{1}, \ldots, \varepsilon_{n}<\lambda\right\}$ and for $x \in \Xi$ let $A_{x}=\bigcap_{\ell=1}^{n} A_{\xi_{\ell}, \varepsilon_{\ell}}$. Let D_{0} be a maximal filter on λ extending the club filter such that $x \in \Xi \stackrel{\ell=1}{\Rightarrow} A_{x} \neq \emptyset \bmod D_{0}$.
For $A \subseteq \lambda$ let

$$
\begin{gathered}
\mathscr{B}^{+}(A)=\left\{x \in \Xi: A \cap A_{x}=\emptyset \bmod D_{0} \text { but } y \varsubsetneqq x \Rightarrow A \cap A_{y} \neq \emptyset \bmod D_{0}\right\} \\
\mathscr{B}(A)=: \mathscr{B}^{+}(A) \cup \mathscr{B}^{+}(\lambda \backslash A) .
\end{gathered}
$$

Fact: $\mathscr{B}(A)=: \mathscr{B}^{+}(A) \cup \mathscr{B}^{+}(\lambda \backslash A)$ is predense in Ξ i.e.

$$
(\forall x \subseteq \Xi)(\exists y \in \mathscr{B}(A))(x \cup y \in \Xi)
$$

Proof. If $x \in \Xi$ contradict it then we can add to D_{0} the set $\lambda \backslash\left(A_{x} \cap A\right)$ getting D_{0}^{\prime}. Now D_{0}^{\prime} thus properly extends D_{0} otherwise $A_{x} \cap A=\emptyset \bmod D_{0}$ hence, let $x^{\prime} \subseteq x$ be minimal with this property so $x^{\prime} \in \mathscr{B}^{+}(A)$ and x by assumption satisfies: $\neg(\exists y \in \Xi)(x \cup y \in \mathscr{B}(A))$ so try $y=x$. For every $z \in \Xi$ we have $A_{z} \neq \emptyset \bmod D_{0}$.

Fact: $|\mathscr{B}(A)| \leq \lambda$ for $A \subseteq \lambda$.

Proof. Let \mathbf{B}_{0} be the Boolean Algebra freely generated by $\left\{x_{\xi, \varepsilon}: \xi<\mu \times \kappa, \varepsilon<\lambda\right\}$, by Δ-system argument, except $x_{\xi, \varepsilon_{1}} \cap x_{\xi, \varepsilon_{2}}=0$ if $\varepsilon_{1} \neq \varepsilon_{2}$; clearly \mathbf{B}_{0} satisfies λ^{+}-с.c.
Let \mathbf{B}^{*} be the completion of \mathbf{B}_{0}. Let f^{*} be a homomorphism from $\mathscr{P}(\lambda)$ into \mathbf{B}^{*} such that $C \in D_{0} \Rightarrow f^{*}(C)=1_{\mathbf{B}^{*}}$ and

$$
f\left(A_{\xi, \varepsilon}\right)=x_{\xi, \varepsilon}
$$

[Why exists? Look at the Boolean Algebra $\mathscr{P}(\lambda)$ let $I_{\lambda}=\left\{A \subseteq \lambda: \lambda \backslash A \in D_{0}\right\}$ and $\mathfrak{A}_{0}=I_{\lambda} \cup\left\{\lambda \backslash A: A \in I_{\lambda}\right\}$ is a subalgebra of $\mathscr{P}(\lambda)$, and let $I_{\lambda} \cup\left\{A_{\xi, \varepsilon}: \xi \leq\right.$
$\mu \times \kappa, \varepsilon=\lambda\}$ generate a subalgebra \mathfrak{A} of $\mathscr{P}(\lambda)$; it extends \mathfrak{A}_{0}. Let $f_{0}^{*}: \mathfrak{A}_{0} \rightarrow \mathbf{B}_{0}$ be the homomorphism with kernel I_{λ}. Let f_{1}^{*} be the homomorphism from \mathfrak{A} into \mathbf{B}_{0} extending f_{0} such that $f_{1}^{*}\left(A_{\xi, \varepsilon}\right)=x_{\xi, \varepsilon}$, clearly exists and is onto. Now as \mathbf{B}^{*} is a complete Boolean Algebra, f_{1}^{*} can be extended to a homomorphism f_{2}^{*} from $\mathscr{P}(\lambda)$ into \mathbf{B}^{*}. Clearly $\operatorname{Ker}\left(f_{2}^{*}\right)=\operatorname{Ker}\left(f_{2}^{*}\right)=\operatorname{Ker}\left(f_{0}^{*}\right)=I_{\lambda}$ so f_{1}^{*} induces an isomorphism from $\mathscr{P}(\lambda) / D_{0}$ onto $\operatorname{Rang}\left(f_{1}^{*}\right) \subseteq \mathbf{B}^{*}$, so the problem translates to \mathbf{B}^{*}. So \mathbf{B}_{0} satisfies the λ^{+}-c.c and is a dense subalgebra of \mathbf{B}^{*} hence of range $\left(f_{2}^{*}\right)$, so this range is a λ^{+}-c.c. Boolean Algebra hence $\mathscr{P}(\lambda) / D_{0}$ satisfies the fact.]
Let \mathbf{B}_{γ}^{*} be the complete Boolean subalgebra of \mathbf{B}^{*} generated (as a complete subalgebra) by $\left\{x_{\xi, \varepsilon}: \xi<\gamma, \varepsilon<\lambda\right\}$. Clearly $\mathbf{B}^{*}=\bigcup_{\gamma<\kappa} \mathbf{B}_{\gamma}^{*}$ and \mathbf{B}_{γ}^{*} is increasing with γ.

Stage E: We choose by induction on $\delta \in S$ the following
(A) $w_{\delta, \zeta} \subseteq T_{\delta}($ for $\zeta<\mu \delta+\mu)$ and $J_{\delta, \zeta} \subseteq I_{\delta, \zeta} \subseteq w_{\delta, \zeta}$
(B) for each δ-candidate $\bar{\eta}=\left\langle\eta_{i}: i \leq \lambda\right\rangle$, a uniform filter $D_{\bar{\eta}}$ on λ extending the filter D_{0}
(C) for each $\nu_{1} \neq \nu_{2}$ in T_{δ} for some $\zeta<\mu \times \delta+\mu$ we have $\left\{\nu_{1}, \nu_{2}\right\} \subseteq w_{\delta, \zeta}$ and: $\left(\exists \delta^{\prime} \in S \cap(\delta+1)\right)\left(\nu_{1} \in J_{\delta^{\prime}, \zeta}\right) \equiv\left(\exists \delta^{\prime} \in S \cap(\delta+1)\right)\left(\nu_{2} \in J_{\delta^{\prime}, \zeta}\right)$
(D) if $n<\omega, \mu \times \delta+\mu \leq \xi_{1}<\ldots<\xi_{n}<\mu \times \kappa$ and $\varepsilon_{1}, \ldots, \varepsilon_{n}<\lambda$ then $\bigcap_{\ell=1}^{n} A_{\xi_{\ell}, \varepsilon_{\ell}} \neq \emptyset \bmod D_{\bar{\eta}}$
(E) if $\delta_{1} \in S \cap \delta, \bar{\eta}$ is a δ-candidate and $\bar{\eta} \upharpoonleft \delta_{1}=\left\langle\eta_{i} \upharpoonright \delta_{1}: i \leq \lambda\right\rangle$ is a δ_{1}-candidate then $D_{\bar{\eta} \mid \delta_{1}} \subseteq D_{\bar{\eta}}$
$(F)_{1} \eta \in w_{\delta, \zeta}$ iff $\left(\exists \delta^{\prime}\right)\left(\delta^{\prime} \in S \cap(\delta+1) \& \eta \upharpoonright \delta \in I_{\delta^{\prime}, \zeta}\right)$
$(F)_{2}$ if $\bar{\eta}=\left\langle\eta_{i}: i \leq \lambda\right\rangle$ is a δ-candidate and $\eta_{\lambda} \in w_{\delta, \zeta}$ then $\left\{i<\lambda: \eta_{i} \in w_{\delta, \zeta}\right\} \in$ $D_{\bar{\eta}}$ and
$\left\langle\left(\exists \delta^{\prime} \in S \cap(\delta+1)\right)\left(\eta_{\lambda} \upharpoonright \delta^{\prime} \in J_{\delta^{\prime}, \zeta}\right)\right\rangle=$ $\operatorname{LIM}_{D_{\bar{\eta}}}\left\langle\left(\exists \delta^{\prime} \in S \cap(\delta+1)\right)\left(\eta_{i} \upharpoonright \delta^{\prime} \in J_{\delta^{\prime}, \zeta}\right): i<\lambda\right\rangle$
$(F)_{3} w_{\delta, \zeta}$ satisfies the following
(a) it is empty if $\zeta<\zeta_{<\delta}$
(b) has $\leq \lambda$ members if $\zeta \in\left[\zeta_{<\delta}, \zeta_{\delta}\right)$
(c) otherwise $w_{\delta, \zeta}$ is the disjoint union $w_{\delta, \zeta}^{0} \cup w_{\delta, \zeta}^{1} \cup w_{\delta, \zeta}^{2}$ where
$w_{\delta, \zeta}^{0}=\left\{\eta \in T_{\delta}:\left(\exists \delta^{\prime} \in S \cap \delta\right)\left(\eta \upharpoonleft \delta^{\prime} \in w_{\delta^{\prime}, \zeta}\right)\right\}$
$w_{\delta, \zeta}^{1}=\left\{\eta \in T_{\delta}: \eta \notin w_{\delta, \zeta}^{0}\right.$ and for no κ-candidate $\bar{\eta}$ is $\left.\eta \triangleleft \eta_{\lambda}\right\}$
$w_{\delta, \zeta}^{2}=\left\{\eta \in T_{\delta}: \eta \notin w_{\delta, \zeta}^{0} \cup w_{\delta, \zeta}^{1}\right.$ and for some δ-candidate

$$
\bar{\eta}, \eta_{\lambda}=\eta \text { and }(\forall i<\lambda)\left(\exists \delta^{\prime} \in S \cap \delta\right)\left(\eta_{i} \upharpoonright \delta^{\prime} \in w_{\delta^{\prime}, \zeta}\right)
$$

and the set $\left\{i<\lambda:\left(\exists \delta^{\prime} \in S \cap \delta\right)\left(\eta_{i} \upharpoonright \delta^{\prime} \in J_{\delta, \zeta}\right)\right\}$ or its compliment belongs to $D_{\bar{\eta} \upharpoonright \delta^{*}}$ for some $\left.\delta^{*}<\delta\right\}$
$(F)_{4} \quad I_{\delta, \zeta}=w_{\delta, \zeta}^{2} \cup w_{\delta, \zeta}^{1}$
(G) if $\bar{\eta}$ is a δ-candidate and $B \subseteq \lambda, f^{*}(B) \in \mathbf{B}_{\mu \times(\delta+1)}^{*}$, then $B \in D_{\bar{\eta}} \vee(\lambda \backslash B) \in$ $D_{\bar{\eta}}$.
We can ask more explicitly: there is an ultrafilter $D_{\bar{\eta}}^{\prime}$ on the Boolean Algebra $\mathbf{B}_{\mu \times(\delta+1)}^{*}$ such that $D_{\bar{\eta}}=\left\{B \subseteq \lambda: f^{*}(B) \in D_{\bar{\eta}}^{\prime}\right\}$.
The rest of the proof is split into carrying the construction and proving it is enough.

Stage F:This is Enough: First for every κ-candidate $\bar{\eta}$ lets $D_{\bar{\eta}}=\cup\left\{D_{\bar{\nu}, \delta}: \delta \in S, \bar{\nu}\right.$ is a δ-candidate and $\left.i \leq \lambda \Rightarrow \nu_{i} \triangleleft \eta_{i}\right\}$. Easily $D_{\bar{\eta}}$ is a uniform ultrafilter on λ. Let us define the space. The set of points of the space is $T_{\kappa}={ }^{\kappa} \mu$ and a subbase of clopen sets will be u_{ζ} : for $\zeta<\mu \times \kappa$ where u_{ζ} is defined as $u_{\zeta}=: \cup\left\{\left(T_{\kappa}\right)^{[\nu]}: \nu \in J_{\zeta}\right\}$ and $J_{\zeta}=: \bigcup_{\delta \in S} J_{\delta, \zeta}$. Now note that
(α) $I_{\zeta}=\cup\left\{I_{\delta, \zeta}: \delta \in S\right\}$ is an antichain and $\forall \rho \in T_{\kappa} \exists!\delta\left(\rho \upharpoonright \delta \in I_{\delta, \zeta}\right)$
[Why? We prove this by induction on $\rho(0)$ and is straight. In details, it is an antichain by the choice $I_{\delta, \zeta}=w_{\delta, \zeta}^{2}, w_{\delta, \zeta}^{2} \subseteq T_{\delta} \backslash w_{\delta, \zeta}^{0}$. As for the second phrase by the first there is at most one such δ; let $\rho \in T_{\kappa}$ and assume we have proved it for every $\rho^{\prime} \in T_{\kappa}$ such that $\rho^{\prime}(0)<\rho(0)$. By the definition of κ-candidate, if there is no κ-candidate $\bar{\eta}$ with $\eta_{\lambda}=\rho$, then for every large enough $\delta \in S$, there is no δ-candidate $\bar{\eta}$ with $\eta_{\lambda}=\rho \upharpoonright \delta$, hence for any such $\delta, \rho \upharpoonright \delta$ belongs to $w_{\delta, \zeta}^{0}$ or to $w_{\delta, \zeta}^{1}$, in the first case for some $\delta^{\prime} \in \delta \cap S$ we have $(\rho \upharpoonright \delta) \upharpoonright \delta^{\prime} \in I_{\delta^{\prime}, \zeta}$ so $\rho \upharpoonright \delta^{\prime} \in I_{\delta^{\prime}, \zeta}$ and we are done, in the second case $\rho \upharpoonright \delta \in w_{\delta, \zeta}^{1} \subseteq I_{\delta, \zeta}$ and we are done. So assume that there is a κ-candidate $\bar{\eta}$ with $\eta_{\lambda}=\rho$, by the definition of a candidate it is unique and $i<\lambda \Rightarrow \eta_{i}(0)<\rho(0)$, so for each $i<\lambda$ there is $\delta_{i} \in S$ such that $\eta_{i} \upharpoonright \delta_{i} \in I_{\delta_{i}, \zeta}$ and let $\gamma=\operatorname{Min}\left\{\gamma<\mu:\left\langle\eta_{i} \upharpoonright \gamma: i<\lambda\right\rangle\right.$ is with no repetition $\}$. Let $A=\left\{i<\lambda: \eta_{i} \upharpoonright \delta_{i} \in J_{\delta, \zeta}\right\}$ so for some $\beta<\mu$ we have $f_{2}^{*}(A) \in \mathbf{B}_{\beta}^{*}$. For $\delta \in S$, which is $>\sup \left[\left\{\gamma, \delta_{i}: i<\lambda\right\}\right]$ we get $\rho \upharpoonright \delta \in w_{\delta, \zeta}$ and we can finish as before.]
(β) X is a \underline{T}_{3} space
[why? as we use a clopen basis we really need just to separate points which holds by clause (C), i.e. if $\nu_{1} \neq \nu_{2} \in X$ then for some $\delta \in S$ we have $\nu_{1} \upharpoonright \delta \neq \nu_{2} \upharpoonright \delta$ and apply clause (C) to $\left.\nu_{1} \upharpoonright \delta, \nu_{2} \upharpoonright \delta\right]$
(γ) $|X|=\mu^{\kappa}=2^{\kappa}$
[why? as T_{κ} is the set of points of X]
(δ) suppose $Y=\left\{\eta_{i}: i<\lambda\right\} \subseteq X=T_{\kappa}$ and $\bigwedge_{i<j} \eta_{i} \neq \eta_{j}$. We need to show that $|c \ell(Y)|$ large, i.e. has cardinality 2^{κ}.

Choose γ such that $\left\langle\eta_{i} \upharpoonright \gamma: i<\lambda\right\rangle$ is with no repetitions.
Let

$$
\begin{aligned}
W_{\bar{\eta}}=\{\langle>\} \cup\{\rho: & \text { for some } \alpha \leq \kappa, \rho \in T_{\alpha}, \rho(0) \text { code }\left\langle\eta_{i} \upharpoonright \gamma: i<\lambda\right\rangle, \\
& \rho(0)>\sup \left\{\eta_{i}(0): i<\lambda\right\} \text { and } \\
& \left.(\forall \beta<\ell g(\rho))\left(\beta \text { odd } \Rightarrow \rho(\beta) \operatorname{code}\left\langle\eta_{i} \upharpoonright \beta: i<\lambda\right\rangle^{\wedge}\langle\rho \upharpoonright \beta\rangle\right)\right\} .
\end{aligned}
$$

So clearly:
(i) $W_{\bar{\eta}} \cap T_{1} \neq \emptyset$
(ii) $W_{\bar{\eta}}$ is a subtree of $\left(\bigcup_{\alpha \leq \kappa} T_{\alpha}, \triangleleft\right)$ (i.e. closed under initial segments, closed under limits),
(iii) every $\rho \in W_{\bar{\eta}} \cap T_{\alpha}$ where $\alpha<\kappa$ has a successor and if α is even has μ successors.

So $\left|W_{\bar{\eta}} \cap T_{\kappa}\right|=\mu^{\kappa}$.
So enough to prove
(*) if $\rho \in W_{\bar{\eta}} \cap T_{\kappa}$ then $\rho \in c \ell\left\{\eta_{i}: i<\lambda\right\}$.
Let $\bar{\eta}=\left\langle\eta_{i}: i<\lambda\right\rangle, \eta_{\lambda}=\rho, \bar{\eta}^{\prime}=\bar{\eta}^{\wedge}\langle\rho\rangle$ and the filter $D_{\bar{\eta}^{\prime}}=\cup\left\{D_{\left\langle\bar{\eta}_{i}^{\prime} 1 \delta: i \leq \lambda\right\rangle}: \delta \in\right.$ S and $\delta \geq \gamma\}$ is a filter by clause (E) and even ultrafilter by clause (G).
Now for every ζ, by clause $(\mathrm{F})_{2}$ for δ large enough

$$
\text { Truth Value }\left(\rho \in u_{\zeta}\right)=\lim _{D_{\left\langle\bar{n}_{i}^{\prime} \mid \delta: i i \leq \delta\right\rangle}}\left\langle\text { Truth Value }\left(\eta_{i} \in u_{\zeta}\right): i<\lambda\right\rangle
$$

As $\left\{u_{\zeta}: \zeta<\mu \times \kappa\right\}$ is a clopen basis of the topology, we are done.
Stage G: The construction:
We arrive to stage $\delta \in S$. So for every δ-candidate $\bar{\eta}=\left\langle\eta_{i}: i \leq \lambda\right\rangle$, let

$$
D_{\bar{\eta}}^{\prime}=\cup\left\{D_{\left\langle\eta_{i} \mid \delta_{1}: i \leq \lambda\right\rangle}: \delta_{1} \in \delta \cap S \text { and }\left\langle\eta_{i} \upharpoonleft \delta_{1}: i \leq \lambda\right\rangle \text { a } \delta_{1} \text {-candidate }\right\} \cup D_{0}
$$

Note: $\left|T_{\delta}\right|=\mu$ by the choice of κ.
Let $<_{\delta}^{*}$ be a well ordering of T_{δ} such that: $\nu_{1}(0)<\nu_{2}(0) \Rightarrow \nu_{1}<_{\delta}^{*} \nu_{2}$.
Hence
(*) $\left\langle\eta_{i}: i \leq \lambda\right\rangle$ a δ-candidate $\Rightarrow \bigwedge_{i<\lambda} \eta_{i}<_{\delta}^{*} \eta_{\lambda}$.
So let $\left\{\left\langle\nu_{1, \zeta}, \nu_{2, \zeta}\right\rangle: \zeta_{<\delta} \leq \zeta<\zeta_{\delta}\right\}$ list $\left\{\left(\nu_{1}, \nu_{2}\right): \nu_{1}<_{\delta}^{*} \nu_{2}\right\}$; such a list exists as $\zeta_{\delta} \geq \zeta_{<\delta}+\mu$ and $\left|T_{\delta}\right|=\mu$. Now we choose by induction on $\zeta<\zeta_{\delta}$ the following
(α) $D_{\bar{\eta}}^{\zeta}$ for $\bar{\eta}$ a δ-candidate when $\zeta \geq \zeta_{<\delta}$
(β) $w_{\delta, \zeta}^{*}, I_{\delta, \zeta}, J_{\delta, \zeta}$
$(\gamma) D_{\bar{\eta}}^{\zeta<\delta}$ is $D_{\bar{\eta}}^{\prime}$ which was defined above
such that
(δ) $D_{\bar{\eta}}^{\zeta}$ for ζ in $\left[\zeta_{<\delta}, \zeta_{\delta}\right]$ is increasing continuous
(ε) if $n<\omega, \zeta_{<\delta} \leq \zeta \leq \xi_{1}<\xi_{2}<\ldots<\xi_{n}<\mu \times \kappa$ and $\varepsilon_{1}, \ldots, \varepsilon_{n}<\lambda^{+}$then $\bigcap_{\ell=1}^{n} A_{\xi_{\ell}, \varepsilon_{\ell}} \neq \emptyset \bmod D_{\bar{\eta}}^{\zeta}$
(ζ) $D_{\bar{\eta}}^{\zeta+1}, I_{\delta, \zeta}, J_{\delta, \zeta}$ satisfies the requirement $(\mathrm{F})_{2}$
(η) $\nu_{1, \zeta} \in J_{\delta, \zeta} \Leftrightarrow \nu_{2, \zeta} \notin J_{\delta, \zeta}$ or $\nu_{1, \zeta}, \nu_{2, \zeta} \in w_{\delta, \zeta}^{0}$
(θ) $D_{\bar{\eta}}^{\zeta}$ is $D_{\bar{\eta}}^{\prime}+\left\{A_{\zeta_{1}, \varepsilon_{\bar{\eta}}\left(\zeta_{0}\right)}: \zeta_{1}<\zeta\right\}$ for some function $\varepsilon_{\bar{\eta}}:\left[\zeta_{<\delta}, \zeta\right) \Rightarrow \lambda$.
Note: For $\zeta=0$, condition (ε) holds by the induction hypothesis (i.e. clause (D)) and choice of D_{η}^{\prime} (and choice of the $A_{\xi, \varepsilon}$'s if for no $\delta_{1}, \bar{\eta} \upharpoonright \delta_{1}$ is a δ_{1}-candidate).
(九) if $\zeta<\zeta_{<\delta}$ then:

$$
\begin{gathered}
w_{\delta, \zeta}=w_{\delta, \zeta}^{0} \cup w_{\delta, \zeta}^{1} \cup w_{\delta, \zeta}^{2} \text { are defined as in }(F)_{2} \\
I_{\delta, \zeta}^{\zeta}=w_{\delta, \zeta}^{1} \cup w_{\delta, \zeta}^{2}
\end{gathered}
$$

$J_{\delta, \zeta}^{\zeta}=\left\{\eta \in T_{\delta}: \delta \in w_{\delta, \zeta}^{2}\right.$ and for some δ-candidate $\bar{\eta}$ we have $\eta_{\lambda}=\eta$
hence $(\forall i<\lambda)\left(\exists \delta^{\prime} \in S \cap \delta\right)\left[\eta_{i} \upharpoonright \delta^{\prime} \in w_{\delta^{\prime}, \zeta}\right]$
and $\left\{i<\lambda:\left(\exists \delta^{\prime} \in S \cap \delta\right)\left[\eta_{i} \upharpoonright \delta^{\prime} \in J_{\delta^{\prime}, \zeta}\right]\right\}$ belongs to $\left.D_{\bar{\eta}}^{\prime}\right\}$.
[Note in the context above, by the induction hypothesis $\left(\exists \delta^{\prime} \in S \cap \delta\right)\left[\eta_{i} \upharpoonright \delta^{\prime} \in w_{\delta^{\prime}, \zeta}\right]$ is equivalent to $\left(\exists \delta^{\prime} \in S \cap \delta\right)\left[\eta_{i} \upharpoonright \delta^{\prime} \in I_{\delta^{\prime}, \zeta}\right]$ and thus δ^{\prime} is unique. Of course, they have to satisfy the relevant requirements from (A)-(G)].
The cases $\zeta \leq \zeta_{<\delta}, \zeta$ limit are easy.
The crucial point is: we have $\left\langle D_{\bar{\eta}}^{\zeta}: \bar{\eta}\right.$ a δ-candidate \rangle and $\zeta \in\left[\zeta_{<\delta}, \zeta_{\delta}\right)$ and we should define $w_{\delta, \zeta}, I_{\delta, \zeta}$ and $D_{\bar{\eta}}^{\zeta+1}$ to which the last stage is dedicated.

Stage H: Define by induction on $n<\omega$,

$$
w_{0}^{\zeta}=\left\{\nu_{1, \zeta}, \nu_{2, \zeta}\right\}
$$

$$
w_{n+1}^{\zeta}=\left\{\eta_{i}^{\rho}: i<\lambda, \rho \in w_{n} \text { and } \bar{\eta}^{\rho} \text { is a } \delta \text {-candidate with } \eta_{\lambda}^{\rho}=\rho\right\}
$$

Note that $\eta_{i}^{\rho}<_{\delta}^{*} \rho$.
Let $w=w_{\delta, \zeta}=I_{\delta, \zeta}=\bigcup_{n<\omega} w_{n}^{\zeta}$, so $\left|w_{\delta, \zeta}\right| \leq \lambda$ (note that this is the first "time" we deal with ζ).
We need: to choose $J_{\alpha, \zeta} \cap w_{\delta, \zeta}$ so that the cases of condition (ζ) (i.e. $\left.(\mathrm{F})_{2}\right)$ for $\bar{\eta}^{\rho}, \rho \in w$ hold and condition (η) (i.e. (C) for $\nu_{1, \zeta}, \nu_{2, \zeta}$) holds.
Let $w_{\delta, \zeta}^{\prime}=\left\{\rho \in w_{\delta, \zeta}: \bar{\eta}^{\rho}\right.$ is well defined $\}$, (so $\left.w_{\delta, \zeta}^{\prime} \subseteq w_{\delta, \zeta}\right)$. Let $w_{\delta, \zeta}^{\prime}=\{\rho[\zeta, \varepsilon]: \varepsilon<$ $\left.\varepsilon^{*} \leq \lambda\right\}$. Now we define $D_{\bar{\eta}^{\rho[\zeta, \varepsilon]}}^{\zeta+1}$ as $D_{\eta^{\rho[\zeta, \varepsilon]}}^{\zeta}+A_{\zeta, \varepsilon}$, clearly "legal".
Let $A_{\zeta, \varepsilon}^{\prime}=\left\{i<\lambda: i \in A_{\zeta, \varepsilon}\right.$ and $i>\varepsilon$ and $\eta_{i}^{\rho[\zeta, \varepsilon]} \notin\left\{\eta_{i_{1}}^{\rho\left[\zeta, \varepsilon_{1}\right]}: \varepsilon_{1}<i\right.$ and $\left.i_{1}<i\right\}$ and $\left.\eta_{i}^{\rho[\zeta, \varepsilon]} \neq \nu_{1, \zeta}, \nu_{2, \zeta}\right\}$.
Observe
$(*)_{1} A_{\zeta, \varepsilon} \backslash A_{\varepsilon}^{\prime}$ is not stationary by Fodor's lemma as $\left\langle\eta_{i}^{\rho[\varepsilon]}: i<\lambda\right\rangle$ is with no repetition.

Now we shall prove that
$(*)_{2}$ the sets $\left\{\eta_{i}^{\rho[\varepsilon]}: i \in A_{\varepsilon}^{\prime}\right\}$ for $\varepsilon>\varepsilon^{*}$ are pairwise disjoint.
So toward contradiction suppose $i_{1} \in A_{\varepsilon_{1}}^{\prime}, i_{2} \in A_{\varepsilon_{2}}^{\prime}, \varepsilon_{1}<\varepsilon_{2}<\varepsilon^{*}$ and $\eta_{i_{1}}^{\rho\left[\zeta, \varepsilon_{1}\right]}=$ $\eta_{i_{2}}^{\rho\left[\zeta, \varepsilon_{2}\right]}$ and try to get a contradiction.

Case 1: $i_{2}>i_{1}$.
As $i_{1} \in A_{\varepsilon_{1}}^{\prime}$ we have $i_{1}>\varepsilon_{1}$ similarly $i_{2}>\varepsilon_{2}$ but $\varepsilon_{1}<\varepsilon_{2}$ so $i_{2}>\varepsilon_{2}>\varepsilon_{1}$, and by the assumption $i_{2}>i_{1}$. So $\eta_{i_{1}}^{\rho\left[\zeta, \varepsilon_{1}\right]}$ belongs to the set $\left\{\eta_{i}^{\rho[\zeta, \varepsilon]}: \varepsilon<i_{2} \& i<i_{2}\right\}$ so $\eta_{i_{2}}^{\rho\left[\zeta, \varepsilon_{2}\right]} \neq \eta_{i_{1}}^{\rho\left[\zeta, \varepsilon_{1}\right]}$ as $\eta_{i_{2}}^{\rho\left[\zeta, \varepsilon_{2}\right]}$ does not belong to this set as $i_{2} \in A_{\varepsilon_{2}}^{\prime}$.

Case 2: $i_{2}<i_{1}$.
As $i_{2} \in A_{\zeta, \varepsilon_{2}}^{\prime}$ necessarily $\varepsilon_{2}<i_{2}$. So $\varepsilon_{2}<i_{2}<i_{1}$ so $\eta_{i_{2}}^{\rho^{\left[\zeta, \varepsilon_{2}\right]}} \in\left\{\eta_{i}^{\rho_{i}^{[\varepsilon]}}: \varepsilon<\right.$ $\left.i_{1} \& \ell^{i}<i_{1}\right\}$ but $\eta_{i_{2}}^{\rho_{\zeta}^{\left[\zeta, \varepsilon_{1}\right]}}$ does not belong to this set as $i_{1} \in A_{\varepsilon_{1}}^{\prime}$ hence $\eta_{i_{1}}^{\left[\zeta, \varepsilon_{1}\right]}, \eta_{i_{2}}^{\left[\zeta, \varepsilon_{2}\right]}$ cannot be equal.

Case 3: $i_{1}=i_{2}$.
As $i_{1} \in A_{\varepsilon_{1}}^{\prime}$ we have $i_{1} \in A_{\zeta, \varepsilon_{1}}$ similarly $i_{2} \in A_{\zeta, \varepsilon_{2}}$ but those sets are disjoint; a contradiction.
So $(*)_{2}$ holds.
Now define $w_{n}^{\zeta, \ell}$ for $\ell=1,2, n<\omega$ by induction on

$$
\begin{gathered}
n: w_{0}^{\zeta, \ell}=\left\{\nu_{\ell, \zeta}\right\} \\
w_{n+1}^{\zeta, \ell}=\left\{\eta_{i}^{\rho \zeta \zeta, \varepsilon]}: \rho[\zeta, \varepsilon] \in w_{n}^{\zeta, \ell} \text { and } i \in A_{\varepsilon}^{\prime} \text { and } \varepsilon<\varepsilon^{*}\right\}
\end{gathered}
$$

Let $w^{\zeta, \ell}=\bigcup_{n<\omega} w_{n}^{\zeta, \ell}$, now by $(*)_{2}, w^{\zeta, 1} \cap w^{\zeta, 2}=\emptyset$ (note the clause $\eta_{i}^{\rho_{i}^{[\zeta, \varepsilon]}} \neq \nu_{1, \zeta}$ in the definition of $\left.A_{\varepsilon}^{\prime}\right)$.
So we define

$$
J_{\delta, \zeta}=w^{\zeta, 2}
$$

Now it is easy to check clause (F), i.e. (ζ) and we have finished the induction on $\zeta<\zeta_{\delta}$. Now choose $D_{\bar{\eta}}$ to satisfy clause (G) and to extend $\bigcup_{\zeta<\zeta_{\delta}} D_{\bar{\eta}}^{\zeta}$, so we are done.
§2 The singular case and the full result
2.1 Theorem. Assume $\lambda>\operatorname{cf}(\lambda)$. Let $\mu=2^{\lambda}, \kappa=\operatorname{Min}\left\{\kappa: 2^{\kappa}>\mu\right\}$. There is a Hausdorff space X with a clopen basis with $|X|=2^{\kappa}$ such that for $Y \subseteq \lambda$ closed $|Y|<|X| \Rightarrow|Y|<\lambda$.

Proof. For λ singular we should replace the filter D_{0} on λ. So let $\lambda=\sum_{j<\operatorname{cf}(\lambda)} \lambda_{j}, \lambda_{j}$ strictly increasing $\bar{\lambda}=\left\langle\lambda_{j}: j<\operatorname{cf}(\lambda)\right\rangle$. Let $D_{\bar{\lambda}}^{*}=\{A \subseteq \lambda$: for every $j<$ $\operatorname{cf}(\lambda)$ large enough, the set $A \cap \lambda_{j}^{+}$contains a club of $\left.\lambda_{j}^{+}\right\}$.

We can find a partition $\left\langle A_{\alpha}^{j}: \alpha<\lambda_{j}^{+}\right\rangle$of $\lambda_{j}^{+} \backslash \lambda_{j}$ to stationary sets; let us stipulate $A_{\alpha}^{j}=\emptyset$ when $\lambda_{j}^{+} \leq \alpha<\lambda$ and let $\bar{A}^{*}=\left\langle A_{\alpha}=\bigcup_{j<\operatorname{cf}(\lambda)} A_{\alpha}^{j}: \alpha<\lambda\right\rangle\left(\right.$ so $A_{\alpha} \neq$ $\emptyset \bmod D_{\lambda}^{*}$ and $\left.\alpha<\beta<\lambda \Rightarrow A_{\alpha} \cap A_{\lambda}=\emptyset\right)$. Let $\left\{f_{\xi}: \xi<\mu \times \kappa\right\}$ be a family of functions from λ to λ such that if $n<\omega, \xi_{1}<\ldots<\xi_{n}<\mu \times \kappa$ and $\varepsilon_{1}, \ldots, \varepsilon_{n}<\lambda$ then $\left\{\alpha<\lambda: f_{\varepsilon_{\ell}}(\alpha)=\varepsilon_{\ell}\right.$ for $\left.\ell=1, \ldots, n\right\}$ is not empty (exists by [EK]). Now for $\xi<\mu \times \kappa$ and $\varepsilon<\lambda$ we let $A_{\xi, \varepsilon}=\cup\left\{A_{\alpha}: f_{\xi}(\alpha)=\varepsilon\right\}$. Clearly $\xi<\mu \times \kappa \&$ $\varepsilon_{1}<\varepsilon_{2}<\lambda \Rightarrow A_{\xi, \varepsilon_{1}} \cap A_{\xi, \varepsilon_{2}}=\emptyset$, and also: if $n<\omega, \xi_{1}<\ldots<\xi_{n}<\mu \times \kappa$ and $\varepsilon_{1}, \ldots, \varepsilon_{n}<\lambda$ then $\bigcap_{\ell=1}^{n} A_{\xi_{\ell}, \varepsilon_{\ell}} \neq \emptyset \bmod D_{\lambda}^{*}$. Let D_{0} be a maximal filter on λ extending D_{λ}^{*} and still satisfying $\bigcap_{\ell=1}^{n} A_{\xi_{\ell}, \varepsilon_{\ell}} \neq \emptyset \bmod D_{0}$ for $n, \xi_{\ell}, \varepsilon_{\ell}(\ell<n)$ as above.

Now the proof proceeds as before. All is the same except in stage H where we use λ regular, D_{0} contains all clubs of λ.

The point is that we define A_{ε}^{\prime} as before, the main question is: why $A_{\varepsilon}^{\prime}=A_{\varepsilon} \bmod$ $D_{\bar{\lambda}}^{*}$.
Choose $j^{*}<\operatorname{cf}(\lambda)$ such that:

$$
\varepsilon<\lambda_{j^{*}}
$$

So it is enough to show
(*) if $j^{*} \leq j<\operatorname{cf}(\lambda)$ then

$$
A_{\varepsilon}^{\prime} \cap\left[\lambda_{j}, \lambda_{j}^{+}\right)=A_{\varepsilon} \cap\left[\lambda_{j}, \lambda_{j}^{+}\right) \bmod D_{\lambda_{j}^{+}}
$$

(where $D_{\lambda_{j}^{+-}}$the club filter on λ_{j}^{+}).
Looking at the definition of $A_{\zeta, \varepsilon}^{\prime}$,

$$
\begin{aligned}
A_{\zeta, \varepsilon}^{\prime} \cap\left[\lambda_{j}, \lambda_{j}^{+}\right)=\left\{i \in\left[\lambda_{j}, \lambda_{j}^{+}\right):\right. & i \in A_{\zeta, \varepsilon} \cap\left[\lambda_{j}, \lambda_{j}^{+}\right) \\
& \text {and } \eta_{i_{1}}^{\rho[\zeta, \varepsilon]} \notin\left\{\eta_{i_{1}}^{\rho\left[\zeta, \varepsilon_{1}\right]}: \varepsilon_{1}<i\right. \text { and } \\
& \left.\left.i_{1}<i\right\} \text { and } \eta_{i}^{\rho[\varepsilon]} \neq \nu_{1, \zeta}\right\}
\end{aligned}
$$

as $\left\langle\eta_{i}^{\rho_{i}^{[\zeta, \varepsilon]}}: \lambda_{j} \leq i<\lambda_{j}^{+}\right\rangle$is with no repetition and Fodor's theorem holds (can formulate the demand on D). Just check that the use of $A_{\zeta, \varepsilon}^{\prime}$ in $\S 1$ still works.
2.2 Conclusion: If $\lambda \geq \aleph_{0}, \kappa=\operatorname{Min}\left\{\kappa: 2^{\kappa}>2^{\lambda}\right\}$, then there is a T_{3}-space $\lambda,|X|=$ 2^{κ} with no closed subspace of cardinality $\in\left[\lambda, 2^{\kappa}\right)$.

We still would like to replace 2^{κ} by $2^{2^{\lambda}}$.
2.3 Theorem. For $\lambda \geq \aleph_{0}$ there is a T_{3} space X with clopen basis such that: no closed subspace has cardinality in $\left[\lambda, 2^{2^{\lambda}}\right]$.

Proof. For $\lambda=\aleph_{0}$ it is known so let $\lambda>\aleph_{0}$. Like the proof of 1.1 with $\kappa=2^{\mu}$. The only problem is that $T_{\delta}={ }^{\delta} \mu$ may have cardinality $>2^{\mu}$ so we have to redefine a δ-candidate (as there are too many $\eta_{i} \upharpoonright \gamma$ to code) and in the crucial Stages G and H we have the list $\left\{\left(\nu_{1, \varepsilon}^{\delta}, \nu_{2, \varepsilon}^{\delta}\right): \varepsilon<\left|T_{\delta}\right|\right\}$ but possibly $\left|T_{\delta}\right|>2^{\mu}$. Still $\left|T_{\delta}\right| \leq \mu^{|\delta|} \leq 2^{\mu}$; so instead dedicating one $\zeta \in\left[\zeta_{<\delta}, \zeta_{\delta}\right)$ to deal with any such pair we just do it for each "kind" of pairs such that the number of kinds is $\leq \mu$, (but we can deal with all of them at once).

Stage B^{\prime} :
Let $C d: \mu \rightarrow \mathscr{H}_{<\lambda^{+}}(\mu)$ be such that for every $x \in \mathscr{H}_{<\lambda^{+}}(\mu)$ for μ ordinals $\alpha<\mu$ we have $C d(\alpha)=x$.

Stage C^{\prime} :
For limit $\delta \leq \kappa$ we call $\bar{\eta}$ a δ-candidate if:
(a) $\bar{\eta}=\left\langle\eta_{i}: i \leq \lambda\right\rangle$
(b) $\eta_{i} \in T_{\delta}$
(c) for some $\gamma,\left\langle\eta_{i} \upharpoonright \gamma: i<\lambda\right\rangle$ is with no repetition
(d) for odd $\beta<\delta$ we have $C d\left(\eta_{\lambda}(\beta)\right)=\left\langle\left(\eta_{i}(\beta-1), \eta_{i}(\beta)\right): i<\lambda\right\rangle$
(e) $C d\left(\eta_{\lambda}(0)\right)=\left\{\left(i, j, \gamma, \eta_{i}(\gamma), \eta_{j}(\gamma)\right): i<j<\lambda\right.$ and for some $i_{1}<j_{1}<$ λ, γ minimal such that $\left.\eta_{i_{1}}(\gamma) \neq \eta_{j_{1}}(\gamma)\right\}$
(f) $\eta_{\lambda}(0)>\sup \left\{\eta_{i}(0): i<\lambda\right\}$.

So
$(*)_{1}$ if $\left\langle\eta_{i}: i \leq \lambda\right\rangle$ is a δ_{1}-candidate, $\delta_{0}<\delta_{1}$ limit and $\left(\exists \gamma<\delta_{0}\right)\left(\left\langle\eta_{i} \upharpoonright \gamma: i \leq \lambda\right\rangle\right.$ with no repetitions then $\left\langle\eta_{i} \upharpoonright \delta_{0}: i \leq \lambda\right\rangle$ is a δ_{0}-candidate
$(*)_{2}$ if $\eta_{i} \in T_{\kappa}$ for $i<\kappa$ are pairwise distinct then for 2^{μ} sequences $\eta_{\lambda} \in T_{\kappa}$ we have $\left\langle\eta_{i}: i \leq \lambda\right\rangle$ is a κ-candidate.

Stage H':

For each $\varepsilon<\left|T_{\delta}\right|$ we can choose $v_{\delta, \varepsilon}=\cup\left\{v_{\delta, \varepsilon, n}: n<\omega\right\}$ where we define $v_{\delta, \varepsilon, n}$ by induction on n as follows:
$v_{\delta, \varepsilon, 0}=\left\{\nu_{1, \varepsilon}^{\delta}, \nu_{2, \varepsilon}^{\delta}\right\}, v_{\delta, \varepsilon, n+1}=v_{\delta, \varepsilon, n} \cup\left\{\eta_{i}^{\rho}: \rho \in v_{\delta, \varepsilon, n}\right.$ and $\bar{\eta}^{\rho}$ is a δ-candidate such that $\left.\eta_{\lambda}^{\rho}=\rho\right\}$. We choose $u_{\varepsilon}=u_{\delta, \varepsilon} \in[\delta] \leq \lambda$ such that: if $\bar{\eta}$ is a δ-candidate satisfying $\eta_{\lambda} \in v_{\delta, \varepsilon}\left(\right.$ so $\eta_{i} \in v_{\delta, \varepsilon}$ for $i<\lambda$) then $0 \in u_{\varepsilon} \& i<j<\lambda \Rightarrow \operatorname{Min}\left\{\gamma: \eta_{i}(\gamma) \neq\right.$ $\left.\left.\eta_{j} \gamma\right)\right\} \in u_{\varepsilon}$.

As $\left|T_{\delta}\right| \leq 2^{\mu}$ and $\mu^{\lambda}=\mu$ by Engelking Karlowic [EK] there are functions H_{Υ}^{δ} : $T_{\delta} \rightarrow \mathscr{H}_{<\lambda+}(\mu)$ for $\Upsilon \in\left[\zeta_{<\delta}, \zeta_{\delta}\right)$ such that for every $w \in\left[T_{\delta}\right]^{\lambda}$ and $h: w \rightarrow$ $\mathscr{H}_{<\lambda+}(\mu)$ there is $\Upsilon \in\left[\zeta_{<\delta}, \zeta_{\delta}\right)$ such that $h \subseteq H^{\delta}$.
As $\mu=\mu^{\lambda}=\left|\mathscr{H}_{<\lambda^{+}}(\mu)\right|$, without loss of generality $\left|\operatorname{Rang}\left(H_{\Upsilon}^{\delta}\right)\right| \leq \lambda$ (divide H_{Υ}^{δ} to $\leq 2^{\lambda}=\mu$ functions).
For each $\varepsilon<\left|T_{\delta}\right|$ let $h_{\delta}^{\varepsilon}: v_{\delta, \varepsilon} \rightarrow \mathscr{H}_{<\lambda+}(\mu)$ be $h_{\delta}^{\varepsilon}(\eta)=\left(h_{\delta}^{\varepsilon, 0}(\eta), h_{\delta}^{\varepsilon, 1}(\eta), h_{\delta}^{\varepsilon, 2}(\eta)\right)$ where

$$
\begin{gathered}
h_{\delta}^{\varepsilon, 0}(\eta)=\operatorname{otp}\left(\left\{\nu \in w_{\delta}^{\varepsilon}: \nu<_{\delta}^{*} \eta\right\},<_{\delta}^{*}\right) \\
h_{\delta}^{\varepsilon, 1}(\eta)=\left\{\langle\gamma, \eta(\gamma)\rangle: \gamma \in u_{\delta, \varepsilon}\right\} \\
h_{\delta}^{\varepsilon, 2}(\eta)=\text { truth value of } \eta \in v_{\delta, \varepsilon, 0}
\end{gathered}
$$

(the function h_{δ}^{ε} belongs to $\mathscr{H}_{<\lambda+}(\mu)$ as $\left|v_{\delta, \varepsilon}\right| \leq \lambda$); let

$$
\Upsilon_{\varepsilon}=\operatorname{Min}\left\{\Upsilon \in\left[\zeta_{<\delta}, \zeta_{\delta}\right): h_{\delta}^{\varepsilon} \subseteq H_{\Upsilon}^{\delta}\right\}
$$

(well defined). Let $\gamma_{\Upsilon}^{\delta}=: \sup \left\{\gamma<\lambda^{+}: \gamma\right.$ is the first cardinal in some sequence $\bar{\lambda}$ from $\left(\operatorname{Rang}\left(H_{\Upsilon}^{\delta}\right)\right\}$, let g_{Υ}^{δ} be a one-to-one function from $\gamma_{\Upsilon}^{\delta}$ into λ.
Next we can define the $D_{\bar{\eta}}^{\Upsilon}$ for $\bar{\eta}$ a δ-candidate; for $\Upsilon<\mu$:

$$
D_{\bar{\eta}}^{\Upsilon+1}=D_{\bar{\eta}}^{\Upsilon}+A_{\Upsilon, \gamma_{\Upsilon}^{\delta}} .
$$

In Stage $\Upsilon \in\left[\zeta_{<\delta}, \zeta_{\delta}\right)$ we deal with all $\varepsilon<\left|T_{\delta}\right|$ such that $\Upsilon_{\varepsilon}=\Upsilon$. Now we treat the choice of $I_{\delta, \zeta}, J_{\delta, \zeta}, w_{\delta, \zeta}$. We can finish as before (but dealing with many cases at once).

REFERENCES.

[EK] Ryszard Engelking and Monika Karłowicz. Some theorems of set theory and their topological consequences. Fundamenta Math., 57:275-285, 1965.
[Ju93] Istvan Juhász. On the weight spectrum of a compact spaces. Israel Journal of Mathematics, 81:369-379, 1993.
[JuSh 612] István Juhász and Saharon Shelah. On the cardinality and weight spectra of compact spaces, II. Fundamenta Mathematicae, 155:91-94, 1998.
[M] J. Donald Monk. Cardinal functions of Boolean algebras. circulated notes.
[Sh 652] Saharon Shelah. More constructions for Boolean algebras. Archive for Mathematical Logic, 41:401-441, 2002.

