DENSITY IS AT MOST THE

SPREAD OF THE SQUARE E56

Saharon Shelah
The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel
Department of Mathematics Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA

[^0]1.1 Claim. Assume \mathbb{B} is an infinite Boolean Algebra and $\lambda=d(\mathbb{B})$. Then $\mathfrak{s}(\mathbb{B} * \mathbb{B})$, i.e. $\mathfrak{s}(\operatorname{uf}(\mathbb{B}) \times \operatorname{uf}(\mathbb{B})) \geq \lambda$ (if λ limit-obtained).

Remark. 1) $u(\mathbb{B})$ is the space of ultrafilters of \mathbb{B} a compact space with clopen base. 2) $\mathfrak{s}(X)$ is $\sup \{|Y|: Y \subseteq X$ is discrete Y, same as $\operatorname{des}(X)\}$.
3) We meant to consider whether this works for compact Hausdorff spaces. But subsequently and independently Szentmiklössy prove this.

Proof. Without loss of generality $\lambda>\aleph_{0}$. We choose $\left(p_{i}^{0}, p_{i}^{1}, a_{i}\right)$ by induction on $i<\lambda$ such that
$\otimes(a) \quad p_{i}^{\ell}$ is an ultrafilter of \mathbb{B} for $\ell=0,1$
(b) $a_{i} \in p_{i}^{1}, a_{i} \notin p_{i}^{0}$, i.e. $\left(-a_{i}\right) \in p_{i}^{1}$
(c) if $j<i$ then $a_{j} \in p_{i}^{0} \Leftrightarrow a_{j} \in p_{i}^{1}$
(d) if $j<i$ then $a_{i} \notin p_{j}^{0}, a_{i} \notin p_{j}^{1}$.

So assume we have arrived to i. Let \mathbb{B}_{i} be the subalgebra of \mathbb{B} generated by $\left\{a_{j}: j<i\right\}$.

For every non-zero $b \in \mathbb{B}_{i}$ choose an ultrafilter q_{b}^{i} of \mathbb{B} and for simplicity $b=$ $a_{j} \Rightarrow q_{b}^{i}=p_{j}^{1}$ and $b=\left(-a_{j}\right) \Rightarrow q_{0}^{i}=p_{j}^{0}$ for $j<i$.

As $d(\mathbb{B}) \geq \lambda$ clearly $\left\{q_{b}^{i}: b \in \mathbb{B}_{i} \backslash\{0\}\right\}$ is not dense hence there is a non-zero $a_{i} \in \mathbb{B}$ such that $b \in \mathbb{B}_{i} \backslash\{0\} \Rightarrow a_{i} \notin q_{b}^{i}$ (i.e. a non-empty clopen set to which none of the points q_{p}^{i} belongs).

Now clearly $b \in \mathbb{B}_{i} \backslash\{0\} \Rightarrow a_{i} \neq b$ (as $b \in q_{p}^{i}$) hence $a_{i} \notin \mathbb{B}_{i}$. This implies that there is an ultrafilter q_{i}^{*} of \mathbb{B}_{i} such that
$\circledast b \in q \Rightarrow a_{i} \cap b>0 \wedge\left(-a_{i}\right) \cap b>0$.
[Why? As $\left\{b_{0} \cup b_{1}: b_{0}, b_{1} \in \mathbb{B}_{2}\right.$ and $b-1 \cap a_{i}=0_{\mathbb{B}}$ and $\left.b_{a}-a_{i}=0\right\}$ is a proper ideal of \mathbb{B}_{i} hence can be extended to an ultrafilter of \mathbb{B}_{i}.]

So there are ultrafilters p_{i}^{0}, p_{i}^{1} of \mathbb{B} such that

$$
\circledast q_{i}^{*} \cup\left\{a_{i}\right\} \subseteq p_{i}^{1} \text { and } q_{i}^{*} \cup\left\{-a_{i}\right\} \subseteq p_{i}^{0} .
$$

This is enough for the induction step.
Having carried the induction
(a) $p_{i}:=\left(p_{i}^{0}, p_{i}^{1}\right) \in \operatorname{uf}(\mathbb{B}) \times \operatorname{uf}(\mathbb{B})$
(b) $\left(-a_{i}\right) \times a_{i}$ is an open subset of $\operatorname{uf}(\mathbb{B}) \times \operatorname{uf}(\mathbb{B})$.

Lastly,
(c) if $i<j<\lambda$ then $p_{j} \notin\left(-a_{i}\right) \times a_{i}$ because $\left(-a_{i}\right) \notin p_{j}^{0}$ or $a_{i} \notin p_{j}^{1}$ as $a_{i} \in \mathbb{B}_{j}$ and $p_{j}^{0} \cap B_{j}=p_{j}^{1} \cap \mathbb{B}_{j}$ by the choice of p_{j}^{0}, p_{0}^{1}
(d) if $i<j<\lambda$ then $p_{i} \notin\left(-a_{j}\right) \times a_{j}$ because $p_{i}^{1} \notin a_{j}$ by the choice of a_{j}.

So $\left.\left\langle\left(p_{i},\left(-a_{i}\right) \times a_{i}\right): i<\lambda\right)\right\rangle$ exemplify $\operatorname{dis}(\operatorname{uf}(\mathbb{B}) \times \operatorname{uf}(\mathbb{B})) \geq \lambda$ as required.

[^0]: I would like to thank Alice Leonhardt for the beautiful typing.
 First Typed - 07/July/3

