ON LONG EF-EQUIVALENCE IN NON-ISOMORPHIC MODELS

SAHARON SHELAH

Abstract. There has been a great deal of interest in constructing models which are non-isomorphic, of cardinality λ , but are equivalent under the Ehrefeuch-Fraissé game of length α , even for every $\alpha < \lambda$. So under G.C.H. particularly for λ regular we know a lot. We deal here with constructions of such pairs of models proven in ZFC, and get their existence under mild conditions.

§1. Introduction. There has been much work on constructing pairs of $EF_{\alpha,\mu}$ -equivalent non-isomorphic models of the same cardinality.

In the summer of 2003, Väänänen asked me whether we can provably in ZFC construct a pair of non-isomorphic models of cardinality \aleph_1 which are EF_{α} -equivalent even for α like ω^2 . We try to shed light on the problem for general cardinals. We construct such models for $\lambda = cf(\lambda) = \lambda^{\aleph_0}$ for every $\alpha < \lambda$ simultaneously and then for singular $\lambda = \lambda^{\aleph_0}$. In subsequent work Havlin and Shelah [HvSh:866] we shall investigate further: weaken the assumption " $\lambda = \lambda^{\aleph_0}$ " (e.g., $\lambda = cf(\lambda) > \beth_{\omega}$) and generalize the results for trees with no λ -branches and investigate the case of models of a first order complete T (mainly strongly dependent). We thank Chanoch Havlin and the referee for detecting some inaccuracies.

DEFINITION 1.1.

- (1) We say that M_1 , M_2 are EF_{α} -equivalent if M_1 , M_2 are models (with same vocabulary) such that the isomorphism player has a winning strategy in the game $\partial_1^{\alpha}(M_1, M_2)$ defined below.
- (1A) Replacing α by $< \alpha$ means: for every $\beta < \alpha$; similarly below.
 - (2) We say that M_1 , M_2 are $\text{EF}_{\alpha,\mu}$ -equivalent when M_2 , M_2 are models with the same vocabulary such that the isomorphism player has a winning strategy in the game $\partial_{\mu}^{\alpha}(M_1, M_2)$ defined below.
 - (3) For M_1 , M_2 , α , μ as above and partial isomorphism f from M_1 into M_2 we define the game $\partial_{\mu}^{\alpha}(f, M_1, M_2)$ between the player ISO and AIS as follows:

The author would like to thank the Israel Science Foundation for partial support of this research (Grant no. 242/03). Publication 836.

315

(a) the play lasts α moves

316

- (b) after β moves a partial isomorphism f_{β} from M_1 into M_2 is chosen increasing continuous with β
- (c) in the $\beta + 1$ -th move, the player AIS chooses $A_{\beta,1} \subseteq M_1$, $A_{\beta,2} \subseteq M_2$ such that $|A_{\beta,1}| + |A_{\beta,2}| < 1 + \mu$ and then the player ISO chooses $f_{\beta+1} \supseteq f_{\beta}$ such that

$$A_{\beta,1} \subseteq \text{Dom}(f_{\beta+1}) \text{ and } A_{\beta,2} \subseteq \text{Rang}(f_{\beta+1})$$

(d) if $\beta = 0$, ISO chooses $f_0 = f$; if β is a limit ordinal ISO chooses $f_{\beta} = \cup \{f_{\gamma} : \gamma < \beta\}.$

The ISO player loses if he had no legal move.

(4) If $f = \emptyset$ we may write $\partial_{\mu}^{\alpha}(M_1, M_2)$. If μ is 1 we may omit it. We may write $\leq \mu$ instead of μ^+ . The player ISO may be restricted to choose $f_{\beta+1}$ such that $(\forall a)(a \in \text{Dom}(f_{\beta+1}) \land a \notin \text{Dom}(f_{\beta}) \rightarrow a \in$ $A_{\beta,1} \vee f_{\beta+1}(a) \in A_{\beta,2}$.

§2. The case of regular $\lambda = \lambda^{\aleph_0}$.

DEFINITION 2.1.

- (1) We say that \mathfrak{x} is a λ -parameter if \mathfrak{x} consists of
 - (a) a cardinal λ and ordinal $\alpha^* \leq \lambda$
 - (b) a set I, and a set $S \subseteq I \times I$ (where we shall have compatibility demand)
 - (c) a function $\mathbf{u}: I \to \mathcal{P}(\lambda)$; we let $\mathbf{u}_s = \mathbf{u}(s)$ for $s \in I$
 - (d) a set J and a function $s: J \to I$, we let $s_t = s(t)$ for $t \in J$ and for $s \in I$ we let $J_s = \{t \in J : \mathbf{s}_t = s\}$
 - (e) a set $T \subseteq J \times J$ such that $(t_1, t_2) \in T \Rightarrow (\mathbf{s}_{t_1}, \mathbf{s}_{t_2}) \in S$.
- (1A) We say r is a full λ -parameter <u>if</u> in addition it consists of:
 - (f) a function g with domain J such that $\mathbf{g}_t = \mathbf{g}(t)$ is a non-decreasing function from $\mathbf{u}_{\mathbf{s}(t)}$ to some $\alpha < \alpha^*$
 - (g) a function **h** with domain J such that $\mathbf{h}_t = \mathbf{h}(t)$ is a non-decreasing function from $\mathbf{u}_{\mathbf{s}(t)}$ to λ such that
 - (h) if $t_1, t_2 \in J$ and $\mathbf{s}_{t_1} = s = \mathbf{s}_{t_2}$, $\mathbf{g}_{t_1} = g = \mathbf{g}_{t_2}$ and $\mathbf{h}_{t_1} = h = \mathbf{h}_{t_2}$, $\alpha^{t_1} = \alpha = \alpha^{t_2}$ then $t_1 = t_2$ hence we write $t = t_{s,g,h}^{\alpha} = t^{\alpha}(s,g,h)$.
 - (2) We may write $\alpha^* = \alpha_{\mathfrak{r}}^*$, $\lambda = \lambda_{\mathfrak{r}}$, $I = I_{\mathfrak{r}}$, $J = J_{\mathfrak{r}}$, $J_s = J_s^{\mathfrak{r}}$, $t^{\alpha}(s,g,h) =$ $t^{\alpha,\mathfrak{x}}(s,g,h)$, etc. Many times we omit \mathfrak{x} when clear from the context.

Definition 2.2. Let \mathfrak{x} be a λ -parameter.

- (1) For $s \in I_{\mathfrak{p}}$, let $\mathbb{G}^{\mathfrak{p}}_{s}$ be the group generated freely by $\{x_{t}: t \in J_{s}\}$. (2) For $(s_{1}, s_{2}) \in S_{\mathfrak{p}}$ let $\mathbb{G}_{s_{1}, s_{2}} = G^{\mathfrak{p}}_{s_{1}, s_{2}}$ by the subgroup of $\mathbb{G}^{\mathfrak{p}}_{s_{1}} \times \mathbb{G}^{\mathfrak{p}}_{s_{2}}$

¹We also could use abelian groups satisfying $\forall x(x+x=0)$, in this case \mathbb{G}_s is the family of finite subsets of J_2 with the symmetric difference operation also we could use the free abelian group.

generated by

$$\{(x_{t_1}, x_{t_2}) : (t_1, t_2) \in T_{\mathfrak{x}} \text{ and } t_1 \in J_{s_1}^{\mathfrak{x}}, \ t_2 \in J_{s_2}^{\mathfrak{x}}\}.$$

(3) We say \mathfrak{x} is (λ, θ) -parameter if $s \in I_{\mathfrak{x}} \Rightarrow |\mathbf{u}_s| < \theta$.

REMARK 2.3. (1) We may use S a set of n-tuples from I (or $(<\omega)$ -tuples) then we have to change Definitions 2.2(2) accordingly.

Definition 2.4. For a λ -parameter \mathfrak{x} we define a model $M=M_{\mathfrak{x}}$ as follows (where below $I=I_{\mathfrak{x}}$, etc.).

- (A) its vocabulary τ consist of
 - (α) P_s , a unary predicate, for $s \in I_r$
 - (β) Q_{s_1,s_2} , a binary predicate for $(s_1, s_2) \in S_{\mathfrak{x}}$
 - (γ) $F_{s,a}$, a unary function for $s \in I_{\mathfrak{x}}$, $a \in \mathbb{G}_{s}^{\mathfrak{x}}$
- (B) the universe of M is $\{(s, x) : s \in I_{\mathfrak{p}}, x \in \mathbb{G}_{s}^{\mathfrak{p}}\}$
- (C) for $s \in I_{\mathfrak{p}}$ let $P_s^M = \{(s, x) : x \in \mathbb{G}_s^{\mathfrak{p}}\}$
- (D) $Q_{s_1,s_2}^M = \{((s_1,x_1),(s_2,x_2)): (x_1,x_2) \in \mathbb{G}_{s_1,s_2}^{\mathfrak{x}})\}$ for $(s_1,s_2) \in S_{\mathfrak{x}}$
- (E) if $s \in I_r$ and $a \in \mathbb{G}_s^r$ then $F_{s,a}^M$ is the unary function from P_s^M to P_s^M defined by $F_{s,a}^M(y) = ay$, multiplication in \mathbb{G}_s^r (for $y \in M \setminus P_s^M$ we can let $F_{s,a}^M(y)$ be y or undefined).

DEFINITION 2.5.

- (1) For \mathfrak{x} a λ -parameter and for $I' \subseteq I_{\mathfrak{x}}$ let $M_{I'}^{\mathfrak{x}} = M_{\mathfrak{x}} \upharpoonright \cup \{P_s^{M_{\mathfrak{x}}} : s \in I'\}$ and let $I_{\gamma} = I_{\gamma}^{\mathfrak{x}} = \{s \in I_{\mathfrak{x}} : \sup(\mathbf{u}_s) < \gamma\}$.
- (2) Assume \mathfrak{x} is a full λ -parameter and $\beta < \lambda$; for $\alpha < \alpha_{\mathfrak{x}}^*$ we let $\mathcal{G}_{\alpha,\beta}^{\mathfrak{x}}$ be the set of $g: \beta \to \alpha$ which are non-decreasing; then for $g \in \mathcal{G}_{\alpha,\beta}^{\mathfrak{x}}$
 - (a) we define $h = h_g : \beta \to \lambda$ as follows: $h(\gamma) = \text{Min}\{\beta' \le \beta : \text{if } \beta' < \beta \text{ then } g(\beta') > g(\gamma)\}$
 - (b) we let $I_g = I_g^{\mathfrak{p}} = \{ s \in I : \mathbf{u}_s \subseteq \beta \text{ and } t_{s,g \upharpoonright \mathbf{u}_s,h_g \upharpoonright \mathbf{u}_s}^{\alpha} \text{ is well defined} \}$
 - (c) we define $\bar{c}_g^{\alpha} = \langle c_{g,s}^{\alpha} : s \in I_g^{\mathfrak{r}} \rangle$ by $c_{g,s}^{\alpha} = x_{l_g,s}^{\alpha}$ where $t_{g,s}^{\alpha} = t_{s,g \mid \mathbf{u}_s,h_g \mid \mathbf{u}_s}^{\alpha,\mathfrak{r}}$.
- (3) Let $\mathcal{G}^{\mathfrak{r}}_{\alpha} = \bigcup \{\mathcal{G}^{\mathfrak{r}}_{\alpha,\beta} : \beta < \lambda\}$ and $\mathcal{G}_{\mathfrak{r}} = \bigcup \{\mathcal{G}^{\mathfrak{r}}_{\alpha} : \alpha < \alpha^*\}$.

Definition 2.6. Let \mathfrak{x} be a λ -parameter.

- (1) Let $\mathbf{C}_{\mathfrak{x}} = \bigcup \{ \mathbf{C}_{I'}^{\mathfrak{x}} : I' \subseteq I_{\mathfrak{x}} \}$ where for $I' \subseteq I_{\mathfrak{x}}$ we let $\mathbf{C}_{I'}^{\mathfrak{x}} = \{ \bar{c} : \bar{c} = \langle c_s : s \in I' \rangle \text{ satisfies } c_s \in \mathbb{G}_s^{\mathfrak{x}} \text{ when } s \in I' \text{ and } (c_{s_1}, c_{s_2}) \in \mathbb{G}_{s_1, s_2} \text{ when } (s_1, s_2) \in S_{\mathfrak{x}} \text{ and } s_1, s_2 \in I' \}.$
- (2) For $\bar{c} \in \mathbf{C}_{I'}^{\mathfrak{x}}$, $I' \subseteq I_{\mathfrak{x}}$, let $f_{\bar{c}}^{\mathfrak{x}}$ be the partial function from $M_{\mathfrak{x}}$ into itself defined by $f_{\bar{c}}^{\mathfrak{x}}((s,y)) = (s,yc_s)$ for $(s,y) \in P_s^{M_{\mathfrak{x}}}$, $s \in I'$.
- (3) $M_{\mathfrak{x}}$ is P_s -rigid when for every automorphism f of $M_{\mathfrak{x}}$, $f \upharpoonright P_s^{M_{\mathfrak{x}}}$ is the identity.

Observation 2.7. (1) Let $\mathfrak x$ be a full λ -parameter. If $g:\gamma_2\to\alpha$ where $\alpha<\alpha_{\mathfrak x}^*,\ \gamma_2<\lambda$ and the function g is non-decreasing, $\gamma_1<\gamma_2$ and $(\forall\gamma<\gamma_1)$ $(g(\gamma)< g(\gamma_1))$ then $I_{g\upharpoonright\gamma_1}\subseteq I_g$ and $h_{g\upharpoonright\gamma_1}\subseteq h_g$ and $\bar c_{g\upharpoonright\gamma_1}^\alpha=\bar c_g^\alpha\upharpoonright I_{g\upharpoonright\gamma_1}$.

(2) If $g \in \mathcal{G}_{\mathfrak{x}}^{\alpha}$ in Definition 2.5(3), then $\bar{c}_{g}^{\alpha} \in \mathbf{C}_{L^{\mathfrak{x}}}^{\mathfrak{x}}$.

CLAIM 2.8. Assume \mathfrak{x} is a full λ -parameter.

318

- (1) For $I' \subseteq I_{\mathfrak{r}}$ and $\bar{c} \in \mathbf{C}_{I'}^{\mathfrak{r}}$, $f_{\bar{c}}^{\mathfrak{r}}$ is an automorphism of $M_{I'}^{\mathfrak{r}}$ which is the identity iff $s \in I' \Rightarrow c_s = e_{\mathbb{G}_s}$.
- (2) In (1) for $s \in I'$, $f_{\bar{c}}^{\mathfrak{r}} \upharpoonright P_{s}^{M_{\mathfrak{r}}}$ is not the identity iff $c_{s} \neq e_{\mathbb{G}_{s}}$.
- (3) If f is an automorphism of $M_{I_2}^{\mathfrak{r}}$ then $f \upharpoonright M_{I_1}^{\mathfrak{r}}$ is an automorphism of $M_{I_1}^{\mathfrak{r}}$ for every $I_1 \subseteq I_2 \subseteq I_{\mathfrak{r}}$.
- (4) If $I' \subseteq I_{\mathfrak{p}}$ and f is an automorphism of $M_{I'}^{\mathfrak{p}}$, then $f = f_{\bar{c}}^{\mathfrak{p}}$ for some $\langle c_s : s \in I_{\mathfrak{p}} \rangle \in \mathbf{C}_{I'}$.
- (5) If $\bar{c}_{\ell} \in \mathbf{C}^{\mathfrak{r}}_{I_{\ell}}$ for $\ell = 1, 2$ and $I_{1} \subseteq I_{2}$ and $\bar{c}_{1} = \bar{c}_{2} \upharpoonright I_{1}$ then $f_{\bar{c}_{1}} \subseteq f_{\bar{c}_{2}}$.
- (6) The cardinality of $M_{\rm r}$ is $|J_{\rm r}| + \aleph_0$.

PROOF. Straight, e.g. (4) For $s \in I'$ clearly $f((s, e_{\mathbb{G}_s})) \in P_s^{M_r}$ so it has the form $(s, c_s), c_s \in \mathbb{G}_s$ and let $\bar{c} = \langle c_s : s \in I' \rangle$. To check that $\bar{c} \in \mathbf{C}_{I'}^r$ assume $(s_1, s_2) \in S_{\mathfrak{x}}$; and we have to check that $(c_{s_1}, c_{s_2}) \in \mathbb{G}_{s_1, s_2}$. This holds as $((s_1, e_{\mathbb{G}_{s_1}}), (s_2, e_{\mathbb{G}_{s_2}})) \in Q_{s_1, s_2}^{M_r}$ by the choice of $Q_{s_1, s_2}^{M_r}$ hence we have $((s_1, c_{s_1}), (s_2, c_{s_2})) = (f(s_1, e_{\mathbb{G}_{s_1}}), f(s_2, e_{\mathbb{G}_{s_2}})) \in Q_{s_1, s_2}^{M_r}$ hence $(c_{s_1}, c_{s_2}) \in \mathbb{G}_{s_1, s_2}$.

CLAIM 2.9. Let \mathfrak{x} be a full λ -parameter $s \in I_{\mathfrak{x}}$ and $c_1, c_2 \in P_s^M$, $c^* \in \mathbb{G}_s$ and $F_{s,c^*}^{M_{\mathfrak{x}}}(c_1) = c_2$. A sufficient condition for " $(M_{\mathfrak{x}}, c_1)$, $(M_{\mathfrak{x}}, c_2)$ are $\mathrm{EF}_{\alpha,\mu}$ -equivalent" where $\alpha \leq \alpha_{\mathfrak{x}}^*$, is the existence of R, \bar{I} , \bar{c} such that:

- \circledast (a) R is a partial order,
 - (b) $\bar{I} = \langle I_r : r \in R \rangle$ such that $I_r \subseteq I_x$ and $r_2 \leq_R r_2 \Rightarrow I_{r_1} \subseteq I_{r_2}$
 - (c) R is the disjoint union of $\langle R_{\beta} : \beta < \alpha \rangle$, $R_0 \neq \emptyset$
 - (d) $\bar{c} = \langle \bar{c}^r : r \in R \rangle$ where $\bar{c}^r \in C_{I_r}$ and $r_1 \leq r_2 = \bar{c}^{r_1} = \bar{c}^{r_2} \upharpoonright I_{r_1}$ and $c_s^r = c^*$ so $s \in \bigcap \{I_r : r \in R\}$
 - (e) if $\langle r_{\beta} : \beta < \beta^* \rangle$ is \leq_R -increasing, $\beta < \beta^* \Rightarrow r_{\beta} \in R_{\beta}$ and $\beta^* < \alpha$ then it has an \leq_R -ub from R_{β^*}
 - (f) if $r_1 \in R_{\beta}$, $\beta + 1 < \alpha$ and $I' \subseteq I$, $|I'| < \mu$ then $(\exists r_2)(r_1 \le r_2 \in R_{\beta+1} \land I' \subseteq I_{r_2})$.

PROOF. Easy. Using Claim 2.8(1), (5).

CLAIM 2.10.

- (1) Let \mathfrak{x} be a λ -parameter and $I' \subseteq I_{\mathfrak{x}}$. A necessary and sufficient condition for " $M_{I'}^{\mathfrak{x}}$ is P_s -rigid" is:
 - \circledast_1 there is no $\bar{c} \in \mathbf{C}_{I'}^{\mathfrak{x}}$ with $c_s \neq e_{\mathbb{G}_s}$.
- (2) Let \mathfrak{x} be a full λ -parameter and assume that $s(*) \in I_{\mathfrak{x}}$, $\alpha < \alpha_{\mathfrak{x}}^*$, $\alpha \geq \omega$ for notational simplicity and $t^* \in J_{s(*)}^{\mathfrak{x}}$. The models $M_1 = (M, (s, e_{\mathbb{G}_s}))$, $M_2 = (M, (s, x_{t^*}))$ are $\mathrm{EF}_{\alpha, \lambda}$ -equivalent when:
 - $\circledast_{2,\alpha}$ (i) λ is regular, $s \in I_{\mathfrak{p}} \Rightarrow |\mathbf{u}_{s}^{\mathfrak{p}}| < \lambda$
 - (ii) if $s \in I_{\mathfrak{p}}$ and $g \in \mathcal{G}_{\mathfrak{p}}$ and $\mathbf{u}_{s}^{\mathfrak{p}} \subseteq \mathrm{Dom}(g)$ then $t_{s,g \upharpoonright \mathbf{u}_{s},h_{g} \upharpoonright \mathbf{u}_{s}}^{\alpha,\mathfrak{p}}$ is well defined

- (iii) if $(s_1, s_2) \in S_{\mathfrak{p}}$ and $t_1 = t^{\alpha}_{s_1, g_1, h_1}$, $t_2 = t^{\alpha}_{s_2, g_2, h_2}$ are well defined then $(t_1, t_2) \in T_{\mathfrak{p}}$ when for some $g \in \mathcal{G}_{\mathfrak{p}}$ we have $g_{t_1} \cup g_{t_2} \subseteq g$ and $h_1 \cup h_2 \subseteq h_g$
- (iv) $t^* = t_{s(*),g,h_g}^{\alpha,r}$ where $g: \mathbf{u}_{s(*)} \to \{0\}$ and h_g is constantly $\gamma^* = \bigcup \{\gamma + 1 : \gamma \in \mathbf{u}_{s(*)}\}.$
- PROOF. (1) Toward contradiction assume that f is an automorphism of $M_{I'}^{\mathfrak{r}}$ such that $f \upharpoonright P_s^{M_{\mathfrak{r}}}$ is not the identity. By Claim 2.8(4) for some $\bar{c} \in \mathbf{C}_{I'}^{\mathfrak{r}}$ we have $f = f_{\bar{c}}$. So $f_{\bar{c}} \upharpoonright P_s^{M_{\mathfrak{r}}} = f \upharpoonright P_s^{M_{\mathfrak{r}}} \neq \operatorname{id}$ hence by Claim 2.8(1) we have $c_s \neq e_{\mathbb{G}_s}$, contradicting the assumption \circledast_1 .
- (2) We apply Claim 2.9. For every $i < \alpha$ and non-decreasing function $g \in \mathcal{G}^{\mathfrak{r}}_{\alpha}$ from some ordinal $\gamma = \gamma_g$ into i we define $\bar{c}^{\alpha}_g = \langle c^{\alpha}_{g,s} : s \in I_{g_p} \rangle$, $c^{\alpha}_{g,s} = (s, x_{t^{\alpha}_{g,s}})$, $t^{\alpha}_{g,s} = t^{\alpha}_{s,g \upharpoonright \mathbf{u}_s,h_g \upharpoonright \mathbf{u}_s}$. Let $R_i = \{g : g \text{ a non-decreasing function from some } \gamma < \lambda \text{ to } 1+i \text{ such that } \gamma^* \leq \gamma, g \upharpoonright \gamma^* \text{ is constantly zero,}$ $\gamma^* < \gamma \Rightarrow g(\gamma^*) = 1\}$ and let $R = \bigcup \{R_i : i < \alpha\}$ ordered by inclusion. Let $\bar{I} = \langle I_g : g \in R \rangle$ and $\bar{c} = \langle \bar{c}^{\alpha}_g : g \in R \rangle$. It is easy to check that (R, \bar{I}, \bar{c}) is as required.

CLAIM 2.11.

- (1) Assume $\alpha^* \leq \lambda = \operatorname{cf}(\lambda) = \lambda^{\aleph_0}$. Then for some full (λ, \aleph_1) -parameter $\mathfrak x$ we have $|I| = \lambda = |J|$, $\alpha_{\mathfrak x}^* = \alpha^*$ and condition \circledast_1 of Claim 2.10(1) holds and for every $s(*) \in I_{\mathfrak x} \setminus \{\emptyset\}$ condition $\circledast_{2,\alpha}$ of Claim 2.10(2) holds whenever $\alpha < \alpha^*$.
- (2) Moreover, if $s \in I_{\mathfrak{x}} \setminus \{\emptyset\}$ then for some $c_1 \neq c_2 \in P_s^{M_{\mathfrak{x}}}$ and (M, c_1) , (M, c_2) are $EF_{\alpha, \lambda}$ -equivalent for every $\alpha < \alpha_{\mathfrak{x}}^*$ but not $EF_{\alpha_{\mathfrak{x}}^*, \lambda}$ -equivalent.

Claim 2.11(1) clearly implies

Conclusion 2.12.

- (1) If $\lambda = \mathrm{cf}(\lambda) = \lambda^{\aleph_0}$, $\alpha^* \le \lambda$ then for some model M of cardinality λ we have:
 - (a) M has no non-trivial automorphism
 - (b) for every $\alpha < \lambda$ for some $c_1 \neq c_2 \in M$, the model (M, c_1) , (M, c_2) are EF_{α} -equivalent and even $EF_{\alpha,\lambda}$ -equivalent.
- (2) We can strengthen clause (b) to: for some $c_1 \neq c_2$ for every $\alpha < \lambda$ the models (M, c_1) , (M, c_2) are $EF_{\alpha, \lambda}$ -equivalent.

PROOF OF CLAIM 2.11. (1) Assume $\alpha_* > \omega$ for notational simplicity. We define \mathfrak{x} by $(\lambda_{\mathfrak{x}} = \lambda \text{ and})$:

- \boxtimes (a) (α) $I = \{u : u \in [\lambda]^{\leq \aleph_0}\}$
 - (β) the function **u** is the identity on I
 - $(\gamma) \ S = \{(u_1, u_2) : u_1 \subseteq u_2 \in I\}$
 - $(\delta) \ \alpha_{\mathtt{r}}^* = \alpha^*$

320

- (b) (a) J is the set of quadruple (u, α, g, h) satisfying
 - (i) $u \in I, \alpha < \alpha^*$
 - (ii) h is a non-decreasing function from u to λ
 - (iii) g is a non-decreasing function from u to α
 - (iv) if $\beta_1, \beta_2 \in u$ and $g(\beta_1) = g(\beta_2)$ then $h(\beta_1) = h(\beta_2)$
 - (v) $h(\beta) > \beta$
 - (β) let $t = (u^t, α^t, g^t, h^t)$ for $t \in J$ so naturally $\mathbf{s}_t = u$,

 $\mathbf{g}_t = \mathbf{g}^t, \, \mathbf{h}_t = h^t$

 (γ) $T = \{(t_1, t_2) \in J \times J : \alpha^{t_1} = \alpha^{t_2}, u^{t_1} \subseteq u^{t_2}, h^{t_1} \subseteq h^{t_2} \text{ and } g^{t_1} \subseteq g^{t_2}\}.$

Now

 $(*)_0$ r is a full (λ, \aleph_1) -parameter

[Why? Just read Definitions 2.1 and 2.2(3).]

 $(*)_1$ for any $s(*) \in I \setminus \{\emptyset\}$, $\mathfrak x$ satisfies the demands for $\mathfrak B_{2,\alpha}(i)$, (ii), (iii), (iv) from Claim 2.10(2) for every $\alpha < \alpha^*$

[Why? Just check.]

 $(*)_2$ if $u_1 \subseteq u_2 \in I$, we define the function $\pi_{u_1,u_2} : J_{u_2} \to J_{u_1}$ by $\pi_{u_1,u_2}(t) = (u_1, \alpha^t, g^t \upharpoonright u_1, h^t \upharpoonright u_1)$ for $t \in J_{u_2}$,

[Why is π_{u_1,u_2} a function from J_{u_2} into J_{u_1} ? Just check.]

- $(*)_3$ for $u_1 \subseteq u_2$ we have
 - (α) $T \cap (J_{u_1} \times J_{u_2}) = \{(\pi_{u_1,u_2}(t_2), t_2) : t_2 \in J_{u_2}\}$ hence
 - (β) $\mathbb{G}_{u_1,u_2} = \{(\hat{\pi}_{u_1,u_2}(c_2), c_2) : c_2 \in \mathbb{G}_{u_2}\}$ where $\hat{\pi}_{u_1,u_2} \in \operatorname{Hom}(\mathbb{G}^{\mathfrak{r}}_{u_2}, \mathbb{G}^{\mathfrak{r}}_{u_1})$ is the unique homomorphism from $\mathbb{G}^{\mathfrak{r}}_{u_2}$ into $\mathbb{G}^{\mathfrak{r}}_{u_1}$ mapping x_{t_2} to x_{t_1} whenever $\pi_{u_1,u_2}(t_2) = t_1$ [Why? Check.]
- (*)₄ if $u_1 \cup u_2 \subseteq u_3 \in I$, $t_3 \in J_{u_3}$ and $t_\ell = \pi_{u_\ell,u_3}(t_3)$ for $\ell = 1, 2$ then \mathbf{g}_{t_1} , \mathbf{g}_{t_2} are compatible functions as well as \mathbf{h}_{t_1} , \mathbf{h}_{t_2} and $\alpha^{t_1} = \alpha^{t_2}$ moreover $\mathbf{g}_{t_1} \cup \mathbf{g}_{t_2}$ is non-decreasing, $\mathbf{h}_{t_1} \cup \mathbf{h}_{t_2}$ is non-decreasing [Why? Just check.]
- $(*)_5$ clause \circledast_1 of Claim 2.10(1) holds for $I' = I, s(*) \in I \setminus \{\emptyset\}$.

[Why? Assume $\bar{c} \in C_I^{\mathfrak{x}}$ is such that $c_{s(*)} \neq e_{\mathbb{G}_{s(*)}}$. For each $u \in I$, c_u is a word in the generators $\{x_t : t \in J_u\}$ of \mathbb{G}_u and let $\mathbf{n}(u)$ be the length of this word and $\mathbf{m}(u)$ the number of generators appearing in it.

Now by $(*)_3$ we have $u_1 \subseteq u_2 \Rightarrow \mathbf{n}(u_1) \leq \mathbf{n}(u_2) \land \mathbf{m}(u_1) \leq \mathbf{m}(u_2)$. As (I, \subseteq) is \aleph_1 -directed, for some $u_* \in I$ we have $u_* \subseteq u \in I \Rightarrow \mathbf{n}(u) = n_* \land \mathbf{m}(u) = m_*$ and let $c_u = (\ldots, x_{t(u,\ell)}^{i(\ell)}, \ldots)_{\ell < n_*}$ where $i(\ell) \in \{1, -1\}$ and $t(u, \ell) \in J_u^{\mathfrak{r}}$ and $t(u, \ell) = t(u, \ell + 1) \Rightarrow i(\ell) = i(\ell + 1)$. Clearly $u_* \subseteq u_1 \subseteq u_2 \in I \& \ell < n_* \Rightarrow \pi_{u_1, u_2}(t(u_2, \ell)) = t(u_1, \ell) \land \alpha^{t(u_2, \ell)} = \alpha^{t(u_*, \ell)}$. By our assumption toward contradiction necessarily $n_* > 0$.

As $\{u: u_* \subseteq u \in I\}$ is directed, by $(*)_4$ above, for each $\ell < n_*$ any two of the functions $\{g^{t(u,\ell)}: u_* \subseteq u \in I\}$ are compatible so $g_\ell =: \bigcup \{g^{t(u,\ell)}: u \in I\}$ is

a non-decreasing function from $\lambda = \bigcup \{u : u \in I\}$ to α^* and $h_\ell =: \bigcup \{h^{t(u,\ell)} : u_* \subseteq u \in I\}$ is similarly a non-decreasing function from λ to λ . It also follows that for some α_ℓ^* we have $\alpha_\ell^* =: \alpha^{t(u,\ell)}$ whenever $u_* \subseteq u \in I$ in fact $\alpha_\ell^* = \alpha^{t(u_*,\ell)}$ is O.K. For each $i \in \operatorname{Rang}(g_\ell) \subseteq \alpha_\ell^*$ choose $\beta_{\ell,i} < \lambda$ such that $g_\ell(\beta_{\ell,i}) = i$ and let $E = \{\delta < \lambda : \delta \text{ a limit ordinal } > \sup(u_*) \text{ such that } i < \alpha_\ell^* \& \ell < n_* \& i \in \operatorname{Rang}(g_\ell) \Rightarrow \beta_{\ell,i} < \delta \text{ and } \beta < \delta \& \ell < n \Rightarrow h_\ell(\beta) < \delta\}$, it is a club of λ . Choose u such that $u_* \subseteq u$ and $\min(u \setminus u_*) = \delta^* \in E$.

Now what can $g_{\ell}(\operatorname{Min}(u \setminus u_*))$ be? It has to be i for some $i < \alpha_{\ell}^* < \alpha^*$ hence $i \in \operatorname{Rang}(g_{\ell})$ so for some $u_1, u_* \subseteq u_1 \subseteq \delta^*$ and $\beta_{\ell,i} \in u_1$ so $h_{\ell}(\beta_{\ell,i}) < \delta^*$ hence considering $u \cup u_1$ and recalling clause $(\alpha)(vi)$ of (b) from definition of \mathfrak{x} in the beginning of the proof we have $h_{\ell}(\beta_{\ell,i}) < h_{\ell}(\delta^*)$ hence by (clause $(b)(\alpha)(v)$) we have $i = g_{\ell}(\beta_{\ell,i}) < g_{\ell}(\delta^*)$, contradiction.]

(2) A minor change is needed in the choice of $T^{\mathfrak{p}}$

$$T^{\sharp} = \{(t_1, t_2) : (t_1, t_2) \in J \times J \text{ and } u^{t_1} \subseteq u^{t_2}, \ h^{t_1} \subseteq h^{t_2}, \ g^{t_1} \subseteq g^{t_2},$$

 $\gamma^{t_1} \le \gamma^{t_2} \text{ and if } \operatorname{Rang}(g^{t_1}) \not\subseteq \{0\} \text{ then } \alpha^{t_1} = \alpha^{t_2}\}.$

- §3. The singular case. We deal here with singular $\lambda = \lambda^{\aleph_0}$ and our aim is the parallel of Conclusion 2.12 constructing a pair of EF_{α} -equivalent for every $\alpha < \lambda$ non-isomorphic models of cardinality λ . But it is natural to try to construct a stronger example: This is done here:
 - \circledast for each $\gamma < \kappa = cf(\lambda)$, in the following game the ISO player wins. DEFINITION 3.1.
- (1) For models M_1 , M_2 , λ and partial isomorphism f from M_1 to M_2 and $\gamma < \mathrm{cf}(\lambda)$ we define a game $\partial_{\gamma,\lambda}^*(f,M_1,M_2)$. A play lasts γ moves, in the $\beta < \gamma$ move a partial isomorphism f_β was formed increasing with β , extending f, satisfying $|\mathrm{Dom}(f_\beta)| < \lambda$. In the β -th move if $\beta = 0$, the player ISO choose $f_0 = f$, if β is a limit ordinal the ISO player chooses $f_\beta = \bigcup \{f_\varepsilon : \varepsilon < \beta\}$. In the $\beta + 1 < \gamma$ move the player AIS chooses $\alpha_\beta < \lambda$ and then they play a sub-game $\partial_1^{\alpha_\beta}(f_\beta, M_1, M_2)$ from Definition 1.1(3) producing an increasing sequence of partial isomorphisms $\langle f_i^\beta : i < \alpha_\beta \rangle$ and let their union be $f_{\beta+1}$. ISO wins if he always has a legal move.
- (2) If ISO wins the game (i.e. has a winning strategy) then we say M_1 , M_2 are $\mathrm{EF}_{\gamma,\lambda}^*$ -equivalent, we omit λ if clear from the context. If $f = \emptyset$ we may write $\partial_{\gamma,\lambda}^*(M_1,M_2)$

REMARK. For (M, c_1) , (M, c_2) to be $\mathrm{EF}^*_{<\alpha,\lambda}$ -equivalent not $\mathrm{EF}^*_{\alpha,\lambda}$ -equivalent not just EF^*_{α} -equivalent not $\mathrm{EF}^*_{\alpha+1}$ -equivalent we may need a minor change.

Hypothesis 3.2. $j_* \leq \kappa = \operatorname{cf}(\lambda) < \lambda, \kappa > \aleph_0, \bar{\mu} = \langle \mu_i : i < \kappa \rangle$ is increasing continuous with limit λ , $\mu_0 = 0$, $\mu_1 = \kappa (= \operatorname{cf}(\lambda))$, μ_{i+1} is regular $> \mu_i^+$ and let $\mu_{\kappa} = \lambda$ and for $\alpha < \lambda$ let $\mathbf{i}(\alpha) = \operatorname{Min}\{i : \mu_i \leq \alpha < \mu_{i+1}\}$.

Definition 3.3. Under the Hypothesis 3.2 we define a λ -parameter $\mathfrak{x} = \mathfrak{x}_{j_*,\bar{\mu}}$ as follows:

- (a) (a) I is the set of $u \in [\lambda \setminus \kappa]^{\leq \aleph_0}$
 - (β) **u**: $I \to \mathcal{P}(\lambda \setminus \kappa)$ is the identity,
 - $(\gamma) \qquad S = \{(u_1, u_2) : u_1 \subseteq u_2 \in [\lambda \setminus \kappa]^{\leq \aleph_0}\}$
 - (δ) $\alpha_{\mathfrak{x}}^* = j_*$
- (b) J is the set of tuples $t = (u, j, g, h) = (u^t, j^t, g^t, h^t)$ such that
 - (α) $u \in I$

322

- (β) $j < j_*$
- (y) (i) g is a non-decreasing function from $u_g = u \cup v_g$ to λ where $v_g = \{\mathbf{i}(\alpha) : \alpha \in u \text{ and } g(\alpha) = \mu_{\mathbf{i}(\alpha)}^+\}$
 - (ii) $\alpha \in u \Rightarrow g(\alpha) \in [\mu_{\mathbf{i}(\alpha)}, \mu_{\mathbf{i}(\alpha)}^+]$
 - (iii) if $i \in v_g$ then $g(i) < j^t (< \kappa = \mu_1)$
 - (iv) v_g is an initial segment of $\{i(\alpha) : \alpha \in u\}$
- (δ) (i) h is a non-decreasing function with domain $u_g \cup v_g$
 - (ii) $\alpha \in u \Rightarrow h(\alpha) \in [\mu_{\mathbf{i}(\alpha)}, \mu_{\mathbf{i}(\alpha)+1}]$ and if $i \in v_g$ then $h(i) < \kappa$
 - (iii) if $\beta_1 < \beta_2$ are from $u_g \cup v_g$ and $\mathbf{i}(\beta_1) = \mathbf{i}(\beta_2)$ then $g(\beta_1) = g(\beta_2) \Leftrightarrow h(\beta_1) = h(\beta_2)$
 - (iv) $\alpha < h(\alpha)$ for $\alpha \in u_g \cup v_g$ and $g(\alpha) = \mu_{i(\alpha)}^+ \Leftrightarrow h(\alpha) = \mu_{i(\alpha)}^+$ for $\alpha \in u$
- (c) T is the set of pairs $(t_1, t_2) \in J \times J$ satisfying
 - (i) $u^{t_1} \subseteq u^{t_2} \in I$ and
 - (ii) $g^{t_1} \subseteq g^{t_2}, h^{t_1} \subseteq h^{t_2}, j^{t_1} = j^{t_2}$

Observation 3.4. $\mathfrak{x}_{\lambda} = \mathfrak{x}_{j_*,\bar{\mu}}$ is a full λ -parameter.

PROOF. Read the Definition 2.1(1) + 2.1(1A).

CLAIM 3.5. Assume $s \in I_{\mathfrak{x}}$, $c_1 = (s, e_{\mathbb{G}_s})$, $c_2 = (s, x_t)$, $t \in J_s$, and for simplicity $\operatorname{Rang}(g^t \upharpoonright [\mu_{1+i}, \mu_{1+i+1})) \subseteq \{\mu_{1+i}\}$, $\operatorname{Rang}(g^t \upharpoonright \kappa) = \{0\}$ and $\omega < j^t < j_*$. Then $(M_{\mathfrak{x}}, c_1)$, $(M_{\mathfrak{x}}, c_2)$ are $\operatorname{EF}^*_{\lambda, j'}$ -equivalent.

PROOF. So t, j^t are fixed. For $i_* < \kappa$, $j < j_*$ let

- (a) $B_{i_*} = \{\bar{\beta} : \bar{\beta} = \langle \beta_i : i < \kappa \rangle \text{ and } \mu_i \leq \beta_i \leq \mu_{i+1} \text{ and } \beta_0 = i_* \text{ and } (\beta_{1+i} = \mu_{1+i+1} \equiv 1 + i < i_*)\}$
- (b) for $\bar{\beta} \in B_{i_*}$ let $A_{\bar{\beta}} = \bigcup \{ [\mu_i, \beta_i) : i < \kappa \}$ which by our conventions is equal to $i_* \cup \bigcup \{ [\mu_j, \mu_{j+1}) : 1 \le j < i_* \} \cup \bigcup \{ [\mu_i, \beta_i) : i \in [i_*, \kappa) \}$
- (c) for $\bar{\beta} \in B_{i_*}$ let $\mathcal{G}_{j,i_*,\bar{\beta}} = \{g : g \text{ is a function from } A_{\bar{\beta}} \text{ to } \lambda, \text{ non-decreasing and the function } g \upharpoonright \kappa \text{ is into } j \text{ and the function } g \upharpoonright [\mu_{1+i}, \mu_{1+i+1}) \text{ is into } [\mu_i, \mu_i^+] \text{ and } 1 \leq i < i_* \Leftrightarrow (\exists \alpha)(\mu_i \leq \alpha < \mu_{i+1} \land g(\alpha) = \mu_i^+)\}$
- (d) for $g \in \mathcal{G}_{j,i_*\bar{\beta}}$, $\bar{\beta} \in B_{i_*}$ we define $h_g : A_{\bar{\beta}} \to \lambda$ as follows: if $\gamma \in A_{\bar{\beta}}$ then $h(\gamma) = \min\{\beta' \le \beta_{\mathbf{i}(\gamma)} : i(\gamma) > 0 \land g(\gamma) = \mu^+_{\mathbf{i}(\gamma)} \text{ then } \beta' = \mu_{\mathbf{i}(\gamma)+1},$ otherwise $\beta' \in [\mu_{\mathbf{i}(\gamma)}, \beta_{\mathbf{i}(\gamma)}]$ and $\beta' \ne \beta_{\mathbf{i}(\gamma)} \Rightarrow g(\gamma) < g(\beta')\}$
- (e) $\mathcal{G}_{j,i_*} = \bigcup \{\mathcal{G}_{j,i_*,\bar{\beta}} : \beta \in B_{i_*}\} \text{ and } \mathcal{G}_j = \bigcup \{\mathcal{G}_{j,i_*} : i_* < \kappa\}.$

Let $R = \mathcal{G}_{i'}$ and for $g \in R$ let $i_*(g)$ be the unique $i_* < \kappa$ such that $g \in \mathcal{G}_{i',i_*}$ and $\bar{\beta}_g$ the unique $\bar{\beta} \in B_{i_*}$ such that $g \in \mathcal{G}_{j^i,i_*(g),\bar{\beta}}$ and $\bar{\beta} = \langle \beta_i(g) : i < \kappa \rangle$

On R we define a partial order $g_1 \leq g_2 \Leftrightarrow g_1 \subseteq g_2 \wedge h_{g_1} \subseteq h_{g_2}$.

For $g \in R$ we define I_g , \bar{c}_g as follows

- $u \cup \{\mathbf{i}(\alpha) : \alpha \in u \text{ and } g(\alpha) = \mu_{\mathbf{i}(\alpha)}^+\}.$

Let $g_* \in \mathcal{G}_1$ be chosen such that for i > 0, $\beta_i(g_*) = \sup(\{g^t(\alpha) : \alpha \in u^t \cap a\})$ $[\mu_i, \mu_{i+1})\} \cup \{\mu_i\}$ and $\beta_0(g_*) = \bigcup \{\mathbf{i}(\alpha) + 1 : \alpha \in u^t \text{ and } g^t(\alpha) = \mu_{\mathbf{i}(\alpha)}^+\} \cup \{1\}.$ Let $\bar{c}_* = \bar{c}_{g_*}$ and $f_* = f_{\bar{c}_*}^{\mathfrak{r}}$ is the partial automorphism of M_γ with domain $\cup \{P_u^{M_{\mathfrak{p}}}: u \in I_{g_*}\}$ from Definition 2.6. We prove that the player ISO wins in the game $\partial_{\lambda,i}^*(f_*,M_1,M_1)$, as $f_*(c_1)=c_2(\in P_{u'}^{M_r})$ this is enough. Recall that a play last j moves; now the player ISO commit himself to choose in the $\beta < j$ move on the side a function $g_{\beta} \in \mathcal{G}_{1+\beta}$, increasing with β , $g_0 = g_*$ and his actual move f_{β} is $f_{\bar{c}_{\beta}}^{\mathfrak{x}}$ where $\bar{c}_{\beta} = \bar{c}_{\mathbf{g}_{\beta}}$. For the β -th move if $\beta = 0$ or β limit let $g_{\beta} = \bigcup \{g_{\varepsilon} : \varepsilon < \beta\} \cup g_* \in \mathcal{G}_{1+\beta}$. In the $(\beta + 1)$ -th move let the AIS player choose $\alpha_{\beta} < \lambda$. Now the player ISO, on the side, first choose $i_{\beta} < \kappa$ such that $i_*(g_{\beta}) < i_{\beta}$, and $\mu_{i_{\beta}} > \alpha_{\beta}$, second he chooses $g_{\beta}^+ \in \mathcal{G}_{i_{\beta}1+\beta+1}$, i_{β} satisfying:

- \circledast (a) g_{β}^+ extends g_{β} ,
 - (b) $\operatorname{Dom}(g_{\beta}^+) \cap \kappa = i_{\beta}$
 - (c) $g_{\beta}^+ \upharpoonright (i_{\beta} \setminus \text{Dom}(g_{\beta}))$ is constantly $1 + \beta$
 - (d) if $0 < i \in \text{Dom}(g_{\beta}) \cap \kappa$ then $g_{\beta}^+ \upharpoonright [\mu_i, \mu_{i+1}) = g_{\beta} \upharpoonright [\mu_i, \mu_{i+1})$
 - (e) if $i \notin \text{Dom}(g_{\beta}) \cap \kappa$ and $i \text{Dom}(g_{\beta}^+) \cap \kappa$ then $\text{Dom}(g_{\beta}^+ | [\mu_i, \mu_{i+1}))$ $= [\mu_i, \mu_{i+1}) \text{ and } \varepsilon \in [\mu_i, \mu_{i+1}) \setminus \text{Dom}(g_{\beta}) \Rightarrow g_{\beta}^+(\varepsilon) = \mu_i^+$
 - (f) if $i < \kappa, i \notin \text{Dom}(g_{\beta}^+)$ then $g_{\beta}^+ \upharpoonright [\mu_i, \mu_{i+1}) = g_{\beta} \upharpoonright [\mu_i, \mu_{i+1})$

Now ISO and AIS has to play the sub-game $\partial_1^{\alpha_{\beta}}(f_{\beta}, M_1, M_2)$. The player ISO has to play $f_{\beta,\alpha}$ in the α -th move for $\alpha \leq \alpha_{\beta}$ and on the side he chooses $g_{\beta,\alpha} \in \mathcal{G}_{1+\beta+1}$ with large enough domain and range, to make it a legal move, increasing with α , and $g_{\beta,0}=g_{\beta}^+$ and $g_{\beta,\alpha} \upharpoonright \mu_{i_{\beta}}=g_{\beta}^+ \upharpoonright \mu_{i_{\beta}}$. Now obviously $\{g:g\in\mathcal{G}_{1+\beta+1},g^+_\beta\subseteq g\}$ is closed under increasing union of length $<\mu_{i_\beta}$, it is enough to show that he can make the $(\alpha + 1)$ -th move which is trivial so we are done.

CLAIM 3.6. M_x is P_s -rigid for $s \in I^*$.

PROOF. We imitate the proof of Claim 2.11.

- $(*)_0$ r is a full (λ, \aleph_1) -parameter
- $(*)_1$ if $u_1 \subseteq u_2 \in I$, we define the function $\pi_{u_1,u_2}: J_{u_2} \to J_{u_1}$ by $F_{u_1,u_2}(t) =$ $(u_1, j^t, g^t \upharpoonright u_1, h^t \upharpoonright u_1)$ for $t \in J_{u_2}$,

- 324
- $(*)_2$ if $u_1 \subseteq u_2 \subseteq u_3$ are from I then $\pi_{u_1,u_3} = \pi_{u_1,u_2} \circ \pi_{u_2,u_3}$ that is $\pi_{u_1,u_2}(t) = 0$ $\pi_{u_1,u_2}(\pi_{u_2,u_3}(t))$
- $(*)_3$ for $u_1 \subseteq u_2$ we have
 - $(\alpha) \ T \cap (J_{u_1} \times J_{u_2}) = \{(\pi_{u_1,u_2}(t_2),t_2) : t_2 \in J_{u_2}\}$
 - $(\beta) \ \mathbb{G}_{u_1,u_2} = \{(\hat{\pi}_{u_1,u_2}(c_2), c_2) : c_2 \in \mathbb{G}_{u_2}\} \text{ where } \hat{\pi}_{u_1,u_2} \in \text{Hom}(\mathbb{G}_{u_2}^{\mathfrak{x}}, \mathbb{G}_{u_1}^{\mathfrak{x}})$ is the unique homomorphism from $\mathbb{G}_{u_2}^{\mathfrak{x}}$ into $\mathbb{G}_{u_1}^{\mathfrak{x}}$ mapping x_{t_2} to x_{t_1} whenever $\pi_{u_1,u_2}(t_2) = t_1$ [Why? Check.]
- $(*)_4$ if $u_1 \cup u_2 \subseteq u_3 \in I$, $t_3 \in J_{u_3}$ and $t_{\ell} = \pi_{u_{\ell},u_3}(t_3)$ for $\ell = 1, 2$ then, recalling Definition 2.1 (1A)(h), g^{t_1} , g^{t_2} are compatible functions as well as h^{t_1} , h^{t_2} and $j^{t_1} = j^{t_2}$ moreover $g^{t_1} \cup g^{t_2}$ is non-decreasing, $h^{t_1} \cup h^{t_2}$ is non-decreasing

[Why? Just check.]

 $(*)_5$ clause \circledast_1 of Claim 2.10(1) holds for $I' = I = I_{\mathfrak{x}}$.

Why? Assume $\bar{c} \in C_I^{\mathfrak{x}}$ is such that $c_{s(*)} \neq e_{\mathbb{G}_{s(*)}}$ for some $s(*) \in I$. For each $u \in I, c_u$ is a word in the generators $\{x_t : t \in J_u\}$ of \mathbb{G}_u and let $\mathbf{n}(u)$ be the length of this word and $\mathbf{m}(u)$ the number of generators appearing in it.

Now by clause (β) of $(*)_3$ we have $u_1 \subseteq u_2 \Rightarrow \mathbf{n}(u_1) \leq \mathbf{n}(u_2) \wedge \mathbf{m}(u_1) \leq$ $\mathbf{m}(u_2)$. As (I,\subseteq) is \aleph_1 -directed, for some $u_*\in I$, $n_*<\omega$ and $m_*<\omega$ we have $u_* \subseteq u \in I \Rightarrow \mathbf{n}(u) = n_* \land \mathbf{m}(u) = m_*$ and let $c_u = (\dots, x_{t(u,\ell)}^{i(u,\ell)}, \dots)_{\ell < n_*}$ where $k(u,\ell) \in \{1,-1\}$ and $t(u,\ell) \in J_u^{\mathfrak{r}}$ and $t(u,\ell) = t(u,\ell+1) \Rightarrow k(\ell) = t(u,\ell+1)$ $k(u_1 + 1)$. Clearly $u_* \subseteq u_1 \subseteq u_2 \in I \& \ell < n_* \Rightarrow \pi_{u_1,u_2}(t(u_2,\ell)) = t(u_1,\ell) \land$ $k(u_1,\ell) = k(u_2,\ell) = k(u_*,\ell)$ hence $j^{t(u_2,\ell)} = j^{t(u_*,\ell)} \wedge j^{t(u_2,\ell)} = j^{t(u_*,\ell)}$. By our assumption toward contradiction necessarily $n_* > 0$ and let $k(\ell) =$ $k(u_*,\ell).$

As $\{u : u_* \subseteq u \in I\}$ is directed, by $(*)_4$ above, for each $\ell < n_*$ any two of the functions $\{g^{t(u,\ell)}: u_* \subseteq u \in I\}$ are compatible so $g_{\ell} =: \bigcup \{g^{t(u,\ell)}: u \in I\}$ is a non-decreasing function from $Y_{i_{\ell}(*)}$ to λ where $Y_{i_{\ell}(*)} = (\lambda \setminus \kappa) \cup i_{\ell}(*)$ for some $i_{\ell}(*) \leq \kappa$ and $h_{\ell} =: \bigcup \{h^{t(u,\ell)} : u_* \subseteq u \in I\}$ is similarly a non-decreasing function from $Y_{i_{\ell}(*)}$ to λ . Also g_{ℓ} maps $[\mu_{i}, \mu_{i+1})$ into $[\mu_{i}, \mu_{i}^{+}]$ for $i < \kappa$ and maps κ to κ .

Case 1. $i_{\ell}(*) = \kappa$.

It also follows that for some j_{ℓ}^* we have $j_{\ell}^* =: j^{t(u,\ell)}$ whenever $u_* \subseteq u \in I$ in fact $j_{\ell}^* = j^{t(u_*,\ell)}$ is O.K. and $j_{\ell}^* < j_* \le \kappa$. For each $i \in \text{Rang}(g_{\ell} \upharpoonright \kappa)$ choose $\beta_{\ell,i} < \kappa$ such that $g_{\ell}(\beta_{\ell,i}) = i$ and let $E = \{\delta < \kappa : \delta \text{ a limit ordinal } \}$ $> \sup(u_* \cap \kappa)$ such that $i < j_\ell^* \& \ell < n_* \& i \in \operatorname{Rang}(g_\ell) \Rightarrow \beta_{\ell,i} < \delta$ and $\beta < \delta \& \ell < n \Rightarrow h_{\ell}(\beta) < \delta$, it is a club of κ . Choose u such that $u_* \subseteq u$ and $Min(u \cap \kappa \setminus u_*) = \delta^* \in E$.

Now what can $g^{t(u,\ell)}(\text{Min}(u \setminus u_*))$ be?

It has to be i for some $i < j_{\ell}^* < j^*$ hence $i \in \text{Rang}(g_{\ell})$ so for some $u_1, u_* \subseteq u_1 \subseteq \delta^*$ and $\beta_{\ell,i} \in u_1$ so $h_{\ell}(\beta_{\ell,i}) < \delta^*$ hence considering $u \cup u_1$ and recalling clause $(\delta)(iv)$ of (b) from Definition 3.3 of $\mathfrak x$ we have $h_\ell(\beta_{\ell,i}) < h_\ell(\delta^*)$ hence by (clause $(b)(\alpha)(iii)$) we have $i = g_\ell(\beta_{\ell,i}) < g_\ell(\delta^*)$, contradiction.

Case 2. $i_{\ell}(*) \neq \kappa$ so $i_{\ell}(*) < \kappa$.

Clearly if $i \in (i_{\ell}(*), \kappa)$ and $\alpha \in [\mu_i, \mu_{i+1})$ then $g_{\ell}(\alpha) \neq \mu_i^+$ (see clause $(b)(\gamma)(iii)$ of Definition 3.3) hence $g_{\ell} \upharpoonright [\mu_i, \mu_{i+1})$ is a non-decreasing function from $[\mu_i, \mu_{i+1})$ to μ_i^+ , but μ_{i+1} is regular $> \mu_i^+$ (see Hypothesis 3.2) hence $g_{\ell} \upharpoonright [\mu_i, \mu_{i+1})$ is eventually constant say $\gamma_i \in [\mu_i, \mu_{i+1})$ and $g_{\ell} \upharpoonright [\gamma_i, \mu_{i+1})$ is constantly $\varepsilon_i \in [\mu_i, \mu_i^+)$. So also $h_{\ell} \upharpoonright [\gamma_i, \mu_{i+1}^+)$ is constant and its value is $< \mu_{i+1}$, and we get contradiction as in Case 1.

Conclusion 3.7. If $\lambda = \lambda^{\aleph_0} > \operatorname{cf}(\lambda) > \aleph_0 \operatorname{\underline{then}}$ for every $\alpha < \operatorname{cf}(\lambda)$ there are non-isomorphic models M_1, M_2 of cardinality λ which are $\operatorname{EF}_{\alpha, \lambda}^*$ -equivalent.

PROOF. By Claim 3.5 + 3.6 as the cardinality of M_x is λ .

REMARK 3.8. By minor changes, for some $t \in P_u^M$, $u = \emptyset$ letting $c_1 = e_{\mathbb{G}_u}$, $c_2 = x_t$ we have: $(M_{\mathfrak{x}}, c_1)$, $(M_{\mathfrak{x}}, c_2)$ are non-isomorphism but $\mathrm{EF}_{\lambda,j}^*$ -equivalent for every $j < \kappa = \mathrm{cf}(\lambda)$. This is similar to the parallel remark in the end of §1.

REFERENCES

[HvSh:866] Chanoch Havlin and Saharon Shelah, More on $\mathrm{EF}_{\alpha,\lambda}$ -equivalence in non-isomorphic models, in preparation.

INSTITUTE OF MATHEMATICS
THE HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM 91904, ISRAEL

and

DEPARTMENT OF MATHEMATICS
RUTGERS UNIVERSITY
NEW BRUNSWICK, NJ 08854, USA
E-mail: shelah@math.huji.ac.il