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Abstract
We consider a version of κ-Miller forcing on an uncountable cardinal κ . We show that
under 2<κ = κ this forcing collapses 2κ toω and adds a κ-Cohen real. The same holds
under the weaker assumptions that cf(κ) > ω, 22

<κ = 2κ , and forcing with ([κ]κ ,⊆)

collapses 2κ to ω.

Keyword Forcing with higher perfect trees

Mathematics Subject Classification Primary 03E05; Secondary 03E04 · 03E15

1 Introduction

Many of the tree forcings on the classical Baire space have various analogues for
higher cardinals. Here we are concerned with Miller forcing [4]. In the classical case,
a Miller condition is a superperfect subtree of ω<ω. The subtree is ordered by the
end-extension relation on ω<ω. The forcing order is simply ⊆. A tree is superperfect
if each node has an extension that has infinitely many immediate tree successors. Such
a node is called a splitting node. We can assume that each node has just one direct
successor or infinitely many.

For a κ-version of Miller forcing, superperfectness and splitting are usually inter-
preted as follows: Above each node t ∈ p ⊆ κ<κ there is a node splitting node s. The
common interpretation of “s is a splitting node of p” is:
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880 H. Mildenberger, S. Shelah

{α ∈ κ : sˆ〈α〉 ∈ p} contains a club subset of κ.

In order to gain (< κ)-closure of the notion of forcing, in addition to the club version
of superperfectness one usually requires for conditions that (see, e.g., [2, Section 5.2])
limits of length less than κ of splitting nodes be splitting nodes as well.

In this paper we investigate a version of κ-Miller forcing where the conditions on
superperfectness and (< κ)-closure of splitting nodes are kept and the definition of “s
is a splitting node of p” is weakened to

|{α : sˆ〈α〉 ∈ p}| = κ.

We show: If cf(κ) > ω, cf(κ) = κ or cf(κ) < 2cf(κ) ≤ κ , 22
<κ = 2κ , and there is

a κ-mad family of size 2κ , then this variant of Miller forcing is related to the forcing
([κ]κ ,⊆) and collapses 2κ to ω. In particular, if ω < κ<κ = κ , then our four premises
are fulfilled. Thus we provide somemathematical justification of the customary choice
of higher Miller forcing.

Throughout the paper we let κ be an uncountable cardinal. We do not make the
general assumption that 2<κ = κ , nor do we assume that κ is regular.

We denote forcing orders in the form (P,≤P) and let q ≤P pmean that q is stronger
than p.

If dom(t), i are ordinals, we write tˆ〈i〉 for the concatenation of t with the singleton
function {(0, i)}, i.e., tˆ〈i〉 = t ∪ {(dom(t), i)}. For cardinals κ , λ, we write <λκ for
the set of functions f : α → κ for some α < λ. For s, t ∈ κ<λ we write s � t if
s = t � dom(s), and the corresponding strict order is written as 	. The domain α of f
is also called the length of f . The set of subsets of κ of size κ is denoted by [κ]κ .

Definition 1.1 (1) Q
1
κ is the forcing ([κ]κ ,⊆).

(2) Q
2
κ is the following version of κ-Miller forcing: Conditions are trees T ⊆ κ>κ

that are κ superperfect: for each s ∈ T there is s � t such that t is a κ-splitting
node of T . A node t ∈ T is called a κ-splitting node if

set p(t) = {α < κ : tˆ〈α〉 ∈ T }

has size κ . The set of splitting nodes of T is denoted by spl(T ).
We furthermore require for p ∈ Q

2
κ that the limit of an 	-increasing sequence of

length less than κ of κ-splitting nodes is a κ-splitting node if it has length less
than κ .
For p, q ∈ Q

2
κ we write q ≤Q2

κ
p if q ⊆ p. So subtrees are stronger conditions.

(3) For p ∈ Q
2
κ and η ∈ p we let sucp(s) = {t ∈ κ>κ : (∃α < κ)(t = sˆ〈α〉 ∈ p)}.

(4) Let s ∈ p ∈ Q
2
κ . We let p〈s〉 = {t ∈ p : t � s ∨ s � t}.

(5) For a, b ⊆ κ we write a ⊆∗
κ b if |a \ b| < κ .

Each of the two forcing orders P has a weakest element, denoted by 1P. Namely,
Q

1
κ has as a weakest element 1Q1

κ
= κ , and Q

2
κ has as a weakest element the full tree

κ>κ . We write P � ϕ if the weakest condition forces ϕ.
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A version of κ-Miller forcing 881

2 Results about Q
1
�

In this section we consider Q
1
κ . The purpose is to provide standardised Q

1
κ -names for

collapses. Later these particular Q
1
κ -names shall be translated to Q

2
κ -names.

Definition 2.1 A familyA ⊆ [κ]κ is called a κ-almost disjoint family if for A 
= B ∈
A, |A ∩ B| < κ .

Observation 2.2 If 2<κ = κ , there is a κ-ad family A ⊆ [κ]κ of size 2κ .

Proof We let f : κ>2 → κ be an injection. We assign to each branch b of κ>2 a set
ab = { f (s) : s ∈ b}. The resulting family {ab : b branch of κ>2} is κ-ad. ��
Observation 2.3 If Q

1
κ collapses 2κ to ω, then there is a κ-ad family of size 2κ .

Proof Q
1
κ cannot have the 2

κ -c.c. Hence there is an antichain of size 2κ . Since p ⊥Q1
κ
q

means |p ∩ q| < κ , the antichain is a κ-ad family. ��
We will apply the following result for χ = 2κ .

Theorem 2.4 [5, Theorem 0.5] Suppose that there is an antichain in Q
1
κ of size χ .

Then the following holds.

(1) Forcing withQ
1
κ collapses χ to ℵ0 ifℵ0 < cf(κ) = κ or if ℵ0 < cf(κ) < 2cf(κ) ≤

κ .
(2) Forcing with Q

1
κ collapses χ to ℵ1 in the case of ℵ0 = cf(κ) < κ .

Now we start defining tree structures from Q
1
κ -names for collapsing functions.

Those trees will later be used to define dense suborders QT of Q
2
κ . The idea of QT is

that the sets set p(t), t ∈ spl(p), for p ∈ QT will be sufficiently strong Q
1
κ conditions.

Lemma 2.5 Suppose that Q1
κ collapses 2κ to ω. Then there is a Q

1
κ -name τ˜ : ℵ0 → 2κ

for a surjection, and there is a labelled tree T = 〈(aη, nη, 
η) : η ∈ ω>(2κ)〉 with
the following properties

(a) a〈〉 = κ and for any η ∈ ω>(2κ), aη ∈ [κ]κ .
(b) η1 	 η2 implies aη1 ⊇ aη2 .
(c) nη ∈ [dom(η) + 1, ω).
(d) If a ∈ [κ]κ then there is some η ∈ ω>(2κ) such that a ⊇ aη.
(e) If ηˆ〈β〉 ∈ T then aηˆ〈β〉 forces τ˜ � nη = 
ηˆ〈β〉 for some 
ηˆ〈β〉 ∈ nη (2κ), such

that the 
ηˆ〈β〉, β ∈ 2κ , are pairwise different. Hence for any η ∈ ω>(2κ), the
family {aηˆ〈α〉 : α < 2κ } is a κ-ad family in [aη]κ .

Proof Let τ˜ be a Q
1
κ -name such that Q

1
κ � τ˜ : ℵ0 → 2κ is onto. For α < 2κ let APα

be the set of objects m̄ satisfying

(∗)1 (1.1) m̄ = (T , ā, n̄, 
̄) = (Tm̄, ām̄, n̄m̄, 
̄m̄).
(1.2) T is a subtree of (ω>(2κ), 	) of cardinality ≤ |α| + κ and 〈〉 ∈ T .
(1.3) ā = 〈aη : η ∈ T 〉 fulfils η 	 ν → aν ⊆ aη and a〈〉 = κ and aη ∈ [κ]κ .
(1.4) n̄ = 〈nη : η ∈ T 〉 fulfils dom(
ηˆ〈β〉) = nη > dom(η) for any ηˆ〈β〉 ∈ T .
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882 H. Mildenberger, S. Shelah

(1.5) If ηˆ〈β〉 ∈ T , then aηˆ〈β〉 forces a value to τ˜ � nη, called 
ηˆ〈β〉, and for
β 
= γ we have 
ηˆ〈β〉 
= 
ηˆ〈γ 〉. Hence for any ηˆ〈β〉, ηˆ〈γ 〉 ∈ Tm̄ , β 
= γ

implies aηˆ〈β〉 ∩ aηˆ〈γ 〉 ∈ [κ]<κ .
(1.6) For η ∈ Tm̄ , we let

Pos(aη, nη) = {
 ∈ nη (2κ) : aη �Q1
κ

τ˜ � nη 
= 
},

and require that the latter has cardinality 2κ .

In the next items we state some properties of APα that are derived from (∗)1.

(∗)2 AP = ⋃{APα : α < 2κ } is ordered naturally by ≤AP , which means end
extension.

(∗)3 (a) APα is not empty and increasing in α.
(b) For infinite α, APα is closed under unions of increasing sequences of length
< |α|+.

(∗)4 Let γ < 2κ . If m̄ ∈ APγ and η ∈ Tm̄ and ηˆ〈α〉 /∈ Tm̄ then there is m̄′ ∈ APγ

such that m̄ ≤AP m̄′ and Tm̄′ = Tm̄ ∪ {ηˆ〈α〉}.
Proof: For η ∈ Tm̄ ,

U = Pos(aη, nη) = {
 ∈ nη (2κ) : aη �Q1
κ

τ˜ � nη 
= 
} has size 2κ ,

whereas

�η = {
ηˆ〈β〉 � nη : β ∈ 2κ ∧ ηˆ〈β〉 ∈ Tm̄}

is of size ≤ |Tm̄ | ≤ |γ | + κ . Hence we can choose 
∗ ∈ U \�η and b∗ ∈ [aη]κ
such that b∗ �Q1

κ

∗ = τ˜ � nη. We let 
ηˆ〈α〉 = 
∗. Since b∗ forces a value of

τ � nη that is incompatible with the one forced by aηˆ〈β〉 for any ηˆ〈β〉 ∈ Tm̄ ,
the set b∗ is κ-almost disjoint from aηˆ〈β〉 for any ηˆ〈β〉 ∈ Tm̄ . We take b∗ =
am̄′,ηˆ〈α〉 ⊆ am̄,η.

Since cf(2κ) > ℵ0 and since

|{range(
) : 
 ∈ ω>(2κ) ∧ b∗ �Q1
κ

τ˜ � n 
= 
}| = 2κ ,

there is an n such that

Pos(b∗, n) = {
 ∈ n(2κ) : b∗ �Q1
κ

τ˜ � n 
= 
}

has cardinality 2κ . We take the minimal one and let it be nηˆ〈α〉.

(∗)5 If m̄ ∈ APα and a ∈ [κ]κ then there is some m̄′ ≥ m̄, such that there is η ∈ Tm̄′
with am̄′,η ⊆ a.
Let

Ua = {
 ∈ ω>(2κ) : a �Q1
κ


� τ˜ },
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A version of κ-Miller forcing 883

i.e.

Ua = {
 ∈ ω>(2κ) : (∃b ≥Q1
κ
a)(b �Q1

κ

 	 τ˜ )}.

This set has cardinality 2κ becauseQ
1
κ � τ˜ : ω → 2κ is onto.We take nminimal

such that

Ua,n = {
 ∈ n(2κ) : (∃b ≥Q1
κ
a)(b �Q1

κ

 	 τ˜ )}

has size 2κ . We let

set+n (m̄) = {
η : η ∈ Tm̄, dom(
η) ≥ n}.

Clearly | set+n (m̄)| ≤ |Tm̄ | ≤ |γ | + κ . Thus we can take 
a ∈ Ua,n that is
incompatible with every element of set+n (m̄). We take some ba ∈ [a]κ such that
ba �Q1

κ

a � τ˜ . The set

�a = {η ∈ Tm̄ : ba ⊆∗
κ aη}

is 	-linearly ordered by (∗)1 clauses 1.3 and 1.5 and 〈〉 ∈ �a . Since ba does
not pin down τ˜ , �a has a 	-maximal member ηa . Now we take α∗ = min{β :
ηaˆ〈β〉 /∈ Tm̄}. For any ηaˆ〈β〉 ∈ Tm̄ we have 
ηa ˆ〈β〉 and 
a are incompatible,
and hence aηa ˆ〈β〉 ∩ ba ∈ [κ]<κ . Now we choose b1a ∈ [ba]κ and 
∗

a such that
b1a �Q1

κ

∗
a 	 τ˜ and dom(
∗

a) ≥ nm̄,ηa > dom(ηa).
We let

Tm̄′ = Tm̄ ∪ {ηaˆ〈α∗〉},
aηa ˆ〈α∗〉 = b1a,

We let nηa ˆ〈α∗〉 be the minimal n such that |Pos(b1a, n)| ≥ 2κ . So (∗)5 holds.

Now we are ready to construct T as in the statement of the lemma. We do this by
recursion on α ≤ 2κ . First we enumerate [κ]κ as 〈cα : α < 2κ 〉, and we enumerate
ω>(2κ) as 〈ηα : α < 2κ 〉 such that ηα 	 ηβ implies α < β. We choose an increasing
sequence m̄α by induction on α < 2κ . We start with the tree {〈〉}, a〈〉 = κ , 
〈〉 = ∅, n〈〉
be minimal such that |Pos(κ, n)| = 2κ . In the odd successor steps we take m̄2α+1 ≥AP

m̄α so that aη ⊆ cα for some η ∈ T2α+1. This is done according to (∗)5. In the even
successor steps we take m̄2α+2 ≥AP m̄2α+1 such that ηα ∈ T2α+2. Since all initial
segments of ηα appeared among the ηβ , β < α, m̄2α+2 is found according to (∗)4. In
the limit steps we take unions. Then T that is given by the last three components of
m̄2κ has properties (a) to (e). ��

Since τ = τ˜ [G] is not in V, for any T as in Lemma 2.5, for any f ∈ ω(2κ) ∩ V,
the branch 〈(a f �m, n f �m, 
 f �m) : m ∈ ω〉 of T has a no ⊆∗

κ -lower bound for its first
coordinate.
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884 H. Mildenberger, S. Shelah

3 Transfer to Q
2
�

In this section we use the tree T from Lemma 2.5 for finding Q
2
κ -names. First we

establish a dense subforcing QT of Q
2
κ . Then we construct QT -names that are based

on a Q
1
κ -name of a collapse and on the equation 22

<κ = 2κ .

Definition 3.1 Let μ, λ be cardinals. For ν, ν′ ∈ λ>μ we write ν ⊥ ν′ if ν � ν′ and
ν′

� ν.

Typical pairs (λ, μ) are (ω, 2κ) and (κ, κ).
An important tool for the analysis of Q

2
κ is the following particular kind of fusion

sequence 〈pα : α < κ<κ 〉 inQ
2
κ . Sincewe do not suppose κ<κ = κ , a fusion sequence

can be longer than κ . An important property is that for each ν ∈ κ>κ there is at most
one α < κ<κ such that set pα (ν) � set pα+1(ν).

Lemma 3.2 Let 〈να : α < κ<κ 〉 be an injective enumeration of κ<κ such that

να 	 νβ → α < β. (3.1)

Let 〈pα, να, cα : α < κ<κ 〉 be a sequence such that for any α ≤ λ the following
holds:

(a) p0 ∈ Q
2
κ .

(b1) If α = β + 1 < κ<κ and νβ ∈ spl(pβ), then

cβ ∈ [sucpβ (νβ)]κ and

pα = pβ(νβ, cβ) :=
⋃

{p〈νβ ˆ〈i〉〉
β : i ∈ cβ} ∪

⋃
{p〈η〉

β : η � νβ ∧ νβ � η}

(b2) If α = β + 1 < κ<κ and νβ /∈ spl(pβ) then pα = pβ .
(c) pα = ⋂{pβ : β < α} for limit α ≤ κ<κ .

Then for any λ ≤ κ<κ , pλ ∈ Q
2
κ and ∀β < λ, pλ ≤Q2

κ
pβ .

Proof We go by induction on λ. The case λ = 0 and the successor steps are obvious.
So we assume that λ ≤ κ<κ is a limit ordinal and pα ∈ Q

2
κ for α < λ. Since ∅ ∈ pλ,

pλ is not empty, and pλ clearly is a tree. Let t ∈ pλ. We show that there is t ′ � t that
is a splitting node in pλ.

We fix the smallest α such that να �p0 t is a splitting node in p0. Then in p0 there
are no splitting nodes in {s : t � s 	 να}. Hence να ∈ spl(pβ) for any β ∈ [0, λ].

Now we show that the limit of splitting nodes in pλ is a splitting node. Let γ < λ

and let 〈νi : i < γ 〉 be an 	-increasing sequence of splitting nodes of pλ with
union ν ∈ κ<κ . Then ν is a splitting node of each pα , α < λ, and also in pλ since
〈set pα (ν) : α < λ〉 has at most two entries and their intersection has size κ . ��

We use yet another, richer type of fusion sequence.

Definition 3.3 Let p ∈ Q
2
κ and let ν ∈ spl(p).
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A version of κ-Miller forcing 885

(1) We say η is the shortest splitting node above ν in p and write η = sucsplp(ν) if η

is the shortest splitting node in p such that η ⊇ ν. Equality is allowed and occurs
if ν is a splitting node.

(2) We say F ⊆ p is the front of next splitting nodes above ν in p, if

F = {η′ ∈ spl(p) : ∃(η ∈ sucp(ν))(η′ = sucsplp(η))}.

Lemma 3.4 Let 〈να : α < κ<κ 〉 be an injective enumeration of κ<κ such that

να 	 νβ → α < β. (3.2)

Let 〈pα, να, cα, Fα : α < κ<κ 〉 be a sequence such that for any α ≤ λ the following
holds:

(a) p0 ∈ Q
2
κ .

(b1) If α = β + 1 < κ<κ and νβ ∈ sp(pβ), then cβ ∈ [sucpβ (νβ)]κ , Fβ contains for

each i ∈ cβ exactly one η ∈ spl(p
〈νβ ˆ〈i〉〉
β ), and

pα = pβ(νβ, cβ, Fβ) :=
⋃

{p〈η〉
β : i ∈ cβ, η ∈ Fβ}

∪
⋃

{p〈η〉
β : η � νβ ∧ νβ � η}.

Note that this implies that Fβ is the front of next splitting nodes of pα above νβ .
(b2) If α = β + 1 < κ<κ and νβ /∈ spl(pβ) then pα = pβ .
(c) pα = ⋂{pβ : β < α} for limit α ≤ κ<κ .

Then for any λ ≤ κ<κ , pλ ∈ Q
2
κ and ∀β < λ, pλ ≤Q2

κ
pβ .

Proof We go by induction on λ. The case λ = 0 and the successor steps are obvious.
So we assume that λ ≤ κ<κ is a limit ordinal and pα ∈ Q

2
κ for α < λ. Since ∅ ∈ pλ,

pλ is not empty, and pλ clearly is a tree. Let t ∈ pλ. We show that there is t ′ � t that
is a splitting node in pλ.

We fix the smallest α such that να �p0 t is a splitting node in p0. Then in p0 there
are no splitting nodes in {s : t � s 	 να}. Hence να ∈ spl(pβ) for any β ∈ [0, λ].

Now we show that the limit of splitting nodes in pλ is a splitting node. Let γ < λ

and let 〈νi : i < γ 〉 be an 	-increasing sequence of splitting nodes of pλ with
union ν ∈ κ<κ . Then ν is a splitting node of each pα , α < λ, and also in pλ since
〈set pα (ν) : α < λ〉 has at most two entries and their intersection has size κ . ��

In the special case Fβ = {νβ ˆ〈 j〉 : j ∈ cβ}, the construction of Lemma 3.4
coincides with the simpler construction from Lemma 3.2.

Definition 3.5 We assume Q
1
κ collapses 2κ to ω. Let τ˜ and T = 〈(aη, nη, 
) : η ∈

ω>(2κ)〉 be as in Lemma 2.5. Now let QT be the set of κ-Miller trees p such that for
every ν ∈ spl(p) there is ηp,ν = ην ∈ ω>(2κ) such that

set p(ν) = {ε ∈ κ : νˆ〈ε〉 ∈ p} = aην . (3.3)
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886 H. Mildenberger, S. Shelah

By the properties of T , the node ηp,ν is unique.

Lemma 3.6 Assume that Q
1
κ collapses 2κ to ω, let T be chosen as in Lemma 2.5, and

let QT be defined from T as above. Then QT is dense in Q
2
κ .

Proof Let p0 = T ∈ Q
2
κ . Let 〈να : α < κ<κ 〉 be an injective enumeration of κ<κ

with property (3.1). We now define fusion sequence 〈pα, να, cα : α ≤ κκ 〉 according
to the pattern in Lemma 3.2 in order to find pκ<κ ≥ T such that pκ<κ ∈ QT .

Suppose that pα and να are given. If να is not in pα or is not a splitting node in pα ,
then we let pα+1 = pα . If να ∈ spl(pα), then according to Lemma 2.5 clause (d) there
is η ∈ ω>(2κ) such that sucpα (να) ⊇ aη. We choose such an η of minimal length and
call it η(α).

Then we strengthen pα to

pα+1 =
⋃

{p〈ν′〉
α : ν′ = ναˆ〈i〉 ∧ i ∈ aη(α)}∪

⋃
{p〈η〉

α : η � να ∧ να � η}.
(3.4)

Now we have that

ηpα+1,να = η(α), cα = aη(α).

For limit ordinals λ ≤ κ<κ , we let pλ = ⋂{pβ : β < λ}. Since the sequence
〈pα, να, cα : α ≤ κ<κ 〉 matches the pattern in Lemma 3.2, we have pκ<κ ∈ Q

2
κ . By

construction, for any α < κ<κ for any δ ∈ [α + 1, κ<κ), να ∈ spl(pδ) implies

set pα+1(να) = set pδ (να) = aη(α).

Hence the condition p = pκ<κ fulfils Equation (3.3) in its splitting node να with
witness ηp,να = η(α). Since all nodes are enumerated, we have pκ<κ ∈ QT . ��

We use only the inclusion set p(ν) ⊆ aην from Definition 3.5.

Definition 3.7 We assume that Q
1
κ collapses 2κ to ω and the T is as in Lemma 2.5.

For T ∈ QT and a splitting node ν of T we set 
T ,ν := 
ηT ,ν
∈ ω>(2κ). Recall ηT ,ν

is defined in Def. 3.5, and 
 is a component of T .

For p ∈ QT , the relation ν � ν′ ∈ p does neither imply ην � ην′ nor 
ν � 
ν′ .
However, ην 	 ην′ implies aην ⊃ aην′ and 
ν 	 
ν′ .

Observation 3.8 Weassume thatQ1
κ collapses 2

κ toω. Let p1, p2 ∈ QT . If p1 ≤Q2
κ
p2

then for ν ∈ spl(p2) we have ν ∈ spl(p1) and 
p1,ν � 
p2,ν .

We introduce dense sets:

Definition 3.9 We assume that Q
1
κ collapses 2κ to ω. Let n ∈ ω.

Dn = {
p ∈ QT : (∀ν ∈ spl(p))(dom(
p,ν) > n)}.
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A version of κ-Miller forcing 887

Dn is open dense in QT and the intersection of the Dn is empty.
Recall, by Lemma 3.6 we can work with the dense subforcing QT of Q

2
κ . The

following technical lemma is the next step of a transformation of a Q
1
κ -name of a

surjection from ω onto 2κ into a QT -name of such a surjection. The coordinate γ̄α

and the clauses (d), (e), (f) are used for a counting argument in the induction steps.
Later, only the coordinates pα , nα , and clauses (a), (b), (c) and Remark 3.11 will be
used.

Lemma 3.10 We assume that Q
1
κ collapses 2κ to ω, cf(κ) > ω and 2(κ<κ ) = 2κ . Let

〈Tα : α < 2κ 〉 enumerate Q
2
κ such that each Miller tree appears 2κ times. There is

〈(pα, nα, γ̄α) : α < 2κ 〉 such that

(a) nα < ω,
(b) pα ∈ Dnα ⊆ QT and pα ≥ Tα .
(c) If β < α and nβ ≥ nα then pβ ⊥ pα .
(d) γ̄α = 〈γα,ν : ν ∈ spl(pα)〉.
(e) (∀ν ∈ spl(pα))(aηpα,ν �Q1

κ
γα,ν ∈ range(
pα,ν)).

(f) γα,ν ∈ 2κ \ W<α,ν with

W<α,ν =
⋃

{range(
pβ ,ν) : β < α, ν ∈ spl(pβ)}.

Proof Assume that 〈(pβ, nβ, γ̄β) : β < α〉 has been defined and we are to define
(pα, nα, γ̄α). Note that the pβ need not be increasing in strength.

(⊕)1 The choice of the aη in Lemma 2.5 and the choice QT and of ηpβ ,ν for ν ∈
spl(pβ), β < α, imply that the set W<α,ν is well defined and of cardinality
≤ |α| + ℵ0 < 2κ . Hence we can choose γα,ν ∈ 2κ \ W<α,ν .

(⊕)2 With the fusion Lemma 3.2 we choose qα ≥ Tα , qα ∈ QT , such that

(∀ν ∈ spl(qα))(aηqα,ν �Q1
κ

γα,ν ∈ range(
qα,ν)).

(⊕)3 Let q ∈ Q
2
κ . For n ∈ ω and ν ∈ spl(q) we let

Uα,ν,n(q) = {β < α : nβ = n, ν ∈ spl(pβ) ∧ | setq(ν) ∩ set pβ (ν)| = κ}.
Uα,ν(q) =

⋃
{Uα,ν,n(q) : n ∈ ω}.

(⊕)4 (a) If n ∈ ω and ν ∈ spl(qα) then

β ∈ Uα,ν(qα) → 
pβ ,ν � 
qα,ν .

This is seen as follows.We let a = set pβ (ν)∩setqα (ν). Since β ∈ Uα,ν(qα), a ∈
[κ]κ . Clearly a �Q1

κ
τ˜ � 
pβ ,ν, 
qα,ν . So either 
pβ ,ν 	 
qα,ν or 
pβ ,ν � 
qα,ν .

However, since γα,ν ∈ range(
qα,ν) \ W<α,ν , only 
qα,ν � 
pβ ,ν is possible.
(b) So for ν ∈ spl(qα), the set {
pβ ,ν : β ∈ Uα,ν(qα)} has at most dom(
qα,ν)

elements.
(c) The assigment β �→ 
pβ ,ν is is defined between Uα,ν(qα) and {
pβ ,ν : β ∈
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Uα,ν(qα)}. According to properties (e) and (f) in the induction hypothesis, the
assigment is injective, and hence
|Uα,ν(qα)| ≤ dom(
qα,ν).
(d)We state for further use thatUα,ν(qα) is finite and for any q ≤ qα ,Uα,ν(q) ⊆
Uα,ν(qα).

(⊕)5 We look at the cone above qα and show:

(∀q ≥ qα)(∀ν ∈ spl(q))(∃rα,ν ≤Q2
κ
q)

(∃c ∈ [setq(ν)]κ)(∃F ⊆ {η ∈ spl(q) : η � ν})
(
rα,ν = q(ν, c, F) ∧ (∀β ∈ Uα,ν(qα))(r 〈ν〉

α,ν ⊥ p〈ν〉
β ∨ p〈ν〉

β ≥ r 〈ν〉
α,ν)

)
.

(3.5)

How do we find rα,ν = rα,ν(q)? Given q ≤Q2
κ
qα , ν ∈ spl(q) we enumerate

Uα,ν(qα) as β0, …, βk−1. We let r0 = q and by induction on i ≤ k we define ri ,
increasing in strength, with ν ∈ spl(ri ) and ci = setri (ν). Thus the ci are⊆-decreasing
sets of size κ . Given ri , we distinguish cases:

First case: βi /∈ Uα,ν(ri ). Then there is ci+1 ∈ [setri (ν)]κ , ci+1 ∩ set pβi
(ν) = ∅.

We let ri+1 = ri (ν, ci+1) and thus have r 〈ν〉
i+1 ⊥ pβi .

Second case: βi ∈ Uα,ν(ri ). We let

ci = { j ∈ setri (ν) : r 〈νˆ〈 j〉〉
i ≤ p〈νˆ〈 j〉〉

βi
} ∪ { j ∈ setri (ν) : r 〈νˆ〈 j〉〉

i 
≤ p〈νˆ〈 j〉〉
βi

}.

If ci,1 = { j ∈ setri (ν) : r 〈νˆ〈 j〉〉
i ≤ p〈νˆ〈 j〉〉

βi
} has size κ , then we let ci+1 = c1,i and

ri+1 = ri (ν, ci+1) and thus get r 〈ν〉
i+1 ≥ pβi .

If |ci,1| < κ , then ci,2 = { j ∈ setri (ν) : r 〈νˆ〈 j〉〉
i 
≤ p〈νˆ〈 j〉〉

βi
} has size κ , and we

let ci+1 = ci,2. For j ∈ ci+1, r
〈νˆ〈 j〉〉
i 
≤ p〈νˆ〈 j〉〉

βi
. Thus we can find a node in the

r 〈νˆ〈 j〉〉
i \ p〈νˆ〈 j〉〉

βi
and above this node we find a splitting node of ri . We take this latter

splitting node into ri+1 as the direct successor splitting node to νˆ〈 j〉. Doing so for
every j ∈ ci+1 we get Fν,i , a front strictly above ν in ri+1 = ri (ν, ci+1, Fν,i ). Again
we get r 〈ν〉

i+1 ⊥ pβi .
In the end we let rα,ν = rk . There is a front F that contains for each j ∈ ck the

shortest splitting node of rk above νˆ〈 j〉. Thus we have rk = rα,ν = q(ν, ck, F) and
rα,ν fulfils (3.5).

(⊕)6 Now we use (⊕)5 iteratively along all ν ∈ κ<κ to find a fusion sequence
〈rα,ν, ν, cν, Fν : ν < κ<κ 〉 with starting point qα = r0,ν0 . In this sequence,
rα,ν is chosen as rα,ν(q) in ⊕5 for q = ⋂

β<α rβ , if ν ∈ spl(q). If ν /∈ spl(q),
then rα,ν = q. Then we apply the fusion Lemma 3.4 and get an lower bound rα
of rα,ν , ν ∈ κ>κ . Note r 〈ν〉

α ⊥ pβ iff r 〈ν〉
α ⊥ p〈ν〉

β and r 〈ν〉
α ≤ pβ iff r 〈ν〉

α ≤ p〈ν〉
β .

Hence rα ≥ qα and

(∀ν ∈ spl(rα))(∀β ∈ Uα,ν(qα))(r 〈ν〉
α ⊥ pβ ∨ pβ ≥ r 〈ν〉

α ).
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(⊕)7 Finally we choose nα and pα . There are k and ν such that n < ω and ν ∈ spl(rα)

such that pα = r 〈ν〉
α fulfils

(∀β < α)(nβ ≥ k → pα ⊥ pβ).

Proof of existence. By induction on k ∈ ω we try to find 〈νk, βk : k ∈ ω〉 such
that
(a) νk ∈ spl(rα),
(b) νk 	 νm for k < m,
(c) βk < α and nβk ≥ k and r 〈νk 〉

α ≤ pβk .
If we succeed, then ν∗ = ⋃{νk : k ∈ ω} = ν∗ ∈ spl(rα) by Definition 1.1 (2).
Here we use that cf(κ) > ω. Hence

r 〈ν∗〉
α ∈ QT ∩

⋂
{Dk : k < ω} and

aηrα,ν∗ determines in �Q1
κ
for any k < ω the value of τ˜ � k.

This is a contradiction.

So there is a smallest k such that νk cannot be defined. We let nα = k. We let pα

be a strengthening of r 〈νk−1〉
α such that pα ∈ Dnα . For finding such a strengthening we

again invoke the fusion Lemma 3.2.
We show that pα ⊥ pβ for β < α with nβ ≥ k. Otherwise, having arrived at r 〈νk−1〉

α

we find some βk, α such that nβk ≥ k and r 〈νk−1〉
α is compatible with pβk . Then we

can prolong νk−1 to a splitting node νk ∈ spl(pβk ) ∩ spl(rα). By the choice of rα the

latter implies that r 〈νk 〉
α ≤ pβk . However, now we would have found νk, βk as required

in contradiction to the choice of k. ��
Remark 3.11 Conditions (a) to (c) of Lemma 3.10 yield: For any k < ω,

{pα : nα ≥ k} is dense in Q
2
κ .

Proof Let k and p be given. There is α0 such that Tα0 ∈ D0 and Tα0 ≤Q2
κ
p. Then

pα0 ≤ Tα0 and nα0 ≥ 0. Then there isα1 > α0 such that Tα1 ≤Q2
κ
pα0 . Then pα1 ≤ Tα1

and hence by condition (c), nα1 > nα0 ≥ 0. We can can repeat the argument k − 1
times. ��

Now we drop the component γ̄α from a sequence 〈pα, nα, γ̄α : α < 2κ 〉 given by
Lemma 3.10. Then we get a sequence with properties (a), (b), and a weakening (c)
with the property stated in the remark. This sequence, combined with 2(2<κ) = 2κ ,
allows to define a Q

2
κ -name of a collapse.

Lemma 3.12 We assume that Q
1
κ collapses 2κ to ω, cf(κ) > ω and 2(2<κ) = 2κ .

Let 〈Tα : α < 2κ 〉 enumerate all Miller trees that such each tree appears 2κ times.
Assume that 〈(pα, nα) : α < 2κ 〉 are such that

(a) nα < ω,
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(b) pα ∈ Dnα ⊆ QT and pα ≥ Tα ,
(c) if β < α and nβ = nα then pβ ⊥ pα ,
(d) for any k ∈ ω, {pα : nα ≥ k} is dense in Q

2
κ .

Then there is a Q
2
κ -name τ˜

′ for a surjection of ω onto 2κ .

Proof LetG be aQ
2
κ -generic filter overV.We define τ˜ (n), aQ

2
κ -name by τ˜ (n)[G] = α

if pα ∈ G and nα = n. The name τ˜ is a name of a function by (c). By (d), the domain
of τ˜ is forced to be infinite. For any p ∈ Q

2
κ we let Up = {α : Tα = p}. Up is of

size 2κ , in particular for α ∈ 2κ we have |Upα | = 2κ and Upα contains the antichain
{pδ(α,i) : i < 2κ }. Hence there is f : 2κ → 2κ in V[G] such that for any γ, α ∈ 2κ

there is β = δ(α, γ ) ∈ Upα for some function δ : 2κ × 2κ → 2κ with f (β) = γ

forced by pδ(α,γ ). We let

τ ′
˜ = f (τ˜ ) = {〈(nα, γ ), pδ(α,γ )〉 : α, γ ∈ 2κ}.

Next we show

Q
2
κ � range(τ ′

˜ ) = 2κ .

Suppose p ∈ QT and γ < 2κ are given. By construction the sequence {pβ : β < 2κ }
is dense. Let p ≤ pα . Then there is β = δ(α, γ ) ∈ Upα pδ(α,γ ) ≤ pγ , with f (α) = γ .
However, δ(α, γ ) = β ∈ Upα means Tβ = pα ≥ pβ by construction. By the definition
of τ˜ , pβ � τ˜ (nα) = α, so pβ � ( f (τ˜ ))(nα) = γ . ��

So we can sum up:

Theorem 3.13 We assume that Q
1
κ collapses 2κ to ω and cf(κ) > ω and 2(κ<κ ) = 2κ .

Then the forcing with Q
2
κ collapses 2κ to ℵ0.

4 �-Cohen reals and the Levy collapse

Many κ-tree forcings add a κ-Cohen real, sometimes even if their ω-version does not
add aCohen real. Also our forcingQ

2
κ is of this kind. ClassicalMiller forcing preserves

P-points and hence does not add a Cohen real. In this section we show that under the
above conditions, Qκ

2 add a κ-Cohen real and is equivalent to the Levy collapse of 2κ

to ℵ0.

Lemma 4.1 If Q
2
κ collapses 2κ to ℵ0, cf(κ) > ℵ0, and 22

<κ = 2κ , then Q
2
κ adds a

κ-Cohen real.

Proof Let G be Q
2
κ -generic overV. Let f : ω → 2<κ be a function inV[G], such that

(∀η ∈ 2<κ)(∃∞k f (k) = η). Such a function exists since 2<κ ≤ 2κ .
Since 22

<κ = 2κ , we can enumerate all antichains in C(κ) in α∗ ≤ 2κ many steps.
In V[G], α∗ is countable. We list it as 〈αn : n < ω〉. Now we choose ηn ∈ C(κ)V by
induction on n in V[G]: η0 = ∅. Given ηn we choose kn such that f (kn) = ηn and
then we choose ηn+1 � ηn , such that ηn+1 ∈ Iαn . Then {η : (∃n < ω)(η � f (kn))}
is aC(κ)-generic filter overV and it exists in V [G], since it is definable from { f (kn) :
n < ω}. ��
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Two forcings P1, P2 are said to be equivalent if their regular open algebras RO(Pi )

coincide (for a definition of the regular open algebra of a poset, see, e.g., [3, Corol-
lary 14.12]). Some forcings are characterised up to equivalence just by their size and
their collapsing behaviour.

Lemma 4.2 [3, Lemma 26.7]. Let (Q,<) be a notion of forcing such that |Q| = λ >

ℵ0 and such that Q collapses λ onto ℵ0 , i.e.,

1Q �Q |λ̌| = ℵ0.

Then RO(Q) = Levy(ℵ0, λ).

Lemma 4.3 If Q
1
κ collapses 2κ to ℵ0, then Q

1
κ is equivalent of Levy(ℵ0, 2κ ).

Proof Q
1
κ has size 2κ . Hence Lemma 4.2 yields RO(Q1

κ) = Levy(ℵ0, 2κ). ��
Definition 4.4 ABoolean algebra is (θ, λ)-nowhere distributive if there are antichains
p̄ε = 〈pε

α : α < αε〉 of P for ε < θ such that for every p ∈ P for some ε < θ

|{α < αε : p 
⊥ pε
α}| ≥ λ.

Definition 4.5 Let B be a Boolean algebra. We write B+ = B \{0}. A subset D ⊆ B+
is called dense if (∀b ∈ B+)(∃d ∈ D)(d ≤ b). The density of a Boolean algebra B is
the least size of a dense subset of B. A Boolean algebra B has uniform density if for
every a ∈ B+, B � a has the same density. The density of a forcing order (P,≤P) is
the density of the regular open algebra RO(P).

Lemma 4.6 [1, Theorem 1.15] Let θ < λ be regular cardinals.

(1) Suppose that P has the following properties (a) to (c).

(a) P is a (θ, λ)-nowhere distributive forcing notion,
(b) P has density λ,
(c) in case θ > ℵ0, P has a θ -complete dense subset S. The latter means: (∀B ∈

[S]<θ )(∃s ∈ S)(∀b ∈ B)(b ≤P s).

Then P is equivalent to Levy(θ, λ).

(2) Under (a) and (b) P collapses λ to θ (and may or may not collapse λ to ℵ0).

Proposition 4.7 If there is a κ-mad family of size 2κ the forcingQ
1
κ is (ℵ0, 2κ)-nowhere

distributive.

Proof Lemma 2.5 gives T such that p̄n = {aη : η ∈ n(2κ)}, n ∈ ω, witnesses
(ℵ0, 2κ)-nowhere distributivity. ��

By Lemma 4.2 and Theorem 3.13 we get:

Proposition 4.8 If Q
1
κ collapses 2κ to ℵ0, cf(κ) > ℵ0 and 2(κ<κ ) = 2κ then Q

2
κ is

equivalent to Levy(ℵ0, 2κ ).
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