Appendix: On stationary set

We represent the relevant facts from [Sh 6] (hopefully in a better way) and add slightly.
This was written essentially by accident.

1. Definition: 1) For λ regular, a set $S \subseteq \lambda$ is called good if there is a sequence $\bar{a}=\left\langle a_{i}: i<\lambda\right\rangle, a_{i}$ a subset of λ, such that for some closed unbounded $C \subseteq \lambda$:
$C \cap S \subseteq S_{\lambda}^{* q}[\bar{a}]=\left\{\gamma:(\exists a \subseteq \gamma)\left[\gamma=\sup a \wedge \operatorname{otp}(a)<\gamma \wedge(\forall \alpha<\gamma)(\exists i<\gamma) a \cap \alpha=a_{i}\right]\right.$ or $\left.\gamma=c f \gamma\right\}$ We say $\left\langle a_{i}: i<\lambda\right\rangle$ witness the goodness of S, and C exemplify this (p stands for positive, q for a variant n for negative.)
2) $I[\lambda]$ is the family of good subsets of α.
2. Lemma: 1) We can in 1.1 replace a_{i} by $\mathcal{P}_{i},\left|\mathcal{P}_{i}\right|<\lambda, \mathcal{P}_{i} \subseteq\{a: a \subseteq \lambda$ is bounded, and " $a \cap \alpha=a_{i}$ " by " $a \cap \alpha \in \mathcal{P}_{i}$ " (and get an equivalent definition). [see 4) and 5) below]
2) we can demand in 1(1) that a has order type $\mathrm{cf}(\gamma)$ and $a_{i} \subseteq i$.
I.e. if for λ, \bar{a} as in Definition 1(1) we let $S_{\lambda}^{* p}[\bar{a}]=\{\gamma<\lambda$: there is $a \subseteq \gamma$ of order type $c f \gamma$ such that $\operatorname{otp}(a)=c f(\gamma), \quad \sup a=\gamma$ and $\left.(\forall \alpha<\gamma)(\exists i<\gamma)\left[a \cap \alpha=a_{i}\right]\right\}$ we can use $S_{\lambda}^{* q}[\bar{a}]$ instead of $S_{\lambda}^{* p}[\bar{a}]$ in defining "a good set" (and hence $I[\lambda]$).
3) if $\left\langle a_{i}: i<\lambda\right\rangle$ witness the goodness of $S \subseteq \lambda$ and $\left\{a_{i}: i<\lambda\right\} \subseteq\left\{b_{i}: i<\lambda\right\} \subseteq \mathscr{P}(\lambda)$ then $\left\langle b_{i}: i<\lambda\right\rangle$ witness the goodness of S. In fact $S_{x}^{* p}\left(\left\langle b_{i}: i<\lambda\right\rangle\right) \subseteq S_{\lambda}^{* p}\left(\left\langle a_{i}: i<\lambda\right\rangle\right) \bmod D_{\lambda}$.
4) $\left\langle a_{i}: i<\lambda\right\rangle$ witness that $S \subseteq \lambda$ is good iff $\left\langle\left\{a_{i}\right\}: i<\lambda\right\rangle$ witness that S is good.
5) If $\bar{P}^{\ell}=\left\langle\mathcal{P}_{i}^{\ell}: i<\lambda\right\rangle$ are as in $2(1)$ for $\ell=1,2$ and $\bigcup_{i} \mathscr{P}_{i}^{1} \subseteq \bigcup_{i} \mathcal{P}_{i}^{2}$ and \bar{P}^{1} witness that $S \subseteq \lambda$ is good then also \bar{T}^{2} witnesses it.
6) For λ uncountable regular, $\{\delta<\lambda: \delta$ a (weakly) inaccessible cardinal $\}$ belongs to $I[\lambda]$.

Proof: Trivial, e.g.
2) Let $\left\langle a_{i}: i<\lambda\right\rangle$ witness $S \subseteq \lambda$ is good.

For every limit $\delta<\lambda$ choose a closed unbounded subset C_{δ} of δ of order type $c f \delta$; let for $i<\lambda, \delta<\lambda, a_{i, \delta}=\left\{j \in a_{i}\right.$: the order type of $a_{i} \cap j$ belongs to $\left.C_{\delta}\right\}$.

Let $\left\{a_{i, \delta}: i<\lambda, \delta<\lambda\right\} \cup\{\{i: i<\alpha\}: \alpha<\lambda\}=\left\{b_{i}: i<\delta\right\}$, let C exemplify $\left\langle a_{i}: i<\lambda\right\rangle$ witness the goodness of S.

Let $C_{0}=\left\{\alpha \in C\right.$: for every $i<\alpha$ and limit $\delta<\alpha$ there is $\zeta<\delta$ such that $b_{\zeta}=a_{i, \delta}$ (if defined and α is a limit ordinal)\}.

Clearly $C_{0} \subseteq C$ is closed unbounded in λ. Now for any $\gamma \in C_{0} \cap S$ we know there is a set $a \subseteq \gamma \operatorname{such}$ that $\sup (a)=\gamma, \operatorname{otp}(a)<\gamma, \alpha \cap a=a_{i(\alpha)}$ for $\alpha \in a$ and $i(\alpha)$ is an ordinal $<\gamma$. Let $a^{*}=\left\{i \in a: \operatorname{otp}(a \cap \alpha) \in C_{o t p(a)}\right\}$. Now a^{*} is as required.
3. Lemma: 1) $I[\lambda]$ is a normal ideal, which include all non-stationary subsets of λ.
2) If $\lambda=\lambda^{<\lambda}$, then for some $S_{\lambda}^{* n} \subseteq \lambda$:
$I[\lambda]=\left\{S \subseteq \lambda: S \cap S_{\lambda}\right.$ is not stationary $\}=\left\{S \subseteq \lambda:\left\langle a_{i}: i<\lambda\right\rangle\right.$ witness S is good $\}$
for any $\left\langle a_{i}: i<\lambda\right\rangle$ enumerating $\{a \subseteq \lambda:|a|<\lambda\}$.
3) Always there is $S_{\lambda}^{* n} \subseteq T_{\lambda} \stackrel{\text { def }}{=}\{\delta<\lambda: \lambda<c f \delta=\lambda\}$ such that $S \in I[\lambda] \wedge S \subseteq T_{\lambda} \Leftrightarrow S \subseteq \lambda \wedge S \cap S_{\lambda}^{* n}$ not stationary.

Proof: Easy.

4. Lemma: 1) If λ is regular, $\kappa<\lambda,(\forall \alpha<\lambda)|\alpha|^{<\kappa}<\lambda$ (e.g., $\lambda=\mu^{+}, \mu=\mu^{<\kappa}$) then $\{\delta<\lambda: c f(\delta) \leq \kappa\} \in I[\lambda]$
2) Suppose $\lambda=\mu^{+}, c f(\mu)<\kappa<\mu$ and $(\forall \theta<\kappa)(\forall \chi<\mu)\left[\chi^{\theta}<\mu\right]$. Then there is $S \in I[\lambda]$ such that:
${ }^{(*)}$ if $\delta<\lambda, \theta<\kappa$, and $c f \delta=\left(2^{\theta}\right)^{+}$or even just $(\forall \alpha<c f(\delta))\left[|\alpha|^{\theta}<c f(\delta)\right]$ then for some closed unbounded $C_{\delta} \subseteq \delta,(\forall \alpha)\left[\alpha \in C_{\delta} \wedge c f(\alpha) \leq \theta \rightarrow \alpha \in S\right]$.
3) For λ, μ, κ as in (2), there is a 2 -place function c from λ to $c f \mu$ such that:
(a) for $\alpha<\beta<\gamma, c(\alpha, \gamma) \leq \operatorname{Max}\{c(\alpha, \beta), c(\beta, \gamma)\}$.
(b) $|\{\alpha<\beta: c(\alpha, \beta)=\gamma\}|<\mu$.
(c) $S_{\lambda}^{* p}[c] \stackrel{\text { def }}{=}\{\delta<\lambda: \delta$ has cofinality $\leq \kappa$ and there is an unbounded $a \subseteq \delta$ such that $c \upharpoonright a$ is bounded in $c f \mu$ (i.e. $(\exists \gamma<c f \mu)(\forall \alpha, \beta \in a)[\alpha<\beta \rightarrow c(\alpha, \beta)<\gamma]\}$ belongs to $I[\lambda]$.

Proof: Note that 4(1), is easy, and 4(2) follows from 8(1), 4(3). It is easy to satisfies (a), (b) of (4) and (c) follows [choose an increasing sequence $\left\langle\mu_{i}: i\langle c f \mu\rangle\right.$ such that $\mu=\Sigma\left\{\mu_{i}: i<c f \mu\right\}$, and then define by induction on $\beta,\langle c(\alpha, \beta): \alpha<\beta\rangle$ such that (a) holds and
(b) ${ }^{+} \quad|\{\alpha<\beta: c(\alpha, \beta)=\gamma\}|=\mu_{\gamma}$.

Why (c) follows from (a) + (b)? Clearly for $\alpha<\lambda, \quad i<c f(\mu), \quad \mathcal{P}_{\alpha, i}=\{a: a$ as a subset of $\{\beta: \beta<\alpha$ and $c(\beta, \alpha)<i\}$ of cardinality $<\kappa\}$ has cardinality $\leq \mu$, so $\mathcal{P}_{\alpha}=\underset{i<c f \mu}{\cup} \mathcal{P}_{\alpha, i}$ has cardinality $\leq \mu$. Now $S_{\lambda}^{* p}\left[\left\langle\mathcal{P}_{\alpha}: \alpha<\lambda\right\rangle\right]$ is a subset of $S_{\lambda}^{* p}[c]$.

There are no problems].
5. Remark: 1) In 4(2), 4(3) we can replace $\lambda=\mu^{+}$by $\lambda=\mu^{+\alpha}$, as α increases we get less information. See [Sh 6] xx.
2) In (3) really (a) + (b) implies (c) and note (7) below.
6. Definition: 1) A two place function c from an ordinal ζ to an ordinal ξ is called subadditive if:
for $\alpha<\beta<\gamma<\zeta \quad c(\alpha, \gamma) \leq \operatorname{Max}\{c(\alpha, \beta), c(\beta, \gamma)\}$
and $c(\alpha, \beta)=c(\beta, \alpha), c(\alpha, \alpha)=0$

Suppose

$\left(^{*}\right) c$ is a two place function from λ to θ, c subadditive.

Then for some closed unbounded $C \subseteq \lambda$, for every $\delta \in S \cap C$ of cofinality $>\theta$,
$\left({ }^{* *}\right)_{\delta}$ there is $A \subseteq \delta$, such that $\sup A=\delta$, and $\sup \{c(\alpha, \beta): \alpha<\beta, \alpha \in A, \beta \in A\}<\theta$.
3) We say λ is θ-sawc (sub-additively weakly compact) if: for every subadditive two place function d from λ to θ, there is an unbounded subset A of λ such that $\sup \{c(\alpha, \beta): \alpha<\beta, \alpha \in A, \beta \in A\}<\theta$.
7. Fact: In Definition $6(2)$ the following demand on $\delta \in S \cap C$ is equivalent to $\left(^{* *}\right)_{\delta}$ when $c f(\delta)>\theta$:
$\left({ }^{* *}\right)_{\delta}^{\prime}$ there are $\alpha_{i}, \beta_{i}<\delta \quad$ for $i<c f(\delta), \quad \delta=\bigcup_{i} \alpha_{i}=\bigcup_{i} \beta_{i} \quad$ and $\sup \left\{c\left(\alpha_{i}, \beta_{j}\right): i<j<c f(\delta)\right\}<\theta$.
 $\sup \left\{\beta_{j}: j<i\right\}<\alpha_{i}<\beta_{i}$, they are as required.

If $\alpha_{i}, \beta_{i}(i<c f(\delta))$ are as in $\left({ }^{* *}\right)_{\delta}^{\prime}$, w.l.o.g. $\left[j<i \Rightarrow \alpha_{i}<\beta_{i}<\alpha_{j}<\beta_{j}\right]$, so as $c f(\delta)>\theta$ for some $\gamma_{1}<\theta$

$$
B \stackrel{\operatorname{def}}{=}\left\{i: c\left(\beta_{i}, \alpha_{i+1}\right)=\gamma_{1}\right\}
$$

is unbounded below $c f(\delta)$. Let

$$
\gamma_{0}=\sup \left\{c\left(\alpha_{i}, \beta_{j}\right): i<j<c f(\delta)\right\}<\theta
$$

Now $A=\left\{\beta_{i}: i \in B\right\}$ is as required: for $j<i$ in B

$$
\begin{gathered}
c\left(\beta_{j}, \beta_{i}\right) \leq \operatorname{Max}\left\{c\left(\beta_{j}, \alpha_{j+1}\right), c\left(\alpha_{j+1}, \beta_{i}\right)\right\} \leq \\
\operatorname{Max}\left\{\gamma_{1}, \gamma_{0}\right\}
\end{gathered}
$$

8. Lemma: 1) Suppose λ, μ, κ are as in $4(2)$ (so 4(3)) and $\lambda \rightarrow p^{(S)_{c f(\mu)}^{2} \text {, }}$ $S \subseteq\{\delta<\lambda: c f \delta<\kappa\}$ then $S \in I[\lambda]$.
2) If $(\forall \sigma)\left[\sigma^{+}<\mu \rightarrow 2^{\sigma}<\lambda\right], S \subseteq\{\delta<\lambda: c f \delta<\mu\}, S \in I[\lambda]$ and λ, θ are regular then
$\lambda \rightarrow p(S)_{\theta}^{2}$.
3) Suppose λ, μ, κ are as in 4(2), c as in 4(3) (a),(b). Then for any $\delta<\lambda$ and $S \subseteq c f \delta$, there is an increasing continuous function $h: c f(\delta) \rightarrow \delta, \delta=\sup \{h(i): i<c f(\delta)\}$, and a club $c \subseteq \delta$ such that

$$
\left[c f \delta \rightarrow p^{\left.(S)_{c f \mu}^{2} \Rightarrow c \cap h^{\prime \prime}(S) \subseteq S_{\lambda}^{* p}[c]\right]}\right.
$$

9. Remark: Particularly assuming G.C.H. 4(3), 8(1), 8(2), 8(3) fits nicely.

Proof of 8: 1) Let c be a two place function satisfying 4(3) (a) + (b). By Definition 6, there is a closed unbounded $C \subseteq \lambda$ such that for $\delta \in C \cap S$ of cofinality $>c f(\mu),\left({ }^{* *}\right)_{\delta}$ hold. Now $\{\delta<\lambda: c f \delta \leq c f(\mu)\} \leq T_{\lambda} \quad\left[\right.$ by $\quad 4(2) \quad$ as $\quad \mu^{<c f \mu} \leq \sum_{\substack{\chi<\mu \\ \theta<c f \mu}} \chi^{\theta} \leq \sum_{\chi<\mu} \chi^{<\kappa} \quad$ hence $\left.\lambda^{<c f \mu}=\left(\mu^{+}\right)^{<c f \mu}=\mu^{+}=\lambda\right]$ so we can assume $c f(\delta)>c f(\mu)$. Now $\left({ }^{* *}\right)_{\delta}$ implies $\delta \in S_{\lambda^{* p}}[c]$ (see 4(3)(c)), so by 4(3) we finish.
2) Let c be a two place function from λ to θ, subadditive. Let χ be regular large enough, and w.l.o.g. let $\left\langle a_{i}: i<\lambda\right\rangle$ exemplify $S \in I[\lambda]$ witnessed by C_{0} with $\operatorname{otp}\left(a_{i}\right)<\mu$ (see 2(2) above). Let $\left\langle N_{i}: i<\lambda\right\rangle$ be increasing continuous such that $N_{i}\left\langle(H(\chi), \in),\left\langle a_{i}: i<\lambda\right\rangle \in N_{0}\right.$, $N_{i} \cap \lambda$ is an ordinal, $\left\|\left\|N_{i}\right\|<\lambda\right.$, and $\left\langle N_{j}: j \leq i\right\rangle \in N_{i+1}$. Let $C=\left\{i<\lambda: N_{i} \cap \lambda=i\right.$ and $\left.i \in C_{0}\right\}$ (it is closed unbounded). Suppose $\delta \in C \cap S, c f(\delta)>\theta$, then there is $a \subseteq \delta=\sup \delta$ such that $(\forall \alpha \in a)\left[a \cap \alpha \in\left\{a_{j}: j<\delta\right\}\right]$ hence $(\forall \alpha \in a)\left[a \cap \alpha \in N_{\delta}\right]$, and we also know $\operatorname{otp}(a)=c f(\delta)$; and let $\left\{\alpha_{i}: i<c f(\delta)\right\}$ be an increasing enumeration of a. So there are $\alpha_{i}<\delta$, $\left[i<j \Rightarrow \alpha_{i}<\alpha_{j}\right], \delta=\bigcup\left\{\alpha_{i}: i<c f \delta\right\}$ and for $i<c f(\delta),\left\{\alpha_{j}: j<i\right\} \in N_{\beta_{i}}$ for some $\beta_{i}<\delta$. As for $i<c f \delta,\left|\left\{\alpha_{j}: j<i\right\}\right|<c f \delta<\mu$, so $2^{\left|\left\{\alpha_{j} j<i\right\}\right|}<\lambda$ hence $\left\{\zeta: \zeta<2^{\left|\left\{\alpha_{j}: j<i\right\}\right|}\right\} \subseteq N_{\delta}$, so every subset of $\left\{\alpha_{j}: j<i\right\}$ belongs to $N_{\beta_{i+1}}<N_{\delta}$. As $c f(\delta)>\theta$ for some $\gamma<\theta$, $A=\left\{i<c f(\delta): c\left(\alpha_{i}, \delta\right)<\gamma\right\}$ is unbounded below $c f(\delta)$, so by the previous sentence w.l.o.g. $A=c f(\delta)$. So $N_{\delta+1} \vDash(\exists x)\left(\forall y \in\left\{\alpha_{j}: j<i\right\}\right)\left[c(y, x) \leq \gamma \wedge \alpha_{i}<x\right]$ (as δ witness the $\exists x$) so there is such x in $N_{\beta_{i}+1}$ call is β_{i}. So α_{i}, β_{i} are as required in (**) δ_{δ} of Fact 7 , so by 7 we finish.
3) Follows.
10. Lemma: 1) If $S \in I[\lambda]$ is stationary, and $(\forall \delta \in S)[c f(\delta)<\mu]$, and P is a μ complete forcing notion $\left(\mu>\aleph_{0}\right)$ then " H_{P} " S is a stationary subset of the ordinal λ "
2) If $S \subseteq\{\delta<\lambda: c f(\delta)<\mu\}$ is stationary but included in $S_{\lambda}^{* n}$ (see 3(3)), μ regular and $\lambda=\lambda^{<\mu}$ then for some μ-complete forcing notion P, H_{P} "S is not stationary" (in fact $P=$ Levi (μ, λ) is O.K.)

Remark: As for 10(2), it repeats Theorem 21, p. 366 of [Sh 6], Donder and Ben David note a defect: in the case $\lambda=\lambda^{<\lambda}$ (really $\lambda=\lambda^{<\mu}$) in the definition of the forcing P $\left(=\left\{\left\langle\alpha_{i}: i \leq \zeta\right\rangle: \quad \alpha_{i}\right.\right.$ increasing continuous $\left.B_{\alpha_{i+1}}=\left\{\alpha_{j}: j \leq i\right\}\right)$ we forget to demand $\zeta<\mu$. [Note however that automatically $\zeta \leq \mu$ as each B_{i} has cardinality $<\mu$, so we should just omit the maximal elements of P which make P totally trivial].

For the general case $\left(\lambda<\lambda^{<\mu}\right)$ note that if some weak form of it fails, our definition of the set $S_{\lambda}^{* n}$ make it empty. I.e. by Definition 8, p. 36 of [Sh 6], $S_{\lambda}^{* n}$ make it empty. I.e. by Definition 2(1),2(1), p. 359 of [Sh 6] relaying on Definition 1, p. 358 of [Sh 6]. This demand " $S_{\lambda}^{* n} \subseteq g c f(x)$ " is reasonable, as otherwise we cannot prove there is such a set. See here later. [18,19]

Proof: 1) Use $(\forall s)\left(s \in I[\lambda] \Rightarrow s \in I^{+}[\lambda]\right)$ from 16(2) (see Definition 15)
2) Let $\left\langle a_{i}: i<\lambda\right\rangle$ list the subsets of λ of cardinality $<\mu$, each appearing λ times. If $P=$ Levi (μ, λ), in $V^{P} \lambda$ has cofinality μ, so let $\left\langle\alpha_{i}: i<\mu\right\rangle$ be increasing, $\alpha_{i}<\lambda, \cup_{i<\kappa} \alpha_{i}=\lambda$. But forcing with P add no sequences of ordinals of length $<\mu$, so we can find inductively $j(i)<\lambda, j(i)>\bigcup\left\{j(\xi), \alpha_{\xi}: \xi<i\right\}, a_{j(i)}=\left\{\alpha_{\xi}: \xi<i\right\}$. Now $\{\delta<\lambda:$ the set $\{j(i): i<\mu\} \cap \delta$ is unbounded in $\delta\}$ is a club of λ in V^{P}, included in a good subset of λ from V.

In [Sh 6] we define $S_{\lambda}^{* n}$ inside a larger set than $\left\{\delta<\lambda: \lambda^{<c f \delta}=\lambda\right\}$ (see 3(3)). We will present this addition, improved, i.e. $G c f[\lambda], g c f(\lambda)$ are bigger sets here than in [Sh 6, Definition 2].

11 Definition: 1) For a family F of subsets of θ let

$$
\operatorname{tr}(F)=\{A \cap \alpha: A \in F, \alpha<\theta\}
$$

2) For θ regular uncountable let $\operatorname{club}_{t r}(\theta)=\operatorname{Min}\{|\operatorname{tr}(F)|: F$ is a family of closed unbounded subsets of θ such that: every closed unbounded subset of θ contains some members of $F\}$.

Let $c l u b_{t r}\left[\aleph_{0}\right]=\aleph_{0}$ and let F_{θ} exemplify $\operatorname{club}_{t r}(\theta)=\left|F_{\theta}\right|$.
3) $G c f[\lambda]=\left\{\theta: \theta\right.$ is regular $\geq \mathcal{N}_{0}$ and, $\lambda=\lambda^{<\theta}$ or $\left.\operatorname{club}_{t r}(\theta)<\lambda\right\}$
4) $g c f[\lambda]=\{\delta<\kappa: c f \delta \in g c f[\lambda], c f(\delta)<\delta\} \cup\{\delta<\lambda: \delta$ a (weakly) inaccessible cardinal $\} \cup\{\alpha<\lambda: \alpha=0$, or α successor ordinal $\}$
4) $g c f_{a c}[\lambda]=\{\delta \in g c f[\lambda]: c f \delta<\delta\}$

12 Fact: 1) If GCH, $\lambda>\aleph_{0}$ regular then $G c f[\lambda]=\{\theta: \theta$ regular $<\lambda\}, g c f[\lambda]=\lambda$.
2) For regular uncountable $\theta, \quad \theta<\operatorname{club}_{t r}(\theta) \leq 2^{<\theta} \leq 2^{\theta}$.
3) If $2^{<\theta} \leq \lambda,\left(\theta, \lambda\right.$ regular) then $\theta \in G c f(\lambda)$ [as this implies either $\lambda=2^{<\theta}$ hence $\lambda=\lambda^{<\theta}$ or $\lambda>2^{<\theta}$ hence $\left.\lambda>\operatorname{club}_{t r}(\theta)\right]$.

13 Definition: 1) We call \bar{a} an enumeration for λ if $\bar{a}=\left\langle a_{i}: i<\lambda\right\rangle$, each a_{i} a bounded subset of λ.
2) We call \bar{a} a rich enumeration for λ if:
(i) \vec{a} is an enumeration for λ
(ii) if $\lambda=\lambda^{\theta}$, (hence $\theta<\lambda$) then every subset of λ of cardinality $\leq \theta$ appears in a
(iii) if θ is an uncountable regular cardinal, and $\operatorname{club_{tr}}(\theta) \leq \lambda$ then letting F_{θ} exemplify $\operatorname{club}_{t r}(\theta) \leq \lambda$, for every limit ordinal $\delta<\lambda$ of cofinality θ, there is a closed unbounded subset $\left\{\beta_{i}^{\delta}: i<\theta\right\rangle$ of δ (β_{i}^{δ} increasing continuous) such that
${ }^{(*)}$ for every $A \in F_{\theta}$ and $\zeta<\theta, \quad\left\{\beta_{i}^{\delta}: i \in A \cap \zeta\right\}$ appear in \bar{a}.
3) In (1) (and (2)) we replace "enumeration" by $(<\mu)$-enumeration if we restrict ourselves to subsets of λ of cardinality $<\mu$ i.e. in (ii) $\theta \leq \mu$, in (iii) $\theta \leq \mu$.
4) For an unbounded subset S of λ, we say \bar{a} is a rich enumeration for $(S, \theta)^{\ell}$ if:
(i) \bar{a} is an enumeration for λ
(ii) if $\ell=1, \lambda=\lambda^{<\theta}$ and every $b \subseteq \lambda, \quad|b|<\theta$ appear in \bar{a}
(iii) if $\ell=2 \quad \operatorname{club}_{t r}(\theta) \leq \lambda$, then for every $\delta \in S$ of cofinality θ the condition in (2) (iii) above holds.

14 Fact: 1) For every regular uncountable λ there is a rich enumeration;
2) For every $\lambda=c f \lambda>\mu, \quad \lambda$ has a rich μ-enumeration.

15 Definition: For λ regular uncountable
$I^{+}[\lambda]=\{S \subseteq \lambda$: for every cardinal $\chi>\lambda$ and $x \in H(\chi)$, for some closed $C \subseteq \lambda$, for every $\delta \in C \cap S$ there are a limit $\gamma<\delta$, and $N_{i}<(H(\chi), \in, x, \lambda)$, for $i<\gamma$, such that $\left\langle N_{j}: j \leq i\right\rangle \in N_{i}, \quad N_{i} \cap \lambda$ is an ordinal $\alpha_{i}<\delta$ and $\left.\delta=\bigcup \bigcup_{i<\gamma} \alpha_{i}\right\}$.

16 Fact: 1) $I^{+}[\lambda]$ is a normal ideal on λ and in its definition w.l.o.g. $\gamma=c f \delta$,
2) $I[\lambda] \subseteq I^{+}[\lambda]$
3) If $S \subseteq g c f[\lambda]$ then: $S \in I[\lambda] \Leftrightarrow S \in I^{+}[\lambda]$
4) There is $S_{\lambda}^{* n} \subseteq g c f[\lambda]$, such that for every rich enumeration \bar{a} for λ and $S \subseteq G c f[\lambda]$: $S \in I[\lambda]$ if and only if $S \in I^{+}[\lambda]$ if and only if $S \cap S_{\lambda}^{* n}=\varnothing \bmod D_{\lambda}$ if and only if $S \subseteq S_{\lambda}^{* p}[\bar{a}] \bmod D_{\lambda}$. We let $S_{\lambda, \theta}^{* n}=\left\{\delta<\lambda: c f(\delta)=\theta, \delta \in S_{\lambda}^{*}\right\}$ (this replace 3(3)) and

$$
S_{\lambda,<\theta}^{* n} \stackrel{\operatorname{def}}{=}\left\{\delta<\lambda: c f \delta<\theta, \delta \in S_{\lambda}^{* n}\right\}
$$

5) for every rich enumeration \bar{a} for $\lambda, \operatorname{gcd}[\lambda]-S_{\lambda}^{* n}[\bar{a}] \equiv S_{\lambda}^{* q} \bmod D_{\lambda}$.
6) for any $\theta<\lambda$, suppose (A) $\lambda=\lambda^{<\theta},\{b \subseteq \lambda:|b|<\theta\} \subseteq\left\{a_{i}: i<\lambda\right\}$ (like 11(2)(ii) or (B) $\quad \operatorname{club}_{t r}(\theta)<\lambda, \quad F_{\theta} \quad$ exemplify it and \bar{a} satisfies 11(2)(iii) for every $\delta \in S \subseteq\{\delta<\lambda: c f \delta>c f \theta\}$. Then $S \cap S_{\lambda, \theta}^{*_{n}}=S-S_{\lambda}^{* p}[\bar{a}]$.

Proof: 1) The normality is easy, the "w.l.o.g. $\gamma=c f \delta^{\prime \prime}$ is proved as in 2(2).
2) Let $S \in I[\lambda]$, so for some enumeration $\bar{a}=\left\langle a_{i}: i<\lambda\right\rangle$ for $\lambda, C \cap S \subseteq S_{\lambda}^{* q}[\bar{a}]$ for some closed unbounded $C \subseteq \lambda$. Let $\chi>\lambda, x \in H(\chi)$. We can find $\left\langle N_{\zeta}: \zeta<\lambda\right\rangle$ increasing continuous, $N_{\zeta}<(H(\chi), \in, x)$, such that $N_{\zeta} \cap \lambda$ is an ordinal $\left\|N_{\zeta}\right\|<\lambda, \quad\left\langle N_{j}: j \leq \zeta\right\rangle \in N_{\zeta+1}$ and $C, \bar{a} \in N_{0}$. So $C^{\prime} \stackrel{\text { def }}{=}\left\{\delta<\lambda: \delta \in C\right.$ and $\left.N_{\delta} \cap \lambda=\delta\right\}$ is a closed unbounded subset of λ.

Now for every $\delta \in C^{\prime} \cap S$, there is a_{i} from $\bar{a}, \operatorname{otp}\left(a_{i}\right)<\sup \left(a_{i}\right)=\delta$ and for $\alpha \in a_{i}$, $\alpha \cap a_{i} \in\left\{a_{j}: j<\delta\right\}$. As $\bar{a} \in N_{0}$ clearly $\left\{a_{j}: i<\delta\right\} \subseteq \bigcup_{\zeta<\delta} N_{\zeta}$. Let $a_{i}=\left\{\gamma_{\varepsilon}: \varepsilon<\right.$ otp $\left.a_{i}\right\}$. Now we try to define by induction on $\varepsilon<\operatorname{otp}\left(a_{i}\right)$ an ordinal $\zeta_{\varepsilon}<\delta$:
for $\varepsilon=0: \zeta_{\varepsilon}=0$
for ε limit: $\zeta_{\varepsilon}=\underset{\beta<\varepsilon}{\bigcup} \zeta_{\beta}$,
for ε successor: ζ_{ε} is the first ordinal ζ satisfying ζ is bigger than γ_{ε} and $\left\langle N_{\zeta \beta}: \beta<\varepsilon\right\rangle$ belongs to $N_{\zeta_{e}}$.

The only reason for stopping is: ε limit $\bigcup_{\beta<\varepsilon} \zeta_{\beta}=\delta$; once this occurs at $\varepsilon_{0},\left\langle N_{\zeta_{\ell}}: \varepsilon<\varepsilon_{0}\right\rangle$ is as required [otherwise for limit and for zero there is no problem, and for ε successor, $\zeta_{\varepsilon-1}$ is defined and $<\delta$, so for some $\beta, \zeta_{\varepsilon-1}<\gamma_{\beta}<\delta$ [where $a_{i}=\left\{\gamma_{\beta}: \beta<\right.$ otp $\left.a_{i}\right\}$) now $\left\langle\zeta_{\beta}: \beta<\varepsilon\right\rangle$ is definable inside the model $(H(\chi), \in)$ from the parameters $\left\langle N_{j}: j<\gamma_{\beta}\right\rangle,\left\langle\gamma_{j}: j<\beta\right\rangle$ only; as both are in $\bigcup_{j<\delta} N_{j}$, is $\left\langle\zeta_{\beta}: \beta<\alpha\right\rangle$, and similarly so is $\left.\zeta_{\varepsilon}\right]$.
3) Fix $S \subseteq g c f[\lambda]$; by $16(2)$ it is enough to assume $S \in I^{+}[\lambda]$ and prove $S \in I[\lambda]$, we prove more in 16A below.
4) $S_{\lambda}^{* n}$ is $g c f[\lambda]-S_{\lambda}^{* p}[\bar{a}]$ for any rich enumeration \bar{a} for λ.
5), 6) Should be clear.

16A Subfact: If $S \subseteq g c f[\lambda]$, (λ regular uncountable) S belongs to $I^{+}[\lambda]$ and $\bar{a}=\left\langle a_{i}: i<\lambda\right\rangle$ is a rich enumeration for λ, then $S \subseteq S_{\lambda}^{* p}[\bar{a}] \bmod D_{\lambda}$.

Proof of 16A: Let $x=\bar{a}, \chi=\left(2^{\lambda}\right)^{+}$, so as $S \in I^{+}[\lambda]$ (see Definition 15), there is a closed unbounded $C \subseteq \lambda$ such that (see 16(1)):
${ }^{(*)}$ for every $\delta \in C \cap \delta$ there is $\bar{N}=\left\langle N_{i}: i<c f(\delta)\right\rangle$ as in Definition 15.

Fix $\delta \in C \cap S, \quad$ and \bar{N} and let $\theta=c f \delta, \quad \alpha_{i}=N_{i} \cap \lambda$. Remember that $N_{i} \cap\left\{a_{j}: j<\lambda\right\}=\left\{a_{j}: j<\alpha_{i}\right\}$. We shall show that $\delta \in S_{\lambda}^{* p}[\bar{a}]$, thus finishing.

Case 1: $\lambda^{<\theta}=\lambda$ (e.g. of $\delta \leq \mathrm{N}_{0}$).

In this case for each $i\left({ }^{*}\right)<\theta,\left\{\alpha_{i}: i<i\left({ }^{*}\right)\right\}$ belongs to $\left\{a_{j}: j<\lambda\right\}$ (as \bar{a} is rich) and to $N_{i\left({ }^{*}\right)+1}$ (as $\left\langle N_{i}: i<i(*)\right\rangle \in N_{i\left({ }^{*}\right)+1}$, and $\left.\lambda \in N_{i\left({ }^{*}\right)+1}\right)$; hence $\left\{\alpha_{i}: i<i\left({ }^{*}\right)\right\}$ belongs to their intersection which is $\left\{a_{j}: j<\alpha_{i}\right\}$. So $\left\langle a_{i}: i<i\left({ }^{*}\right)\right\rangle$ exemplify $\delta \in S_{\lambda}^{* p}(\bar{a})$, as required.

Case 2: cf $\delta<\delta, \operatorname{club}_{t r}(\theta)<\lambda$ where $\left.\theta=c f \delta>\aleph_{0}\right)$.
Let $F_{c f \delta}$ exemplify $c l u b_{t r}(\theta)=\left|\operatorname{tr}\left(F_{\theta}\right)\right|$, and let $\left\{\beta_{i}^{\delta}: i<\theta\right\}$ be as in Definition 13(1) (iii). So $A_{0}=\left\{i<\theta: \beta_{i}^{\delta}=\alpha_{i}\right\}$ is a club of θ, hence for some club $A \in F_{\theta}, A \subseteq A_{0}$. By 13(1) (iii) for every $i\left({ }^{*}\right)<\theta,\left\{\beta_{i}^{\delta}: i \in A, i<i\left({ }^{*}\right)\right\}$ belongs to $\left\{a_{i}: i<\lambda\right\}$, but $A \cap i\left({ }^{*}\right) \in \bigcup_{i<\theta} N_{i}$ [as $\theta<\delta$, hence w.l.o.g. $F_{\theta} \in \bigcup_{i<\theta} N_{i}$ hence $\operatorname{tr}\left(F_{\theta}\right) \in \bigcup_{i<\theta} N_{i}$, but $\left|\operatorname{tr}\left(F_{\theta}\right)\right|<\lambda$ hence $\left.\operatorname{tr}\left(F_{\theta}\right) \subseteq \bigcup_{i<\theta} N_{i}\right]$. Hence $\left\{\alpha_{i}: i \in A \cap i\left(^{*}\right)\right\} \in \bigcup_{i<\theta} N_{i}$, so we finish.

Case 3: $\delta=c f \delta$.
Trivial.

17 Lemma: Suppose in $V, \lambda>\aleph_{0}$ is regular, $\theta \in G c f[\lambda]$, so $S_{\lambda, \theta}^{* n}$ is defined.

Suppose further V^{1} is an extension of the universe V (say same ordinals), $V^{1} \vDash " \lambda>\kappa_{0}$ is regular", and
$\left(^{*}\right)_{1} \quad V^{1} \vDash$ "every subset of λ of cardinality $<\theta$ belongs to $V ", \quad V \vDash " \lambda=\lambda<\theta$ ", or
$\left(^{*}\right)_{2} \quad V^{1} \vDash " F_{\theta}^{V}$ satisfies for every club C of θ, there is $A \in F_{\theta}^{V}, A \subseteq C "$ (but maybe $V^{1} \vDash " \theta$ not a cardinal") and $V \vDash "\left|F_{\theta}^{V}\right|=\operatorname{club}_{t r}(\theta)<\lambda^{\prime \prime}$

Then

(i) $V^{1} \vDash " c f \theta \in G c f[\lambda]$ or $c f \theta=\aleph_{0}$ "; and
(ii) $V^{1} \vDash " S_{\lambda, c f \theta}^{* n} \cap\{\delta: V \vDash c f \delta=\theta\} \equiv\left(S_{\lambda, \theta}^{* n}\right)^{V} \bmod D_{\lambda} "$ or equivalently: in V^{1}, $\left(S_{\lambda, \theta}^{* n}\right)^{V} / D_{\lambda}$ is disjoint to every $S / D_{\lambda}, S \in I[\lambda]$.

Proof: Let \bar{a} be a rich enumeration for λ in V.

By $\left(^{*}\right), \bar{a}$ is still a rich enumeration in V^{1} for $S=\{\delta<\lambda: V \vDash c f \delta=\theta\}$. By 16(6) we finish.

18 Lemma: If $\lambda>\mathcal{N}_{0}$ is regular, $S \in I^{+}[\lambda], S \subseteq\{\delta<\lambda: c f \delta<\mu\}, P$ is a μ-complete forcing notion then
${ }^{1} H_{P}$ "S is a stationary subset of λ (as an ordinal, λ may or may not be a cardinal)"

Complementary to 18 is

19 Lemma: Suppose $\theta \in G c f(\lambda), \aleph_{0}<\theta \leq \mu=c f \mu<\lambda$ so $S_{\lambda, \theta}^{* n}$ is well defined.

1) If $\mu=\theta, \lambda=\lambda^{<\theta}, H_{\text {Levi }(\mu, \lambda)}$ " $\left(S_{\lambda, \theta}^{* n}\right)^{V}$ is not stationary (as a subset of the ordinal λ, (remember $\operatorname{Levi}(\theta, \lambda)=\{f: f$ a function from some $\alpha<\theta$ to $\lambda\}$, it is θ-complete).
2) If $S_{\mu, \theta}^{* n}=\varnothing, \lambda=\lambda^{<\theta}, H_{\text {Levi }(\mu, \lambda)} "\left(S_{\lambda, \theta}^{* n}\right)^{V}$ is not stationary".
3) In (1) and (2) we can replace Levi (θ, λ), by any forcing notion P which adds to λ no new subset of power $<\mu$ and $\mathbb{H}_{p} " c f \lambda=\mu$ ".
4) In (1),(2) we can replace " $\lambda=\lambda^{<\theta "}$ by $\operatorname{club}_{t r}(\theta)<\lambda$, if we replace Levi (μ, λ) by $\operatorname{Levi}\left(\lambda, \lambda^{<\theta}\right)^{*} \operatorname{Levi}(\mu, \lambda)$.

Remark: A more general forcing is as follows: Let $\theta<\lambda, \kappa \leq \theta, \bar{b}=\left\langle b_{i}: i<\lambda\right\rangle$ exemplify that $S_{\theta} \in I[\theta]$ and $\left[\delta<\theta \wedge \delta \in S_{\theta} \Rightarrow c f \delta<\kappa\right]$ or just for some $\sigma=c f \sigma<\kappa$, $S_{\theta}=\{\delta<\theta: c f \delta=\sigma\}, \quad S \subseteq\{\delta<\lambda: c f \delta=\sigma\}$ and $Q^{\bar{b}, \theta}=\left\{\left\langle i_{\zeta}: \zeta<\zeta^{*}\right\rangle: \zeta^{*}<\theta, i_{\zeta}<\lambda\right.$,
$\left.\left[\zeta(1)<\zeta(2) \Rightarrow i_{\zeta(1)}<i_{\zeta(2)}\right], a_{i_{\zeta}}=\left\{i_{\xi}: \xi \in b_{\zeta}\right\}\right\}$.

20 Claim: Suppose $\theta=c f \theta>\aleph_{0}$ for the regular cardinals λ and $\mu, \lambda>\mu$ and $c l u b_{t r}(\theta)<\mu$.

1) Given $S_{\lambda}^{* n}, S_{\mu}^{* n}$, there is a club $C \subseteq \lambda$ such that: for every $\delta \in C$ of cofinality μ, there is an increasing continuous sequence $\left\langle\alpha_{i}: i<\mu\right\rangle, \bigcup_{i<\mu} \alpha_{i}=\delta$ and a club c of μ satisfying $\left[i \in c \wedge c f i=\theta \wedge i \notin S_{\mu}^{* n} \Rightarrow i \notin S_{\lambda}^{* n}\right]$.
2) If \bar{a} is a rich enumeration for (λ, θ), then $\{\delta<\lambda: c f \delta=\mu$ implies that for some $\alpha_{i}, \beta_{i}(i<\mu):\left\langle\alpha_{i}: i<\mu\right\rangle$ is increasing continuous with limit $\delta, \quad \beta_{i}<\mu$ and defining for $i<\mu, \quad b_{i}=\left\{j: a_{j} \in a_{\beta_{i}}\right\},\left\langle b_{i}: i<\mu\right\rangle$ is a rich enumeration for $\left.(\mu, \theta)\right\} \in D_{\lambda}$.
21. Lemma: 1) If κ is supercompact and e.g. $\lambda>\kappa>c f \lambda$, then $I\left[\lambda^{+}\right]$is a proper ideal: $\lambda^{+} \notin I\left[\lambda^{+}\right]$.
3) After suitable collapses, e.g. cf $\lambda=\kappa_{0}<\lambda$ but still $\lambda^{+} \notin I\left[\lambda^{+}\right]$.
22. Problem: 1) Is G.C.H. $+\left\{\delta<\kappa_{\omega+1}: c f \delta>\aleph_{1}\right\} \notin I\left[\aleph_{\omega+1}\right]$ consistent with ZFC.
2) Is
$\left.{ }^{*}\right) 2^{\aleph_{0}}>\aleph_{\omega+1}+$ "there is no stationary $S \in I\left[\aleph_{\omega+1}\right]$ "
consistent with ZFC?
3) Is
$\left(^{*}\right) 2^{\aleph_{0}}>\aleph_{\omega+1}+$ for no ultrafilter D on $\omega, c f\left(\pi\left(\aleph_{n},<\right) / D\right)=\aleph_{\omega+1}$
consistent with ZFC.

Remark: " $\aleph_{\omega+1}$ is a Jonson cardinal" implies (*) of (3) (see [Sh 9] which implies (*) of (2) (see [Sh]).

Having F cause slight inconvenience.

We define by induction on $\alpha<\lambda^{+},\left(M_{\alpha}, N_{\alpha}, a\right)$, and $N_{\gamma}^{*}, N_{\gamma}^{*}, M_{\gamma}^{*}, f_{\gamma}, g_{\gamma}$: for suitable γ^{\prime} s such that
(A) $M_{\alpha}, N_{\alpha}, M_{\alpha}^{*}, N_{\alpha}^{*}$ are isomorphic to M^{*}.
(B) $M_{\beta}(\beta \leq \alpha)$ is $<_{K^{-}}$increasing continuous and similarly $N_{\beta}, M_{\beta}^{*}, N_{\beta}^{*}$.
(C) $F\left(M_{i+1}^{*}\right)=M_{i+2}$
(D) $F\left(N_{i+1}^{*}\right)=N_{i+2}^{*}$
(E) $\left(M_{\beta}, N_{\beta}, a\right)<\left(M_{\alpha}, N_{\alpha}, a\right)$ for $\beta<\alpha$.
(F) for γ limit or zero f_{γ} is an isomorphism from M_{γ}^{*} onto M_{γ}, g_{γ} is an isomorphism from N_{γ}^{*} onto N_{γ}.
(G) for γ limit or zero, $n>0: f_{\gamma}$ is an isomorphism from $N_{\gamma+n}^{*}$ onto $N_{\gamma+2 n}, g_{\gamma}$ is an isomorphism from $M_{\gamma+n}^{*}$ onto $M_{\gamma+2 n-1}$.

