Appendix: On stationary set

We represent the relevant facts from [Sh 6] (hopefully in a better way) and add slightly. This was written essentially by accident.

1. Definition: 1) For λ regular, a set $S \subseteq \lambda$ is called *good* if there is a sequence $\overline{a} = \langle a_i : i < \lambda \rangle$, a_i a subset of λ , such that for some closed unbounded $C \subseteq \lambda$:

 $C \cap S \subseteq S_{\lambda}^{*q}[\overline{a}] = \{\gamma : (\exists a \subseteq \gamma)[\gamma = \sup a \land otp(a) < \gamma \land (\forall \alpha < \gamma)(\exists i < \gamma)a \cap \alpha = a_i\} \text{ or } \gamma = cf \gamma\}$ We say $\langle a_i : i < \lambda \rangle$ witness the goodness of S, and C exemplify this (p stands for positive, q for a variant n for negative.)

- 2) $I[\lambda]$ is the family of good subsets of α .
- **2. Lemma:** 1) We can in 1.1 replace a_i by \mathcal{P}_i , $|\mathcal{P}_i| < \lambda$, $\mathcal{P}_i \subseteq \{a : a \subseteq \lambda \text{ is bounded,}$ and " $a \cap \alpha = a_i$ " by " $a \cap \alpha \in \mathcal{P}_i$ " (and get an equivalent definition). [see 4) and 5) below]
 - 2) we can demand in 1(1) that a has order type cf (γ) and $a_i \subseteq i$.

I.e. if for λ , \overline{a} as in Definition 1(1) we let $S_{\lambda}^{*p}[\overline{a}] = \{\gamma < \lambda : \text{ there is } a \subseteq \gamma \text{ of order type } cf \gamma \text{ such that } otp(a) = cf(\gamma), \quad \sup a = \gamma \text{ and } (\forall \alpha < \gamma)(\exists i < \gamma)[a \cap \alpha = a_i]\}$ we can use $S_{\lambda}^{*q}[\overline{a}]$ instead of $S_{\lambda}^{*p}[\overline{a}]$ in defining "a good set" (and hence $I[\lambda]$).

- 3) if $\langle a_i : i < \lambda \rangle$ witness the goodness of $S \subseteq \lambda$ and $\{a_i : i < \lambda\} \subseteq \{b_i : i < \lambda\} \subseteq \mathcal{P}(\lambda)$ then $\langle b_i : i < \lambda \rangle$ witness the goodness of S. In fact $S_x^{*p}(\langle b_i : i < \lambda \rangle) \subseteq S_\lambda^{*p}(\langle a_i : i < \lambda \rangle) \bmod D_\lambda$.
 - 4) $\langle a_i : i < \lambda \rangle$ witness that $S \subseteq \lambda$ is good iff $\langle \{a_i\} : i < \lambda \rangle$ witness that S is good.
- 5) If $\overline{\mathcal{P}}^{\ell} = \langle \mathcal{P}_i^{\ell} : i < \lambda \rangle$ are as in 2(1) for $\ell = 1, 2$ and $\bigcup_i \mathcal{P}_i^1 \subseteq \bigcup_i \mathcal{P}_i^2$ and $\overline{\mathcal{P}}^1$ witness that $S \subseteq \lambda$ is good then also $\overline{\mathcal{P}}^2$ witnesses it.
- 6) For λ uncountable regular, $\{\delta < \lambda : \delta \text{ a (weakly) inaccessible cardinal}\}$ belongs to $I[\lambda]$.

Proof: Trivial, e.g.

2) Let $\langle a_i : i < \lambda \rangle$ witness $S \subseteq \lambda$ is good.

For every limit $\delta < \lambda$ choose a closed unbounded subset C_{δ} of δ of order type cf δ ; let for $i < \lambda$, $\delta < \lambda$, $a_{i,\delta} = \{j \in a_i : \text{ the order type of } a_i \cap j \text{ belongs to } C_{\delta}\}$.

Let $\{a_{i,\delta}: i < \lambda, \delta < \lambda\} \cup \{\{i: i < \alpha\}: \alpha < \lambda\} = \{b_i: i < \delta\}$, let C exemplify $\langle a_i: i < \lambda \rangle$ witness the goodness of S.

Let $C_0 = \{\alpha \in C : \text{ for every } i < \alpha \text{ and limit } \delta < \alpha \text{ there is } \zeta < \delta \text{ such that } b_\zeta = a_{i,\delta} \text{ (if defined and } \alpha \text{ is a limit ordinal)}\}.$

Clearly $C_0 \subseteq C$ is closed unbounded in λ . Now for any $\gamma \in C_0 \cap S$ we know there is a set $a \subseteq \gamma$ such that $\sup(a) = \gamma$, $otp(a) < \gamma$, $\alpha \cap a = a_{i(\alpha)}$ for $\alpha \in a$ and $i(\alpha)$ is an ordinal $< \gamma$. Let $a^* = \{i \in a : otp(a \cap \alpha) \in C_{otp(a)}\}$. Now a^* is as required.

- 3. Lemma: 1) $I[\lambda]$ is a normal ideal, which include all non-stationary subsets of λ .
- 2) If $\lambda = \lambda^{<\lambda}$, then for some $S_{\lambda}^{*n} \subseteq \lambda$:

$$I[\lambda] = \{S \subseteq \lambda : S \cap S_{\lambda} \text{ is not stationary}\} = \{S \subseteq \lambda : \langle a_i : i < \lambda \rangle \text{ witness } S \text{ is good}\}$$

for any $\langle a_i : i < \lambda \rangle$ enumerating $\{a \subseteq \lambda : |a| < \lambda \}$.

3) Always there is $S_{\lambda}^{*n} \subseteq T_{\lambda} \stackrel{\text{def}}{=} \{\delta < \lambda : \lambda^{< cf \delta} = \lambda\}$ such that $S \in I[\lambda] \land S \subseteq T_{\lambda} \Leftrightarrow S \subseteq \lambda \land S \cap S_{\lambda}^{*n}$ not stationary.

Proof: Easy.

- **4. Lemma:** 1) If λ is regular, $\kappa < \lambda$, $(\forall \alpha < \lambda) |\alpha|^{<\kappa} < \lambda$ (e.g., $\lambda = \mu^+$, $\mu = \mu^{<\kappa}$) then $\{\delta < \lambda : cf(\delta) \le \kappa\} \in I[\lambda]$
- 2) Suppose $\lambda = \mu^+$, $cf(\mu) < \kappa < \mu$ and $(\forall \theta < \kappa)(\forall \chi < \mu)[\chi^\theta < \mu]$. Then there is $S \in I[\lambda]$ such that:
- (*) if $\delta < \lambda, \theta < \kappa$, and $cf \delta = (2^{\theta})^+$ or even just $(\forall \alpha < cf(\delta)) [|\alpha|^{\theta} < cf(\delta)]$ then for some closed unbounded $C_{\delta} \subseteq \delta$, $(\forall \alpha)[\alpha \in C_{\delta} \land cf(\alpha) \le \theta \rightarrow \alpha \in S]$.

- 3) For λ, μ, κ as in (2), there is a 2-place function c from λ to $cf \mu$ such that:
 - (a) for $\alpha < \beta < \gamma$, $c(\alpha, \gamma) \leq Max\{c(\alpha, \beta), c(\beta, \gamma)\}$.
 - (b) $|\{\alpha < \beta : c(\alpha, \beta) = \gamma\}| < \mu$.
- (c) $S_{\lambda}^{*p}[c] \stackrel{\text{def}}{=} \{\delta < \lambda : \delta \text{ has cofinality } \leq \kappa \text{ and there is an unbounded } a \subseteq \delta \text{ such that } c \upharpoonright a \text{ is bounded in } cf \mu \text{ (i.e. } (\exists \gamma < cf \mu)(\forall \alpha, \beta \in a) [\alpha < \beta \rightarrow c(\alpha, \beta) < \gamma] \} \text{ belongs to } I[\lambda].$

Proof: Note that 4(1), is easy, and 4(2) follows from 8(1), 4(3). It is easy to satisfies (a), (b) of (4) and (c) follows [choose an increasing sequence $\langle \mu_i : i < cf \, \mu \rangle$ such that $\mu = \Sigma \{\mu_i : i < cf \, \mu\}$, and then define by induction on β , $\langle c(\alpha, \beta) : \alpha < \beta \rangle$ such that (a) holds and

$$(b)^+ | \{\alpha < \beta : c(\alpha, \beta) = \gamma\} | = \mu_{\gamma}.$$

Why (c) follows from (a) + (b)? Clearly for $\alpha < \lambda$, $i < cf(\mu)$, $\mathcal{P}_{\alpha,i} = \{a : a \text{ as a subset of } \{\beta : \beta < \alpha \text{ and } c(\beta,\alpha) < i\}$ of cardinality $< \kappa\}$ has cardinality $\le \mu$, so $\mathcal{P}_{\alpha} = \bigcup_{i < cf \mu} \mathcal{P}_{\alpha,i}$ has cardinality $\le \mu$. Now $S_{\lambda}^{*p}[\langle \mathcal{P}_{\alpha} : \alpha < \lambda \rangle]$ is a subset of $S_{\lambda}^{*p}[c]$.

There are no problems].

- 5. Remark: 1) In 4(2), 4(3) we can replace $\lambda = \mu^+$ by $\lambda = \mu^{+\alpha}$, as α increases we get less information. See [Sh 6] xx.
 - 2) In (3) really (a) + (b) implies (c) and note (7) below.
- 6. Definition: 1) A two place function c from an ordinal ζ to an ordinal ξ is called subadditive if:

for
$$\alpha < \beta < \gamma < \zeta$$
 $c(\alpha, \gamma) \le Max\{c(\alpha, \beta), c(\beta, \gamma)\}$
and $c(\alpha, \beta) = c(\beta, \alpha), c(\alpha, \alpha) = 0$

2)λ →
$$p(S)_{\theta}^2$$
 mean: (for λ, θ regular cardinals, $S \subseteq \lambda$.)

Suppose

(*) c is a two place function from λ to θ , c subadditive.

Then for some closed unbounded $C \subseteq \lambda$, for every $\delta \in S \cap C$ of cofinality $> \theta$,

 $(**)_{\delta}$ there is $A \subseteq \delta$, such that sup $A = \delta$, and sup $\{c(\alpha, \beta) : \alpha < \beta, \alpha \in A, \beta \in A\} < \emptyset$.

- 3) We say λ is θ -sawc (sub-additively weakly compact) if: for every subadditive two place function d from λ to θ , there is an unbounded subset A of λ such that $\sup\{c(\alpha,\beta): \alpha < \beta, \alpha \in A, \beta \in A\} < \theta$.
- 7. Fact: In Definition 6(2) the following demand on $\delta \in S \cap C$ is equivalent to $(**)_{\delta}$ when $cf(\delta) > \theta$:

 $(**)'_{\delta}$ there are $\alpha_i, \beta_i < \delta$ for $i < cf(\delta), \quad \delta = \bigcup_i \alpha_i = \bigcup_i \beta_i$ and $\sup\{c(\alpha_i, \beta_i) : i < j < cf(\delta)\} < \theta.$

Proof: If A is as in $(**)_{\delta}$ choose $\alpha_i, \beta_i \in A$ s.t. $\delta = \bigcup \{\alpha_i : i < cf \delta\}$, $\sup \{\beta_i : j < i\} < \alpha_i < \beta_i$, they are as required.

If $\alpha_i, \beta_i (i < cf(\delta))$ are as in $(**)^{'}_{\delta}$, w.l.o.g. $[j < i \Rightarrow \alpha_i < \beta_i < \alpha_j < \beta_j]$, so as $cf(\delta) > \theta$ for some $\gamma_1 < \theta$

$$B \stackrel{def}{=} \{i : c(\beta_i, \alpha_{i+1}) = \gamma_1\}$$

is unbounded below $cf(\delta)$. Let

$$\gamma_0 = \sup\{c(\alpha_i, \beta_j) : i < j < cf(\delta)\} < \theta.$$

Now $A = \{\beta_i : i \in B\}$ is as required: for j < i in B

$$c(\beta_i, \beta_i) \le Max\{c(\beta_i, \alpha_{i+1}), c(\alpha_{i+1}, \beta_i)\} \le$$

$$Max \{\gamma_1, \gamma_0\}$$

- **8. Lemma:** 1) Suppose λ, μ, κ are as in 4(2) (so 4(3)) and $\lambda \to p(S)^2_{cf(\mu)}$, $S \subseteq \{\delta < \lambda : cf \ \delta < \kappa\}$ then $S \in I[\lambda]$.
 - 2) If $(\forall \sigma)[\sigma^+ < \mu \rightarrow 2^{\sigma} < \lambda]$, $S \subseteq \{\delta < \lambda : cf \ \delta < \mu\}$, $S \in I[\lambda]$ and λ, θ are regular then

$$\lambda \to_p (S)_{\theta}^2$$
.

3) Suppose λ, μ, κ are as in 4(2), c as in 4(3) (a),(b). Then for any $\delta < \lambda$ and $S \subseteq cf \delta$, there is an increasing continuous function $h: cf(\delta) \to \delta$, $\delta = \sup\{h(i): i < cf(\delta)\}$, and a club $c \subseteq \delta$ such that

$$[cf \, \delta \to p(S)^2_{cf \, \mu} \Rightarrow c \, \bigcap h^{''}(S) \subseteq S^{*p}_{\lambda}[c]]$$

9. Remark: Particularly assuming G.C.H. 4(3), 8(1), 8(2), 8(3) fits nicely.

Proof of 8: 1) Let c be a two place function satisfying 4(3) (a) + (b). By Definition 6, there is a closed unbounded $C \subseteq \lambda$ such that for $\delta \in C \cap S$ of cofinality $> cf(\mu)$, $(**)_{\delta}$ hold. Now $\{\delta < \lambda : cf \delta \le cf(\mu)\} \subseteq T_{\lambda}$ [by 4(2) as $\mu^{< cf \mu} \le \sum_{\substack{\chi < \mu \\ \theta < cf \mu}} \chi^{\theta} \le \sum_{\substack{\chi < \mu \\ \theta < cf \mu}} \chi^{<\kappa}$ hence $\lambda^{< cf \mu} = (\mu^+)^{< cf \mu} = \mu^+ = \lambda$] so we can assume $cf(\delta) > cf(\mu)$. Now $(**)_{\delta}$ implies $\delta \in S_{\lambda}^{*p}[c]$ (see 4(3)(c)), so by 4(3) we finish.

2) Let c be a two place function from λ to θ , subadditive. Let χ be regular large enough, and w.l.o.g. let $\langle a_i : i < \lambda \rangle$ exemplify $S \in I[\lambda]$ witnessed by C_0 with $otp(a_i) < \mu$ (see 2(2) above). Let $\langle N_i : i < \lambda \rangle$ be increasing continuous such that $N_i < \langle H(\chi), \in \rangle$, $\langle a_i : i < \lambda \rangle \in N_0$, $N_i \cap \lambda$ is an ordinal, $|||N_i||| < \lambda$, and $\langle N_j : j \le i \rangle \in N_{i+1}$. Let $C = \{i < \lambda : N_i \cap \lambda = i \text{ and } i \in C_0\}$ (it is closed unbounded). Suppose $\delta \in C \cap S$, $cf(\delta) > \theta$, then there is $a \subseteq \delta = \sup \delta$ such that $(\forall \alpha \in a)[a \cap \alpha \in \{a_j : j < \delta\}]$ hence $(\forall \alpha \in a)[a \cap \alpha \in N_\delta]$, and we also know $otp(a) = cf(\delta)$; and let $\{\alpha_i : i < cf(\delta)\}$ be an increasing enumeration of a. So there are $\alpha_i < \delta$, $[i < j \Rightarrow \alpha_i < \alpha_j]$, $\delta = \bigcup \{\alpha_i : i < cf(\delta)\}$ and for $i < cf(\delta)$, $\{\alpha_j : j < i\} \in N_{\beta_i}$ for some $\beta_i < \delta$. As for $i < cf(\delta)$, $\{\alpha_j : j < i\} \mid < cf(\delta) < \mu$, so $2^{\lfloor (\alpha_j : j < i) \rfloor \rfloor} < \lambda$ hence $\{\zeta : \zeta < 2^{\lfloor (\alpha_j : j < i) \rfloor \rfloor}\} \subseteq N_\delta$, so every subset of $\{\alpha_j : j < i\}$ belongs to $N_{\beta_{i+1}} < N_\delta$. As $cf(\delta) > \theta$ for some $\gamma < \theta$, $A = \{i < cf(\delta) : c(\alpha_i, \delta) < \gamma\}$ is unbounded below $cf(\delta)$, so by the previous sentence w.l.o.g. $A = cf(\delta)$. So $N_{\delta+1} \models (\exists x)(\forall y \in \{\alpha_j : j < i\})$ $[c(y, x) \le \gamma \land \alpha_i < x]$ (as δ witness the $\exists x$) so there is such x in $N_{\beta_{i+1}}$ call is β_i . So α_i, β_i are as required in $(***)^*\delta$ of Fact 7, so by 7 we finish.

3) Follows.

10. Lemma: 1) If $S \in I[\lambda]$ is stationary, and $(\forall \delta \in S)[cf(\delta) < \mu]$, and P is a μ -complete forcing notion $(\mu > \aleph_0)$ then " \Vdash_P "S is a stationary subset of the ordinal λ "

2) If $S \subseteq \{\delta < \lambda : cf(\delta) < \mu\}$ is stationary but included in S_{λ}^{*n} (see 3(3)), μ regular and $\lambda = \lambda^{<\mu}$ then for some μ -complete forcing notion P, \mathbb{H}_P "S is not stationary" (in fact $P = \text{Levi}(\mu, \lambda)$ is O.K.)

Remark: As for 10(2), it repeats Theorem 21, p. 366 of [Sh 6], Donder and Ben David note a defect: in the case $\lambda = \lambda^{<\lambda}$ (really $\lambda = \lambda^{<\mu}$) in the definition of the forcing P (= $\{\langle \alpha_i : i \leq \zeta \rangle: \alpha_i \text{ increasing continuous } B_{\alpha_{i+1}} = \{\alpha_j : j \leq i\}$) we forget to demand $\zeta < \mu$. [Note however that automatically $\zeta \leq \mu$ as each B_i has cardinality $< \mu$, so we should just omit the maximal elements of P which make P totally trivial].

For the general case $(\lambda < \lambda^{<\mu})$ note that if some weak form of it fails, our definition of the set S_{λ}^{*n} make it empty. I.e. by Definition 8, p. 36 of [Sh 6], S_{λ}^{*n} make it empty. I.e. by Definition 2(1),2(1), p. 359 of [Sh 6] relaying on Definition 1, p. 358 of [Sh 6]. This demand " $S_{\lambda}^{*n} \subseteq gcf(x)$ " is reasonable, as otherwise we cannot prove there is such a set. See here later. [18,19]

Proof: 1) Use $(\forall s)(s \in I[\lambda] \Rightarrow s \in I^+[\lambda])$ from 16(2) (see Definition 15)

2) Let $\langle a_i : i < \lambda \rangle$ list the subsets of λ of cardinality $< \mu$, each appearing λ times. If $P = \text{Levi } (\mu, \lambda)$, in V^P λ has cofinality μ , so let $\langle \alpha_i : i < \mu \rangle$ be increasing, $\alpha_i < \lambda$, $\bigcup_{i < \kappa} \alpha_i = \lambda$. But forcing with P add no sequences of ordinals of length $<\mu$, so we can find inductively $j(i) < \lambda$, $j(i) > \bigcup \{j(\xi), \alpha_{\xi} : \xi < i\}$, $a_{j(i)} = \{\alpha_{\xi} : \xi < i\}$. Now $\{\delta < \lambda : \text{ the set } \{j(i) : i < \mu\} \cap \delta$ is unbounded in δ } is a club of λ in V^P , included in a good subset of λ from V.

* * *

In [Sh 6] we define S_{λ}^{*n} inside a larger set than $\{\delta < \lambda : \lambda^{< cf \delta} = \lambda\}$ (see 3(3)). We will present this addition, improved, i.e. $Gcf[\lambda]$, $gcf(\lambda)$ are bigger sets here than in [Sh 6, Definition 2].

11 Definition: 1) For a family F of subsets of θ let

$$tr(F) = \{A \cap \alpha : A \in F, \alpha < \theta\}$$

2) For θ regular uncountable let $club_{tr}(\theta) = Min\{|tr(F)| : F \text{ is a family of closed}$ unbounded subsets of θ such that: every closed unbounded subset of θ contains some members of F.

Let $club_{tr}[\aleph_0] = \aleph_0$ and let F_{θ} exemplify $club_{tr}(\theta) = |F_{\theta}|$.

- 3) $Gcf[\lambda] = \{\theta : \theta \text{ is regular } \geq \aleph_0 \text{ and, } \lambda = \lambda^{<\theta} \text{ or } club_{tr}(\theta) < \lambda\}$
- 4) $gcf[\lambda] = \{\delta < \kappa : cf \ \delta \in gcf[\lambda], \ cf(\delta) < \delta\} \cup \{\delta < \lambda : \delta \text{ a (weakly) inaccessible cardinal}\}$ $\bigcup \{\alpha < \lambda : \alpha = 0, \text{ or } \alpha \text{ successor ordinal}\}$
 - 4) $gcf_{ac}[\lambda] = \{\delta \in gcf[\lambda] : cf \delta < \delta\}$
 - 12 Fact: 1) If GCH, $\lambda > \aleph_0$ regular then $Gcf[\lambda] = \{\theta : \theta \text{ regular } < \lambda\}, gcf[\lambda] = \lambda$.
 - 2) For regular uncountable θ , $\theta < club_{tr}(\theta) \le 2^{\theta} \le 2^{\theta}$.
- 3) If $2^{<\theta} \le \lambda$, $(\theta, \lambda \text{ regular})$ then $\theta \in Gcf(\lambda)$ [as this implies either $\lambda = 2^{<\theta}$ hence $\lambda = \lambda^{<\theta}$ or $\lambda > 2^{<\theta}$ hence $\lambda > club_{tr}(\theta)$].
- 13 Definition: 1) We call \overline{a} an enumeration for λ if $\overline{a} = \langle a_i : i < \lambda \rangle$, each a_i a bounded subset of λ .
 - 2) We call \bar{a} a rich enumeration for λ if:
 - (i) \overline{a} is an enumeration for λ
 - (ii) if $\lambda = \lambda^{\theta}$, (hence $\theta < \lambda$) then every subset of λ of cardinality $\leq \theta$ appears in a
- (iii) if θ is an uncountable regular cardinal, and $club_{tr}(\theta) \leq \lambda$ then letting F_{θ} exemplify $club_{tr}(\theta) \leq \lambda$, for every limit ordinal $\delta < \lambda$ of cofinality θ , there is a closed unbounded subset $\{\beta_i^{\delta} : i < \theta\}$ of δ (β_i^{δ} increasing continuous) such that
 - (*) for every $A \in F_{\theta}$ and $\zeta < \theta$, $\{\beta_i^{\delta} : i \in A \cap \zeta\}$ appear in \overline{a} .

- 3) In (1) (and (2)) we replace "enumeration" by $(<\mu)$ -enumeration if we restrict ourselves to subsets of λ of cardinality $<\mu$ i.e. in (ii) $\theta \le \mu$, in (iii) $\theta \le \mu$.
 - 4) For an unbounded subset S of λ , we say \overline{a} is a rich enumeration for $(S, \theta)^{\ell}$ if:
 - (i) \overline{a} is an enumeration for λ
 - (ii) if l = 1, $\lambda = \lambda^{<\theta}$ and every $b \subseteq \lambda$, $|b| < \theta$ appear in \overline{a}
- (iii) if $\ell = 2$ $club_{\ell r}(\theta) \le \lambda$, then for every $\delta \in S$ of cofinality θ the condition in (2) (iii) above holds.
 - **14 Fact:** 1) For every regular uncountable λ there is a rich enumeration;
 - 2) For every $\lambda = cf \lambda > \mu$, λ has a rich μ -enumeration.
 - 15 Definition: For λ regular uncountable
- $I^+[\lambda] = \{S \subseteq \lambda : \text{ for every cardinal } \chi > \lambda \text{ and } x \in H(\chi), \text{ for some closed } C \subseteq \lambda, \text{ for every } \delta \in C \cap S \text{ there are a limit } \gamma < \delta, \text{ and } N_i < (H(\chi), \in, x, \lambda), \text{ for } i < \gamma, \text{ such that } \langle N_j : j \leq i \rangle \in N_i, N_i \cap \lambda \text{ is an ordinal } \alpha_i < \delta \text{ and } \delta = \bigcup_{i \leq \gamma} \alpha_i \}.$
 - **16 Fact:** 1) $I^+[\lambda]$ is a normal ideal on λ and in its definition w.l.o.g. $\gamma = cf \delta$,
 - 2) $I[\lambda] \subseteq I^+[\lambda]$
 - 3) If $S \subseteq gcf[\lambda]$ then: $S \in I[\lambda] \Leftrightarrow S \in I^+[\lambda]$
- 4) There is $S_{\lambda}^{*n} \subseteq gcf[\lambda]$, such that for every rich enumeration \overline{a} for λ and $S \subseteq Gcf[\lambda]$: $S \in I[\lambda]$ if and only if $S \in I^+[\lambda]$ if and only if $S \cap S_{\lambda}^{*n} = \emptyset \mod D_{\lambda}$ if and only if $S \subseteq S_{\lambda}^{*p}[\overline{a}] \mod D_{\lambda}$. We let $S_{\lambda,\theta}^{*n} = \{\delta < \lambda : cf(\delta) = \theta, \delta \in S_{\lambda}^{*}\}$ (this replace 3(3)) and

$$S_{\lambda,<\theta}^{*n} \stackrel{def}{=} \{\delta < \lambda : cf \; \delta < \theta, \; \delta \in S_{\lambda}^{*n}\}$$

- 5) for every rich enumeration \bar{a} for λ , $gcd[\lambda] S_{\lambda}^{*n}[\bar{a}] \equiv S_{\lambda}^{*q} \mod D_{\lambda}$.
- 6) for any $\theta < \lambda$, suppose (A) $\lambda = \lambda^{<\theta}$, $\{b \subseteq \lambda : |b| < \theta\} \subseteq \{a_i : i < \lambda\}$ (like 11(2)(ii) or (B) $club_{tr}(\theta) < \lambda$, F_{θ} exemplify it and \overline{a} satisfies 11(2)(iii) for every $\delta \in S \subseteq \{\delta < \lambda : cf \ \delta > cf \ \theta\}$. Then $S \cap S_{\lambda,\theta}^{*n} = S S_{\lambda}^{*p}[\overline{a}]$.

Proof: 1) The normality is easy, the "w.l.o.g. $\gamma = cf \delta$ " is proved as in 2(2).

2) Let $S \in I[\lambda]$, so for some enumeration $\overline{a} = \langle a_i : i < \lambda \rangle$ for λ , $C \cap S \subseteq S_{\lambda}^{*q}[\overline{a}]$ for some closed unbounded $C \subseteq \lambda$. Let $\chi > \lambda$, $x \in H(\chi)$. We can find $\langle N_{\zeta} : \zeta < \lambda \rangle$ increasing continuous, $N_{\zeta} < (H(\chi), \in, x)$, such that $N_{\zeta} \cap \lambda$ is an ordinal $|||N_{\zeta}||| < \lambda$, $\langle N_j : j \leq \zeta \rangle \in N_{\zeta+1}$ and C, $\overline{a} \in N_0$. So $C' \stackrel{def}{=} \{\delta < \lambda : \delta \in C \text{ and } N_{\delta} \cap \lambda = \delta\}$ is a closed unbounded subset of λ .

Now for every $\delta \in C' \cap S$, there is a_i from \overline{a} , $otp(a_i) < \sup(a_i) = \delta$ and for $\alpha \in a_i$, $\alpha \cap a_i \in \{a_j : j < \delta\}$. As $\overline{a} \in N_0$ clearly $\{a_j : i < \delta\} \subseteq \bigcup_{\zeta < \delta} N_{\zeta}$. Let $a_i = \{\gamma_{\varepsilon} : \varepsilon < otp \ a_i\}$. Now we try to define by induction on $\varepsilon < otp(a_i)$ an ordinal $\zeta_{\varepsilon} < \delta$:

for
$$\varepsilon = 0$$
: $\zeta_{\varepsilon} = 0$

for
$$\varepsilon$$
 limit: $\zeta_{\varepsilon} = \bigcup_{\beta < \varepsilon} \zeta_{\beta}$,

for ε successor: ζ_{ε} is the first ordinal ζ satisfying ζ is bigger than γ_{ε} and $\langle N_{\zeta_{\beta}} : \beta < \varepsilon \rangle$ belongs to $N_{\zeta_{\varepsilon}}$.

The only reason for stopping is: ε limit $\bigcup_{\beta < \varepsilon} \zeta_{\beta} = \delta$; once this occurs at ε_0 , $\langle N_{\zeta_{\varepsilon}} : \varepsilon < \varepsilon_0 \rangle$ is as required [otherwise for limit and for zero there is no problem, and for ε successor, $\zeta_{\varepsilon-1}$ is defined and $<\delta$, so for some β , $\zeta_{\varepsilon-1} < \gamma_{\beta} < \delta$ [where $a_i = \{\gamma_{\beta} : \beta < otp \ a_i\}$) now $\langle \zeta_{\beta} : \beta < \varepsilon \rangle$ is definable inside the model $(H(\chi), \varepsilon)$ from the parameters $\langle N_j : j < \gamma_{\beta} \rangle$, $\langle \gamma_j : j < \beta \rangle$ only; as both are in $\bigcup_{j < \delta} N_j$, is $\langle \zeta_{\beta} : \beta < \alpha \rangle$, and similarly so is ζ_{ε}].

- 3) Fix $S \subseteq gcf[\lambda]$; by 16(2) it is enough to assume $S \in I^+[\lambda]$ and prove $S \in I[\lambda]$, we prove more in 16A below.
 - 4) S_{λ}^{*n} is $gcf[\lambda] S_{\lambda}^{*p}[\overline{a}]$ for any rich enumeration \overline{a} for λ .
 - 5), 6) Should be clear.
- **16A Subfact:** If $S \subseteq gcf[\lambda]$, $(\lambda \text{ regular uncountable}) S belongs to <math>I^+[\lambda]$ and $\overline{a} = \langle a_i : i < \lambda \rangle$ is a rich enumeration for λ , then $S \subseteq S_{\lambda}^{*p}[\overline{a}] \mod D_{\lambda}$.

Proof of 16A: Let $x = \overline{a}$, $\chi = (2^{\lambda})^+$, so as $S \in I^+[\lambda]$ (see Definition 15), there is a closed unbounded $C \subseteq \lambda$ such that (see 16(1)):

(*) for every $\delta \in C \cap \delta$ there is $\overline{N} = \langle N_i : i < cf(\delta) \rangle$ as in Definition 15.

Fix $\delta \in C \cap S$, and \overline{N} and let $\theta = cf \delta$, $\alpha_i = N_i \cap \lambda$. Remember that $N_i \cap \{a_j : j < \lambda\} = \{a_j : j < \alpha_i\}$. We shall show that $\delta \in S_{\lambda}^{*p}[\overline{a}]$, thus finishing.

Case 1:
$$\lambda^{<\theta} = \lambda$$
 (e.g. $cf \delta \le \aleph_0$).

In this case for each $i(*) < \theta$, $\{\alpha_i : i < i(*)\}$ belongs to $\{a_j : j < \lambda\}$ (as \overline{a} is rich) and to $N_{i(*)+1}$ (as $\langle N_i : i < i(*) \rangle \in N_{i(*)+1}$, and $\lambda \in N_{i(*)+1}$); hence $\{\alpha_i : i < i(*)\}$ belongs to their intersection which is $\{a_j : j < \alpha_i\}$. So $\langle a_i : i < i(*) \rangle$ exemplify $\delta \in S_{\lambda}^{*p}(\overline{a})$, as required.

Case 2:
$$cf \delta < \delta$$
, $club_{tr}(\theta) < \lambda$ where $\theta = cf \delta > \aleph_0$).

Let $F_{cf \delta}$ exemplify $club_{tr}(\theta) = |tr(F_{\theta})|$, and let $\{\beta_i^{\delta} : i < \theta\}$ be as in Definition 13(1) (iii). So $A_{\theta} = \{i < \theta : \beta_i^{\delta} = \alpha_i\}$ is a club of θ , hence for some club $A \in F_{\theta}$, $A \subseteq A_{\theta}$. By 13(1) (iii) for every $i(*) < \theta$, $\{\beta_i^{\delta} : i \in A, i < i(*)\}$ belongs to $\{a_i : i < \lambda\}$, but $A \cap i(*) \in \bigcup_{i < \theta} N_i$ [as $\theta < \delta$, hence w.l.o.g. $F_{\theta} \in \bigcup_{i < \theta} N_i$ hence $tr(F_{\theta}) \in \bigcup_{i < \theta} N_i$, but $|tr(F_{\theta})| < \lambda$ hence $tr(F_{\theta}) \subseteq \bigcup_{i < \theta} N_i$]. Hence $\{\alpha_i : i \in A \cap i(*)\} \in \bigcup_{i < \theta} N_i$, so we finish.

Case 3:
$$\delta = cf \delta$$
.

Trivial.

17 Lemma: Suppose in $V, \lambda > \aleph_0$ is regular, $\theta \in Gcf[\lambda]$, so $S_{\lambda,\theta}^{*n}$ is defined.

Suppose further V^1 is an extension of the universe V (say same ordinals), $V^1 \models "\lambda > \aleph_0$ is regular", and

 $(*)_1$ $V^1 \models$ "every subset of λ of cardinality $< \theta$ belongs to V", $V \models$ " $\lambda = \lambda^{<\theta}$ ", or

(*)₂ $V^1 \models "F_\theta^V$ satisfies for every club C of θ , there is $A \in F_\theta^V$, $A \subseteq C$ " (but maybe $V^1 \models "\theta$ not a cardinal") and $V \models "|F_\theta^V| = club_{tr}(\theta) < \lambda$ "

Then

- (i) $V^1 \models "cf \theta \in Gcf[\lambda]$ or $cf \theta = \aleph_0$ "; and
- (ii) $V^1 \models "S_{\lambda,cf\theta}^{*n} \cap \{\delta : V \models cf \delta = \theta\} \equiv (S_{\lambda,\theta}^{*n})^V \mod D_{\lambda}"$ or equivalently: in V^1 , $(S_{\lambda,\theta}^{*n})^V/D_{\lambda}$ is disjoint to every S/D_{λ} , $S \in I[\lambda]$.

Proof: Let \overline{a} be a rich enumeration for λ in V.

By (*), \overline{a} is still a rich enumeration in V^1 for $S = \{\delta < \lambda : V \models cf \delta = \theta\}$. By 16(6) we finish.

18 Lemma: If $\lambda > \aleph_0$ is regular, $S \in I^+[\lambda]$, $S \subseteq \{\delta < \lambda : cf \ \delta < \mu\}$, P is a μ -complete forcing notion then

III-p"S is a stationary subset of λ (as an ordinal, λ may or may not be a cardinal)"

Complementary to 18 is

- 19 Lemma: Suppose $\theta \in Gcf(\lambda)$, $\aleph_0 < \theta \le \mu = cf \ \mu < \lambda \text{ so } S_{\lambda,\theta}^{*n}$ is well defined.
- 1) If $\mu = \theta$, $\lambda = \lambda^{<\theta}$, $\lim_{Levi(\mu,\lambda)} "(S_{\lambda,\theta}^{*n})^V$ is not stationary (as a subset of the ordinal λ , (remember $Levi(\theta,\lambda) = \{f : f \text{ a function from some } \alpha < \theta \text{ to } \lambda\}$, it is θ -complete).
 - 2) If $S_{\mu,\theta}^{*n} = \emptyset$, $\lambda = \lambda^{<\theta}$, $\bigoplus_{Levi(\mu,\lambda)} (S_{\lambda,\theta}^{*n})^V$ is not stationary.
- 3) In (1) and (2) we can replace Levi (θ, λ) , by any forcing notion P which adds to λ no new subset of power $< \mu$ and \Vdash_P " $cf \lambda = \mu$ ".
- 4) In (1),(2) we can replace " $\lambda = \lambda^{<\theta}$ " by $club_{tr}(\theta) < \lambda$, if we replace Levi (μ,λ) by $Levi(\lambda,\lambda^{<\theta}) * Levi(\mu,\lambda)$.

Remark: A more general forcing is as follows: Let $\theta < \lambda$, $\kappa \le \theta$, $\overline{b} = \langle b_i : i < \lambda \rangle$ exemplify that $S_{\theta} \in I[\theta]$ and $[\delta < \theta \land \delta \in S_{\theta} \Rightarrow cf \delta < \kappa]$ or just for some $\sigma = cf \sigma < \kappa$, $S_{\theta} = \{\delta < \theta : cf \delta = \sigma\}$, $S \subseteq \{\delta < \lambda : cf \delta = \sigma\}$ and $Q^{\overline{b},\theta} = \{\langle i_{\zeta} : \zeta < \zeta^* \rangle : \zeta^* < \theta, i_{\zeta} < \lambda, \epsilon \in \delta\}$

$$[\zeta(1) < \zeta(2) \Rightarrow i_{\zeta(1)} < i_{\zeta(2)}], \quad a_{i_{\xi}} = \{i_{\xi} : \xi \in b_{\zeta}\}\}.$$

- **20 Claim:** Suppose $\theta = cf \theta > \aleph_0$ for the regular cardinals λ and μ , $\lambda > \mu$ and $club_{tr}(\theta) < \mu$.
- 1) Given S_{λ}^{*n} , S_{μ}^{*n} , there is a club $C \subseteq \lambda$ such that: for every $\delta \in C$ of cofinality μ , there is an increasing continuous sequence $\langle \alpha_i : i < \mu \rangle$, $\bigcup_{i < \mu} \alpha_i = \delta$ and a club c of μ satisfying $[i \in c \land cf \ i = \theta \land i \notin S_{\mu}^{*n} \Rightarrow i \notin S_{\lambda}^{*n}]$.
- 2) If \overline{a} is a rich enumeration for (λ, θ) , then $\{\delta < \lambda : cf \delta = \mu \text{ implies that for some } \alpha_i, \beta_i \ (i < \mu): \ \langle \alpha_i : i < \mu \rangle$ is increasing continuous with limit δ , $\beta_i < \mu$ and defining for $i < \mu$, $b_i = \{j : a_j \in a_{\beta_i}\}$, $\langle b_i : i < \mu \rangle$ is a rich enumeration for $(\mu, \theta)\} \in D_{\lambda}$.
- **21. Lemma:** 1) If κ is supercompact and e.g. $\lambda > \kappa > cf \lambda$, then $I[\lambda^+]$ is a proper ideal: $\lambda^+ \notin I[\lambda^+]$.
 - 3) After suitable collapses, e.g. $cf \lambda = \aleph_0 < \lambda$ but still $\lambda^+ \notin I[\lambda^+]$.
 - **22. Problem:** 1) Is G.C.H. $+ \{\delta < \aleph_{\omega+1} : cf \delta > \aleph_1\} \notin I[\aleph_{\omega+1}]$ consistent with ZFC.
 - 2) Is

(*) $2^{\aleph_0} > \aleph_{\omega+1} +$ "there is no stationary $S \in I[\aleph_{\omega+1}]$ " consistent with ZFC?

3) Is

 $(*) \ 2^{\aleph_0} > \aleph_{\omega+1} + \text{ for no ultrafilter } D \text{ on } \omega, \ cf(\pi(\aleph_n, <)/D) = \aleph_{\omega+1}$

consistent with ZFC.

Remark: " $\aleph_{\omega+1}$ is a Jonson cardinal" implies (*) of (3) (see [Sh 9] which implies (*) of (2) (see [Sh]).

Having F cause slight inconvenience.

We define by induction on $\alpha < \lambda^+$, $(M_{\alpha}, N_{\alpha}, a)$, and $N_{\gamma}^*, N_{\gamma}^*, M_{\gamma}^*, f_{\gamma}, g_{\gamma}$: for suitable γ 's such that

- (A) M_{α} , N_{α} , M_{α}^* , N_{α}^* are isomorphic to M^* .
- (B) $M_{\beta}(\beta \leq \alpha)$ is \prec_{K^-} increasing continuous and similarly $N_{\beta}, M_{\beta}^*, N_{\beta}^*$.
- (C) $F(M_{i+1}^*) = M_{i+2}$
- (D) $F(N_{i+1}^*) = N_{i+2}^*$
- (E) $(M_{\beta}, N_{\beta}, a) < (M_{\alpha}, N_{\alpha}, a)$ for $\beta < \alpha$.
- (F) for γ limit or zero f_{γ} is an isomorphism from M_{γ}^* onto M_{γ} , g_{γ} is an isomorphism from N_{γ}^* onto N_{γ} .
- (G) for γ limit or zero, n > 0: f_{γ} is an isomorphism from $N_{\gamma+n}^*$ onto $N_{\gamma+2n}$, g_{γ} is an isomorphism from $M_{\gamma+n}^*$ onto $M_{\gamma+2n-1}$.