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Abstract. We prove that for λ = iω or just λ strong limit singular of cofi-

nality ℵ0, if there is a universal member in the class Klf
λ of locally finite groups

of cardinality λ, then there is a canonical one (parallel to special models for

elementary classes, which is the replacement of universal homogeneous ones

and saturated ones in cardinals λ = λ<λ).
For this, we rely on the existence of enough indecomposable such groups,

as proved in “. Density of indecomposable locally finite groups”. We also more

generally deal with the existence of universal members in general classes for
such cardinals.
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2 SAHARON SHELAH

§ 0. Introduction

§ 0(A). Background and aims.
Our motivation is investigating the class Klf of locally finite groups (that is,

groups such that every finitely generated sub-group is finite), so the reader may
consider only this case ignoring the general case; or consider universal classes (see
Def. 0.6). We continue [She17a], see history there and see more in [She], and on
earlier history the book [KW73].

We wonder:

Problem 0.1. 1) Is there a universal G ∈ Klf
λ (= the class of members of Klf of

cardinality λ), see 0.5(1); e.g. for λ = iω? Or just λ strong limit of cofinality ℵ0

(which is not above a compact cardinal)?
2) May there be a universal G ∈ Klf

λ , when λ < λℵ0 , e.g. for λ = ℵ1 < 2ℵ0 , i.e.
consistently?

Generally, on the problem of the existence of a universal model of a class in
cardinality λ see the classical Jonsson [Jón56], [Jón60], Morley-Vaught [MV62] and
the recent survey [Dža05] and later [She21].

Returning to locally finite groups, concerning 0.1(1) recall that by Grossberg-
Shelah [GS83], if λ = λℵ0 then there is no universal member of Klf

λ . But if λ, a
strong limit cardinal of cofinality, ℵ0 is above a compact cardinal κ, then there is
G ∈ Klf

λ which is universal. So Problem 0.1 address the main open cases.
More fully by [She16, 2.17 = L s56] we have:

Conclusion 0.2. 1) µ = cf(µ), µ+ < λ = cf(λ) < 2µ then there is no group of
cardinality λ universal for the class of locally finite groups.

2) For example, if ℵ2 ≤ λ = cf(λ) < 2ℵ0 this applies.

So the only other cases left are:

(A) cf(λ) < λ < 2ℵ0 ,
(B) iδ < λ < 2iδ , cf(δ) = ℵ0 and λ singular.

Question: Are there partial long orders on {θG : G ∈ Klf}?
Above, if ℵ0<µ = cf(µ) < λ, 2µ > λ such that TJbd

µ
(λ) < 2µ, then there is no

universal in λ, as in [KS92], see [S+].
Let us consider the model theory of locally finite groups.
Recall

Definition 0.3. 1) G is a lf (locally finite) group if G is a group and every finitely
generated subgroup is finite.

2) G is an exlf (existentially closed lf) group (in [KW73] it is called ulf, universal
locally finite group) when G is a locally finite group and for any finite groups K ⊆ L
and embedding of K into G, the embedding can be extended to an embedding of
L into G.

3) Let Klf be the class of lf (locally finite) groups (partially ordered by ⊆, being
a subgroup) and let Kexlf be the class of existentially closed G ∈ Klf .

Wehrfritz asked about the categoricity of the class of exlf groups in any λ > ℵ0.
This was answered by Macintyre-Shelah [MS76] which proved that in every λ > ℵ0

there are 2λ non-isomorphic members of Kexlf
λ . This was disappointing in some

sense: in ℵ0 the class is categorical, so the question was perhaps motivated by the
hope that also general structures in the class can be understood to some extent.
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The existence of a universal can be considered as a weak positive answer.
A natural and frequent question on a class of structures is the existence of rigid

members, i.e. ones with no non-trivial automorphism. Now any exlf group G ∈
Kexlf has non-trivial automorphisms - the inner automorphisms (recalling it has a
trivial center). So the natural question is about complete members where a group
is called complete iff it has no non-inner automorphism.

Concerning the existence of a complete, locally finite group of cardinality λ:
Hickin [Hic78] proved one exists in ℵ1 (and more, e.g. he finds a family of 2ℵ1 such
groups pairwise far apart, i.e. no uncountable group is embeddable into two of
them). Thomas [Tho86] assumed G.C.H. and built one in every successor cardinal
(and more, e.g. it has no Abelian or just solvable subgroup of the same cardinality).
Related are Giorgetta-Shelah [GS84], Shelah-Zigler [SZ79], which investigate KG∗

getting similar results.
Dugas-Göbel [DG93, Th.2] prove that for λ = λℵ0 and G0 ∈ Klf

≤λ there is a

complete G ∈ Kexlf
λ+ extending G0; moreover 2λ

+

pairwise non-isomorphic ones.
Then Braun-Göbel [BG03] got better results for complete locally finite p-groups.

Now [She17a] show that though the class Kexlf is very “unstable” there is a large
enough set of definable types so we can imitate stability theory and have reasonable
control in building exlf groups, using quantifier-free types. This may be considered
a “correction” to the non-structure results discussed above. This was applied to
build a canonical extension of a locally finite group of the same cardinality which
is existentially closed (it was known to exist in the power set, see [KW73]). Also,
there are endo-rigid locally finite groups in a more relaxed way.

Returning to the present work, here we deal with the universality problem for
µ = iω or just strong limit of cofinality ℵ0. We prove for Klf and similar classes
that if there is a universal model of cardinality µ, then there is something like a
special model of cardinality µ, in particular, universal, and unique up to isomor-
phism. This relies on [She20], which proves the existence and even the density
of so-called θ-indecomposable (i.e. θ is not a possible cofinality) models in Klf of
various cardinalities continuing Carson-Shelah [CS20] which deal with the class of
groups.

Returning to Question 0.1(1), a possible avenue is to try to prove the existence
of universal members in µ when µ = Σn<ωµn each µn measurable < µ, i.e. maybe
for some reasonable classes this holds.

We thank the referee for helpful remarks and later Mark Poór.

§ 0(B). Definitions.

Context 0.4. K will be one of the following cases:
Case 1: K = Klf , the class of locally finite groups, so the submodel relation is

just a subgroup,
Case 2: K is a universal class, see Def 0.6(1) below, the submodel relation means

just a submodel,
Case 3 K is k = (Kk,≤k) an a.e.c. with LSTk < µ , see [She09, §1]; we shall only

comment on it. In particular, in this context, in the definitions, M ⊆ N should be
replaced by M ≤k N .

Definition 0.5. 1) We say that M ∈ Kµ is universal (in K or in Kµ, see 0.6) when
every member of Kµ can be embedded into it.
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4 SAHARON SHELAH

2) We say that M ∈ K is universal for K<µ when every M ∈ K<µ can be
embedded into it; see Def 0.6(4) below.

3) We define similarly “M ∈ K is universal for Kµ” and “M ∈ K is universal
for K≤µ”.

Definition 0.6. 1) We shall say that K is a universal class when for some vocab-
ulary τ = τK:

(a) K is a class of τ -models, closed under isomorphisms,
(b) a τ -model belongs to K iff every finitely generated sub-model belongs to it,

3) Let Kµ be the class of M ∈ K of cardinality µ. We define K<µ,K≤µ naturally.
4) For cardinals λ ≤ µ let Kµ,λ be the class of pairs (N,M) such that N ∈

Kµ,M ∈ Kλ and M ⊆ N .
5) Let (N1,M1) ≤µ,λ (N2,M2) mean that (N`,M`) ∈ Kµ,λ for ` = 1, 2 and

M1 ⊆M2, N1 ⊆ N2.
6) For λ ≤ µ we define Kµ,<λ and ≤µ,<λ similarly.
7) A universal class K can be considered as the a.e.c. k = (K,⊆)

Notation 0.7. 1) Let M,N and also G,H,L denote members of K.
2) Let |M | be the universe = set of elements of M and ‖M‖ its cardinality.
3) Let a, b, c, d denote members of such M , and ā, b̄ . . . denote sequences of such

elements.

Definition 0.8. 1) We say the pair (N,M) is an (χ, µ, κ)-amalgamation base (or
amalgamation pair, but we may omit χ when χ = µ, and we may even omit µ, κ
too when clear from the context) when :

(a) (N,M) ∈ Kµ,κ,
(b) if N1 = N and M ⊆ N2 ∈ Kχ

then N1, N2 can be amalgamated over M , this mean that for some
N3, f1, f2 we have M ⊆ N3 ∈ K and f`-embeds N` into N3 over M for
` = 1, 2.

2) We say that the pair (N,M) is a universal (µ, λ)-amalgamation base (we may
omit µ, λ) when :

(a) (N,M) ∈ Kµ,λ,
(b) if N ⊆ N ′ ∈ Kµ then N ′ can be embedded into N over M .

3) We may in parts (1),(2) omit µ, κ when (µ, λ) = (‖N‖, ‖M‖).
4) We say M ∈ K<µ is an amalgamation base inside K<µ when: if M ≤ N` ∈

K<µ, then N1, N2 can be amalgamated over M (see 0.8(1)(b)) but N3 ∈ K<µ.
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§ 1. Indecomposability

In this section we deal with indecomposability, equivalently CF(M), see e.g.
[ST97]; we have Klf in mind but still it is meaningful and of interest also for other
classes.

Why do we deal with indecomposable members K? When we shall try to un-
derstand universal members M of Kµ we shall use some θ-indecomposable N ⊆M
of cardinality < µ. How will this help us? The point is that N ∈ K<µ may have

too many embeddings into M , but if θ = cf(θ) 6= cf(µ), α < µ⇒ |α|‖N‖ < µ, N is
θ-indecomposable and θ is regular uncountable < µ, then this is not the case.

We need indecomposable c : [λ]→ θ in order to build enough θ-indecomposable
locally finite groups (as done in [She20]).

Definition 1.1. 1) We say M is θ-indecomposable or θ ∈ CF(M) when : θ is
regular and if 〈Mi : i < θ〉 is ⊆-increasing with union M , then M = Mi for some i.

2) We say M is Θ-indecomposable when it is θ-indecomposable for every θ ∈ Θ.
We say M is Θorth-indecomposable when it is θ-indecomposable for every regular
θ /∈ Θ.

3) We say G is θ-indecomposable inside G+ when :

(a) θ = cf(θ);
(b) G ⊆ G+;
(c) if 〈Gi : i ≤ θ〉 is ⊆-increasing continuous and Gθ = G+ (hence G ⊆ Gθ)

then for some i < θ we have G ⊆ Gi.
4) For θ = cf(θ) ≤ λ ≤ µ such that θ /∈ Θλ (see 1.2(1)) we say K is (µ, λ, θ)-

indecomposable when for every pair (N,M) ∈ Kµ,λ there is (N1,M1) ∈ Kµ,λ

which is ≤µ,λ-above it and M1 is θ-indecomposable (really, not just inside N1). For
θ = cf(θ) < λ ≤ µ we say K is (µ,< λ, θ)-indecomposable when:

if θ = cf(θ) ≤ λ1 < λ, θ /∈ Θλ1
then K is (µ, λ2, θ)-indecomposable for some

λ2 ∈ [λ1, µ).
5) We say c : [λ]2 → S is θ-indecomposable when : if 〈ui : i < θ〉 is ⊆-increasing

sequence of sets with union λ then S = {c{α, β} : α 6= β ∈ ui} for some i < θ;
6) We may replace above the cardinal θ by a set or class Θ of regular cardinals,

(as done in 1.1(2)).

A group G may be considered indecomposable as a group or as a semi-group;
our default choice is semi-group; but note that for locally finite groups the two
interpretations are equivalent.

The following was proved in [She20].

Theorem 1.2. 1) If λ ≥ ℵ1 and we let Θλ = {cf(λ)} except that Θλ = {cf(λ), ∂} =
{λ, ∂} when (c)λ,∂ below holds, then clauses (a),(b) hold, where:

(a) some c : [λ]2 → λ is θ-indecomposable for every θ = cf(θ) /∈ Θλ

(b) for every G1 ∈ Klf
≤λ there is an extension G2 ∈ Klf

λ which is Θorth
λ -

indecomposable
(c)λ,∂ for some µ, λ = µ+, µ > ∂ = cf(µ) and µ = sup{θ < µ : θ is a regular

Jonsson cardinal}.
2) If µ ≥ λ ≥ θ = cf(θ) , and θ /∈ Θλ, λ ≥ ℵ1 then Klf is (µ, λ, θ)-indecomposable.
2A) In fact (on part (2)) it suffice to assume (∃λ1)(λ ≤ λ1 ≤ µ ∧ θ /∈ Θλ1).
3) If µ ≥ λ and (H1, G1) ∈ K≤µ,≤λ then we can find a pair (H2, G2) ∈ Kµ,λ

such that:
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6 SAHARON SHELAH

(a) G2 is Θorth
λ -indecomposable,

(b) if µ > λ then G1 is θ-indecomposable inside H2 for every regular θ,
(c) H2 is Θorth

µ -indecomposable.

Proof. 1) By1 [She20, Th. 3.5].
2), 2A) The proof will serve also for part (3). Let (N,M) ∈ Kµ,λ be given. We

choose a pair (χ, ∂) of cardinals and c such that λ ≤ χ ≤ µ ∂ = cf(∂) ≤ λ, ∂ 6= θ
and c : [χ]2 → χ is θ-indecomposable; (possible here as θ /∈ Θλ, λ ≥ ℵ1 even for
χ = λ).

By induction of α ≤ ∂ we choose Hα, Lα, but Lα is chosen together with Hα+1

when α is a successor ordinal, such that:

(a) (Hα, Lα) ∈ Kµ,λ is increasing continuous with α
(b) (H0, L0) = (N,M),
(c) if α = β + 1 < θ then and Lα is θ-indecomposable.

Why can we carry the induction? For α = 0 this is trivial; similarly for α
a limit ordinal. Lastly by clause (b) of part (1), for α = β + 1 ≤ α∗, recall
the proof of [She20, 3.4], pedantically as without loss of generality Hβ , Lβ are
existentially closed hence generated by the elements of order 2, let 〈aα : α < µ〉
list {a ∈ Lβ : a of order 2}. By [She20, Prop. 3.4(2)], with uα = {α}, we can
find Hα,1 ∈ Klf

µ extending HB and pairwise commuting bα ∈ Hα,1 each of order
2, for α < µ (the order 2 was not mention but proved) and pairwise commuting
dα ∈ Hα,1, each of order 2, for α < µ such that, Lβ is included in the subgroup
Lα,1 of Hα,1 generated by {bα, dα : α < λ}.

Now apply [She20, Prop. 3.4(1)] for a θ-indecomposable c : [λ]2 → λ.
3) We deal with every regular θ ≤ µ successively. Fixing θ we can use the proof

of part (2). �1.2

Now comes the central definition, what is its role?
We like to sort out when there is a universal member of Kµ and when there is

a canonical universal member. For reasons explained above we concentrate on the
case µ is strong limit of cofinality ℵ0, for example iω. To find out the answer to
those two questions for every universal class K seem too much to hope for. The
Def 1.3 accomplishes a more modest task: it gives a large frame satisfied by a large
family of pairs (K, µ) for which we shall prove an equivalence. In particular our
class Klf belongs to this family.

Definition 1.3. We say that K is µ-nice when :

(a) τK has cardinality < µ,
(b) for every M ∈ K<µ there is N ∈ Kµ extending M ,
(c) K has the JEP (joint embedding property),
(d) K is (µ,< µ, cf(µ))-indecomposable or just,

(d)′ for arbitrarily large λ2 < µ letting θ = cf(µ) ≤ λ2 we have K is (µ, λ2, θ)-
indecomposable.

Naturally we like to prove that the pair (Klf ,iω) falls under the frame of Def
1.3. This is the role of 1.4, 1.5. In §3 we point out an additional family. For the
main case, µ is a strong limit of cofinality ℵ0.

Claim 1.4. Klf is µ -nice when µ ≥ ℵ1.

1But Theorem 1.5 in the author’s archive version, similarly 3.4 is 1.4
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Proof. In Def 1.3 clause (a) is trivial and as Klf is closed under products clearly
clauses (b),(c) are clear and clause (d), for µ regular is trivial (and is not used) and
for µ singular it holds by 1.2(3), see also 1.5(2) below. �1.4

We give below more than what is strictly needed.

Claim 1.5. Assume K = Klf .
1) We have (A)⇒ (B) where:

(A) (a) µ ≥ ℵ1,
(b) δ∗ ≤ µ and λα < µ for α < δ∗,
(c) λα ≥ |α| is non-decreasing,
(d) G1 ∈ K≤µ,
(e) G1,α ∈ K≤λα is a subgroup of G1 for α < δ∗,

(B) There are G2, Ḡ2 such that:
(a) G2 ∈ Kµ extends G1,
(b) Ḡ2 = 〈G2,α : α < δ∗〉 is increasing,
(c) G2,α ∈ Kλα extend G1,α,
(d) G2 is Θ-indecomposable where2 Θ = (Θµ ∪ {cf(δ∗)})orth

(e) G2,α is Θorth
λα

-indecomposable (not just inside H2) for every α < δ∗
(f) if µ = Σ{λα : α < δ∗} the G2 = ∪{G2,α : α < δ∗},
(g) if µ >

∑
{λα : α < δ∗} then G2 is Θorth

M -indecomposable.

2) If µ > λ ≥ ℵ1 then ℵ0 ∈ Θorth
cf(µ) ∪Θorth

λ except possibly when µ = λ+, cf(λ) =

ℵ0.

Proof. 1) By induction of α ≤ δ∗ we choose Hα, H̄α, Lα, but Lα is chosen together
with Hα+1 and not chosen for α = α∗, such that:

(a) Hα is increasing continuous with α
(b) H0 = G1 and α > 0⇒ Hα ∈ Kµ

(c) (Hα, Lβ) ∈ Kλ,λβ when α = β + 1 ≤ α∗
(d) H̄α = 〈Hα,ε : ε < δ∗〉 such that if µ = Σ{λε : ε < δ∗} then this sequence

is increasing with union Hα and Hα,ε has cardinality λε when α > 0 and
≤ λε when α = 0

(e) G1,β , Hβ,ε, Lγ are sub-groups of Lα when β ≤ α, ε ≤ α, γ < α
(f) Lβ is Θorth

λβ
-indecomposable,

(g) G2 is Θ-indecomposable where Θ = (Θµ ∪ {cf(δ∗)})orth

Why can we carry the induction? We choose H̄α just after Hα was chosen.
For α = 0 this is trivial (note that Lα is not chosen), similarly for α a limit
ordinal. Lastly for α = β + 1 ≤ α∗, Definition 1.1(4) 1.2(3) gives the desired
conclusion. In details, first choose L+

β ⊆ Hβ of cardinality at most λα containing

the desired sets (listed in clause (e)). Then apply 1.2(3) to the pair (Hβ , L
+
β ) to get

(Hα, Lα). Lastly, if µ >
∑
{λ+

α : α < δ∗}, let G2 ∈ Kλ extend Hαδ∗
and satisfies

the indecomposablity demand and, if µ >
∑
{λα : α < δ∗}, let G2 = Hδ∗ . Now,

letting G2,α = Lα we are done.
2) Easy. �1.5

Claim 1.6. If µ is strong limit singular and N ∈ Kµ then the set IDC<µ(N) has
cardinality ≤ µ where, for N ∈ Kµ,

2If µ =
∑

{λα : α < δ∗} then cf(µ) = cf(δ∗), hence the “∪{δ∗}” is not necessary.
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(∗) IDC<µ(N) = {M : M ⊆ N has cardinality < µ and is cf(µ)−indecomposable
}.

Proof. Easy. �1.6
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§ 2. Universality

For quite many classes, there are universal members in any (large enough) µ
which is strong limit of cofinality ℵ0, see [She17b] which includes history. Below we
investigate “is there a universal member of Klf

µ for such µ”. We prove that if there

is a universal member, e.g. in Klf
µ , then there is a canonical one.

What do we mean by “canonical”? This is not a precise definition, but we mean
it is unique up to isomorphism, by a natural definition. Examples we have in mind
are the algebraic closure of a field, the saturated model of a complete first order
theory T in cardinality µ+ = 2µ > |T | and the special model of a complete first
order theory T in a singular strong limit cardinal µ > |T |, see [CK62]. The last one
means:

(∗) for such T, µ we say that M is a special model of T of cardinality µ when
some M̄ witness it which means:
(a) M̄ = 〈Mi : i < cf(µ)〉,
(b) Mi is ≺-increasing with i,
(c) each Mi has cardinality < µ,
(d) M = ∪{Mi : i < cf(µ)},
(e) for every λ < µ for every large enough i < cf(µ) the model Mi is

λ+-saturated.

Considering our main case, Klf , a major difference (between what we prove here
(e.g. for Klf) and (∗) is that here amalgamation fail, so clause (B) of 2.1 is a poor
man replacement.

Theorem 2.1. Assume that µ is a strong limit of cofinality ℵ0 and K is µ-nice.
1) The following conditions are equivalent:

(A) There is a universal G ∈ Kµ.
(B) If H ∈ Kλ is ℵ0-indecomposable for some λ < µ, then there is a sequence

Ḡ = 〈Gα : α < α∗ ≤ µ〉 such that:
(a) H ⊆ Gα ∈ Kµ,
(b) if G ∈ Kµ extend H, then for some α,G is embeddable into Gα over

H.
(B)+ We can add in (B)

(c) if α1 < α2 < α∗, then Gα1 , Gα2 cannot be amalgamated over H, that
is there are no G, f1, f2 such that H ⊆ G ∈ K and f` embeds Gα` into
G over H for ` = 1, 2,

(d) (H,Gα) is an amalgamation pair (see Definition 0.8(1)), moreover a
universal amalgamation base (see 0.8(2)).

2) We can add in part (1):

(C) there is G∗ such that:
(a) G∗ ∈ Kµ is universal for K<µ;

(b) E ℵ0G∗,<µ, see see Def. 2.2 below, is an equivalence relation with ≤ µ
equivalence classes;

(c) G∗ is µ-special, see 2.2(E) below.

(C)+ like clause (C) but we add
(d) If G,G∗ ∈ Kµ are µ-special then G,G∗ are isomorphic, (that is unique-

ness).
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Before we prove 2.1, we define (this definition is not just used in the proof but
also in phrasing 2.1(2)).

Definition 2.2. For θ = cf(µ) < µ and M∗ ∈ Kµ: we define:

(A) INDθ
M∗,<µ = {N : N ≤k M∗ has cardinality < µ and is θ-indecomposable}.

(B) F θ
M∗,<µ

= {f : for some θ-indecomposable N = Nf ∈ K<µ with universe

an ordinal, f is an embedding of N into M∗}.
(C) E θ

M∗,<µ
= {(f1, f2) : f1, f2 ∈ F θ

M∗,<µ
, Nf1 = Nf2 and there are embeddings

g1, g2 of M∗ into some extension M ∈ Kµ of M∗ such that g1 ◦f1 = g2 ◦f2}.
(D) We say M∗ is θ − E θ

M∗,<µ
-indecomposably homogeneous (or just M∗ is θ-

indecomposably homogeneous) when some M̄ witness it, which mean:
(a) M̄ = 〈Mi : i < cf(µ)〉 is increasing continuous with limit M,
(b) if f1, f2 ∈ F θ

M∗,<µ
, (f1, f2) ∈ E θ

M∗,<µ
and (∃i < θ)(A ⊆ Mi), A of

cardinality < µ, then there is (g1, g2) ∈ E θ
M∗,<µ

such that f1 ⊆ g1 ∧
f2 ⊆ g2 and A ⊆ Rang(g1) ∩ Rang(g2); it follows that if cf(µ) = ℵ0

then for some g ∈ aut(M∗) we have f2 = g ◦ f1.
(E) We say that M∗ ∈ Kµ is µ-special when it is θ-indecomposably homoge-

neous and is universal for K<µ, that is every M ∈ K<µ is embeddable into
it.

Remark 2.3. We may consider in 2.1 also (A)0 ⇒ (A) where

(A)0 if λ < µ,H ⊆ G1 ∈ K<µ and |H| ≤ λ, then for some G2 we have G1 ⊆
G2 ∈ K<µ and (H,G2) is a (µ, µ, λ)-amalgamation base.

Proof. It suffices to prove the following implications:
(A)⇒ (B):

Let G∗ ∈ Kµ be universal and choose a sequence 〈G∗n : n < ω〉 such that G∗ =⋃
n
G∗n, G

∗
n ⊆ G∗n+1, |G∗n| < µ.

Let H be as in 2.1(B) and let G = {g : g embed H into G∗n for some n}. So
clearly |G | ≤

∑
n
|G∗n||H| ≤

∑
λ<µ

2λ = µ, (an over-kill).

Let 〈g∗α : α < α∗ ≤ µ〉 list G and let (Gα, gα) be such that (exist by renaming):

(∗)1 (a) H ⊆ Gα ∈ Kµ;
(b) gα is an isomorphism from Gα onto G∗ extending g∗α.

It suffices to prove that Ḡ = 〈Gα : α < α∗〉 is as required in clause (B). Now clause
(B)(a) holds by (∗)1(a) above. As for clause (B)(b), let G satisfy H ⊆ G ∈ K≤µ,

so there is G′ ∈ Kµ extending G, hence we can find an embedding g of G′ into
G∗. We know that g(H) ⊆ G =

⋃
n
Gn hence 〈g(H) ∩ Gn : n < ω〉 is ⊆-increasing

with union g(H); but g(H) by the assumption on H is ℵ0-indecomposable, hence
g(H) = g(H) ∩ G∗n ⊆ G∗n for some n. This implies g�H ∈ G and so for some
α < α∗ we have g �H = g∗α. Hence g−1

α g is an embedding of G into G∗ extending
(gα�H)−1(g�H) = (g∗α)−1(g∗α) = idH as promised.

(B)⇒ (B)+:

What about (B)+(c)? while Ḡ does not necessarily satisfy it, we can “correct it”,
e.g. we choose uα, vα and if α /∈ ∪{vβ : β < α} also G′α by induction on α < α∗ such
that (the idea is that if β ∈ vα then β > α and Gβ is discarded being embeddable
into some G′α and G′α is the “corrected” member):

(∗)2
α (a) Gα ⊆ G′α ∈ Kµ if α /∈ ∪{vβ : β < α};
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(b) uα ⊆ α and vα ⊆ α∗\(α+ 1);
(c) if β < α then uβ = uα ∩ β and uα ∩ vβ = ∅;
(d) if α = β + 1 then β ∈ uα iff β /∈ ∪{vγ : γ < β};
(e) if α /∈ ∪{vγ : γ < α}, then :

•1 γ ∈ vα iff (γ > α and) Gγ is embeddable into G′α over H
•2 if γ ∈ α∗\(α + 1)\(∪{vβ : β ≤ α ) then Gγ is not embeddable

over H into any G′ satisfying G′α ⊆ G′ ∈ K;
(f) if α = β + 1 and β /∈ uα then vβ = ∅.

Why this suffices?
Because if we let uα∗ = α∗\(∪{vγ : γ < α∗}), then 〈G′α : α ∈ uα∗〉 is as required;

but we elaborate.
First, for clause (B)+(c) assume that α < β are from uα∗ . As β /∈ vα, by

(∗)2
α(e)•2 we know that Gβ is not embeddable into any extension of G′α over H;

but as Gβ ⊆ G′β clearly also G′β is not embeddable into any extension of G′α over H.

Renaming this means that G′α, G
′
β cannot be amalgamated over H, as promised.

Second for clause (B)+(d), let α ∈ uα∗ and we have to prove that the pair
(G′α, H) is a universal (µ, κ)-amalgamation base where κ is the cardinality of H.
So assume G′ ∈ Kµ extends G′α; recall that we are assuming that 〈Gα : α < α∗〉 is
as in clause (B), hence there are β < α∗ and an embedding f of G′ into Gβ over
H; we shall prove that β = α hence (recalling Gα ⊆ G′α) f embeds G′ into G′α over
H thus finishing proving (B) ⇒ (B)+.

If β ∈ uα∗ \ {α} then f � G′α embed G′α into G′β over H, a contradiction to

(B)+(c) which we have already proved.
If β ∈ α∗\uα∗ then for some γ we have β ∈ vγ hence γ < β and Gβ is embeddable

into G′γ over H; hence G′ is embeddable into G′γ over H. As in the previous sentence
necessarily γ = α and we are done.

Why can we carry out the induction?

For α = 0, α limit we have nothing to do because uα is determined by (∗)2
α(b)

and (∗)2
α(c). For α = β + 1, if β ∈

⋃
γ<β

vγ we have nothing to do, in the remaining

case we choose G′β,i ∈ Kµ by induction on i ∈ [α, α∗], increasing continuous with

i. For i = 0 let G′β,i = Gβ and for limit i let G′β,i = ∪{G′β,j : j < i}. Then choose

G′β,i+1 to make clause (e) true. That is, first if G′β,i has an extension into which Gi
is embeddable over H, then there is such an extension of cardinality µ; and choose
G′β,i+1 as such an extension.

Second, if G′β,i has no extension into which Gi is embeddable over H, then we

let G′β,i+1 = G′β,i.

Lastly, let G′α = G′β,α∗ and uα = uβ ∪{β} and vα = {i : i < α∗, i ≥ α, i /∈ ∪{vγ :

γ < β} and Gi is embeddable into G′β over H}.
(B)+ ⇒ (A):

We prove below more: there is something like “special model”, i.e. part (2) of
2.1, that is (B)+ ⇒ (C)+.

(C)+ ⇒ (C)⇒ (A)
This is trivial so we are left with proving the following.
(B)+ ⇒ (C)+:
Let Kspc

µ be the class of G such that:

(∗)3
G (a) G ∈ Kµ;
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(b) if H ⊆ G,H ∈ K<µ then there are ℵ0-indecomposable Hn ⊆ G in-
creasing with n for n < ω with union of cardinality < µ such that
H ⊆ ∪{Hn : n < ω}; and3 there are ℵ0-indecomposable Gn ⊆ G for
n < ω such that Gn ∈ K<µ, Gn ⊆ Gn+1 and G = ∪{Gn : n < ω};

(c) if H ⊆ G is ℵ0-indecomposable of cardinality < µ then the pair (G,H)
is an universal (µ,< µ)-amalgamation base (see Definition 0.8(2));

(d) if H ⊆ G is ℵ0-indecomposable of cardinality < µ,H ⊆ H ′ ∈ K<µ, H
′

is ℵ0-indecomposable4, and G,H ′ are compatible over H (in K≤µ),

then H ′ is embeddable into G over H.

Now we can finish by proving (∗)4 + (∗)5 below.

(∗)4 If G ∈ K≤µ then some H ∈ Kspc
µ̄ extends G

We break the proof to some stages, (∗)4.3 gives the desired conclusion of (∗)4.

(∗)4.0 If G ∈ K≤µ then for some H, H̄ we have:
(a) G ⊆ H ∈ Kµ;
(b) H̄ = 〈Hn : n < ω〉;
(c) Hn ⊆ Hn+1 ⊆ H;
(d) H = ∪{Hn : n < ω};
(e) each Hn is ℵ0-indecomposable of cardinality µ;
(f) (not really needed) when K = Klf , if K ⊆ Hn, |K| ≤ ∂ and 2∂ ≤
|Hn| then there is a subgroup L of Hn extending K which is Θorth

∂ -
indecomposable.

[Why? For clauses (a)-(e) by the definition of K being nice. For clause (f) by
1.5(1),(2)].

(∗)4.1 if N1 ∈ K≤µ then there is N2 such that
(a) N2 ∈ Kµ;
(b) N1 ⊆ N2;
(c) if H ∈ IDC<µ(N1) then (N2, H) is a universal (µ,<µ)-amalgamation

base.

Why? by 1.6 it is enough to deal with one such H, which is O.K. by clause (d)
of Def 1.3, recalling “universal (µ,< µ)-amalgamation base” by (B)+ which we are
assuming.

(∗)4.2 like (∗)4.1 but in clause (c) is replaced by:
(c)’ if H1 ∈ IDC<µ(N1) and H1 ⊆ H2 ∈ K<µ (and, we may add, H2 is

ℵ0-indecomposable) then either N2, H1 are incompatible over H1 in
K≤µ or H2 is embeddable into N2 over H1.

[Why? Again it is enough to deal with one pair (H1, H2)] which is done by hand.]

(∗)4.3 If N1 ∈ K≤µ then there is N2 such that
(a) N2 ∈ Kµ;
(b) N1 ⊆ N2;
(c) if H ∈ IDC<µ(N2) then (N2, H) is a universal (µ,< µ)-amalgamation

base;
(d) if H1 ∈ IDC<µ(N2) and H1 ⊆ H2 ∈ K<µ (and, we may add, H2 is
ℵ0-indecomposable) then either N2, H1 are incompatible over H1 in
K≤µ or H2 is embeddable into N2 over H1.

3For universal classes the “and” can be replaced by “hence”.
4The ℵ0-indecomposability is not always necessary, but we need it sometimes.
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[Why? We choose Lε ∈ Kµ by induction on ε ≤ cf((µ), such that

(a) Lα ∈ Kµ;
(b) 〈Lβ : β ≤ α〉 is increasing continuous;
(c) G1 ⊆ L0;
(d) if α = 3β + 1 then Lα relate to L3β as N2 relate to N1 in (∗)4.0;
(e) if α = 3β + 2 then Lα relate to L3β+1 as N2 relate to N1 in (∗)4.1;
(f) if α = 3β + 3 then Lα relate to L3β+2 as N2 relate to N1 in (∗)4.2.

There is no problem to carry the induction and note that: if N ⊆ Lcf(µ) is cf(µ)-
indecomposable the for some ε < cf(µ) we have N ⊆ Lε. Now then N2 = Lcf(µ) is
as required in (∗)4.3 hence in (∗)4.

(∗)5 (a) if G1, G2 ∈ Kspc
µ then G1, G2 are isomorphic;

(b) if G1, G2 ∈ Kspc
µ , H ∈ K is ℵ0-indecomposable and f` embeds H into

G`, for ` = 1, 2, and this diagram can be completed, (i.e. there are
G ∈ Kµ and embedding g` : G` → G∗ such that g1 ◦ f1 = g2 ◦ f2) then
there is h such that:

(α) h is an isomorphism from G1 onto G2;
(β) h ◦ f1 = f2;

Why? Clause (a) follows from clause (b) using as H the trivial group. For clause
(b), let F = F [G1, G2] be the set of f such that:

(a) f is an isomorphism from G1,f ∈ IDC<µ(G1) onto G2,f ∈ IDC<µ(G2);
(b) G1, G2 are f -compatible in Kµ which means that there is G ∈ Kµ and

embeddings g` of G` into G for ` = 1, 2 such that g2 ◦ f = g1�G1,f .

First F is non-empty (the function f with domain f1(H) and range f2(H) will
do). Second use the hence and forth argument; here we use cf(µ) = ℵ0. �2.1

Remark 2.4. 1) Can we prove for strong limit singular µ of uncountable cofinality
κ a parallel result? Well, we have to consider the following game:

(∗) the game is defined by:
(a) a play last θ moves,
(b) in the ε-th move, first Player I choose Mε ∈ K<µ and then player II

choose Nε ∈ K<µ,
(c) Mε ∈ K<µ and if ε is non-limit then Mε is cf(µ)-indecomposable,
(d) 〈Mζ : ζ ≤ ε〉 is increasing continuous,
(e) Mε ⊆ Nε ⊆Mε+1,
(f) in the end of the play, the player II wins iff for every limit ordinal

ε < cf(µ),Mε is an amalgamation base inside K<µ.

Now, if player II does not lose then we can imitate the proof above; this should
be clear. Does the existence of a universal member of Kµ implies this? we hope to
return to this elsewhere.

See below.
2) The proof works for any a.e.c. k with LSTk < µ. But we may wonder: can we

weaken the demand on k. Actually, we can: there is no need of smoothness (that
is: if 〈Mα : α ≤ δ〉 is ≤k-increasing then ∪{Mα : α < δ} ≤k Mδ). Moreover, while
we need the existence of an upper bound for any ≤k-increasing sequence, also we
demand the union being such upper bound, only for the cofinality cf(µ).

3) We may add a version fixing λ̄

We may add (after the journal version):

Paper Sh:1175, version 2023-04-06. See https://shelah.logic.at/papers/1175/ for possible updates.



14 SAHARON SHELAH

Definition 2.5. We say K is µ-very nice when:

(A) K is µ-nice (see Definition 1.3),
(B) if cf(µ) > ℵ0, then for a club of χ < µ we have that K is χ-nice.

Claim 2.6. If K is µ-very nice then the parallel of Theorem 2.1 holds.
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§ 3. Universal in iω
In §2 we have characterized when there are special models in K of cardinality,

e.g., iω. We try to analyze a related combinatorial problem. Our intention is to
first investigate kfnq (the class structures consisting of a set and a directed family
of equivalence relations on it, each with a finite bound on the size of equivalence
classes). So kfnq is similar to Klf but seems easier to analyze. We consider some
partial orders on k = kfnq.

First, under the substructure order, ≤1 =⊆, this class fails amalgamation. Sec-
ond, we have other orders: ≤3 demanding a Tarski-Vaught condition (see below
TV). However, using ≤3 where we have a similar demand for countably many
points, finitely many equivalence relations, we have amalgamation.

This is naturally connected to locally finite groups, see 3.6, 3.7.

Definition 3.1. Let K = Kfnq be the class of structures M such that (the vocab-
ulary is defined implicitly and is τK, i.e. depends just on K):

(a) PM , QM is a partition of M,PM non-empty;
(b) EM ⊆ PM × PM ×QM (is a three-place relation) and we write aEMc b for

(a, b, c) ∈ EM ;
(c) for c ∈ QM , EMc is an equivalence relation on PM with sup{|a/EMc | : a ∈

PM} finite (see more later);
(d) QMn,k ⊆ (QM )n for n, k ≥ 1

(e) if c̄ = 〈c` : ` < n〉 ∈ n(QM ) we let EMc̄ be the closure of
⋃̀
E` to an

equivalence relation; but EMc̄ is not part of the vocabulary;
(f) n(QM ) =

⋃
k≥1

QMn,k;

(g) if c̄ ∈ QMn,k then k ≥ |a/EMc̄ | for every a ∈ PM .

Definition 3.2. We define some partial order on K.
1) ≤1 =≤1

K =≤1
fnq is being a sub-model.

2) ≤3=≤3
K=≤3

fnq is the following: M ≤3 N iff:

(a) M,N ∈ K,
(b) M ⊆ N,
(c) if A ⊆ N is countable and A ∩QN is finite, then there is an embedding of

N�A into M over A ∩M or just a one-to-one homomorphism.

3) ≤2 =≤2
K =≤2

fnq is defined like ≤3 but in clause (c), A is finite.

Claim 3.3. 1) K is a universal class, so (K,⊆) is an a.e.c.
2) ≤3

K,≤2
K,≤1

K are partial orders on K.
3) (K,≤2

K) is an a.e.c.
4) (K,≤3

K) has disjoint amalgamation.
5) If M ≤2 N, c ∈ QM and a ∈ PM , then a/ENc is included in M.
6) For every n, k there is an existential first order sentence defining, for M ∈ K,

the set {ā ∈ n+2M : an, an+1 are EMā -equivalent}.
Proof. 1),2),3) Easy.

4) By 3.4 below. �3.3

Claim 3.4. If M0 ≤1
K M1,M0 ≤3

K M2 and M1 ∩M2 = M0, then M = M1 +M2,
the disjoint sum of M1,M2 belongs to K and extends M` for ` = 0, 1, 2 and even
M1 ≤3

fnq M and M0 ≤2
K M1 ⇒M2 ≤2

K M when:
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(∗) M = M1 +M0
M2 means M is defined by:

(a) |M | = |M1| ∪ |M2|;
(b) PM = PM1 ∪ PM2 ;
(c) Q = QM1 ∪QM2 ;
(d) we define EM by defining EMc for c ∈ QM by cases:

(α) if c ∈ QM0 then EMc is the closure of EM1

` ∪ EM2

` to an equiva-
lence relation;

(β) if c ∈ QM`\QM0 and ` ∈ {1, 2} then EMc is defined by
• aEMc b iff a = b ∈ PM3−`\M0 or aEM`

c b so a, b ∈ PM` ;

(e) QMn,k is the union of QM1

n,k, Q
M2

n,k and the set of c̄ satisfying

(α) c̄ ∈ n(QM ),
(β) c̄ /∈ (n(QM1)) ∪ n(QM2)},
(γ) EMc̄ which is now well defined, has no equivalence classes with

more than k members, that is, for some finite set A and pair-
wise distinct a0, . . . , ak ∈ A which are members of a/EM~c and
the closure of

⋃
{EMci �A : i < lg(c̄)} to an equivalence relation

satisfies aiE
′a for i ≤ k.

Proof. Clearly M is a well defined structure, extends M0,M1,M2 and satisfies
clauses (a),(b),(c) of Definition 3.1. There are two points to be checked: a ∈
PM , c̄ ∈ QMn,k ⇒ |a/EMc̄ | ≤ k and n(QM ) =

⋃
k≥1

QMn,k

(∗)1 if a ∈ PM and c̄ ∈ QMn,k then |a/EMc̄ | ≤ k.

[Why? If c̄ ∈ QM1

n,k ∪Q
M2

n,k this holds by the definition, so assume c̄ ∈ QMι

n,k, ι ≤ 2.
If this fails, then there is a finite set A ⊆M such that c̄ ⊆ A, a ∈ A and the closure
of
⋃
{EMc` : ` < lg(c̄)} to an equivalence relation satisfies: every equivalence class

has ≤ k members. N = M�A we have |a/ENc̄ | > k. By M0 ≤1
K M1,M0 ≤3

K M2

(really M0 ≤2
K M2 suffice) there is a one-to-one homomorphism f from A ∩M2

into M0 over M0 ∩ A. Let B′ = (A ∪M1) ∪ f(A ∩M2) and N ′ = M�B and let

g = f ∪ idA∩M1 . So g is a homomorphism from N onto N ′ and g(a)/EN
′

g(c̄) has > k

members, which implies g′(a)/EM1

g′(c̄) has > k members. Also g(c̄) ∈ QM1

n,k. (Why?

If ι = 1 trivially, if ι = 2 by the choice of f), contradiction to M1 ∈ K.]

(∗)2 if c̄ ∈ n(QM ) then c̄ ∈
⋃
k

QMn,k.

Why? If c̄ ∈M1 or c̄ ⊆M2, this is obvious by the definition of M , so assume that
they fail. By the definition of the QMn,k’s we have to prove that sup{a/EMc̄ : a ∈ PM}
is finite. Toward contradiction assume this fails for each k ≥ 1 hence there is
ak ∈ PM such that ak/E

M
c̄ has ≥ k elements hence there is a finite Ak ⊆ M such

that ak/E
M�Ak
c̄ has ≥ k elements. Let A =

⋃
k≥1

Ak, so Ak is a countable subset of

M and we continue as in the proof of (∗)1.
Additional points (not really used) are proved like (∗)2:

(∗)3 M1 ≤3
K M ;

(∗)4 M0 ≤2
K M1 ⇒M2 ≤2

K M ;
(∗)5 M1 +M0

M2 is equal to M2 +M0
M1. �3.4

Claim 3.5. 1) If λ = λ<µ and M ∈ K has cardinality ≤ λ then there is N such
that:
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(a) N ∈ Kλ extend M ;
(b) if N0 ≤3

K N1 and N0 has cardinality < µ and f0 ≤2-embeds N0 into N ,
then there is an embedding f1 of N1 into N extending f0.

2) For every M ∈ K we can define an equivalence relation E = EK on the class

{N ∈ K : M ≤2 N} with ≤ 2‖M‖
ℵ0

-equivalence classes such that; if N1, N2 are E
-equivalence then they can be amalgamated over M (in (K,≤2).

3) If µ is strong limit then (K,≤2) is µ-nice.

What is the connection to Klf? the following explain (see [KW73])

Definition 3.6. 1) For a group G ∈ Klf we define M = fnqG ∈ Kfnq as follows:

(a) PM is the set of elements of G,
(b) QM = {(c, 1) : c ∈ G}, a copy of G,
(c) EM is the set of triples (a, b, (c, 1) such that a, b, c ∈ G and for some n,m ∈

Z we have G |= cnacm = b.

2) For M ∈ K we define G = grpM as the subgroup of sym(PM ) consisting of
the permutations π of PM such that for some finite sequence c̄ of elements of QM

we have: for every x ∈ PM we have π(x)EMc̄ x.

Discussion 3.7. The problem is that cases of amalgamation in (K,≤2) cannot be
lifted to one in Klf , that is, in 3.4, for c ∈M`\M0, we can choose EMc � (M3−`\M0)
as the equality but the parallel demand for groups fail.

After publication we add:

Claim 3.8. Assume that µ is a strong limit singular cardinal of cofinality ℵ0. Then
(Kfnq,≤2/3) has a universal member in µ.

Proof. By the general criterion [She17b, 1.16 = L a34] + JEP, but we elaborate.

(∗)1 fix λ̄ = 〈λn : n < ω〉, 2λn < λn+1 < µ =
∑
{λk : k < ω} and λn = λℵ0n .

(∗)2 For ξ ≤ ω, let:

(a) Kξ = Kλ̄,ξ is the class of M̄ such that M̄ = 〈Mn : n < ξ〉, Mn ∈ Kfnq
λn

is ≤3-increasing with n,
(b) Kξ = Kλ̄,ξ = {M̄ ∈ Kξ : the universe of Mn is λn for any n < ξ}.

(∗)3 if M ∈ Kfnq
M then there is M̄ ∈ Kλ̄,ω whose union is M .

(∗)4 We can find N̄ such that:
(a) N̄ =

〈
Nα,η : α < 2λ0 , η ∈

∏
`<n 2λ`+1 for some n < ω

〉
,

(b) 〈Nα,〈 〉 : α < 2λ0〉 list the M ∈ Kfnq with universe λ0,

(c) for α < 2λ0 , η ∈
∏
`<n 2λ`+1 , the sequence 〈Nα,ηa〈β〉 : β < 2λn+1 list

the M ∈ Kfnq with universe λn+1 which <3-extend Nα+1.

(∗)5 We can find N∗, h̄ such that:
(a) N∗ ∈ Kfnq has cardinality µ,
(b) h̄ =

〈
hα,η : α < 2λ0 , η ∈

∏
`<n 2λ`+1 for some n < ω

〉
,

(c) hα,η embeds Nα,η into N∗,
(d) if ν C η ∈

∏
`<n 2λ`+1 and α < 2λ0 , then hα,η ⊆ hα,ν .

(∗)6 N∗ is a universal member of Kfnq in µ.

[Why? By (∗)3 and (∗)5.] �3.8
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[Dža05] Mirna Džamonja, Club guessing and the universal models, Notre Dame J. Formal Logic
46 (2005), 283–300.

[GS83] Rami P. Grossberg and Saharon Shelah, On universal locally finite groups, Israel J.

Math. 44 (1983), no. 4, 289–302. MR 710234
[GS84] Donato Giorgetta and Saharon Shelah, Existentially closed structures in the power of

the continuum, Ann. Pure Appl. Logic 26 (1984), no. 2, 123–148. MR 739576

[Hic78] Ken Hickin, Complete universal locally finite groups, Transactions of the American
Mathematical Society 239 (1978), 213–227.

[Jón56] Bjarni Jónsson, Universal relational systems, Mathematica Scandinavica 4 (1956), 193–

208.
[Jón60] , Homogeneous universal relational systems, Mathematica Scandinavica 8 (1960),

137–142.
[KS92] Menachem Kojman and Saharon Shelah, Nonexistence of universal orders in many car-

dinals, J. Symbolic Logic 57 (1992), no. 3, 875–891, arXiv: math/9209201. MR 1187454

[KW73] Otto H. Kegel and Bertram A.F. Wehrfritz, Locally finite groups, xi+210.
[MS76] Angus J. Macintyre and Saharon Shelah, Uncountable universal locally finite groups, J.

Algebra 43 (1976), no. 1, 168–175. MR 0439625

[MV62] M. D. Morley and R. L. Vaught, Homogeneous and universal models, Mathematica
Scandinavica 11 (1962), 37–57.

[S+] S. Shelah et al., Tba, In preparation. Preliminary number: Sh:F2150.

[She] Saharon Shelah, LF groups, aec amalgamation, few automorphisms, arXiv: 1901.09747.
[She09] , Abstract elementary classes near ℵ1, Classification theory for abstract elemen-

tary classes, Studies in Logic (London), vol. 18, College Publications, London, 2009,

arXiv: 0705.4137 Ch. I of [Sh:h], pp. vi+813.
[She16] , No universal group in a cardinal, Forum Math. 28 (2016), no. 3, 573–585, arXiv:

1311.4997. MR 3510831
[She17a] , Existentially closed locally finite groups (Sh312), Beyond first order model the-

ory, CRC Press, Boca Raton, FL, 2017, arXiv: 1102.5578, pp. 221–298. MR 3729328

[She17b] , Universal structures, Notre Dame J. Form. Log. 58 (2017), no. 2, 159–177,
arXiv: math/0405159. MR 3634974

[She20] , Density of indecomposable locally finite groups, Rend. Semin. Mat. Univ. Padova

144 (2020), 253–270. MR 4186458
[She21] , Divide and conquer: dividing lines and universality, Theoria 87 (2021), no. 2,

259–348. MR 4329456
[ST97] Saharon Shelah and Simon Thomas, The cofinality spectrum of the infinite symmetric

group, J. Symbolic Logic 62 (1997), no. 3, 902–916, arXiv: math/9412230. MR 1472129
[SZ79] Saharon Shelah and Martin Ziegler, Algebraically closed groups of large cardinality, J.

Symbolic Logic 44 (1979), no. 4, 522–532. MR 550381
[Tho86] Simon Thomas, Complete universal loclly finite groups of large cardinality, 277–301.

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew

University of Jerusalem, Jerusalem, 9190401, Israel, and, Department of Mathematics,
Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frel-

inghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il

URL: http://shelah.logic.at

Paper Sh:1175, version 2023-04-06. See https://shelah.logic.at/papers/1175/ for possible updates.

https://arxiv.org/abs/1906.10481
https://arxiv.org/abs/math/9209201
https://arxiv.org/abs/1901.09747
https://arxiv.org/abs/0705.4137
https://arxiv.org/abs/1311.4997
https://arxiv.org/abs/1311.4997
https://arxiv.org/abs/1102.5578
https://arxiv.org/abs/math/0405159
https://arxiv.org/abs/math/9412230

	§ 0. Introduction
	§ 0(A). Background and aims
	§ 0(B). Definitions

	§ 1. Indecomposability
	§ 2. Universality
	§ 3. Universal in 
	References

