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Abstract. We investigate characterizations of the Galois connection sInv–Aut between

sets of finitary relations on a base set A and their automorphisms. In particular, for A = ω1,

we construct a countable set R of relations that is closed under all invariant operations on
relations and under arbitrary intersections, but is not closed under sInvAut.

Our structure (A,R) has an ω-categorical first order theory. A higher order definable

well-order makes it rigid, but any reduct to a finite language is homogeneous.

1. Introduction

Our main question is easy to formulate. Let R be a set of finitary relations
on a nonempty base set A, and let AutR denote the set of all automorphisms of
the structure (A ; (%)%∈R). Conversely, if G is a set of permutations on A, then
sInvG denotes the set of all relations σ on A such that all permutations in G are
automorphisms of σ. (Formal Definitions follow in the next section.) The question
is: How can we characterize the relation sets of the form sInv AutR ?

Of course, the operator sInv Aut is a closure operator, and the operator pair
sInv–Aut forms a Galois connection between sets of relations on A and sets of
permutations on A. We can reformulate our problem as “Which sets R of relations
are Galois-closed, i.e., satisfy R = sInv AutR?” or: “Describe the closure operator
sInv Aut internally”, i.e., without explicit reference to permutations.

Probably the first one who investigated this question in a systematic way was
Marc Krasner. Influenced by the Galois connection between permutation groups
and field extensions he tried to ‘generalize the notion of a field’ [7]. Instead of the
action of permutations on field elements, he considered the more complex action
on relations. For finite base sets A he described the closed sets of relations with
the help of some operations on relations. A logical operation on relations is an
operation, definable by a formula of the first order logic. (For details see the next
section.) We call a set of relations a Krasner algebra if it is closed under all logical
operations. For finite A, the Galois closed sets of relations are exactly the Krasner
algebras. (At this point we remark that our notation differs from Krasner’s original
notation.)
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It is easy to extend this characterization to countable base sets A: In this case
the Galois closed relation sets are exactly those Krasner algebras that are addition-
ally closed under arbitrary intersections (

⋂
–closed Krasner algebras). This is no

longer true for the general case of uncountable sets A. For this case there exists
a characterization by R. Pöschel [12, 13] with the help of additional operations of
uncountable arity. As we find the use of such operations not very satisfying, we
continue to look for better results.

One reason for the existence of
⋂

–closed Krasner algebras that are not Galois
closed is the fact that first order logic is simply “too weak” to distinguish between
sets of different infinite cardinalities. Consequently, it is a natural idea to replace
the logical operations by a stronger class of operations. An n-ary operation F on
relations is called invariant, if the following identity holds for all permutations g
and all relations %1, %n (with appropriate arities) on A:

F (g[%1], . . . , g[%n]) = g [F (%1, . . . , %n)]

Clearly, every Galois closed set of relations is
⋂

–closed and closed under all
invariant operations. It was unknown whether the converse is also true. The
problem is: Does there exist a set of relations that is

⋂
–closed and closed under all

invariant operations, but not Galois closed for sInv–Aut? ([3, Problem 2.5.2].)
Surprisingly, the answer to this question is yes! In the main part of our article,

section 3, we give a model theoretical construction of such a set of relations on a
base set A of cardinality ω1.

Finally, in section 4, we give a characterization of the Galois closed relation sets
with the help of additional invariant infinitary operations. In contrast to Pöschel’s
characterization, we restrict these infinite arities to be countable. Section 3 shows
that we cannot restrict the arities to be finite, so this seems to be the best possible
result.

2. Preliminaries.

Notation. Throughout, let A denote a nonempty base set. Write ω for the set
of all natural numbers (and at the same time for the first infinite ordinal). An
m-ary relation on A is a subset of Am, the set of all m-ary relations is denoted by

Rel(m)(A), and Rel(A) :=
⋃

16m∈ω Rel(m)(A) is the set of all finitary relations. If

R ⊆ Rel(A), then R(m) := R∩Rel(m)(A) . We do not distinguish between relations
and predicates, therefore a ∈ % and %(a) have the same meaning. The set of all
permutations on A is denoted by Sym(A). For g ∈ Sym(A) and a = (a1, . . . , am) ∈
Am we put

g(a) := (g(a1), . . . , g(am)),

and for % ⊆ Am we write

g[%] := {g(a) | a ∈ %}.
Let g ∈ Sym(A) and % ∈ Rel(A). We say that g is an automorphism of %, or

that g strongly preserves %, or that % is a strongly invariant relation for g, if

g[%] = %.
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This is equivalent to g[%] ⊆ % and g−1[%] ⊆ %.
For R ⊆ Rel(A) and G ⊆ Sym(A) we define operators Aut : PRel(A) →

P Sym(A) and sInv : P Sym(A)→PRel(A):

AutR := {g ∈ Sym(A) | g[%] = % for all % ∈ R}
sInvG := {% ∈ Rel(A) | g[%] = % for all g ∈ G}

(For a set X, PX denotes the set of all subsets of X.)
The operator pair sInv–Aut forms a Galois connection between sets of permuta-

tions and sets of relations on A, i.e. the following conditions are satisfied:

• R1 ⊆ R2 ⇒ AutR2 ⊆ AutR1 and G1 ⊆ G2 ⇒ sInvG2 ⊆ sInvG1

• R ⊆ sInv AutR and G ⊆ Aut sInvG.

Consequently, the operators

sInv Aut : PRel(A)→PRel(A) and Aut sInv : P Sym(A)→P Sym(A)

are closure operators. The sets of relations and the sets of permutations which are
closed under these closure operators are called Galois closed (with respect to the
Galois connection sInv–Aut). Characterizing a Galois connection means to describe
the Galois closed sets without referring to the connection itself.

In our article we want to find and discuss characterizations of our Galois con-
nection sInv–Aut. There exist many similar Galois connections between sets of
relations and sets of different kinds of functions, and they turned out to be use-
ful especially for the investigation of finite mathematical structures. As a general
source, we refer to [11] and the list of references given there. Here we are interested
in characterizations for infinite base sets A.

The main tool for the description of the closed sets of relations are operations
on relations. These operations are of the form

F : Rel(m1)(A)× . . .× Rel(mn)(A)→ Rel(m)(A),

with 0 6 n ∈ ω. A set R ⊆ Rel(A) is closed under F if F (%1, . . . , %n) ∈ R for all
%i ∈ R(mi), 1 6 i 6 n.

Special operations on relations are the logical operations which can be defined
with the help of first order formulas. More exactly: Let ϕ(P1, . . . , Pn;x1, . . . , xm)
be a formula with predicate symbols Pi (of arity mi), where all free variables are
in {xj | 1 6 j 6 m}. We define

Lϕ(%1, . . . , %n) := {(a1, . . . , am) ∈ Am | ϕA(%1, . . . , %n, a1, . . . , am)},

where ϕA(%1, . . . , %n, a1, . . . , am) means that ϕ holds in the structure 〈A ; %1, . . . , %n〉
for the evaluation xj := aj , (1 6 j 6 m).

Examples of logical operations are the Boolean operations intersection ∩ and
complementation C, defined by the formulas P1(x1, . . . , xm) ∧ P2(x1, . . . , xm) and
¬P (x1, . . . , xm).
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Properties of Galois closed relation sets.

Definition 2.1. A set R ⊆ Rel(A) is called a Krasner algebra (KA) on A, if R is
closed under all logical operations.1

If Q ⊆ Rel(A), then 〈Q〉KA denotes the Krasner algebra generated by Q, i.e. the
least set of relations on A that contains Q and is closed under all logical operations.

A set R of relations is called
⋂

–closed, if

(1) Am ∈ R for all m ∈ ω \ {0}
(2) R is closed under arbitrary intersections

i.e. for all m and all Q ⊆ R(m) we have
⋂
Q ∈ R(m). (Here we put

⋂
∅ = Am.)

If Q ⊆ Rel(A), then 〈Q〉KA,
⋂ denotes the least

⋂
–closed Krasner algebra con-

taining Q.

Clearly, 〈 〉KA and 〈 〉KA,
⋂ are closure operators with 〈Q〉KA ⊆ 〈Q〉KA,

⋂ for all
Q ⊆ Rel(A).

If a set R of relations is
⋂

–closed and closed under complementation C (e.g. if
R = 〈R〉KA,

⋂), then it is also closed under arbitrary unions.
The next lemma gives the obvious connection between these notions and the

Galois closed relation sets. For a proof we refer e.g. to [3].

Lemma 2.2. If R ⊆ Rel(A) is Galois closed (R = sInv AutR), then R is a
⋂

–
closed Krasner algebra, R = 〈R〉KA,

⋂. Consequently, for all Q ⊆ Rel(A) we have
〈Q〉KA,

⋂ ⊆ sInv AutQ.

(Galois closed sets of relations are sometimes called Krasner clones. So every
Krasner clone is a Krasner algebra, but not vice versa.)

Definition 2.3. Let R ⊆ Rel(A) and a ∈ Am. We define:

ΓR(a) :=
⋂
{% ∈ R(m) | a ∈ %}

We collect some properties of Γ.

Lemma 2.4. Let R1, R2, R ⊆ Rel(A), G ⊆ Sym(A) and a ∈ Am. Then the
following hold.

(1) R1 ⊆ R2 ⇒ ΓR2
(a) ⊆ ΓR1

(a)
(2) a ∈ ΓR(a) and ΓR(a) ⊆ % for all % ∈ R(m) with a ∈ %. Moreover, % =⋃

a∈% ΓR(a) for all % ∈ R.

(3) If R is
⋂

–closed, then ΓR(a) ∈ R.
(4) If R is closed under complementation, then {ΓR(a) | a ∈ Am} is a partition

of Am and the relation a ∼R b :⇐⇒ a ∈ ΓR(b) is an equivalence relation.
If R is closed under complementation and

⋂
-closed, then R(m) is an atomic

Boolean algebra.
Note that a ∼R b iff there is no relation % ∈ R separating a from b.

(5) If R1 and R2 are
⋂

–closed and closed under complementation, then R1 =
R2 if and only if ΓR1

(a) = ΓR2
(a) for all m and all a ∈ Am.

1An older notation is Krasner algebra of second kind, see e.g. [11].
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(6) ΓsInvG(a) = {g(a) | g ∈ 〈G〉group}, where 〈G〉group is the subgroup of
Sym(A), generated by G ⊆ Sym(A).

Proof. (1)–(5) are direct consequences of the Definitions. For (6), we first note that
{g(a) | g ∈ 〈G〉group} contains a and is strongly invariant for all g ∈ G. Therefore
ΓsInvG(a) ⊆ {g(a) | g ∈ 〈G〉group}. On the other hand, sInvG is

⋂
–closed, therefore

a ∈ ΓsInvG(a) ∈ sInvG, and every relation with these properties must contain all
g(a) with g ∈ 〈G〉group. Consequently also ΓsInvG(a) ⊇ {g(a) | g ∈ 〈G〉group}. �

Lemma 2.5. Let R ⊆ Rel(A) be
⋂

–closed and closed under complementation.
Then R = sInv AutR if and only if for all m and all a, b ∈ Am with a ∼R b there
exists an automorphism g ∈ AutR with b = g(a).

Proof. By Lemma 2.4(5) we have R = sInv AutR iff for all m and for all a ∈ Am the
equality ΓR(a) = ΓsInv AutR(a) holds. By Lemma 2.4(6), this equality is equivalent
to ΓR(a) = {g(a) : g ∈ AutR}. Because of ΓR(a) ∈ R (by Lemma 2.4(3)) this is
true if for every b ∈ ΓR(a) there is an automorphism g ∈ AutR with b = g(a). �

Partial automorphisms. The last lemma can be used to find characterizations
in some special cases.

Definition 2.6. A partial automorphism f of a relation set Q ⊆ Rel(A) (or of the
structure A = (A; (σ)σ∈Q)) with domain dom f = A1 ⊆ A and image im f = A2 ⊆
A is a bijective function f : A1 → A2, such that for all σ ∈ Q, m = arity(σ) and
all a1, . . . , am ∈ dom f , we have: σ(a1, . . . , am)⇔ σ(f(a1), . . . , f(am)).

A set Q ⊆ Rel(A) (or the structure A = (A; (σ)σ∈Q)) is said to be homogeneous,
if every finite partial automorphism can be extended to an automorphism of Q.

Lemma 2.7. If Q ⊆ Rel(A) is a homogeneous set of relations, then 〈Q〉KA,
⋂ =

sInv AutQ.

Proof. We first claim that for every relation set Q, the relation set R = sInv AutQ is
homogeneous. To see this, notice that R is Galois closed and therefore

⋂
-closed and

closed under complementation (Lemma 2.2), therefore ΓR(a) ∈ R for all a ∈ Am
(Lemma 2.4(3)). Let f be a finite partial automorphism with dom f = {a1, . . . , am}
and f(a) = b. Then a ∈ ΓR(a) (Lemma 2.4(2)) implies f(a) = b ∈ ΓR(a). Because
of R = sInv AutR and Lemma 2.5 there exists an automorphism g ∈ AutR with
g(a) = b.

We have Q ⊆ 〈Q〉KA,
⋂ ⊆ sInv AutQ, so also 〈Q〉KA,

⋂ is homogeneous. So w.l.o.g.
Q = 〈Q〉KA,

⋂.
Let a = (a1, . . . , am) and b = (b1, . . . , bm). We will use Lemma 2.5. So, assuming

a ∼Q b, we have to find an automorphism g with g(a) = b.

If Q = 〈Q〉KA,
⋂ and 1 ≤ i < j ≤ m, then Q contains the relations d

(m)
i,j :=

{(a1, . . . , am) | ai = aj}, defined by the logical formula xi = xj . If ai = aj ,then

ΓQ(a) ⊆ d
(m)
i,j and b ∈ ΓQ(a) implies bi = bj . Similar bi = bj and b ∼q a implies

ai = aj .
We conclude that the map f := {(ai, bi) | i = 1, . . . ,m} is a finite 1-1 map. As

no relation in Q separates a from b, f is even a partial automorphism for Q.
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Because of the homogeneity of Q, f can be extended to an automorphism g ∈
AutQ. Therefore b = g(a) for some g ∈ AutQ. �

Relation sets of the form sInv AutQ are homogeneous. Hence, a
⋂

–closed Krasner
algebra is Galois closed if and only if it is homogeneous.

The Galois closed permutation sets. We want to have a short look at the other
side of our Galois connection. The characterization of the Galois closed permutation
sets is well known ([5]) and provides no difficulties. We need an additional closure
operator Loco : P Sym(A)→P Sym(A):

LocoG := {f ∈ Sym(A) | (∀m ∈ ω \ {0})(∀a ∈ Am)(∃g ∈ G)f(a) = g(a)}

Theorem 2.8. A set G ⊆ Sym(A) is Galois closed (G = Aut sInvG) if and only if
G = 〈G〉group and LocoG = G.

For the proof we refer to [5]. The operator Loco is a topological closure operator,
multiplication and inversion of permutations are continuous with respect to the
underlying topology. Therefore, the Galois closed automorphism sets are charac-
terized as certain topological groups. For a more detailed discussion we refer to [4,
4.1].

A first characterization of the Galois closed relation sets. In [12] and [13],
R. Pöschel characterized the closed sets of relations with the help of infinitary
operations. Let I be an arbitrary index set, let m,mi ∈ ω \ {0} (i ∈ I). For

an I-tuple (%i)i∈I of relations with %i ∈ Rel(mi)(A) the strong superposition with
parameters a ∈ Am, bi ∈ Ami is defined as follows:

sSupa,(bi)i∈I
(%i)i∈I := {g(a) | g ∈ Sym(A) and g(bi) ∈ %i for all i ∈ I}

A set R ⊆ Rel(A) is closed under strong superposition, if sSupa,(bi)i∈I
(%i)i∈I ∈ R

whenever %i ∈ R for i ∈ I.

Theorem 2.9. Let R ⊆ Rel(A) be
⋂

–closed and closed under C. Then R =
sInv AutR if and only if R is closed under strong superposition.

Proof. If f ∈ Sym(A), then the definition of sSupa,(bi)i∈I
implies

sSupa,(bi)i∈I
(f [%i])i∈I = f

[
sSupa,(bi)i∈I

(%i)i∈I

]
.

Therefore every automorphism of {%i | i ∈ I} is an automorphism of the structure
sSupa,(bi)i∈I

(%i)i∈I . Consequently, every Galois closed set of relations is closed

under strong superposition.
If R is closed under strong superposition, then we can choose I and (bi)i∈I such

that all finite sequences with elements of A occur among the bi. (For infinite A, this
is possible with |I| = |A|.) Then R contains the relation sSupa,(bi)i∈I

( ΓR(bi) )i∈I
and consequently ΓR(a) ⊆ sSupa,(bi)i∈I

( ΓR(bi) )i∈I . This implies for every b ∈
ΓR(a) the existence of a permutation g ∈ Sym(A) with b = g(a) and with g(c) ∈
ΓR(c) for all n and all c ∈ An. This g is an automorphism of R, therefore Lemma 2.5
implies that R is Galois closed. �
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As seen in the proof, we can restrict the arities of the strong superpositions to
|I| = |A|. Nevertheless, to be closed under strong superposition is a very strong
condition. It immediately implies the existence of the necessary automorphisms in
the sense of Lemma 2.5. Therefore, we continue to find better characterizations.

A Characterization for countable base set A. For finite base set A, the Galois
closed relation sets are exactly the Krasner algebras ([7, 8, 9, 11]). This result can
be extended to the countable case:

Theorem 2.10. Let A be a countable or finite set and R ⊆ Rel(A). Then R =
sInv AutR if and only if R is a

⋂
–closed Krasner algebra, R = 〈R〉KA,

⋂. Therefore
〈Q〉KA,

⋂ = sInv AutQ for all Q ⊆ Rel(A).

Proof. For the proof we refer to [2, 3.3.6.(v)] or to [3, 2.4.4.(i)]. One direction
is provided by Lemma 2.2. For the other direction we can use a back & forth
construction to obtain the automorphisms that are necessary to apply Lemma 2.5.

�

The next example shows that this characterization cannot be extended to un-
countable sets.

Example 2.11. Consider the following three countable structures:

(1) (Q;<) (the rational numbers with the linear order).
(2) The full countable bipartite graph: (A ∪B; %), where A and B are disjoint

countable sets, and % = (A×B) ∪ (B ×A).
(3) The countable random graph. (See e.g. [4, 6.4.4].)

Each of these structures M = (M ; %) has the following properties:

(a) Th(M), the first order theory of M , is ω-categorical.
(b) All unary first order formulas ϕ(x) are equivalent (mod Th(M)) to x = x

or to x 6= x, i.e., the only subsets of M that are first order definable without
parameters are the empty set and the whole model.

(c) For any uncountable cardinal κ there is a model Mκ of cardinality κ such
that the set

%∗ := {x : The set {y : %(x, y)} is countable}

is neither empty nor the full model.

In each of these models Mκ, the set R of first order definable relations (without
parameters) is clearly a Krasner algebra and is trivially closed under

⋂
(since, by

Ryll-Nardzewski’s theorem, for any k there are only finitely many k-ary relations
in R). But in each model Mκ the set %∗ is a (higher order) definable subset of Mκ,
hence %∗ ∈ sInv Aut(R) \R.

This shows that R is not Galois closed.
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Invariant operations. In the last example, the logical operations, together with
arbitrary intersections, are too weak to provide the closure under sInv Aut. In
particular, with logical operations it is not possible to distinguish between sets of
different infinite cardinality. The next idea to obtain a characterization is to replace
the logical operations by a family of stronger operations on relations.

Definition 2.12. An operation F : Rel(m1)(A)× . . .×Rel(mn)(A)→ Rel(m)(A) is
called invariant, if for all g ∈ Sym(A) and all %i ∈ Relmi(A) the following identity
holds:

F (g[%1], . . . , g[%n]) = g [F (%1, . . . , %n)]

If Q ⊆ Rel(A), then 〈Q〉inv denotes the closure of Q under all invariant op-
erations, and 〈Q〉inv,⋂ denotes the least set of relations that is closed under all
invariant operations,

⋂
–closed and contains the set Q.

(The notations “logical operations” and “invariant operations” are adopted from
[6].) The operators Q 7→ 〈Q〉inv and Q 7→ 〈Q〉inv ,⋂ are closure operators, and we
have 〈Q〉inv ⊆ 〈Q〉inv ,⋂ for all Q ⊆ Rel(A).

We collect some easy properties of the invariant operations.

Lemma 2.13.

(1) Every logical operation is invariant. In particular the projection operations
are logical operations and hence invariant. If A is finite, then every invari-
ant operation is logical.

(2) The invariant operations form a clone, i.e. they contain the projection oper-
ations, and the superposition of invariant operations is again an invariant
operation.

(3) If F is invariant and %i ∈ Rel(A) (1 6 i 6 n), then

Aut{%1, . . . , %n} ⊆ Aut{F (%1, . . . , %n)}.
(4) R ⊆ 〈R〉inv ⊆ 〈R〉inv ,⋂ ⊆ sInv AutR for all R. So, if R = sInv AutR, then

R is
⋂

–closed and closed under all invariant operations, R = 〈R〉inv ,⋂.

Proof. For (1) and (2) we refer to [6]. (3) is a direct consequence of 2.12 and (4) is
a direct consequence of (3). �

The next lemma shows that invariant operations are sufficient, if we have only
finitely many relations.

Lemma 2.14. Let Q ⊆ Rel(A) be a finite set. Then sInv AutQ = 〈Q〉inv .

Proof. Let Q = {%1, . . . , %n} and let σ ∈ sInv AutR. We define an invariant opera-
tion F with F (%1, . . . , %n) = σ:

F (σ1, . . . , σn) :=
⋃
{g[σ] | g ∈ Sym(A) and (∀i = 1 . . . n)g[%i] = σi}

It is easy to verify that F has the desired properties. �

Let H : PZ → PZ be a closure operator on a set Z. The algebraic part of H
is the closure operator

Halg : PZ →PZ, X 7→
⋃
{HX0 | X0 ⊆ X, X0 finite}.
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H is algebraic if H = Halg.
Lemma 2.14 shows that the closure operator Q 7→ 〈Q〉inv is the algebraic part of

sInv Aut. More exactly, for all Q ⊆ Rel(A) we have

〈Q〉inv =
⋃
{sInv AutQ0 | Q0 ⊆ Q and Q0 is finite} = (sInv Aut)algQ

So far, we have the closure operators 〈 〉KA, 〈 〉inv , 〈 〉KA,
⋂, 〈 〉inv ,⋂ and

sInv Aut. The operators 〈 〉KA and 〈 〉inv are algebraic, the other operators are
not algebraic if A is infinite. For all Q ⊆ Rel(A) we have

〈Q〉KA ⊆
〈Q〉inv
〈Q〉KA,⋂ ⊆ 〈Q〉inv ,⋂ ⊆ sInv AutQ.

For finite base set A all these closure operators coincide. For countable A,
the operators 〈 〉KA, 〈 〉inv and 〈 〉KA,

⋂ are pairwise distinct – see e.g. [10,
Theorem 4], and 〈 〉KA,

⋂ = 〈 〉inv ,⋂ = sInv Aut. If A is uncountable, then also
〈 〉KA,

⋂ 6= 〈 〉inv ,⋂, as a consequence of the examples in 2.11.
All these properties now lead to the conjecture, that the Galois closed sets of

relations are exactly the sets of relations that are
⋂

–closed and closed under all
invariant operations. In order to verify this conjecture, we have to answer one
question:

Does there exist a set R of relations that is
⋂

–closed and closed under all in-
variant operations, but is not Galois closed?

This question was formulated as an open problem e.g. in [3, Problem 2.5.2].
Surprisingly, the question has a positive answer and therefore the conjecture

above is false. In the next section we will give a model theoretic construction of a
relation set R with the mentioned properties.

3. A model theoretic construction

In this section we consider relational models of the form M = (M ; (%m)16m∈ω),

where %m ∈ Rel(m)(A) for all m. Thus our language L has exactly one relation
symbol for every arity m. (We use the predicate symbols also to denote the corre-
sponding relations.)

If M = (M ; (%m)16m∈ω) is such a model, then M [m] := (M ; %1, . . . , %m) denotes
the reduct of M to the relations %1, . . . , %m.

Our construction is guided by the following Lemma.

Lemma 3.1. We fix a vocabulary of infinitely many relational symbols {%m | m ∈
ω}.

Let A = (A ; (%m)16m∈ω) be an infinite model. Let A[m] = (A; %1, . . . , %m).
We assume that the following hold:

(1) The theory Th(A) is ω-categorical (i.e., has up to isomorphism exactly one
countable model).

(2) For all m, the reduct A[m] is homogeneous in the sense of 2.6.
(3) A is rigid, i.e. AutA = {idA}.
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Then, letting R := 〈%1, %2, . . . 〉KA be the set of first order definable relations in A,
we have:

〈%1, . . . , %m〉KA = sInv Aut{%1, . . . , %m}
and R =

⋃
m〈%1, . . . , %m〉KA, but

R = 〈R〉inv ,⋂ ( sInv AutR

Proof. First note that R (as well as 〈%1, %2, . . . %m〉KA) is closed under arbitrary
intersections, since (by Ryll-Nardzewski’s theorem) there are only finitely many
k-ary relations in R, for any k.

We now show that R is also closed under all invariant operations. We have

〈%1, %2, . . . , %m〉KA = 〈%1, %2, . . . , %m〉KA,
⋂

Trivially,

〈%1, %2, . . . , %m〉KA ⊆ 〈%1, %2, . . . , %m〉inv ⊆ sInv Aut{%1, %2, . . . , %m},

but by (2) and Lemma 2.7 we have

〈%1, %2, . . . , %m〉KA,
⋂ = sInv Aut{%1, %2, . . . , %m},

so

〈%1, %2, . . . , %m〉KA = 〈%1, %2, . . . , %m〉inv .
As both operators 〈 〉KA and 〈 〉inv are algebraic, this yields

R = 〈%1, %2, . . . 〉KA = 〈%1, %2, . . . 〉inv
hence R = 〈R〉inv ,⋂.

Clearly R is countable. As AutR = {idA} and so sInv AutR = Rel(A), which is
an uncountable set. Consequently

〈R〉inv ,⋂ 6= sInv AutR. �

It remains to prove that a model with properties (1)–(3) exists. Because of
Theorem 2.10, such a model cannot be countable. We start by defining the logical
theory T that we want our model to satisfy. First we define an appropriate notion
of a clause.

Definition 3.2. A literal in the variables x0, . . . , xn (n ∈ ω) is a formula of the
form

%m(xi1 , . . . , xim) (unnegated) or ¬%m(xi1 , . . . , xim) (negated)

such that 1 6 m 6 n + 1, {i1, . . . , im} ⊆ {0, . . . , n}, the i1, . . . , im are pairwise
distinct and 0 ∈ {i1, . . . , im}.

A clause in x0, . . . , xn is a conjunction K of literals in x0, . . . , xn, such that no
literal will appear twice, and no literal appears in negated and unnegated form.

Please note that there are only finitely many clauses in x0, . . . , xn. The variable
x0 plays a special role — it has to appear in every literal.

Now we formulate our theory T :
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Definition 3.3. T consists of (the universal closures of) the following formulas:
Firstly, for all 1 6 m ∈ ω we have:

(T1) %m(x1, . . . , xm)→
∧

16i<j6m xi 6= xj

Secondly, for all n ∈ ω and all clauses K = K(x0, . . . , xn) in x0, . . . , xn we take the
formula:

(T2)
∧

16i<j6n xi 6= xj → (∃x0)K(x0, . . . , xn)

Informal Discussion 3.4. We will see below that the theory T is complete and
ω-categorical. Our aim is to construct an uncountable model M of this theory on
the base set ω1 in which the well-order (ω1, <) is definable (by a formula in higher
order logic). To help us achieve this aim, we use the following “recommendation”:

%(x1, x2, . . . , xn) should hold iff x1 < x2 < · · · < xn

However, this is just a recommendation, not a law. In order to also get homogeneity

of the restricted models M [m], we allow our model to disobey this recommendation,
if there is a good reason for it. A good reason can be the desire to satisfy an axiom
of our theory, or to extend a partial automorphism.

To keep track of the cases where the recommendation is not followed, we con-
struct an auxiliary function h : M → ω, and we will demand the following “law”,
which is a relaxed version of the “recommendation”:

For all sufficiently long tuples (x1, . . . , xn):
%(x1, x2, . . . , xn) must hold if x1 < x2 < · · · < xn, and must not
hold otherwise

Here, “sufficiently long” is defined as: n > max(h(x1), . . . , h(xn)).
Thus, whenever we violate our recommendation at a tuple (x1, . . . , xn), we will

define a sufficiently large value of h at one of the points x1, . . . , xn.

Before we investigate the theory T , we want to examine some technical defini-
tions and lemmas. ω1 denotes the first uncountable ordinal, ω1 = {α | α < ω1}. ω1

is well-ordered by <. The universes of all our models will be subsets of ω1.

Definition 3.5. Let M = (M ; (%m)16m∈ω) be a model, let h : M ◦→ ω be a
partial function, n ∈ ω \ {0} and let a = (a1, . . . , an) ∈ Mn. We say that a is a
weak n-tuple for h if domh ∩ {a1, . . . , an} 6= ∅ and

maxh(a) := max{h(ai) | ai ∈ domh} < n.

All other n-tuples are called strong for h.
Now let N = (N ; (σm)16m∈ω) and M = (M ; (%m)16m∈ω) be models with N ⊂

M ⊆ ω1. Let h : M ◦→ ω be a partial function with domh = M \ N . We write
N <h M if

(1) N 6M (N is a submodel of M), and
(2) for all n-tuples (a1, a2, . . . , an) ∈ Mn that are weak for h the following

condition holds:

%n(a1, . . . , an) ⇐⇒ a1 < a2 < . . . < an

(Here < is the well-ordering on ω1.)
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We write N <M if N <h M for some partial function h with domh = M \N .

Lemma 3.6.

(1) The relation < is transitive.
(2) If M0 < M1 < · · · is a chain of length ω, and Mω is the directed union of

this chain (i.e., Mω =
⋃
n∈ωMn, and each Mn is also a submodel of Mω),

then Mj <Mω for all j < ω.

(3) Similarly, if (Mi)i≤α (where α is a limit ordinal) is a continuous chain of
models (i.e., Mi ≤Mj for all i ≤ j ≤ α, and for each limit δ ≤ α we have
Mδ =

⋃
i<δMi), and

∀i < α : Mi <Mi+1,

then Mj <Mα for all j < α.

Proof. We prove (1): Assuming M1 <h1 M2 and M2 <h2 M3 for some h1 : M2 \
M1 → ω and h2 : M3 \M2 → ω, we have to show M1 <M3.
Put h := h1 ∪ h2 : M3 \M1 → ω. If a ∈ (Mn

3 \Mn
1 ) is weak for h, then either

a ∈ (Mn
2 \Mn

1 ) or one of the ai belongs to M3 \M2. In the first case, maxh1(a) =
maxh(a) < n, and a is weak for h1. Therefore (M2 is a submodel of M3),

%3n(a) ⇐⇒ %2n(a) ⇐⇒ a1 < a2 < . . . < an.

In the second case, maxh2(a) 6 maxh(a) < n, therefore a is weak for h2 and
%3n(a) ⇐⇒ a1 < . . . < an.

The proofs of (2) and (3) are similar. �

The next technical lemma provides the basic step in our construction.

Lemma 3.7. Let M0 = (M0; (%0m)16m∈ω) be a countable model of our language
L, such that M0 ⊆ ω1 and %m(x1, . . . , xm) →

∧
16i<j6m xi 6= xj holds for all m.

Moreover, let π0 : M0 ◦→ M0 be a partial (finite or infinite) automorphism of the

reduct M0
[s] for some s ∈ ω and let α ∈ ω.

Then there exists a countable model Mω = (Mω; (%ωm)16m∈ω) with M0 ⊂ Mω ⊂
ω1, α ∈Mω and a total automorphism πω : Mω ◦→Mω of the s–reduct Mω

[s] such
that the following hold:

(1) M0 <Mω

(2) Mω is a model of the theory T .
(3) πω extends π0

Proof. We construct Mω as the union of a chain of countable models Mj with

j ∈ ω. We will have Mj <Mj+1 for all j ∈ ω, and for every j we will have a partial

automorphism πj of Mj
[s] such that πj+1 extends πj , and dom(πj+1)∩ im(πj+1) ⊇

Mj .
We explain the step from Mj to Mj+1. Let Mj = {ai | i ∈ ω} be an enumeration

of the elements of Mj . (The elements ai are not necessarily in the order, given by
< in ω1.) Let K be the following set:

K := {(n, a,K) | n ∈ ω, a ∈Mn
j and K a clause in x0, . . . , xn}
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This set is countable. Let (nl, al,Kl)l∈ω be an enumeration of this set.
Let B ⊆ ω1 \Mj be a countable set of ordinals, and let B = {bk | k ∈ ω} be an

enumeration of B. (Again, this enumeration need not necessarily follow the well-
order < on ω1.) We put Mj+1 := Mj ∪B, and we have to define the relations %j+1

m

and the partial function πj+1. Moreover, we must define a function h : B → ω, in
order to establish the relation Mj <h Mj+1.

For all m and all m-tuples a ∈Mm
j we define:

%j+1
m (a) :⇐⇒ %jm(a)

This makes sure that Mj 6 Mj+1. Moreover, we define ¬%j+1
m (c1, . . . , cm) for all

c1, . . . , cm ∈Mj+1 with |{c1, . . . , cm}| < m.
For every k ∈ ω we will conduct a special task, where we define the value h(bk),

define a partial function pk : Mj+1 ◦→ Mj+1 such that pk+1 always extends pk.
We start with p0 := πj , and finally we will have πj+1 :=

⋃
k pk. Moreover, in every

step we define the truth values of %j+1
m (a) for some tuples a.

We distinguish three cases of steps k, depending on whether k ≡ 0, 1, or 2
mod (3). [A main point will be that the definitions in the various cases do not
contradict each other.]

Step k for k = 3l: If l = 0, then let pk := πj , otherwise pk := pk−1 remains
unchanged.

Let (nl, al,Kl) be the element of K with index l. We define h(bk) := nl + 1.
Now, for every literal which occurs in K, we define the truth values in such a way,
that Kl(bk, al) becomes true. Thus, letting al = (al(1), . . . , al(nl)), we define truth
values for certain tuples from the set {al(1), . . . , al(nl), bk}<ω\{al(1), . . . , al(nl)}<ω.

The largest index m of a literal which occurs in Kl is nl + 1. Therefore all
these tuples c satisfy maxh(c) ≥ h(bk) ≥ m and are strong for h. [Note that in no
previous step have we committed ourselves to the truth value of %j(c) for any tuple
c in which bk appears.]
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Step k for k = 3l+1: In this case we define h(bk) := s, and we extend the partial
function pk−1. If dom pk−1 ⊇Mj , then we simply put pk := pk−1 and we are done.

If Mj \ dom pk−1 6= ∅, then let i := min{i | ai /∈ dom pk−1}. We extend pk−1
by defining pk(ai) := bk. Then, for all m 6 s and all c1, . . . , cm ∈ im pk such that
c1, . . . , cm are pairwise distinct and bk ∈ {c1, . . . , cm}, we define the truth value of
%j+1
m (c1, . . . , cm). Write c for (c1, . . . , cm). If the value of %j+1(p−1k (c)) is already

known, in particular if p−1k (c) ∈Mm
j , then we put

%j+1
m (c) :⇐⇒ %j+1(p−1k (c).

If %j+1(p−1k (c)) is still not fixed (in particular, then the p−1k (ci) cannot all be in
Mj), then we define both values, namely we put

%j+1
m (c), %j+1

m (p−1k (c)) :⇐⇒ p−1k (c1) < . . . < p−1k (cm).

(Here the relation symbol < denotes the well-order of ω1.)
Because of the definition of h(bk), the (c1, . . . , cm) are always strong for h and

hence are exempted from our “recommendation” 3.4. The other tuples, p−1k (c),
follow our recommendation anyway, whether or not they are h-strong.

[As before, note that tuples c in which bk appears have never been considered in
any previous step k′ < k.]

Step k for k = 3l+ 2: This step is similar to the previous step, but this time we
take care of im pk rather than dom pk, or in other words: we reverse the roles of pk
and p−1k . We leave the details to the reader.

By induction we obtain from these steps a model, where the relations %j+1
m are

only partially defined. In order to finish the definition, we put

%j+1
m (c) :⇐⇒ c1 < c2 < . . . < cm,
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whenever the truth value of %j+1
m (c) has not been defined during the inductive

construction.
From the construction, it is now clear that Mj < Mj+1. Moreover, πj+1 :=⋃
k∈ω pk is a partial automorphism of Mj+1

[s] that extends πi and satisfies Mj ⊆
domπj+1 and Mj ⊆ imπj+1. Moreover, all formulas in T of the form (T2) in
Definition 3.3 are satisfied, whenever x1, . . . , xm ∈Mj .

The countable set B ⊂ ω1 \Mj was arbitrary. So, if the ordinal α is not in M0,
then we can assume that α ∈ B, e.g. for j = 0. Consequently we will have α ∈Mω

in the end.
We form the directed union Mω :=

⋃
j∈ωMj Because of Lemma 3.6(2), we have

M0 <Mω. Moreover, the union πω :=
⋃
j∈ω πj is a bijective partial automorphism

of Mω
[s], which is everywhere defined and surjective, i.e. it is an automorphism of

Mω
[s] which extends π0.

Finally, if ψ(x1, . . . , xn) is a formula of T and a1, . . . , an ∈Mω, then there exists
j with a1, . . . , an ∈ Mj . Consequently ψ(a1, . . . , an) holds in Mj+1 and all other

extensions of Mj , in particular it is true in Mω. Consequently Mω is a model of T .

This finishes the proof.
�

Now we collect some properties of our theory T .

Lemma 3.8. (1) T is consistent and has no finite models.
(2) T has the property of elimination of quantifiers. (I.e. every formula is

(modulo Th(A)) equivalent to a quantifier free formula.)
(3) T is complete.
(4) T is ω–categorical.
(5) If M,N are models of T and N is a submodel of M , N 6 M , then N is

an elementary submodel of M , i.e. for every formula ϕ(x1, . . . , xn) and for
every a ∈ Nn we have that ϕ(a) holds in N iff it holds in M .
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Proof. (1) Easy. The consistency of T is a corollary of Lemma 3.7, and the
nonexistence of finite models is ensured by the formulas (T2) in 3.3.

(2) In order to prove that for every formula ψ(x1, . . . , xn) there is a quantifier
free formula ϕ(x1, . . . , xn) with T |= (ϕ ↔ ψ), it is sufficient to prove this
for formulas ψ of the form (∃x0)K(x0, x1, . . . , xn), where K is a clause in
x0, . . . , xn.

For any equivalence relation θ on {1, . . . , n} we put:

µθ := (
∧

(i,j)∈θ

xi = xj) ∧ (
∧

(i,j)/∈θ

xi 6= xj).

Let En denote the set of all equivalence relations on {1, . . . , n}. Then

K ↔
∨
θ∈En

(K ∧ µθ).

Therefore also

(∃x0)K(x0, x1, . . . , xn)↔
∨
θ∈En

(∃x0)(K ∧ µθ).

It is sufficient to show that every formula (∃x0)(K ∧ µθ) is equivalent to a
quantifier free formula. If θ is not the equality relation, then we can replace
any variable xj (j ≥ 1) by xi, where i is a representative of the equivalence
class of j. If then a variable appears twice in a literal of K, then either the
clause becomes false modulo T (if the literal is unnegated), or the literal
can be omitted modulo T (if it is negated). In the end we obtain either
formulas which are true (modulo T ) or false (modulo T ) or equivalent to a
formula of the form

(∃x0)(K ∧
∧

16i<j6n

xi 6= xj).

T contains the formula
∧

16i<j6n xi 6= xj → (∃x0)K, therefore

T |= (
∧

16i<j6n

xi 6= xj ↔ (∃x0)(K ∧
∧

16i<j6n

xi 6= xj).

(3) By (2), every closed formula is (mod T ) equivalent to true or false.
(4) Modulo the theory T , there are only finitely many quantifier-free formulas

in the variables x1, . . . , xn, namely, Boolean combinations of atomic for-
mulas %m(xi1 , . . . , xim), for i1, . . . , im ∈ {1, . . . , n} and m ≤ n. (Note that
formulas %m(xi1 , . . . , xim) for m > n and i1, . . . , im ≤ n are automatically
false mod T , because of (T1) in Definition 3.3.
This implies ω-categoricity, by Ryll-Nardzewski’s theorem. [Actually, we
do not need ω-categoricity itself for our construction, we only need the fact
that there are only finitely many first order definable k-ary relations, for
any k.]

(5) This is a consequence from the fact that T has elimination of quantifiers.
�
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The results in Lemma 3.8 make sure that the condition 3.1(1) is satisfied for
every model of T . Now we construct a model A, such that also the conditions
3.1(2) and (3) are satisfied.

We will obtain A as a directed union over an uncountable chain of models,
A :=

⋃
i∈ω1

Mi, such that every Mi is a model of T , Mi <Mi+1 and i ∈Mi+1 ⊂ ω1

for all i ∈ ω1. Because of Lemma 3.8(4), this is an elementary chain, therefore A
is again a model of T . Because of i ∈Mi+1 for all i ∈ ω1 and Mi ⊆ ω1, the carrier
set A =

⋃
i∈ω1

Mi is A = ω1.
In order to obtain a model with homogeneous s–reducts, we have to make sure

that certain partial automorphisms can be extended to automorphisms. For this
reason, we use a triply-indexed family (πn,i,j)n∈ω,i,j∈ω1,i6j of partial automor-
phisms.

First we explain, what the πn,i,i are. If M is a countable model, then there are
only countable many pairs (p, s) with s ∈ ω and p a finite partial automorphism of

the s–reduct M [s]. Therefore there exists an enumeration (pn, sn)n∈ω of all these
finite partial automorphisms with corresponding s. Now, for i ∈ ω and M = Mi

we put πn,i,i := pn, and sn,i := sn. Therefore

(∗∗) (πn,i,i)n∈ω is a list of all finite partial automorphisms of all possible reducts

Mi
[s].

The πn,i,j with i < j will be extensions of πn,i,i.
Now we explain how to construct the models Mj and sequences of partial auto-

morphisms (πn,i,j : i ≤ j) by transfinite induction on j ∈ ω1). This construction
will use the usual ‘bookkeeping–argument’ to take care of ω1 ×ω many tasks in ω1

steps. Let ω1 =
⋃
n∈ω,i∈ω1

Cn,i be a partition of ω1 into pairwise disjoint sets Cn,i,

such that |Cn,i| = ω1 for all (n, i) and minCn,i ≥ i.
If j = 0, then let M0 be a countable model of T with M0 ⊆ ω1. (The existence

of such a model is clear from Lemma 3.7.) The πn,0,0 are defined as in (∗∗).
If j is a limit ordinal, then put Mj :=

⋃
i<jMi. (As a directed union of an

elementary chain of models of T , this is again a model of T .) The πn,j,j are defined
as in (∗∗), and πn,i,j :=

⋃
i6l<j πn,i,l.

For a successor ordinal j + 1 we use Lemma 3.7:

(1) We define M j+1 as follows. Let (n, i) be the pair with j ∈ Cn,i. According
to the Lemma, there exists a model Mj+1 with j ∈ Mj+1 ⊂ ω1 and Mj <

Mj+1, and there exists an extension of πn,i,j to a partial automorphism π̄

of Mj+1
[sn,i] with Mj ⊆ dom π̄ and Mj ⊆ im π̄.

(2) We let πn,i,j+1 be the partial automorphism π̄ from (1).
(3) The πn,j+1,j+1 are defined as in (∗∗), enumerating all finite partial auto-

morphisms of reducts of Mj+1.

(4) For all (n, i) such that j /∈ Cn,i, we put πn,i,j+1 := πn,i,j .

It is easy to verify by transfinite induction, that the π(n,i,j) are always partial

automorphisms of Mj
[sn,i], and that πn,i,j extends πn,i,k for all k with i 6 k < j.

As mentioned above, we put A :=
⋃
i∈ω1

Mi.
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Lemma 3.9. If s ∈ ω, then every finite partial automorphism π of A[s] can be

extended to an automorphism of A[s].

Proof. The function π is finite, therefore there exists i ∈ ω with domπ∪ imπ ⊆Mi.

Mi is a submodel of A, therefore π is a finite partial automorphism of Mi
[s].

Consequently, π = πn,i,i for some n with s = sn,i. We define π′ :=
⋃
{πn,i,j :

j ∈ ω1, j ≥ i}. The function π′ is a partial isomorphism of A[s]. By our construc-
tion, we have Mj ⊆ domπ′ for all j ∈ Cn,i, i.e. domπ ⊇

⋃
j∈Cn,i

Mj = ω1. The

same holds for imπ′, therefore π′ is a total automorphism of A[s]. �

It remains to show that A has the property (3) in Lemma 3.1.

Lemma 3.10. A = (A; (%m)m∈ω\{0}) is rigid, i.e. AutA = {idA}.
Proof. Let S be a countable subset of A, x, y ∈ S and h : A \ S → ω be a function.
Then we define that E(x, y, S, h) is true iff for all m and for all a = (a1, . . . , am) ∈
Am \ Sm the following holds:

If (%m(a) ∧maxh(a) < m ∧ (∃i, j ∈ {1, . . . ,m})(x = ai ∧ y = aj)),
then i < j

We claim x < y ⇐⇒ (∃S)(∃h)E(x, y, S, h).

– Proof of “⇒”:] Let i ∈ ω1 be the least ordinal with x, y ∈Mi. Let S := Mi.
We have Mi < A, therefore Mi <h A for some h : A\S → ω. If a ∈ Am\Sm,
is weak for h, then %m(a) ⇐⇒ a1 < a2 < . . . < am. Therefore, if x = ai,
y = aj and x < y, then i < j.

– Proof of “⇐”: Let S be a countable subset of A and let h : A \ S → ω be
a function such that E(x, y, S, h).

Since ω1 has uncountable cofinality, and S is countable, there must be
some i < ω1 with S ⊆Mi.

Let i be the least ordinal with S ⊆ Mi. Let p ∈ A \Mi. (Then also
p ∈ A \ S.) We have Mi <hi A for some hi : A \Mi → ω. Let m :=
max{h(p), hi(p)} + 3 and choose z1, . . . , zm−3 ∈ S, pairwise distinct and
distinct from x and y. Let a = (a1, . . . , am) be the m-tuple consisting of
the elements of {p, x, y, z1, . . . , zm−3} in the ordering according to <, i.e.
a1 < a2 < . . . < am.

Find i, j such that

x = ai, y = aj .

Thus,
i < j ⇐⇒ x < y.

First we note that maxhi(a) < m, so a is weak for hi. As Mi < M , we
must have %m(a).

We also have maxh(a) < m, so %m(a) implies i < j. So x < y.

Let Ē(x, y) : ⇐⇒ (∃S)(∃h)E(x, y, S, h). If π is an automorphism of A we
write π[h] for the map h′ satisfying h′(π(x)) = h(x). Clearly E(x, y, S, h) ⇐⇒
E(π(x), π(y), π[S], π[h]), hence

Ē(x, y) ⇐⇒ Ē(π(x), π(y)).
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Consequently every automorphism of A has to preserve the well-ordering < of
ω1. But the only order automorphism of < is idA. �

In Lemmas 3.8, 3.9 and 3.10 we have verified all properties of A, required in
Lemma 3.1. We can now formulate our main result.

Theorem 3.11. The structure A = (A ; (%m)m∈ω) has the properties 3.1(1)–(3).
Consequently, the set R = {%m | m ∈ ω} satisfies

〈R〉KA = 〈R〉inv ,⋂ 6= sInv AutR.

Remark 3.12. The structure A that we constructed in 3.2–3.10 has cardinality
ℵ1. A similar construction can be carried out to yield a model of any cardinality κ
with cofinality cf (κ) ≥ ω1. We leave the details to the reader.

4. A characterization with invariant operations of countable arity

The results of the last section show that the closure under 〈 〉inv ,⋂ is too weak
to provide the closure under sInv Aut. The question remains, what we should add
to obtain an appropriate characterization. Similar as in Theorem 2.9 we will add
operations with infinite arity. In contrast to Theorem 2.9, we need only operations
with countable arities.

Lemma 4.1. Let m ∈ ω \ {0} and let Q ⊆ Rel(m)(A) be closed under complemen-

tation. Then there exists a relation % ∈ 〈Q〉(2m)
KA,

⋂ with AutQ = Aut{%}.

Proof. Q is closed under C, therefore the set

M := {ΓQ(a) | a ∈ Am}
is a partition of Am. M can be well-ordered, so let (γi)i<κ be a corresponding
enumeration of the elements of M . We put

% :=
⋃

i6j<κ

γi × γj

Then % ∈ 〈Q〉(2m)
KA,

⋂. This implies % ∈ sInv AutQ and therefore Aut{%} ⊇ AutQ.

Now let g ∈ Aut{%}. If a, b ∈ γi, then (a, b) ∈ % and (b, a) ∈ %, hence
(g(a), g(b)) ∈ % and (g(b), g(a)) ∈ %. The γi are pairwise disjoint, therefore there
are unique ordinals l, k < κ with g(a) ∈ γl, g(b) ∈ γk. Now (a, b) ∈ % implies
l 6 k and (b, a) ∈ % implies k 6 l, i.e. l = k. Consequently all tuples in γi are
transformed by g to tuples in γk. Therefore there exists a function g0 : κ→ κ with
g[γi] ⊆ γg0(i).
g−1 is also an automorphism of %, and it is easy to see that the corresponding

function g′0 : κ→ κ has to be the inverse of g0. Consequently, g0 is a permutation
on κ.

The permutation g0 preserves the well-order < on κ, because of

i < j ⇒ γi × γj ⊆ %⇒ γg0(i) × γg0(j) ⊆ %⇒ g0(i) < g0(j).

The well-order 〈κ,<〉 has only the trivial order automorphism, therefore g0 = idκ.
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We obtain g[γi] ⊆ γi and (because g−1 is also an automorphism) g−1[γi] ⊆ γi, i.e.
g[γi] = γi. But then, g is an automorphism for all relations in M , and therefore also
for all relations in Q. This yields Aut{%} ⊆ AutQ, and this finishes the proof. �

As a consequence of this Lemma, every possible automorphism group appears
already as the automorphism group of an at most countable set of relations.

Lemma 4.2. For every set R ⊆ Rel(A) there exists an at most countable set
R0 ⊆ Rel(A) with AutR = AutR0. Moreover, if R is a

⋂
–closed Krasner algebra,

then we can choose R0 ⊆ R.

Proof. If R is not closed under C, then we put R′ := R ∪ {Cσ | σ ∈ R}. Then
AutR = AutR′, therefore we can assume w.l.o.g. that R is closed under comple-

mentation. By 4.1 there are relations %m ∈ Rel(2m)(A) with AutR(m) = Aut{%m}.
Consequently:

AutR =
⋂

16m∈ω

AutR(m) =
⋂

16m∈ω

Aut{%m} = Aut{%m | 1 6 m ∈ ω}

The second part in Lemma 4.1 implies that the %m can be chosen from the
⋂

–closed
Krasner algebra, generated by R. �

Now we define our additional operations.

Definition 4.3. An invariant operation with countable arity is an operation of the
form

F :
∏

16i∈ω

Rel(mi)(A)→ Rel(m)(A)

(mi ∈ ω \{0}), such that for all (%i)16i∈ω ∈
∏

16i∈ω Rel(mi)(A) and all g ∈ Sym(A)
we have

F (g[%i])16i∈ω = g [F (%i)16i∈ω]

If Q ⊆ Rel(A), then 〈Q〉ω−inv is the closure of Q under all invariant operations with
countable arity, and 〈Q〉ω−inv ,⋂ is the least set of relations which is closed under
all invariant operations with countable arity and

⋂
–closed.

(It is clear that 〈 〉ω−inv and 〈 〉ω−inv ,⋂ are closure operators.) Similar as in
Lemma 2.13 and Lemma 2.14, we can verify the following properties:

Lemma 4.4.

(1) If R ⊆ Rel(A) is Galois closed, R = sInv AutR, then R is
⋂

–closed and
closed under all invariant operations with countable arity, R = 〈R〉ω−inv ,⋂.

(2) If Q ⊆ Rel(A) is countable or finite, then 〈Q〉ω−inv = sInv AutQ.

Now we can formulate our characterization of the Galois closed sets of relations.

Theorem 4.5. Let R be a
⋂

–closed Krasner algebra. Then R is Galois closed,
R = sInv AutR, if and only if sInv AutR0 ⊆ R for every countable subset R0 of R.

In particular, a set R ⊆ Rel(A) is Galois closed if and only if it is
⋂

–closed and
closed under all invariant operations with countable arity, R = 〈R〉ω−inv ,⋂. For all
Q ⊆ Rel(A) we have 〈Q〉ω−inv ,⋂ = sInv AutQ.
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Proof. Clearly, R0 ⊆ R and R = sInv AutR implies sInv AutR0 ⊆ sInv AutR = R
for every subset R0 of R. Vice versa, if sInv AutR0 ⊆ R for all countable subsets,
then we can choose the special subset R0 ⊆ R with AutR = AutR0 of Lemma 4.2.
Then we obtain:

R ⊆ sInv AutR = sInv AutR0 ⊆ R,
i.e., R is Galois closed.

Then the other statements are consequences of Lemma 4.4. �
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