On the non-existence of κ-mad families

Haim Horowitz and Saharon Shelah

Abstract

Starting from a model with a Laver-indestructible supercompact cardinal κ, we construct a model of $Z F+D C_{\kappa}$ where there are no κ-mad families ${ }^{1}$

Introduction

The study of the definability and possible non-existence of mad families has a long tradition, originating with the paper [Ma] of Mathias where it was proven that mad families can't be analytic and that there are no mad families in the Solovay model constructed from a Mahlo cardinal (as always, by "mad families" we refer to infinite such families). It was later shown by Toernquist that an inaccessible cardinal suffices for the consistency of this statement ([To]), and it was then shown by the authors that the non-existence of mad families (in $Z F+D C$) is actually equiconsistent with $Z F C$ ([HwSh:1090]).

The current paper can be seen as a continuation of the line of investigation of [HwSh:1090], as well as of [HwSh:1145], where the definability of κ-mad families was considered. Recall the following definition:

Definition 1: Let κ be an infinite regular cardinal. A family $\mathcal{A} \subseteq[\kappa]^{\kappa}$ is κ-almost disjoint if $|A \cap B|<\kappa$ for every $A \neq B \in \mathcal{A}$. \mathcal{A} will be called κ-maximal almost disjoint (κ-mad) if \mathcal{A} is κ-almost disjoint and can't be extended to a larger κ-almost disjoint family.

Assuming the existence of a Laver-indestructible supercompact cardinal κ, we constructed in [HwSh:1145] a generic extension where κ remained supercompact and there are no $\Sigma_{1}^{1}(\kappa)-\kappa-\operatorname{mad}$ families, thus obtaining a higher analog of Mathias' result.

Our current main goal is to obtain a higher analog of the main result of [HwSh:1090], i.e. for an uncountable cardinal $\theta>\aleph_{0}$, we would like to construct a model of $Z F+D C_{\theta}$ where there are no θ-mad families. As opposed to [HwSh:1090], we only achieve this goal assuming the existence of a supercompact cardinal. The main result of the paper is the following:

Theorem 2: a. Suppose that $\aleph_{0}<c f(\theta)=\theta<c f(\kappa)=\kappa \leq \lambda=\lambda^{<\kappa}$ and θ is a Laver indestructible supercompact cardinal, then there is a model of $Z F+D C_{<\kappa}+$ "there exist no θ-mad families" (note that θ here has the role of κ in the abstract).
b. If we start from a universe V, then the final model V_{1} will have the same cardinals and same $H(\theta)$ as V.
We remark that during the time that the current paper was being reviewed, a newer result was announced by Chan, Jackson and Trang [CJT], where they show the non-existence of certain mad families on uncountable cardinals under $A D^{+}$. We note that while their result requires a weaker large cardinal assumption, it's incompatible with $D C_{\omega_{1}}$. This should be contrasted with our result which provides us with many high instances of dependent choice.

[^0]Finally, we briefly describe our proof strategy. We shall force with a partial order \mathbb{P} where the conditions themselves are forcing notions (this is somewhat similar to [Sh:218], [HwSh:1093] and [HwSh:1113], as well as to the recent work of Viale in [Vi], where a similar approach is applied to the study of generic absoluteness). Forcing with \mathbb{P} will generically introduce the forcing notion \mathbb{Q} that will give us the desired results. More specifically, we shall fix a Laver-indestructible supercompact cardinal θ. The conditions in \mathbb{P} will be elements from a suitable $H\left(\lambda^{+}\right)$that are $(<\theta)$-support iterations along wellfounded partial orders of $(<\theta)$-directed closed forcing notions satisfying a strong version of θ^{+}-cc. Given $\mathbf{q}_{1}, \mathbf{q}_{2} \in \mathbb{P}$, we will have $\mathbf{q}_{1} \leq_{\mathbb{P}} \mathbf{q}_{2}$ when the iteration given by \mathbf{q}_{1} is an "initial segment" (in an adequate sense) of the iteration given by \mathbf{q}_{2}. Forcing with \mathbb{P} will introduce a generic iteration \mathbf{q}_{G} given by the union of $\mathbf{q} \in \mathbb{P}$ that belong to the generic set. In the further generic extension given by \mathbf{q}_{G}, we shall consider $V_{1}=\operatorname{HOD}\left(\mathcal{P}(\theta)^{<\kappa} \cup V\right)$ (for an adequate fixed κ). We shall then prove that there are no θ-mad families in V_{1}. In order to prove this fact, we shall consider towards contradiction a condition $\left(\mathbf{q}_{0}, p_{0}\right)$ that forces a counterexample \mathcal{A}, where \mathbf{q}_{0} will be "sufficiently closed". The filter that's dual to the ideal generated by \mathcal{A} will then be extended to a θ-complete ultrafilter (using the Laver-indestructibility of θ), and we shall obtain a contradiction with the help of an amalgamation argument over \mathbf{q}_{0} using a higher analog of Mathias forcing relative to this ultrafilter.

The rest of the paper will be devoted to the proof of Theorem 2.

Proof of the main result

Definition 3: A. Let K be the class of pairs $\left(\mathbf{q}, U_{\mathbf{q}}\right)$ that consist of the following objects with the following properties:
a. $U=U_{\mathbf{q}}$ a well-founded partial order whose elements are ordinals. We let $U^{+}=U \cup\{\infty\}$ where ∞ is a new element above all elements from U, and for $\alpha \in U^{+}$, we let $U_{<\alpha}=\left\{\beta \in U: \beta<_{U} \alpha\right\}$.
b. An iteration $\left(\underset{\mathbb{P}_{\mathbf{q}, \alpha}}{ }, \underset{\sim}{\mathbb{Q}} \underset{\sim}{\mathbf{q}, \beta}: \alpha \in U^{+}, \beta \in U\right)=\left(\mathbb{P}_{\alpha}, \underset{\sim}{\mathbb{Q}_{\beta}}: \alpha \in U^{+}, \beta \in U\right)$. We shall often denote the iteration itself by \mathbf{q}.
c. \mathbf{q} is a $(<\theta)$-support iteration, and in addition:
(α) Each \mathbb{Q}_{β} is a \mathbb{P}_{β}-name of a forcing notion whose set of elements is an object X_{β} from \tilde{V}.
(β) Given $\alpha \in U^{+}, p \in \mathbb{P}_{\alpha}$ iff p is a function with domain $\operatorname{dom}(p) \in\left[U_{<\alpha}\right]^{<\theta}$ such that $p(\beta)$ is a canonical \mathbb{P}_{β}-name for every $\beta \in \operatorname{dom}(p)$.
$(\gamma) \leq_{\mathbb{P}_{\alpha}}$ is defined as usual.
(δ) If $w \subseteq U$ is downward closed (i.e. $\alpha<_{U} \beta \in w \rightarrow \alpha \in w$) and $\mathbb{P}_{\mathbf{q}, w}=\mathbb{P}_{w}=$ $\mathbb{P}_{\infty} \upharpoonright w=\left\{p \in \mathbb{P}_{\infty}: \operatorname{dom}(p) \subseteq w\right\}$, then $\mathbb{P}_{w} \lessdot \mathbb{P}_{\infty}$.
d. In $V^{\mathbb{P}_{\beta}}, \mathbb{Q}_{\beta}$ satisfies $*_{\theta}^{\epsilon}$ for a fixed limit $\epsilon<\theta$, namely, if $\left\{p_{\alpha}: \alpha<\theta^{+}\right\} \subseteq \mathbb{Q}_{\beta}$, then there is some club $E \subseteq \theta^{+}$and a pressing down function $f: E \rightarrow \theta^{+}$such that if $\delta_{1}, \delta_{2} \in E, c f\left(\delta_{1}\right)=c f\left(\delta_{2}\right)$ and $f\left(\delta_{1}\right)=f\left(\delta_{2}\right)$, then $p_{\delta_{1}}$ and $p_{\delta_{2}}$ have a common least upper bound.
e. For $\beta \in U$, the following holds in $V^{\mathbb{P}_{\beta}}$: If I is a directed partial order of cardinality $<\theta$ and $\left(p_{s}: s \in I\right) \in \mathbb{Q}_{\beta}^{I}$ is $\leq_{\mathbb{Q}_{\beta}}$-increasing, then $\left\{p_{s}: s \in I\right\}$ has a $\leq_{\mathbb{Q}_{\beta}}$-least upper bound.
Notational remark: As $U_{\mathbf{q}}$ is implicitly part of the definition of \mathbf{q}, we shall often just write \mathbf{q} instead of $\left(\mathbf{q}, U_{\mathbf{q}}\right)$.
B. Let \leq_{K} be the following partial order on K :
$\mathbf{q}_{1} \leq_{K} \mathbf{q}_{2}$ iff the following conditions hold:
a. $U_{\mathbf{q}_{1}} \subseteq U_{\mathbf{q}_{2}}$ as partial orders.
b. If $U_{\mathbf{q}_{2}} \models \alpha<\beta$ and $\beta \in U_{\mathbf{q}_{1}}$, then $\alpha \in U_{\mathbf{q}_{1}}$.
c. If $w \subseteq U_{\mathbf{q}_{1}}$ is downward closed, then $\mathbb{P}_{\mathbf{q}_{1}, w}=\mathbb{P}_{\mathbf{q}_{2}, w}$.
d. If $\alpha \in U_{\mathbf{q}_{1}}$, then $\underset{\sim}{\mathbb{Q}_{\mathbf{q}_{1}}, \alpha}=\underset{\sim}{\mathbb{Q}_{\mathbf{q}_{2}}, \alpha}$ (this is well-defined recalling clause (b)).
C. Let $K_{w f}$ be the class of U as in (A)(a), and let $\leq_{w f}$ be the partial order on $K_{w f}$ defined as in clauses (B)(a) and (B)(b).
We shall now observe some easy basic properties of the objects defined above:
Observation 4: a. If $\left(U_{\alpha}: \alpha<\delta\right)$ is $\leq_{w f}$-increasing, then $\bigcup_{\alpha<\delta} U_{\alpha}$ is a $\leq_{w f}$-least upper bound for ($U_{\alpha}: \alpha<\delta$).
b. \leq_{K} is a partial order on K.
c. If $\mathbf{q}_{2} \in K$ and $U_{1} \subseteq U_{\mathbf{q}_{2}}$ is downward closed, then there is a unique $\mathbf{q}_{1} \in K$ such that $\mathbf{q}_{1} \leq_{K} \mathbf{q}_{2}$ and $U_{\mathbf{q}_{1}}=U_{1}$.
d. If $\left(\mathbf{q}_{\alpha}: \alpha<\delta\right)$ is \leq_{K}-increasing, then there is a unique $\mathbf{q}_{\delta} \in K$ such that $\alpha<\delta \rightarrow \mathbf{q}_{\alpha} \leq_{K} \mathbf{q}_{\delta}$ and $U_{\mathbf{q}_{\delta}}=\bigcup_{\alpha<\delta} U_{\mathbf{q}_{\alpha}}$.
e. If $U_{0}, U_{1}, U_{2} \in K_{w f}, U_{0}=U_{1} \cap U_{2}$ and $U_{0} \leq_{w f} U_{l}(l=1,2)$, then there is a unique $U \in K_{w f}$ such that $\bigwedge_{l=1,2} U_{l} \leq_{w f} U, \alpha \in U$ iff $\alpha \in U_{1} \vee \alpha \in U_{2}$ and $\leq_{U}=\leq_{U_{1}} \cup \leq_{U_{2}}$. We denote this U by $U_{1}+U_{0} U_{2}$.
f. If $\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2} \in K, \mathbf{q}_{0} \leq_{K} \mathbf{q}_{l}(l=1,2)$ and $U_{\mathbf{q}_{0}}=U_{\mathbf{q}_{1}} \cap U_{\mathbf{q}_{2}}$, then there is a unique $\mathbf{q} \in K$ such that $\bigwedge_{l=1,2} \mathbf{q}_{l} \leq_{K} \mathbf{q}$ and $U_{\mathbf{q}}=U_{\mathbf{q}_{1}}+U_{\mathbf{q}_{0}} U_{\mathbf{q}_{2}}$. We shall denote this \mathbf{q} by $\mathbf{q}_{1}+{ }_{\mathbf{q}_{0}} \mathbf{q}_{2}$.
g. If $\alpha \in U_{\mathbf{q}}^{+}$, then $\mathbb{P}_{\mathbf{q}, \alpha}$ is a $(<\theta)$-complete forcing satisfying $*_{\theta}^{\epsilon}$ (hence θ^{+}-cc).
h. Suppose that $\mathbf{q} \in K$ and \mathbb{Q} is a $\mathbb{P}_{\mathbf{q}, \infty}$-name of a forcing notion whose universe is from V, such that the conditions of definitions $3(\mathrm{~d})$ and $3(\mathrm{e})$ are satisfied, then there is $\mathbf{q}^{\prime} \in K$ such that $\mathbf{q} \leq_{K} \mathbf{q}^{\prime}, U_{\mathbf{q}^{\prime}}=U_{\mathbf{q}} \cup\{\gamma\}, U_{\mathbf{q}^{\prime}} \models \alpha<\gamma$ for every $\alpha \in U_{\mathbf{q}}$ and $\underset{\sim}{\mathbb{Q}} \underset{\sim}{\mathbf{q}^{\prime}, \gamma}=\underset{\sim}{\mathbb{Q}}$.

Definition 5: The forcing notion \mathbb{P} will be defined as follows:
a. The conditions of \mathbb{P} are the elements \mathbf{q} of $K \cap H\left(\lambda^{+}\right)$such that $U_{\mathbf{q}} \subseteq \lambda^{+}$, and for every $\beta \in U_{\mathbf{q}}, \mathbb{Q}_{\beta}$ is a name for a forcing whose underlying set of conditions is some $X_{\beta} \subseteq \lambda^{+}$.
b. Given $\mathbf{q}_{1}, \mathbf{q}_{2} \in \mathbb{P}, \mathbb{P} \models " \mathbf{q}_{1} \leq \mathbf{q}_{2} "$ iff $\mathbf{q}_{1} \leq_{K} \mathbf{q}_{2}$.
c. Given a generic set $G \subseteq \mathbb{P}$, we let $\mathbf{q}_{G}=\bigcup\{\mathbf{q}: \mathbf{q} \in G\}$.

Before the next claim, we shall remind the reader of the definition of $(<\kappa)$-strategic completeness. Given a forcing \mathbb{P}, a condition $p \in \mathbb{P}$ and an ordinal α, the two-player game $G_{\alpha}(p, \mathbb{P})$ will consist of α moves. In the β th move, player \mathbf{I} chooses $p_{\beta} \in \mathbb{P}$ above p and all $q_{\gamma}(\gamma<\beta)$ previously chosen by player II. Player II will respond with a condition $q_{\beta} \in \mathbb{P}$ above p_{β}. Player \mathbf{I} wins the game iff for each $\beta<\alpha$ he has a legal move. \mathbb{P} is α-strategically complete if player \mathbf{I} has a winning strategy in $G_{\alpha}(p, \mathbb{P})$ for every $p \in \mathbb{P}$. Finally, \mathbb{P} is $(<\kappa)$-strategically complete if it's α strategically complete for every $\alpha<\kappa$.

Claim 6: a. \mathbb{P} is $(<\kappa)$-strategically complete. Moreover, it's $\left(<\lambda^{+}\right)$-complete and $(<\theta)$-directed closed.
b. $\Vdash_{\mathbb{P}} " \mathbf{q}_{G} \in K$ ", hence $\Vdash_{\mathbb{P}} " \mathbb{P}_{\mathbf{q}_{G}, \infty}$ is $(<\theta)$-directed closed and θ^{+}-cc".
c. If $\delta<\lambda^{+}, c f(\delta)>\theta$ and $\left(\mathbf{q}_{\alpha}: \alpha<\delta\right)$ is $\leq_{\mathbb{P}}$-increasing, then $\mathbf{q}:=\bigcup_{\alpha<\delta} \mathbf{q}_{\alpha}$ belongs to \mathbb{P} and $\mathbb{P}_{\mathbf{q}}=\bigcup_{\alpha<\delta} \mathbb{P}_{\mathbf{q}_{\alpha}}$. By θ^{+}-c.c., $\underset{\sim}{a}$ is a canonical $\mathbb{P}_{\mathbf{q}^{-}}$name of a member of $[\theta]^{\theta}$ iff $\underset{\sim}{a}$ is a canonical $\mathbb{P}_{\mathbf{q}_{\alpha}}$-name of a member of $[\theta]^{\theta}$ for some $\alpha<\delta$.
Proof: The claim follows directly from the definitions. The fact that $\Vdash_{\mathbb{P}} "_{\mathbf{q}_{G}} \in K$ " follows from the general fact that if I is a directed set, $\left\{\mathbf{q}_{t}: t \in I\right\} \subseteq \sim^{\sim} K$ and $s \leq_{I} t \rightarrow \mathbf{q}_{s} \leq_{K} \mathbf{q}_{t}$, then $\bigcup\left\{\mathbf{q}_{t}: t \in I\right\}$ is well-defined and belongs to K. This also shows that \mathbb{P} is $(<\theta)$-directed closed.
We shall now define our desired model:
Definition 7: a. In $V^{\mathbb{P}}$, let $\mathbb{Q}=\mathbb{P}_{\mathbf{q}_{G}, \infty}$.
b. Let $V_{2}=V \stackrel{\mathbb{P} \star \mathbb{Q}}{\sim}$.
c. Let V_{1} be $\operatorname{HOD}\left(\mathcal{P}(\theta)^{<\kappa} \cup V\right)$ inside V_{2}.

Claim 8: a. $V_{1} \models Z F+D C_{<\kappa}$.
b. $\left(O r d^{<\kappa}\right)^{V_{1}}=\left(O r d^{<\kappa}\right)^{V_{2}}$, hence $\mathcal{P}(\theta)^{V_{1}}=\mathcal{P}(\theta)^{V_{2}}$.

Proof: We shall prove the first part of clause (b), the rest should be clear. Clearly, $\left(O r d^{<\kappa}\right)^{V_{1}} \subseteq\left(O r d^{<\kappa}\right)^{V_{2}}$. Now let $\eta \in\left(O r d^{\gamma}\right)^{V_{2}}$ for some $\gamma<\kappa$, then $\eta=\eta[G]$ for some name η of a member of $\operatorname{Or} d^{\gamma}$, where $G \subseteq \mathbb{P} \star \mathbb{Q}$ is generic. $G=G_{1} \star G_{2}$ where $G_{1} \subseteq \mathbb{P}$ is generic and $G_{2} \subseteq \underset{\sim}{\mathbb{Q}}\left[G_{1}\right]$ is generic. Working in $V\left[G_{1}\right], \underset{\sim}{\eta} / G_{1}$ is a $\underset{\sim}{\mathbb{Q}}\left[G_{1}\right]$-name. As $\underset{\sim}{\mathbb{Q}}\left[G_{1}\right]$ is θ^{+}-cc, for every $\beta<\gamma$ there is a maximal antichain $\left\{p_{\beta, i}^{\sim}: i<\theta\right\} \subseteq \underset{\sim}{\mathbb{Q}}\left[\widetilde{G_{1}}\right]$ of conditions that force a value to $\underset{\sim}{\eta} / G_{1}(\beta)$. Let $\left\{\zeta_{\beta, i}: i<\theta\right\}$ be the set corresponding values forced by the above conditions. Let $\Gamma=\left\{\underset{\sim}{\sim} \underset{\beta, i}{ }, \zeta_{\beta, i}^{\sim}\right.$: $\beta<\gamma, i<\theta\}$ be the corresponding \mathbb{P}-names for the above objects (so we can regard them as \mathbb{P}-names for ordinals). As there are $<\kappa$ such names and \mathbb{P} is $(<\kappa)$ strategically complete, there is a dense set of $\mathbf{q} \in \mathbb{P}$ that force values to all elements of Γ. Therefore, there is some $\mathbf{q} \in \mathbb{P} \cap G_{1}$ that forces values to all elements of Γ (and the values forced are necessarily $\left\{p_{\beta, i}, \zeta_{\beta, i}: \beta<\gamma, i<\theta\right\}$). It follows that $\left\{p_{\beta, i}, \zeta_{\beta, i}: \beta<\gamma, i<\theta\right\} \in V$. In V_{2}, there is a function $f: \gamma \rightarrow \theta$ such that for every $\beta<\gamma, \eta(\beta)=\zeta_{\beta, f(\beta)}$. As $f \in \mathcal{P}(\theta)^{<\kappa}$ and $\left\{p_{\beta, i}, \zeta_{\beta, i}: \beta<\gamma, i<\theta\right\} \in V$, it follows that $\eta \in V_{1}$.

Main Claim 9: There are no θ-mad families in V_{1}.
The rest of the paper will be devoted to the proof of Claim 9.
Suppose towards contradiction that there is a $\theta-\mathrm{mad}$ family in V_{1}, so there is some $\left(\mathbf{q}_{0}, \underset{\sim}{p_{0}}\right) \in \mathbb{P} \star \underset{\sim}{\mathbb{Q}}$ forcing this statement about $\underset{\sim}{\mathcal{A}}$ where $\underset{\sim}{\mathcal{A}}$ is a canonical $\mathbb{P} \star \underset{\sim}{\mathbb{Q}} \underset{\sim}{\mathbb{Q}}$-name of a θ-mad family definable using η, and η is a canonical $\mathbb{P} \star \mathbb{Q}$-name of a parameter (so
 and $\left.\Vdash \stackrel{\sim}{\sim} x \in V^{\prime}\right)^{\sim}$. Let $G_{0} \subseteq \mathbb{P}$ be generic over V such that $\mathbf{q}_{0} \in G_{0}$. In $V\left[G_{0}\right], \eta$ is a $\mathbb{P}_{\mathbf{q}_{G_{0}}, \infty} \sim$-name, and by increasing \mathbf{q}_{0}, we may assume wlog that $p_{0}:=\underset{\sim}{p_{0}}\left[G_{0}\right] \in{\underset{\mathbb{P}}{\mathbf{q}_{0}}}$,
$x=\underset{\sim}{x}\left[G_{0}\right] \in V, \epsilon(*)=\epsilon(*)\left[G_{0}\right] \in \kappa$ and that each $a_{\epsilon}(\epsilon<\epsilon(*))$ is a canonical $\mathbb{P}_{\mathbf{q}_{0}}$-name of a subset of θ. Given $\mathbf{q} \in \mathbb{P}$ above \mathbf{q}_{0}, let $\mathcal{A}_{\mathbf{q}}$ be the set of canonical $\mathbb{P}_{\mathbf{q}^{\prime}}$-names $\underset{\sim}{a}$ such that $\left(\mathbf{q}, p_{\sim}\right) \vdash_{\mathbb{P} \times \mathbb{Q}} " \underset{\sim}{a} \in \underset{\sim}{\mathcal{A}} "$, so $\mathbf{q}_{0} \leq \mathbf{q}_{1} \leq \mathbf{q}_{2} \rightarrow \mathcal{A}_{\mathbf{q}_{1}} \subseteq \mathcal{A}_{\mathbf{q}_{2}}$. Note that if $\mathbf{q}_{0} \leq \mathbf{q}_{1}, \mathbb{P}_{\mathbf{q}_{1}, \infty} \models " p_{0} \leq p_{1} "$ and $\left(\mathbf{q}_{1}, p_{1}\right) \Vdash " \underset{\sim}{b} \in[\theta]^{\theta "}$, then for some $\left(\mathbf{q}_{2}, \underset{\sim}{a}\right)$ we have $\mathbf{q}_{1} \leq_{\mathbb{P}} \mathbf{q}_{2}, \underset{\sim}{a} \in \mathcal{A}_{\mathbf{q}_{2}}$ and $\left(\mathbf{q}_{2}, p_{0}\right) \Vdash \stackrel{\sim}{\sim} \underset{\sim}{b} \underset{\sim}{a} \in[\theta]^{\theta} "$. By extending any given $\mathbf{q}_{1} \in \mathbb{P}$ above \mathbf{q}_{0} in this way sufficiently many times to add witnesses for madness, and recalling Claim 6(c), we establish that the set $\left\{\mathbf{q}_{1}: \mathbf{q}_{0} \leq_{\mathbb{P}} \mathbf{q}_{1}\right.$ and $\Vdash_{\mathbb{P}_{\mathbf{q}_{1}}} " \mathcal{A}_{\mathbf{q}_{1}}$ is θ-mad" $\}$ is dense in \mathbb{P} above \mathbf{q}_{0}.
Now, in V_{2}, let $I=\{A \subseteq \theta: A$ is contained in a union of $<\theta$ members of $\mathcal{A}\}$, then I is a θ-complete ideal and $\theta \notin I$. Let F be the dual filter of I, then F is θ-complete, and as θ is supercompact in V_{2} (recalling that θ is Laver indestructible and that $\mathbb{P} \star \mathbb{Q}$ is $(<\theta)$-directed closed), there is a $\mathbb{P} \star \underset{\sim}{\mathbb{Q}}$-name $\underset{\sim}{D}$ such that $\left(\mathbf{q}_{0}, p_{0}\right) \vdash_{\mathbb{P} \nmid \mathbb{Q}} " \underset{\sim}{D}$ is a θ-complete ultrafilter on θ that extends F, and hence is disjoint to $\underset{\sim}{\mathcal{A}}$ ". By Claim 6 and what we observed in the previous paragraph, we may assume wlog that $\mathbf{q}_{0} \Vdash_{\mathbb{P}} " \mathcal{A}_{\mathbf{q}_{0}}$ is $\theta-\operatorname{mad}$ and $D_{\mathbf{q}_{0}}:=\underset{\sim}{D} \cap \mathcal{P}(\theta)^{V^{\mathbb{P}_{\mathbf{q}_{0}}, \infty}}$ is a $\mathbb{P}_{\mathbf{q}_{0}, \infty}$-name of an ultrafilter on θ ".

Given an ultrafilter U on θ, the forcing \mathbb{Q}_{U} is defined as follows: the conditions of \mathbb{Q}_{U} have the form (u, A) where $u \in[\theta]^{<\theta}$ and $A \in U$. the order is defined naturally, i.e. $\left(u_{1}, A_{1}\right) \leq\left(u_{2}, A_{2}\right)$ iff $u_{1} \subseteq u_{2}, u_{2} \backslash u_{1} \subseteq A_{1}$ and $A_{2} \subseteq A_{1}$.

We may assume wlog that $\mathbb{P}_{\mathbf{q}_{0}, \infty}$ forces $2^{\theta}=\lambda$, hence there is a canonical $\mathbb{P}_{\mathbf{q}_{0}, \infty^{-}}$ name f of a bijection from \mathbb{Q}_{D} onto λ. Let \mathbb{Q}^{\prime} be a name for the forcing such that $\Vdash_{\mathbb{P}_{\mathbf{q}_{0}}} " f$ is an isomorphism from $\underset{\sim}{\mathbb{Q}_{D}}$ onto $\underset{\sim}{\mathbb{Q}_{\mathbf{q}_{0}}}$ ". Let $\underset{\sim}{B}=\underset{\sim_{\mathbf{q}_{0}}}{B_{D}}$ be the $\underset{\sim_{\mathbf{q}_{0}}}{\mathbb{Q}_{D}}$-name
$\bigcup\left\{u:(u, A) \in G_{\underset{\mathcal{Q}_{\mathbf{q}_{0}}}{ }}\right\}$, so $\Vdash_{\mathbb{P}_{\mathbf{q}_{0}, \infty} * \mathbb{Q}_{D}} \quad " \underset{\sim}{B} \in[\theta]^{\theta}$ is θ-almost disjoint to $\mathcal{A}_{\mathbf{q}_{0}}$ ". Let $\underset{\sim}{B^{\prime}}$ be the canonical $\mathbb{P}_{\mathbf{q}_{0}, \infty} \star \underset{\mathcal{Q}_{\mathbf{q}_{0}}}{\mathbb{Q}_{D}} \stackrel{{ }^{\mathbf{q}_{0}}}{ }$-name for the image of $\underset{\sim}{B}$ under $\underset{\sim}{f}$.
Now observe that there is $\mathbf{q}^{\prime} \in \mathbb{P}$ such that $\mathbf{q}_{0} \leq_{\mathbb{P}} \mathbf{q}^{\prime}, U_{\mathbf{q}^{\prime}}=U_{\mathbf{q}_{0}} \cup\{\gamma\}, \alpha<_{U_{\mathbf{q}^{\prime}}} \gamma$ for every $\alpha \in U_{\mathbf{q}_{0}}$ and $\underset{\mathbb{Q}_{\mathbf{q}^{\prime}}, \gamma}{ }={\underset{\sim}{\mathbb{Q}}}^{\prime}$. As before, there is $\mathbf{q}^{\prime \prime} \in \mathbb{P}$ above \mathbf{q}^{\prime} such that $p_{0} \Vdash_{\mathbb{P}_{\mathbf{q}^{\prime \prime}, \infty}} " \mathcal{A}_{\mathbf{q}^{\prime \prime}}$ is θ-mad". Therefore, there is some $\mathbb{P}_{\mathbf{q}^{\prime \prime}, \infty}$-name $\underset{\sim}{A} \in \mathcal{A}_{\mathbf{q}^{\prime \prime}}$ such that $p_{0} \Vdash_{\mathbb{P}_{\mathbf{q}^{\prime \prime}, \infty}} " \underset{\sim}{A} \cap \underset{\sim}{B} \mathcal{B}^{\prime} \in[\theta]^{\theta}$, so $\underset{\sim}{A}$ has intersection of size θ with every member of $\underset{\sim}{D} \mathbf{q}_{0}$ and $\underset{\sim}{A} \notin \mathcal{A}_{\mathbf{q}_{0}}$ ".
Now let $\left(\mathbf{q}_{1}, \underset{\sim}{B_{1}}, \underset{\sim}{A_{1}}\right)=\left(\mathbf{q}^{\prime \prime}, \underset{\sim}{B^{\prime}}, \underset{\sim}{A}\right)$ and let $\left(\mathbf{q}_{2},{\underset{\sim}{\sim}}^{B_{2}}, \underset{\sim}{A_{2}}\right)$ be an isomorphic copy of $\left(\mathbf{q}_{1}, \underset{\sim}{B_{1}}, \underset{\sim}{A} A_{1}\right)$ over \mathbf{q}_{0} such that $U_{\mathbf{q}_{1}} \cap U_{\mathbf{q}_{2}}=U_{\mathbf{q}_{0}}$ and $\mathbf{q}_{2} \in \mathbb{P}$.

Claim 10: Let $\mathbf{q}_{0},\left(\mathbf{q}_{1}, B_{1}, A_{1}\right)$ and $\left(\mathbf{q}_{2}, B_{2}, A_{2}\right)$ be as above (so $\mathbf{q}_{0} \leq_{K} \mathbf{q}_{l}(l=1,2)$, $U_{\mathbf{q}_{1}} \cap U_{\mathbf{q}_{2}}=U_{\mathbf{q}_{0}}$ and $\left.\bigwedge_{l=1,2}^{\sim}{\stackrel{\sim}{\mathbb{P}_{\mathbf{q}_{l}, \infty}}}^{"} A_{l} \in \underset{\sim}{\mathcal{A}} \backslash{ }_{\sim}^{\sim} \mathcal{A}_{\mathbf{q}_{0}} "\right)$ and let $G \subseteq \mathbb{P}_{\mathbf{q}_{0}, \infty}$ be generic over V, then $\left.\Vdash_{\mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G} " \underset{\sim}{A_{2}} \backslash \underset{\sim}{A_{1}}, \underset{\sim}{A_{1}} \backslash \underset{\sim}{A_{2}} \in[\theta]\right]^{\theta} "$.
Proof: We shall prove the claim for $A_{2} \backslash A_{1}$, the other case is similar. Suppose towards contradiction that $\left(p_{1}, p_{2}\right)$ forces that $\underset{\sim}{A_{2}} \backslash \underset{\sim}{A_{1}} \subseteq \gamma<\theta$. For $l \in\{1,2\}$, let $B_{l}=\left\{\epsilon<\theta: p_{l} \nVdash_{\mathbb{P}_{\mathbf{q}_{l}}, \infty / G} " \epsilon \notin \underset{\sim}{A_{l}} "\right\} \in V[G]$. By the assumption of the claim, $B_{l} \in[\theta]^{\theta}$. By the θ-madness of $\mathcal{A}_{0}[G]$ in $V[G]$, there is some $Y \in \underset{\sim}{\mathcal{A}} \underset{\sim}{ }[G]$ such that
$\left|Y \cap B_{2}\right|=\theta$. As $p_{1} \Vdash_{\mathbb{P}_{\mathbf{q}_{1}, \infty} / G} "\left|A_{1} \cap Y\right|<\theta "$, there are q_{1} and $\beta_{1}<\theta$ such that $p_{1} \leq q_{1} \in \mathbb{P}_{\mathbf{q}_{1}, \infty} / G$ and $q_{1} \Vdash_{\mathbb{P}_{\mathbf{q}_{1}, \infty} / G} " \underset{\sim}{A_{1}} \cap Y \subseteq \beta_{1} "$. Let $\beta_{2} \in Y \cap B_{2}$ such that $\max \left\{\gamma, \beta_{1}\right\}<\beta_{2}$ (recalling that $\left|Y \cap \tilde{B_{2}}\right|=\theta$). By the definition of B_{2}, there is $q_{2} \in \mathbb{P}_{\mathbf{q}_{2}, \infty} / G$ above p_{2} that forces $" \beta_{2} \in A_{2}$ ". Therefore, $\left(p_{1}, p_{2}\right) \leq\left(q_{1}, q_{2}\right) \in$ $\mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G$ and $\left(q_{1}, q_{2}\right) \Vdash_{\mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G} " \beta_{2} \in \underset{\sim}{A_{2}} \backslash \underset{\sim}{A_{1}} "$, a contradiction. It follows that $\Vdash_{\mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G} " \underset{\sim}{A_{2}} \backslash \underset{\sim}{A_{1}} \in[\theta]^{\theta} "$.
Claim 11: Under the assumptions of Claim 10 (recalling that $\mathbb{F}_{\mathbb{P}_{\mathbf{q}_{l}, \infty}} "{\underset{\sim}{l}}^{A_{l} \cap B \neq \emptyset}$ for every $B \in \underset{\sim}{D_{\mathbf{q}_{0}}}$ " $\left.(l=1,2)\right)$, we have $\Vdash_{\mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G} " \underset{\sim}{\sim} A_{1} \cap \underset{\sim}{A_{2}} \in[\theta]^{\theta}$ ".

Proof: Assume towards contradiction that $\left(p_{1}, p_{2}\right) \in \mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G$ forces that $\underset{\sim}{A_{1} \cap A_{2}} \subseteq \gamma$ for some $\gamma<\theta$. It's forced by $\left(p_{1}, p_{2}\right)$ that $\underset{\sim}{A_{l}} \subseteq B_{l}(l=1,2)$ where B_{l} is as in the proof of the previous claim, hence it's forced by $\left(p_{1}, p_{2}\right)$ that each B_{l} intersects each member of ${\underset{\sim}{\mathbf{q}_{0}}}^{\sim_{0}}$. As $B_{1}, B_{2} \in V[G]$, it follows that $B_{1}, B_{2} \in \underset{\sim}{D_{0}}{ }_{\mathbf{q}_{0}}[G]$. Therefore, there is some $\beta \in\left(B_{1} \cap B_{2}\right) \backslash \gamma$, hence there is $q_{l} \in \mathbb{P}_{\mathbf{q}_{l}, \infty} / G$ above p_{l} that forces " $\beta \in A_{l} "(l=1,2)$. It follows that $\left(p_{1}, p_{2}\right) \leq\left(q_{1}, q_{2}\right) \in \mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G$ and $\left(q_{1}, q_{2}\right) \widetilde{\Vdash}_{\mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G} " \beta \in \underset{\sim}{A_{1}} \cap \underset{\sim}{A_{2}}$, contradicting the choice of γ and $\left(p_{1}, p_{2}\right)$. It follows that $\Vdash_{\mathbb{P}_{\mathbf{q}_{1}, \infty} / G \times \mathbb{P}_{\mathbf{q}_{2}, \infty} / G} " \underset{\sim}{\sim}{\underset{\sim}{1}}^{\sim} \cap \underset{\sim}{A} \in[\theta]^{\theta} "$.
Now given $\mathbf{q}_{0},\left(\mathbf{q}_{1}, B_{1}, A_{1}\right)$ and $\left(\mathbf{q}_{2}, B_{2}, A_{2}\right)$ as above, let $\mathbf{q}_{3}=\mathbf{q}_{1}+\mathbf{q}_{0} \mathbf{q}_{2}$. Then $\mathbf{q}_{3} \in \mathbb{P}, \mathbf{q}_{1}, \mathbf{q}_{2} \leq_{K} \tilde{\mathbf{q}}_{3}, \tilde{\sim}$ and by claims 10 and 11, we get a contradiction. This completes the proof of Main Claim 9 and hence of Theorem 2.

We conclude with the following natural question:
Question: What's the consistency strength of $Z F+D C_{\theta}+$ "there are no θ-mad families" for some $\theta>\aleph_{0}$?

References

[CJT] William Chan, Stephen Jackson and Nam Trang, Almost disjoint families under determinacy, preprint
[HwSh:1090] Haim Horowitz and Saharon Shelah, Can you take Toernquist's inaccessible away? arXiv:1605.02419
[HwSh:1093] Haim Horowitz and Saharon Shelah, Transcendence bases, well-orderings of the reals and the axiom of choice, arXiv:1901.01508
[HwSh:1113] Haim Horowitz and Saharon Shelah, Madness and regularity properties, arXiv:1704.08327
[HwSh:1145] Haim Horowitz and Saharon Shelah, κ-Madness and Definability, arXiv:1805.07048
[Ma] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59-111
[Sh:218] Saharon Shelah, On measure and category, Israel J. Math. 52 (1985) 110114
[To] Asger Toernquist, Definability and almost disjoint families, Advances in Mathematics 330, 61-73, 2018
[Vi] Matteo Viale, Category forcings, $M M^{+++}$, and generic absoluteness for the theory of strong forcing axioms, J. Amer. Math. Soc. 29 (2016), no. 3, 675-728
(Haim Horowitz) Department of Mathematics
University of Toronto
Bahen Centre, 40 St. George St., Room 6290
Toronto, Ontario, Canada M5S 2E4
E-mail address: haim@math.toronto.edu
(Saharon Shelah) Einstein Institute of Mathematics
Edmond J. Safra Campus,
The Hebrew University of Jerusalem.
Givat Ram, Jerusalem 91904, Israel.
Department of Mathematics
Hill Center - Busch Campus,
Rutgers, The State University of New Jersey.
110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA
E-mail address: shelah@math.huji.ac.il

[^0]: ${ }^{1}$ Date: June 12, 2019
 2010 Mathematics Subject Classification: 03E15, 03E25, 03E35, 03E55
 Keywords: Generalized descriptive set theory, mad families, supercompact cardinals
 Publication 1168 of the second author

