On the non-existence of κ -mad families

Haim Horowitz and Saharon Shelah

Abstract

Starting from a model with a Laver-indestructible supercompact cardinal κ , we construct a model of $ZF + DC_{\kappa}$ where there are no κ -mad families.¹

Introduction

The study of the definability and possible non-existence of mad families has a long tradition, originating with the paper [Ma] of Mathias where it was proven that mad families can't be analytic and that there are no mad families in the Solovay model constructed from a Mahlo cardinal (as always, by "mad families" we refer to infinite such families). It was later shown by Toernquist that an inaccessible cardinal suffices for the consistency of this statement ([To]), and it was then shown by the authors that the non-existence of mad families (in ZF + DC) is actually equiconsistent with ZFC ([HwSh:1090]).

The current paper can be seen as a continuation of the line of investigation of [HwSh:1090], as well as of [HwSh:1145], where the definability of κ -mad families was considered. Recall the following definition:

Definition 1: Let κ be an infinite regular cardinal. A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is κ -almost disjoint if $|A \cap B| < \kappa$ for every $A \neq B \in \mathcal{A}$. \mathcal{A} will be called κ -maximal almost disjoint (κ -mad) if \mathcal{A} is κ -almost disjoint and can't be extended to a larger κ -almost disjoint family.

Assuming the existence of a Laver-indestructible supercompact cardinal κ , we constructed in [HwSh:1145] a generic extension where κ remained supercompact and there are no $\Sigma_1^1(\kappa) - \kappa$ -mad families, thus obtaining a higher analog of Mathias' result.

Our current main goal is to obtain a higher analog of the main result of [HwSh:1090], i.e. for an uncountable cardinal $\theta > \aleph_0$, we would like to construct a model of $ZF + DC_{\theta}$ where there are no θ -mad families. As opposed to [HwSh:1090], we only achieve this goal assuming the existence of a supercompact cardinal. The main result of the paper is the following:

Theorem 2: a. Suppose that $\aleph_0 < cf(\theta) = \theta < cf(\kappa) = \kappa \leq \lambda = \lambda^{<\kappa}$ and θ is a Laver indestructible supercompact cardinal, then there is a model of $ZF + DC_{<\kappa} +$ "there exist no θ -mad families" (note that θ here has the role of κ in the abstract).

b. If we start from a universe V, then the final model V_1 will have the same cardinals and same $H(\theta)$ as V.

We remark that during the time that the current paper was being reviewed, a newer result was announced by Chan, Jackson and Trang [CJT], where they show the non-existence of certain mad families on uncountable cardinals under AD^+ . We note that while their result requires a weaker large cardinal assumption, it's incompatible with DC_{ω_1} . This should be contrasted with our result which provides us with many high instances of dependent choice.

¹Date: June 12, 2019

²⁰¹⁰ Mathematics Subject Classification: 03E15, 03E25, 03E35, 03E55

Keywords: Generalized descriptive set theory, mad families, supercompact cardinals Publication 1168 of the second author

Finally, we briefly describe our proof strategy. We shall force with a partial order \mathbb{P} where the conditions themselves are forcing notions (this is somewhat similar to [Sh:218], [HwSh:1093] and [HwSh:1113], as well as to the recent work of Viale in [Vi], where a similar approach is applied to the study of generic absoluteness). Forcing with \mathbb{P} will generically introduce the forcing notion \mathbb{Q} that will give us the desired results. More specifically, we shall fix a Laver-indestructible supercompact cardinal θ . The conditions in \mathbb{P} will be elements from a suitable $H(\lambda^+)$ that are $(<\theta)$ -support iterations along wellfounded partial orders of $(<\theta)$ -directed closed forcing notions satisfying a strong version of θ^+ -cc. Given $\mathbf{q}_1, \mathbf{q}_2 \in \mathbb{P}$, we will have $\mathbf{q}_1 \leq_{\mathbb{P}} \mathbf{q}_2$ when the iteration given by \mathbf{q}_1 is an "initial segment" (in an adequate sense) of the iteration given by \mathbf{q}_2 . Forcing with \mathbb{P} will introduce a generic iteration \mathbf{q}_G given by the union of $\mathbf{q} \in \mathbb{P}$ that belong to the generic set. In the further generic extension given by \mathbf{q}_G , we shall consider $V_1 = HOD(\mathcal{P}(\theta)^{<\kappa} \cup V)$ (for an adequate fixed κ). We shall then prove that there are no θ -mad families in V_1 . In order to prove this fact, we shall consider towards contradiction a condition (\mathbf{q}_0, p_0) that

forces a counterexample \mathcal{A} , where \mathbf{q}_0 will be "sufficiently closed". The filter that's dual to the ideal generated by \mathcal{A} will then be extended to a θ -complete ultrafilter (using the Laver-indestructibility of θ), and we shall obtain a contradiction with the help of an amalgamation argument over \mathbf{q}_0 using a higher analog of Mathias forcing relative to this ultrafilter.

The rest of the paper will be devoted to the proof of Theorem 2.

Proof of the main result

Definition 3: A. Let K be the class of pairs $(\mathbf{q}, U_{\mathbf{q}})$ that consist of the following objects with the following properties:

a. $U = U_{\mathbf{q}}$ a well-founded partial order whose elements are ordinals. We let $U^+ = U \cup \{\infty\}$ where ∞ is a new element above all elements from U, and for $\alpha \in U^+$, we let $U_{<\alpha} = \{\beta \in U : \beta <_U \alpha\}.$

b. An iteration $(\mathbb{P}_{\mathbf{q},\alpha}, \mathbb{Q}_{\mathbf{q},\beta} : \alpha \in U^+, \beta \in U) = (\mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \alpha \in U^+, \beta \in U)$. We shall often denote the iteration itself by \mathbf{q} .

c. **q** is a $(< \theta)$ -support iteration, and in addition:

(α) Each \mathbb{Q}_{β} is a \mathbb{P}_{β} -name of a forcing notion whose set of elements is an object X_{β} from V.

(β) Given $\alpha \in U^+$, $p \in \mathbb{P}_{\alpha}$ iff p is a function with domain $dom(p) \in [U_{<\alpha}]^{<\theta}$ such that $p(\beta)$ is a canonical \mathbb{P}_{β} -name for every $\beta \in dom(p)$.

 $(\gamma) \leq_{\mathbb{P}_{\alpha}}$ is defined as usual.

(δ) If $w \subseteq U$ is downward closed (i.e. $\alpha <_U \beta \in w \to \alpha \in w$) and $\mathbb{P}_{\mathbf{q},w} = \mathbb{P}_w = \mathbb{P}_{\infty} \upharpoonright w = \{p \in \mathbb{P}_{\infty} : dom(p) \subseteq w\}$, then $\mathbb{P}_w < \mathbb{P}_{\infty}$.

d. In $V^{\mathbb{P}_{\beta}}$, \mathbb{Q}_{β} satisfies $*^{\epsilon}_{\theta}$ for a fixed limit $\epsilon < \theta$, namely, if $\{p_{\alpha} : \alpha < \theta^+\} \subseteq \mathbb{Q}_{\beta}$,

then there is some club $E \subseteq \theta^+$ and a pressing down function $f: E \to \theta^+$ such that if $\delta_1, \delta_2 \in E$, $cf(\delta_1) = cf(\delta_2)$ and $f(\delta_1) = f(\delta_2)$, then p_{δ_1} and p_{δ_2} have a common least upper bound.

e. For $\beta \in U$, the following holds in $V^{\mathbb{P}_{\beta}}$: If I is a directed partial order of cardinality $\langle \theta \rangle$ and $(p_s : s \in I) \in \mathbb{Q}_{\beta}^I$ is $\leq_{\mathbb{Q}_{\beta}}$ -increasing, then $\{p_s : s \in I\}$ has a $\leq_{\mathbb{Q}_{\beta}}$ -least upper bound.

Notational remark: As $U_{\mathbf{q}}$ is implicitly part of the definition of \mathbf{q} , we shall often just write \mathbf{q} instead of $(\mathbf{q}, U_{\mathbf{q}})$.

B. Let \leq_K be the following partial order on K:

 $\mathbf{q}_1 \leq_K \mathbf{q}_2$ iff the following conditions hold:

a. $U_{\mathbf{q}_1} \subseteq U_{\mathbf{q}_2}$ as partial orders.

b. If $U_{\mathbf{q}_2} \models \alpha < \beta$ and $\beta \in U_{\mathbf{q}_1}$, then $\alpha \in U_{\mathbf{q}_1}$.

c. If $w \subseteq U_{\mathbf{q}_1}$ is downward closed, then $\mathbb{P}_{\mathbf{q}_1,w} = \mathbb{P}_{\mathbf{q}_2,w}$.

d. If $\alpha \in U_{\mathbf{q}_1}$, then $\mathbb{Q}_{\mathbf{q}_1,\alpha} = \mathbb{Q}_{\mathbf{q}_2,\alpha}$ (this is well-defined recalling clause (b)).

C. Let K_{wf} be the class of U as in (A)(a), and let \leq_{wf} be the partial order on K_{wf} defined as in clauses (B)(a) and (B)(b).

We shall now observe some easy basic properties of the objects defined above:

Observation 4: a. If $(U_{\alpha} : \alpha < \delta)$ is \leq_{wf} -increasing, then $\bigcup_{\alpha < \delta} U_{\alpha}$ is a \leq_{wf} -least upper bound for $(U_{\alpha} : \alpha < \delta)$.

b. \leq_K is a partial order on K.

c. If $\mathbf{q}_2 \in K$ and $U_1 \subseteq U_{\mathbf{q}_2}$ is downward closed, then there is a unique $\mathbf{q}_1 \in K$ such that $\mathbf{q}_1 \leq_K \mathbf{q}_2$ and $U_{\mathbf{q}_1} = U_1$.

d. If $(\mathbf{q}_{\alpha} : \alpha < \delta)$ is \leq_{K} -increasing, then there is a unique $\mathbf{q}_{\delta} \in K$ such that $\alpha < \delta \rightarrow \mathbf{q}_{\alpha} \leq_{K} \mathbf{q}_{\delta}$ and $U_{\mathbf{q}_{\delta}} = \bigcup_{\alpha} U_{\mathbf{q}_{\alpha}}$.

e. If $U_0, U_1, U_2 \in K_{wf}$, $U_0 = U_1 \cap U_2$ and $U_0 \leq_{wf} U_l$ (l = 1, 2), then there is a unique $U \in K_{wf}$ such that $\bigwedge_{l=1,2} U_l \leq_{wf} U$, $\alpha \in U$ iff $\alpha \in U_1 \lor \alpha \in U_2$ and $\leq_U = \leq_{U_1} \cup \leq_{U_2}$. We denote this U by $U_1 +_{U_0} U_2$.

f. If $\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2 \in K, \mathbf{q}_0 \leq_K \mathbf{q}_l \ (l = 1, 2)$ and $U_{\mathbf{q}_0} = U_{\mathbf{q}_1} \cap U_{\mathbf{q}_2}$, then there is a unique $\mathbf{q} \in K$ such that $\bigwedge_{l=1,2} \mathbf{q}_l \leq_K \mathbf{q}$ and $U_{\mathbf{q}} = U_{\mathbf{q}_1} +_{U_{\mathbf{q}_0}} U_{\mathbf{q}_2}$. We shall denote this \mathbf{q} by

 $\mathbf{q}_1 +_{\mathbf{q}_0} \mathbf{q}_2.$

g. If $\alpha \in U_{\mathbf{q}}^+$, then $\mathbb{P}_{\mathbf{q},\alpha}$ is a $(<\theta)$ -complete forcing satisfying $*_{\theta}^{\epsilon}$ (hence θ^+ -cc).

h. Suppose that $\mathbf{q} \in K$ and \mathbb{Q} is a $\mathbb{P}_{\mathbf{q},\infty}$ -name of a forcing notion whose universe

is from V, such that the conditions of definitions 3(d) and 3(e) are satisfied, then there is $\mathbf{q}' \in K$ such that $\mathbf{q} \leq_K \mathbf{q}', U_{\mathbf{q}'} = U_{\mathbf{q}} \cup \{\gamma\}, U_{\mathbf{q}'} \models \alpha < \gamma$ for every $\alpha \in U_{\mathbf{q}}$ and $\mathbb{Q}_{\mathbf{q}',\gamma} = \mathbb{Q}$. \Box

Definition 5: The forcing notion \mathbb{P} will be defined as follows:

a. The conditions of \mathbb{P} are the elements \mathbf{q} of $K \cap H(\lambda^+)$ such that $U_{\mathbf{q}} \subseteq \lambda^+$, and for every $\beta \in U_{\mathbf{q}}$, \mathbb{Q}_{β} is a name for a forcing whose underlying set of conditions is some $X_{\beta} \subseteq \lambda^+$.

b. Given $\mathbf{q}_1, \mathbf{q}_2 \in \mathbb{P}, \mathbb{P} \models \mathbf{q}_1 \leq \mathbf{q}_2$ iff $\mathbf{q}_1 \leq_K \mathbf{q}_2$.

c. Given a generic set $G \subseteq \mathbb{P}$, we let $\mathbf{q}_G = \bigcup \{ \mathbf{q} : \mathbf{q} \in G \}$.

Before the next claim, we shall remind the reader of the definition of $(<\kappa)$ -strategic completeness. Given a forcing \mathbb{P} , a condition $p \in \mathbb{P}$ and an ordinal α , the two-player game $G_{\alpha}(p,\mathbb{P})$ will consist of α moves. In the β th move, player I chooses $p_{\beta} \in \mathbb{P}$ above p and all q_{γ} ($\gamma < \beta$) previously chosen by player II. Player II will respond with a condition $q_{\beta} \in \mathbb{P}$ above p_{β} . Player I wins the game iff for each $\beta < \alpha$ he has a legal move. \mathbb{P} is α -strategically complete if player I has a winning strategy in $G_{\alpha}(p,\mathbb{P})$ for every $p \in \mathbb{P}$. Finally, \mathbb{P} is $(<\kappa)$ -strategically complete if it's α -strategically complete for every $\alpha < \kappa$.

Claim 6: a. \mathbb{P} is $(< \kappa)$ -strategically complete. Moreover, it's $(< \lambda^+)$ -complete and $(< \theta)$ -directed closed.

b. $\Vdash_{\mathbb{P}} "\mathbf{q}_G \in K"$, hence $\Vdash_{\mathbb{P}} "\mathbb{P}_{\mathbf{q}_G,\infty}$ is $(<\theta)$ -directed closed and θ^+ -cc".

c. If $\delta < \lambda^+$, $cf(\delta) > \theta$ and $(\mathbf{q}_{\alpha} : \alpha < \delta)$ is $\leq_{\mathbb{P}}$ -increasing, then $\mathbf{q} := \bigcup_{\alpha < \delta} \mathbf{q}_{\alpha}$ belongs to \mathbb{P} and $\mathbb{P}_{\mathbf{q}} = \bigcup_{\alpha < \delta} \mathbb{P}_{\mathbf{q}_{\alpha}}$. By θ^+ -c.c., a is a canonical $\mathbb{P}_{\mathbf{q}}$ -name of a member of $[\theta]^{\theta}$ iff a is a canonical $\mathbb{P}_{\mathbf{q}_{\alpha}}$ -name of a member of $[\theta]^{\theta}$ for some $\alpha < \delta$.

Proof: The claim follows directly from the definitions. The fact that $\Vdash_{\mathbb{P}}$ " $\mathbf{q}_G \in K$ " follows from the general fact that if I is a directed set, $\{\mathbf{q}_t : t \in I\} \subseteq K$ and $s \leq_I t \to \mathbf{q}_s \leq_K \mathbf{q}_t$, then $\bigcup \{\mathbf{q}_t : t \in I\}$ is well-defined and belongs to K. This also shows that \mathbb{P} is $(<\theta)$ -directed closed. \Box

We shall now define our desired model:

Definition 7: a. In $V^{\mathbb{P}}$, let $\mathbb{Q} = \mathbb{P}_{\mathbf{q}_G,\infty}$.

b. Let $V_2 = V \stackrel{\mathbb{P} \star \mathbb{Q}}{\sim}$. c. Let V_1 be $HOD(\mathcal{P}(\theta)^{<\kappa} \cup V)$ inside V_2 .

Claim 8: a. $V_1 \models ZF + DC_{<\kappa}$.

b. $(Ord^{<\kappa})^{V_1} = (Ord^{<\kappa})^{V_2}$, hence $\mathcal{P}(\theta)^{V_1} = \mathcal{P}(\theta)^{V_2}$.

Proof: We shall prove the first part of clause (b), the rest should be clear. Clearly, $(Ord^{<\kappa})^{V_1} \subseteq (Ord^{<\kappa})^{V_2}$. Now let $\eta \in (Ord^{\gamma})^{V_2}$ for some $\gamma < \kappa$, then $\eta = \eta[G]$ for some name η of a member of Ord^{γ} , where $G \subseteq \mathbb{P} \star \mathbb{Q}$ is generic. $G = G_1 \star G_2$ where $G_1 \subseteq \mathbb{P}$ is generic and $G_2 \subseteq \mathbb{Q}[G_1]$ is generic. Working in $V[G_1]$, η/G_1 is a $\mathbb{Q}[G_1]$ -name. As $\mathbb{Q}[G_1]$ is θ^+ -cc, for every $\beta < \gamma$ there is a maximal antichain $\{p_{\beta,i}: i < \theta\} \subseteq \mathbb{Q}[G_1]$ of conditions that force a value to $\eta/G_1(\beta)$. Let $\{\zeta_{\beta,i}: i < \theta\}$ be the set corresponding values forced by the above conditions. Let $\Gamma = \{p_{\beta,i}, \zeta_{\beta,i}: \beta < \gamma, i < \theta\}$ be the corresponding \mathbb{P} -names for the above objects (so we can regard them as \mathbb{P} -names for ordinals). As there are $<\kappa$ such names and \mathbb{P} is $(<\kappa)$ -strategically complete, there is a dense set of $\mathbf{q} \in \mathbb{P}$ that force values to all elements of Γ (and the values forced are necessarily $\{p_{\beta,i}, \zeta_{\beta,i}: \beta < \gamma, i < \theta\}$. It follows that $\{p_{\beta,i}, \zeta_{\beta,i}: \beta < \gamma, i < \theta\} \in V$. In V_2 , there is a function $f: \gamma \to \theta$ such that for every $\beta < \gamma, \eta(\beta) = \zeta_{\beta,f(\beta)}$. As $f \in \mathcal{P}(\theta)^{<\kappa}$ and $\{p_{\beta,i}, \zeta_{\beta,i}: \beta < \gamma, i < \theta\} \in V$, it follows that $\eta \in V_1$. \Box

Main Claim 9: There are no θ -mad families in V_1 .

The rest of the paper will be devoted to the proof of Claim 9.

Suppose towards contradiction that there is a θ -mad family in V_1 , so there is some $(\mathbf{q}_0, p_0) \in \mathbb{P} \star \mathbb{Q}$ forcing this statement about \mathcal{A} where \mathcal{A} is a canonical $\mathbb{P} \star \mathbb{Q}$ -name of a θ -mad family definable using η , and η is a canonical $\mathbb{P} \star \mathbb{Q}$ -name of a parameter (so $\eta = ((a_{\epsilon} : \epsilon < \epsilon(*)), x)$, where $\overset{\sim}{\Vdash} "\epsilon(*) < \kappa"$, each a_{ϵ} is a $\mathbb{P} \star \mathbb{Q}$ -name of a subset of θ and $\Vdash "x \in V"$). Let $G_0 \subseteq \mathbb{P}$ be generic over V such that $\mathbf{q}_0 \in G_0$. In $V[G_0], \eta$ is a $\mathbb{P}_{\mathbf{q}_0,\infty}$ -name, and by increasing \mathbf{q}_0 , we may assume wlog that $p_0 := p_0[G_0] \in \mathbb{P}_{\mathbf{q}_0}$,

 $\begin{aligned} x &= \underbrace{x}_{\sim}[G_0] \in V, \ \epsilon(*) = \epsilon(*)[G_0] \in \kappa \text{ and that each } a_{\epsilon} \ (\epsilon < \epsilon(*)) \text{ is a canonical } \\ \mathbb{P}_{\mathbf{q}_0}\text{-name of a subset of } \theta. & \text{Given } \mathbf{q} \in \mathbb{P} \text{ above } \mathbf{q}_0, \text{ let } \mathcal{A}_{\mathbf{q}} \text{ be the set of canonical } \\ \mathbb{P}_{\mathbf{q}}\text{-names } \underbrace{a}_{\alpha} \text{ such that } (\mathbf{q}, p_0) \Vdash_{\mathbb{P} \times \mathbb{Q}} \overset{"a}{a} \in \mathcal{A}^{"}_{\alpha}, \text{ so } \mathbf{q}_0 \leq \mathbf{q}_1 \leq \mathbf{q}_2 \to \mathcal{A}_{\mathbf{q}_1} \subseteq \mathcal{A}_{\mathbf{q}_2}. \text{ Note } \\ \text{that if } \mathbf{q}_0 \leq \mathbf{q}_1, \mathbb{P}_{\mathbf{q}_1,\infty} \models \overset{"p_0}{p} \leq p_1 \overset{"a}{a} \text{ od } (\mathbf{q}_1, p_1) \Vdash \overset{"b}{b} \in [\theta]^{\theta} \overset{"}{a}, \text{ then for some } (\mathbf{q}_2, \underline{a}) \\ \text{we have } \mathbf{q}_1 \leq_{\mathbb{P}} \mathbf{q}_2, \ \underbrace{a}_{\alpha} \in \mathcal{A}_{\mathbf{q}_2} \text{ and } (\mathbf{q}_2, p_0) \Vdash \overset{"b}{b} \cap \underbrace{a}_{\alpha} \in [\theta]^{\theta} \overset{"}{a}. \text{ By extending any given } \\ \mathbf{q}_1 \in \mathbb{P} \text{ above } \mathbf{q}_0 \text{ in this way sufficiently many times to add witnesses for madness, and recalling Claim 6(c), we establish that the set <math>\{\mathbf{q}_1 : \mathbf{q}_0 \leq_{\mathbb{P}} \mathbf{q}_1 \text{ and } \Vdash_{\mathbb{P}_{\mathbf{q}_1}} \overset{"}{a} \mathcal{A}_{\mathbf{q}_1} \text{ is } \theta\text{-mad}"\} \text{ is dense in } \mathbb{P} \text{ above } \mathbf{q}_0. \end{aligned}$

Now, in V_2 , let $I = \{A \subseteq \theta : A \text{ is contained in a union of } < \theta \text{ members of } A\}$, then I is a θ -complete ideal and $\theta \notin I$. Let F be the dual filter of I, then F is θ -complete, and as θ is supercompact in V_2 (recalling that θ is Laver indestructible and that $\mathbb{P} \star \mathbb{Q}$ is $(<\theta)$ -directed closed), there is a $\mathbb{P} \star \mathbb{Q}$ -name D such that $(\mathbf{q}_0, p_0) \Vdash_{\mathbb{P} \star \mathbb{Q}} \overset{o}{\sim} D$ is a θ -complete ultrafilter on θ that extends F, and hence is disjoint to A. By Claim 6 and what we observed in the previous paragraph, we may assume wlog that $\mathbf{q}_0 \Vdash_{\mathbb{P}} \overset{o}{\to} \mathcal{A}_{\mathbf{q}_0}$ is θ -mad and $D_{\mathbf{q}_0} := D \cap \mathcal{P}(\theta)^{V^{\mathbb{P}\mathbf{q}_0,\infty}}$ is a $\mathbb{P}_{\mathbf{q}_0,\infty}$ -name of an ultrafilter

on θ ".

Given an ultrafilter U on θ , the forcing \mathbb{Q}_U is defined as follows: the conditions of \mathbb{Q}_U have the form (u, A) where $u \in [\theta]^{<\theta}$ and $A \in U$. the order is defined naturally, i.e. $(u_1, A_1) \leq (u_2, A_2)$ iff $u_1 \subseteq u_2, u_2 \setminus u_1 \subseteq A_1$ and $A_2 \subseteq A_1$.

We may assume whog that $\mathbb{P}_{\mathbf{q}_0,\infty}$ forces $2^{\theta} = \lambda$, hence there is a canonical $\mathbb{P}_{\mathbf{q}_0,\infty}$ name f of a bijection from \mathbb{Q}_D onto λ . Let \mathbb{Q}' be a name for the forcing such that $\Vdash_{\mathbb{P}_{\mathbf{q}_0}} \stackrel{"f}{\underset{\sim}{}}$ is an isomorphism from $\mathbb{Q}_D_{\mathcal{D}_{\mathbf{q}_0}}$ onto $\mathbb{Q}'^{"}$. Let $B = B_D$ be the \mathbb{Q}_D -name $\bigcup \{u: (u, A) \in G_{\mathbb{Q}_D}\}, \text{ so } \Vdash_{\mathbb{P}_{\mathbf{q}_0,\infty} \star \mathbb{Q}_D} \stackrel{"B}{\underset{\sim}{}_{\mathbf{q}_0}} \stackrel{"B}{\underset{\sim}{}} \in [\theta]^{\theta} \text{ is } \theta\text{-almost disjoint to } \mathcal{A}_{\mathbf{q}_0}". \text{ Let } B$

Now observe that there is $\mathbf{q}' \in \mathbb{P}$ such that $\mathbf{q}_0 \leq_{\mathbb{P}} \mathbf{q}', U_{\mathbf{q}'} = U_{\mathbf{q}_0} \cup \{\gamma\}, \alpha <_{U_{\mathbf{q}'}} \gamma$ for every $\alpha \in U_{\mathbf{q}_0}$ and $\mathbb{Q}_{\mathbf{q}',\gamma} = \mathbb{Q}'$. As before, there is $\mathbf{q}'' \in \mathbb{P}$ above \mathbf{q}' such that $p_0 \Vdash_{\mathbb{P}_{\mathbf{q}'',\infty}} \mathscr{A}_{\mathbf{q}''}$ is θ -mad". Therefore, there is some $\mathbb{P}_{\mathbf{q}'',\infty}$ -name $A \in \mathcal{A}_{\mathbf{q}''}$ such that $p_0 \Vdash_{\mathbb{P}_{\mathbf{q}'',\infty}} \mathscr{A} \cap B' \in [\theta]^{\theta}$, so A has intersection of size θ with every member of $D \to \mathbf{q}_0$ and $A \notin \mathcal{A}_{\mathbf{q}_0}$ ".

Now let $(\mathbf{q}_1, B_1, A_1) = (\mathbf{q}'', B', A)$ and let (\mathbf{q}_2, B_2, A_2) be an isomorphic copy of (\mathbf{q}_1, B_1, A_1) over \mathbf{q}_0 such that $U_{\mathbf{q}_1} \cap U_{\mathbf{q}_2} = U_{\mathbf{q}_0}$ and $\mathbf{q}_2 \in \mathbb{P}$.

Claim 10: Let \mathbf{q}_0 , (\mathbf{q}_1, B_1, A_1) and (\mathbf{q}_2, B_2, A_2) be as above (so $\mathbf{q}_0 \leq_K \mathbf{q}_l$ (l = 1, 2), $U_{\mathbf{q}_1} \cap U_{\mathbf{q}_2} = U_{\mathbf{q}_0}$ and $\bigwedge_{l=1,2}^{\sim} \stackrel{\sim}{\Vdash}_{\mathbb{P}_{\mathbf{q}_l,\infty}}^{\sim} \stackrel{"A_l}{\leftarrow} \stackrel{\sim}{\mathcal{A}} \stackrel{\sim}{\setminus} \stackrel{\sim}{\mathcal{A}_{\mathbf{q}_0}}^{"}$) and let $G \subseteq \mathbb{P}_{\mathbf{q}_0,\infty}$ be generic over V, then $\Vdash_{\mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G} \stackrel{"A_2}{\sim} \stackrel{\wedge}{\mathcal{A}_1} \stackrel{A_1}{\wedge} \stackrel{A_2}{\sim} \in [\theta]^{\theta}$ ".

$$\begin{split} |Y \cap B_2| &= \theta. \text{ As } p_1 \Vdash_{\mathbb{P}_{\mathbf{q}_1,\infty}/G} "|A_1 \cap Y| < \theta", \text{ there are } q_1 \text{ and } \beta_1 < \theta \text{ such that} \\ p_1 &\leq q_1 \in \mathbb{P}_{\mathbf{q}_1,\infty}/G \text{ and } q_1 \Vdash_{\mathbb{P}_{\mathbf{q}_1,\infty}/G} "A_1 \cap Y \subseteq \beta_1". \text{ Let } \beta_2 \in Y \cap B_2 \text{ such that} \\ max\{\gamma,\beta_1\} < \beta_2 \text{ (recalling that } |Y \cap B_2| = \theta). \text{ By the definition of } B_2, \text{ there is} \\ q_2 &\in \mathbb{P}_{\mathbf{q}_2,\infty}/G \text{ above } p_2 \text{ that forces } "\beta_2 \in A_2". \text{ Therefore, } (p_1,p_2) \leq (q_1,q_2) \in \\ \sim \\ \mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G \text{ and } (q_1,q_2) \Vdash_{\mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G} "\beta_2 \in A_2 \setminus A_1", \text{ a contradiction.} \\ \text{ It follows that } \Vdash_{\mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G} "A_2 \setminus A_1 \in [\theta]^{\theta}". \Box \end{split}$$

Claim 11: Under the assumptions of Claim 10 (recalling that $\Vdash_{\mathbb{P}_{\mathbf{q}_l,\infty}} "A_l \cap B \neq \emptyset$ for every $B \in D_{\mathbf{q}_0}$ " (l = 1, 2)), we have $\Vdash_{\mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G} "A_1 \cap A_2 \in [\theta]^{\hat{\theta}}$ ".

Proof: Assume towards contradiction that $(p_1, p_2) \in \mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G$ forces that $A_1 \cap A_2 \subseteq \gamma$ for some $\gamma < \theta$. It's forced by (p_1, p_2) that $A_l \subseteq B_l$ (l = 1, 2) where P_l is as in the proof of the previous claim, hence it's forced by (p_1, p_2) that each B_l intersects each member of $D_{\mathbf{q}_0}$. As $B_1, B_2 \in V[G]$, it follows that $B_1, B_2 \in D_{\mathbf{q}_0}[G]$. Therefore, there is some $\beta \in (B_1 \cap B_2) \setminus \gamma$, hence there is $q_l \in \mathbb{P}_{\mathbf{q}_l,\infty}/G$ above p_l that forces " $\beta \in A_l$ " (l = 1, 2). It follows that $(p_1, p_2) \leq (q_1, q_2) \in \mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G$ and $(q_1, q_2) \stackrel{\sim}{\Vdash}_{\mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G}$ " $\beta \in A_1 \cap A_2$ ", contradicting the choice of γ and (p_1, p_2) . It follows that $\mathbb{H}_{\mathbb{P}_{\mathbf{q}_1,\infty}/G \times \mathbb{P}_{\mathbf{q}_2,\infty}/G}$ " $A_1 \cap A_2 \in [\theta]^{\theta}$ ". \Box

Now given \mathbf{q}_0 , (\mathbf{q}_1, B_1, A_1) and (\mathbf{q}_2, B_2, A_2) as above, let $\mathbf{q}_3 = \mathbf{q}_1 +_{\mathbf{q}_0} \mathbf{q}_2$. Then $\mathbf{q}_3 \in \mathbb{P}$, $\mathbf{q}_1, \mathbf{q}_2 \leq_K \mathbf{q}_3$, and by claims 10 and 11, we get a contradiction. This completes the proof of Main Claim 9 and hence of Theorem 2. \Box

We conclude with the following natural question:

Question: What's the consistency strength of $ZF + DC_{\theta} +$ "there are no θ -mad families" for some $\theta > \aleph_0$?

References

[CJT] William Chan, Stephen Jackson and Nam Trang, Almost disjoint families under determinacy, preprint

[HwSh:1090] Haim Horowitz and Saharon Shelah, Can you take Toernquist's inaccessible away? arXiv:1605.02419

[HwSh:1093] Haim Horowitz and Saharon Shelah, Transcendence bases, well-orderings of the reals and the axiom of choice, arXiv:1901.01508

[HwSh:1113] Haim Horowitz and Saharon Shelah, Madness and regularity properties, arXiv:1704.08327

[HwSh:1145] Haim Horowitz and Saharon Shelah, $\kappa\textsc{-Madness}$ and Definability, arXiv:1805.07048

[Ma] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59-111

 $[\mathrm{Sh:}218]$ Saharon Shelah, On measure and category, Israel J. Math. 52 (1985) 110-114

[To] Asger Toernquist, Definability and almost disjoint families, Advances in Mathematics 330, 61-73, 2018

[Vi] Matteo Viale, Category forcings, MM^{+++} , and generic absoluteness for the theory of strong forcing axioms, J. Amer. Math. Soc. 29 (2016), no. 3, 675-728

(Haim Horowitz) Department of MathematicsUniversity of TorontoBahen Centre, 40 St. George St., Room 6290Toronto, Ontario, Canada M5S 2E4E-mail address: haim@math.toronto.edu

(Saharon Shelah) Einstein Institute of Mathematics
Edmond J. Safra Campus,
The Hebrew University of Jerusalem.
Givat Ram, Jerusalem 91904, Israel.
Department of Mathematics
Hill Center - Busch Campus,
Rutgers, The State University of New Jersey.
110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA
E-mail address: shelah@math.huji.ac.il