PCF WITHOUT CHOICE SH835

SAHARON SHELAH

Abstract

We mainly investigate models of set theory with restricted choice, e.g., $\mathrm{ZF}+\mathrm{DC}+$ the family of countable subsets of λ is well ordered for every λ (really local version for a given λ). We think that in this frame much of pcf theory, (and combinatorial set theory in general) can be generalized. We prove here, in particular, that there is a proper class of regular cardinals, every large enough successor of singular is not measurable and we can prove cardinal inequalities.

Solving some open problems, we prove that if $\mu>\kappa=\operatorname{cf}(\mu)>\aleph_{0}$, then from a well ordering of $\mathscr{P}(\mathscr{P}(\kappa)) \cup{ }^{\kappa>} \mu$ we can define a well ordering of ${ }^{\kappa} \mu$.

[^0]
Annotated Content

§0 Introduction, pg. 3
$\S(0 \mathrm{~A})$ Background, aims and results, pg. 3
§(0B) Preliminaries, pg. 4
[We quote some definitions and an observation.]
§1 Representing ${ }^{\kappa} \lambda, \mathrm{pg} .8$
[We define $\mathrm{Fil}^{\ell}{ }_{\kappa}$ and prove a representation theorem for ${ }^{\kappa} \lambda$. Essentially under "reasonable choice" the set ${ }^{\kappa} \lambda$ is the union of few well ordered sets, i.e., "their number depends on κ only". We end with a claim on Пa.]
§2 No decreasing sequence of subalgebras, pg. 17
[As suggested in the title we weaken the axioms. We deal with ${ }^{\kappa} \lambda$ with λ^{+} not measurable, existence of ladder \bar{C} witnessing cofinality and prove that many λ^{+}are regular (2.13).]
§3 Concluding remarks, pg. 29
[We prove that if $\mu>\kappa=\operatorname{cf}(\mu)>\aleph_{0}$, then from a well-ordering of $\mathscr{P}(\mathscr{P}(\kappa)) \cup^{\kappa>} \mu$ we can define a well-ordering of ${ }^{\kappa} \mu$, see 3.1. If e.g. μ is a strong limit singular of uncountable cofinality, using a well order of $\mathscr{H}(\mu)$ we can define a well ordering of $\mathscr{P}(\mu)$ hence of $\mathscr{H}\left(\mu^{+}\right)$, see 3.2. Lastly, we give sufficient conditions (in $\mathrm{ZF}+\mathrm{DC}$) for singular μ, that μ^{+}is regular, see 3.3. Actually if $\mu=\mu^{\aleph_{0}}+2^{2^{\kappa}}, \kappa=\kappa^{\aleph_{0}}$ and $X \subseteq \mu \operatorname{codes} \mathscr{P}(\mathscr{P}(\kappa))$ and ${ }^{\omega} \mu$, then using X as a parameter we can define a well-ordering of ${ }^{\kappa} \mu$, see 3.4.]

§ 0. Introduction

$\S 0(\mathrm{~A})$. Background, aims and results.

The thesis of [She97] was that pcf theory without full choice exists. Two theorems supporting this thesis were proved. The first ([She97, 4.6,pg.117], we shall not mention ZF) is:

Theorem 0.1. [DC] If $\mathscr{H}(\mu)$ is well ordered, μ strong limit singular of uncountable cofinality then μ^{+}is regular not measurable (and 2^{μ} is an \aleph, i.e. $\mathscr{P}(\mu)$ can be well ordered and no $\lambda \in\left(\mu, 2^{\mu}\right]$ is measurable $)$.

Note that before this Apter and Magidor [AM95] had proved the consistency of " $\mathscr{H}(\mu)$ well ordered, $\mu=\beth_{\omega},(\forall \kappa<\mu) \mathrm{DC}_{\kappa}$ and μ^{+}is measurable" so 0.1 says that this consistency result cannot be fully lifted to uncountable cofinalities. Generally without full choice, a successor cardinal being not measurable is a piece of worthwhile information.
A second theorem ([She97, §5]) is:
Theorem 0.2. Assume
(a) $\mathrm{DC}+\mathrm{AC}_{\kappa}+\kappa$ regular uncountable.
(b) $\left\langle\mu_{i}: i<\kappa\right\rangle$ is increasing continuous with limit $\mu, \mu>\kappa, \mathscr{H}(\mu)$ is well ordered, μ strong limit, (we need just a somewhat weaker version, the socalled $\left.i<\kappa \Rightarrow T w_{\mathscr{D}_{\kappa}}\left(\mu_{i}\right)<\mu\right)$.

Then, we cannot have two regular cardinals θ such that for some stationary $S \subseteq \kappa$, the sequence $\left\langle\operatorname{cf}\left(\mu_{i}^{+}\right): i \in S\right\rangle$ is constantly θ.

A dream was to prove that there is a class of regular cardinals from a restricted version of choice (see more in [She97]).

Our original aim here is to improve those theorems. As for 0.1 we replace " $\mathscr{H}(\mu)$ well ordered" by " $[\mu]^{\aleph_{0}}$ is well ordered" and then by weaker statements.

We know (assuming full choice) that if, e.g., $\neg \exists 0^{\#}$ or there is no inner model with a measurable cardinal then though $\left\langle 2^{\kappa}: \kappa\right.$ regular \rangle is quite arbitrary, the size of $[\lambda]^{\kappa}, \lambda \gg \kappa$ is strictly controlled and equi-consistency results (by Easton forcing [Eas70], and [She94] and history there, and works of Gitik and history there respectively). It seemed that the situation here is parallel in some sense; under the restricted choice we assume, we cannot say much about the cardinality of $\mathscr{P}(\kappa)$ but can say something on the cardinality of $[\lambda]^{\kappa}$ for $\kappa \ll \lambda$.

In the proofs we fulfill a promise from [She00, §5] about using $J[f, D]$ from Definition 0.13 instead of the nice filters used in [She97] and, to some extent, in early versions of this work which require going through inner models to prove their existence. This work is continued in Larson-Shelah [LS09] and will be continued in [She16]. On a different line with weak choice (say $\mathrm{DC}_{\aleph_{0}}+\mathrm{AC}_{\mu}, \mu$ fixed): see [She12], [She14] and $\left[\mathrm{S}^{+}\right]$. The present work fits the thesis of [She94] which in particular says: it is better to look e.g. at $\left\langle\lambda^{\aleph_{0}}: \lambda\right.$ a cardinality \rangle then at $\left\langle 2^{\lambda}: \lambda\right.$ a cardinal \rangle. Here instead well ordering $\mathscr{P}(\lambda)$ we well order $[\lambda]^{\aleph_{0}}$, this is enough for much.

A simply stated conclusion is (see 3.6):

Conclusion 0.3. [DC] Assume $[\lambda]^{\aleph_{0}}$ is well ordered for every λ.

1) If $2^{2^{\kappa}}$ is well ordered then for every $\lambda,[\lambda]^{\kappa}$ is well ordered.
2) For any set Y, there is a derived set Y_{*} so called $\mathrm{Fil}_{\aleph_{1}}^{4}(Y)$ of power near $\mathscr{P}(\mathscr{P}(Y))$ such that $\vdash_{\left.\operatorname{Levy}^{(} \aleph_{0}, Y\right)}$ "for every $\lambda,{ }^{Y} \lambda$ is well ordered".

Thesis 0.4. 1) If $\mathbf{V} \models$ " $\mathrm{ZF}+\mathrm{DC} "$ and "every $[\lambda]^{\aleph_{0}}$ is well orderable" then \mathbf{V} looks like the result of starting with a model of ZFC and using \aleph_{1}-complete forcing notions like Easton forcing, Levy collapses, and more generally, iterating of κ complete forcing for $\kappa>\aleph_{0}$.
2) This approach is dual to investigating $\mathbf{L}[\mathbb{R}]$ - here we assume ω-sequences are understood (or weaker versions) and we try to understand \mathbf{V} (over this), there over the reals everything is understood.

Also though our original motivation was to look at the consequences of the socalled Ax_{4}, this was shadowed here by the try to use weaker relatives; see more in [She16].

Explanation 0.5. How do we analyze $[\mu]^{\kappa}$ or equivalently ${ }^{\kappa} \mu$ here? We use \aleph_{1-} complete filters on κ and a well-ordering of $[\alpha]^{\aleph_{0}}$ for appropriate α or less. We will consider $f: \kappa \rightarrow \mu$; now for every \aleph_{1}-complete filter D on κ, the ordinal $\alpha=\operatorname{rk}_{D}(f)$ gives us some information on α, but if $A, \kappa \backslash A \in D^{+}$and $f \upharpoonright A=0_{A}$, then $\alpha=0$ but we have no information on $f \upharpoonright(\kappa \backslash A)$, then $\alpha=0$ but we have no information on $f \upharpoonright(\kappa \backslash A)$. Trying to correct this we consider the ideal $J[f, D]=\{A \subseteq \kappa: A=\emptyset$ $\bmod D$ or $A \in D^{+}$but $\left.\operatorname{rk}_{D+A}(f)>\alpha\right\}$, this is an \aleph_{1}-complete ideal and so we may consider the pair $\bar{D}=\left(D_{1}, D_{2}\right)=(D, \operatorname{dual}(J[f, D]))$. Now α and the pair \bar{D} gives more information on f; they determine f modulo D_{2}. This is not enough so we use an algebra \mathscr{B} on μ with no infinite decreasing sequence of sub-algebras built using the assumption " $[\mu]^{\aleph_{0}}$ is well ordered". So there is $Z \in D_{2}$ such that $A=c \ell_{\mathscr{B}}(\operatorname{Rang}(f \upharpoonright Z))$ is \subseteq-minimal.

Now the triple $\left(D_{1}, D_{2}, Z\right)$ and the ordinal α almost determines f, we need one more piece of information with domain $\kappa: h(i)=\operatorname{otp}(\alpha \cap Z)$, hence an ordinal $<\operatorname{hrtg}(\operatorname{Rang}(f))$. So we need a bound on it which depends on the choice of \mathscr{B}, usually, it is $\operatorname{hrtg}\left([\kappa]^{\aleph_{0}}\right)$, natural by the construction of \mathscr{B}.

So $f \upharpoonright Z$ is uniquely determined by the ordinal $\mathrm{rk}_{D}(f)$ and the quadruple $\left(D_{1}, D_{2}, Z, h\right)$, which belongs to a set defined from κ, independently of μ.

Lastly, considering all such filters D (recalling we are assuming DC) we can find countably many quadruples $\left(D_{1}^{n}, D_{2}^{n}, Z^{n}, h^{n}\right)$ which together are enough as $\bigcup Z^{n}=\kappa$.

We thank for the attention and comments the audience in the advanced seminar in Rutgers 10/2004 (particularly Arthur Apter) and advanced course in logic in the Hebrew University $4,5 / 2005$ and to Paul Larson and Shimoni Garti for many corrections.

$\S 0(\mathrm{~B})$. Preliminaries.

Convention 0.6. We assume just $\mathbf{V} \models$ ZF if not said otherwise.
Notation 0.7. Let

1) $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \xi, i, j$ denote ordinals.
2) $\kappa, \lambda, \mu, \chi$ denote cardinals, infinite if not said otherwise.
3) n, m, k, ℓ denote natural numbers.
4) D denotes a filter (on some set), I, J denote ideals on some set.

Definition 0.8. 1) $\operatorname{hrtg}(A)=\operatorname{Min}\{\alpha$: there is no function from A onto $\alpha\}$.
2) $\operatorname{wlor}(A)=\operatorname{Min}\{\alpha$: there is no one-to-one function from α into A or $\alpha=0 \wedge A=$ $\emptyset\}$, so wlor $(A) \leq \operatorname{hrtg}(A)$.

Remark 0.9. For many the meaning of "Hartogs number" is what is here called "wlor" (except that usually one would not make an exception for the empty set).

Definition 0.10. 1) For D an \aleph_{1}-complete filter on a set Y and $f \in{ }^{Y}$ Ord and $\alpha \in \operatorname{Ord} \cup\{\infty\}$ we define when $\operatorname{rk}_{D}(f)=\alpha$, by induction on α :
\circledast For $\alpha<\infty, \operatorname{rk}_{D}(f)=\alpha$ iff $\beta<\alpha \Rightarrow \operatorname{rk}_{D}(f) \neq \beta$ and for every $g \in{ }^{Y}$ Ord satisfying $g<_{D} f$ there is $\beta<\alpha$ such that $\operatorname{rk}_{D}(g)=\beta$.
2) We can replace D by the dual ideal. If $f \in{ }^{Z}$ Ord and $Z \in D$ then we let $\operatorname{rk}_{D}(f)=\operatorname{rk}_{D+Z}\left(f \cup 0_{Y \backslash Z}\right)$.

Galvin-Hajnal [GH75] use the rank for the club filter on ω_{1}. This was continued in [She80] where varying D was extensively used.

Claim 0.11. [DC] In Definition 0.10, $\mathrm{rk}_{D}(f)$ is always an ordinal and if $\alpha \leq$ $\operatorname{rk}_{D}(f)$ then for some $g \in \prod_{y \in Y}\left(f(y)+1\right.$) we have $\alpha=\operatorname{rk}_{D}(g)$, (if $\alpha<\operatorname{rk}_{D}(f)$ we can add $g<_{D} f$; if $\operatorname{rk}_{D}(f)<\infty$ then DC is not necessary; if $\operatorname{rk}_{D}(f)=\alpha$ this is trivial, as we can choose $g=f$).

Claim 0.12. 1) [DC] If D is an \aleph_{1}-complete filter on Y and $f \in{ }^{Y}$ Ord and $Y=\cup\left\{Y_{n}: n<\omega\right\}$ then $\operatorname{rk}_{D}(f)=\operatorname{Min}\left\{\operatorname{rk}_{D+Y_{n}}(f): n<\omega\right.$ and $\left.Y_{n} \in D^{+}\right\}$, ([She80]).
2) $\left[\mathrm{DC}+\mathrm{AC}_{\alpha^{*}}\right]$ If D is a κ-complete filter on Y, κ a cardinal $>\aleph_{0}$ and $f \in{ }^{Y} \operatorname{Ord}$ and $Y=\cup\left\{Y_{\alpha}: \alpha<\alpha^{*}\right\}, \alpha^{*}<\kappa$ then $\operatorname{rk}_{D}(f)=\operatorname{Min}\left\{\operatorname{rk}_{D+Y_{\alpha}}(f): \alpha<\alpha^{*}\right.$ and $\left.Y_{\alpha} \in D^{+}\right\}$.

Proof. 1) By [She80], in fact, $\mathrm{AC}_{\aleph_{0}}$ suffice.
2) By [She80], in fact, DC is not necessary.

Definition 0.13. For Y, D, f as in 0.10 let $J[f, D]=:\{Z \subseteq Y: Y \backslash Z \in D$ or $Y \backslash Z \in D^{+}$and $\left.\operatorname{rk}(f)_{D+(Y \backslash Z)}>\operatorname{rk}_{D}(f)\right\}$.

Claim 0.14. $\left[\mathrm{DC}+\mathrm{AC}_{<\kappa}\right]$ Assume D is a κ-complete filter on $Y, \kappa>\aleph_{0}$.

1) If $f \in{ }^{Y}$ Ord then $J[f, D]$ is a κ-complete ideal on Y.
2) If $f_{1}, f_{2} \in{ }^{Y}$ Ord and $J=J\left[f_{1}, D\right]=J\left[f_{2}, D\right]$ then $\operatorname{rk}_{D}\left(f_{1}\right)<\operatorname{rk}_{D}\left(f_{2}\right) \Rightarrow f_{1}<f_{2}$ $\bmod J$ and $\operatorname{rk}_{D}\left(f_{1}\right)=\operatorname{rk}_{D}\left(f_{2}\right) \Rightarrow f_{1}=f_{2} \bmod J$.

Proof. Straightforward or see $[$ She00, §5] and the reference there to [She97] (and [She80]).

Definition 0.15. 1) Here $Y \leq_{\mathrm{qu}} Z$ or $|Y| \leq_{\mathrm{qu}}|Z|$ or $|Y| \leq_{\mathrm{qu}} Z$ or $Y \leq_{\mathrm{qu}}|Z|$ means that $Y=\emptyset$ or there is a function from Z (equivalently from a subset of Z) onto Y.
2) $\operatorname{reg}(\alpha)=\operatorname{Min}\{\partial: \partial \geq \alpha$ is a regular cardinal $\}$.

Definition 0.16. For a set Y, cardinal κ and ordinal γ we define $\mathscr{H}_{<\kappa, \gamma}(Y)$ by induction on γ : if $\gamma=0, \mathscr{H}_{<\kappa, \gamma}(Y)=Y$, if $\gamma=\beta+1$ then $\mathscr{H}_{<\kappa, \gamma}(Y)=\mathscr{H}_{<\kappa, \beta}(Y) \cup$ $\left\{u: u \subseteq \mathscr{H}_{<\kappa, \beta}(Y)\right.$ and $\left.|u|<\kappa\right\}$ and if γ is a limit ordinal then $\mathscr{H}_{<\kappa, \gamma}(Y)=$ $\cup\left\{\mathscr{H}_{<\kappa, \beta}(Y): \beta<\gamma\right\}$.
Observation 0.17. 1) If λ is the disjoint union of $\left\langle W_{z}: z \in Z\right\rangle$ and $z \in Z \Rightarrow$ $\left|W_{z}\right|<\lambda$ and wlor $(Z) \leq \lambda$ then $\lambda=\sup \left\{\operatorname{otp}\left(W_{z}\right): z \in Z\right\}$ hence $\operatorname{cf}(\lambda)<\operatorname{hrtg}(Z)$.
2) If $\lambda=\cup\left\{W_{z}: z \in Z\right\}$ and wlor $(\mathscr{P}(Z)) \leq \lambda$ then $\sup \left\{\operatorname{otp}\left(W_{z}\right): z \in Z\right\}=\lambda$.
3) If $\lambda=\cup\left\{W_{z}: z \in Z\right\}$ and $|Z|<\lambda$ then $\lambda=\sup \left\{\operatorname{otp}\left(W_{z}\right): z \in Z\right\}$.
4) If $Z \subseteq \operatorname{Ord}, \bar{W}=\left\langle W_{\alpha}: \alpha \in Z\right\rangle, W_{\alpha} \subseteq \operatorname{Ord}$ and $\lambda \geq \aleph_{0},|Z|,\left|W_{\alpha}\right|$ for $\alpha \in Z$ then $\cup\left\{W_{\alpha}: \alpha \in Z\right\}$ has cardinality $\leq \lambda$.

Proof. 1) Let $Z_{1}=\left\{z \in Z: W_{z} \neq \emptyset\right\}$, so the mapping $z \mapsto \operatorname{Min}\left(W_{z}\right)$ exemplifies that Z_{1} is well ordered hence by the definition of wlor $\left(Z_{1}\right)$ the power $\left|Z_{1}\right|$ is an aleph $<\operatorname{wlor}\left(Z_{1}\right) \leq \operatorname{wlor}(Z)$ and by assumption wlor $(Z) \leq \lambda$. Now if the desirable conclusion fails then $\gamma^{*}=\sup \left(\left\{\operatorname{otp}\left(W_{z}\right): z \in Z_{1}\right\} \cup\left\{\left|Z_{1}\right|\right\}\right)$ is an ordinal $<\lambda$, so we can find a sequence $\left\langle u_{\gamma}: \gamma<\gamma^{*}\right\rangle$ such that $\operatorname{otp}\left(u_{\gamma}\right) \leq \gamma^{*}, u_{\gamma} \subseteq \lambda$ and $\lambda=\cup\left\{u_{\gamma}: \gamma<\gamma^{*}\right\}$, so $\gamma^{*}<\lambda \leq\left|\gamma^{*} \times \gamma^{*}\right|$, easy contradiction.
2) For $x \subseteq Z$ let $W_{x}^{*}=\left\{\alpha<\lambda:(\forall z \in Z)\left(\alpha \in W_{z} \equiv z \in x\right)\right\}$ hence λ is the disjoint union of $\left\{W_{x}^{*}: x \in \mathscr{P}(Z) \backslash\{\emptyset\}\right\}$. So the result follows by part (1).
3) So let $<_{*}$ be a well-ordering of Z and let $W_{z}^{\prime}=\left\{\alpha \in W_{z}\right.$: if $y<_{*} z$ then $\left.\alpha \notin W_{y}\right\}$, so $\left\langle W_{z}^{\prime}: z \in Z\right\rangle$ is a well-defined sequence of pairwise disjoint sets with union equal to $\cup\left\{W_{z}: z \in Z\right\}=\lambda$ and $\operatorname{otp}\left(W_{z}^{\prime}\right) \leq \operatorname{otp}\left(W_{z}\right)$. Hence if $\left|W_{z}\right|=\lambda$ for some $z \in Z$ the desirable conclusion is obvious, otherwise the result follows by part (1).
4) Should be clear.

Definition 0.18. 1) We say that $c \ell$ is a very weak closure operation on λ of character (μ, κ) when :
(a) $c \ell$ is a function from $\mathscr{P}(\lambda)$ to $\mathscr{P}(\lambda)$
(b) $u \in[\lambda]^{\leq \kappa} \Rightarrow|c \ell(u)| \leq \mu$
(c) $u \subseteq \lambda \Rightarrow u \cup\{0\} \subseteq c \ell(u)$, the 0 for technical reasons.

1A) We say that $c \ell$ is a weak closure ${ }^{1}$ operation on λ of character (μ, κ) when (a),(b),(c) above and:
(d) $u \subseteq v \subseteq \lambda \Rightarrow u \subseteq c \ell(u) \subseteq c \ell(v)$
(e) $c \ell(u)=\cup\{c \ell(v): v \subseteq u,|v| \leq \kappa\}$.

So we may identify $c \ell$ with $c \ell \upharpoonright[\lambda]^{\leq \kappa}$.
1B) Let "... character $(<\mu, \kappa)$ or $(\mu,<\kappa)$, or $(<\mu,<\kappa)$ " have the obvious meaning but if μ is an ordinal not a cardinal, then " $<\mu$ " means of order type $<\mu$; similarly for " $<\kappa$ ". Let "... character (μ, Y) " means "character $\left(<\mu^{+},<\operatorname{hrtg}(Y)\right.$)" 1C) We omit the weak when in addition:
$(f) \quad c \ell(u)=c \ell(c \ell(u))$ for $u \subseteq \lambda$.
2) We say λ is f-inaccessible when $\delta \in \lambda \cap \operatorname{Dom}(f) \Rightarrow f(\delta)<\lambda$.
3) We say $c \ell: \mathscr{P}(\lambda) \rightarrow \mathscr{P}(\lambda)$ is well founded when for no sequence $\left\langle\mathscr{U}_{n}: n<\omega\right\rangle$ of subsets of λ do we have $c \ell\left(\mathscr{U}_{n+1}\right) \subset \mathscr{U}_{n}$ for $n<\omega$.

[^1]4) For $c \ell$ a partial function from $\mathscr{P}(\alpha)$ to $\mathscr{P}(\alpha)$ (for simplicity assume $\alpha=\cup\{u$: $u \in \operatorname{Dom}(c l)\})$ let $c \ell_{\varepsilon,<\kappa}^{1}$ be the function from $\mathscr{P}(\alpha)$ to $\mathscr{P}(\alpha)$ defined by induction on the ordinal ε as follows:
(a) $c \ell_{0,<\kappa}^{1}(u)=u$
(b) $c \ell_{\varepsilon+1,<\kappa}^{1}(u)=\{0\} \cup c \ell_{\varepsilon,<\kappa}^{1}(u) \cup \bigcup\left\{c \ell(v): v \subseteq c \ell_{\varepsilon,<\kappa}^{1}(u)\right.$ and $v \in \operatorname{Dom}(c \ell),|v|<$ $\kappa\}$
(c) for limit ε let $c \ell_{\varepsilon,<\kappa}^{1}(u)=\cup\left\{c \ell_{\zeta,<\kappa}^{1}(u): \zeta<\varepsilon\right\}$.

4A) Instead " $<\kappa$ " we may use " $\leq \kappa$ ".
5) For any function $F:[\lambda]^{\aleph_{0}} \rightarrow \lambda$ and countable $u \subseteq \lambda$ we define $c \ell_{\varepsilon}^{2}(u, F)$ by induction on $\varepsilon \leq \omega_{1}$
(a) $c \ell_{0}^{2}(u, F)=u \cup\{0\}$
(b) $c \ell_{\varepsilon+1}^{2}(u, F)=c \ell_{\varepsilon}^{2}(u, F) \cup\left\{F\left(c \ell_{\varepsilon}^{2}(u, F)\right)\right\}$
(c) $c \ell_{\varepsilon}^{2}(u, F)=\cup\left\{c \ell_{\zeta}^{2}(u, F): \zeta<\varepsilon\right\}$ when $\varepsilon \leq \omega_{1}$ is a limit ordinal.
6) For countable u and F as in part (5) let $c \ell_{F}^{3}(u)=c \ell^{3}(u, F):=c \ell_{\omega_{1}}^{2}(u, F)$ and for any $u \subseteq \lambda$ let $c \ell_{F}^{4}(u):=u \cup \bigcup\left\{c \ell_{F}^{3}(v): v \in \operatorname{Dom}(F)\right\}$.
7) For a cardinal ∂ we say that $c \ell: \mathscr{P}(\lambda) \rightarrow \mathscr{P}(\lambda)$ is ∂-well founded when for no \subseteq-decreasing sequence $\left\langle\mathscr{U}_{\varepsilon}: \varepsilon<\partial\right\rangle$ of subsets of λ do we have $\varepsilon<\zeta<\partial \Rightarrow$ $c \ell\left(\widetilde{\mathscr{U}}_{\zeta}\right) \nsupseteq \mathscr{U}_{\varepsilon}$.
8) If $F:[\lambda] \leq \kappa \rightarrow \lambda$ and $u \subseteq \lambda \underline{\text { then }}$ we let $c \ell_{F}(u)=c \ell_{F}^{1}(u)$ be the minimal subset v of λ such that $w \in[v]^{\leq \kappa} \Rightarrow F(w) \in v$ and $u \subseteq v$ (exists).

Observation 0.19. For $F:[\lambda]^{\aleph_{0}} \rightarrow \lambda$, the operation $u \mapsto c \ell_{F}^{3}(u)$ is a very weak closure operation of character $\left(\aleph_{1}, \aleph_{0}\right)$.

Remark 0.20 . So for any very weak closure operation, \aleph_{0}-well founded is a stronger property than well founded, but if $u \subseteq \lambda \Rightarrow c \ell(c \ell(u))=c \ell(u)$ which is reasonable, they are equivalent.
Observation 0.21. $[\alpha]^{\partial}$ is well ordered iff ${ }^{\partial} \alpha$ is well ordered when $\alpha \geq \partial$.
Proof. Use a pairing function on α for showing $\left|{ }^{\partial} \alpha\right| \leq[\alpha]^{\partial}$, so \Rightarrow holds. If ${ }^{\partial} \alpha$ is well ordered by $<_{*} \operatorname{map} u \in[\alpha]^{\partial}$ to the $<_{*}$-first $f \in^{\partial} \alpha$ satisfying $\operatorname{Rang}(f)=u . \quad \square_{0.21}$

§ 1. Representing ${ }^{\kappa} \lambda$

Here we give a simple case to illustrate what we do (see later on improvements in the hypothesis and the conclusion). Specifically, if Y is uncountable and $[\lambda]^{\aleph_{0}}$ is well ordered, then the set ${ }^{Y} \lambda$ can be analyzed modulo countable union over few (i.e., their number depends on Y but not on λ) well ordered sets.

Definition 1.1. 1)

(a) $\operatorname{Fil}_{\aleph_{1}}(Y)=\operatorname{Fil}_{\aleph_{1}}^{1}(Y)=\left\{D: D\right.$ is an \aleph_{1}-complete filter on $\left.Y\right\}$, so Y is defined from D as $\cup\{X: X \in D\}$
(b) $\operatorname{Fil}_{\aleph_{1}}^{2}(Y)=\left\{\left(D_{1}, D_{2}\right): D_{1} \subseteq D_{2}\right.$ are \aleph_{1}-complete filters on Y, $\left(\emptyset \notin D_{2}\right.$, of course) $\}$; in this context $Z \in \bar{D}$ means $Z \in D_{2}$
(c) $\operatorname{Fil}_{\aleph_{1}}^{3}(Y, \mu)=\left\{\left(D_{1}, D_{2}, h\right):\left(D_{1}, D_{2}\right) \in \operatorname{Fil}_{\aleph_{1}}^{2}(Y)\right.$ and $h: Y \rightarrow \alpha$ for some $\alpha<\mu\}$, if we omit μ we mean $\mu=\operatorname{hrtg}(Y) \cup \omega$
(d) $\operatorname{Fil}_{\aleph_{1}}^{4}(Y, \mu)=\left\{\left(D_{1}, D_{2}, h, Z\right):\left(D_{1}, D_{2}, h\right) \in \operatorname{Fil}_{\aleph_{1}}^{3}(Y, \mu), Z \in D_{2}\right\}$; omitting μ means as above.
2) For $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y, \mu)$ let $Y=Y^{[\mathfrak{l}]}=Y[\mathfrak{y}]$ and $\mathfrak{y}=\left(D_{1}^{\mathfrak{y}}, D_{2}^{\mathfrak{y}}, h^{\mathfrak{y}}, Z^{\mathfrak{y}}\right)=\left(D_{1}[\mathfrak{y}], D_{2}[\mathfrak{y}], h[\mathfrak{y}], Z[\mathfrak{y}]\right)$; similarly for the others and let $D^{\mathfrak{y}}=D[\mathfrak{y}]$ be $D_{1}^{\mathfrak{y}}+Z^{\mathfrak{y}}$.
3) We can replace \aleph_{1} by any $\kappa>\aleph_{1}$ (the results can be generalized easily assuming $\mathrm{DC}+\mathrm{AC}_{<\kappa}$, used in §2).

Theorem 1.2. [DC] Assume $[\lambda]^{\aleph_{0}}$ is well ordered.
Then we can find a sequence $\left\langle\mathscr{F}_{\mathfrak{y}}: \mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right\rangle$ satisfying
$(\alpha) \mathscr{F}_{\mathfrak{y}} \subseteq{ }^{Z[\mathfrak{n}]} \lambda$
$(\beta) \mathscr{F}_{\mathfrak{y}}$ is a well ordered set by $f_{1}<_{\mathfrak{y}} f_{2} \Leftrightarrow \operatorname{rk}_{D[\mathfrak{n}]}\left(f_{1}\right)<\operatorname{rk}_{D[\mathfrak{l}]}\left(f_{2}\right)$ so $f \mapsto$ $\operatorname{rk}_{D[\mathfrak{y}]}(f)$ is a one-to-one mapping from $\mathscr{F}_{\mathfrak{y}}$ into the ordinals
(γ) if $f \in{ }^{Y} \lambda \underline{\text { then }}$ we can find a sequence $\left\langle\mathfrak{y}_{n}: n<\omega\right\rangle$ with $\mathfrak{y}_{n} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ such that $n<\omega \Rightarrow f \upharpoonright Z^{\mathfrak{y}_{n}} \in \mathscr{F}_{\mathfrak{y}_{n}}$ and $\cup\left\{Z^{\mathfrak{y}_{n}}: n<\omega\right\}=Y$.

An immediate consequence of 1.2 is
Conclusion 1.3. 1) $\left[D C+{ }^{\omega} \alpha\right.$ is well-orderable for every ordinal $\left.\alpha\right]$.
For any set Y and cardinal λ there is a sequence $\left\langle\mathscr{F}_{\overline{\mathfrak{x}}}: \overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)\right\rangle$ such that
(a) ${ }^{Y} \lambda=\cup\left\{\mathscr{F}_{\overline{\mathfrak{x}}}: \overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)\right\}$
(b) $\mathscr{F}_{\mathfrak{x}}$ is well orderable for each $\overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$
$(b)^{+}$moreover, uniformly, i.e., there is a sequence $\left\langle<_{\overline{\mathfrak{x}}}: \overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right\rangle\right.$ such that $<_{\overline{\mathfrak{x}}}$ is a well order of $\mathscr{F}_{\overline{\mathfrak{x}}}$
(c) there is a function F with domain $\mathscr{P}\left({ }^{Y} \lambda\right) \backslash\{\emptyset\}$ such that: if $S \subseteq{ }^{Y} \lambda$ is non-empty then $F(S)$ is a non-empty subset of S of power $\left.\leq{ }_{q u}{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)\right)$ recalling Definition 0.15. In fact, some ordinal $\alpha(*)$ and \bar{u} we have:
$(\alpha) \bar{u}=\left\langle\mathscr{U}_{\alpha}: \alpha<\alpha(*)\right\rangle$ is a partition of ${ }^{Y} \lambda$
(β) if $S \subseteq{ }^{Y} \lambda$ then $F(S)=\mathscr{U}_{f(S)} \cap S$ where $f(S)=\operatorname{Min}\left\{\alpha: \mathscr{U}_{\alpha} \cap S \neq \emptyset\right\}$
(γ) if $\alpha<\alpha(*)$ then $\left|\mathscr{U}_{\alpha}\right|<\operatorname{hrtg}\left({ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)\right)$.
2) [DC] For any Y, λ above, if $[\alpha(*)]^{\aleph_{0}}$ is well ordered where $\alpha(*)=\cup\left\{\operatorname{rk}_{D}(f)+1\right.$: $f \in{ }^{Y} \lambda$ and $\left.D \in \operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right\}$ then ${ }^{Y} \lambda$ satisfies the conclusion of part (1).
Remark 1.4. So clause (c) of $1.3(1)$ is a weak form of choice.
Proof. Proof of 1.3 1) Let $\left\langle\mathscr{F}_{\mathfrak{y}}: \mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right\rangle$ be as in 1.2.
For each $\overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ (so $\overline{\mathfrak{x}}=\left\langle\mathfrak{x}_{n}: n<\omega\right\rangle$) let

$$
\begin{aligned}
\mathscr{F}_{\mathfrak{x}}^{\prime}=\{f: & f \text { is a function from } Y \text { to } \lambda \text { such that } \\
& \left.n<\omega \Rightarrow f \upharpoonright Z^{\mathfrak{x}_{n}} \in \mathscr{F}_{\mathfrak{x}_{n}} \text { and } Y=\cup\left\{Z^{\mathfrak{x}_{n}}: n<\omega\right\}\right\} .
\end{aligned}
$$

Now
$(*)_{1}{ }^{Y} \lambda=\cup\left\{\mathscr{F} \frac{1}{\bar{x}}: \overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)\right\}$.
[Why? By clause (γ) of 1.2.]
Let $\alpha(*)=\cup\left\{\operatorname{rk}_{D}(f)+1: f \in{ }^{Y} \lambda\right.$ and $\left.D \in \operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right\}$. For $\overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ we define the function $G_{\overline{\mathfrak{x}}}: \mathscr{F}_{\overline{\mathfrak{x}}}^{\prime} \rightarrow{ }^{\omega} \alpha(*)$ by $G_{\overline{\mathfrak{y}}}(f)=\left\langle\operatorname{rk}_{D_{1}\left[\mathfrak{x}_{n}\right]}(f): n<\omega\right\rangle$.

Next
$(*)_{2}(\alpha) \quad \bar{G}=\left\langle G_{\overline{\mathfrak{x}}}: \overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)\right\rangle$ exists
$(\beta) \quad G_{\overline{\mathfrak{x}}}$ is a function from $\mathscr{F} \frac{\prime}{\bar{x}}$ to ${ }^{\omega} \alpha(*)$
$(\gamma) \quad G_{\overline{\mathfrak{x}}}$ is one to one.
[Should be clear, e.g. for $(*)_{2}(\gamma)$ read the definition of $\mathscr{F}_{\mathfrak{x}^{\prime}}^{\prime}$ and clause (β) of Theorem 1.2.]

Let $<_{*}$ be a well ordering of ${ }^{\omega} \alpha(*)$ and for $\overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ let $<_{\overline{\mathfrak{x}}}$ be the following two place relation on $\mathscr{F}_{\mathfrak{x}}^{\prime}$:
$(*)_{3} f_{1}<_{\overline{\mathfrak{x}}} f_{2}$ iff $G_{\overline{\mathfrak{x}}}\left(f_{1}\right)<_{*} G_{\overline{\mathfrak{x}}}\left(f_{2}\right)$.
Obviously
$(*)_{4}(\alpha) \quad\left\langle<_{\bar{x}}: \overline{\mathfrak{x}} \in{ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)\right\rangle$ exists
$(\beta) \quad<_{\overline{\mathfrak{x}}}$ is a well ordering of $\mathscr{F} \frac{1}{\mathfrak{x}}$.
By $(*)_{1}+(*)_{4}$ we have proved clauses (a),(b),(b) ${ }^{+}$of the conclusion. Now clause (c) follows: for non-empty $S \subseteq{ }^{Y} \lambda$, let $f(S)$ be $\min \left\{\operatorname{otp}\left(\left\{g: g<_{\overline{\mathfrak{y}}} f\right\},<_{\overline{\mathfrak{y}}}\right): \overline{\mathfrak{y}} \in\right.$ ${ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ and $\left.f \in \mathscr{F}_{\mathfrak{\mathfrak { y }}}^{\prime} \cap S\right\}$. Also for any ordinal γ let $\mathscr{U}_{\gamma}^{1}:=\{f$: for some $\overline{\mathfrak{y}} \in$ ${ }^{\omega}\left(\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right)$ we have $\left.\gamma=\operatorname{otp}\left(\left\{g: g<_{\overline{\mathfrak{y}}} f\right\},<_{\overline{\mathfrak{y}}}\right)\right\}$ and $\mathscr{U}_{\gamma}=\mathscr{U}_{\gamma}^{1} \backslash \cup \bigcup\left\{\mathscr{U}_{\beta}^{1}: \beta<\gamma\right\}$. Lastly, we let $F(S)=\mathscr{U}_{f(S)} \cap S$. Now check.
2) Similarly.

Proof. Proof of Theorem 1.2 First
\circledast_{1} there are a cardinal μ and a sequence $\bar{u}=\left\langle u_{\alpha}: \alpha<\mu\right\rangle$ listing $[\lambda]^{\aleph_{0}}$.
[Why? By the assumption.]
Second, we can deduce
\circledast_{2} there are $\mu_{1} \leq \mu$ and a sequence $\bar{u}=\left\langle u_{\alpha}: \alpha<\mu_{1}\right\rangle$ such that:
(a) $u_{\alpha} \in[\lambda]^{\aleph_{0}}$
(b) if $u \in[\lambda] \leq \aleph_{0}$ then for some finite $w \subseteq \mu_{1}, u \subseteq \cup\left\{u_{\beta}: \beta \in w\right\}$
(c) u_{α} is not included in $u_{\alpha_{0}} \cup \ldots \cup u_{\alpha_{n-1}}$ when $n<\omega, \alpha_{0}, \ldots, \alpha_{n-1}<\alpha$.
[Why? Let \bar{u}^{0} be of the form $\left\langle u_{\alpha}: \alpha<\alpha^{*}\right\rangle$ such that $(a)+(b)$ holds and $\ell g\left(\bar{u}^{0}\right)$ is minimal; it is well defined and $\ell g\left(\bar{u}^{0}\right) \leq \mu$ by \circledast_{1}. Let $W=\left\{\alpha<\ell g\left(\bar{u}^{0}\right): u_{\alpha}^{0} \nsubseteq\right.$ $\cup\left\{u_{\beta}^{0}: \beta \in w\right\}$ when $w \subseteq \alpha$ is finite $\}$. Let $\mu_{1}=|W|$ and let $f: \mu_{1} \rightarrow W$ be one-toone onto, let $u_{\alpha}=u_{f(\alpha)}^{0}$ so $\left\langle u_{\alpha}: \alpha<\mu_{1}\right\rangle$ satisfies $(a)+(b)$ and $\mu_{1}=|W| \leq \ell g\left(\bar{u}^{0}\right)$. So by the choice of \bar{u}^{0} we have $\ell g\left(\bar{u}^{0}\right)=\mu_{1}$. So we can choose f such that it is increasing hence \bar{u} is as required.]
\circledast_{3} we can define $\mathbf{n}:[\lambda] \leq \aleph_{0} \rightarrow \omega$ and partial functions $F_{\ell}:[\lambda] \leq \aleph_{0} \rightarrow \mu_{1}$ for $\ell<\omega$ (so $\left\langle F_{\ell}: \ell<\omega\right\rangle$ exists) as follows:
(a) u infinite $\Rightarrow F_{0}(u)=\operatorname{Min}\left\{\alpha\right.$: for some finite $w \subseteq \alpha, u \subseteq u_{\alpha} \cup \bigcup\left\{u_{\beta}\right.$: $\beta \in w\} \bmod$ finite $\}$
(b) u finite $\Rightarrow F_{0}(u)$ undefined
(c) $F_{\ell+1}(u):=F_{0}\left(u \backslash\left(u_{F_{0}(u)} \cup \ldots \cup u_{F_{\ell}(u)}\right)\right)$ for $\ell<\omega$ when $F_{\ell}(u)$ is defined
(d) $\mathbf{n}(u):=\operatorname{Min}\left\{\ell: F_{\ell}(u)\right.$ undefined $\}$.

Then
$\circledast_{4} \quad$ (a) $F_{\ell+1}(u)<F_{\ell}(u)<\mu_{1}$ when they are well defined
(b) $\mathbf{n}(u)$ is a well defined natural number and $u \backslash \cup\left\{u_{F_{\ell}(u)}: \ell<\mathbf{n}(u)\right\}$ is finite and $k<\mathbf{n}(u) \Rightarrow\left(u \backslash \cup\left\{u_{F_{\ell}(u)}: \ell<k\right\}\right) \cap u_{F_{k}(u)}$ is infinite
(c) if $u_{1}, u_{2} \in[\lambda]^{\aleph_{0}}, u_{1} \subseteq u_{2}$ and $u_{2} \backslash u_{1}$ is finite then $F_{\ell}\left(u_{1}\right)=F_{\ell}\left(u_{2}\right)$ for $\ell<\mathbf{n}\left(u_{1}\right)$ and $\mathbf{n}\left(u_{1}\right)=\mathbf{n}\left(u_{2}\right)$
\circledast_{5} define $F_{*}:[\lambda]^{\aleph_{0}} \rightarrow \lambda$ by $F_{*}(u)=\operatorname{Min}\left(\cup\left\{u_{F_{\ell}(u)}: \ell<\mathbf{n}(u)\right\} \cup\{0\} \backslash u\right)$ if well defined, zero otherwise
[Note: the reader may wonder: if you add $\{0\}$ then $\operatorname{Min}(-)=0$ in all cases. However, if $0 \in u$ then by " $\backslash u$ ", zero does not belong to the set from which we choose a minimal ordinal.]
\circledast_{6} if $u \in[\lambda]^{\aleph_{0}}$ then (recalling 0.18(4), (5), (6)):
$(\alpha) c \ell^{3}\left(u, F_{*}\right)=c \ell_{F_{*}}^{3}(u)$ is $F^{\prime}(u):=u \cup \bigcup\left\{u_{F_{\ell}(u)}: \ell<\mathbf{n}(u)\right\} \cup\{0\}$
$(\beta) c \ell_{F_{*}}^{3}(u)=c \ell_{\varepsilon(u)}^{2}(F)$ for some $\varepsilon(u)<\omega_{1}$
(γ) there is $\bar{F}=\left\langle F_{\varepsilon}^{\prime}: \varepsilon<\omega_{1}\right\rangle$ such that: for every $u \in[\lambda]^{\aleph_{0}}, c \ell_{F_{*}}^{3}(u)=$ $\left\{F_{\varepsilon}^{\prime}(u): \varepsilon<\varepsilon(u)\right\}$ and $F_{\varepsilon}^{\prime}(u)=0$ if $\varepsilon \in\left[\varepsilon(u), \omega_{1}\right)$
(δ) in fact $F_{\varepsilon}^{\prime}(u)$ is the ε-th member of $c \ell_{F_{*}}^{3}(u)$ if $\varepsilon<\varepsilon(u)$.
[Why? Define w_{u}^{ε} by induction on ε by $w_{u}^{0}=u, w_{u}^{\varepsilon+1}=w_{u}^{\varepsilon} \cup\left\{F_{*}\left(w_{u}^{\varepsilon}\right)\right\}$ and for limit ordinal ε we let $w_{u}^{\varepsilon}=\cup\left\{w_{u}^{\zeta}: \zeta<\varepsilon\right\}$. We can prove by induction on ε that $w_{u}^{\varepsilon} \subseteq F^{\prime}(u)$ which is countable. The partial function g with domain $F^{\prime}(u) \backslash u$ to $\operatorname{Ord}, g(\alpha)=\operatorname{Min}\left\{\varepsilon: \alpha \in w_{u}^{\varepsilon+1}\right\}$ is one to one onto an ordinal call it $\varepsilon(*)$, so $w_{u}^{\varepsilon(*)} \subseteq F^{\prime}(u)$ and if they are not equal that $F_{*}\left(w_{u}^{\varepsilon(*)}\right) \in F^{\prime}(u) \backslash w_{u}^{\varepsilon(*)}$ hence $w_{u}^{\varepsilon(*)} \varsubsetneqq w_{u}^{\varepsilon(*)+1}$ contradicting the choice of $\varepsilon(*)$. So clause (α) holds. In fact, $c \ell^{3}\left(u, F_{*}\right)=w_{u}^{\varepsilon(*)}$ and clause (β) holds. CLauses $(\gamma),(\delta)$ should be clear.]
\circledast_{7} there is no sequence $\left\langle\mathscr{U}_{n}: n<\omega\right\rangle$ such that:
(a) $\mathscr{U}_{n+1} \subseteq \mathscr{U}_{n} \subset \lambda$
(b) \mathscr{U}_{n} is closed under F_{*}, i.e. $u \in\left[\mathscr{U}_{n}\right]^{\aleph_{0}} \Rightarrow F_{*}(u) \in \mathscr{U}_{n}$
(c) $\mathscr{U}_{n+1} \neq \mathscr{U}_{n}$.
[Why? Assume toward contradiction that $\left\langle\mathscr{U}_{n}: n<\omega\right\rangle$ satisfies clauses (a),(b),(c). Let $\alpha_{n}=\operatorname{Min}\left(\mathscr{U}_{n} \backslash \mathscr{U}_{n+1}\right)$ for $n<\omega$ hence the sequence $\bar{\alpha}=\left\langle\alpha_{n}: n<\omega\right\rangle$ is well defined with no repetitions and let $\beta_{m, \ell}:=F_{\ell}\left(\left\{\alpha_{n}: n \geq m\right\}\right)$ for $m<\omega$ and $\ell<\mathbf{n}_{m}:=\mathbf{n}\left(\left\{\alpha_{n}: n \in[m, \omega)\right\}\right)$. As $\bar{\alpha}$ is with no repetition, $\mathbf{n}_{m}>0$ and by $\circledast_{4}(c)$ clearly $\mathbf{n}_{m}=\mathbf{n}_{0}$ for $m<\omega$ and $\beta_{m, \ell}=\beta_{m, 0}$ for $m<\omega, \ell<\mathbf{n}_{0}$. So letting $v_{m}=\cup\left\{u_{F_{\ell}\left(\left\{\alpha_{n}: n \in[m, \omega)\right\}\right)}: \ell<\mathbf{n}_{m}\right\}$, it does not depend on m so $v_{m}=v_{0}$, and by the choice of F_{*}, as $\left\{\alpha_{n}: n \in[m, \omega)\right\} \subseteq \mathscr{U}_{m}$ and \mathscr{U}_{m} is closed under F_{*} clearly $v_{m} \subseteq \mathscr{U}_{m}$. Together $v_{0}=v_{m} \subseteq \mathscr{U}_{m}$ so $v_{0} \subseteq \cap\left\{\mathscr{U}_{m}: m<\omega\right\}$. Also, by the definition of the F_{ℓ} 's, $\left\{\alpha_{n}: n<\omega\right\} \backslash v_{0}$ is finite so for some $k<\omega,\left\{\alpha_{m}: n \in[k, \omega)\right\} \subseteq v_{0}$ but $v_{0} \subseteq \mathscr{U}_{k+1}$ contradicting the choice of α_{k}.]

Moreover, recalling Definition 0.18(6):
\circledast_{7}^{\prime} there is no sequence $\left\langle\mathscr{U}_{n}: n<\omega\right\rangle$ such that
(a) $\mathscr{U}_{n+1} \subseteq \mathscr{U}_{n} \subseteq \lambda$
(b) $\mathscr{U}_{n} \backslash c \ell_{F_{*}}^{4}\left(\mathscr{U}_{n+1}\right) \neq \emptyset$.
[Why? As above but letting $\alpha_{n}=\operatorname{Min}\left(\mathscr{U}_{n} \backslash c \ell_{F_{*}}^{3}\left(\mathscr{U}_{n+1}\right)\right)$.]
Now we define for $\left(D_{1}, D_{2}, h, Z\right) \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ and ordinal α the following, recalling Definition 0.18(6) for clauses (e),(f):
$*_{8} \mathscr{F}_{\left(D_{1}, D_{2}, h, Z\right), \alpha}=:\{f:(a) \quad f$ is a function from Z to λ
(b) $\operatorname{rk}_{D_{1}+Z}\left(f \cup 0_{(Y \backslash Z)}\right)=\alpha$
(c) $D_{2}=\left\{Y \backslash X: X \subseteq Y\right.$ satisfies $X=\emptyset \bmod D_{1}$ or $X \in D_{1}^{+}$and $\operatorname{rk}_{D_{1}+X}\left(f \cup 0_{(Y \backslash Z)}\right)>\alpha$ that is $\left.\operatorname{rk}_{D_{1}+X}(f)>\alpha\right\}$
(d) $Z \in D_{2}$, really follows
(e) if $Z^{\prime} \subseteq Z \wedge Z^{\prime} \in D_{2}$ then $c \ell_{F_{*}}^{3}\left(\operatorname{Rang}\left(f \upharpoonright Z^{\prime}\right)\right)=c \ell_{F_{*}}^{3}(\operatorname{Rang}(f))$
(f) $\quad y \in Z \Rightarrow f(y)=$ the $h(y)$-th member of $\left.c \ell_{F_{*}}^{3}(\operatorname{Rang}(f))\right\}$.

So we have:
$\circledast_{9} \mathscr{F}_{\left(D_{1}, D_{2}, h, Z\right), \alpha}$ has at most one member; call it $f_{\left(D_{1}, D_{2}, h, Z\right), \alpha}$ (when defined; pedantically we should write $\left.f_{\left(D_{1}, D_{2}, h, Z\right), c \ell, \alpha}\right)$
$\circledast_{10} \mathscr{F}_{\left(D_{1}, D_{2}, h, Z\right)}=: \cup\left\{\mathscr{F}_{\left(D_{1}, D_{2}, h, Z\right), \alpha}: \alpha\right.$ an ordinal $\}$ is a well ordered set.
[Why? Define $<_{\left(D_{1}, D_{2}, h, Z\right)}$ by the α 's, i.e. $f^{1}<f^{2}$ iff there are $\alpha_{1}<\alpha_{2}$ such that $f^{\ell}=f_{\left(D_{1}, D_{2}, h, 2\right), \alpha_{\ell}}$ for $\ell=1,2$.]
\circledast_{11} if $f: Y \rightarrow \lambda$ and $Z \subseteq Y$ then the set $\operatorname{Rang}(f \upharpoonright Z)$ has cardinality $<\operatorname{hrtg}(Z)$.
[Why? By the definition of $\operatorname{hrtg}(-)$ this should be clear.]
\circledast_{12} if $f: Z \rightarrow \lambda$ and $Z \subseteq Y$ then $c \ell_{F_{*}}^{4}(\operatorname{Rang}(f)) \subseteq \lambda$ has cardinality $<$ $\operatorname{hrtg}\left([Z]^{\aleph_{0}}\right)$ or is finite.
Why? This will take some time. If $\operatorname{Rang}(f)$ is countable more holds by 0.19 . Otherwise, by $\circledast_{6}(\beta)$ recallng Definition $0.18(6)$ we have $c \ell_{F_{*}}^{4}(\operatorname{Rang}(f))=\operatorname{Rang}(f) \cup$ $\left\{F_{\varepsilon}^{\prime}(u): u \in[\operatorname{Rang}(f)]^{\aleph_{0}}\right.$ and $\left.\varepsilon<\omega_{1}\right\}$.

Let $\alpha(*)$ be minimal such that $\operatorname{Rang}(f) \cap \alpha(*)$ has order type ω_{1}. Let h_{1}, h_{2} : $\omega_{1} \rightarrow \omega_{1}$ be such that $h_{\ell}(\varepsilon)<\max \{\varepsilon, 1\}$ and for every $\varepsilon_{1}, \varepsilon_{2}<\omega_{1}$ there is $\zeta \in$ $\left[\varepsilon_{1}+\varepsilon_{2}+1, \omega_{1}\right)$ such that $h_{\ell}(\zeta)=\varepsilon_{\ell}$ for $\ell=1,2$. Define $F:[Z]^{\aleph_{0}} \rightarrow \lambda$ as follows: if
$u \in[\operatorname{Rang}(f)]^{\aleph_{0}}$, let $\varepsilon_{\ell}(u)=h_{\ell}\left(\operatorname{otp}(u \cap \alpha(*))\right.$ for $\ell=1,2$ and $F(u)=F_{\varepsilon_{2}(u)}^{\prime}(\{\alpha \in u$: if $\alpha<\alpha(*)$ then $\left.\left.\operatorname{otp}(u \cap \alpha)<\varepsilon_{1}(u)\right\}\right)$.

Now
\bullet_{1} if $u \in[\operatorname{Rang}(f)]^{\aleph_{0}}$ then $F(u)$ is $F_{\varepsilon}(v)$ for some $v \in[Z]^{\aleph_{0}}$ and $\varepsilon<\omega_{1}$.
$\left[\right.$ Why? As $\left.F(u) \in \operatorname{Rang}\left(F_{\varepsilon_{2}(u)}^{\prime} \upharpoonright[\operatorname{Rang}(f)]^{\aleph_{0}}\right)\right]$
$\bullet_{2}\left\{F(u): u \in[\operatorname{Rang}(f)]^{\aleph_{0}}\right\} \subseteq c \ell_{F_{*}}^{4}(\operatorname{Rang}(f))$.
[Why? By \bullet_{1} recalling \circledast_{6}.]
\bullet_{3} if $u \in[\operatorname{Rang}(f)]^{\aleph_{0}}$ and $\varepsilon<\omega_{1}$ then $F_{\varepsilon}^{\prime}(u)$ is $F(u)$ for some $v \in[\operatorname{Rang}(f)]^{\aleph_{0}}$.
[Why? Let $\varepsilon_{1}=\operatorname{otp}(u \cap \alpha(*)), \varepsilon_{2}=\varepsilon$; now let $\zeta<\omega_{1}$ be such that $h_{\ell}(\zeta)=\varepsilon_{\ell}$ for $\ell=1,2$. Let $v=u \cup\{\alpha: \alpha \in \operatorname{Rang}(f) \cap \alpha(*)$ and $\alpha \geq \sup (u \cap \alpha(*))+1$ and $\left.\left.\operatorname{otp}\left(\operatorname{Rang}(f) \cap \alpha \backslash(\sup (u \cap \alpha(*)+1))<\left(\zeta-\varepsilon_{1}\right)\right)\right\}.\right]$

So $F(u)=F_{\varepsilon}^{\prime}(u)$. By $\bullet_{2}+\bullet_{3}$ we can conclude:
\bullet_{4} in \bullet_{2} we have equality.
Together $c \ell_{F_{*}}^{4}(\operatorname{Rang}(f))=\left\{F(u): u \in[\operatorname{Rang}(f)]^{\aleph_{0}}\right\} \cup \operatorname{Rang}(f)$ so it is the union of two sets; by the definition of $\operatorname{hrtg}(-)$ the first is of cardinality $<\operatorname{hrtg}\left([Z]^{\aleph_{0}}\right)$ and the second is of cardinality $<\operatorname{hrtg}[Z]$, so we are easily done proving \circledast_{12}
\circledast_{13} if $f: Y \rightarrow \lambda$ then for some sequence $\left\langle\left(\mathfrak{y}_{n}, \alpha_{n}\right): n<\omega\right\rangle$ we have $\mathfrak{y}_{n} \in$ $\operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ and $\alpha_{n} \in$ Ord for $n<\omega$ and $f=\cup\left\{f_{\mathfrak{y}_{n}, \alpha_{n}}: n<\omega\right\}$.
[Why? Let

$$
\begin{array}{ll}
\mathscr{I}_{f}^{0}=\{Z \subseteq Y: \quad & \text { for some } \mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y) \text { satisfying } Z^{\mathfrak{y}}=Z \\
& \text { and ordinal } \left.\alpha, f_{\mathfrak{y}, \alpha} \text { is well defined and equal to } f \upharpoonright Z\right\}
\end{array} \quad \begin{aligned}
& \mathscr{I}_{f}=\left\{Z \subseteq Y: Z \text { is included in a countable union of members of } \mathscr{I}_{f}^{0}\right\} .
\end{aligned}
$$

So recalling we are assuming DC it is enough to show that $Y \in \mathscr{I}_{f}$.
Toward contradiction assume not. Let $D_{1}=\left\{Y \backslash Z: Z \in \mathscr{I}_{f}\right\}$, clearly it belongs to $\operatorname{Fil}_{\aleph_{1}}(Y)$, noting that $Y \notin \mathscr{I}_{f}$. So $\alpha(*):=\operatorname{rk}_{D_{1}}(f)$ is well defined (by 0.11) recalling that only $\mathrm{DC}=\mathrm{DC}_{\aleph_{0}}$ is needed.

Let

$$
D_{2}=\left\{X \subseteq Y: X \in D_{1} \text { or } \operatorname{rk}_{D_{1}+(Y \backslash X)}(f)>\alpha(*)\right\} .
$$

By $0.13+0.14$ clearly D_{2} is an \aleph_{1}-complete filter on Y extending D_{1}.
Now we try to choose $Z_{n} \in D_{2}$ for $n<\omega$ such that $Z_{n+1} \subseteq Z_{n}$ and $c \ell_{F_{*}}^{4}(\operatorname{Rang}(f \upharpoonright$ $\left.Z_{n+1}\right)$) does not include $\operatorname{Rang}\left(f \upharpoonright Z_{n}\right)$.

For $n=0, Z_{0}=Y$ is O.K.
By \circledast_{7}^{\prime} we cannot have such ω-sequence $\left\langle Z_{n}: n<\omega\right\rangle$; so by DC for some (unique) $n=n(*), Z_{n}$ is chosen but not Z_{n+1}.

Let $h: Z_{n} \rightarrow \operatorname{hrtg}\left([Y]^{\aleph_{0}}\right) \cup \omega_{1}$ be:

$$
h(y)=\operatorname{otp}\left(f(y) \cap c \ell_{F_{*}}^{4}\left(\operatorname{Rang}\left(f \upharpoonright Z_{n}\right)\right)\right)
$$

Now h is well defined by \circledast_{12}. Easily

$$
f \upharpoonright Z_{n} \in \mathscr{F}_{\left(D_{1}+Z_{n}, D_{2}, h, Z_{n}\right), \alpha(*)}
$$

hence $Z_{n} \in \mathscr{I}_{f}^{0} \subseteq \mathscr{I}_{f}$, contradiction to $Z_{n} \in D_{2}, D_{1} \subseteq D_{2}$.
So we are done proving \circledast_{13}.]
Now clause (β) of the conclusion holds by the definition of $\mathscr{F}_{\mathfrak{y}}$, clause (α) holds by \circledast_{10} recalling $\circledast_{8}, \circledast_{9}$ and clause (γ) holds by \circledast_{12}.

Remark 1.5. We can improve 1.2 in some way by weakening the demands on \bar{u}.
We may replace the assumption " $[\lambda]{ }^{N_{0}}$ is well ordered" by:
$(*)$ there is $\left\langle u_{\alpha}: \alpha<\alpha^{*}\right\rangle$, a sequence of members of $[\lambda]^{\aleph_{0}}$ such that $(\forall u \in$ $\left.[\lambda]^{\aleph_{0}}\right)(\exists \alpha)\left(u \cap u_{\alpha}\right.$ infinite $)$.
[Why? We define $F_{\varepsilon}:[\lambda]^{\kappa_{0}} \rightarrow \alpha^{*}$ by induction on $\varepsilon<\omega_{1}$ by $F_{\varepsilon}(v):=\operatorname{Min}\{\alpha<$ $\alpha^{*}:\left(v \backslash v \cup\left\{F_{*}(v): \zeta<\varepsilon\right\}\right) \cap u_{\alpha}$ infinite $\}$ if well defined and let $F:[\lambda]^{\aleph_{0}} \rightarrow[\lambda]^{\aleph_{0}}$ be defined by $F(v)=\cup\left\{F_{\varepsilon}(v): \varepsilon<\omega_{1}, F_{\varepsilon}(v)\right.$ well defined $\}$.

Lastly, let $F_{*}(u)=\min (F(u) \backslash u)$.]
Observation 1.6. 1) The power of $\mathrm{Fil}_{\aleph_{1}}^{4}(Y, \mu)$ is smaller or equal to the power of the set $(\mathscr{P}(\mathscr{P}(Y)))^{2} \times \mathscr{P}(Y) \times \mu^{|Y|}$; if $\aleph_{0} \leq|Y|$ this is equal to the power of $\mathscr{P}(\mathscr{P}(Y)) \times{ }^{Y} \mu$.
2) The power of $\mathrm{Fil}_{\aleph_{1}}^{4}(Y)$ is smaller or equal to the power of the set $(\mathscr{P}(\mathscr{P}(Y)))^{2} \times$ $\mathscr{P}(Y) \times \cup\left\{{ }^{Y} \alpha: \alpha<\operatorname{hrtg}\left([Y]^{\aleph_{0}}\right)\right\}$.
3) In part (2), if $\aleph_{0} \leq|Y|$ this is equal to $|\mathscr{P}(\mathscr{P}(Y))| \times \cup\left\{{ }^{Y} \alpha: \alpha<\operatorname{hrtg}\left([Y]^{\aleph_{0}}\right)\right\}$; also $\alpha<\operatorname{hrtg}\left([Y]^{\aleph_{0}}\right) \Rightarrow\left|\mathscr{P}(\mathscr{P}(Y)) \times{ }^{Y} \alpha\right|=|\mathscr{P}(\mathscr{P}(Y))|$ and $\left|\mathrm{Fil}_{\aleph_{1}}^{4}(Y)\right| \leq_{\mathrm{qu}}$ $\mathscr{P}(\mathscr{P}(Y \times Y))$.

Remark 1.7.1) As we are assuming DC, the case $\aleph_{0} \not \leq|Y|$ means that Y is finite, so degenerated. Now, if $|Y|<\aleph_{0}$, then $\operatorname{Fil}_{\aleph_{1}}^{1}(Y)=\{\{Z \subseteq Y: Z \supseteq X\}: X \subseteq Y\}$ hence $\left|\operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right|=|\mathscr{P}(Y)|$ hence $\operatorname{FIL}_{\aleph_{1}}^{4}(Y, \mu)$ has the same power as ${ }^{3} \mathscr{P}(Y) \times{ }^{\omega} \mu$ this is a dull case.

Proof. 1) Reading the definition of $\operatorname{Fil}_{\aleph_{1}}^{4}(Y, \mu)$ clearly its power is \leq the power of $\mathscr{P}(\mathscr{P}(Y)) \times \mathscr{P}(\mathscr{P}(Y)) \times \mathscr{P}(Y) \times \mu^{|Y|}$. If $\aleph_{0} \leq|Y|$ then $|\mathscr{P}(\mathscr{P}(Y)) \times \mathscr{P}(Y)| \leq$ $|\mathscr{P}(\mathscr{P}(Y)) \times \mathscr{P}(\mathscr{P}(Y))|=2^{\mid \mathscr{P}(Y))} \times 2^{|\mathscr{P}(Y)|} \leq 2^{|\mathscr{P}(Y)|+|\mathscr{P}(Y)|}=2^{|\mathscr{P}(Y)|}=|\mathscr{P}(\mathscr{P}(Y))| \leq$ $\left|\mathscr{P}(\mathscr{P}(Y)) \times \mathscr{P}(Y) \times \mu^{|Y|}\right|$ as $\mathscr{P}(Y)+\mathscr{P}(Y)=2^{|Y|} \times 2=2^{|Y|+1}=2^{|Y|}$; so the second conclusion follows.
2) Read the definitions.
3) If $\alpha<\operatorname{hrtg}\left([Y]^{\aleph_{0}}\right)$ then let f be a function from $[Y]^{\aleph_{0}}$ onto α and for $\beta<\alpha$ let $A_{f, \beta}=\left\{u \in[Y]^{\aleph_{0}}: f(u)<\beta\right\}$. So $\beta \mapsto A_{f, \beta}$ is a one-to-one function from α onto $\left\{A_{f, \gamma}: \gamma<\alpha\right\} \subseteq \mathscr{P}(\mathscr{P}(Y))$ so $\left|{ }^{Y} \alpha\right| \leq \mathscr{P}(\mathscr{P}(Y))$ and $\mathscr{P}(\mathscr{P}(Y)) \times\left.\right|^{Y} \alpha \mid \leq$ $\mathscr{P}(\mathscr{P}(Y)) \times \mathscr{P}(\mathscr{P}(Y)) \leq 2^{|\mathscr{P}(Y)|+\mid \mathscr{P}) Y) \mid}=2^{|\mathscr{P}(Y)|}$. Better, for f a function from $[Y]^{\aleph_{0}}$ onto $\alpha<\mathscr{P}(Y)$ let $A_{f}=\left\{\left(y_{1}, y_{2}\right): f\left(y_{1}\right)<f\left(y_{2}\right)\right\} \subseteq Y \times Y$. Define $F: \mathscr{P}(Y \times Y) \rightarrow \operatorname{hrtg}(Y)$ by $F(A)=\alpha$ if $A=A_{f}$ and f, α are as above, and $F(A)=0$ otherwise.

So $\left.\left|\mathscr{P}(\mathscr{P}(Y)) \cup \bigcup\left\{{ }^{Y} \alpha: \alpha<\operatorname{hrtg}\left([Y]^{\aleph_{0}}\right)\right\}\right| \leq_{\text {qu }} \mathscr{P}(\mathscr{P}(Y)) \times \mathscr{P}(\mathscr{P}(Y \times Y))\right)=$ $|\mathscr{P}(\mathscr{P}(Y \times Y))|$. By the proof above we easily get $\left|\operatorname{Fil}_{\aleph_{1}}^{4}(Y)\right| \leq_{\mathrm{qu}} \mathscr{P}(\mathscr{P}(Y \times$ $Y)$).
Claim 1.8. [DC] Assume
(a) \mathfrak{a} is a countable set of limit ordinals
(b) $<_{*}$ is a well ordering of $\Pi \mathfrak{a}$
(c) $\theta \in \mathfrak{a} \Rightarrow \operatorname{cf}(\theta) \geq \kappa$ where $\kappa=\operatorname{hrtg}(\mathscr{P}(\omega))$ or just $\Pi \mathfrak{a} /[\mathfrak{a}]^{<\aleph_{0}}$ is $<\kappa$-directed.

Then we can define $(\bar{J}, \overline{\mathfrak{b}}, \overline{\mathbf{f}})$ such that
(α) (i) $\bar{J}=\left\langle J_{i}: i \leq i(*)\right\rangle$ where $i(*)<\operatorname{hrtg}(\mathscr{P}(\omega))$
(ii) J_{i} is an ideal on \mathfrak{a} (though not necessarily a proper ideal)
(iii) J_{i} is increasing continuous with $i, J_{0}=\{\emptyset\}, J_{i(*)}=\mathscr{P}(\mathfrak{a})$
(iv) $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{i}: i<i(*)\right\rangle, \mathfrak{b}_{i} \subseteq \mathfrak{a}$ and $J_{i+1}=J_{i}+\mathfrak{b}_{i} \neq J_{i}$,
(v) so J_{i} is the ideal on \mathfrak{a} generated by $\left\{\mathfrak{b}_{j}: j<i\right\}$
(β)
(i) $\overline{\mathbf{f}}=\left\langle\bar{f}^{i}: i<i(*)\right\rangle$
(ii) $\bar{f}^{i}=\left\langle f_{\alpha}^{i}: \alpha<\alpha_{i}\right\rangle$
(iii) $f_{\alpha}^{i} \in \prod \mathfrak{a}$ is $<J_{J_{i}}$-increasing with $\alpha<\alpha_{i}$
(iv) $\left\{f_{\alpha}^{i}: \alpha<\alpha_{i}\right\}$ is cofinal in $\left(\prod \mathfrak{a},<_{J_{i}+\left(\mathfrak{a} \backslash \mathfrak{b}_{i}\right)}\right)$
(γ) (i) $\operatorname{cf}(\Pi \mathfrak{a}) \leq \sum_{i<i(*)} \alpha_{i}$
(ii) for every $f \in \Pi \mathfrak{a}$ for some n and finite set $\left\{\left(i_{\ell}, \gamma_{\ell}\right): \ell<n\right\}$ such that $i_{\ell}<i(*), \gamma_{\ell}<\alpha_{i_{\ell}}$ we have $f<\max _{\ell<n} f_{\gamma_{\ell}}^{i \ell}$, i.e., $(\forall \theta \in \mathfrak{a})(\exists \ell<$ n) $\left[f(\theta)<f_{\gamma_{\ell}}^{i_{\ell}}(\theta)\right]$.

Remark 1.9. Note that there is no harm in having more than one occurence of $\theta \in \mathfrak{a}$. See more in [She16], e.g. on uncountable \mathfrak{a}.

Proof. Note that:
\circledast_{1} clause (γ) follows from $(\alpha)+(\beta)$.
[Why? Easily $(\gamma)(i i) \Rightarrow(\gamma)(i)$. Now let $g \in \Pi \mathfrak{a}$ and let $I_{g}=\{\mathfrak{b} \subseteq \mathfrak{a}$: we can find $n<\omega$ and $i_{\ell}<i(*)$ and $\beta_{\ell}<\alpha_{i_{\ell}}$ for $\ell<n$ such that $\theta \in \mathfrak{b} \Rightarrow(\exists \ell<n)(g(\theta)<$ $\left.\left.f_{\beta_{\ell}}^{i_{e}}(\theta)\right)\right\}$.

Easily I_{g} is an ideal on \mathfrak{a} though not necessarily a proper ideal. Note that if $\mathfrak{a} \in I_{g}$ we are done. So assume $\mathfrak{a} \notin I_{g}$. Note that $I_{g} \subseteq J_{i(*)}$ hence $j_{g}=\min \{i \leq i(*)$: some $\mathfrak{c} \in \mathscr{P}(\mathfrak{a}) \backslash I_{g}$ belongs to $\left.J_{i}\right\}$ is well defined (as $\left.\mathfrak{a} \in \mathscr{P}(\mathfrak{a}) \backslash I_{g} \wedge \mathfrak{a} \in J_{i(*)}\right)$. As $J_{0}=\{\emptyset\}$ and clearly as $\emptyset \in I_{g}$, so $\mathfrak{c}=\mathfrak{a}$ witness $j_{g}>0$. As $\left\langle J_{i}: i \leq i(*)\right\rangle$ is \subseteq-increasing continuous, necessarily j_{g} is a successor ordinal say $j_{g}=i_{g}+1$ and let $i(g)=i_{g}$ and choose $\mathfrak{c} \in J_{j_{g}} \backslash I_{g}$, clearly $J_{i(g)} \subseteq I_{g}$ so \mathfrak{c} belongs to $J_{j_{g}} \backslash J_{i_{g}}$. By clause $(\beta)(i v)$ there is $\alpha<\alpha_{i(g)}$ such that $g<f_{\alpha}^{i} \bmod \left(J_{i(g)}+\left(\mathfrak{a} \backslash \mathfrak{b}_{i(g)}\right)\right)$.

Now let $\mathfrak{d}=\left\{\theta \in \mathfrak{a}: g(\theta)<f_{\alpha}^{i}(\theta)\right\}$ so by the choice of α we have $\mathfrak{d}=\mathfrak{a}$ $\bmod \left(J_{i(g)}+\left(\mathfrak{a} \backslash \mathfrak{b}_{(g)}\right)\right)$, which means that $\mathfrak{b}_{i(g)} \subseteq \mathfrak{d} \bmod J_{i(g)}$ so as $J_{i(g)+1}=J_{i(g)}+$ $\mathfrak{b}_{i, g}$ and $\mathfrak{c} \in J_{i(g)+1} \backslash J_{i(g)}$ clearly $\mathfrak{c} \subseteq \mathfrak{b}_{i(g)} \bmod J_{i(g)}$.

But by the definition of the ideal $J_{i(g)}$ and of \mathfrak{d} necessarily $\mathfrak{d} \in J_{i(g)}$ and recall $J_{i(g)} \subseteq J_{i(g)}$, contradicting the conclusion of the last sentence.]

Since (γ) follows from $(\alpha)+(\beta)$, it suffices to prove these parts. By induction on $i<\kappa$ we try to choose ($\left(\bar{J}^{i}, \overline{\mathfrak{b}}^{i}, \overline{\mathbf{f}}^{i}\right.$) where $\bar{J}^{i}=\left\langle J_{j}: j \leq i\right\rangle, \overline{\mathfrak{b}}^{i}=\left\langle\mathfrak{b}_{j}^{i}: j<i\right\rangle, \overline{\mathbf{f}}^{i}=$ $\left\langle\bar{f}^{j}: j<i\right\rangle$ which satisfies the relevant parts of the conclusion and do it uniformly from $\left(\mathfrak{a},<_{*}\right)$. Once we arrive at i such that $J_{i}=\mathscr{P}(\mathfrak{a})$ we are done.

For $i=0$ recalling $J_{0}=\{\emptyset\}$ there is no problem.

For i limit recalling that $J_{i}=\cup\left\{J_{j}: j<i\right\}$ there is no problem and note that if $j<i \Rightarrow \mathfrak{a} \notin J_{j}$ then $\mathfrak{a} \notin J_{i}$.

So assume that $\left(\bar{J}^{i}, \mathfrak{b}^{i}, \overline{\mathbf{f}}^{i}\right)$ is well defined and $\mathfrak{a} \notin J_{i}$ and we shall define for $i+1$.
We try to choose $\bar{g}^{i, \varepsilon}=\left\langle g_{\alpha}^{i, \varepsilon}: \alpha<\delta_{i, \varepsilon}\right\rangle$ and $\mathfrak{b}_{i, \varepsilon}$ by induction on $\varepsilon<\omega_{1}$ and for each ε we try to choose $g_{\alpha}^{i, \varepsilon} \in \Pi \mathfrak{a}$ by induction on α (in fact $\alpha<\operatorname{hrtg}(\Pi \mathfrak{a})$ suffice, we shall get stuck earlier) such that:
$\circledast_{i, \varepsilon}^{2} \quad$ (a) if $\beta<\alpha$ then $g_{\beta}^{i, \varepsilon}<_{J_{i}} g_{\alpha}^{i, \varepsilon}$,
(b) if $\zeta<\varepsilon$ then $\delta_{i, \zeta} \geq \delta_{i, \varepsilon}$ and $\alpha<\delta_{i, \varepsilon}$ implies $g_{\alpha}^{i, \zeta} \leq g_{\alpha}^{i, \varepsilon}$,
(c) if $\operatorname{cf}(\alpha)=\aleph_{1}$ then $g_{\alpha}^{i, \varepsilon}$ is defined by

$$
\theta \in \mathfrak{a} \Rightarrow g_{\alpha}^{i, \varepsilon}(\theta)=\operatorname{Min}\left\{\bigcup_{\beta \in C} g_{\beta}^{i, \varepsilon}(\theta): C \text { is a club of } \alpha\right\}
$$

(d) if α is a limit ordinal and $\operatorname{cf}(\alpha) \neq \aleph_{1}, \alpha \neq 0$ then $g_{\alpha}^{i, \varepsilon}$ is the $<_{*}$-first $g \in \Pi \mathfrak{a}$ satisfying clauses (a) $+(\mathrm{b})$,
(e) if we have $\left\langle g_{\beta}^{i, \varepsilon}: \beta<\alpha\right\rangle, \operatorname{cf}(\alpha)>\aleph_{1}$, moreover $\operatorname{cf}(\alpha) \geq \min \{\operatorname{cf}(\theta): \theta \in$ $\mathfrak{a}\}$ and there is no g as required in clause (d) then $\delta_{i, \varepsilon}=\alpha$,
(f) if $\alpha=0$ or α is a successor, then $g_{\alpha}^{i, \varepsilon}$ is the $<_{*}$-first $g \in \Pi \mathfrak{a}$ such that:
$\bullet_{1} \zeta<\varepsilon \wedge \alpha<\delta_{i, \zeta} \Rightarrow g_{\alpha}^{i, \zeta} \leq g$,
$\bullet_{2} \beta<\alpha \Rightarrow g_{\beta}^{i, \varepsilon}<g_{\alpha}^{i, \varepsilon} \bmod J_{i}$,
$\bullet_{3} \varepsilon=\zeta+1 \Rightarrow\left(\forall \beta<\delta_{i, \zeta}\right)\left[\neg\left(g \leq_{J_{i}} g_{\beta}^{i, \zeta}\right)\right]$, follows if $\alpha>0$.
(g) J_{i} is the ideal on $\mathscr{P}(\mathfrak{a})$ generated by $\left\{\mathfrak{b}_{j}: j<i\right\}$,
(h) $\mathfrak{b}_{i, \varepsilon} \in\left(J_{i}\right)^{+}$so $\mathfrak{b}_{i, \varepsilon} \subseteq \mathfrak{a}$,
(i) $\bar{g}^{i, \varepsilon}$ is increasing and cofinal in $\left(\Pi(\mathfrak{a}),<_{J_{i}+\left(\mathfrak{a} \backslash \mathfrak{b}_{i, \varepsilon}\right)}\right)$,
(j) $\mathfrak{b}_{i, \varepsilon}$ is such that under clauses $(h)+(i)$ the set $\left\{\operatorname{otp}(\mathfrak{a} \cap \theta): \theta \in \mathfrak{b}_{i, \varepsilon}\right\}$ is $<_{*}$-minimal recalling the claim assumptions,
(k) if $\zeta<\varepsilon$ then $\mathfrak{b}_{i, \zeta} \subseteq \mathfrak{b}_{i, \varepsilon} \bmod J_{i}$ (follows by "if $\zeta<\varepsilon$ then $g_{0}^{i, \varepsilon}$ is a $<J_{i}+\mathfrak{b}_{i, \zeta}$-upper bound of $\bar{g}^{i, \zeta "}$.

Clearly in stage ε we first choose $g_{\alpha}^{i, \varepsilon}$ by induction on α. As $\beta<\alpha \Rightarrow g_{\beta}^{i, \varepsilon} \neq g_{\alpha}^{i, \varepsilon}$ we are stuck in some $\delta_{i, \varepsilon}$ and then choose $\mathfrak{b}_{i, \varepsilon}$.

We now give details on some points:
$(*)_{0}$ if $\alpha=0$ then we can choose $g_{0}^{2, \varepsilon}$.
[Why? Trivial.]
$(*)_{1}$ Clause (c) is O.K., that is: if we arrive to $(\varepsilon, \alpha), \operatorname{cf}(\alpha)=\aleph_{1}$ then we can define $g_{\alpha}^{i, \varepsilon}$.
[Why? We already have $\left\langle g_{\alpha}^{i, \varepsilon}: \alpha<\delta\right\rangle$ and $\left\langle g_{\alpha}^{i, \zeta}: \alpha<\delta_{i, \zeta}, \zeta<\varepsilon\right\rangle$, and we define $g_{\delta}^{i, \varepsilon}$ as there. Now $g_{\delta}^{i, \varepsilon}(\theta)$ is well defined as the "Min" is taken on a non-empty set of ordinals as we are assuming $\operatorname{cf}(\delta)=\aleph_{1}$ and by DC, \aleph_{1} is regular. The value is $<\theta$ because for some club C of δ, otp $(C)=\omega_{1}$, so $g_{\delta}^{i, \varepsilon}(\theta) \leq \cup\left\{g_{\beta}^{i, \varepsilon}(\theta): \beta \in C\right\}$ but this set is $\subseteq \theta$ while $\operatorname{cf}(\theta)>\aleph_{1}$ by clause (c) of the assumption. By $\mathrm{AC}_{\aleph_{0}}$ we can find a sequence $\left\langle C_{\theta}: \theta \in \mathfrak{a}\right\rangle$ such that: C_{θ} is a club of δ of order type ω_{1} satisfying $g_{\delta}^{i, \varepsilon}(\theta)=\cup\left\{g_{\alpha}^{i, \varepsilon}(\theta): \alpha \in C_{\theta}\right\}$ hence for every club C of δ included in C_{θ}
we have $g_{\delta}^{i, \varepsilon}(\theta)=\cup\left\{g_{\alpha}^{i, \varepsilon}(\theta): \alpha \in C_{\theta}\right\}$. Now $\theta \in \mathfrak{a} \Rightarrow g_{\delta}^{i, \varepsilon}(\theta)=\bigcup_{\alpha \in C} g_{\alpha}^{i, \varepsilon}(\theta)$ when $C:=\cap\left\{C_{\sigma}: \sigma \in \mathfrak{a}\right\}$, because C too is a club of δ recalling \mathfrak{a} is countable. So if $\alpha<\delta$ then for some β we have $\alpha<\beta \in C$ hence the set $\mathfrak{c}:=\left\{\theta \in \mathfrak{a}: g_{\alpha}^{i, \varepsilon}(\theta) \geq g_{\beta}^{i, \varepsilon}(\theta)\right\}$ belongs to J_{i} and $\theta \in \mathfrak{a} \backslash \mathfrak{c} \Rightarrow g_{\alpha}^{i, \varepsilon}(\theta)<g_{\beta}^{i, \varepsilon}(\theta) \leq g_{\delta}^{i, \varepsilon}(\theta)$, so indeed $g_{\alpha}^{i, \varepsilon}<J_{i} g_{\delta}^{i, \varepsilon}$.

Lastly, why $\zeta<\varepsilon \Rightarrow g_{\delta}^{i, \zeta} \leq g_{\delta}^{i, \varepsilon_{n}}$? As we can find a club C of δ which is as above for both $g_{\delta}^{i, \zeta}$ and $g_{\delta}^{i, \varepsilon}$ and recall that clause (b) of $\circledast_{i, \varepsilon}$ holds for every $\beta \in C$. Together $g_{\delta}^{i, \varepsilon}$ is as required.]
$(*)_{2} \operatorname{cf}\left(\delta_{i, \varepsilon}\right)>\aleph_{1}$ and even $\operatorname{cf}\left(\delta_{i, \varepsilon}\right) \geq \min \{\operatorname{cf}(\theta): \theta \in \mathfrak{a}\}$.
[Why? We have to prove that arriving to $\alpha>0$, if $\operatorname{cf}(\alpha)<\min \{\operatorname{cf}(\theta): \theta \in \mathfrak{a}\}$ then we can choose $g_{\alpha}^{i, \varepsilon}$ as required. The cases $\operatorname{cf}(\alpha)=\aleph_{1}, \alpha=0$ are covered by $(*)_{1},(*)_{0}$ respectively, otherwise let $u \subseteq \alpha$ be unbounded of order type $\operatorname{cf}(\alpha)$, and define a function g from \mathfrak{a} to the ordinals by $g(\theta)=\sup \left(\left\{g_{\beta}^{i, \varepsilon}(\theta): \beta \in u\right\} \cup\left\{g_{\alpha}^{i, \zeta}(\theta): \zeta<\varepsilon\right\}\right)$. This is a subset of θ of cardinality $<|\mathfrak{a}|+\operatorname{cf}(\alpha)$ which is $<\theta=\operatorname{cf}(\theta)$ hence $g \in \Pi \mathfrak{a}$, easily is as required, i.e. satisfies clauses (a) $+(\mathrm{b})$ and the $<_{*}$-first such g is $g_{\alpha}^{i, \varepsilon}$.]

Note that clause (e) of $\circledast_{i, \varepsilon}$ follows.
$(*)_{3}$ if $\zeta<\varepsilon$ then $\delta_{i, \varepsilon} \leq \delta_{i, \zeta}$.
[Why? Otherwise $g_{\delta_{i, \zeta}}^{i, \varepsilon}$ contradict clause (e) of $\circledast_{i, \zeta}$.]
$(*)_{4}$ if $g^{i, \varepsilon}=\left\langle g_{\alpha}^{i, \varepsilon}: \alpha<\delta_{i, \varepsilon}\right\rangle$ is well defined and $\operatorname{cf}\left(\delta_{i, \varepsilon}\right) \geq \kappa$ then $\mathfrak{b}_{i, \varepsilon}$ is well defined.
[Why? Clearly, it suffices to prove that there is \mathfrak{b} as required on $\mathfrak{b}_{i, \varepsilon}$ (in clauses (b),(i)). So toward contradiction assume that for every $\mathfrak{b} \in J_{i}^{+}, \bar{g}^{i, \varepsilon}$ is not $<J_{i}-$ cofinal in $\Pi \mathfrak{a}$ hence there is $h \in \Pi \mathfrak{a}$ such that $\alpha<\delta_{i, \varepsilon} \Rightarrow h \not J_{i} g_{\alpha}^{i, \varepsilon}$ and let h_{b} be the $<_{*}$-minimal such h. Let h_{*} be the function with domain \mathfrak{a} such that $h(\theta)=\cup\left\{h_{\mathfrak{b}}(\theta)+1: \mathfrak{b} \in J_{i}^{+}\right\}$.

As $\operatorname{hrtg}\left(J_{i}^{+}\right) \leq \operatorname{hrtg}(\mathscr{P}(\mathfrak{a}))<\min \{\operatorname{cf}(\theta): \theta \in \mathfrak{a}\}$, clearly $h_{*} \in \Pi \mathfrak{a}$. Now for $\alpha<\delta_{i, \varepsilon}$ let $\mathfrak{d}_{i, \varepsilon, \alpha}=\left\{\theta \in \mathfrak{a}: g_{\alpha}^{i, \varepsilon}(\theta) \leq h_{*}(\theta)\right\}$. So $\left\langle\mathfrak{d}_{i, \varepsilon, \alpha} / J_{i}: \alpha<\delta_{i, \varepsilon}\right\rangle$ is $\leq-$ increasing in the Boolean Algebra $\mathscr{P}(\mathfrak{a}) / J_{i}$, so for some $\beta_{i, \varepsilon}<\delta_{i, \varepsilon}$ we have $\alpha \in$ $\left(\beta_{i, \varepsilon}, \delta_{i, \varepsilon}\right) \Rightarrow \mathfrak{d}_{i, \varepsilon, \alpha}=\mathfrak{d}_{i, \varepsilon, \beta_{i, \varepsilon}} \bmod J_{i}$. This implies $\mathfrak{d}_{i, \varepsilon}$ can serve as $\mathfrak{b}_{i, \varepsilon}$.]

To finish consider the following two cases.
Case 1: We succeed to carry the induction, i.e. choose $\bar{g}^{i, \varepsilon}$ for every $\varepsilon<\kappa$.
So $\left\langle\mathfrak{b}_{i, \varepsilon}: \varepsilon<\kappa\right\rangle$ is a sequence of subsets of \mathfrak{a}, pairwise distinct (by $\circledast_{\kappa, 0}^{2}$ clauses $(\mathrm{g})+(\mathrm{b}))$, but $\kappa \geq \operatorname{hrtg}(\mathscr{P}(\omega))$ and \mathfrak{a} is countable; contradiction.

Case 2: We are stuck in $\varepsilon<\kappa$.
For $\varepsilon=0$ there is no problem to define $g_{\alpha}^{i, \varepsilon}$ by induction on α till we are stuck, say in α, necessarily α is of large enough cofinality $\geq \kappa$ by $(*)_{2}$, and so $\bar{g}^{i, \varepsilon}$ is well defined. We then prove $\mathfrak{b}_{i, \varepsilon}$ exists by $(*)_{4}$ again using $<_{*}$.

For ε limit we can also choose \bar{g}^{ε}.
For $\varepsilon=\zeta+1$, if $\mathfrak{a} \in J_{\varepsilon}$ then we are done; otherwise $g_{0}^{i, \varepsilon}$ as required can be chosen by $(*)_{0}$, and then we can prove that $\bar{g}^{i, \varepsilon}, \mathfrak{b}_{i, \varepsilon}$ exists as above. $\square_{1.8}$

Remark 1.10. From 1.8 we can deduce bounds on $\operatorname{hrtg}\left({ }^{Y}\left(\aleph_{\delta}\right)\right)$ when $\delta<\aleph_{1}$ and more like the one on $\aleph_{\omega}^{\aleph_{0}}$ (even better, the bound on $\operatorname{pp}\left(\aleph_{\omega}\right)$).

§ 2. No DECREASING SEQUENCE OF SUBALGEBRAS

In this section we concentrate on weaker axioms. We consider Theorem 1.2 under weaker assumptions than " $[\lambda]^{\aleph_{0}}$ is well orderable". We are also interested in replacing ω by ∂ in "no decreasing ω-sequence of $c \ell$-closed sets", but the reader may consider $\partial=\aleph_{0}$ only. Note that for the full version, Ax_{α}^{4}, i.e., $[\alpha]^{\partial}$ is well orderable, the case of $\partial=\aleph_{0}$ is implied by the $\partial>\aleph_{0}$ version and suffices for the results. But for other versions, the axioms for different ∂ 's seem incomparable.

Note that if we add many Cohens (not well ordering them) then $A x_{\lambda}^{4}$ fails below even for $\partial=\aleph_{0}$, whereas the other axioms are not affected. But forcing by $\aleph_{1}-$ complete forcing notions preserve Ax_{4}.
Hypothesis 2.1. DC_{∂} and let $\partial(*)=\partial+\aleph_{1}$. Actually we use only DC in 2.5(1) and DC_{∂} in $2.5(3)$ and the later claims. We fix a regular cardinal ∂.
Definition 2.2. Below, pedantically we should, e.g. write $A x^{\ell, \partial}$ instead of $A x^{\ell}$ and assume $\alpha>\mu>\kappa \geq \partial$. If $\kappa=\partial$ we may omit it.

1) $\mathrm{Ax}_{\alpha, \mu, \kappa}^{1}$ means that there is a weak closure operation on λ of character (μ, κ), see Definition $0.18(1 \mathrm{~A})$, such that there is no \subseteq-decreasing ∂-sequence $\left\langle\mathscr{U _ { \varepsilon }}: \varepsilon<\partial\right\rangle$ of subsets of α with $\varepsilon<\partial \Rightarrow c \ell\left(\mathscr{U}_{\varepsilon+1}\right) \nsupseteq \mathscr{U}_{\varepsilon}$. We may here and below replace κ by $<\kappa$; similarly for μ; let $<|Y|^{+}$means $|Y|$.
2) Let $\mathrm{Ax}_{\alpha,<\mu, \kappa}^{0}$ mean there is $c l$, a weak closure operation on λ of character (μ, κ), so may think $c l:[\alpha]^{\leq \kappa} \rightarrow[\alpha]^{<\mu}$ such that there is no \subseteq-decreasing sequence $\left\langle\mathscr{U}_{\varepsilon}: \varepsilon<\partial\right\rangle$ of members of $[\alpha]^{\leq \kappa}$ such that $\varepsilon<\partial \Rightarrow c \ell\left(\mathscr{U}_{\varepsilon+1}\right) \nsupseteq \mathscr{U}_{\varepsilon}$.
2A) Writing Y instead of κ means $c \ell:[\alpha]^{<\operatorname{hrtg}(Y)} \rightarrow[\alpha]^{<\mu}$. Let $c l_{[\varepsilon]}: \mathscr{P}(\alpha) \rightarrow$ $\mathscr{P}(\alpha)$ be $c \ell_{\varepsilon,<\operatorname{reg}\left(\kappa^{+}\right)}^{1}$ as defined in $0.18(4)$ recalling $\operatorname{reg}(\gamma)=\operatorname{Min}\{\chi: \chi$ a regular cardinal $\geq \gamma\}$.
3) Ax_{α}^{2} means that there is $\mathscr{A} \subseteq[\alpha]^{\partial}$ which is well orderable and for every $u \in[\alpha]^{\partial}$ for some $v \in \mathscr{A}, u \cap v$ has power $=\partial$.
4) Ax_{α}^{3} means that $\mathrm{cf}\left([\alpha]^{\leq \partial}, \subseteq\right)$ is below some cardinal, i.e., some cofinal $\mathscr{A} \subseteq[\alpha]^{\partial}$ (under \subseteq) is well orderable.
5) Ax_{α}^{4} means that $[\alpha]^{\leq \partial}$ is well orderable.
6) Above omitting α (or writing ∞) means "for every α ", omitting μ we mean $"<\operatorname{hrtg}(\mathscr{P}(\partial)) "$.
7) Lastly, let $\mathrm{Ax}_{\ell}=\mathrm{Ax}^{\ell}$ for $\ell=1,2,3$.

So easily (or we have shown in the proof of 1.2):
Claim 2.3. 1) Ax_{α}^{4} implies $\mathrm{Ax}_{\alpha}^{3}, \mathrm{Ax}_{\alpha}^{3}$ implies $\mathrm{Ax}_{\alpha}^{2}, \mathrm{Ax}_{\alpha}^{2}$ implies Ax_{α}^{1} and $A x_{\alpha}^{1}$ implies $A x_{\alpha}^{0}$. Similarly for $\mathrm{Ax}_{\alpha,<\mu, \kappa}^{\ell}$.
2) In Definition 2.2(2), the last demand only $c \ell \upharpoonright[\alpha]^{\leq 2}$ is relevant, in fact, an equivalent demand is that if $\left\langle\beta_{\varepsilon}: \varepsilon<\partial\right\rangle \in{ }^{\partial} \alpha$ then for some $\varepsilon, \beta_{\varepsilon} \in c \ell\left\{\beta_{\zeta}: \zeta \in\right.$ $(\varepsilon, \partial)\}$.
3) If $\mathrm{Ax}_{\alpha,<\mu_{1},<\theta}^{0}$ and $\theta \leq \operatorname{hrtg}(Y)$ and ${ }^{2} \mu_{2}=\sup \left\{\operatorname{hrtg}\left(\mu_{1} \times[\beta]^{\theta}\right): \beta<\operatorname{hrtg}(Y)\right\}$ then $A x_{\alpha,<\mu_{2},<\operatorname{hrtg}(Y)}^{0}$.
Proof. 1) Clearly $\mathrm{Ax}_{\alpha,<\mu, \kappa}^{2} \Rightarrow \mathrm{Ax}_{\alpha,<\mu, \kappa}^{1}$ holds similarly to the proof of 1.5 ; the other implications hold by inspection.
2) First assume that we have a \subseteq-decreasing sequence $\left\langle\mathscr{U}_{\varepsilon}: \varepsilon<\partial\right\rangle$ such that $\varepsilon<\partial \Rightarrow c \ell\left(\mathscr{U}_{\varepsilon+1}\right) \nsupseteq \mathscr{U}_{\varepsilon}$. Let $\beta_{\varepsilon}=\min \left(\mathscr{U}_{\varepsilon} \backslash c \ell\left(\mathscr{U}_{\varepsilon+1}\right)\right)$ for $\varepsilon<\partial$ so clearly

[^2]$\bar{\beta}=\left\langle\beta_{\varepsilon}: \varepsilon<\partial\right\rangle$ exists; so by monotonicity $c \ell\left(\left\{\beta_{\zeta}: \zeta \in[\varepsilon+1, \partial)\right\} \subseteq c \ell\left(\mathscr{U}_{\varepsilon+1}\right)\right.$ hence $\beta_{\varepsilon} \notin c \ell\left(\left\{\beta_{\zeta}: \zeta \in[\varepsilon+1, \partial)\right\}\right.$.

Second, assume that $\bar{\beta}=\left\langle\beta_{\varepsilon}: \varepsilon<\partial\right\rangle \in{ }^{\partial} \alpha$ satisfies $\beta_{\varepsilon} \notin c \ell\left(\left\{\beta_{\zeta}: \zeta \in[\varepsilon+1, \partial)\right\}\right.$ for $\varepsilon<\partial$. Now letting $\mathscr{U}_{\varepsilon}^{\prime}=\left\{\beta_{\zeta}: \zeta<\partial\right.$ satisfies $\left.\varepsilon \leq \zeta\right\}$ for $\varepsilon<\partial$ clearly $\left\langle\mathscr{U}_{\varepsilon}^{\prime}: \varepsilon<\partial\right\rangle$ exists, is \subseteq-decreasing and $\varepsilon<\partial \Rightarrow \beta_{\varepsilon} \notin c \ell\left(\mathscr{U}_{\varepsilon+1}^{\prime}\right) \wedge \beta_{\varepsilon} \in \mathscr{U}_{\varepsilon}^{\prime}$. So we have shown the equivalence.
3) Let $c \ell(-)$ witness $\mathrm{Ax}_{\alpha,<\mu_{1},<\theta}^{0}$. We define the function $c \ell^{\prime}$ with domain $[\alpha]<\operatorname{hrtg}(Y)$ by $c \ell^{\prime}(u)=\cup\{c \ell(v): v \subseteq u$ has cardinality $<\theta\}$.

Now
$(*)_{0} c \ell^{\prime}$ is a function from $[\alpha]^{<h r t g(Y)}$ into $[\alpha]^{<\mu_{2}}$.
For this, it is enough to note:
$(*)_{1}$ if $u \in[\alpha]^{<\operatorname{hrtg}(Y)}$ then $c \ell^{\prime}(u)$ has cardinality $<\mu_{2}:=\sup \left\{\operatorname{hrtg}\left(\mu_{1} \times[\beta]^{\theta}:\right.\right.$ $\beta<\operatorname{hrtg}(Y)\}$.
[Why? Let $C_{u}=\{(v, \varepsilon): v \subseteq u$ has cardinality $<\theta$ and $\varepsilon<\operatorname{otp}(c \ell(v))$ which is $\left.<\mu_{1}\right\}$. Clearly $\left|c \ell^{\prime}(u)\right|<\operatorname{hrtg}\left(C_{u}\right)$ and $\left|C_{u}\right|=\left|\mu_{1} \times[\operatorname{otp}(u)]^{<\theta}\right|$, so $(*)_{1}$ holds. Note that if $\alpha_{*}<\mu_{1}^{+}$we can replace the demand $v \in[u]^{<\theta} \Rightarrow|c \ell(v)|<\mu_{1}$ by $\left.v \in[u]^{<\theta} \Rightarrow \operatorname{otp}(c \ell(v))<\alpha_{*}.\right]$
$(*)_{2}$ If $\left\langle u_{\varepsilon}: \varepsilon<\partial\right\rangle$ is \subseteq-decreasing where $u_{\varepsilon} \subseteq \alpha$ then $u_{\varepsilon} \subseteq c \ell^{\prime}\left(u_{\varepsilon+1}\right)$ for some $\varepsilon<\partial$.
[Why? If not we can choose a sequence $\left\langle\beta_{\varepsilon}: \varepsilon<\partial\right\rangle$ by letting $\varepsilon<\partial \Rightarrow \beta_{\varepsilon}=$ $\min \left(u_{\varepsilon} \backslash c \ell^{\prime}\left(u_{\varepsilon+1}\right)\right)$. Let $u_{\varepsilon}^{\prime}=\left\{\beta_{\zeta}: \zeta \in[\varepsilon, \partial)\right\}$. As $\left\langle u_{\varepsilon}^{\prime}: \varepsilon<\partial\right\rangle$ is \subseteq-decreasing by the choice of $c \ell(-)$ for some $\varepsilon, \beta_{\varepsilon} \in c \ell\left\{\beta_{\zeta}: \zeta \in(\varepsilon+1, \partial)\right\}$, but this set is $\subseteq c \ell^{\prime}\left(u_{\varepsilon+1}\right)$ by the definition of $c \ell^{\prime}(-)$, so we are done.]

Claim 2.4. Assume cl witness $\mathrm{Ax}_{\alpha,<\mu, \kappa}^{0}$ so $\partial \leq \kappa<\mu$ and so cl : $[\alpha]^{\leq \kappa} \rightarrow[\alpha]^{<\mu}$ and recall $c \ell_{\varepsilon, \leq \kappa}^{1}: \mathscr{P}(\alpha) \rightarrow \mathscr{P}(\alpha)$ is from 2.2(2A), 0.18(4).

1) $c \ell_{1, \leq \kappa}^{1}$ is a weak closure operation, it has character $\left(\mu_{\kappa}, \kappa\right)$ whenever $\partial \leq \kappa \leq \alpha$ and $\mu_{\kappa}=\operatorname{hrtg}(\mu \times \mathscr{P}(\kappa))$, see Definition 0.18.
2) $c \ell_{\mathrm{reg}\left(\kappa^{+}\right), \leq \kappa}^{1}$ is a closure operation and it has character $\left(<\mu_{\kappa}^{\prime}, \kappa\right)$ when $\partial \leq \kappa \leq \alpha$ and $\mu_{\kappa}^{\prime}=\operatorname{hrtg}\left(\mathscr{H}_{<\partial^{+}}(\mu \times \kappa)\right)$.

Proof. 1) By its definition $c \ell_{1, \leq \kappa}^{1}$ is a weak closure operation.
Assume $u \subseteq \alpha,|u| \leq \kappa$; non-empty for simplicity. Clearly $\mu \times[|u|]^{<\partial}$ has the same power as $\mu \times[u]^{<\partial}$. Define ${ }^{3}$ the function G with domain $\mu \times[u]^{<\partial}$ as follows: if $\alpha<\mu$ and $v \in[u]^{\leq \partial}$ then $G((\alpha, v))$ is the α-th member of $c \ell(v)$ if $\alpha<\operatorname{otp}(c \ell(v))$ and $G((\alpha, v))=\min (u)$ otherwise.

So G is a function from $\mu \times[u]^{\leq \partial}$ onto $c \ell_{1, \leq \kappa}^{1}(u)$. This proves that $c \ell_{1, \leq \kappa}^{1}$ has character $\left(<\mu_{\kappa}, \kappa\right)$ as $\mu_{\kappa}=\operatorname{hrtg}(\mu \times \mathscr{P}(\kappa))$.
2) If $\left\langle u_{\varepsilon}: \varepsilon \leq \operatorname{reg}\left(\kappa^{+}\right)\right\rangle$is an increasing continuous sequence of sets then $\left[u_{\partial^{+}}\right]^{\leq \partial}=$ $\cup\left\{\left[u_{\varepsilon}\right] \leq \partial: \varepsilon<\operatorname{reg}\left(\kappa^{+}\right)\right\}$as $\operatorname{reg}\left(\kappa^{+}\right)$is regular (even of cofinality $>\bar{\partial}$ suffice) by its definition, note $\operatorname{reg}\left(\partial^{+}\right)=\partial^{+}$when AC_{∂} holds when DC_{∂} holds.

Second, let $u \subseteq \alpha,|u| \leq \kappa$ and let $u_{\varepsilon}=c \ell_{\varepsilon, \kappa}^{1}(u)$ for $\varepsilon \leq \partial^{+}$; it is enough to show that $\left|u_{\partial^{+}}\right|<\mu_{\kappa}^{\prime}$. The proof is similar to earlier one.

[^3]Definition／Claim 2．5．Let c exemplify $\mathrm{Ax}_{\lambda,<\mu, Y}^{0}$ and Y be an uncountable set such that $\partial(*) \leq_{\text {qu }} Y$ ．
1）Let $\mathscr{F}_{\mathfrak{y}}, \mathscr{F}_{\mathfrak{y}, \alpha}$ be as in the proof of Theorem 1.2 for $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(Y, \mu)$ and ordinal α（they depend on λ and $c \ell$ but note that $c \ell$ determines λ ；so if we derive $c \ell$ by $\mathrm{Ax}_{\lambda}^{4}$ then they depend indirectly on the well ordering of $[\lambda]^{\partial}$ ）so we may write $\mathscr{F}_{\mathfrak{y}, \alpha}=\mathscr{F}_{\mathfrak{y}}(\alpha, c \ell)$ ，etc．

That is，fully
$(*)_{1}$ for $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(Y, \mu)$ and ordinal α let $\mathscr{F}_{\mathfrak{y}, \alpha}$ be the set of f such that：
（a）f is a function from $Z^{\mathfrak{y}}$ to λ ，
（b） $\operatorname{rk}_{D[\mathfrak{n}]}(f)=\alpha$ recalling that this means $\operatorname{rk}_{D_{1}^{\mathfrak{y}}+Z^{\mathfrak{n}}}\left(f \cup 0_{Y \backslash Z^{\mathfrak{y}}}\right)=\alpha$ by Definition 0．10（2），
（c）$D_{2}^{\mathfrak{y}}=D_{1}^{\mathfrak{y}} \cup\left\{Y \backslash A: A \in J\left[f, D_{1}^{\mathfrak{y}}\right]\right\}$ ，see Definition 0.13 ，
（d）$Z^{\mathfrak{y}} \in D_{2}^{\mathfrak{y}}$ ，
（e）if $Z \in D_{2}^{\mathfrak{y}}$ and $Z \subseteq Z^{\mathfrak{y}}$ then $c \ell(\{f(y): y \in Z\}) \supseteq\left\{f(y): y \in Z^{\mathfrak{y}}\right\}$ ，
$(f) h^{\mathfrak{y}}$ is a function with domain $Z^{\mathfrak{y}}$ such that $y \in Z^{\mathfrak{d}} \Rightarrow h^{\mathfrak{h}}(y)=$ $\operatorname{otp}\left(f(y) \cap\left\{c \ell\left(\left\{f(z): z \in Z^{\mathfrak{\eta}}\right\}\right)\right.\right.$.
$(*)_{2} \mathscr{F}_{\mathfrak{y}}=\cup\left\{\mathscr{F}_{\mathfrak{y}, \alpha}: \alpha\right.$ an ordinal $\}$.
2）Notice that $\mathscr{F}_{\mathfrak{y}, \alpha}$ is a singleton or the empty set．Let $\Xi_{\mathfrak{y}}=\Xi_{\mathfrak{y}}(c \ell)=\Xi_{\mathfrak{y}}(\lambda, c \ell)=$ $\left\{\alpha: \mathscr{F}_{\mathfrak{y}, \alpha} \neq \emptyset\right\}$ and $f_{\mathfrak{y}, \alpha}$ is the function $f \in \mathscr{F}_{\mathfrak{y}, \alpha}$ when $\alpha \in \Xi_{\mathfrak{y}}$ ；it is well defined． 3）If $D \in \operatorname{Fil}_{\partial(*)}(Y), \operatorname{rk}_{D}(f)=\alpha$ and $f \in{ }^{Y} \lambda$ then $\alpha \in \Xi_{D}(\lambda, c \ell)$ and $f \upharpoonright Z^{\mathfrak{y}}=$ $f_{\mathfrak{y}, \alpha}$ for some $\mathfrak{y} \in \operatorname{Fil}_{\aleph_{1}}^{4}(Y)$ ；moreover，$\left(D_{1}^{\mathfrak{y}}, D_{2}^{\mathfrak{y}}\right)=(D$ ，dual $(J(J[f, D]))$ where $\Xi_{D}(\lambda, c \ell):=\cup\left\{\Xi_{\mathfrak{y}}: \mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(Y)\right.$ and $\left.D_{1}^{\mathfrak{y}}=D\right\}$ ．
4）If $D \in \operatorname{Fil}_{\partial(*)}(Y), f \in{ }^{Y} \lambda, Z \in D^{+}$and $\operatorname{rk}_{D+Z}(f) \geq \alpha$ then for some $g \in$ $\prod_{y \in Y}(f(y)+1) \subseteq{ }^{Y}(\lambda+1)$ we have $\operatorname{rk}_{D}(g)=\alpha$ hence $\alpha \in \Xi_{D}(\lambda, c \ell)$ ．
5）So we should write $\mathscr{F}_{\mathfrak{y}}[c \ell], \Xi_{\mathfrak{y}}[\lambda, c \ell], f_{\mathfrak{y}, \alpha}[c \ell]$ ．
Proof．As in the proof of 1.2 recalling＂$c l$ exemplifies $\mathrm{Ax}_{\lambda,<\mu, \operatorname{hrtg}(Y)}^{0}$＂holds，this replaces the use of F_{*} there；and see the proof of 2.11 below in part（3），for this we need：
\boxplus if $D \in \operatorname{Fil}_{\partial}^{1}(Y)$ and $f \in{ }^{\kappa} \partial$ ，then for some $Z \in D$ we have：
－if $Y \subseteq Z$ belongs to D then $c \ell(\operatorname{Rang}(f \upharpoonright Y)=c \ell(\operatorname{Rang}(f \upharpoonright Z))$ ．
［Why $⿴ 囗 十$ holds？By Definition 2．2（2）using the axiom DC_{∂} ．］
Claim 2．6．We have ξ_{2} is an ordinal and $\mathrm{Ax}_{\xi_{2},<\mu_{2}, Y}^{0}$ holds when，（note that μ_{2} is not much larger than μ_{1} ）：
（a）$A x_{\xi_{1},<\mu_{1}, Y}^{0}$ so $\partial<\operatorname{hrtg}(Y)$ ，
（b）cl witnesses clause（a），
（c）$D \in \operatorname{Fil}_{\partial(*)}(Y)$ ，
（d）$\xi_{2}=\left\{\alpha: f_{\mathfrak{y}, \alpha}[c \ell]\right.$ is well defined for some $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)$ which satisfies $D_{1}^{\mathfrak{y}}=D$ and necessarily $\left.\operatorname{Rang}\left(f_{\mathfrak{y}, \alpha}[c \ell]\right) \subseteq \xi_{1}\right\}$,
（e）μ_{2} is defined as $\mu_{2,3}$ where：
(α) let $\mu_{2,0}=\operatorname{hrtg}(Y)$ ，
（ β ）$\mu_{2,1}=\sup _{\beta<\mu_{2,0}} \operatorname{hrtg}\left(\beta \times \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)\right)$ ，
($\gamma) \mu_{2,2}=\sup _{\alpha<\mu_{2,1}} \operatorname{hrtg}\left(\mu_{1} \times[\alpha]{ }^{\leq \partial}\right)$,
($\delta) \mu_{2,3}=\sup \left\{\operatorname{hrtg}\left({ }^{Y} \beta \times \operatorname{Fil}_{\partial(*)}(Y)\right): \beta<\mu_{2,2}\right\}$ (this is an overkill).

Proof.
$\oplus_{1} \quad \xi_{2}$ is an ordinal.
[Why? To prove that ξ_{2} is an ordinal we have to assume $\alpha<\beta \in \xi_{2}$ and prove $\alpha \in \xi_{2}$. As $\beta \in \xi_{2}$ clearly $\beta \in \Xi_{\mathfrak{y}}[c \ell]$ for some $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)$ for which $D_{1}^{\mathfrak{y}}=D$ so there is $f \in{ }^{Y}\left(\xi_{1}\right)$ such that $f \upharpoonright Z^{\mathfrak{y}} \in \mathscr{F}_{\mathfrak{y}, \beta}$. $\operatorname{So~}_{\operatorname{rk}}^{D+Z[\mathfrak{y}]}$ $(f)=\beta$ hence by 0.10 there is $g \in{ }^{Y} \lambda$ such that $g \leq f$, i.e., $(\forall y \in Y)(g(y) \leq f(y))$ and $\operatorname{rk}_{D+Z[\mathfrak{l}]}(g)=\alpha$. By 2.5(4) there is $\mathfrak{z} \in \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)$ such that $D_{1}^{\mathfrak{z}}=D+Z[\mathfrak{y}]$ and $g \upharpoonright Z^{\mathfrak{z}} \in \mathscr{F}_{\mathfrak{z}, \alpha}$ so we are done proving ξ_{2} is an ordinal.]

We define the function $c \ell^{\prime}$ with domain $\left[\xi_{2}\right]^{<\operatorname{hrtg}(Y)}$ as follows:
$\oplus_{2} c \ell^{\prime}(u)=\{0\} \cup\left\{\alpha\right.$: there is $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)$ such that $f_{\mathfrak{y}, \alpha}[c \ell]$ is well defined ${ }^{4}$ and $\left.\operatorname{Rang}\left(f_{\mathfrak{v}, \alpha}[c \ell]\right) \subseteq c \ell(\mathbf{v}[u])\right\}$.
where

$$
\oplus_{3} \mathbf{v}[u]:=\cup\left\{c \ell(v): v \subseteq \xi_{1} \text { is of cardinality } \leq \partial \text { and is } \subseteq \mathbf{w}(v)\right\}
$$

where
\oplus_{4} for $v \subseteq \xi_{1}$ we let $\mathbf{w}(v)=\cup\left\{\operatorname{Rang}\left(f_{\mathfrak{z}, \beta}[c \ell]\right): \mathfrak{z} \in \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)\right.$ and $\beta \in u$ and $f_{\mathfrak{z}, \beta}[c l]$ is well defined $\}$.

Note that

$$
\oplus_{5} c \ell^{\prime}(u)=\{0\} \cup\left\{\operatorname{rk}_{D}(f): D \in \operatorname{Fil}_{\partial(*)}(Y), Z \in D^{+} \text {and } f \in{ }^{Y} \mathbf{v}(u)\right\}
$$

Note that (by 2.5(1)):
\boxtimes_{1} for each $u \subseteq \xi_{1}$ and $\mathfrak{x} \in \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)$ the set $\left\{\alpha<\xi_{2}: f_{\mathfrak{x}, \alpha}[c \ell]\right.$ is a well defined function into $u\}$ has cardinality $<\operatorname{wlor}\left(T_{D_{2}^{\mathfrak{n}}}(u)\right)$, that is, $\left\langle f_{\mathfrak{x}, \alpha}[c \ell]\right.$: $\left.\alpha \in \Xi_{\mathfrak{x}} \cap \xi_{2}\right\rangle$ is a sequence of functions from $Z^{\mathfrak{x}}$ to $u \subseteq \xi_{1}$, any two are equal only on a set $=\emptyset \bmod D_{2}^{\mathfrak{r}}($ with choice it has cardinality $\leq|Y||u|)$), call this bound $\mu_{|u, \mathfrak{r}|}^{\prime}$.

Note
\boxtimes_{2} if $u_{1} \subseteq u_{2} \subseteq \xi_{2}$ then
$(\alpha) \mathbf{w}\left(u_{1}\right) \subseteq \mathbf{w}\left(u_{2}\right)$ and $\mathbf{v}\left(u_{1}\right) \subseteq \mathbf{v}\left(u_{2}\right) \subseteq \xi_{1}$
$(\beta) c \ell^{\prime}\left(u_{1}\right) \subseteq c \ell^{\prime}\left(u_{2}\right)$
$(\gamma) u \subseteq \mathbf{v}(u)$ and $\mathbf{w}[u] \subseteq \mathbf{v}[u]$
($\delta) u_{1} \subseteq c \ell^{\prime}\left(u_{1}\right)$.

[^4][Why? E.g. for clause (δ); assume $\alpha \in u$ and let f be a unique function from Y into $\{\alpha\}$. Hence for some $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)$ we have $f_{\mathfrak{y}, \alpha}$ is well defined. Now $\operatorname{Rang}\left(f_{\mathfrak{y}, \alpha}\right) \subseteq \mathbf{w}(u)$ by the choice of $\mathbf{w}(u)$ in \oplus_{4} and so $\operatorname{Rang}\left(f_{\mathfrak{y}, \alpha}\right) \subseteq \mathbf{v}(u)$ by clause (γ) of \boxplus_{2} hence $\operatorname{Rang}\left(f_{\mathfrak{y}, \alpha}\right) \subseteq c \ell(\mathbf{v}, u)$ by the assumption on $c l$, see by $2.6(\mathrm{a}),(\mathrm{b})$ and 2.2(2). So we have $f_{\mathfrak{y}, \beta}$ well defined and $\operatorname{Rang}\left(f_{\mathfrak{y}, \alpha}\right) \subseteq c \ell(\mathbf{v}(u))$ so by the definition of $c \ell^{\prime}(u)$ in \oplus_{2} we have $\alpha \in c \ell^{\prime}(u)$ so we are done.]
\boxtimes_{3} if $u \subseteq \xi_{2},|u|<\operatorname{hrtg}(Y)$ then $\mathbf{w}(u)=\left\{f_{\mathfrak{y}, \alpha}(z): \alpha \in u, \mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right), f_{\mathfrak{y}, \alpha}\right.$ is well defined and $\left.z \in Z^{\mathfrak{y}}\right\}$ is a subset of ξ_{1} of cardinality $<\operatorname{hrtg}(|u| \times$ $\left.\left.\operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)\right) \leq \sup \left\{\operatorname{hrtg}(\beta) \times \operatorname{Fil}_{\partial(*)}^{4}\left(Y, \mu_{1}\right)\right): \beta<\operatorname{hrtg}(Y)\right\}$ which was named $\mu_{2,1}$ in 2.6(e)(β)
\boxtimes_{4} if $u \subseteq \xi_{1}$ and $|u|<\mu_{2,1}$ then $\cup\left\{c \ell(v): v \in[u]^{\leq \partial}\right\}$ is a subset of μ_{1} of cardinality $<\operatorname{hrtg}\left(\mu_{1} \times[u]^{\leq \partial}\right) \leq \sup _{\alpha<\mu_{2,1}} \operatorname{hrtg}\left(\mu_{1} \times[\alpha]^{\leq \partial}\right)$ which we call $\mu_{2,2}$ in $2.6(e)(\gamma)$
\boxtimes_{5} if $u \subseteq \xi_{2}$ and $|u|<\operatorname{hrtg}(Y)$ then $\mathbf{v}(u)$ has cardinality $<\mu_{2,2}$.
[Why? By \oplus_{3} and \boxtimes_{3} and \boxtimes_{4}.]
\boxtimes_{6} if $u \subseteq \xi_{2}$ and $|u|<\operatorname{hrtg}(Y)$ then $c \ell^{\prime}(u) \subseteq \xi_{2}$ and has cardinality $<\mu_{2,3}$ is defined in $2.6(e)(\delta)$ which we call μ_{2}.
[Why? Without loss of generality $\mathbf{v}(u) \neq \emptyset$. By \oplus_{5} we have $\left|c \ell^{\prime}(u)\right|<\operatorname{hrtg}\left({ }^{Y} \mathbf{v}(u)\right) \times$ $\left.\operatorname{Fil}_{\partial(*)}(Y)\right)$ and by \boxplus_{5} the latter is $\leq \sup \left\{\operatorname{hrtg}\left({ }^{Y} \beta \times \operatorname{Fil}_{\partial(*)}(Y)\right): \beta<\mu_{2,2}\right\}=\mu_{2,3}$ recalling clause $(e)(\delta)$ of the claim, so we are done.]
$\boxtimes_{7} c \ell^{\prime}$ is a very weak closure operation on λ and has character $\left(<\mu_{2}, \operatorname{hrtg}(Y)\right)$.
[Why? In Definition $0.18(1)$, clause (a) holds by the Definition of $c \ell^{\prime}$, clause (b) holds by \boxplus_{6} and as for clause (c), $0 \in c \ell^{\prime}(u)$ by the definition of $c \ell^{\prime}$ and $u \subseteq c \ell^{\prime}(u)$ by clause (δ) of \boxtimes_{2}.]

Now it is enough to prove
$\boxtimes_{8} c \ell^{\prime}$ witnesses $\mathrm{Ax}_{\xi_{2},<\mu_{2}, Y}^{0}$.
Recalling \boxtimes_{7}, toward contradiction assume $\overline{\mathscr{U}}=\left\langle\mathscr{U}_{\varepsilon}: \varepsilon<\partial\right\rangle$ is \subseteq-decreasing, $\mathscr{U}_{\varepsilon} \in\left[\xi_{1}\right]<\operatorname{hrtg}(Y)$ and $\varepsilon<\partial \Rightarrow \mathscr{U}_{\varepsilon} \nsubseteq c \ell\left(\mathscr{U}_{\varepsilon+1}\right)$. We define $\bar{\gamma}=\left\langle\gamma_{\varepsilon}: \varepsilon<\partial\right\rangle$ by

$$
\gamma_{\varepsilon}=\operatorname{Min}\left(\mathscr{U}_{\varepsilon} \backslash c \ell\left(\mathscr{U}_{\varepsilon+1}\right)\right)
$$

As AC_{∂} follows from DC_{∂}, we can choose $\left\langle\mathfrak{y}_{\varepsilon}: \varepsilon<\partial\right\rangle$ such that $f_{\mathfrak{y}_{\varepsilon}, \gamma_{\varepsilon}}[c \ell]$ is well defined for $\varepsilon<\partial$.

Let for $\varepsilon<\partial$

$$
u_{\varepsilon}=\left\{\gamma_{\zeta}: \zeta \in[\varepsilon, \partial)\right\}
$$

So
$(*)_{1} u_{\varepsilon} \in\left[\xi_{1}\right]^{\leq \partial} \subseteq\left[\xi_{1}\right]^{<\operatorname{hrtg}(Y)}$.
[Why? By clause (a) of the assumption of 2.6.]
$(*)_{2} u_{\varepsilon}$ is \subseteq-decreasing with ε.
[Why? By the definition.]

$$
(*)_{3} \gamma_{\varepsilon} \in u_{\varepsilon} \backslash c \ell\left(u_{\varepsilon+1}\right) \text { for } \varepsilon<\partial
$$

[Why? $\gamma_{\varepsilon} \in u_{\varepsilon}$ by the definition of u_{ε}.]
Now if $\zeta \in[\varepsilon, \gamma)$ then $f_{\mathfrak{y} \zeta, \gamma_{\zeta}}[c \ell]$ is well defined and $\gamma_{\zeta} \in \mathscr{U}_{\zeta} \backslash c \ell\left(\mathscr{U}_{\zeta+1}\right)$ (see the choice of γ_{ε}) but $\left\langle\mathscr{U}_{\xi}: \xi<\partial\right\rangle$ is \subseteq-decreasing hence $\gamma_{\zeta} \in \mathscr{U}_{\zeta}$, by the definition of $\mathbf{w}\left[u_{\varepsilon}\right], \operatorname{Rang}\left(f_{\mathfrak{y}_{\zeta}, \gamma_{\zeta}}\right) \in \mathbf{w}\left(\mathscr{U}_{\varepsilon}\right)$, hence $\operatorname{Rang}\left(f_{\mathfrak{y}_{\zeta}, \gamma_{\zeta}}\right) \in \mathbf{v}\left(\mathscr{U}_{\varepsilon}\right) \subseteq c \ell\left(\mathbf{v}\left(\mathscr{U}_{\varepsilon}\right)\right)$. As this holds for every $\zeta \in[\varepsilon, \gamma)$ we can deduce $u_{\varepsilon}=\left\{\gamma_{\zeta}: \zeta \in[\varepsilon, \partial)\right\} \subseteq c \ell^{\prime}\left(\mathbf{v}\left(\mathscr{U}_{\varepsilon}\right)\right)$.

Lastly, $\gamma_{\varepsilon} \notin \mathbf{v}\left(\mathscr{U}_{\varepsilon+1}\right)$ by the choice of β_{ε}. So $\left\langle u_{\varepsilon}: \varepsilon<\partial\right\rangle$ contradict the assumption on $\left(\xi_{1}, c \ell\right)$. From the above the conclusion should be clear. $\quad \square_{2.6}$

Claim 2.7. Assume $\aleph_{0}<\kappa=\operatorname{cf}(\lambda)<\lambda$ hence κ is regular $\geq \partial$ of course, and D is the club filter on κ and $\bar{\lambda}=\left\langle\lambda_{i}: i<\kappa\right\rangle$ is increasing continuous with limit λ.

Then $\lambda^{+} \leq\left\{\operatorname{rk}_{D_{\kappa}}(f): f \in \prod_{i<\kappa^{+}} \lambda_{i}^{+}\right\}$.
Proof. For each $\alpha<\lambda^{+}$there is a one to one ${ }^{5}$ function g from α into $|\alpha| \leq \lambda$ and we let $f_{g} \in \prod_{i<\kappa} \lambda_{i}$ be

$$
f(i)=\operatorname{otp}\left(\left\{\beta<\alpha: g(\beta)<\lambda_{i}\right\} .\right.
$$

Let

$$
\begin{aligned}
\mathscr{F}_{\alpha}=\{f: \quad & f \text { is a function with domain } \kappa \text { satisfying } i<\kappa \Rightarrow f(i)<\lambda_{i}^{+} \\
& \text {such that for some one to one function } g \text { from } \alpha \text { into } \lambda \\
& \text { for each } \left.i<\kappa \text { we have } f(i)=\operatorname{otp}\left(\left\{\beta<\alpha: g(\beta)<\lambda_{i}\right\}\right)\right\} .
\end{aligned}
$$

Now
$(*)_{1} \quad(\alpha) \mathscr{F}_{\alpha} \neq \emptyset$ for $\alpha<\lambda^{+}$,
$(\beta)\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda^{+}\right\rangle$exists as it is well defined.
[Why? For clause (α) let $g: \alpha \rightarrow \lambda$ be one to one and so the f defined above belongs to \mathscr{F}_{α}. For clause (β) see the definition of $\mathscr{F}_{\alpha}\left(\right.$ for $\left.\alpha<\lambda^{+}\right)$.]
$(*)_{2}(\alpha)$ if $f \in \mathscr{F}_{\beta}, \alpha<\beta<\lambda^{+}$then for some $f^{\prime} \in \mathscr{F}_{\alpha}$ we have $f^{\prime}<_{J_{\kappa}^{\text {bd }}} f$,
$(\beta)\left\langle\min \left\{\operatorname{rk}_{D}(f): f \in \mathscr{F}_{\alpha}\right\}: \alpha<\lambda^{+}\right\rangle$is strictly increasing hence $\min \left\{\operatorname{rk}_{D}(f)\right.$: $\left.f \in \mathscr{F}_{\alpha}\right\} \geq \alpha$.
[Why? For clause (α), let g witness " $f \in \mathscr{F}_{\beta}$ " and define the function $f^{\prime} \in \prod_{i<\kappa} \lambda_{i}^{+}$ by $f^{\prime}(i)=\operatorname{otp}\left\{\gamma<\alpha: g(\gamma)<\lambda_{i}\right\}$. So $g\left\lceil\alpha\right.$ witness $f^{\prime} \in \mathscr{F}_{\alpha}$, and letting $i(*)=$ $\min \left\{i: g(\alpha)<\lambda_{i}\right\}$ we have $i \in[i(*), \kappa) \Rightarrow f^{\prime}(i)<f(i)$ hence $f^{\prime}<_{J_{\kappa}^{\text {bd }}} f$ as promised. For clause (β) it follows.]

So we have proved 2.7.

$$
\square_{2.7}
$$

Conclusion 2.8. 1) Assume
(a) $\mathrm{Ax}_{\lambda,<\mu, \kappa}^{0}$,
(b) $\lambda>\operatorname{cf}(\lambda)=\kappa$ (not really needed in part (1)).

Then for some $\mathscr{F}_{*} \subseteq{ }^{\kappa} \lambda=:\{f: f$ a partial function from κ to $\lambda\}$ we have
(α) every $f \in{ }^{\kappa} \lambda$ is a countable union of members of \mathscr{F}_{*},
$(\beta) \mathscr{F}_{*}$ is the union of $\left|\operatorname{Fil}_{\partial(*)}^{4}(\kappa,<\mu)\right|$ well ordered sets: $\left\{\mathscr{F}_{\mathfrak{y}}^{*}: \mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu)\right\}$,
(γ) moreover there is a function giving for each $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa)$ a well ordering of $\mathscr{F}_{\mathfrak{y}}^{*}$.

[^5]2) Assume in addition that $\operatorname{hrtg}\left(\operatorname{Fil}_{\partial(*)}^{4}(\kappa,<\mu)\right)<\lambda, \operatorname{cf}\left(\lambda^{+}\right)$and $\operatorname{hrtg}\left({ }^{\kappa} \mu\right)<\lambda \underline{\text { then }}$ for some $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa)$ we have $\left|\mathscr{F}_{\mathfrak{y}}^{*}\right|>\lambda$.
3) If in part (2) we may omit the assumption on $\operatorname{cf}\left(\lambda^{+}\right)$still $\lambda^{+}=\sup \left\{\operatorname{otp}\left(\Xi_{\mathfrak{y}} \cap \lambda^{+}\right)\right.$: $\left.\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu)\right\}$.
Proof. 1) By the proof of 1.2.
2) Assume that this fails; so for every $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa,<\mu)$, the set $S_{\mathfrak{y}}=\Xi_{\mathfrak{y}} \cap \lambda^{+}$ has order type $<\lambda^{+}$. But we are assuming $\operatorname{cf}\left(\lambda^{+}\right) \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\partial() *}^{4}(\kappa, \mu)\right.$, so there is $\gamma<\lambda^{+}$such that $\gamma>\operatorname{otp}\left(S_{\mathfrak{y}}\right)$ for every relevant \mathfrak{y}, without loss of generality $\gamma>\lambda$ and let g be a one-to-one function from γ onto λ.

We choose $f \in{ }^{\kappa} \lambda$ by

$$
\begin{aligned}
f(i)=\operatorname{Min}\left(\lambda \backslash \left\{f_{\mathfrak{y}, \alpha}(i):\right.\right. & \mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu) \\
& f_{\mathfrak{y}, \alpha}(i) \text { is well defined, i.e. } \\
& i \in Z[\mathfrak{y}] \text { and } \alpha \in \Xi_{\mathfrak{y}} \text { and } \\
& \left.\left.g\left(\operatorname{otp}\left(\alpha \cap \Xi_{\mathfrak{y}}\right)\right)<\mu_{i}\right\}\right) .
\end{aligned}
$$

Now $f(i)$ is well defined as the minimum is taken over a non-empty set of ordinals, this holds as we substruct from λ a set which has cardinality $\leq \mu_{i}$ which is $<\lambda$. But f contradicts part (1). Note that in fact $f \in \prod_{i} \mu_{i}^{+}$.
3) Same proof as in part (2).

Conclusion 2.9. Assume $A x_{\lambda,<\mu, \kappa}^{0}$ so $\lambda>\mu$.
Then the cardinal λ^{+}is not measurable (even in cases it is regular ${ }^{6}$) when
$\boxtimes(a) \quad \lambda>\operatorname{cf}(\lambda)=\kappa>\aleph_{0}$,
(b) $\lambda>\operatorname{hrtg}\left(\left(\operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu)\right)\right.$.

Proof. Naturally we fix a witness $c \ell$ for $\mathrm{Ax}_{\lambda,<\mu, \kappa}^{0}$. Let $\mathscr{F}_{\mathfrak{y}}, \Xi_{\mathfrak{y}}, f_{\mathfrak{y}, \alpha}, \mathscr{F}_{\mathfrak{y}, \alpha}^{\lambda}$ be defined as in 2.5 so by claims $2.5,2.7$ we have $\cup\left\{\Xi_{\mathfrak{y}}: \mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa)\right\} \supseteq \lambda^{+}$; moreover, $\alpha \in \lambda^{+} \cap \Xi_{\mathfrak{y}} \Rightarrow f_{\eta, \alpha} \in{ }^{\kappa} \lambda$.

Let $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu)$ be such that $\left|\mathscr{F}_{\mathfrak{y}}\right|>\lambda$, we can find such \mathfrak{y} by 2.8 , as without loss of generality we can assume λ^{+}is regular (or even measurable, toward contradiction). Let $Z=Z[\mathfrak{y}]$. So $\Xi_{\mathfrak{y}}$ is a set of ordinals of cardinality $>\lambda$. For $\zeta<\operatorname{otp}\left(\Xi_{\mathfrak{y}}\right)$ let α_{ζ} be the ζ-th member of $\Xi_{\mathfrak{y}}$, so $f_{\mathfrak{y}, \alpha_{\zeta}}$ is well defined. Toward contradiction let D be a (non-principal) ultrafilter on λ^{+}which is λ^{+}-complete. For $i \in Z$ let $\gamma_{i}<\lambda$ be the unique ordinal γ such that $\left\{\zeta<\lambda^{+}: f_{\mathfrak{y}, \alpha_{\zeta}}(i)=\gamma\right\} \in D$. As $|Z| \leq \kappa<\lambda^{+}$and D is κ^{+}-complete clearly $\left\{\zeta: \bigwedge_{i \in Z} f_{\mathfrak{y}, \alpha_{\zeta}}(i)=\gamma_{i}\right\} \in D$, so as D is a non-principal ultrafilter, for some $\zeta_{1}<\zeta_{2}, f_{\mathfrak{y}, \alpha_{\zeta_{1}}}=f_{\mathfrak{y}, \alpha_{\zeta_{2}}}$, contradiction. So there is no such D.

Remark 2.10. Similarly if D is κ^{+}-complete and weakly λ^{+}-saturated and $\mathrm{Ax}_{\lambda^{+},<\mu}^{0}$, see [She16].
Claim 2.11. If $\mathrm{Ax}_{\lambda,<\mu, \kappa}^{0}$, then we can find \bar{C} such that:
(a) $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$,
(b) $S=\{\delta<\lambda: \delta$ is a limit ordinal of cofinality $\geq \partial(*)\}$,

[^6](c) C_{δ} is an unbounded subset of δ, even a club,
(d) if $\delta \in S, \operatorname{cf}(\delta) \leq \kappa$ then $\left|C_{\delta}\right|<\mu$,
(e) if $\delta \in S, \operatorname{cf}(\delta)>\kappa$ then $\left|C_{\delta}\right|<\operatorname{hrtg}\left(\mu \times[\operatorname{cf}(\delta)]^{\kappa}\right)$.

Remark 2.12. 1) Recall that if we have $\mathrm{Ax}_{\lambda}^{4}$ (see $2.2(5)$) then trivially there is $\left\langle C_{\delta}: \delta<\lambda, \operatorname{cf}(\delta) \leq \partial\right\rangle, C_{\delta}$ a club of δ of order type $\operatorname{cf}(\delta)$ as if $<_{*}$ well order $[\lambda] \leq \partial$ we let $C_{\delta}:=$ be the $<_{*}$-minimal C which is a closed unbounded subset of δ of order type $\operatorname{cf}(\delta)$.
2) $\mathrm{Ax}_{\lambda,<\xi, \kappa}^{0}$ suffices if $\kappa<\xi<\lambda$.

Proof. The "even a club" is not serious as we can replace C_{δ} by its closure in δ.
Let $c \ell$ witness $\mathrm{Ax}_{\lambda,<\mu, \kappa}^{0}$. For each $\delta \in S$ with $\operatorname{cf}(\delta) \in[\partial(*), \kappa]$ we let

$$
C_{\delta}=\cap\{\delta \cap c \ell(C): C \text { a club of } \delta \text { of order type } \operatorname{cf}(\delta)\}
$$

Now $\bar{C}^{\prime}=\left\langle C_{\delta}: \delta \in S\right.$ and $\left.\operatorname{cf}(\delta) \in[\partial(*), \kappa]\right\rangle$ is well defined and exist. Clearly C_{δ} is a subset of δ.

For any club C of δ of order type $\operatorname{cf}(\delta) \in[\partial(*), \kappa]$ clearly $\delta \cap c \ell(C) \subseteq c \ell(C)$ which has cardinality $<\mu$.

The main point is to show that C_{δ} is unbounded in δ, otherwise we can choose by induction on $\varepsilon<\partial$, a club $C_{\delta, \varepsilon}$ of δ of order type $\operatorname{cf}(\delta)$, decreasing with ε such that $C_{\delta, \varepsilon} \nsubseteq c \ell\left(C_{\delta, \varepsilon+1}\right)$, we use DC_{∂}. But this contradicts the choice of $c \ell$ recalling Definition 2.2(1).

If $\delta<\lambda$ and $\operatorname{cf}(\delta)>\kappa$ we let

$$
\begin{array}{ll}
C_{\delta}^{*}=\cap\{\cup\{\delta \cap c \ell(u): & u \subseteq C \text { has cardinality } \leq \partial\}: \\
& C \text { is a club of } \delta \text { of order type } \operatorname{cf}(\delta)\} .
\end{array}
$$

A problem is a bound of $\left|C_{\delta}^{*}\right|$. Clearly for C a club of δ of order type $\operatorname{cf}(\delta)$ the order-type of the set $\cup\{\delta \cap c \ell(v): v \subseteq C$ has cardinality $\leq \partial\}$ is $<\operatorname{hrtg}\left(\mu \times[\mathrm{cf}(\delta)]^{\kappa}\right)$. As for " C_{δ}^{*} is a club" it is proved as above.

The following lemma gives the existence of a class of regular successor cardinals.
Lemma 2.13. 1) Assume
(a) δ is a limit ordinal $<\lambda_{*}$ with $\operatorname{cf}(\delta)=\partial$,
(b) λ_{i}^{*} is a cardinal for $i<\delta$ increasing with i,
(c) $\lambda_{*}=\Sigma\left\{\lambda_{i}^{*}: i<\delta\right\}$,
(d) $\lambda_{i+1}^{*} \geq \operatorname{hrtg}\left(\mu \times{ }^{\kappa}\left(\lambda_{i}^{*}\right)\right)$ for $i<\delta$ and $(\alpha) \vee(\beta)$ hold where:
(α) $\mathrm{Ax}_{\lambda}^{4}$, or
(β) $\lambda_{i+1}^{*} \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\partial(*)}^{4}\left(\lambda_{i}^{*}, \mu\right)\right)$ and $\operatorname{hrtg}\left(\left[\lambda_{i}^{*}\right]^{\leq \kappa}\right) \leq \lambda_{i+1}^{*}$.
(e) $\mathrm{Ax}_{\lambda,<\mu, \kappa}^{0}$ and $\mu<\lambda_{0}^{*}$,
(f) $\lambda=\lambda_{*}^{+}$.

Then λ is a regular cardinal.
2) Assume $\mathrm{Ax}_{\lambda}^{4}, \lambda=\lambda_{*}^{+}, \lambda_{*}$ singular and $\chi<\lambda_{*} \Rightarrow \operatorname{hrtg}\left({ }^{\partial} \chi\right) \leq \lambda_{*}$ then λ is regular.

Remark 2.14. This says that the successor of many strong limit singulars is regular.

Question 2.15. 1) Is $\operatorname{hrtg}\left(\mathscr{P}\left(\mathscr{P}\left(\lambda_{i}^{*}\right)\right)\right) \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\partial(*)}^{4}\left(\lambda_{i}^{*}\right)\right)$?
2) Is $|c \ell(f \mid B)| \leq \operatorname{hrtg}\left([B]^{<\aleph_{0}}\right)$ for the natural $c \ell$ and f, B as in the proof of 2.13?

Proof. 1) We can replace δ by $\operatorname{cf}(\delta)$ so without loss of generality δ is a regular cardinal so $\delta=\partial$.

So
(*) ${ }_{1}$ (a) fix $c \ell:[\lambda] \leq \kappa \rightarrow \mathscr{P}(\lambda)$ a witness to $\mathrm{Ax}_{\lambda,<\mu, \kappa}^{0}$,
(b) let $\left.\left\langle C_{\xi}[c\rangle\right]: \xi<\lambda, \operatorname{cf}(\xi) \geq \partial\right\rangle$ be as in the proof of 2.11 , so $\xi<\lambda \wedge \partial \leq$ $\operatorname{cf}(\xi)<\lambda \Rightarrow\left|C_{\xi}[c \ell]\right|<\lambda$.
[Why the last inequality? If $\delta<\lambda^{+}$, then there is i such that $\lambda_{i}^{*}>\mu+\operatorname{cf}(\partial)$ hence $\operatorname{otp}\left(C_{\delta}\right)<\operatorname{hrtg}\left(\mu \times[\operatorname{cf}(\delta)]^{\kappa}\right) \leq \operatorname{hrtg}\left(\left[\lambda_{i}^{*}\right]^{\kappa}\right)<\lambda_{i+1}^{*}$.]

First, we shall use just $\lambda>\lambda_{*} \wedge(\forall \delta<\lambda)\left(\operatorname{cf}(\delta)<\lambda_{*}\right)$, a weakening of the assumption that $\lambda=\lambda_{*}^{+}$.

Now
\boxtimes_{1} for every $i<\delta$ and $A \subseteq \lambda$ of cardinality $\leq \lambda_{i}^{*}$, we can find $B \subseteq \lambda$ of cardinality $\leq \lambda_{*}$ satisfying $(\forall \alpha \in A)\left[\alpha\right.$ is limit $\wedge \operatorname{cf}(\alpha) \leq \lambda_{i}^{*} \Rightarrow \alpha=$ $\sup (\alpha \cap B)]$.

The proof of this will take some time. By 2.11 (and 0.17) the only problem is for $Y:=\left\{\alpha: \alpha \in A, \alpha>\sup (A \cap \alpha), \alpha\right.$ a limit ordinal of cofinality $\left\langle\partial+\aleph_{1}\right\}$; so $|Y| \leq \lambda_{i}^{*}$. Note: if we assume $\mathrm{Ax}_{\lambda}^{4}$ this would be immediate.

We define D as the family of sets $A \subseteq Y$ such that:
\circledast_{A}^{1} for some set $C \subseteq \lambda$ of $\leq \partial$ ordinals, the set $B_{C}=: \cup\left\{\operatorname{Rang}\left(f_{\mathfrak{r}, \zeta}\right): \mathfrak{x} \in\right.$ $\operatorname{Fil}_{\partial(*)}^{4}\left(\lambda_{i}^{*}, \mu\right)$ and $\zeta \in C$ or for some $\xi \in C$, we have $\lambda_{i}^{*} \geq \operatorname{cf}(\xi)>\partial$ and $\left.\zeta \in C_{\xi}[C l]\right\}$ satisfies $\alpha \in Y \backslash A \Rightarrow \alpha=\sup \left(\alpha \cap B_{C}\right)$.

Clearly

$\circledast_{2}(a) \quad Y \in D$,
(b) D is upward closed,
(c) D is closed under intersection of $\leq \partial$ hence of $<\partial(*)$ sets.
[Why? For clause (a) use $C=\emptyset$, for clause (b), note that if C witness a set $A \subseteq Y$ belongs to D then it is a witness for any $A^{\prime} \subseteq Y$ such that $A \subseteq A^{\prime}$. Lastly, for clause (c) if $A_{\varepsilon} \in D$ for $\varepsilon<\varepsilon(*)<\partial^{+}$, as we have AC_{∂}, there is a sequence $\left\langle C_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ such that C_{ε} witnesses $A_{\varepsilon} \in D$ for $\varepsilon<\varepsilon(*)<\partial^{+}$, then $C:=\cup\left\{C_{\varepsilon}: \varepsilon<\varepsilon(*)\right\}$ witnesses $A:=\cap\left\{A_{\varepsilon}: \varepsilon<\varepsilon(*)\right\} \in D$ and, again by AC_{∂}, we have $|C| \leq \partial$.]
\circledast_{3} if $\emptyset \in D$ then we are done.
[Why? For $a=\emptyset \in D$ let $C \subseteq \lambda$ be as promised in \circledast_{1} and then B_{C} is as required; its cardinality $\leq \lambda_{i+1}^{*}$ by 2.11.]

So assume $\emptyset \notin D$, so D is an ∂^{+}-complete filter on Y. As $1 \leq|Y| \leq \lambda_{i}^{*}$, let g be a one to one function from $|Y| \leq \lambda_{i}^{*}$ onto Y and let
\circledast_{4} (a) $D_{1}:=\left\{B \subseteq \lambda_{i}^{*}:\{g(\alpha): \alpha \in B \cap|Y|\} \in D\right\}$,
(b) $\zeta:=\mathrm{rk}_{D_{1}}(\mathrm{~g})$,
(c) $D_{2}:=\left\{B \subseteq \lambda_{i}^{*}: B \in D_{1}\right.$ or $B \notin D_{1}$ and $\left.\mathrm{rk}_{D_{1}+\left(\lambda_{i}^{*} \backslash B\right)}(g)>\zeta\right\} \cup D_{1}$.

So D_{2} is an ∂^{+}-complete filter on λ_{i}^{*} extending D_{1}.
Let $B_{*} \in D_{2}$ be such that $\left(\forall B^{\prime}\right)\left[B^{\prime} \in D_{2} \wedge B^{\prime} \subseteq B_{*} \Rightarrow c \ell\left(\operatorname{Rang}\left(g \upharpoonright B^{\prime}\right)\right) \supseteq\right.$ $\left(\operatorname{Rang}\left(g \upharpoonright B_{*}\right)\right]$. Let $\mathscr{U}=\cap\left\{c \ell\left(\operatorname{Rang}\left(g \upharpoonright B^{\prime}\right): B^{\prime} \in D_{2}\right\}\right.$, so $\operatorname{Rang}\left(g \upharpoonright B_{*}\right) \subseteq \mathscr{U}$, even equal.

Let h be the function with domain B_{*} defined by $\alpha \in B_{*} \Rightarrow h(\alpha)=\operatorname{otp}(g(\alpha) \cap$ $\mathscr{U})$.

So $\mathfrak{x}:=\left(D_{1}, D_{2}, B_{*}, h\right) \in \operatorname{Fil}_{\partial(*)}^{4}\left(\lambda_{i}^{*}, \mu\right)$ and for some ζ we have $g \upharpoonright B_{*}=f_{\mathfrak{x}, \zeta}[c \ell]$.
It suffices to consider the following two subcases.
Subcase 1a: $\operatorname{cf}(\zeta)>\partial$.
So recalling $(*)_{1}(b), C_{\zeta}[c \ell]$ is well defined and let $C:=\{\zeta\}$ hence $B_{C}=\cup\left\{\operatorname{Rang}\left(f_{\mathfrak{x}, \varepsilon}[c \ell]\right.\right.$: $\left.\varepsilon \in C_{\zeta}[c \ell]\right\}$ so C exemplifies that the set $X:=\left\{\alpha \in Y: \alpha>\sup \left(\alpha \cap B_{C}\right)\right\}$ belongs to D hence $X_{*}=\{\alpha<|Y|: g(\alpha) \in X\}$ belongs to D_{1}.

Now define g^{\prime}, a function from λ_{i}^{*} to Ord by $g^{\prime}(\alpha)=\sup \left(g(\alpha) \cap B_{C}\right)+1$ if $\alpha \in X_{*}$ and $g^{\prime}(\alpha)=0$ otherwise. Clearly $g^{\prime}<g \bmod D_{1}$ hence $\operatorname{rk}_{D_{1}}\left(g^{\prime}\right)<\zeta$, hence there is $g^{\prime \prime}, g^{\prime}<_{D_{1}} g^{\prime \prime}<_{D_{1}} g$ such that $\xi:=\operatorname{rk}_{D_{1}}\left(g^{\prime \prime}\right) \in C_{\zeta}[c \ell]$.

Now for some $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}\left(\lambda_{i}^{*}\right)$ we have $D^{\mathfrak{y}}=D_{2}$ and $g^{\prime \prime}=f_{\mathfrak{y}, \xi} \bmod D_{2}^{\mathfrak{y}}$.
So $B=:\left\{\varepsilon<|Y|: g^{\prime \prime}(\varepsilon)=f_{\mathfrak{y}, \xi}(\varepsilon)\right\} \in D_{2}^{\mathfrak{y}}$ hence $B \in D_{2}^{+}$. So $B \cap B_{*} \cap X_{*} \in D_{2}^{+}$ but if $\varepsilon \in B \cap B_{*} \cap A_{*}$ then $f_{\mathfrak{y}, \xi}(\varepsilon) \in B_{C}$ and $f_{\mathfrak{y}, \xi}(\varepsilon) \in \sup \left(\left(B_{C} \cap g(\varepsilon)\right), g(\varepsilon)\right)$.

This gives contradiction.
Subcase 1b: $\operatorname{cf}(\zeta) \leq \partial$.
We choose a $C \subseteq \zeta$ of order type $\leq \partial$ unbounded in ζ and proceed as in subcase 1a.

As we have covered both subcases, we have proved \boxtimes_{1}.
Recall we are assuming $\delta=\partial$; now:
\boxtimes_{2} for every $A \subseteq \lambda$ of cardinality $\leq \lambda_{*}$ there is $B \subseteq \lambda$ of cardinality $\leq \lambda_{*}$ such that:

$$
\begin{aligned}
& \oplus A \subseteq B,[\alpha+1 \in A \Rightarrow \alpha \in B] \text { and }\left[\alpha \in A \wedge \aleph_{0} \leq \operatorname{cf}(\alpha)<\lambda_{*} \Rightarrow \alpha=\right. \\
& \quad \sup (B \cap \alpha)] .
\end{aligned}
$$

[Why? Choose a \subseteq-increasing sequence $\left\langle A_{j}: j<\delta\right\rangle$ such that $A=\cup\left\{A_{i}: i<\delta\right\}$ and $j<\delta \Rightarrow\left|A_{j}\right| \leq \lambda_{j}^{*}$, possible as $|A| \leq \lambda_{*}$. For each $j<\delta$ there exists B_{j} such that the conclusion of \boxplus_{1} holds with $\left(A_{j}, B_{j}, \lambda_{j}^{*}\right)$ here standing for $\left(A, B, \lambda_{i}\right)$ there, so $\left|B_{j}\right| \leq \lambda_{*}$. So as AC_{δ} holds (as $\delta \leq \partial$) there is a sequence $\left\langle\bar{B}_{j}: j<\delta\right\rangle$, each \bar{B}_{j} as above.

Lastly, let $B=\cup\left\{B_{j}: j<\delta\right\}$, it is as required.]
\boxtimes_{3} for every $A \subseteq \lambda$ of cardinality $\leq \lambda_{*}$ we can find $B \subseteq \lambda$ of cardinality $\leq \lambda_{*}$ such that $A \subseteq B,[\alpha+1 \in B \Rightarrow \alpha \in B]$ and $[\alpha \in B$ is a limit ordinal $\left.\wedge \operatorname{cf}(\alpha)<\lambda_{*} \Rightarrow \alpha=\sup (B \cap \alpha)\right]$.
[Why? We choose B_{i} by induction on $i<\omega \leq \partial$ such that $\left|B_{i}\right| \leq \lambda_{*}$ by $B_{0}=$ $A, B_{2 i+1}=\left\{\alpha: \alpha \in B_{2 i}\right.$ or $\left.\alpha+1 \in B_{2 i+1}\right\}$ and $B_{2 i+2}$ is chosen as B was chosen in \boxtimes_{2} for i with $B_{2 i+1}, B_{2 i+2}$ here in the role of A, B there. There is such $\left\langle B_{i}: i<\omega\right\rangle$ as $\mathrm{DC}=\mathrm{DC}_{\aleph_{0}}$ holds. So easily $B=\cup\left\{B_{i}: i<\omega\right\}$ is as required.]

Now return to our main case $\lambda=\lambda_{*}^{+}$
$\boxtimes_{4} \lambda_{*}^{+}$is regular.
[Why? Otherwise $\operatorname{cf}\left(\lambda_{*}^{+}\right)<\lambda_{*}^{+}$hence $\operatorname{cf}\left(\lambda_{*}^{+}\right) \leq \lambda_{*}$, but λ_{*} is singular so $\operatorname{cf}\left(\lambda_{*}^{+}\right)<\lambda_{*}$ hence there is a set A of cardinality $\operatorname{cf}\left(\lambda_{*}^{+}\right)<\lambda_{*}$ such that $A \subseteq \lambda_{*}^{+}=\sup (A)$. Now choose B as in \boxtimes_{3}. So $|B| \leq \lambda_{*}, B$ is an unbounded subset of $\lambda_{*}^{+}, \alpha+1 \in B \Rightarrow \alpha \in B$ and if $\alpha \in B$ is a limit ordinal then $\operatorname{cf}(\alpha) \leq|\alpha| \leq \lambda_{*}$, but $\operatorname{cf}(\alpha)$ is regular so $\operatorname{cf}(\alpha)<\lambda_{*}$ hence $\alpha=\sup (B \cap \alpha)$. But this trivially implies that $B=\lambda_{*}^{+}$, but $|B| \leq \lambda_{*}$, contradiction.]
2) Similar, just easier.

Remark 2.16. Of course, if we assume $\mathrm{Ax}_{\lambda}^{4}$ then the proof of 2.13 is much simpler: if $<_{*}$ is a well ordering of $[\lambda]^{\leq \partial}$ for $\delta<\lambda$ of cofinality $\leq \partial$ let $C_{\delta}=$ the $<_{*}$-first closed unbounded subset of δ of order type $\operatorname{cf}(\delta)$, see 3.3.

Claim 2.17. Assume
(a) $\left\langle\lambda_{i}: i<\kappa\right\rangle$ is an increasing continuous sequence of cardinals $>\kappa$
(b) $\lambda=\lambda_{\kappa}=\Sigma\left\{\lambda_{i}: i<\kappa\right\}$
(c) $\kappa=\operatorname{cf}(\kappa)>\partial$
(d) $\mathrm{Ax}_{\lambda,<\mu, \kappa}^{0}$
(e) $\operatorname{hrtg}\left(\operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu)\right)<\lambda$ and $\kappa, \mu<\lambda_{0}$
(f) $S:=\left\{i<\kappa: \lambda_{i}^{+}\right.$is a regular cardinal $\}$is a stationary subset of κ
(g) let $D:=D_{\kappa}+S$ where D_{κ} is the club filter on κ
(h) $\gamma(*)=\operatorname{rk}_{D}\left(\left\langle\lambda_{i}^{+}: i<\kappa\right\rangle\right)$.

Then $\gamma(*)$ has cofinality $>\lambda$, so $(\lambda, \gamma(*)] \cap \operatorname{Reg} \neq \emptyset$.
Proof. Recall 2.5 which we shall use. Toward contradiction assume that $\operatorname{cf}(\gamma(*)) \leq$ λ_{κ}, but λ_{κ} is singular hence for some $i(*)<\kappa, \operatorname{cf}(\gamma(*)) \leq \lambda_{i(*)}$. Let $c \ell$ witness $\mathrm{Ax}_{\lambda,<\mu, \kappa}^{0}$.

Let B be an unbounded subset of $\gamma(*)$ of order type $\operatorname{cf}(\gamma(*)) \leq \lambda_{i(*)}$. By renaming without loss of generality $i(*)=0$.

For $\alpha<\gamma(*)$ let

$$
\begin{array}{cl}
\mathscr{U}_{\alpha}=\cup\left\{\operatorname{Rang}\left(f_{\mathfrak{y}, \alpha}\right): \quad\right. & f_{\mathfrak{y}, \alpha}[c \ell] \text { is well defined } \in \Pi\left\{\lambda_{i}^{+}: i \in Z^{\mathfrak{y}}\right\} \\
& \text { and } \left.\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa) \text { and } D_{1}^{\mathfrak{y}}=D\right\}
\end{array}
$$

Clearly \mathscr{U}_{α} is well defined by 2.5; moreover, $\left\langle\mathscr{U}_{\alpha}: \alpha<\gamma(*)\right\rangle$ exists and $\left|\mathscr{U}_{\alpha}\right| \leq$ $\operatorname{hrtg}\left(\kappa \times \operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu)\right)=\operatorname{hrtg}\left(\operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu)\right)$, even $<\operatorname{recalling} 0.17(4)$. Let $\mathscr{U}=$ $\cup\left\{\mathscr{U}_{\alpha}: \alpha \in B\right\}$ so $|\mathscr{U}| \leq \operatorname{hrtg}\left(\operatorname{Fil}_{\partial(*)}^{4}(\kappa, \mu)\right)+|B|$.

We define $f \in \prod_{i<\kappa} \lambda_{i}^{+}$by
(α) $f(i)$ is: $\sup \left(\mathscr{U} \cap \lambda_{i}^{+}\right)+1$ if $\operatorname{cf}\left(\lambda_{i}^{+}\right)>|\mathscr{U}|$ and zero otherwise.
So
(β) $f \in \prod_{i<\kappa} \lambda_{i}^{+}$.
Clearly
$(\gamma)\{i<\kappa: f(i)=0\}=\emptyset \bmod D$.

Let $\alpha(*)=\operatorname{rk}_{D}(f)$, it is $<\operatorname{rk}_{D}\left(\left\langle\lambda_{i}^{+}: i<\kappa\right\rangle\right)=\gamma(*)$, so by clause (γ) there is $\beta(*) \in B$ such that $\alpha(*)<\beta(*)<\gamma(*)$ hence for some $g \in \prod_{i<\kappa} \lambda_{i}^{+}$we have $\operatorname{rk}_{D}(g)=\beta(*)$ and $f<g \bmod D$, so for some $\mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(\kappa)$ we have $D_{1}^{\mathfrak{y}}=D_{\kappa}+S$ and $g \in \mathscr{F}_{\mathfrak{y}, \beta(*)}$, hence $f(i)<g(i)<f_{\mathfrak{y}, \beta(*)}(i) \in \mathscr{U} \cap \lambda_{i}^{+}$for every $i \in Z^{\mathfrak{y}} \cap S$.

So we get an easy contradiction to the choice of g.
Claim 2.18. Assume cl witness $\mathrm{Ax}_{\alpha,<\mu, \kappa}^{0}$ and $\operatorname{hrtg}(Y) \in[\kappa, \mu)$. The ordinals $\gamma_{\ell}, \ell=0,1,2$ are nearly equal see, i.e. \circledast below holds where:
$\boxtimes \quad$ (a) $\gamma_{0}=\operatorname{hrtg}\left({ }^{Y} \alpha\right)$, a cardinal
(b) $\gamma_{1}=\cup\left\{\operatorname{rk}_{D}(\gamma): \gamma=\operatorname{rk}_{D}(\alpha)\right.$ for some $\left.D \in \operatorname{Fil}_{\partial(*)}(Y)\right\}$
(c) $\gamma_{2}=\sup \left\{\operatorname{otp}\left(\Xi_{\mathfrak{y}}[c \ell]\right)+1: \mathfrak{y} \in \operatorname{Fil}_{\partial(*)}^{4}(Y)\right\}$
$\circledast(\alpha) \gamma_{2} \leq \gamma_{1} \leq \gamma_{0}$
$(\beta) \gamma_{0}$ is the union of $\operatorname{Fil}_{\partial(*)}^{4}(Y)$ sets each of order type $<\gamma_{2}$
$(\gamma) \gamma_{0}$ is the disjoint union of $<\operatorname{hrtg}\left(\mathscr{P}\left(\operatorname{Fil}_{\partial(*)}^{4}(Y)\right)\right)$ sets each of order type $<\gamma_{2}$
(δ) if $\gamma_{0}>\operatorname{hrtg}\left(\mathscr{P}\left(\operatorname{Fil}_{\partial(*)}^{4}(Y)\right)\right)$ and $\gamma_{0} \geq\left|\gamma_{2}\right|^{+}$then $\left|\gamma_{0}\right| \leq\left|\gamma_{2}\right|^{++}$and $\operatorname{cf}\left(\left|\gamma_{2}\right|^{+}\right)<\operatorname{hrtg}\left(\mathscr{P}\left(\operatorname{Fil}_{\partial(*)}^{4}(Y)\right)\right)$.
Proof. Straightforward, see 0.17.

§ 3. Concluding Remarks

In May 2010, David Aspero asked whether it is true that I have results along the following lines (or that it follows from such a result):

If GCH holds and λ is a singular cardinal of uncountable cofinality, then there is a well-order of $\mathscr{H}\left(\lambda^{+}\right)$definable in $\left(\mathscr{H}\left(\lambda^{+}\right), \in\right)$ using a parameter.

The answer is yes by [She97, 4.6,pg.117] but we elaborate this below somewhat more generally. Much earlier Gitik [Git80] had proved (using suitable large cardinals) the consistency of " $\mathrm{ZF}+$ every infinite cardinal has cofinality \aleph_{0}, i.e. \aleph_{0} is the only regular cardinal". This naturally raises the question what suffices to have a class of regulars. Gitik told me that in Luming 2008 Woodin has conjectured:
\boxplus let \mathbf{V} be a model of $\mathrm{ZF}+\mathrm{DC}$, suppose that κ is a singular strong limit cardinal of cofinality ω_{1} and $|\mathscr{H}(\kappa)|=\kappa$. Is then $\mathscr{P}(\kappa)$ well orderable?

Now [She97] gives some information. The results here (3.1) confirm \boxplus.
Claim 3.1. [DC] Assume that μ is a singular cardinal of cofinality $\kappa>\aleph_{0}$ (no GCH needed), the parameter $X \subseteq \mu$ codes in particular the tree $\mathscr{T}={ }^{\kappa>} \mu$ and the set $\mathscr{P}(\mathscr{P}(\kappa))$, in particular, from X a well-ordering of $[\mu]^{<\kappa} \cup \mathscr{P}(\mathscr{P}(\kappa))$ is definable. Then (with this parameter) we can define a well-ordering of the set of κ-branches of the tree $\left({ }^{\kappa>} \lambda, \triangleleft\right)$.
Proof. Proof of 3.1:
Let $\left\langle\operatorname{cd}_{i}: i<\kappa\right\rangle$ satisfies
$\boxplus_{1} \mathrm{~cd}_{i}$ is a one-to-one function from ${ }^{i} \mu$ into μ, (definable from X uniformly (in i)
\boxplus_{2} let $<_{\kappa}$ be a well-ordering of $\operatorname{Fil}_{\kappa}^{4}(\kappa)$ definable from X.
For $\eta \in{ }^{\kappa} \mu$ let $f_{\eta}: \kappa \rightarrow \mu$ be defined by $f_{\eta}(i)=\operatorname{cd}_{i}(\eta \upharpoonright i)$, so $\bar{f}=\left\langle f_{\eta}: \eta \in{ }^{\kappa} \mu\right\rangle$ is well defined.

Let $\overline{\mathscr{F}}=\left\langle\mathscr{F}_{\mathfrak{y}}: \mathfrak{y} \in \operatorname{Fil}_{\kappa}^{4}(\kappa)\right\rangle$ be as in Theorem 1.2 with μ, κ here standing for λ, Y there; there is such \mathscr{F} definable from X as X codes also a well-ordering of $[\mu]^{\aleph_{0}}$, see $\S 1$.

So for every $\eta \in{ }^{\kappa} \mu$ there is $\mathfrak{y} \in \operatorname{Fil}_{\kappa}^{4}(\kappa)$ such that $f \upharpoonright Z_{\mathfrak{y}} \in \mathscr{F}_{\mathfrak{y}}$ and $D_{1}^{\mathfrak{y}}$ contains all co-bounded subsets of κ so let $\mathfrak{y}(\eta)$ be the $<_{\kappa}$-first such \mathfrak{y}. Now we define a well ordering $<_{*}$ of ${ }^{\kappa} \mu$: for $\eta, \nu \in{ }^{\kappa} \mu$ let $\eta<_{*} \nu$ iff $\operatorname{rk}_{D_{1}[\mathfrak{y}(\eta)]}\left(f_{\eta} \upharpoonright Z_{\mathfrak{y}(\eta)}\right)<$ $\operatorname{rk}_{D_{1}(\mathfrak{y}(\nu))}\left(f_{\nu} \backslash Z_{\mathfrak{y}(\nu)}\right)$ or equality holds and $\mathfrak{y}(\eta)<\mathfrak{y}(\nu)$.

This is O.K. because
(*) if $\eta \neq \nu \in{ }^{\kappa} \mu$ then $f_{\eta}(i) \neq f_{\nu}(i)$ for every large enough $i<\kappa$ (i.e. $i \geq$ $\min \{j: \eta(j) \neq \nu(j)\}$.

Conclusion 3.2. [DC] Assume μ is a singular cardinal of uncountable cofinality κ and $\mathscr{H}(\mu)$ is well orderable of cardinality μ and $X \subseteq \mu$ codes $\mathscr{H}(\mu)$ and a well ordering of $\mathscr{H}(\mu)$. Then we can (with this X as parameter) define a well-ordering of $\mathscr{P}(\mu)$; hence of $\overline{\mathscr{H}}\left(\mu^{+}\right)$.
Proof. Proof of 3.2:
Let $\left\langle\mu_{i}: i<\kappa\right\rangle$ be an increasing sequence of cardinals $<\mu$ with limit μ. Clearly $2^{\mu_{i}}<\mu\left(\right.$ as $\left.\right|^{\mu_{i}} 2\left|\leq|\mathscr{H}(\mu)|=\mu\right.$, and $2^{\mu_{i}}=\mu$ is impossible $)$.

Let $\left\langle\mathrm{cd}_{i}^{*}: i<\kappa\right\rangle$ satisfies
$\boxplus_{2} \mathrm{~cd}_{i}^{*}$ is a one-to-one function from $\mathscr{P}\left(\mu_{i}\right)$ into μ, (definable uniformly from $X)$.

So $\operatorname{cd}_{*}: \mathscr{P}(\mu) \rightarrow{ }^{\kappa} \mu$ defined by $\left(\operatorname{cd}_{*}(A)\right)(i)=\operatorname{cd}_{i}^{*}\left(A \cap \mu_{i}\right)$ for $A \subseteq \mu, i<\kappa$, is a one-to-one function from $\mathscr{P}(\mu)$ into ${ }^{\kappa} \mu$. Now use 3.1.
$\square_{3.2}$
We return to 2.13(2)
Claim 3.3. [DC] 1) The cardinal λ^{+}is regular when:
$\boxplus(a) \quad \mathrm{Ax}_{\lambda^{+}}^{4}$, i.e. $\left[\lambda^{+}\right]^{\aleph_{0}}$ is well orderable,
(b) $|\alpha|^{\aleph_{0}}<\lambda$ for $\alpha<\lambda$,
(c) λ is singular.
2) Also there is $\bar{e}=\left\langle e_{\delta}: \delta<\lambda^{+}\right\rangle, e_{\delta} \subseteq \delta=\sup \left(e_{\delta}\right),\left|e_{\delta}\right| \leq \operatorname{cf}(\delta)^{\aleph_{0}}$.

Remark 3.4. Compare with 2.13; we use here more choice, but cover more cardinals.
Proof. Let $<_{*}$ be a well ordering of the set $\left[\lambda^{+}\right]^{\aleph_{0}}$.
As earlier let $F:{ }^{\omega}\left(\lambda^{+}\right) \rightarrow \lambda^{+}$be such that there is no \subset-decreasing sequence $\left\langle c \ell_{F}\left(u_{n}\right): n<\omega\right\rangle$ with $u_{n} \subseteq \lambda^{+}$. Let $\Omega=\left\{\delta \leq \lambda^{+}: \delta\right.$ a limit ordinal, $\delta<$ $\left.\lambda^{+} \wedge \operatorname{cf}(\delta)<\lambda\right\}$, so otp $(\Omega) \in\left\{\lambda^{+}, \lambda^{+}+1\right\}$.

We define $\bar{e}=\left\langle e_{\delta}: \delta \in \Omega\right\rangle$ as follows.
Case 1: $\operatorname{cf}(\delta)=\aleph_{0}, e_{\delta}$ is the $<_{*}$-minimal member of $\{u \subseteq \delta: \delta=\sup (u)$ and $\operatorname{otp}(u)=0\}$.

Case 2: $\operatorname{cf}(\delta)>\aleph_{0}$.
Let $e_{\delta}=\cap\left\{c \ell_{F}(C): C\right.$ a club of $\left.\delta\right\}$.
So
$(*)_{1} e_{\delta}$ is an unbounded subset of δ of order type $<\lambda$.
[Why? If $\operatorname{cf}(\delta)=\aleph_{0}$ then e_{δ} has order type ω which is $<\lambda$ by clause (b) of the assumption.

If $\operatorname{cf}(\delta)>\aleph_{0}$ then for some club C of $\delta, e_{\delta}=c \ell_{F}(C)$ has otp $\left(e_{\delta}\right) \leq\left|c \ell_{F}(C)\right| \leq$ $\left(\operatorname{cf}(\delta)^{\aleph_{0}}<\lambda\right.$. The last inequality holds as $\operatorname{cf}(\delta) \leq \lambda$ as $\delta<\lambda^{+}, \operatorname{cf}(\delta) \neq \lambda$ as λ is singular by clause (c) of the assumption, and lastly $\left(\left(\operatorname{cf}(\delta)^{\aleph_{0}}\right)<\lambda\right.$ by clause (b) of the assumption.]

This is enough for part (2). Now we shall define a one-to-one function f_{α} from α into λ by induction on $\alpha \in \Omega$ as follows: let $\operatorname{pr}_{\lambda}: \lambda \times \lambda \rightarrow \lambda$ be a pairing function so one to one (can add "onto λ "); if we succeed then $f_{\lambda^{+}}$cannot be well defined so $\lambda^{+} \notin \Omega$ hence $\operatorname{cf}\left(\lambda^{+}\right) \geq \lambda$, but λ is singular so $\operatorname{cf}\left(\lambda^{+}\right)=\lambda^{+}$, i.e. λ^{+}is not singular so we shall be done proving part (1).

The inductive definition is:
\boxplus (a) if $\alpha \leq \lambda$ then f_{α} is the identity
(b) if $\alpha=\beta+1 \in\left[\lambda, \lambda^{+}\right)$then for $i<\alpha$ we let $f_{\alpha}(i)$ be

- $1+f_{\beta}(i)$ if $i<\beta$
- 0 if $i=\beta$
(c) if $\alpha \in \Omega$ so α is a limit ordinal, $e_{\alpha} \subseteq \alpha=\sup \left(e_{\alpha}\right), e_{\alpha}$ of cardinality $<\lambda$ and we let f_{α} be defined by: for $i<\alpha$ we let $f_{\alpha}(i)=$ $\operatorname{pr}_{\lambda}\left(f_{\min \left(e_{\alpha} \backslash(i+1)\right)}(i), \operatorname{otp}\left(e_{\alpha} \cap i\right)\right)$.

We later add:
Claim 3.5. [ZFC] Assume $\mu>\kappa=\operatorname{cf}(\mu)>\aleph_{0}$ and $\mu=\mu^{\aleph_{0}}+2^{2^{\kappa}}$.

1) From some $X \subseteq \mu$ we can define a well ordering of some set $\mathscr{G} \subseteq{ }^{\kappa} \mu$ such that ${ }^{\kappa} \mu=\left\{\sup \left\{f_{n}: n<\omega\right\}: f_{n} \in \mathscr{G}\right.$ for $\left.n<\omega\right\}$.
2) If moreover $2^{2^{\theta}} \leq \mu$ where $\theta=\kappa^{\aleph_{0}}$ then from some $X \subseteq \mu$ we can define a well ordering of ${ }^{\kappa} \mu$.

Proof. 1) Let $X \subseteq \mu$ code $\mathscr{P}(\mathscr{P}(\kappa))$ and ${ }^{\omega} \mu$ which is as in 3.1. Unlike the proof of 3.1 we do not use the $\operatorname{cd}_{i}(i<\kappa)$ and we use the family of \aleph_{1}-complete filters on κ, the rest should be clear.
2) As $\theta=\theta^{\aleph_{0}}$ there is a one-to-one onto function cd : ${ }^{\omega} \theta \rightarrow \theta$ onto θ, and for $i<\omega$ let $\operatorname{cd}_{i}: \theta \rightarrow \theta$ be such that:
$(*)_{1}$ if $\operatorname{cd}(\eta)=\zeta$, then $\operatorname{cd}_{0}(\zeta)=\ell g(\eta)$ and $\operatorname{cd}_{1+i}(\zeta)=\eta(i)$ for $i<\ell g(\eta)$.
Let D be $\left\{A \subseteq \theta\right.$: for some $u \in[\theta] \leq \aleph_{0}$ we have $A \supseteq\left\{\varepsilon<\theta: u \subseteq\left\{\operatorname{cd}_{i}(\varepsilon): i<\omega\right\}\right\}$, so
$(*)_{2} D$ is an \aleph_{1}-complete filter on θ.
[Why? Should be clear.]
$(*)_{3}$ for $f \in{ }^{\theta} \mu$ let g, g_{f} be the unique function g with doman θ such that:

- if $\varepsilon<\kappa$ and $i<\operatorname{cd}_{0}(\varepsilon)$, then $\operatorname{cd}_{1+i}(\varepsilon)<\theta \Rightarrow \operatorname{cd}_{1+i}(g(\varepsilon))=f\left(\operatorname{cd}_{1+i}(\varepsilon)\right)$ and $\operatorname{cd}_{0}(g(\varepsilon))=\operatorname{cd}_{0}(\varepsilon)$ and $f(\zeta)=0$ otherwise
[Why g_{f} exists? Just think.]
$(*)_{4}$ if $f \in{ }^{\theta} \mu, \alpha=\operatorname{rk}_{D}\left(g_{f}\right)$ and $\mathfrak{y}=\mathfrak{y}_{g_{f}}$ as in the proof of 3.1 for g_{f}, then:
(a) from $g_{f} \upharpoonright Z_{\mathfrak{y}}$ we can define f (using some $Y \subseteq \kappa$ as a parameter)
(b) $\operatorname{Rang}(f) \subseteq\left\{\operatorname{cd}_{1+i}\left(g_{f}(\varepsilon)\right): \varepsilon \in Z_{\mathfrak{y}}\right.$ and $\left.i<\operatorname{cd}_{0}\left(g_{f}(\varepsilon)\right)\right\}$.
[Why? Clause (a) follows clause (b). Clause (b) holds as for every $\xi<\kappa$, the set $\left\{\varepsilon<\theta: \xi \in\left\{\operatorname{cd}_{1+i}(\varepsilon): i<\operatorname{cd}_{0}(\varepsilon)\right\}\right\} \in D$.]

We continue as in the proof of 3.1.
Conclusion 3.6. [DC] Assume $[\lambda]^{\aleph_{0}}$ is well ordered for every λ.

1) If $2^{2^{\kappa}}$ is well ordered then for every $\lambda,[\lambda]^{\kappa}$ is well ordered.
2) For any set Y, there is a derived set Y_{*} so called $\mathrm{Fil}_{\aleph_{1}}^{4}(Y)$ of power near $\mathscr{P}(\mathscr{P}(Y))$ such that $\Vdash^{\operatorname{Levy}\left(\aleph_{0}, Y\right)}$ "for every $\lambda,{ }^{Y} \lambda$ is well ordered".

Proof. 1) By 3.1.
2) Follows easily.

References

[AM95] Arthur Apter and Menahem Magidor, Instances of dependent choice and the measurability of $\aleph_{\omega+1}$, Annals of Pure and Applied Logic 74 (1995), 203-219.
[Eas70] William B. Easton, Powers of regular cardinals, Annals of Math. Logic 1 (1970), 139-178.
[GH75] Fred Galvin and Andras Hajnal, Inequalities for cardinal powers, Annals of Mathematics 101 (1975), 491-498.
[Git80] Moti Gitik, All uncountable cardinals can be singular, Israel Journal of Mathematics 35 (1980), 61-88.
[LS09] Paul B. Larson and Saharon Shelah, Splitting stationary sets from weak forms of choice, MLQ Math. Log. Q. 55 (2009), no. 3, 299-306, arXiv: 1003.2477. MR 2519245
$\left[\mathrm{S}^{+}\right] \quad$ S. Shelah et al., Tba, In preparation. Preliminary number: Sh:F1039.
[She80] Saharon Shelah, A note on cardinal exponentiation, J. Symbolic Logic 45 (1980), no. 1, 56-66. MR 560225
[She94] , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She97] , Set theory without choice: not everything on cofinality is possible, Arch. Math. Logic 36 (1997), no. 2, 81-125, arXiv: math/9512227. MR 1462202
[She00] , Applications of PCF theory, J. Symbolic Logic 65 (2000), no. 4, 1624-1674, arXiv: math/9804155. MR 1812172
[She12] , PCF arithmetic without and with choice, Israel J. Math. 191 (2012), no. 1, 1-40, arXiv: 0905.3021. MR 2970861
[She14] , Pseudo PCF, Israel J. Math. 201 (2014), no. 1, 185-231, arXiv: 1107.4625. MR 3265284
[She16],$Z F+D C+A X_{4}$, Arch. Math. Logic 55 (2016), no. 1-2, 239-294, arXiv: 1411.7164. MR 3453586

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: November 14, 2023.
 2020 Mathematics Subject Classification. Primary 03E17; Secondary: 03E05, 03E50.
 Key words and phrases. set theory, weak axiom of choice, pcf.
 This research was supported by the United States-Israel Binational Science Foundation and several grants including grants with Maryanthe Malliaris number NFS 2051825, BSF 3013005232, and the ISF 2320/23: The Israel Science Foundation (ISF) (2023-2027). I would like to thank Alice Leonhardt for the beautiful typing. For later versions, the author would like to thank the typist for his work and is also grateful for the generous funding of typing services donated by a person who wishes to remain anonymous. References like [She14, Def. $0.4=$ Lz15] means the label of Def. 0.4 is z15. The reader should note that the version on my website is usually more updated than the one in the mathematical archive. First Typed - 2004/Jan/20.

[^1]: ${ }^{1}$ so by actually only $c \ell l[\lambda] \leq \kappa$ count

[^2]: ${ }^{2}$ Can do somewhat better; we can replace $[\alpha]<\mu_{1}$ by $\left\{v \subseteq \alpha: \operatorname{otp}(v) \subseteq \mu_{1}\right\}$

[^3]: ${ }^{3}$ clearly we can replace $<\mu$ by $<\gamma$ for $\gamma \in\left(\mu, \mu^{+}\right)$

[^4]: ${ }^{4}$ We could have used $\left\{t \in Y: f_{\eta, \alpha}[c \ell](t) \in c \ell(\mathbf{v}(u))\right\} \neq \emptyset \bmod D_{2}^{\mathfrak{y}}$; also we could have added u to $c \ell^{\prime}(u)$ but not necessarily by \boxplus_{2}.

[^5]: ${ }^{5}$ but, of course, possibly there is no such sequence $\left\langle f_{\alpha}: \alpha<\lambda^{+}\right\rangle$

[^6]: ${ }^{6}$ the regular holds many times by 2.13

