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Abstract
Starting from a model with a Laver-indestructible supercompact cardinal κ , we
construct a model of Z F + DCκ where there are no κ-mad families.

Keywords Generalized descriptive set theory · Mad families · Supercompact
cardinals

Mathematics Subject Classification 03E15 · 03E25 · 03E35 · 03E55

1 Introduction

The study of the definability and possible non-existence of mad families has a long
tradition, originating with the paper [6] of Mathias where it was proven that mad
families can’t be analytic and that there are no mad families in the Solovay model
constructed from a Mahlo cardinal (as always, by “mad families” we refer to infinite
such families). It was later shown by Toernquist that an inaccessible cardinal suffices
for the consistency of this statement [8], and it was then shown by the authors that the
non-existence of mad families (in Z F + DC) is actually equiconsistent with Z FC
[2].
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1034 H. Horowitz, S. Shelah

The current paper can be seen as a continuation of the line of investigation of [2], as
well as of [5], where the definability of κ-mad families was considered. Recall the
following definition:

Definition 1 Let κ be an infinite regular cardinal. A family A ⊆ [κ]κ is κ-almost
disjoint if |A ∩ B| < κ for every A �= B ∈ A. A will be called κ-maximal almost
disjoint (κ-mad) if A is κ-almost disjoint and can’t be extended to a larger κ-almost
disjoint family.

Assuming the existence of a Laver-indestructible supercompact cardinal κ , we
constructed in [5] a generic extension where κ remained supercompact and there are
no �1

1(κ) − κ−mad families, thus obtaining a higher analog of Mathias’ result.
Our current main goal is to obtain a higher analog of the main result of [2], i.e. for an
uncountable cardinal θ > ℵ0, we would like to construct a model of Z F + DCθ where
there are no θ -mad families. As opposed to [2], we only achieve this goal assuming the
existence of a supercompact cardinal. The main result of the paper is the following:

Theorem 2 a. Suppose that ℵ0 < c f (θ) = θ < c f (κ) = κ ≤ λ = λ<κ and θ is a
Laver indestructible supercompact cardinal, then there is a model of Z F + DC<κ+
“there exist no θ -mad families” (note that θ here has the role of κ in the abstract).
b. If we start from a universe V , then the final model V1 will have the same cardinals
and same H(θ) as V .

We remark that during the time that the current paper was being reviewed, a newer
result was announced by Chan, Jackson and Trang [1], where they show the non-
existence of certain mad families on uncountable cardinals under AD+.

We note that while their result requires a weaker large cardinal assumption, it’s
incompatible with DCω1 . This should be contrasted with our result which provides us
with many high instances of dependent choice.

Finally, we briefly describe our proof strategy. We shall force with a partial order P

where the conditions themselves are forcing notions (this is somewhat similar to [3,
7] and [4], as well as to the recent work of Viale in [9], where a similar approach is
applied to the study of generic absoluteness). ForcingwithPwill generically introduce
the forcing notionQ that will give us the desired results. More specifically, we shall fix
a Laver-indestructible supercompact cardinal θ . The conditions in P will be elements
from a suitable H(λ+) that are (< θ)-support iterations along wellfounded partial
orders of (< θ)-directed closed forcing notions satisfying a strong version of θ+-
cc. Given q1,q2 ∈ P, we will have q1 ≤P q2 when the iteration given by q1 is an
“initial segment” (in an adequate sense) of the iteration given by q2. Forcing with
P will introduce a generic iteration qG given by the union of q ∈ P that belong
to the generic set. In the further generic extension given by qG , we shall consider
V1 = H O D(P(θ)<κ ∪ V ) (for an adequate fixed κ). We shall then prove that there
are no θ -mad families in V1. In order to prove this fact, we shall consider towards
contradiction a condition (q0, p0∼

) that forces a counterexample A, where q0 will be

“sufficiently closed”. The filter that’s dual to the ideal generated by A will then be
extended to a θ -complete ultrafilter (using the Laver-indestructibility of θ ), and we
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On the non-existence of κ-mad families 1035

shall obtain a contradiction with the help of an amalgamation argument over q0 using
a higher analog of Mathias forcing relative to this ultrafilter.
The rest of the paper will be devoted to the proof of Theorem 2.

2 Proof of themain result

Definition 3 A. Let K be the class of pairs (q, Uq) that consist of the following objects
with the following properties:
a. U = Uq a well-founded partial order whose elements are ordinals. We let U+ =
U ∪ {∞} where ∞ is a new element above all elements from U , and for α ∈ U+, we
let U<α = {β ∈ U : β <U α}.
b. An iteration (Pq,α, Qq,β

∼
: α ∈ U+, β ∈ U ) = (Pα, Qβ

∼
: α ∈ U+, β ∈ U ).

We shall often denote the iteration itself by q.
c. q is a (< θ)-support iteration, and in addition:
(α) Each Qβ

∼
is a Pβ -name of a forcing notion whose set of elements is an object Xβ

from V .
(β) Given α ∈ U+, p ∈ Pα iff p is a function with domain dom(p) ∈ [U<α]<θ such
that p(β) is a canonical Pβ -name for every β ∈ dom(p).
(γ ) ≤Pα

is defined as usual.
(δ) If w ⊆ U is downward closed (i.e. α <U β ∈ w → α ∈ w) and Pq,w = Pw =
P∞ � w = {p ∈ P∞ : dom(p) ⊆ w}, then Pw � P∞.
d. In V Pβ , Qβ

∼
satisfies ∗ε

θ for a fixed limit ε < θ , namely, if {pα : α < θ+} ⊆ Qβ
∼
,

then there is some club E ⊆ θ+ and a pressing down function f : E → θ+ such that
if δ1, δ2 ∈ E , c f (δ1) = c f (δ2) and f (δ1) = f (δ2), then pδ1 and pδ2 have a common
least upper bound.
e. For β ∈ U , the following holds in V Pβ : If I is a directed partial order of cardinality
< θ and (ps : s ∈ I ) ∈ Q

I
β is ≤Qβ

-increasing, then {ps : s ∈ I } has a ≤Qβ
-least

upper bound.
Notational remark: As Uq is implicitly part of the definition of q, we shall often just
write q instead of (q, Uq).
B. Let ≤K be the following partial order on K :
q1 ≤K q2 iff the following conditions hold:
a. Uq1 ⊆ Uq2 as partial orders.
b. If Uq2 | α < β and β ∈ Uq1 , then α ∈ Uq1 .
c. If w ⊆ Uq1 is downward closed, then Pq1,w = Pq2,w.
d. If α ∈ Uq1 , then Qq1,α∼

= Qq2,α∼
(this is well-defined recalling clause (b)).

C. Let Kw f be the class of U as in (A)(a), and let ≤w f be the partial order on Kw f

defined as in clauses (B)(a) and (B)(b).

We shall now observe some easy basic properties of the objects defined above:

Observation 4 a. If (Uα : α < δ) is ≤w f -increasing, then
⋃

α<δ

Uα is a ≤w f -least upper

bound for (Uα : α < δ).
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b. ≤K is a partial order on K .
c. If q2 ∈ K and U1 ⊆ Uq2 is downward closed, then there is a unique q1 ∈ K such
that q1 ≤K q2 and Uq1 = U1.
d. If (qα : α < δ) is ≤K -increasing, then there is a unique qδ ∈ K such that α < δ →
qα ≤K qδ and Uqδ = ⋃

α<δ qα .
e. If U0, U1, U2 ∈ Kw f , U0 = U1 ∩ U2 and U0 ≤w f Ul (l = 1, 2), then there is
a unique U ∈ Kw f such that

∧

l=1,2
Ul ≤w f U , α ∈ U iff α ∈ U1 ∨ α ∈ U2 and

≤U =≤U1 ∪ ≤U2 . We denote this U by U1 +U0 U2.
f. If q0,q1,q2 ∈ K , q0 ≤K ql (l = 1, 2) and Uq0 = Uq1 ∩Uq2 , then there is a unique
q ∈ K such that

∧

l=1,2
ql ≤K q and Uq = Uq1 +Uq0

Uq2 . We shall denote this q by

q1 +q0 q2.
g. If α ∈ U+

q , then Pq,α is a (< θ)-complete forcing satisfying ∗ε
θ (hence θ+-cc).

h. Suppose that q ∈ K and Q
∼
is a Pq,∞-name of a forcing notion whose universe is

from V , such that the conditions of definitions 3(d) and 3(e) are satisfied, then there
is q′ ∈ K such that q ≤K q′, Uq′ = Uq ∪ {γ }, Uq′ | α < γ for every α ∈ Uq and
Qq′,γ

∼
= Q

∼
. ��

Definition 5 The forcing notion P will be defined as follows:

a. The conditions of P are the elements q of K ∩ H(λ+) such that Uq ⊆ λ+, and for
every β ∈ Uq, Qβ

∼
is a name for a forcing whose underlying set of conditions is

some Xβ ⊆ λ+.
b. Given q1,q2 ∈ P, P | "q1 ≤ q2" iff q1 ≤K q2.
c. Given a generic set G ⊆ P, we let qG = ⋃{q : q ∈ G}.
Before the next claim,we shall remind the reader of the definition of (< κ)-strategic

completeness. Given a forcing P, a condition p ∈ P and an ordinal α, the two-player
game Gα(p, P) will consist of α moves. In the βth move, player I chooses pβ ∈ P

above p and all qγ (γ < β) previously chosen by player II. Player IIwill respondwith
a condition qβ ∈ P above pβ . Player I wins the game iff for each β < α he has a legal
move. P is α-strategically complete if player I has a winning strategy in Gα(p, P) for
every p ∈ P. Finally, P is (< κ)-strategically complete if it’s α-strategically complete
for every α < κ .

Claim 6 a. P is (< κ)-strategically complete. Moreover, it’s (< λ+)-complete and
(< θ)-directed closed.
b. �P "qG∼

∈ K ", hence �P "PqG∼,∞ is (< θ)-directed closed and θ+-cc".
c. If δ < λ+, c f (δ) > θ and (qα : α < δ) is ≤P-increasing, then q := ⋃

α<δ qα

belongs to P and Pq = ⋃
α<δ Pqα . By θ+-c.c., a∼ is a canonical Pq-name of a member

of [θ ]θ iff a∼ is a canonical Pqα -name of a member of [θ ]θ for some α < δ.

Proof The claim follows directly from the definitions. The fact that �P "qG∼
∈ K "

follows from the general fact that if I is a directed set, {qt : t ∈ I } ⊆ K and
s ≤I t → qs ≤K qt , then

⋃{qt : t ∈ I } is well-defined and belongs to K . This also
shows that P is (< θ)-directed closed. ��
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On the non-existence of κ-mad families 1037

We shall now define our desired model:

Definition 7 a. In V P, let Q = PqG∼,∞.

b. Let V2 = V
P�Q

∼ .
c. Let V1 be H O D(P(θ)<κ ∪ V ) inside V2.

Claim 8 a.V1 | Z F+DC<κ . b. (Ord<κ)V1 = (Ord<κ)V2 , henceP(θ)V1 = P(θ)V2 .

Proof We shall prove the first part of clause (b), the rest should be clear. Clearly,
(Ord<κ)V1 ⊆ (Ord<κ)V2 . Now let η ∈ (Ordγ )V2 for some γ < κ , then η = η

∼
[G]

for some name η
∼
of a member of Ordγ , where G ⊆ P�Q

∼
is generic. G = G1�G2

where G1 ⊆ P is generic and G2 ⊆ Q
∼

[G1] is generic. Working in V [G1], η
∼
/G1

is a Q
∼

[G1]-name. As Q
∼

[G1] is θ+-cc, for every β < γ there is a maximal antichain

{pβ,i : i < θ} ⊆ Q
∼

[G1] of conditions that force a value to η
∼
/G1(β). Let {ζβ,i : i < θ}

be the set corresponding values forced by the above conditions. Let � = {pβ,i
∼

, ζβ,i
∼

:
β < γ, i < θ} be the corresponding P-names for the above objects (so we can
regard them as P-names for ordinals). As there are < κ such names and P is (< κ)-
strategically complete, there is a dense set of q ∈ P that force values to all elements
of �. Therefore, there is some q ∈ P ∩ G1 that forces values to all elements of �

(and the values forced are necessarily {pβ,i , ζβ,i : β < γ, i < θ}). It follows that
{pβ,i , ζβ,i : β < γ, i < θ} ∈ V . In V2, there is a function f : γ → θ such that for
every β < γ , η(β) = ζβ, f (β). As f ∈ P(θ)<κ and {pβ,i , ζβ,i : β < γ, i < θ} ∈ V ,
it follows that η ∈ V1. ��
Main Claim 9 There are no θ -mad families in V1.
The rest of the paper will be devoted to the proof of Claim 9.
Suppose towards contradiction that there is a θ -mad family in V1, so there is some
(q0, p0∼

) ∈ P�Q
∼
forcing this statement about A∼ where A∼ is a canonical P�Q

∼
-name of

a θ -mad family definable using η
∼
, and η

∼
is a canonical P�Q

∼
-name of a parameter (so

η
∼

= ((aε∼
: ε < ε(∗)

∼
), x∼), where � "ε(∗)

∼
< κ", each aε∼

is a P�Q
∼
-name of a subset of

θ and � "x∼ ∈ V "). Let G0 ⊆ P be generic over V such that q0 ∈ G0. In V [G0], η∼ is a

PqG0 ,∞-name, and by increasing q0, we may assume wlog that p0 := p0∼
[G0] ∈ Pq0 ,

x = x∼[G0] ∈ V , ε(∗) = ε(∗)
∼

[G0] ∈ κ and that each aε∼
(ε < ε(∗)) is a canonical

Pq0 -name of a subset of θ . Given q ∈ P above q0, let Aq be the set of canonical
Pq-names a∼ such that (q, p0∼

) �P×Q
∼
"a∼ ∈ A∼", so q0 ≤ q1 ≤ q2 → Aq1 ⊆ Aq2 . Note

that if q0 ≤ q1, Pq1,∞ | "p0 ≤ p1" and (q1, p1) � "b∼ ∈ [θ ]θ ", then for some (q2, a∼)

we have q1 ≤P q2, a∼ ∈ Aq2 and (q2, p0) � "b∼ ∩ a∼ ∈ [θ ]θ ". By extending any given

q1 ∈ P above q0 in this way sufficiently many times to add witnesses for madness,
and recalling Claim 6(c), we establish that the set {q1 : q0 ≤P q1 and �Pq1

"Aq1 is
θ -mad"} is dense in P above q0.
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Now, in V2, let I = {A ⊆ θ : A is contained in a union of< θ members ofA}, then
I is a θ -complete ideal and θ /∈ I . Let F be the dual filter of I , then F is θ -complete,
and as θ is supercompact in V2 (recalling that θ is Laver indestructible and that P�Q

∼
is (< θ)-directed closed), there is a P�Q

∼
-name D∼ such that (q0, p0) �P�Q

∼
"D∼ is a

θ -complete ultrafilter on θ that extends F , and hence is disjoint toA∼". By Claim 6 and

what we observed in the previous paragraph, we may assume wlog that q0 �P "Aq0

is θ -mad and Dq0∼
:= D∼ ∩ P(θ)V Pq0,∞

is a Pq0,∞-name of an ultrafilter on θ".

Given an ultrafilter U on θ , the forcing QU is defined as follows: the conditions of
QU have the form (u, A) where u ∈ [θ ]<θ and A ∈ U . the order is defined naturally,
i.e. (u1, A1) ≤ (u2, A2) iff u1 ⊆ u2, u2\u1 ⊆ A1 and A2 ⊆ A1.

We may assume wlog that Pq0,∞ forces 2θ = λ, hence there is a canonical Pq0,∞-
name f

∼
of a bijection from QD∼q0

onto λ. Let Q
′

∼
be a name for the forcing such that

�Pq0
" f
∼
is an isomorphism from QD∼q0

onto Q
′

∼
". Let B∼ = BD∼q0∼

be the QD∼q0

-name

⋃{u : (u, A) ∈ GQD∼q0

}, so �Pq0,∞�QD∼q0

"B∼ ∈ [θ ]θ is θ -almost disjoint to Aq0". Let

B∼
′ be the canonical Pq0,∞�QD∼q0

-name for the image of B∼ under f
∼
.

Now observe that there is q′ ∈ P such that q0 ≤P q′, Uq′ = Uq0 ∪ {γ }, α <Uq′ γ

for every α ∈ Uq0 and Qq′,γ
∼

= Q
′

∼
. As before, there is q′′ ∈ P above q′ such that

p0 �Pq′′,∞ "Aq′′ is θ -mad". Therefore, there is some Pq′′,∞-name A∼ ∈ Aq′′ such that

p0 �Pq′′,∞ "A∼ ∩ B∼
′ ∈ [θ ]θ , so A∼ has intersection of size θ with every member of D∼q0

and A∼ /∈ Aq0".

Now let (q1, B1∼
, A1∼

) = (q′′, B ′
∼ , A∼) and let (q2, B2∼

, A2∼
) be an isomorphic copy of

(q1, B1∼
, A∼1

) over q0 such that Uq1 ∩ Uq2 = Uq0 and q2 ∈ P.

Claim 10 Let q0, (q1, B1∼
, A1∼

) and (q2, B2∼
, A2∼

) be as above (so q0 ≤K ql (l = 1, 2),

Uq1 ∩ Uq2 = Uq0 and
∧

l=1,2
�Pql ,∞ “Al∼

∈ A∼\A′′
q0 ) and let G ⊆ Pq0,∞ be generic over

V , then �Pq1,∞/G×Pq2,∞/G “A2∼
\A1∼

, A1∼
\A2∼

∈ [θ ]θ ′′
.

Proof We shall prove the claim for A2\A1, the other case is similar. Suppose towards
contradiction that (p1, p2) forces that A2∼

\A1∼
⊆ γ < θ . For l ∈ {1, 2}, let Bl =

{ε < θ : pl �Pql ,∞/G "ε /∈ Al∼
"} ∈ V [G]. By the assumption of the claim, Bl ∈

[θ ]θ . By the θ -madness of A0∼
[G] in V [G], there is some Y ∈ A0∼

[G] such that

|Y ∩ B2| = θ . As p1 �Pq1,∞/G "|A1∼
∩ Y | < θ", there are q1 and β1 < θ such that

p1 ≤ q1 ∈ Pq1,∞/G and q1 �Pq1,∞/G "A1∼
∩ Y ⊆ β1". Let β2 ∈ Y ∩ B2 such that

max{γ, β1} < β2 (recalling that |Y ∩ B2| = θ ). By the definition of B2, there is
q2 ∈ Pq2,∞/G above p2 that forces "β2 ∈ A2∼

". Therefore, (p1, p2) ≤ (q1, q2) ∈
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Pq1,∞/G ×Pq2,∞/G and (q1, q2) �Pq1,∞/G×Pq2,∞/G "β2 ∈ A2∼
\A1∼

", a contradiction.

It follows that �Pq1,∞/G×Pq2,∞/G "A2∼
\A1∼

∈ [θ ]θ ". ��

Claim 11 Under the assumptions of Claim 10 (recalling that �Pql ,∞ "Al∼
∩ B �= ∅ for

every B ∈ Dq0∼
" (l = 1, 2)), we have �Pq1,∞/G×Pq2,∞/G "A1∼

∩ A2∼
∈ [θ ]θ ".

Proof Assume towards contradiction that (p1, p2) ∈ Pq1,∞/G ×Pq2,∞/G forces that
A1∼

∩ A2∼
⊆ γ for some γ < θ . It’s forced by (p1, p2) that Al∼

⊆ Bl (l = 1, 2) where

Bl is as in the proof of the previous claim, hence it’s forced by (p1, p2) that each Bl

intersects each member of Dq0∼
. As B1, B2 ∈ V [G], it follows that B1, B2 ∈ Dq0∼

[G].
Therefore, there is some β ∈ (B1 ∩ B2)\γ , hence there is ql ∈ Pql ,∞/G above pl

that forces "β ∈ Al∼
" (l = 1, 2). It follows that (p1, p2) ≤ (q1, q2) ∈ Pq1,∞/G ×

Pq2,∞/G and (q1, q2) �Pq1,∞/G×Pq2,∞/G "β ∈ A1∼
∩ A2∼

", contradicting the choice of

γ and (p1, p2). It follows that �Pq1,∞/G×Pq2,∞/G "A1∼
∩ A2∼

∈ [θ ]θ ". ��

Now given q0, (q1, B1∼
, A1∼

) and (q2, B2∼
, A2∼

) as above, let q3 = q1 +q0 q2. Then

q3 ∈ P,q1,q2 ≤K q3, and by claims 10 and 11, we get a contradiction. This completes
the proof of Main Claim 9 and hence of Theorem 2. ��
We conclude with the following natural question:

Question What’s the consistency strength of Z F + DCθ + "there are no θ -mad
families" for some θ > ℵ0?
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