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ABSTRACT 

 

We continue here [7] (see the introduction there) but we do not relay 
on it. The motivation was a conjecture of Galvin stating that 2" > w2  + 
w2= [w1]h(n) is consistent for a suitable h : w= w. In section 5 we disprove 
this and give similar negative results. In section 3 we prove the consistency of 
the conjecture replacing w2  by 2', which is quite large, starting with an Erdös 
cardinal. In section 1 we present iteration lemmas which are needed when we 
replace w by a larger A and in section 4 we generalize a theorem of Halpern and 
Lauchli replacing w by a larger A needed for generalizing §3. The work will be 
continued in [10]. 

O. Preliminaries 

Let <x* be a well ordering of H(X), where H(X) ={x : the transitive closure 
of x has cardinality < x}, agreeing with the usual well-ordering of the 
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638= S. SHELAH 

ordinals. P (and Q, R) will denote forcing notions, i.e. partial orders with 
a minimal element = Op. 

,A forcing notion P is À-closed if every increasing sequence of members 
of P, of length less than À, has an upper bound. 

If P E H(x), then for a sequence 7-5 = (pi  : i < 7) of members of P let 
d 

a ==
ef
= sup{j : fp)  : j < j} has an upper bound in P} and define the 

canonical upper bound,of p, sz -p as follows: 

(a) the least upper bound. of= : i < a} in P if there exists such an 
element, 

(b) the <;-first upper bound of (pi  : i < 7) if (a) can't be applied but there 
is such, 

(c) Po  if (a) and (b) fail, 7 > 0, 

(d) Op if -y = O. 

Let poSzpi  be the canonical upper bound of (pe  : P < 2). 

Take [a]" ={bc a: Ibi = tc} and [a]<k = L.Je<,[c]°  • 
For sets of ordinals, A and B, define H°PB  as the maximal order 

preserving bijection between initial segments of A and B, i.e, it is the 
function with domain {a E A : otp(a n A) < otp(B)}, and HZ (a) = i3 if 
and only if a E A, /3 E B and otp(a n A) =:otp6(3 n B).= • 

Definition 0.1 A —>+ (a)12<"' holds proVided whenever F is a function from 
[A]<' to ,µ, C CA is a club then there is A C C ,of order type a such that 
[wi, w2 E [A]<',= = lw21= F(wi) = F(102)]. 

Definition 0.2 A= [a]Z 9  if for every function F from [A]n to= there is 
A C= of order type a such that {F(w) : w E [A]n} has power ≤ 

Definition 0.3 A forcing notion P satisfies the Knaster condition (has 
property K) if for any= : i <= C P there is an uncountable A C w1 
such that the conditions p, and p3  are compatible whenever i, j E A. 

1. Introduction 

Concerning 1.1-1.3 see Shelah [5], Shelah and Stanley [8,9]. 
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STRONG PARTITION RELATIONS= 639 

Definition 1.1. A forcing notion Q satisfies *µ where e is a limit ordinal 
< µ, if player I has a winning strategy in the following game: 

Playing: the game lasts E moves. 
in the ath  the move: 

Player I - if a= 0 he chooses (q(̀:` : < µ+) such that= E Q and 
( (V0 < a)(V( < ii+)4 < qS and he chooses a regressive 
function fo, := —> µ+ (i.e. for  (i) < 1 + i); .if a = 0 let 

0Q,= = o. 
Player II — chooses (pcc! : < it+) such that qS <= E Q. 

The outcome: Player I wins provided whenever µ= < <= cf(() = 
cf(0 = µ and Ap<e  fo(() = MO the set {13Z : a< o}= : a < E.} has 
an upper bound in Q. 

Definition 1.2. We call (Pi , Qj  : i < i(*), j < i(*)) a *7,-iteration 
provided that: 

(a) it is a (< µ)-s4pport iteration (µ is a regular cardinal) 

(b) if il  < i2  ≤ i(*), cf il  # µ then P~2  /Pi, satisfies * et, 

The Iteration Lemma 1.3. If Q == Q.;  : i < i(*), j < i(*)) is a 
(< µ)-support iteration, (a) or (b) or (c) below hold, then it is a *EA -iteration. 

(a) i(*) is limit and Qrj(*) is a *6A -iteration for every j(*) < i(*). • 

(b) i(*) = j(*) + 1, Qrj(*) is a *EA -iteration and Qi(. )  satisfies *EA  in vPi(-) . 

(c) i(*) = j(*)= 1, cf j(*) = µ±, Q j(*) is a *6A -iteration and for every 
successor i < j(*), Pi(. )  / Pi  satisfies *µ. 

Proof. Left to the reader (after reading [5] or [9]). o 

Theorem 1.4. Suppose µ= µ<µ < X < A, and A is a strongly inaccessible 
q-Mahlo cardinal, where k2 is a suitable natural number (see 3.6(2) of 1-61), 
and assume V = L for the simplicity. Then for some forcing notion P: 

(a) P is µ-complete, satisfies the µ± -c.c., has cardinality A, and VP 
"21L = A". 

(b) ll-p= —> [µ+]3  and even A= [µ+]~,2  for < 

(c) if µ = No  then II- "MAx  ". 

(d) if it > tsio  then: II- "for every forcing notion Q of cardinality < x, µ-
complete satisfying *µ, and for any dense sets Di  C Q for i < io  < A, there 
is a directed G C Q, AiG n Di O. 
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640= S. SHELAH 

As the proof is very similar to [7], (particularly after reading section 3) 
we do not give details. We shall define below just the systems needed to 
complete the proof. More general ones are implicit in [6]. 

Convention 1.5. We fix a one to one function Cd = Cda,µ  from µ' 
onto A. 

Remark. Below we could have otp(Bx  )= µ+ + 1 with little change. 

Definition 1.6. Let µ < x < < A, A = A <A )  X = x <1') µ = tt<A  • 

1) We call x a (A, n, x, µ)-precandidate if x = (aT, : u E I s ) where for some 
set Bx  (unique, in fact): 

(i) ={s: s g Bx, IsI ≤ 2} , 
(ii) Bx  is a subset of of order type 

(iii) a: is a subset of A of cardinality ≤ x closed under Cd, 
(iv) aT, n Bs  = u, 

(v) au n av C= , 

(vi) if u, v E Ix , 1111 = lvi then a: and af, have the same order type (and 
so H°1',E,  maps a: onto air) ), 

(vii) if ut , ye E I x  for t = 1,2, lull = lvil, 17121 = 1v21, luiUud = I ,v1Uv21, 
HZ,,af„ ,ati .„;  maps ut  onto vt  for P= 1,2  then Hcr= and ,t1

,
 

.11(); P  a;  are compatible. a„2   

2) We say x is a (A, n, x,µ)-candidate if it has the form (M: : u E Ix) 
where 

(a) (i) (1M:1= E Ix ) is a (À, K1 x7 ti)-Precandidate (with Bx  dg Utz  ) 

(ii) Lx  is a vocabulary with < x-many < µ-ary places predicates and 
function symbols, 

(iii) each M: is an .£,-model, 

(iv) for u, v E= lul = IvI,= n Imfl) is a model, and in fact 
an elementary submodel of Mif, M: and Nluw 

(0) (*) for u, v E Ix, lul = lvl, the function lifY, I is an isomorphism 
from Mt', onto 

3) The set 21 is a (A, ic; x, tt)-system if 

(A) each x E 21 is a (A, K, x,µ)-candidate, 
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STRONG PARTITION RELATIONS= 641 

(B) guessing.. if L is as in (2)(a)(ii), M.  is an L-model with universe A 
then for some x E= s E Bx= M: M.  . 

Definition 1.7. 1) We call the system a disjoint when: 

(*)' if X y are from a and otp(lATI) < otPOM:1) then for  some B1  C Bx, 
B2 C By  we have 

a) Pi + 1B2 1 < it+ 
b) the sets 

 sE [Bx\B1]52 } 

and 

U{lm:l sE [By\ B2]`2} 

have intersection C 

2) We call the system a almost disjoint when: 

(**) if x, y E 21, otp(lMefl) 5_ otp(IM:1) then for some B1  C Bx , 
B2 C By we have: 
(a)1B11+ IB2l 
(b) if s E [Bs  \ B1]`-2, t E [By  \ B2]52  then lit/1:1 n 

2. Introducing the partition on trees 
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642= S. SHELAH 

22) 'Per f(µ' 2) = {T E Per(µ' 2) : if a < µ and v1,‘ v2  E= n T, then 

[ A vi-(€) E T <=> A ,2-(t)  E 11}. 
e=o= e=o 

3) Pe~u(4> 2) = {~I' E Pe~::( /~> 2) : i{.a < H, v].  ~: vz , '!~~0~ a:2NI, 
1= 2 

. t~e~] V V Vni(l)¢ I}. 
t=0 m=1 

4) For T E Per(µ' 2) let limT == E µ2 : (Va < tc) itra E T}. 
5) For T E Perf  (a> 2) let clpT  : T= ii> 2 be the unique one-to-one 

function from-sp(T) def= T : 71(0) E T, 7/(1) ,  E T} onto P> 2, 
which preserves a and lexicographic order. 

6) Let SP(T) =' flg(n) : E sp(T)}, sp(n, v) = min{i := v(i) or i 
lg(n) or i = lg(v)}. 

Definition 2.2. 1) For cardinals µ, a and n < w and T E Per(µ' 2) let 
Col7,(T) = Id : d is a function from U"<µ  r 2 n Tln  to cyl. We will write 
d(vo ,= v„_ 1  ) for d({vo , • • , vn-1 })• 

_2) Let <,,," denote a well ordering of a 2 (in this section it is arbitrary). We 
call d E Col;(T) end-homogeneous for ( <a*: a < µ) provided that: if 
a < 0 are from SP(T), {vo ,= vn _ i  } C 02 n T, (ve  r a : P< n) are 
pairwise distinct and A [ve  <0.= <> ve  [a <,„*= ra] then 

e,m 

d(vo , . • , vn- ) = d(vo ta, • • • , 

_;3Y Let Eh Co17:.(T) = {d E Corci,(T) : d is end-homogeneous } (for some 
a < /4). 

'4Y For vo ,= , no ,= /in- 1  from a> 2, we say= = (vo ,= vn _ 1 ) and 

1;7/ = O., • • • ,= ) are strongly similar for ( <"„,: a< µ) if: 

(i) lg(ve ) = lg(ne ) 

(ii) sp(ve, vm) = sP(1/e,1/7n) 
(iii) if f i , P2, £3 , £4  < n and a = sp(ve, , ve,) then 

vt, [a= ve4  ra= r a <*c, ne, ra and ye, (a) = ne, (a) 

5 ':,:For= ...,= , 14, ..., Unb _ from a> 2 we say Da == vna_ ) and 
vb = (4

,= 1") are similar if the truth values of (i)-(iii) below doe 
-not depend on t E {a, b} for any £(1),t(2),i(3),t(4) < n: 
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STRONG PARTITION RELATIONS= 643 

(i) lg(vte(1) ) < lg(4(2) ) 

(11) sp(vti(1) , 4 (2) ) < sp04(3) , 4 (.4)  ) 

(iii) for a= spOite(1), vte(2)), 

t= t 
ve(3) lo= • ve(4) ra 

and 
4 (3) (a) = O. 

6) We say d E Colan(T) is almost homogeneous [homogeneous] on T1  C T 
(for ( <O‘. : a < µ)) if for every a E SP(T1), P, E= n T1 r which are 
strongly similar [similar] we have d(v) = d0). 

7) We say ( < : a < µ) is nice to T E Per(ii>2), provided that: if 
a < Q are from SP(T), (a, 0) n SP (T) = 0, 7h 0 772 E /32 n T, 

< n2  [a or ih [a = 772  ra, ni  (a) < n2 (a)] then ni  <0.  n2 . 

Definition 2.3. 1) Preht  (µ, n, a) means: for every. d E Colan (µ' 2) for some 
T E Per(A> 2) and ( <a.  : a< µ), d is end homogeneous on T. 

2) Praht (µ, n, a) means for every d E Colan(A> 2) for some T E Per(A> 2) 
and (= a < µ), d is almost homogeneous on T. 

3) Pritt= n, (7) means for every d E Col,n(A> 2) for some T E Per(µ' 2), d 
is homogeneous on T. 

4) For x E {eht, aht, ht}, Pr(µ,n, a-) is defined like Prz (µ,n,a) but we 
demand T. E Perf  (µ' 2). 

5) If above we replace eht, aht, ht by ehtn, ahtn, htn, respectively, this 
means ( <„: a < µ) is fixed apriori. 

6) Replacing n by "< te, a by 5-  = (at  : < ic) for ti < No , means that 
(dn  : n < tc) are given, dn  E Col,n (A>  2) and the conclusion holds for 
all dn  (n < K) simultaneously. Replacing "a" by "< a" means that the 
assertion holds for every al  < a. 

Definition 2.4. 1) Praht (µ,n,a(1),a(2)) means: for every d E Cocn(l) 
(µ' 2) for some T E Per(µ? 2) and (= : a < µ) for every fi E U fla  2 fl= : 
a E SP(T)}, 

{d(P) : v E U{r2 n= : a E SP(T)}; 

and v are strongly similar for ( <: a < µ)} 
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644= S. SHELAH 

has cardinality < a(2). 

2) Prht (µ,n,a(1),a(2)) is defined similarly with "similae instead of 
"strongly similae. 

3) Prx= <= (0-1 : P< K)= : e< k)) Pr! (µ, n, cr(1), a(2)), Pr! (µ, < 
No, a l  , ar2 ) are defined in the same way. 

There are many obvious implications. 

Fact 2.5. 1) For every T E Pere' >2) there is a T1  C T, Tl  E Peru(µ' 2). 
2) In defining Pr!(p, n, a) we can demand T C To  for any To  E Perf  (µ' 2), 

similarly for Pr!(µ, <= a). 
3) The obvious monotonicity holds. 

Claim 2.6. 1) Suppose µ is regular, a > No  and Prefht  (µ, n, < a) holds. 
Then Pref ht  (µ, n, < a) holds. 
2) If µ is weakly compact and Pref ht (p, n, < a), a < µ holds, then 

Prfh.t  (µ, n, < a) holds. 
3) If µ is Ramsey and Pref ht  (µ, < No , < a), a < µ holds, then Prifit (p.,< 

Ro, < a) holds. 
4) If p = w, in the "nice" version of 2.3(5), the orders ( <„,*: a < µ) 

disappear. 

Proof. Check it. o 

The following theorem is a quite strong positive result for µ = w. 
Halpern Lauchli proved 2.7(1), Laver proved 2.7(2) (and hence (3)), Pincus 
pointed out that Halpern Lauchli's proof can be modified to get 2.7(2), and 
then Prefht  (w, n, < a) and (by it) Prfht (w,n, < a) are easy. 

Theorem 2.7. 1) If d E CoC(w>  2), a < No, then there are To, . . . ,= E 
Peri. (w> 2) and ko < k1  <= < kt  < ... and s < a such that for every 

< w : if vo  E To, v1 E T1,= , vn-1  E Tn-1,= A l.g(vm) = kt , then 
m<n 

d(vo,= vn- i ) = s. 
2) We can demand in (1) that 

SP(T1) = {ko , kl , ...} 

3) Prfhtn  (w, n, a) for a < No. 
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STRONG PARTITION RELATIONS= 645 

4) Prfhtn  (w, < Ro , (anl  : n < w), (crn2  : n < ci.))) if an < Ro  and (an2  : n < w) 

diverge to infinity. 

Definition 2.8. Let d be a function with domain D [A]n  , A be a set of 
ordinals, F be a one-to-one function from A to "(*) 2, <:„ be a well ordering 
of '2 for a < a(*) such that F(a)= F(0) .4.* a < 0, and a be a cardinal. 

1) We say d is (F, a)-canonical on A if for any al  < • • • < an  E A, 

Ild(01). • 70n) (F'OO, ''' F On)) similar to 

(E'CaI ),...,..F(an))}| S 0. 

2) We define "almost (F, a)-canonical" similarly using "strongly similar" 
instead of "similaC. 

3. Consistency of a strong partition below the continuum 

This section is dedicated to the proof of 

Theorem 3.1. Suppose A is the first Eras cardinal, i.e. the first such that 
(w1 )Zw and hence A —>+ (w1)2' as in definition 0.1. Then, if A is a 

Cohen subset of A, in V[A] for some N1-c.c. forcing notion P of cardinality 
A, ll-p "MAN, (Knaster) + 2M° = A" and: 

1) p= [N 1 nh(n) " for suitable h : w= w (explicitly defined below). 

2) In VP  for any colorings dn  of A, where dn  is n-place, and for any 
divergent (an  : n < w) (see below), there is a W C A, NI 
and a function F : W= '2 such that: dn  is (F,an )-canonical on W 
for each n. (See definition 2.8 above.) 

Remark 3.2. 1) h(n) is n! times the number of u E [w  2] n  satisfying [if 

rh , 772 , 7/3  , 714 E u are distinct then sp(7)i, 7]2), sP(173) TM) are distinct] up to 
strong similarity for any nice <a* : a < w). 

2) A sequence (an  : n < w) is divergent if Vm 3k Vn > k crn  > m. 

Notation 3.3. For a sequence a = (at , e: : i < a), we call b C a closed if 

(i) i E b= a, C b 
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646= S. SHELAH 

(ii) if i < a, c: = 1 and sup(b fl i) = i then i E b. 

Definition 3.4. Let A be the family of Q == Q ,a; ,e; : j < a, i < a) 
such that 
(a) ai= lad ≤.~i 
(b) ai  is closed for (ai ,= : j <= e; E 0,11, and [e; = 1= cf i = 
(c) Pi  is a forcing notion, Qi  is a pi-name of a forcing notion of power tst j 

with minimal element 0 or 0.;  and for simplicity the underlying set of 
Q3  is C p1r. (we do not lose by this). 

(d) Pp = fp : p is a function whose: domain is a finite subset of 0 and for 
i E dom(p),= "f(i) E Qi"} with the order p < q if and only if for 
i E dom(p), q[i II- pi  "p(i) ≤ q(i)". 

(e) for j < a, Q.  is a pr name involving only antichains contained in 
{pE P;  : dom(p)= ai l. 

For p E P2 7  j < i, j= domp we let p(j) = O. Note for p E= j < 
13 Li e pi. 

Definition 3.5. For Q E A as above (so a = lg(Q)): 
1) for any b C= < a closed for (ai , e; :i< 0) we define 11n  [by 

simultaneous induction on )4 

= {p E Pp. : domp C b, and for i E domp, p(i) is a canonical name} 

i.e., for any x, {p E Pcciin  : p p,"p(i) = x" or p= "p(i)= x" } is a 
piedense subset of Pi. 

2) For Q as above, a = lg(Q), take Q [0 = (Pi , Q
i

, a.;  : i= )3, j < 0) for 
< a and the order is the order in Po  (if 0 > a, Q [0 = Q). 

3) "b closed for Q" means "b closed for (ai, e: : i < lg Q)". 
Fact 3.6. 1) if Q E S then, Or0 E .ft. 
2) Suppose bCcCO< lg(0), b and c are closed for Q E 

(i) Ifp EPr then plh E= . 
(ii).  If p, q E Fr and p < q then p[b ≤ qic. 
(iii)= <oPo. 

3) lgQ is closed for Q. 
4) if Q E A, a = lgQ then .13,," is a dense subset of Po . 
5) If b is closed for Q, p, q E Picgn -0, p < q in Pig Q  and i E dom p then 

qfai= "p(i) ≤ q(i)" hence & i ll- -= "p(i) ≤cji  q(i)". 
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Definition 3.7. Suppose W = (W, <) is a finite partial order,and Q E A. 

1) INw  (Q) is the set of b-s satisfying (a)—(y) below: 

(a) b = (14, : w E W) is an indexed set of Q-closed subsets of lg(Q), 

(0) W= "w1 < w2"= bw, C bu2  

(7)= E bw, nb.2, wi. < w, .w2  ≤ w then (3u E W)( E bu  Au < wi  Au <-
w2. 

We assume b codes (W, ≤). 

2) For b E I Nw  (Q), let 

Q[b] 
def 

{(Pw • W E W) pw  E PC ,[W H wi C w2= Pw2[ wi = Pwi ]/, 

with ordering Q[b]= ≤ 252 
iff AWE=

< p 2
tv

 

3) Let Al be the family of Q E A such that for every 0- < lg(Q) and 
(Q [0)-closed b, Pp and Po  /= satisfy the Knaster condition. 

Fact 3.8. Suppose Q E= (W, <) is a finite partial order, b E INw (Q) 
and f) E Q[b]. 

1) If w E W, pw  < q E PC then there is r E Q[b], q. ≤ ru„ p < f, in fact 

q(- 
{Pub) 

pu b) & y) 
ry(7) = • 

Pu(`Y) 

if ry E Dom pi, \ Dom q 
if -y E bu  fl Dom iTand for some v E W, 
v < u, v < w and -y E by 
if -y E bu  fl domq but the previous case fails 

2) Suppose (W1, ≤) is a submodel of (W2 , ≤), both finite-partial orders, 
E INw,(Q), bwl = b2„, for w E 

(a) 114 c Q[b2] then (q„, : w E W1) E Q[b1]. 

(0) If p E Q[b1] then there is q E Q[b2], q rW1  = p, in fact qu,(-y) is p (-y) 
if u E W1, ry E bu, u < w, provided that 
(**) if wl,w2 E Wl, w E W2, wl < w, w2 < w and E bwl  n bu,2 
then for some v E W1, ( E by, v <= v < w2 . 
(this guarantees that if there are several u's as above we shall get 
the same value). 

3) If Q E Al  then Q[b] satisfies the Knaster condition. HO is the minimal 
element of W (i.e. u E W= (11< u) then Q[b]/ PC' also satisfies 
the Knaster condition and so < oQ[b], when we identify p E lI on  with 
(p : w E W). 
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Proof. 1) It is easy to check that each ru  is in P. So, in order to prove 
E Q[b], we assume W= ?L I  < u2  and have to prove that r, rbu, = rui • 

Let ( E bu, . 

First case: ( 0 Dom(pu, ) U Dom q. 

So (¢ Dom(rui) (by the definition of ru, ) and (= DomPu2 (as 
p E Q[b]) hence ( 0 (Dom p, ) U (Dom q) hence (= Dom(r„) by the 
choice of r, , so we have finished. 

Second case: ( E Dompui  \ Dom q. 

As p E [6] we have Pu, (C) = Pu2 (0, and by their definition, ru, (() = 
P., (C), ru2(() = Pu2(0. 

Third case: ( E Dom q and (3v E W) (( E by A v < u1  A v < w). By the 
definition of ru, ((), we have rui  (C) = Pu, (()&4((), also the same v witnesses 

(()= Pu2(084((), (as (Eby Ay <u1 Av <w= (Eb„Av < u2 Av < w) 
and of course Pui (() = Pu2 (() (as p E Q[b]). 

Fourth case: ( E Dom q and - ,(3vEW) ((Eby A v < u1  A v < w). 

By the definition of rul  (() we have ru, (() = pu, ((). It is enough to prove 
that ru2(() = Pu2  (() as we know that pui  (() = pu2  (() (because p E Q[b], 
ul  < u2 ). If not, then for some vo E W, E bvc, A vo  ≤ u2 A vo < w. But 

E INw(Q), hence (see Def. 3.7(1) condition (-y) applied with (, w1, w2, w 
there standing for (, vo , ul , u2  here) we know that for some v E W, ( E 
by A v < vo  A v < u1. As (W, ≤) is a partial order, v < vo  and vo  ≤ w, we 
can conclude v < w. So v contradicts our being in the fourth case. So we 
have finished the fourth case. 

Hence we have finished proving 7e E Q[6]. We also 'have to prove 
q < T.., but for ( E Dom q we have ( bu, (as q= ) and r„(() = q(() 
because riu  (() is defined by the second case of the definition as (3v E W) 
((eb„Av<wAv<w),i.e.v=w. 

Lastly we have to prove that p < f (in Q[6]). So let u E W, ( E Dompu 
and we have to prove ru  r( IFpc  "Pu(() <pc  ru(()". AS ru (() is pu (() or 
pi.,(086q(() this is obvious. 

2) Immediate. 

3) We prove this by induction on IWI. 
For IWI = 0 this is totally trivial. 
For IWI = 1, 2 this is assumed. 
For IWI > 2 fix pi E Q[b] for i < wi . Choose a maximal element v E W and 
let c = Ulbu, :WHw< v}. Clearly c is closed for Q. 
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We know that Pr, /I,,"/Pr are Knaster by the induction hypothesis. 
We also know that p:,rc E Pr for i < w1, hence for some r E P:n 1 

r= " A d-g { i < col  : ptfcEGF,„} is uncountable" 

hence 

IF "there is an uncountable A1  C A such that 

[i, j E Al= are compatible in PIZ) / c pcn] • 

Fix a Pr-name Al  for such an Al. 

Let A2  == <col  : 3q E= , q i E 4411. Necessarily IA2l = K and for 
i E A2  there is q' E F7, q2  11- i E A1, and w.l.o.g.= fc < q1. Note that 
pivsztit E P. 

For i E A2  let, ri  be defined using 3.8(1) (with jy, pLikql). Let W1  = 
W \ {v}, b' ---= (b,„ : w E WO. 

By the induction hypothesis applied to W1,= for i E A2 
there is an uncountable A3  C A2  and for i < j in A3, there is f i'j E Q[b], 
f i  rW1  < f i'3 , and fi [WI  <= Now define rci'j E -Fr as follows: its domain 
is U {dom r:g : W w < v}, rci'j f(domr:g) = r:g whenever W= w < v. 
Why is this a definition? As if W= wl  < v A w2 ≤ v, E= A ( 
then for some u E W, u < w1  A u < w2  and ( E u. It is easy to check that 

E P: n. NOW rci,j li-pr  "pit, , 24, are compatible in= /Pr". 

So there is r E PCsuch that ric'i < r, p, < r, 24v  < T. As in part (1) of 
3.8 we can combine r and f i.j to a common upper bound of pi, pi in Q[6]. 

Claim 3.9. If 6 is a limit ordinal, and Pi , Qi, ai , e: (i < 6) are such that 
for each a < 6, Qa == : i < a, j < a) belongs to A (A1) , 

then for a unique P5, Q = (Pi,Q 
3

, aj,e; : i.< 6, j < 6) belongs to A (A1). 

Proof. We define P6  by (d) of Definition 3.4. The least easy problem is to 
verify the Knaster conditions (for Q E .R.1 ). The proof is like the preservation 
of the c.c.c. under iteration for limit stageš. 

Convention 3.9.A. By 3.9 we shall not distinguish strictly between (Pi , 
Q , a j., e; : i < 8, j < 6) and (Pi , Q , ai , e: : i < 6). 
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Claim 3.10.. If Q E A (A1), a = lg(Q), a c a is closed for Q, lal ≤= Qi 
is a 13,ci n -name of a forcing notion satisfying (in VP- ) the Knaster condition, 
its underlying set is a subset of [wi n then there is a unique Q1  E AN!), 
lg(C21.) = a + 1,= = Q, C21  [a = Q. 

Proof. Left to the reader. 0 

Proof of Theorem 3.1. 

A Stage: We force by= == E= : lg(Q) < A, Q c H(A)} ordered by 
being an initial segment (which is equivalent to forcing a Cohen subset of 
A). The generic object is essentially Q' E= lg(Q.  ) = A, and then we force 
by PA  = lim Q. . Clearly Re<A  is a A-complete forcing notion of cardinality 
A, and PA  satisfies the c.c.c. Clearly it suffices to prove part (2) of 3.1. 

Suppose dn  is a name of a function from HI' to kn  for n, < w, an  < 
(art n < w) diverges (i.e. Vm 3k Vn > k an  > m) and for some Q° E k A . 

C2° II- Ai<,  "there is p E PA  [p,  PA  (dn  : n < w) is a 
counterexample to (2) of 3.1"[. 

_In V we can define (C2 : < A), Q‘ E Al<A , < e= Qc = (211g(Q(), 
in Q(+1  , ei.g(c2()  = 1, Q(+1  forces (in ..ql<A  ) a value to p and the PA-names 

dn  IC, a 71  , kn  for n < w, i.e. the values here are still PA-names. Let Q' 
•••  

be the limit of the Qe-s. So Q* E A1  , lg(Q*) = A,= = (P; , (2*, a; , e; : 

i < A, j < A), and the PA'-names dn , an , kn  are defined such that in VP; , 
dn , an , kn  contradict (2) (as any P;-name of a bounded subset of A is a 
P. ( -0t)  -name for some < A). Ig 

B Stage: Let x = n+ be large enough and <; be a well-ordering of H(X). 
Now we can apply A= (w1)zw to get 6, B, N, (for s E [Br° ) and hs,t  (for 
s, t E [BV"°, Is' = ltl) such that: 

(a) B C A, otp(B) = w1, sup B = 6, 

(b) N9= (H(x),E, <;),= E N9 , (dn ,qn , Isn  : n < w) E N9 , 

(c) Ng n Nt = Nsnt, 
(d) N, n B = s, 
(e) if s = t n a, t E [Br° then N, n A is an initial segment of Nt  n a, 
(f) 13.8, t  is an isomorphism-from Nt  onto N, (when defined) 

(g) hto  = h9 i and if t1  C t, s1  C s and Hgr maps t1  onto si  then 
ht, 0, C hto  • 
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• (11) Po  E Ns, Po p, "(dn , gn , isn  n < w) is a counterexample", 
(i) w1  g Ns, INsl = NI and if 7 E Ns , cf 7 > RI  then cf(sup(7 n N9)) = 

Let Q = C2* [6, P = P,; and P a  = Pf l  (for Q), where a is closed for Q. 
Note: Pi n Ns  = Pb n Ns = Psup An/si n Ns =1311N„. Note also -y E n N, 

C Stage: It suffices to show that we can define Q6  in VP° which forces 
a subset W of B of cardinality Ni  and F : W= "2 which exemplify the 
desired conclusion in (2), and prove that Q6  satisfies the N1-c.c. (in VP° 
(and has cardinality R i )) and moreover (see Definitions 3.4 and 3.7(3)) we 
also define c1,5= N, n e6  = 1,= == (P; ,Q ,a6,e6) and prove = USE [B] <NO 6 

We let d(u) = diul  (u). 
Let F: B —+ 4'2 be one-to-one such that Vn E w>  2 3"1  a E B [77a F()]. 

(This will not be the needed F, just notation). 
For s,t E [B]<N° , we say s= t if lsl = ltlf and `91  E s, V( E= = 

h8,t  (()= = P(()[n]. Let I n  = In(F) = {s E [B]<". (v(= e E s), 
[F (()= F= [n]l . 

We define Rn  as follows: a sequence (p, : s E I n ) E Rn  if and only if 
(i) for s E l n ,p9  E P; n Ns , 

(ii) for some c, we have A,= "d(s) = cs", 

(iii) for s, t E I n , s El; t= hs,t(P1) = Ps, 

(iv) for s, t E In, P. [Nsnt = Pt rVsnt • 

Pc is defined similarly omitting (ii). 
For x = (Ps= E In ) let n(x) = n, p9 = P9, and (if defined) 

c.f = c,. Note that we could replace x E= by a finite subsequence. 
Let R = Un<u, Rn , R = Un<w R. • We define an order on 17-  : x < y if 
and only if n(x) ≤ n(y), and [sE/ n(z) A t E I n(y) AsCt= ≤ py]. 

D Stage: Note the following facts:: 
D(a) Subfact: If x E= t E i n  and pt < pl EP; n Nt , then there is y 
such that x < y E= = 
Proof. We let for s E 

def 
= & ths„t1  (P1= C s, t1 C t,= EEnF= szg. 
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(This notation means that 14 is a function whose domain is the union 
of the domains of the conditions mentioned, and for each coordinate we 
take the canonical upper bound, see preliminaries.) Why is g well defined? 
Suppose 0 E N. n À (for (3 E À \ N9 , clearly 74(0) = 00 ), se  C s, te  C t, 

se  flF,  tp for 2= 1,2 and 0 E Dom 
[

ATO  ha,,t, (pi  r= , and it suffices to show 

that Kw), h91 ,„ (13' r Nt1 )(0), hs,,t, (p1  r Art2 )(0) are pairwise comparable. 
Let u = n {v E [Br° : 0 E NO, necessarily u C s1  fl s2 , and let 
ue  = 11:; t, (u). As st, te, t E I n , se  ---711, te  and lie  C te  C t, necessarily 

f 
d
=
e , 

U1 = u2. Thus -y= hu l, lii 1= hs- ,lte  (0) and so the last two conditions are ‘ 
equal. 

Now ps (0) = 14(0) = hum  (73:(-0) ≤ hse ,t, ((pT rNtib)) = (hs,,t, (PT t 

NO) (0). 

We leave to the reader checking the other requirements.  

D(Q) Subfact: IfxER,-,,tE/n,m< n thenU{p.f :sE./.,,,sCt}(a•s 
union of functions) exists and belongs to /3: n N. 

Proof. See (iv) in the definition of 

D(y) Subfact: If x < y, x E Rn) y  E  Rn , then y E Rn. 

Proof. Check it. o 

D(S) Subfact: IfxER,-,,n<m, then thereisyERm ,x< y. 

Proof. By subfact DO) we can find xl  = (pdt-  : t E I m ) in k r, with x < xl . 
Using repeatedly subfact D(a) we can increase x1  (finitely many times) to 
get y E Rm .  

D(E) Subfact: If x E= s,t E= s EnF  t,= < rl  EPa n N97= <_ r2 E 
P; n Nt , (V( E 0[F(0(n)= (F(hs,t (0)(n)] (or just r1 rN„ = hs,t (r2rNt1) 
where t1  dg  {6 E t: F(e)(n) = (F(hs,t(e)))(n)}, sl dg ths,t(e) e E t11)) 
then there is y E Rn+i , x < y such that r1  = p9 and r2 = pi• 

Proof. Left to the reader. o 
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E Stage t 

We define: T; C 2k?  2 by induction on k as follows: 

71; =0, (1)} 
,sk+1 T;+1  =fy : v E T; or 2k  < 1g(v) ≤ z= , v 12k  E T; and 

[2k  ≤ i < 2k+1  A v(i) = 1]= i = 2k= ( E v(m)2m)]}. 
m<2k 

We define 

Tr Emb(k,n) = {h : h is a function from T; into= 2 such that 

for v, E T; : 
[77 = v= h(q) = h(y)] 
[71 a v <=> h(n) a h(v)1 
[1,g(n) = lg(v)= lg(h(7ffl = lg(h(v))] 
[v = 71(0= (h(v))[lg(h(n))] = 

ilg(71) = 2k= lg(h(77)) = 

T(k,= ={Rang h: h E Tr Ernb(k, n)} , 

T(*, n) =,U T(k, 
k 

T(k, *) = U T(k, n). 
n 

For T E T(k, *) let n(T) be the unique n such that T E T(k, n) and let 

BT  = fa E B : F(a)frt(T) is a maximal member of T}, 

fsT  ={tc BT  : i Et A j Et Ai j F(i)h(T) F(j)rn(T)}, 

eT={(ps :3EfsT):psePnN8,[sgtA{s,t}gfSTPs=PtiNs]l• 

t We will have T C W>  2 gotten by 2.7(2) and then want to get a subtree with as 
few as possible colors, we can find one isomorphic to w>  2, and there restrict ourselves to 
Un= . 
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Let further 
B~ =U{EI'I ' : 'I E I(ki,*)} 

o =Uek. 

For p E e,= = n(p), Tp  are defined naturally. 

For p, E e, p < iff= < n4 , Tp  C Tz, and for every s E fsTi, we have 
PB= q8. 

F Stage: Let g := g E Ns , g grows fast enough relative to 
(crn  : n < w). We define a game Gm. A play of the game lasts after 
w moves, in the nth  move player I chooses pri  E e n  and a function hn 
satisfying,the restrictions below and then player II choose§ 4, E e n , such 
that pn  ≤ 4n  (so Tpr, = TE/n ). Player I loses the play if sometime he has no 
legal move; if he never loses, he wins. The restrictions player I has to satisfy 
are: 

(a) for m < n, gni  < pn , pi: forces a value to gqn + 1), 

(b) hn  is a function from [BT,,,, g(n)  to w, 
(c) if m < n= hn , kr, are compatible, 

(d) If rn < n, P < g(m), s E [BTcon  ]I, then p.r:= d(s) = hn(s), 
(e) Let 81,82  E Dom hn . Then lin (si ) = hn (s2 ) whenever 81 ,82  are 

similar over n which means: 

(i) ( 
F (H= (()))[nr] = (F (0) rn[Pn] for ( E si, 

(ii) H= preserves the relations sp (F((1),F((2 )) < sp (F((3), 

F((4 )) and F((3 ) (sp (F((i), F((2)))= i (in the interesting 

case= 6 , (.2  implies i= 0). 

G Stage/Claim: Player I has a winning strategy in this game. 

Proof. As the game is closed, it is determined, so we assume player II has 
a winning strategy , and eventually we shall get a contradiction. We define 
by induction on n, fri and (1),, such that 

(a) rn E Rn, fn ≤ fn+1, 

(b) n  is a finite set of initial segments of plays of the game, 

(c) in each member of .1)„ player II uses his winning strategy, 
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(d) if y belongs to 4.7, then it has the form (pm, hv,e,= := < m(y)); let 
hy  = hy,m( y)  and Ty  = Te , m(y)  ; also Ty  cn' 2,= -< es' for s E f ST, • 

(e) el)n t C 4).+1,= is closed under taking the initial segments and the 
empty sequence (which too,is an initial segment of a play) belongs to 
(1)o• 

(f) For any y E (1,7, and T, h either for some .z E= nz  = ny  + 1, 
y = z r(ny + 1), Tz  = T and hz  = h or player I has no legal (ny + 1)th 
move 23., hn (after y was played) such that Tv  = 1, h n  = h, and 
737.: = r9 for s E. f sT  (or always < or always >). 

There is no problem to carry the definition. Now (r" : n < w) define 
a function cr if= • •= Em 2 are distinct then cr ((rh, • • -,N)) = c iff 
for every (equivalently some) ("1  < • • • < (k  from B, such that n, a F(0), 

" k ({6,= (0) = e. 
Now apply 2.7(2) to this coloring, get T.  Cw> 2 as there. Now player 

I could have chosen initial segments of this T" (in the nth move in 4)  n  ) and 
we get easily a contradiction. o 

H Stage: We'fix a winning strategy for player I (whose existence is guar-
anteed by stage G). 

We define a forcing notion Q.  . We have (r, y, f) E= iff 
(i) r E Pab 

(ii) y = (pe, W, qt : e < m(y)) is an initial segment of a play of Gm in which 
player I uses his winning strategy 

(iii) f is a finite function from B to {0,1} such that= ({1}) E fsTy  (where 
Ty  = T4,m („ )  ). 

(iv) r = qyf l"((y{ )1}) . 
The Order is the natural one. 

I Stage: If J C /c'Z' is dense open then {(r,v, f) E= :rEJ is dense 
in Cr . 
Proof.!By 3.8(1) (by the appropriate renaming). o 

J Stage: ',We define Ch in 17'.5  as {(r, y, f) E Q.  : r E gpo }, the order is 
as in (I. 

The main point left is to prove the Knaster condition for the partial 
ordered set Q.  = Q^ (P6 ,Q 6 , ars, e6 ) demanded in the definition of Al . This 
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will follow by 3.8(3) (after you choose meaning and renamings) as done in 
stages K,L below. 
K Stage: So let i < 6, cf(i)= and we shall prove that P641  / P, satisfies 
the Knaster condition. Let pc, E P:;+1  for a < w1, and we should find 
p E P t7  p FP, "there is an unbounded A C {a : pc,= E Gp } such that for 
any a„Q E A, pc„ pp are compatible in P o.+1  G p,". 

Without loss of generality: 

(a) pc, E P. 
(b) for some (ia  : a < w1 ) increasing continuous with limit 6 we have: 

io > i, cf= NI, pa rö E= / Pa N. E 

Let pc2, = pc,= = Nib = pa lia+1 , pa (6) == fc,), so without 
loss of generality 
(c) rc, E P,,„+, , rc,ria  E Pia  m(y„) = m*, 
(d) Dom fa  C io U [i.,ict+1 ), 
(e) fa  No is constant (remember otp(B) = w1), 
(f) if Dom fc, == } then kc, = k, Vt"' <= < 

At<k*= j t , f(j7)= f (4), FUn)frn(ya) = F(7lt3 )[111(y0). 
The main problem is the compatibility of the qv—m(yo) . Now by the 

definition e c, (in stage E) and 3.8(3) this holds.  

L Stage: If c C +1 is closed for (2", then Pi+1 /Pr satisfies the Knaster 
condition. 

If c is bounded in 6, choose a successor i E (sup c, 6) for Q[i E= We 
know that P,/Pr satisfies the Knaster condition and by stage K, P;+1 /P, 
also satisfies the Knaster condition; as it is preserved by composition we 
have finished the stage. 

So assume c is unbounded in 6 and it is easy too. So as seen in stage J, 
we have finished the proof of 3.1.  

Theorem 3.11. If > nw , P is the forcing notion of adding A Cohen reals 
then 

(*)1 in VP, if n < w d : [A]-̀ n= u,= < Ro, then for some c.c.c. forcing 
notion Q we have ll-c2  "there are an uncountable A C A and an one-
to-one F : A= 2 such that d is F-canonical on A" (see definition 
2.8). 

(*)2 if in V, A ≥ µ —> WsP  (ION°  (see (6.1) and in VP, d : [p]`n -4 a, Q<No 
then in VP  for some c.c.c. forcing notion Q we have ll-c2  "there are 
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A E W6  and one-to-one F : A —>"' 2 such that d is F-canonical on 
A". 

(*)3  if in V,= > p, —> wsr, (1>I1)7,% and in VP d : [prn —> a, a < tsio  then in 2 
VP  for every a < w1  and F : a —>" 2 for some A C µ of order type 
a and F' : A —>w 2; F' (0) def  F(otp(A n 13)), d is F'-canonical on A. 

(*)4 in VP, 2R0= (a, n)3  for every a < w1, n < w. Really, assuming V 
GCH, we have Nn1  —> (a, n)3  (see 1.6)). 

Proof. Similar to the proof of 3.1. Superficially we need more indiscerni-
bility then we get, but getting (Mu  : u E [B] ̀-n ) we ignore daa, OD when 
there is no u with {a,0) E M. 0 

Theorem 3.12. If a is strongly inaccessible w-Mahlo, p < À, then for some 
c.c.c. forcing notion P of cardinality À, VP satisfies 
(a)MAµ 
(b) 2N° = --= 2' for lc < 
(c) —> [R1];,h(n)  for n < w, a <= h(n) is as in 3.1. 

Proof. Again, like 3.1. 0 

4. Partition theorem for trees on large cardinals 

Lemma 4.1. Suppose p > a + Ro  and 
(*)µ for every µ-complete forcing notion P, in VP, µ is measurable. 
Then 
(1)for n < w, Preht(P,  n,  a). 

<L) 
2 

(3) In both cases we can have the Prefhtn  version, and even choose the 
(<",„: a < µ) in any of the following ways. 
(a) We are given (<°,: a < µ), and we let for n, v Ea  2 n T, a E SP(T) 

(T is the subtree we consider): 
v if and only if clpT  (n) <°,3  clpT (v) where = otp(q(1SP(T)) 

and clpT  (n) = (n(j) : j E= j E SP(T)). 

(2)Prefht  (µ, < Ro, a), if there is > µ,= —› 
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(b) We are given (<cc,' : a < µ), we let that for= Ea  2nT, a E SP(T): 
<*c, v if and only if nr(0 + 1) <°,3+1  vr(0 + 1) where 0 = sup(a n SP(T)). 

Remark. 1) (*)µ holds for a supercompact after Laver treatment. On 
hypermeasurable see Gitik Shelah [3]. 
2) We can in Hi, restrict ourselves to the forcing notion P actually used. 
For it by Gitik [2], much smaller large cardinals suffice. 

. 3) The proof of 4.1 is a generalization of a proof of,Harrington to Halpern 
Lauchli theorem from 1978. 

Conclusion 4.2. In 4.1 we can get Prif,t (µ,n, a) (even with (3)). 

Proof of 4.2. We do the parallel to 4.1(1). By (*),,, µ is weakly compact 
hence by 2.6(2) it is enough to prove Pr af  ht  (µ , n, a). This follows from 4.1(1) 
by 2.6(1). o 

Proof of Lemma 4.1. 1), 2). Let lc < w, a(n) <= dn  E Col;(n)  (µ' 2) for 
n < tc. 

Choose A such that A —> (II++ )Zm2' (there is such a A by assumption 
for (2) and by= < w for (1)). Let Q be the forcing notion (µ' 2, a), and 
P = PA be {f : dom(f) is a subset of A of cardinality <= f(i) E Q} 
ordered naturally. For i= dom(f), take f(i) =<>; Let rl . be the P-name 
for U{ f= : f E G p} . Let D be a P-name of a normal ultrafilter over µ(in 
VP ). For each n < w, d E Col:(n) (µ' 2),  j< a(n) and u= { ao , • • • , an- }, 
where ao  < • • • < an- < A, let AL(u) be the PA-name of the set 

A (u) = {i < µ := : P< n) are pairwise distinct and 

j = d(n .0 ri,= , 

So A3d (u) is a PA-name of a subset of µ, and for j(1) < j(2) < a(n) we have 
"Ajd(1)  (u) n 4 2) (u) = 0, and Uj<, (n)  Aid(u) is a co-bounded subset of 

µ". As IFP= is µ-complete uniform ultrafilter on µ", in VP  there is exactly 
one j< a(n) with AL(u) E D. Let jd (u) be the P-name of this j. 

Let Id (u) C P be a maximal antichain of P, each member of I d (u) 
forces a value to j (u). Let Wd (u) = U{dom(p) : p E Id (u)} and W(u) = 
U{Wcin  (u) : n < /cf. So Wd (u) is a subset of A of cardinality ≤ µ as well as 
W(u) (as P satisfies the µ+-c.c. and p E P= dom(p)I < µ). 

As A —> (µ++ g?' , dn  E Co1Qn  (µ' 2) there is a subset Z of A of 
cardinality µ++ and set HT+ (u) for each u E [Z]<6  such that: 
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(i) W(u) C vv+(u) if u E [Z]<K , 

(ii) W+  (ui) n v (u2 ) = vv+(ui  n u,), 

(iii) if= = 1u21 < and u1,u2  C Z then W+(u1) and W+(u2 ) have the 
same order type and note that H[ui,u2] dg  11°4 (uo ,W +,(u2)  , induces 

naturally a map from Pítt i  dg {p E P : dom(p) C W+(ui )} to 
Pk/2  dg {p e P : dom(p) C vv+ (u2)}. 

(iv) if u1,u2  E [Z]<'  lull = 1u21 then H[ui ,u2] maps I d„,(u1) onto Id,. (u2) 
and: q= " j d (u1) = j"  <=> l[u , u2](q)= d (u2) = j"  , 

(v) if u1  C u2  E [Z]<k , u3 C u4  E [Z]<k , 1u41 = 1u21, Hui92Pu4 maps u1 
onto u3  then H[ui,u3] C H[u2, ud• 
Let -y(i) be the ith  member of Z. 
Let s(m) be the set of the first m members of Z and Rn  = fp E P : 

doM(P) C " I+  (s(n)) UtC s(n) W+  (01' 
We define by induction on a < µ a function Fa  and pu  E R1,21  for 

u E Uo<c, [02] <6 where we let (I)(3  be the empty subset of [°2] and we behave 
as if [0= -y= 00  0 Od and we also define ((,3) < µ, such that: 

(i) Fa is a function from a' 2 into µ' 2, extending F0 for < a, 
(ii) F,„ maps 0 2 to (0) 2 for some ((Q) < µ and Ql  < 02 <= C(01) < 

((Q2), 
(iii) v Ea>  2 implies Fc,(71) a Ea (v), 
(iv) for 71 e s  2, +1 < a and P < 2, we have For (C(f) a Fa (71-  (f)), 
(v) pu  E Rm  whenever u E r2r1, m <= < a and for u(1) E [Z]rn  let 

Pu,u(1) = H[s(lul),u(1)](pu ) . 

(vi) n Es 2, 0 < a, then pop (min Z) = Fa (77). 

(vii) if 0 < a, u E [s2r, n <= h : u= s(n) one-to-one onto (not 
necessarily order preserving) then for some c(u, h) < (n): 

U Pt,h"(t)= n(7 7,7(0)  7 • • • ...7(n _ 1) ) = C(L, h)"  , 
tgu 

(Note: as p„, E Rini the domains of the conditions in this union are 
pairwise disjoint.) 

(viii) If n, u, Q are as in (vii), u = Ivo, • • • vn-11, ve a pe El' 2, 0 < ry< 
a then dn(Fa (Po), • • • , Fa (10n- 1 )) = c(u, h) where h is the unique 
function from u onto s(n) such that [h(ve) ≤ h(vm )= Pe <; pm]. 
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(ix) if Q< ry< a, vi, • • • , vn-1 E' Y  2, n < i~i, a,~d volB,...,vn_~ |B a,Ie 
pairwise distinct then: 

Pi vors,•..,,,,,,[0}= • 

For a limit: no problem. 

For a + 1, a limit: we try to define Fo, (ii) for Ea  2 such that Uo<c, F0+1 Or 
0) a F a  (71) and (viii) holds. Let= = Uo<c, ((0), and for il E" 2, n(77) = 

Uo<c, F,„(71[ 0) and for u E [G 2]<', p i3u dg  U{443:veu}= < a, lul == [ 
0:vEull}. Clearly p° E= . 

Then let h 2 -4 Z be one-to-one, such that n= v a h(n) < h(v) and 

let p dg Ufe u(l)  : u(1) E [Z]<K, u E [a 2]<K= = lul, h''(u) = u(1)}. 

For any generic G C P), to which p belongs, 0 < a and ordinals 
io < • • • < in-1 from Z such that (h-1  (it ) [0 : e < n) are pairwise distinct 
we have that 

.B { ict<n},f3 = {6 < N := re, . . .= re) = c(u,h• )1, 

belongs to ID [G], where u = {h-1  (it ) [0 : P < n} and h.  : u= said) is 
defined by h" (h- I  (it ) 13) = Hf)iP.1<n),s(n)  (it ). Really every large enough 

< µ can serve so we omit it. As [G] is µ-complete uniform ultrafilter on 
µ, we can find 6 E ((,k) such that 6 E Bu  for every u E [a 2]n , n < K. We 
let for v Ea  2, Fa  (v) = iih(i)  [G]fe, and we let pu  = e u  except when u = {v}, 

then: 

pu(i) = P~~cv, i~ ~_ ~i~i . 

For a + 1, a is a successor: First for Ect- 1  2 define F(71(.0) = 11,(71)^ 
Next we let {(u,, h,) : i <= list all pairs (u, h), u E [a 2]-̀n , h : u= saul), 
one-to-one onto. Now, we define by induction on i < i*, pli (u E ["2]<') 
such that : 

(a) pzu  E 

(b) p'u  increases with i, 

(c) for i + 1, (vii) holds for (u„ h,), 

(d) if vin  Ea  2 for m < n, n <= (v„.„ [(a —1) : m < n) are pairwise distinct, 
then p(,.,„A,1) •rn<n) ≤ gym  .m.<„} 
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(e) if v ea 2, v(a — 1) = 2 then g o  (0) = FQ (vr(a —1))^ (f). 

There is no problem to carry the induction. 

Now F,„+1  1'2 is to be defined as in the second case, starting with 

(n). 

For a = 0, 1: Left to the reader. 

So we have finished the induction hence the proof of 4.1(1), (2). 

3) Left to the reader ( the only influence is the choice of h in stage of the 
induction). CI 

5. Somewhat complimentary negative partition relation in 
ZFC 

The negative results here suffice to show that the value we have for 2'0 in 
§3 is reasonable. In particular the Galvin conjecture is wrong and that for 
every n < w for some m <= 74  [N di:no  • 

See Eras, Hajnal, Máté, Rado [1] for 

Fact 5.1. If 2<µ < <= µ 74 [14 then 74 [(2<µ)+]o+i 

This shows that if e.g. in 1.4 we want to increase the exponents, to 
3 (and still µ= µ<µ) e.g. µ cannot be successor (when a < No ) (by [7], 
3.5(2)). 

Definition 5.2. Prnp(A, µ, a.),  where= = (an  : n < co), means that 
there are functions Fn  : [A]n —> an  such that for every W E Ha for 
some n, Fn'([W]n) = a(n). The negation of this property is denoted by 
NPrnp (A,µ,Er). 

If an  = a we write a instead of (an  : n < w). 

Remark 5.2.A. 1) Note that —> [µ],;(' means: if F : [A]<' —> a then for 
some A E [a]µ, F"([A]<w)= Q. So for= ≥ µ ≥ a == 74 [µ],„<w, (use 
F : F(a) = lap and Prnp (A,µ,u) is stronger than 74 [µ],„<". 
2) We do not write down the monotonicity properties of Prnp  — they are 
obvious. 
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Claim 5.3. 1) We can (in 5.2) w.l.o.g. use Fn,,„ : PT'= an  for ri, m < 
and obvious monotonicity properties holds, and A > µ≥ n. 
2) Suppose NPrnp  (A, tz) and tz 74 H an  or even rz 74 [K]a<w. Then the 
following case of Chang conjecture holds: 
(*) for every model M with universe A and countable vocabulary, there is 

an elementary submodel N of M of cardinality µ, 

nicl<tz 

3) If NPrnp(A,N1 , No ) then (A,N1)= (Ni , No ). 

Proof. Easy. • 

Theorem 5.4. Suppose Prnp  (Ao , µ, No), µ regular >= and Ai ≥ Ao , and 
no= E (A0 , A1) is µ'-Mahlo. Then Prnp  (Ai , 

Proof. Let x= M8(A1)4  , let IFn°,77, : m< w} list the definable n-
place functions in the model (H(X), e, <;), with Ao,,u, Al as parameters, 
let= (ao , ..., an- ) (for a()  ,= an- i  < Ai ) be Fn°,,n  (ao, ..., an- ) if 
it is an ordinal < A1  and zero otherwise. Let Fn,m  (ao,= an-1 ) (for 
ao ,= , an-i < Al ) be Fn°,,„„ (ao, ...,a„-i) if it is an ordinal < w and zero 
otherwise. We shall show that F„,m= m < w) exemplify Prnp(A1,11, No) 
(see 5.3(1)). 

So suppose W E [Ad" is a counterexample to Pr(A1, µ, No ) i.e. for no 
([W]n) = w. Let W.  be the closure of W under Fn,m  (n, m < w). 

Let N be the Skolem Hull of W in (H(x), E,<;), so clearly N n A1  = W. 
Note W.  C Al , ITV' I = µ. Also as cf(µ) > No  if A C W. , IAI = µ then for 
some n, m < w and u, E [W]n  (for i < µ), Fn (u,) E A and [i < j < 

Frli,m(ui)= Frii,m(u3)]. It is easy to check that also W1  == (ui ) : i < 
is a counterexample to Pr(A1,,a,No)• In particular, for n, m < w, Wn,m 

(u) : u E [H]"} is a counterexample if it has power µ. W.I.o.g. W 

is a counterexample with minimal 6 dg sup(W) = U{a + 1 : a E W}. The 
above discussion shows that II/17* nal < µ for a < 6. Obviously cf S = µ. Let 
(a, : i < µ) be a strictly increasing sequence of members of W. , converging 
to 6, such that for limit i we have ai  = min(W.  \ U3<i (a3  + 1). Let 
N= Nz, 1‘1,= N, INd < µ, 1\r, increasing continuous and w.l.o.g. 
Ar,n(5 =Nrla,. 

a Fact:  b is > Ao• 
Proof. Otherwise we then get an easy contradiction to Pr(Ao, No)) as 
choosing the F,°,,,„ we allowed Ao  as a parameter. 
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)3 Fact: If F is a unary function definable in N, F(a) is a club of a for every 
limit ordinal a(< µ) then for some club C of µ we have 

(Vj E C\ {min C})(3i1 < j)(Vi E (illj))[i E= a, E F(a,)]. 

Proof. For some club Co  of µ we have j E= (N3 , {a, : i < j},W) 
(N, lai  : i <= W). 

We let C = Co = acc(C) (= set of accumulation points of Co)• 
We check C is-as required; suppose j is a counterexample. So j = 

sup(j n C) (otherwise choose il  = max(j n C)). So we can define, by 
induction on n, in , such that: 

(a) in  < in+i < 
(b) a,„ ¢ F(a,) 

(c) n F(a3 ) 0 0. 

Why 1.c.(C)?= "F(a3 ) is unbounded below a3" hence N= "F(a,) is 
unbounded below a3", but in N, { ai  : i E Co, i < j} is unbounded below 
ai 

Clearly for some n, m,= E Wn,m  (see above). Now we can repeat the 
proof of [7,3.3(2)] (see mainly the end) using only members of Wn,„,. 
Note: here we use the number of colors being Ro. 

)3+ Fact: W.l.o.g. the C in Fact /3 is µ. 
Proof: Renaming. 

1,  Fact:  6 is a limit cardinal. 
Proof: Suppose not. Now 6 cannot be a successor cardinal (as cf 8 = µ < 
Ao  < 6) hence for every large enough i, lad = VI, so lOl E W.  C N and 

161+  E 147*-
So W* fll61 has cardinality < µ hence order-type some= < µ. Choose 

< µ limit such that [j < i*= j + -y' < C]. There is a definable function 
F of (H(x), E,<;) such that for every limit ordinal a, F(a) is a club of a, 
0 E F(a), if lal < a, F(a) n lal = 0, otp(F(a)) = cf a. 

So in N there is a closed unbounded subset C„,, = F(a3 ) of a3  of order 
type < cf a3  ≤ 'SI, hence Ca, n N has order type < -y.  , hence for= chosen 
above unboundedly many i < i*, a, 0 Ca,. . We can finish by fact 0+. 

Fact: For each i <= ai  is a cardinal. 
Proof: If lad < i then lad E Arn  but then lad+ E N2, contradicting Fact,,y, 
by which lai r < 6, as we have assumed N, n 6 =Nil 
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E Fact:  For a club of i < µ,, a, is a regular cardinal. 
Proof: if S = {i : a, singular} is stationary, then the function a,= cf(a,) 
is regressive on S. By Fodor lemma, for some a' < 6, {i < µ: cf a, < a' } is 
stationary. As IN fl a' I < µ for some 0",{i < µ: cf a, = 0" } is stationary. 
Let Fi,„, (a) be a club of a of order type cf(a), and by fact d we get a 
contradiction as in fact 7. 

( Fact:  For a club of i < µ, a, is Mahlo. 
Proof: Use Fi,,„„ (a) = a club of a which, if a is a successor cardinal or 
inaccessible not Mahlo, then it contains no inaccessible, and continue as in 
fact 7. 

e Fact:  For a club of i < µ, a, is ai-Mahlo. 
Proof: Let Fl,ma9 (a) = sup{( : a is (-Mahlo}. If the set {i < µ: a, is not 
at-Mahlo} is stationary then as before for some 7 E N,= : Fi,„,(0)  (a,) = 7} 
is stationary and let Fl,„„,(l)  (a) = a club of a such that if a is not (7 + 1)-
Mahlo then the club has no -y-Mahlo member. Finish as in the proof of fact 
8. o 

Remark 5.4.A. We can continue and say more. 

Lemma 5.5. 1) Suppose A > µ> 0 are regular cardinals, n > 2 and 
(i)for every regular cardinal K, if > > 0 then n 74 [0],„<t'i) . 

(ii)for some a(*) < µ for every regular E (a(*), A),= 74 [a(*)]no.(2)  . 

Then 

(a) A 74 [µ]o+1  where a = minfa(1), a(2)}, 

(b) there are functions d1  : [A]3= a(1), d2  : Ptri -* a(2), such that for 
every W E PdP, d';([W]3) = a(1) or 4 ([vv]n+1 ) =  a(2). 

2) Suppose A > µ > 0 are regular cardinals, and 

(i) for every regular lc E [0, A), tc, 74 [0],71) , 

(ii)sup{ <= := regular} 74 [1.1]:(2) . 

Then 

(a) A 74 [µ]ari where a = minfa(1), a(2)} 

(b) there are functions d1  : Pd3= a(1), d2= 12n Aj= a(2) such that for 
every W E PdP, d';([W[3) = a(1) or 4([1/1]2n = a(2). 

Remark. The proof is similar to that of [7] 3.3, 3.2. 
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Proof. 1) We choose for each i, 0 < i < A, Ci  such that: if i is a successor 
ordinal, Ci  == — 1, 01; if i is a limit ordinal, Ci  is a club of i of order type 
cf i, 0 E C21  [cf i < i= cf i < min(Ci  — {O})] and Ci  \ acc(Ci ) contains only 
successor ordinals. 

Now for a < /3, a> 0 we define by induction on Q, -y-e  (0, a), rye  (0, a), 
and then fc,(13, a), 6(0, a). 

(A) 10 (0, a) = 0, 1'0 (0, a) = O. 
(B) if -yt (0, a) is defined and > a and a is not an accumulation point of 

C += then we let -yef1  03, a) be the maximal member of C,4_ 03,,,) 
(0,a) 

which is < a and -yt+i  (0, a) is the minimal member of C7-,F (0a)  which 

is > a (by the choice of C7+ (0a)  and the demands on 7-le -  (0, a) they 
are well defined). 

So 

(B1) (a)= (0, a) < a ≤ •-yt (0, a), and if the equality holds then -yt+i  (0, a) 
is not defined. 

(b) ryto.  (0, a) < -yt (0, a) when both are defined. 

(C) Let k = k(13, a) be the maximal number k such that '7: (0, a) is 
defined (it is well defined as (-4-  (0, a) : 2< w) is strictly decreasing). 
So 

(C1) -y:(0c,)  (0, a) = a or -),: (0a)  > a, -4+0a)  is a limit ordinal and a is an 
accumulation point of C += (0, a). 

7k(P,.) 
(D) For m < k(13, a) let us define 

E,nCB,a) = ~a~{^i~ CB,al t I : l S m}. 

Note 

(D1) (a) em (0, a) ≤ a (if defined), 

(b) if a is limit then em (0, a) < a (if defined), 

(c) if Em (13, a) < e < a then for every Q < m we have 

7-I (0, a) = -Y-eF  (0, 0, 7e (0, a) = 7e (0, 0,= ee(P, a) = ee(0 , 

(explanation for (c): if em,(0 , a) < a this is easy (check the definition) 
and if Em (O, a) = a, necessarily = a and it is trivial). 

(d) if Q< m then MO, a) ≤ Em (O, a) 
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For a regular K E (a(*), A) lettg,1 : [k]<w —> (7(2) exemplify tc 74 [0], (1 ) 
and for every regular cardinal IC E [O,'A) let g2,, : [IC]''= (3-(2) exemplify 
IC 74  [a(*)]an(2) . Let us define the colourings: 

Let ao  > al  > ... > an . Remember n> 2. 

Let n = n(ao , al , a2 ) be the maximal natural number such that: 

(i) e n (a0 7 cti) < ao  is well defined, 

(ii)for P < n, 7i (ao, ai) = 7t  (ao, a2). 
We define d2(ao , ai , • . . , an) as g,c2  (th, • . . , On) where 

lc =cf (ryn+( ,,,,,,,,,,,, )  (ao, a1)), 

[
Ot  =_otp trt n 611::(. 0,0,1,02)  (achal) • 

Next we define di  (ao, ai , a2) • 

Let i(*) = sup {C,:(. 0,c,2)  n c.d:(a1,c,2) ] where n = n(ao , ai  , a2 ), E be 

the equivalence relation on C1,:(aro ,,I)  \ i(*) defined by 

71 Kb= Vry E C7n [7]. < 7 " 'Y2 < 7] • 

If the set w = try E= ryn (aoal) : ry> i(*), ry= min -y/E} is finite, 

we let d1(ao, ai  , a2 ) be gkl= : -y E w}) where ic == (aoal) = 

otp (-y n= ). 
We have defined d1 , d2  required in 'condition (b) ( though have not yet 

proved that they work) We still have to define d (exemplifying A 74 [µ]7+1  ). 
Let n > 3, for ao > al  >= > an , we let d(ao, . • • , an) be d1(ao, al , a2 ) if w 
defined during the definition has odd number of members and d2 (ao, • • • , an) 
otherwise. 

Now suppose Y is a subset of A of order type µ , and let 6 = sup Y. Let 
M be a model with universe A and with relations Y and {(i, j) : i E C3}. Let 

: i < µ) be an increasing,  continuous sequence of telementary submodels 
of M of cardinality < µ such that a(i) = ai  = min(Y \ N2 ) belongs to Ni+i 

sup(N n az ) = sup(N n 6). Let N = U N. Let 6(i) = 6, d-ej sup(Nz  fl az ), 
i<µ, 

so 0 < 6, < az , and let n = ni  be the first natural number such that Si  an 

accumulation point of Ci 
def

 Cy, t= 6(x))  , let ei  = En(i) (ai , 6i ). Note that 

ryn (az  , 6,) == ei) hence it belongs to N. 
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Case I:  For some (limit) i <= cf(i) ≥ 0 and (VI,  < i)[-y + a(*) < i] such 
that for arbitrarily large j < i, ci n N i  is bounded in N; n 6 == fl 6j. 
This is just like the last part in the proof of [7],3.3 using g,,1  and d1  for 

cf(-ynt (ai , 6i ). 

Case II:  Not case I. 
Let So  = fi <= : (Va < O[ry + a(*) < i], cf(i) = 0}. So for every i E So 

for some j(i) < i, (Vj)[j E (j(i),i)= n Ni  is unbounded in Sd . But as 

Ci  n Si  is a club of Si , clearly (Vj)[j E (j(i),i)= E Ci] . 
We can also demand j(i) > En(a(i),6(i)) (a(i), 6(i))• 
As So  is stationary, (by not case I) for some stationary S1  C So and 

n(*), j(*) we have (Vi E Si ) [j (i) = j (*) A n(a(i), Si ) = n(*)
]
. 

Choose i(*) E S1, i(*) = sup(i(*) n S1), such that the order type of 
Sl  n i(*) is i(*) > a(*). Now if i2  < il  E Sl  fl i(*) then n(aie) , ai„ ai2 ) = 
n(*). Now Lie)  dg otp(ai n Ci(*)  : i E Sl  n i(*)} are pairwise distinct 

and are ordinals < def 
r i(*)  I, and the set has order type a(*). Now apply 

the definitions of d2  and g! on Lie. ) . 

2) The proof is like the proof of part (1) but for ao  > al  > • • • we let 
d2  (ao , . . • , a2n- 1 ) = g,c2  (QO, • • • , On) where 

def 
0e= otp (Q),,t (02e= (Nn, 021+1) n 132t+i ) 

and in case II note that the analysis gives µ possible /Vs so that we can 
apply the definition of g„2 . • 

Definition 5.7. Let A 74stg  Aro' mean: if d : [A]n —> 0, and (ai  : i < µ) is 
strictly increasingly continuous and for i < j < µ,= E [a,,a2+1) then 

B = {dCu, ): ~0~so~ej < H, u, E ~{7j, : < 

Lemma 5.8. 1)1,in 74 [N i];:.+1  for n ≥ 1 • 
2) Isin  74,tg  [N].)* 1  for n= 1. 

Proof. 1) For n = 2 this is a theorem of Torodaevie, and if it holds for 
n ≥ 2 by 5.5(1) we get that it holds for n+1 (with n, A, µ, 0, a(*), cf(1), 
cr(2) there corresponding to n + 1, Nn+1 7 Ni,= NO° here). 
2) Similar. 

41) 
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