COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 60. SETS, GRAPHS AND NUMBERS, BUDAPEST (HUNGARY), 1991

Strong Partition Relations Below the Power Set: Consistency Was Sierpinski Right? II.

S. SHELAH*

Abstract

We continue here [7] (see the introduction there) but we do not relay on it. The motivation was a conjecture of Galvin stating that $2^{\omega} \geq \omega_{2}+$ $\omega_{2} \rightarrow\left[\omega_{1}\right]_{h(n)}^{n}$ is consistent for a suitable $h: \omega \rightarrow \omega$. In section 5 we disprove this and give similar negative results. In section 3 we prove the consistency of the conjecture replacing ω_{2} by 2^{ω}, which is quite large, starting with an Erdös cardinal. In section 1 we present iteration lemmas which are needed when we replace ω by a larger λ and in section 4 we generalize a theorem of Halpern and Lauchli replacing ω by a larger λ needed for generalizing $\S 3$. The work will be continued in [10].

0. Preliminaries

Let $<_{\chi}^{*}$ be a well ordering of $\mathrm{H}(\chi)$, where $\mathrm{H}(\chi)=\{x$: the transitive closure of x has cardinality $<\chi\}$, agreeing with the usual well-ordering of the

[^0]ordinals. P (and Q, R) will denote forcing notions, i.e. partial orders with a minimal element $\emptyset=\emptyset_{P}$.

A forcing notion P is λ-closed if every increasing sequence of members of P, of length less than λ, has an upper bound.

If $P \in \mathrm{H}(\chi)$, then for a sequence $\bar{p}=\left\langle p_{i}: i<\gamma\right\rangle$ of members of P let $\alpha=\alpha_{\bar{p}} \stackrel{\text { def }}{=} \sup \left\{\underset{\sim}{j}:\left\{p_{j}: j<\underset{\sim}{j}\right\}\right.$ has an upper bound in $\left.P\right\}$ and define the canonical upper bound of $\bar{p}, \& \bar{p}$ as follows:
(a) the least upper bound of $\left\{p_{i}: i<\alpha\right\}$ in P if there exists such an element,
(b) the $<_{X}^{\cdot}$-first upper bound of $\left\langle p_{i}: i<\gamma\right\rangle$ if (a) can't be applied but there is such,
(c) p_{0} if (a) and (b) fail, $\gamma>0$,
(d) \emptyset_{P} if $\gamma=0$.

Let $p_{0} \& p_{1}$ be the canonical upper bound of $\left\langle p_{\ell}: \ell<2\right\rangle$.
Take $[a]^{\kappa}=\{b \subseteq a:|b|=\kappa\}$ and $[a]^{<\kappa}=\bigcup_{\theta<\kappa}[a]^{\theta}$.
For sets of ordinals, A and B, define $H_{A, B}^{O P}$ as the maximal order preserving bijection between initial segments of A and B, i.e, it is the function with domain $\{\alpha \in A: \operatorname{otp}(\alpha \cap A)<\operatorname{otp}(B)\}$, and $H_{A, B}^{O P}(\alpha)=\beta$ if and only if $\alpha \in A, \beta \in B$ and $\operatorname{otp}(\alpha \cap A)=\operatorname{otp}(\beta \cap B)$.

Definition $0.1 \lambda \rightarrow^{+}(\alpha)_{\mu}^{<\omega}$ holds provided whenever F is a function from [$\lambda]^{<\omega}$ to $\mu, C \subseteq \lambda$ is a club then there is $A \subseteq C$ of order type α such that $\left[w_{1}, w_{2} \in[A]^{<\omega},\left|w_{1}\right|=\left|w_{2}\right| \Rightarrow F\left(\dot{w}_{1}\right)=F\left(w_{2}\right)\right]$.

Definition $0.2 \lambda \rightarrow[\alpha]_{\kappa, \theta}^{n}$ if for every function F from $[\lambda]^{n}$ to κ there is $A \subseteq \lambda$ of order type α such that $\left\{F(w): w \in[A]^{n}\right\}$ has power $\leq \theta$.

Definition 0.3 A forcing notion P satisfies the Knaster condition (has property K) if for any $\left\{p_{i}: i<\omega_{1}\right\} \subset P$ there is an uncountable $A \subset \omega_{1}$ such that the conditions p_{i} and p_{j} are compatible whenever $i, j \in A$.

1. Introduction

Concerning 1.1-1.3 see Shelah [5], Shelah and Stanley $[8,9]$.

Definition 1.1. A forcing notion Q satisfies $*_{\mu}^{\varepsilon}$ where ε is a limit ordinal $<\mu$, if player I has a winning strategy in the following game:
Playing: the game lasts ε moves. in the $\alpha^{\text {th }}$ the move:

> Player I - if $\alpha \neq 0$ he chooses $\left\langle q_{\zeta}^{\alpha}: \zeta<\mu^{+}\right\rangle$such that $q_{\zeta}^{\alpha} \in Q$ and $(\forall \beta<\alpha)\left(\forall \zeta<\mu^{+}\right) p_{\zeta}^{\beta} \leq q_{\zeta}^{\alpha}$ and he chooses a regressive function $f_{\alpha}: \mu^{+} \rightarrow \mu^{+}$(i.e. $\left.f_{\alpha}(i)<1+i\right)$; if $\alpha=0$ let $q_{\zeta}^{\alpha}=\emptyset_{Q}, f_{\alpha}=\emptyset$

Player II - chooses $\left\langle p_{\zeta}^{\alpha}: \zeta<\mu^{+}\right\rangle$such that $q_{\zeta}^{\alpha} \leq p_{\zeta}^{\alpha} \in Q$.
The outcome: Player I wins provided whenever $\mu<\zeta<\xi<\mu^{+}, \operatorname{cf}(\zeta)=$ $\operatorname{cf}(\xi)=\mu$ and $\wedge_{\beta<\varepsilon} f_{\beta}(\zeta)=f_{\beta}(\xi)$ the set $\left\{p_{\zeta}^{\alpha}: \alpha<\varepsilon\right\} \cup\left\{p_{\xi}^{\alpha}: \alpha<\varepsilon\right\}$ has an upper bound in Q.

Definition 1.2. We call $\left\langle P_{i}, Q_{j}: i \leq i(*), j<i(*)\right\rangle$ a $*_{\mu}^{\varepsilon}$-iteration provided that:
(a) it is a $(<\mu)$-support iteration (μ is a regular cardinal)
(b) if $i_{1}<i_{2} \leq i(*)$, cf $i_{1} \neq \mu$ then $P_{i_{2}} / P_{i_{1}}$ satisfies $*_{\mu}^{\varepsilon}$.

The Iteration Lemma 1.3. If $\bar{Q}=\left\langle P_{i}, Q_{j}: i \leq i(*), j<i(*)\right\rangle$ is a $(<\mu)$-support iteration, (a) or (b) or (c) below hold, then it is a $*_{\mu}^{\varepsilon}$-iteration. (a) $i(*)$ is limit and $\bar{Q} \upharpoonright j(*)$ is a $*_{\mu}^{\varepsilon}$-iteration for every $j(*)<i(*)$.
(b) $i(*)=j(*)+1, \bar{Q} \upharpoonright j(*)$ is a $*_{\mu}^{\varepsilon}$-iteration and $Q_{j(\cdot)}$ satisfies $*_{\mu}^{\varepsilon}$ in $V^{P_{j(*)}}$.
(c) $i(*)=j(*)+1, \operatorname{cf} j(*)=\mu^{+}, \bar{Q} \upharpoonright j(*)$ is a $*_{\mu}^{\varepsilon}$-iteration and for every successor $i<j(*), P_{i(*)} / P_{i}$ satisfies $*_{\mu}^{\varepsilon}$.

Proof. Left to the reader (after reading [5] or [9]).
Theorem 1.4. Suppose $\mu=\mu^{<\mu}<\chi<\lambda$, and λ is a strongly inaccessible k_{2}^{2}-Mahlo cardinal, where k_{2}^{2} is a suitable natural number (see 3.6(2) of [6]), and assume $V=L$ for the simplicity. Then for some forcing notion P :
(a) P is μ-complete, satisfies the μ^{+}-c.c., has cardinality λ, and $V^{P} \models$ $" 2^{\mu}=\lambda "$.
(b) $\vdash_{P} \lambda \rightarrow\left[\mu^{+}\right]_{3}^{2}$ and even $\lambda \rightarrow\left[\mu^{+}\right]_{\kappa, 2}^{2}$ for $\kappa<\mu$.
(c) if $\mu=\aleph_{0}$ then \Vdash " $M A_{\chi}$ ".
(d) if $\mu>\aleph_{0}$ then: \Vdash_{P} "for every forcing notion Q of cardinality $\leq \chi, \mu$ complete satisfying $*_{\mu}^{\varepsilon}$, and for any dense sets $D_{i} \subseteq Q$ for $i<i_{0}<\lambda$, there is a directed $G \subseteq Q, \wedge_{i} G \cap D_{i} \neq \emptyset^{\prime \prime}$.

As the proof is very similar to [7], (particularly after reading section 3). we do not give details. We shall define below just the systems needed to complete the proof. More general ones are implicit in [6].

Convention 1.5. We fix a one to one function $C d=C d_{\lambda, \mu}$ from ${ }^{\mu>} \lambda$ onto λ.

Remark. Below we could have $\operatorname{otp}\left(B_{x}\right)=\mu^{+}+1$ with little change.
Definition 1.6. Let $\mu<\chi<\kappa \leq \lambda, \lambda=\lambda^{<\mu}, \chi=\chi^{<\mu}, \mu=\mu^{<\mu}$.

1) We call x a $(\lambda, \kappa, \chi, \mu)$-precandidate if $x=\left\langle a_{u}^{x}: u \in I_{x}\right\rangle$ where for some set B_{x} (unique, in fact):
(i) $I_{x}=\left\{s: s \subseteq B_{x},|s| \leq 2\right\}$,
(ii) B_{x} is a subset of κ of order type μ^{+},
(iii) a_{u}^{x} is a subset of λ of cardinality $\leq \chi$ closed under $C d$,
(iv) $a_{u}^{x} \cap B_{x}=u$,
(v) $a_{u}^{x} \cap a_{v}^{x} \subseteq a_{u^{n} v}^{x}$,
(vi) if $u, v \in I_{x},|u|=|v|$ then a_{u}^{x} and a_{v}^{x} have the same order type (and so $H_{a_{u}^{x}, a_{v}^{x}}^{O P} \operatorname{maps} a_{u}^{x}$ onto a_{v}^{x}),
(vii) if $u_{\ell}, v_{\ell} \in I_{x}$ for $\ell=1,2,\left|u_{1}\right|=\left|v_{1}\right|,\left|u_{2}\right|=\left|v_{2}\right|,\left|u_{1} \cup u_{2}\right|=\left|v_{1} \cup v_{2}\right|$, $H_{a_{u_{1}}^{T}}^{O P} \cup_{a_{u_{2}}}, a_{v_{1}}^{x} \cup_{a_{v_{2}}^{x}}^{x}$ maps u_{ℓ} onto v_{ℓ} for $\ell=1,2$ then $H_{a_{u_{1}}, a a_{v_{1}}^{x}}^{O P}$ and $H_{a_{u_{2}}, a_{v_{2}}^{x}}^{o P_{2}}$ are compatible.
2) We say x is a $(\lambda, \kappa, \chi, \mu)$-candidate if it has the form $\left\langle M_{u}^{x}: u \in I_{x}\right\rangle$ where
(α) (i) $\langle | M_{u}^{x}\left|: \dot{u} \in I_{x}\right\rangle$ is a ($\left.\lambda, \kappa, \chi, \mu\right)$-precandidate (with $B_{x} \xlongequal{\text { def }} \cup I_{x}$)
(ii) \dot{L}_{x} is a vocabulary with $\leq \chi$-many $<\mu$-ary places predicates and function symbols,
(iii) each M_{u}^{x} is an L_{x}-model,
(iv) for $u, v \in I_{x},|u|=|v|, M_{u}^{x} \upharpoonright\left(\left|M_{u}^{x}\right| \cap\left|M_{v}^{x}\right|\right)$ is a model, and in fact an elementary submodel of M_{v}^{x}, M_{u}^{x} and $M_{u n_{v}}^{x}$.
$(\beta)(*)$ for $u, v \in I_{x},|u|=|v|$, the function $H_{\left|M_{u}^{x}\right|, M_{v}^{x} \mid}^{O P}$ is an isomorphism from M_{u}^{x} onto M_{v}^{x}.
3) The set \mathfrak{A} is a $(\lambda, \kappa, \chi, \mu)$-system if
(A) each $x \in \mathfrak{A}$ is a $(\lambda, \kappa, \chi, \mu)$-candidate,
(B) guessing: if L is as in (2)(α)(ii), M^{*} is an L-model with universe λ then for some $x \in \mathfrak{A}, s \in B_{x} \Rightarrow M_{s}^{x} \prec M^{*}$.

Definition 1.7.1) We call the system \mathfrak{A} disjoint when:
$(*)$ if $x \neq y$ are from \mathfrak{A} and $\operatorname{otp}\left(\left|M_{0}^{x}\right|\right) \leq \operatorname{otp}\left(\left|M_{\bullet}^{y}\right|\right)$ then for some $B_{1} \subseteq B_{x}$, $B_{2} \subseteq B_{y}$ we have
a) $-\left|B_{1}\right|+\left|B_{2}\right|<\mu^{+}$
b) the sets

$$
\bigcup\left\{\left|M_{s}^{x}\right|: s \in\left[B_{x} \backslash B_{1}\right]^{\leq 2}\right\},
$$

and

$$
\bigcup\left\{\left|M_{s}^{y}\right|: s \in\left[B_{y} \backslash B_{2}\right]^{\leq 2}\right\}
$$

have intersection $\subseteq M^{y}$.
2) We call the system \mathfrak{A} almost disjoint when:
$(* *)$ if $x, y \in \mathfrak{A}, \operatorname{otp}\left(\left|M_{\bullet}^{x}\right|\right) \leq \operatorname{otp}\left(\left|M_{\bullet}^{y}\right|\right)$ then for some $B_{1} \subseteq B_{x}$, $B_{2} \subseteq B_{y}$ we have:
(a) $\left|B_{1}\right|+\left|B_{2}\right|<\mu^{+}$,
(b) if $s \in\left[B_{x} \backslash B_{1}\right]^{\leq 2}, t \in\left[B_{y} \backslash B_{2}\right]^{\leq 2}$ then $\left|M_{s}^{x}\right| \cap\left|M_{t}^{x}\right| \subseteq\left|M_{0}^{y}\right|$.

2. Introducing the partition on trees

Definition 2.1. Let

1) $\operatorname{Per}\left({ }^{\mu>} 2\right)=\{T$: where
(a) $T \subseteq{ }^{\mu>} 2,\langle \rangle \in T$,
(b) $(\forall \eta \in T)(\forall \alpha<\lg (\eta)) \eta\lceil\alpha \in T$,
(c) if $\eta \in T \cap^{\alpha} 2, \alpha<\beta<\mu$ then for some
$\nu \in T \cap^{\beta} 2, \eta \triangleleft \dot{\nu}$,
(d) if $\eta \in T$ then for some $\nu, \eta \triangleleft \nu$,
$\nu^{\wedge}\langle 0\rangle \in T, \nu^{\wedge}\langle 1\rangle \in T$,
(e) if $\eta \in{ }^{\delta} 2, \delta<\mu$ is a limit ordinal and $\{\eta \mid \alpha: \alpha<\delta\} \subseteq T$ then $\eta \in T$.
2) $\operatorname{Per}_{f}\left({ }^{\mu>} 2\right)=\left\{T \in \operatorname{Per}\left({ }^{\mu>} 2\right):\right.$ if $\alpha<\mu$ and $\nu_{1}, \nu_{2} \in{ }^{\alpha} 2 \cap T$, then

$$
\left.\left\{\bigwedge_{\ell=0}^{1} \nu_{1} \wedge\langle\ell\rangle \in T \Longleftrightarrow \bigwedge_{\ell=0}^{1} \nu_{2}{ }^{\wedge}\langle\ell\rangle \in T\right]\right\} .
$$

3) $\cdot \operatorname{Per}_{u}\left({ }^{\mu>} 2\right)=\left\{T \in \operatorname{Per}\left({ }^{\mu>} 2\right):\right.$ if. $\alpha<\mu, \nu_{1} \neq \nu_{2}$, from ${ }^{\alpha} 2 \cap T$,

$$
\text { then } \left.\bigvee_{\ell=0}^{1} \bigvee_{m=1}^{2} \nu_{m}{ }^{\wedge}\{\ell\rangle \notin T\right\}
$$

4) For $T \in \operatorname{Per}\left({ }^{\mu>} 2\right)$ let $\lim T=\left\{\eta \in{ }^{\mu} 2:(\forall \alpha<\mu) . \eta \mid \alpha \in T\right\}$.
5) For $T \in \operatorname{Per}_{f}\left({ }^{(\mu>} 2\right)$ let $\operatorname{clp}_{T}: T \rightarrow{ }^{\mu>} 2$ be the unique one-to-one function from $\cdot \mathrm{sp}(T) \stackrel{\text { def }}{=}\left\{\eta \in T: \eta^{\wedge}\langle 0\rangle \in T, \eta^{\wedge}\langle 1\rangle^{\bullet} \in T\right\}$ onto ${ }^{\mu>}{ }_{2}$, which preserves \triangleleft and lexicographic order.
6) Let $S P(T)=\{\lg (\eta): \eta \in \operatorname{sp}(T)\}, \operatorname{sp}(\eta, \nu)=\min \{i: \eta(i) \neq \nu(i)$ or $i=$ $\lg (\eta)$ or $i=\lg (\nu)\}$.

Definition 2.2. 1) For cardinals μ, σ and $n<\omega$ and $T \in \operatorname{Per}\left({ }^{\mu>}{ }^{2}\right)$ let $\operatorname{Col}_{\sigma}^{n}(T)=\left\{d: d\right.$ is a function from $U_{\alpha<\mu}\left[{ }^{\alpha} 2 \cap T\right]^{n}$ to $\left.\sigma\right\}$. We will write $d\left(\nu_{0}, \ldots, \nu_{n-1}\right)$ for $d\left(\left\{\nu_{0}, \ldots, \nu_{n-1}\right\}\right)$.
2) Let $<_{\alpha}^{*}$ denote a well ordering of ${ }^{\alpha} 2$ (in this section it is arbitrary). We call $d \in \operatorname{Col}_{\sigma}^{n}(T)$ end-homogeneous for $\left(<_{\dot{\alpha}}^{*}: \alpha<\mu\right.$) provided that: if $\alpha<\beta$ are from $\operatorname{SP}(T),\left\{\nu_{0}, \ldots, \nu_{n-1}\right\} \subseteq{ }^{\beta} 2 \cap T,\left\langle\nu_{\ell} \mid \alpha: \ell<n\right\rangle$ are pairwise distinct and $\bigwedge_{\ell, m}\left[\nu_{\ell}<_{\beta}^{\cdot} \nu_{m} \Longleftrightarrow \nu_{\ell}\left\lceil\alpha<_{\alpha}^{*} \nu_{m}\lceil\alpha]\right.\right.$ then

$$
d\left(\nu_{0}, \ldots, \nu_{n-1}\right)=d\left(\nu _ { 0 } \left\lceil\alpha, \ldots, \nu_{n-1}\lceil\alpha) .\right.\right.
$$

 ($\left\langle<_{\alpha}^{\cdot}: \alpha<\mu\right\rangle$).
4) For $\nu_{0}, \ldots, \nu_{n^{-1}}, \eta_{0}, \ldots, \eta_{n-1}$ from ${ }^{\mu>} 2$, we say $\bar{\nu}=\left\langle\nu_{0}, \ldots, \nu_{n-1}\right\rangle$ and $\bar{\eta}=\left\langle\eta_{o}, \ldots, \eta_{n \rightarrow 1}\right\rangle$ are strongly similar for $\left\langle\left\langle_{\alpha}^{\dot{\alpha}}: \alpha<\mu\right\rangle\right.$ if:
${ }^{\prime}$ (i) $\lg \left(\nu_{\ell}\right)=\lg \left(\eta_{\ell}\right)$
(ii) $\operatorname{sp}\left(\nu_{\ell}, \nu_{m}\right)=\operatorname{sp}\left(\eta_{\ell}, \eta_{m}\right)$
(iii) if $\dot{\ell}_{1}, \ell_{2}, \ell_{3}, \ell_{4}<n$ and $\alpha=\operatorname{sp}\left(\nu_{\ell_{1}}, \nu_{\ell_{2}}\right)$ then

$$
\nu_{\ell_{3}}\left|\alpha<_{\alpha}^{\cdot} \nu_{\ell_{4}}\right| \alpha \Longleftrightarrow \eta_{\ell_{3}} \mid \alpha<_{\alpha}^{\cdot} \eta_{\ell_{4}} \upharpoonright \alpha \text { and } \nu_{\ell_{3}}(\alpha)=\eta_{\ell_{3}}(\alpha)
$$

5) For $\nu_{0}^{a}, \ldots, \nu_{n-1}^{a}, \nu_{0}^{b}, \ldots, \nu_{n-1}^{b}$ from ${ }^{\mu>} 2$ we say $\bar{\nu}^{a}=\left\langle\dot{\nu}_{0}^{a}, \ldots, \nu_{n-1}^{a}\right\rangle$ and : $\bar{\nu}^{b}=\left\langle\nu_{0}^{b}, \ldots, \nu_{n-1}^{b}\right\rangle$ are similar if the truth values of (i)-(iii) below doe :not depend on $t \in\{a, b\}$ for any $\ell(1), \ell(2), \ell(3), \ell(4)<n$:
(i) $\lg \left(\nu_{\ell(1)}^{t}\right)<\lg \left(\nu_{\ell(2)}^{t}\right)$
(ii) $\operatorname{sp}\left(\nu_{\ell(1)}^{t}, \nu_{\ell(2)}^{t}\right)<\operatorname{sp}\left(\nu_{\ell(3)}^{t}, \nu_{\ell(4)}^{t}\right)$
(iii) for $\alpha=\operatorname{sp}\left(\nu_{\ell(1)}^{t}, \nu_{\ell(2)}^{t}\right)$,

$$
\nu_{\ell(3)}^{t} \upharpoonright \alpha<_{\alpha}^{*} \nu_{\ell(4)}^{t} \upharpoonright \alpha
$$

and

$$
\nu_{\ell(3)}^{t}(\alpha)=0
$$

6) We say $d \in \operatorname{Col}_{\sigma}^{n}(T)$ is almost homogeneous [homogeneous] on $T_{1} \subseteq T$ (for $\left\langle<_{\alpha}^{*}: \alpha<\mu\right\rangle$) if for every $\alpha \in \operatorname{SP}\left(T_{1}\right), \bar{\nu}, \bar{\eta} \in\left[{ }^{\alpha} 2 \cap T_{1}\right]^{n}$ which are strongly similar [similar] we have $d(\bar{\nu})=d(\bar{\eta})$.
7) We say $\left\langle<_{\alpha}^{*}: \alpha<\mu\right\rangle$ is nice to $T \in \operatorname{Per}\left({ }^{\mu>} 2\right)$, provided that: if $\alpha<\beta$ are from $\operatorname{SP}(T),(\alpha, \beta) \cap \operatorname{SP}(T)=\emptyset, \eta_{1} \neq \eta_{2} \in{ }^{\beta} 2 \cap T$, $\left[\eta_{1} \upharpoonright \alpha<{ }_{\alpha}^{*} \eta_{2}\left\lceil\alpha\right.\right.$ or $\eta_{1} \upharpoonright \alpha=\eta_{2}\left\lceil\alpha, \eta_{1}(\alpha)<\eta_{2}(\alpha)\right]$ then $\eta_{1}<{ }_{\beta}^{*} \eta_{2}$.

Definition 2.3. 1) $\mathrm{Pr}_{\text {eht }}(\mu, n, \sigma)$ means: for every $d \in \mathrm{Col}_{\sigma}^{n}(\mu>2)$ for some $T \in \operatorname{Per}\left({ }^{\mu>} 2\right)$ and $\left\langle\left\langle_{\alpha}^{*}: \alpha<\mu\right\rangle, d\right.$ is end homogeneous on T.
2) $\operatorname{Pr}_{a h t}(\mu, n, \sigma)$ means for every $d \in \operatorname{Col}_{\sigma}^{n}\left({ }^{(\mu>} 2\right)$ for some $\left.T \in \operatorname{Per}{ }^{(\mu>} 2\right)$ and $\left\langle<_{\alpha}^{\circ}: \alpha<\mu\right\rangle, d$ is almost homogeneous on T.
3) $\operatorname{Pr}_{h t}(\mu, n, \sigma)$ means for every $d \in \operatorname{Col}_{\sigma}^{n}(\mu>2)$ for some $T \in \operatorname{Per}\left({ }^{(\mu>} 2\right), d$ is homogeneous on T.
4) For $x \in\{e h t, a h t, h t\}, \operatorname{Pr}_{x}^{f}(\mu, n, \sigma)$ is defined like $\operatorname{Pr}_{x}(\mu, n, \sigma)$ but we demand $T \in \operatorname{Per}_{f}\left({ }^{\mu>} 2\right)$.
5) If above we replace eht, aht, ht by ehtn, ahtn, htn, respectively, this means $\left\langle\left\langle_{\alpha}^{\cdot}: \alpha<\mu\right\rangle\right.$ is fixed apriori.
6) Replacing n by " $<\kappa$ ", σ by. $\bar{\sigma}=\left\langle\sigma_{\ell}: \ell<\kappa\right\rangle$ for $\kappa \leq \aleph_{0}$, means that $\left\langle d_{n}: n<\kappa\right\rangle$ are given, $\left.d_{n} \in \operatorname{Col}_{\sigma}^{n}(\mu\rangle 2\right)$ and the conclusion holds for all $d_{n}(n<\kappa)$ simultaneously. Replacing " σ " by " $<\sigma$ " means that the assertion holds for every $\sigma_{1}<\sigma$.

Definition 2.4. 1) $\operatorname{Pr}_{a h t}(\mu, n, \sigma(1), \sigma(2))$ means: for every $d \in \operatorname{Col}_{\sigma(1)}^{n}$ $\left(^{\mu>} 2\right)$ for some $T \in \operatorname{Per}\left({ }^{\mu>} 2\right)$ and $\left\langle<_{\alpha}^{*}: \alpha<\mu\right\rangle$ for every $\bar{\eta} \in \bigcup\left\{\left[{ }^{\alpha} 2 \cap T\right]^{n}:\right.$ $\alpha \in \operatorname{SP}(T)\}$,

$$
\begin{aligned}
&\left\{d(\bar{\nu}): \bar{\nu} \in \bigcup\left\{\left[{ }^{\alpha} 2 \cap T\right]^{n}: \alpha \in \operatorname{SP}(T)\right\}\right. \\
&\left.\bar{\eta} \text { and } \bar{\nu} \text { are strongly similar for }\left\langle<_{\alpha}^{\cdot}: \alpha<\mu\right\rangle\right\}
\end{aligned}
$$

has cardinality $<\sigma(2)$.
2) $\mathrm{Pr}_{h t}(\mu, n, \sigma(1), \sigma(2))$ is defined similarly with "similar" instead of "strongly similar".
3) $\operatorname{Pr}_{x}\left(\mu,<\kappa,\left\langle\sigma_{\ell}^{1}: \ell<\kappa\right\rangle\left\langle\sigma_{\ell}^{2}: \ell<\kappa\right\rangle\right), \operatorname{Pr}_{x}^{f}(\mu, n, \sigma(1), \sigma(2)), \operatorname{Pr}_{x}^{f}(\mu,<$ $\left.\aleph_{0}, \bar{\sigma}^{1}, \bar{\sigma}^{2}\right)$ are defined in the same way.

There are many obvious implications.
Fact 2.5. 1) For every $T \in \operatorname{Per}\left({ }^{\mu}>2\right)$ there is a $T_{1} \subseteq T, T_{1} \in \operatorname{Per}_{u}\left({ }^{\mu>} 2\right)$.
2) In defining $\operatorname{Pr}_{x}^{f}(\mu, n, \sigma)$ we can demand $T \subseteq T_{0}$ for any $T_{0} \in \operatorname{Per}_{f}\left({ }^{(\mu>} 2\right)$, similarly for $\operatorname{Pr}_{x}^{f}(\mu,<\kappa, \sigma)$.
3) The obvious monotonicity holds.

Claim 2.6. 1) Suppose μ is regular, $\sigma \geq \aleph_{0}$ and $\operatorname{Pr}_{\text {eht }}^{f}(\mu, n,<\sigma)$ holds. Then $\operatorname{Pr}_{a h t}^{f}(\mu, n,<\sigma)$ holds.
2) If μ is weakly compact and $\operatorname{Pr}_{\text {aht }}^{f}(\mu, n,<\sigma), \sigma<\mu$ holds, then $\operatorname{Pr}_{h t}^{f}(\mu, n,<\sigma)$ holds.
3) If μ is Ramsey and $\operatorname{Pr}_{a h t}^{f}\left(\mu,<\aleph_{0},<\sigma\right), \sigma<\mu$ holds, then $\operatorname{Pr}_{h t}^{f}(\mu,<$ $\left.\aleph_{0},<\sigma\right)$ holds.
4) If $\mu=\omega$, in the "nice" version of 2.3(5), the orders $\left\langle<_{\alpha}^{\cdot}: \alpha<\mu\right\rangle$ disappear.

Proof. Check it.

The following theorem is a quite strong positive result for $\mu=\omega$. Halpern Lauchli proved 2.7(1), Laver proved 2.7(2) (and hence (3)), Pincus pointed out that Halpern Lauchli's proof can be modified to get 2.7(2), and then $\operatorname{Pr}_{e h t}^{f}(\omega, n,<\sigma)$ and (by it) $\operatorname{Pr}_{h t}^{f}(\omega, n,<\sigma)$ are easy.

Theorem 2.7. 1) If $d \in \operatorname{Col}_{\sigma}^{n}\left({ }^{\omega>} 2\right), \sigma<\aleph_{0}$, then there are $T_{0}, \ldots, T_{n-1} \in$ $\operatorname{Per}_{f}\left({ }^{(\omega>} 2\right)$ and $k_{0}<k_{1}<\ldots<k_{\ell}<\ldots$ and $s<\sigma$ such that for every $\ell<\omega$: if $\nu_{0} \in T_{0}, \nu_{1} \in T_{1}, \ldots, \nu_{n-1} \in T_{n-1}, \bigwedge_{m<n} \lg \left(\nu_{m}\right)=k_{\ell}$, then $d\left(\nu_{0}, \ldots, \nu_{n-1}\right)=s$.
2) We can demand in (1) that

$$
\operatorname{SP}\left(T_{\ell}\right)=\left\{k_{0}, k_{1}, \ldots\right\}
$$

3) $\operatorname{Pr}_{h t n}^{f}(\omega, n, \sigma)$ for $\sigma<\aleph_{0}$.
4) $\operatorname{Pr}_{h t n}^{f}\left(\omega,<\aleph_{0},\left\langle\sigma_{n}^{1}: n<\omega\right\rangle,\left\langle\sigma_{n}^{2}: n<\omega\right\rangle\right)$ if $\sigma_{n}^{1}<\aleph_{0}$ and $\left\langle\sigma_{n}^{2}: n<\omega\right\rangle$ diverge to infinity.

Definition 2.8. Let d be a function with domain $\supseteq[A]^{n}, A$ be a set of ordinals, F be a one-to-one function from A to ${ }^{\alpha\left({ }^{(}\right)} 2,<_{\alpha}^{*}$ be a well ordering of ${ }^{\alpha} 2$ for $\alpha \leq \alpha(*)$ such that $F(\alpha)<_{\alpha}^{*} F(\beta) \Longleftrightarrow \alpha<\beta$, and σ be a cardinal.

1) We say d is (F, σ)-canonical on A if for any $\alpha_{1}<\cdots<\alpha_{n} \in A$,

$$
\begin{aligned}
\mid\left\{d\left(\beta_{1}, \ldots, \beta_{n}\right):\right. & \left\langle F\left(\beta_{1}\right), \ldots, F\left(\beta_{n}\right)\right\rangle \text { similar to } \\
\cdot & \left.\left\langle F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n}\right)\right\rangle\right\} \mid \leq \sigma
\end{aligned}
$$

2) We define "almost (F, σ)-canonical" similarly using "strongly similar" instead of "similar".

3. Consistency of a strong partition below the continuum

This section is dedicated to the proof of
Theorem 3.1. Suppose λ is the first Erdős cardinal, i.e. the first such that $\lambda \rightarrow\left(\omega_{1}\right)_{2}^{<\omega}$ and hence $\lambda \rightarrow^{+}\left(\omega_{1}\right)_{2}^{<\omega}$ as in definition 0.1. Then, if A is a Cohen subset of λ, in $V[A]$ for some $\aleph_{1}-c . c$. forcing notion P of cardinality λ, \Vdash_{P} " $M A_{\kappa_{1}}$ (Knaster $)+2^{\kappa_{0}}=\lambda$ " and:

1) \Vdash_{P} " $\lambda \rightarrow\left[\aleph_{1}\right]_{h(n)}^{n}$ " for suitable $h: \omega \mapsto \omega$ (explicitly defined below).
2) In V^{P} for any colorings d_{n} of λ, where d_{n} is n-place, and for any divergent $\left\langle\sigma_{n}: n<\omega\right\rangle$ (see below), there is a $W \subseteq \lambda,|W|=\aleph_{1}$ and a function $F: W \mapsto{ }^{\omega} 2$ such that: d_{n} is $\left(F, \sigma_{n}\right)$-canonical on W for each n. (See definition 2.8 above.)

Remark 3.2. 1) $h(n)$ is n ! times the number of $u \in\left[{ }^{\omega} 2\right]^{n}$ satisfying [if $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} \in u$ are distinct then $\operatorname{sp}\left(\eta_{1}, \eta_{2}\right), \operatorname{sp}\left(\eta_{3}, \eta_{4}\right)$ are distinct] up to strong similarity for any nice $\left\langle<_{\alpha}^{*}: \alpha<\omega\right\rangle$.
2) A sequence $\left\langle\sigma_{n}: n<\omega\right\rangle$ is divergent if $\forall m \exists k \forall n \geq k \sigma_{n} \geq m$.

Notation 3.3. For a sequence $a=\left\langle a_{i}, e_{i}^{*}: i<\alpha\right\rangle$, we call $b \subseteq \alpha$ closed if (i) $i \in b \Rightarrow a_{i} \subseteq b$
(ii) if $i<\alpha, e_{i}^{*}=1$ and $\sup (b \cap i)=i$ then $i \in b$.

Definition 3.4. Let K be the family of $\bar{Q}=\left\langle P_{i},{\underset{\sim}{j}}_{j}, a_{j}, e_{j}^{*}: j<\alpha, i \leq \alpha\right\rangle$ such that
(a) $a_{i} \subseteq i,\left|a_{i}\right| \leq \aleph_{1}$,
(b) a_{i} is closed for $\left\langle a_{j}, e_{j}^{*}: j<i\right\rangle, e_{i}^{*} \in\{0,1\}$, and $\left[e_{i}^{*}=1 \Rightarrow \operatorname{cf} i=\aleph_{1}\right]$
(c) P_{i} is a forcing notion, ${\underset{\sim}{Q}}_{j}$ is a P_{j}-name of a forcing notion of power \aleph_{1} with minimal element \emptyset or \emptyset_{j} and for simplicity the underlying set of $\underset{\sim}{Q_{j}}$ is $\subseteq\left[\omega_{1}\right]^{<N_{0}}$ (we do not lose by this).
(d) $P_{\beta}=\{p: p$ is a function whose domain is a finite subset of β and for $\left.i \in \operatorname{dom}(p), \vdash_{P_{i}} " f(i) \in Q_{i} "\right\}$ with the order $p \leq q$ if and only if for $i \in \operatorname{dom}(p), q \upharpoonright i \vdash_{P_{i}} " p(i) \tilde{\check{\leq}}^{i} q(i) "$.
(e) for $j<\alpha, \underline{Q}_{j}$ is a P_{j}-name involving only antichains contained in $\left\{p \in P_{j}: \operatorname{dom}(p) \subseteq a_{j}\right\}$.
For $p \in P_{i}, j<i, j \notin \operatorname{dom} p$ we let $p(j)=\emptyset$. Note for $p \in P_{i}, j \leq i$, $p \upharpoonright j \in P_{j}$.

Definition 3.5. For $\bar{Q} \in \mathfrak{K}$ as above (so $\alpha=\lg (\bar{Q})$):

1) for any $b \subseteq \beta \leq \alpha$ closed for $\left\langle a_{i}, e_{i}^{*}: i<\beta\right\rangle$ we define P_{b}^{cn} [by simultaneous induction on $\beta]$:
$P_{b}^{\mathrm{cn}}=\left\{p \in P_{\beta}: \operatorname{dom} p \subseteq b\right.$, and for $i \in \operatorname{dom} p, p(i)$ is a canonical name $\}$
i.e., for any $x,\left\{p \in P_{a_{i}}^{\mathrm{cn}}: p \Vdash_{P_{i}} " p(i)=x\right.$ " or $p \Vdash_{P_{i}} " p(i) \neq x$ " $\}$ is a predense subset of P_{i}.
2) For \bar{Q} as above, $\alpha=\lg (\bar{Q})$, take $\bar{Q} \upharpoonright \beta=\left\langle P_{i},{\underset{\sim}{\boldsymbol{q}}}_{j}, a_{j}: i \leq \beta, j<\beta\right\rangle$ for $\beta \leq \alpha$ and the order is the order in P_{α} (if $\beta \geq \alpha, \bar{Q} \upharpoonright \beta=\bar{Q}$).
3) "b closed for \bar{Q} " means " b closed for $\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{e}_{\boldsymbol{i}}^{*}: i<\lg \bar{Q}\right\rangle$ ".

Fact 3.6. 1) if $\bar{Q} \in \mathfrak{K}$ then $\bar{Q} \upharpoonright \beta \in \Omega$.
2) Suppose $b \subseteq c \subseteq \beta \leq \lg (\bar{Q}), b$ and c are closed for $\bar{Q} \in \mathcal{K}$.
(i) If $p \in P_{c}^{\mathrm{cn}}$ then $p \upharpoonright b \in P_{b}^{\mathrm{cn}}$.
(ii) If $p, q \in P_{c}^{c n}$ and $p \leq q$ then $p \upharpoonright b \leq q \upharpoonright c$.
(iii) $\dot{P}_{c}^{\mathrm{cn}}<o P_{\beta}$.
3) $\lg \bar{Q}$ is closed for \bar{Q}.
4) if $\bar{Q} \in \mathfrak{K}, \alpha=\lg \bar{Q}$ then P_{α}^{cn} is a dense subset of P_{α}.
5) If b is closed for $\bar{Q}, p, q \in P_{\lg \bar{Q}}^{\mathrm{cn}}, p \leq q$ in $P_{\lg \bar{Q}}$ and $i \in \operatorname{dom} p$ then $q\left\lceil a_{i} \Vdash_{P_{i}} " p(i) \leq q(i)\right.$ " hence $q\left\lceil a_{i} \Vdash_{P_{a_{i}}^{\mathrm{cn}}} " p(i) \leq_{Q_{i}} q(i)\right.$ ".

Definition 3.7. Suppose $W=(W, \leq)$ is a finite partial order and $\bar{Q} \in \mathfrak{K}^{\text {i }}$

1) $I N_{W}(\bar{Q})$ is the set of \bar{b}-s satisfying $(\alpha)-(\gamma)$ below:
(α) $\bar{b}=\left\langle b_{w}: w \in W\right\rangle$ is an indexed set of \bar{Q}-closed subsets of $\lg (\bar{Q})$,
(β) $W \models$ " $w_{1} \leq w_{2}$ " $\Rightarrow b_{w_{1}} \subseteq b_{w_{2}}$,
$(\gamma) \zeta \in b_{w_{1}} \cap b_{w_{2}}, w_{1} \leq w, w_{2} \leq w$ then $(\exists u \in W) \zeta \in b_{u} \wedge u \leq w_{1} \wedge u \leq$; w_{2}.
We assume \bar{b} codes (W, \leq).
2) For $\bar{b} \in I N_{W}(\bar{Q})$, let
$\bar{Q}[\bar{b}] \stackrel{\text { def }}{=}\left\{\left\langle p_{w}: \dot{w} \in W\right\rangle: p_{w} \in P_{b_{w}}^{\text {cn }},\left[W \vDash w_{1} \leq w_{2} \Rightarrow p_{w_{2}} \mid b_{w_{1}}=p_{w_{1}}\right]\right\}$. with ordering $\bar{Q}[\bar{b}] \models \bar{p}^{1} \leq \bar{p}^{2}$ iff $\bigwedge_{w \in W} p_{w}^{1} \leq p_{w}^{2}$.
3) Let \mathfrak{K}^{1} be the family of $\bar{Q} \in \mathfrak{K}$ such that for every $\beta^{\prime \prime} \leq \lg (\bar{Q})$ and $(\bar{Q} \mid \beta)$-closed b, P_{β} and $P_{\beta} / P_{b}^{\mathrm{cn}}$ satisfy the Knaster condition.
Fact 3.8. Suppose $\bar{Q} \in \mathfrak{K}^{1},(W, \leq)$ is a finite partial order, $\bar{b} \in I N_{W}(\bar{Q})$ and $\bar{p} \in \bar{Q}[\bar{b}]$.
4) If $w \in W, p_{w} \leq q \in P_{b_{w}}^{c \mathrm{n}}$ then there is $\bar{r} \in \bar{Q}[\bar{b}], q \leq r_{w}, \bar{p} \leq \bar{r}$, in fact

$$
r_{u}(\gamma)= \begin{cases}p_{u}(\gamma) & \text { if } \gamma \in \operatorname{Dom} p_{u} \backslash \operatorname{Dom} q \\ p_{u}(\gamma) \& q(\gamma) & \text { if } \gamma \in b_{u} \cap \operatorname{Dom} q \text { and for some } v \in W \\ & v \leq u, v \leq w \text { and } \gamma \in b_{v} \\ p_{u}(\gamma) & \text { if } \gamma \in b_{u} \cap \operatorname{dom} q \text { but the previous case fails }\end{cases}
$$

2) Suppose (W_{1}, \leq) is a submodel of (W_{2}, \leq), both finite partial orders, $\bar{b}^{t} \in I N_{W_{l}}(\bar{Q}), \bar{b}_{w}^{1}=\bar{b}_{w}^{2}$ for $w \in W_{1}$.
(α) If $\bar{q} \in \bar{Q}\left[\bar{b}^{2}\right]$ then $\left\langle q_{w}: w \in W_{1}\right\rangle \in \bar{Q}\left[\bar{b}^{1}\right]$.
(β) If $\bar{p} \in \bar{Q}\left[\bar{b}^{1}\right]$ then there is $\bar{q} \in \bar{Q}\left[\bar{b}^{2}\right], \dot{\bar{q}} \mid W_{1}=\bar{p}$, in fact $q_{w}(\gamma)$ is $p_{u}(\gamma)$ if $u \in W_{1}, \gamma \in b_{u}, u \leq w$, provided that
$(* *)$ if $w_{1}, w_{2} \in W_{1}, w \in W_{2}, w_{1} \leq w, w_{2} \leq w$ and $\zeta \in b_{w_{1}} \cap b_{w_{2}}$ then for some $v \in W_{1}, \zeta \in b_{v}, v \leq w_{1}, v \leq w_{2}$.
(this guarantees that if there are several u's as above we shall get the same value).
3) If $\bar{Q} \in \mathfrak{K}^{1}$ then $\bar{Q}[\bar{b}]$ satisfies the Knaster condition. If \emptyset is the minimal element of W (i.e. $u \in W \Rightarrow W \models \emptyset \leq u$) then $\bar{Q}[\bar{b}] / P_{b_{0}}^{c n}$ also satisfies the Knaster condition and so $<\circ \bar{Q}[\bar{b}]$, when we identify $p \in P_{b_{0}}^{\text {cn. }}$ with $\langle p: w \in W\rangle$.

Proof. 1) It is easy to check that each r_{u} is in $P_{b_{u}}^{c n}$. So, in order to prove $\bar{r} \in \bar{Q}[\bar{b}]$, we assume $W \models u_{1} \leq u_{2}$ and have to prove that $r_{u_{2}} \upharpoonright b_{u_{1}}=r_{u_{1}}$. Let $\zeta \in b_{u_{1}}$.

First case: $\zeta \notin \operatorname{Dom}\left(p_{u_{1}}\right) \cup \operatorname{Dom} q$.

So $\zeta \notin \operatorname{Dom}\left(r_{u_{1}}\right)$ (by the definition of $r_{u_{1}}$) and $\zeta \notin \operatorname{Dom} p_{u_{2}}$ (as $\bar{p} \in \bar{Q}[\bar{b}])$ hence $\zeta \notin\left(\operatorname{Dom} p_{u_{2}}\right) \cup(\operatorname{Dom} q)$ hence $\zeta \notin \operatorname{Dom}\left(r_{u_{2}}\right)$ by the choice of $r_{u_{2}}$, so we have finished.

Second case: $\zeta \in \operatorname{Dom} p_{u_{1}} \backslash \operatorname{Dom} q$.
As $\bar{p} \in \bar{Q}[\bar{b}]$ we have $p_{u_{1}}(\zeta)=p_{u_{2}}(\zeta)$, and by their definition, $r_{u_{1}}(\zeta)=$ $p_{u_{1}}(\zeta), r_{u_{2}}(\zeta)=p_{u_{2}}(\zeta)$.

Third case: $\zeta \in \operatorname{Dom} q$ and $(\exists v \in W)\left(\zeta \in b_{v} \wedge v \leq u_{1} \wedge v \leq w\right)$. By the definition of $r_{u_{1}}(\zeta)$, we have $r_{u_{1}}(\zeta)=p_{u_{1}}(\zeta) \& q(\zeta)$, also the same v witnesses $r_{u_{2}}(\zeta)=p_{u_{2}}(\zeta) \& q(\zeta),\left(\operatorname{as} \zeta \in b_{v} \wedge v \leq u_{1} \wedge v \leq w \Rightarrow \zeta \in b_{v} \wedge v \leq u_{2} \wedge v \leq w\right)$ and of course $p_{u_{1}}(\zeta)=p_{u_{2}}(\zeta)$ (as $\left.\bar{p} \in \bar{Q}[\bar{b}]\right)$.

Fourth case: $\zeta \in \operatorname{Dom} q$ and $\neg(\exists v \in W)\left(\zeta \in b_{v} \wedge v \leq u_{1} \wedge v \leq w\right)$.
By the definition of $r_{u_{1}}(\zeta)$ we have $r_{u_{1}}(\zeta)=p_{u_{1}}(\zeta)$. It is enough to prove that $r_{u_{2}}(\zeta)=p_{u_{2}}(\zeta)$ as we know that $p_{u_{1}}(\zeta)=p_{u_{2}}(\zeta)$ (because $\bar{p} \in \bar{Q}[\bar{b}]$, $u_{1} \leq u_{2}$). If not, then for some $v_{0} \in W, \zeta \in b_{v_{0}} \wedge v_{0} \leq u_{2} \wedge v_{0} \leq w$. But $\bar{b} \in \operatorname{IN}_{W}(\bar{Q})$, hence (see Def. $3.7(1)$ condition (γ) applied with ζ, w_{1}, w_{2}, w there standing for $\zeta, v_{0}, u_{1}, u_{2}$ here) we know that for some $v \in W, \zeta \in$ $b_{v} \wedge v \leq v_{0} \wedge v \leq u_{1}$. As (W, \leq) is a partial order, $v \leq v_{0}$ and $v_{0} \leq w$, we can conclude $v \leq w$. So v contradicts our being in the fourth case. So we have finished the fourth case.

Hence we have finished proving $\bar{r} \in \bar{Q}[\bar{b}]$. We also have to prove $q \leq r_{w}$, but for $\zeta \in \operatorname{Dom} q$ we have $\zeta \in b_{w}\left(\right.$ as $q \in P_{w}^{\text {cn }}$) and $r_{w}(\zeta)=q(\zeta)$ because $r_{w}(\zeta)$ is defined by the second case of the definition as $(\exists v \in W)$ $\left(\zeta \in b_{w} \wedge v \leq w \wedge v \leq w\right)$, i.e. $v=w$.

Lastly we have to prove that $\bar{p} \leq \bar{r}$ (in $\bar{Q}[\bar{b}])$. So let $u \in W, \zeta \in \operatorname{Dom} p_{u}$ and we have to prove $r_{u} \upharpoonright \zeta \Vdash_{P_{\zeta}}$ " $p_{u}(\zeta) \leq_{P_{\zeta}} r_{u}(\zeta)$ ". As $r_{u}(\zeta)$ is $p_{u}(\zeta)$ or $p_{u}(\zeta) \& q(\zeta)$ this is obvious.
2) Immediate.
3) We prove this by induction on $|W|$.

For $|W|=0$ this is totally trivial.
For $|W|=1,2$ this is assumed.
For $|W|>2$ fix $\bar{p}^{i} \in \bar{Q}[\bar{b}]$ for $i<\omega_{1}$. Choose a maximal element $v \in W$ and let $c=\bigcup\left\{b_{w}: W \models w<v\right\}$. Clearly c is closed for \bar{Q}.

We know that $P_{c}^{\mathrm{cn}}, P_{b_{v}}^{\mathrm{cn}} / P_{c}^{\mathrm{cn}}$ are Knaster by the induction hypothesis. We also know that $p_{v}^{i}\left\lceil c \in P_{c}^{\mathrm{cn}}\right.$ for $i<\omega_{1}$, hence for some $r \in P_{c}^{\mathrm{cn}}$,

$$
r \Vdash " A \stackrel{\text { def }}{=}\left\{i<\omega_{1}: p_{v}^{i} \upharpoonright c \in G_{P_{c} \mathrm{c}}\right\} \text { is uncountable" }
$$

hence
IF "there is an uncountable $A^{1} \subseteq A$ such that

$$
\left[i, j \in A^{1} \Rightarrow p_{v}^{i}, p_{v}^{j} \text { are compatible in } P_{b_{v}}^{\mathrm{cn}} / G_{P_{c}}\right] .
$$

Fix a $P_{c}^{\text {cn }}$-name A^{1} for such an A^{1}.
Let $A^{2}=\left\{i<\omega_{1}: \exists q \in P_{c}^{\text {cn }}, q \Vdash i \in A^{1}\right\}$. Necessarily $\left|A_{2}\right|=\aleph_{1}$, and for $i \in A^{2}$ there is $q^{i} \in P_{c}^{\mathrm{cn}}, q^{i} \Vdash i \in A^{1}$, and w.l.o.g. $p_{v}^{i} \mid c \leq q^{i}$. Note that $p_{v}^{i} \& q^{i} \in P_{b_{v}}^{\mathrm{cn}}$.

For $i \in A^{2}$ let, \bar{r}^{i} be defined using 3.8(1) (with $\bar{p}^{i}, p_{v}^{i} \& q^{i}$). Let $W_{1}=$ $W \backslash\{v\}, \bar{b}^{\prime}=\left\langle b_{w}: w \in W_{1}\right\rangle$.

By the induction hypothesis applied to $W_{1}, \bar{b}^{\prime}, \bar{r}^{i} \mid W_{1}$, for $i \in A^{2}$ there is an uncountable $A^{3} \subseteq A^{2}$ and for $i<j$ in A^{3}, there is $\bar{r}^{i, j} \in \bar{Q}\left[\bar{b}^{\prime}\right]$, $\bar{r}^{i} \mid W_{1} \leq \bar{r}^{i, j}$, and $\bar{r}^{j} \mid W_{1} \leq \bar{r}^{i, j}$. Now define $r_{c}^{i, j} \in P_{c}^{\mathrm{cn}}$ as follows: its domain is $\bigcup\left\{\operatorname{dom} r_{w}^{i, j}: W \models w<v\right\}, r_{c}^{i, j}\left\lceil\left(\operatorname{dom} r_{w}^{i, j}\right)=r_{w}^{i, j}\right.$ whenever $W \models w<v$. Why is this a definition? As if $W \vDash w_{1} \leq v \wedge w_{2} \leq v, \zeta \in b_{w_{1}} \wedge \zeta \in b_{w_{2}}$ then for some $u \in W, u \leq w_{1} \wedge u \leq w_{2}$ and $\zeta \in u$. It is easy to check that $r_{c}^{i, j} \in P_{c}^{\mathrm{cn}}$. Now $r_{c}^{i, j} \Vdash_{P_{c}^{\mathrm{cn}}}$ " p_{v}^{i}, p_{v}^{j} are compatible in $P_{b_{v}}^{\mathrm{cn}} / P_{c}^{\mathrm{cn}}$ ".

So there is $r \in P_{b_{v}}^{\mathrm{cn}}$ such that $r_{c}^{i, j} \leq r, p_{v}^{i} \leq r, p_{v}^{j} \leq r$. As in part (1) of 3.8 we can combine r and $\bar{r}^{i, j}$ to a common upper bound of \bar{p}^{i}, \bar{p}^{j} in $\bar{Q}[\bar{b}]$.

Claim 3.9. If δ is a limit ordinal, and $P_{i}, Q_{i}, \alpha_{i}, e_{i}^{*}(i<\delta)$ are such that for each $\alpha<\delta, \bar{Q}^{\alpha}=\left\langle P_{i}, Q_{j}, \alpha_{j}, e_{j}^{*}: i \leq \alpha, j<\alpha\right\rangle$ belongs to $\mathfrak{K}\left(\kappa^{1}\right)$, then for a unique $P_{\delta}, \bar{Q}=\left\langle P_{i}, Q_{j}, \alpha_{j}, e_{j}^{*}: i \leq \delta, j<\delta\right\rangle$ belongs to $\mathfrak{K}\left(\mathfrak{K}^{1}\right)$.

Proof. We define P_{δ} by (d) of Definition 3.4. The least easy problem is to verify the Knaster conditions (for $\bar{Q} \in \nwarrow^{1}$). The proof is like the preservation of the c.c.c. under iteration for limit stages.

Convention 3.9.A. By 3.9 we shall not distinguish strictly between $\left\langle P_{i}\right.$, $\left.Q_{j}, \alpha_{j} ; e_{j}^{*}: i \leq \delta, j<\delta\right\rangle$ and $\left\langle P_{i}, Q_{i}, \alpha_{i}, e_{i}^{*}: i<\delta\right\rangle$.

Claim 3.10. If $\bar{Q} \in \mathfrak{K}\left(\mathfrak{K}^{1}\right), \alpha=\lg (\bar{Q}), a \subset \alpha$ is closed for $\bar{Q},|a| \leq \aleph_{1},{\underset{\sim}{1}}^{Q}$ is a P_{a}^{cn}-name of a forcing notion satisfying (in $V^{P_{\alpha}}$) the Knaster condition, its underlying set is a subset of $\left[\omega_{1}\right]^{<_{0}}$ then there is a unique $\bar{Q}^{1} \in \mathfrak{K}\left(\mathfrak{K}^{\ell}\right)$, $\lg \left(\bar{Q}^{1}\right)=\alpha+1, Q_{\alpha}^{1}=\underset{\sim}{Q}, \bar{Q}^{1}\lceil\alpha=\bar{Q}$.

Proof. Left to the reader.
Proof of Theorem 3.1.
A Stage: We force by $\mathfrak{R}_{<\lambda}^{1}=\left\{\bar{Q} \in \mathfrak{K}^{1}: \lg (\bar{Q})<\lambda, \bar{Q} \in H(\lambda)\right\}$ ordered by being an initial segment (which is equivalent to forcing a Cohen subset of λ). The generic object is essentially $\bar{Q}^{*} \in \mathfrak{K}_{\lambda}^{1}, \lg \left(\bar{Q}^{*}\right)=\lambda$, and then we force by $P_{\lambda}=\lim \bar{Q}^{*}$. Clearly $\mathfrak{K}_{<\lambda}^{\ell}$ is a λ-complete forcing notion of cardinality λ, and P_{λ} satisfies the c.c.c. Clearly it suffices to prove part (2) of 3.1.

Suppose $\underset{\sim}{d}$ is a name of a function from $[\lambda]^{n}$ to ${\underset{\sim}{r}}_{n}$ for $n<\omega, \sigma_{n}<\omega$, $\left\langle\sigma_{n}: n<\omega\right\rangle$ diverges (i.e. $\forall m \exists k \forall n \geq k \sigma_{n} \geq m$) and for some $\bar{Q}^{0} \in \mathfrak{K}_{<\lambda}^{1}$.

$$
\bar{Q}^{0} \Vdash_{\mathfrak{A}_{<\lambda}^{1}} \text { "there is } p \in{\underset{\sim}{P}}_{\lambda}\left[p \Vdash_{P_{\lambda}}\left\langle{\underset{\sim}{d}}_{n}: n<\omega\right\rangle\right. \text { is a }
$$ counterexample to (2) of 3.1"].

In V we can define $\left\langle\bar{Q}^{\zeta}: \zeta<\lambda\right\rangle, \bar{Q}^{\zeta} \in \mathfrak{K}_{<\lambda}^{1}, \zeta<\xi \Rightarrow \bar{Q}^{\varsigma}=\bar{Q}^{\epsilon} \upharpoonright \lg \left(\bar{Q}^{\varsigma}\right)$, in $\bar{Q}^{\zeta+1}, e_{\lg \left(\bar{Q}_{\zeta}\right)}^{*}=1, \bar{Q}^{\zeta+1}$ forces (in $\mathfrak{K}_{<\lambda}^{1}$) a value to p and the ${\underset{\sim}{\lambda}}_{\lambda}$-names ${\underset{\sim}{n}}^{d} \upharpoonright \zeta, \sigma_{n},{\underset{\sim}{n}}_{n}$ for $n<\omega$, i.è. the values here are still P_{λ}-names. Let \bar{Q}^{*} be the limit of the \bar{Q}^{ξ}-s. So $\bar{Q}^{*} \in \mathfrak{K}^{1}, \lg \left(\bar{Q}^{*}\right)=\lambda, \bar{Q}^{*}=\left\langle P_{i}^{*}, \underset{\sim}{Q_{j}^{*}}, \alpha_{j}^{*}, e_{j}^{*}\right.$: $i \leq \lambda, j<\lambda\rangle$, and the P_{λ}^{*}-names $\underset{\sim}{d}, \sigma_{n},{\underset{\sim}{x}}_{n}$ are defined such that in $V^{P_{\lambda}^{*}}$, ${\underset{\sim}{d}}_{n}, \sigma_{n}, k_{n}$ contradict (2) (as any $P_{\dot{\lambda}}^{*}$-name of a bounded subset of λ is a $P_{\lg \left(\bar{Q}^{\xi}\right)}^{*}$-name for some $\left.\xi<\lambda\right)$.

B Stage: Let $\chi=\kappa^{+}$be large enough and $<_{\chi}^{*}$ be a well-ordering of $\mathrm{H}(\chi)$. Now we can apply $\lambda \rightarrow\left(\omega_{1}\right)_{2}^{<\omega}$ to get δ, B, N_{s} (for $s \in[B]^{<{ }^{*}} 0$) and $\mathbf{h}_{s, t}$ (for $\left.s, t \in[B]^{<N_{0}},|s|=|t|\right)$ such that:
(a) $B \subseteq \lambda, \operatorname{otp}(B)=\omega_{1}, \sup B=\delta$,

(c) $N_{s} \cap N_{t}=N_{s \cap t}$,
(d) $N_{s} \cap B=s$,
(e) if $s=t \cap \alpha, t \in[B]^{<^{*} 0}$ then $N_{s} \cap \lambda$ is an initial segment of $N_{t} \cap \lambda$,
(f) $\mathbf{h}_{s, t}$ is an isomorphism from N_{t} onto N_{s} (when defined)
(g) $\mathbf{h}_{t, s}=\mathbf{h}_{s, t}^{-1}$ and if $t_{1} \subseteq t, s_{1} \subseteq s$ and $H_{t, s}^{O P} \operatorname{maps} t_{1}$ onto s_{1} then $h_{t_{1}, s_{1}} \subseteq h_{t, s}$.
(h) $p_{0} \in N_{s}, p_{0} \Vdash_{P_{\lambda}}$ " $\left\langle{\underset{\sim}{d}}_{n}, \sigma_{n},{\underset{\sim}{n}}_{n}: n<\omega\right\rangle$ is a counterexample",
(i) $\omega_{1} \subseteq N_{s},\left|N_{s}\right|=\aleph_{1}$ and if $\gamma \in N_{s}$, cf $\gamma>\aleph_{1}$ then $\operatorname{cf}\left(\sup \left(\dot{\gamma} \cap N_{s}\right)\right)=$ ω_{1}.
Let $\bar{Q}=\bar{Q}^{*} \upharpoonright \delta, P=P_{\delta}^{*}$ and $P_{a}=P_{a}^{\mathrm{cn}}($ for $\bar{Q})$, where a is closed for \bar{Q}. Note: $P_{\lambda}^{*} \cap N_{s}=P_{\delta}^{*} \cap N_{s}=P_{\text {sup } \lambda \cap N_{s}} \cap N_{s}=P \cap N_{s}$. Note also $\gamma \in \lambda \cap N_{s}$ $\Rightarrow a_{\gamma}^{*} \subseteq \lambda \cap N_{s}$.

C Stage: It suffices to show that we can define Q_{δ} in $V^{P_{\delta}}$ which forces a subset W of B of cardinality \aleph_{1} and $\underset{\sim}{F}: W \rightarrow{ }^{\omega}{ }_{2}^{\delta}$ which exemplify the desired conclusion in (2), and prove that ${\underset{\sim}{~}}_{\delta}$ satisfies the \aleph_{1}-c.c. (in $V^{P_{\delta}}$ (and has cardinality \aleph_{1})) and moreover (see Definitions 3.4 and 3.7(3)) we also define $a_{\delta}=\bigcup_{s \in[B]<\kappa_{0}} N_{s} \cap \delta, e_{\delta}=1, \bar{Q}^{\prime}=\bar{Q}^{\wedge}\left\langle P_{\delta}^{*}, Q_{\delta}, a_{\delta}, e_{\delta}\right\rangle$ and prove $\bar{Q}^{\prime} \in \mathfrak{K}^{1}$.
We let $\underset{\sim}{d}(u)={\underset{-}{|u|}}(u)$.
Let $F: B \rightarrow{ }^{\omega} 2$ be one-to-one such that $\forall \eta \in{ }^{\omega>} 2 \exists^{{ }^{1}} \alpha \in B[\eta \triangleleft F(\alpha)]$. (This will not be the needed $\underset{\sim}{F}$, just notation).

For ${ }^{\prime} s, t \in[B]^{<{ }^{\circ}}$, we say $s \equiv_{F}^{n} t$ if $|s|=|t| i$ and $\forall \xi \in s, \forall \zeta \in t[\xi=$ $\mathbf{h}_{s, t}(\zeta) \Rightarrow F(\xi) \mid n=F(\zeta)\lceil n]$. Let $I_{n}=I_{n}(F)=\left\{s \in[B]^{<{ }^{N_{0}}}:(\forall \zeta \neq \xi \in s)\right.$, $[F(\zeta) \mid n \neq F(\xi)\lceil n]\}$.

We define R_{n} as follows: a sequence $\left\langle p_{s}: s \in I_{n}\right\rangle \in R_{n}$ if and only if
(i) for $s \in I_{n}, p_{s} \in P_{\lambda}^{*} \cap N_{s}$,
(ii) for some c_{s} we have $p_{s} \Vdash$ " $d(s)=c_{s}$ ",
(iii) for $s, t \in I_{n}, s \equiv_{F}^{n} t \Rightarrow \mathbf{h}_{s, t}\left(p_{t}\right)=p_{s}$,
(iv) for $s, t \in I_{n}, p_{s}\left\lceil N_{s \cap_{t}}=p_{t} \backslash N_{s \cap_{t}}\right.$.
R_{n}^{-}is defined similarly omitting (ii).
For $x=\left\langle p_{s}: s \in I_{n}\right\rangle$ let $n(x)=n, p_{s}^{x}=p_{s}$, and (if defined) $c_{s}^{x}=c_{s}$. Note that we could replace $x \in R_{n}$ by a finite subsequence. Let $R=\bigcup_{n<\omega} R_{n}, R^{-}=\bigcup_{n<\omega} R_{n}^{-}$. We define an order on $R^{-}: x \leq y$ if and only if $n(x) \leq n(y)$, and $\left[s \in I_{n(x)} \wedge t \in I_{n(y)} \wedge s \subseteq t \Rightarrow p_{s}^{x} \leq p_{t}^{y}\right]$.

D Stage: Note the following facts::
$\mathbf{D}(\alpha)$ Subfact: If $x \in R_{n}^{-}, t \in I_{n}$ and $p_{t}^{x} \leq p^{1} \in P_{\delta}^{*} \cap N_{t}$, then there is y such that $x \leq y \in R_{n}^{-}, p_{t}^{y}=p^{1}$.
Proof. We let for $s \in I_{n}$

$$
p_{s}^{y} \stackrel{\operatorname{def}}{=} \&\left\{\mathbf{h}_{s_{1}, t_{1}}\left(p^{1} \uparrow N_{t_{1}}\right): s_{1} \subseteq s, t_{1} \subseteq t, s_{1} \equiv_{F}^{n} t_{1}\right\} \& p_{s}^{x}
$$

(This notation means that p_{s}^{y} is a function whose domain is the union of the domains of the conditions mentioned, and for each coordinate we take the canonical upper bound, see preliminaries.) Why is p_{s}^{y} well defined? Suppose $\beta \in N_{s} \cap \lambda$ (for $\beta \in \lambda \backslash N_{s}$, clearly $p_{s}^{y}(\beta)=\emptyset_{\beta}$), $s_{\ell} \subseteq s, t_{\ell} \subseteq t$, $s_{\ell} \equiv_{F}^{n} t_{\ell}$ for $\ell=1,2$ and $\beta \in \operatorname{Dom}\left[\mathbf{h}_{s_{\ell}, t_{\ell}}\left(p^{1} \upharpoonright N_{t_{\ell}}\right)\right]$, and it suffices to show that $p_{s}^{x}(\beta), \mathbf{h}_{s_{1}, t_{1}}\left(p^{1} \mid N_{t_{1}}\right)(\beta), \mathbf{h}_{s_{2}, t_{2}}\left(p^{1} \mid N_{t_{2}}\right)(\beta)$ are pairwise comparable. Let $u=\bigcap\left\{v \in[B]^{<\aleph_{0}}: \beta \in N_{v}\right\}$, necessarily $u \subseteq s_{1} \cap s_{2}$, and let $u_{\ell}=\mathbf{h}_{s_{\ell}, t_{\ell}}^{-1}(u)$. As $s_{\ell}, t_{\ell}, t \in I_{n}, s_{\ell} \equiv_{F}^{n} t_{\ell}$ and $u_{\ell} \subseteq t_{\ell} \subseteq t$, necessarily $u_{1}=u_{2}$. Thus $\gamma \stackrel{\text { def }}{=} \mathbf{h}_{u, v}^{-1}(\beta)=\mathbf{h}_{s_{\ell}, t_{\ell}}^{-1}(\beta)$ and so the last two conditions are equal.

Now $p_{s}^{x}(\beta)=p_{u}^{x}(\beta)=\mathbf{h}_{u, v}\left(p_{s}^{x}(\gamma)\right) \leq \mathbf{h}_{s_{\ell}, t_{\ell}}\left(\left(p_{t}^{x}\left\lceil N_{t_{\ell}}\right)(\gamma)\right)=\left(\mathbf{h}_{s_{\ell}, t_{\ell}}\left(p_{t}^{x}\right\rceil\right.\right.$ $\left.\left.N_{t_{\ell}}\right)\right)(\beta)$.

We leave to the reader checking the other requirements.
$\mathbf{D}(\beta)$ Subfact: If $x \in R_{n}^{-}, t \in I_{m}, m<n$ then $\bigcup\left\{p_{s}^{x}: s \in I_{n}, s \subseteq t\right\}$ (as union of functions) exists and belongs to $P_{\lambda}^{*} \cap N_{i}$.

Proof. See (iv) in the definition of R_{n}^{-}.
$\mathbf{D}(\gamma)$ Subfact: If $x \leq y, x \in R_{n}, y \in R_{n}^{-}$, then $y \in R_{n}$.
Proof. Check it.
$\mathbf{D}(\delta)$ Subfact: If $x \in R_{n}^{-}, n<m$, then there is $y \in R_{m}, x \leq y$.
Proof. By subfact $\mathrm{D}(\beta)$ we can find $x^{1}=\left\langle p_{t}^{1}: t \in I_{m}\right\rangle$ in R_{m}^{-}with ${ }^{1} x \leq x^{1}$. Using repeatedly subfact $\mathrm{D}(\alpha)$ we can increase x^{1} (finitely many times) to get $y \in R_{m}$.
$\mathbf{D}(\varepsilon)$ Subfact: If $x \in R_{n}^{-}, s, t \in I_{n}, s \equiv_{F}^{n} t, p_{s}^{x} \leq r_{1} \in P_{\lambda}^{*} \cap N_{s}, p_{t}^{x} \leq r_{2} \in$ $P_{\lambda}^{*} \cap N_{t},(\forall \zeta \in t)\left[F(\zeta)(n) \neq\left(F\left(\mathbf{h}_{s, t}(\zeta)\right)\right)(n)\right]$ (or just $r_{1}\left\lceil N_{s_{1}}=\mathbf{h}_{s, t}\left(r_{2} \upharpoonright N_{t_{1}}\right)\right.$ where $\left.t_{1} \stackrel{\text { def }}{=}\left\{\xi \in t: F(\xi)(n)=\left(F\left(\mathbf{h}_{s, t}(\xi)\right)\right)(n)\right\}, s_{1} \stackrel{\text { def }}{=}\left\{\mathbf{h}_{s, t}(\xi): \xi \in t_{1}\right\}\right)$, then there is $y \in R_{n+1}, x \leq y$ such that $r_{1}=p_{s}^{y}$ and $r_{2}=p_{t}^{y}$.

Proof. Left to the reader.

E Stage ${ }^{\dagger}$:

We define: $T_{k}^{*} \subseteq \underbrace{2^{k} \geq} 2$ by induction on k as follows:

$$
\begin{aligned}
T_{0}^{*}= & \{\rangle,\langle 1\rangle\} \\
T_{k+1}^{*}= & \left\{\nu: \nu \in T_{k}^{*} \text { or } 2^{k}<\lg (\nu) \leq 2^{k+1}, \nu \mid 2^{k} \in T_{k}^{*}\right. \text { and } \\
& {\left.\left.\left[2^{k} \leq i<2^{k+1} \wedge \nu(i)=1\right] \Rightarrow i=2^{k}+\left(\sum_{m<2^{k}} \nu(m) 2^{m}\right)\right]\right\} }
\end{aligned}
$$

We define

$$
\begin{gathered}
\operatorname{Tr} \operatorname{Emb}(k, n)=\left\{\begin{array}{l}
h: h \text { is a function from } T_{k}^{*} \text { into }{ }^{n \geq} 2 \text { such that } \\
\\
\text { for } \nu, \eta \in T_{k}^{*}: \\
{[\eta=\nu \Leftrightarrow h(\eta)=h(\nu)]} \\
{[\eta \triangleleft \nu \Leftrightarrow h(\eta) \triangleleft h(\nu)]} \\
{[\lg (\eta)=\lg (\nu) \Rightarrow \lg (h(\eta))=\lg (h(\nu))]} \\
{\left[\nu=\eta^{\wedge}(i\rangle \Rightarrow(h(\nu))[\lg (h(\eta))]=i\right]} \\
\left.\left[\lg (\eta)=2^{k} \Rightarrow \lg (h(\eta))=n\right]\right\} \\
\mathbf{T}(k, n)=\{\operatorname{Rang} h: h \in \operatorname{Tr} \operatorname{Emb}(k, n)\} \\
\mathbf{T}(*, n)=\bigcup_{k} \mathbf{T}(k, n) \\
\mathbf{T}(k, *)=\bigcup_{n} \mathbf{T}(k, n)
\end{array}\right.
\end{gathered}
$$

For $T \in \mathbf{T}(k, *)$ let $n(T)$ be the unique n such that $T \in \mathbf{T}(k, n)$ and let

$$
\begin{aligned}
B_{T} & =\{\alpha \in B: F(\alpha) \mid n(T) \text { is a maximal member of } T\} \\
f s_{T} & =\left\{t \subseteq B_{T}: i \in t \wedge j \in t \wedge i \neq j \Rightarrow F(i)|n(T) \neq F(j)| n(T)\right\} \\
\Theta_{T} & =\left\{\left\langle p_{s}: s \in f s_{T}\right\rangle: p_{s} \in P \cap N_{s},\left[s \subseteq t \wedge\{s, t\} \subseteq f s_{T} \Rightarrow p_{s}=p_{t} \mid N_{s}\right]\right\}
\end{aligned}
$$

\dagger We will have $T \subset{ }^{\omega>} 2$ gotten by $2.7(2)$ and then want to get a subtree with as few as possible colors, we can find one isomorphic to ${ }^{\omega>} 2$, and there restrict ourselves to $\cup_{n} T_{n}^{*}$.

Let further

$$
\begin{aligned}
\Theta_{k} & =\bigcup\left\{\Theta_{T}: T \in \mathbf{T}(k, *)\right\} \\
\Theta & =\bigcup_{k} \Theta_{k}
\end{aligned}
$$

For $\bar{p} \in \Theta, \mathbf{n}_{\bar{p}}=\mathbf{n}(\bar{p}), T_{\bar{p}}$ are defined naturally.
For $\bar{p}, \bar{q} \in \Theta, \bar{p} \leq \bar{q}$ iff $\mathbf{n}_{\bar{p}} \leq \mathbf{n}_{\bar{q}}, T_{\bar{p}} \subseteq T_{\bar{q}}$ and for every $s \in f s_{T_{\bar{p}}}$ we have $p_{s} \leq q_{s}$.

F Stage: Let $\underset{\sim}{g}: \omega \rightarrow \omega, \underset{\sim}{g} \in N_{s}, \underset{\sim}{g}$ grows fast enough relative to $\left\langle\sigma_{n}: n<\omega\right\rangle$. We define a game Gm. A play of the game lasts after ω moves, in the $n^{\text {th }}$ move player I chooses $\bar{p}_{n} \in \Theta_{n}$ and a function h_{n} satisfying, the restrictions below and then player II chooses $\bar{q}_{n} \in \Theta_{n}$, such that $\bar{p}_{n} \leq \bar{q}_{n}$ (so $T_{\bar{p}_{n}}=T_{\bar{q}_{n}}$). Player I loses the play if sometime he has no legal move; if he never loses, he wins. The restrictions player I has to satisfy are:
(a) for $m<n, \bar{q}_{m} \leq \bar{p}_{n}, p_{s}^{n}$ forces a value to $g \nmid(n+1)$,
(b) h_{n} is a function from $\left[B_{\overline{\bar{p}}_{n}}\right]^{\leq g(n)}$ to ω,
(c) if $m<n \Rightarrow h_{n}, h_{m}$ are compatible,
(d) If $m<n, \ell<g(m), s \in\left[B_{T_{\bar{p}_{n}}}\right]^{\ell}$, then $p_{s}^{n} \Vdash \underset{d}{d}(s)=h_{n}(s)$,
(e) Let $s_{1}, s_{2} \in \operatorname{Dom} h_{n}$. Then $h_{n}\left(s_{1}\right)=h_{n}\left(s_{2}\right)$ whenever s_{1}, s_{2} are similar over n which means:
(i) $\left(F\left(H_{s_{2}, s_{1}}^{O P}(\zeta)\right)\right)\left\lceil\mathbf{n}\left[\bar{p}^{n}\right]=(F(\zeta))\left\lceil\mathbf{n}\left[\bar{p}^{n}\right]\right.\right.$ for $\zeta \in s_{1}$,
(ii) $H_{s_{2}, s_{1}}^{O P}$ preserves the relations $\operatorname{sp}\left(F\left(\zeta_{1}\right), F\left(\zeta_{2}\right)\right)^{\prime}<\operatorname{sp}\left(F\left(\zeta_{3}\right)\right.$, $\left.F\left(\zeta_{4}\right)\right)$ and $F\left(\zeta_{3}\right)\left(\operatorname{sp}\left(F\left(\zeta_{1}\right), F\left(\zeta_{2}\right)\right)\right)=i$ (in the interesting case $\zeta_{3} \neq \zeta_{1}, \zeta_{2}$ implies $\mathrm{i}=0$).

G Stage/Claim: Player I has a winning strategy in this game.
Proof. As the game is closed, it is determined, so we assume player II has a winning strategy, and eventually we shall get a contradiction. We define by induction on n, \bar{r}^{n} and Φ_{n} such that
(a) $\bar{r}^{n} \in R_{n}, \bar{r}^{n} \leq \bar{r}^{n+1}$,
(b) Φ_{n} is a finite set of initial segments of plays of the game,
(c) in each member of Φ_{n} player II uses his winning strategy,
(d) if y belongs to Φ_{n} then it has the form $\left\langle\bar{p}^{y, \ell}, h^{y, \ell}, \bar{q}^{y, \ell}: \ell \leq m(y)\right\rangle$; let $h_{y}=h^{y, m(y)}$ and $T_{y}=T_{\bar{q}^{y}, m(y)} ;$ also $T_{y} \subseteq^{n \geq} 2, q_{s}^{y, \ell} \leq r_{s}^{n}$ for $s \in f s_{T_{y}}$.
(e) $\Phi_{n} \subseteq \Phi_{n+1}, \Phi_{n}$ is closed under taking the initial segments and the empty sequence (which toois an initial segment of a play) belongs to Φ_{0}.
(f) For any $y \in \Phi_{n}$ and T, h either for some $z \in \Phi_{n+1} ; n_{z}=n_{y}+1$, $y=z\left\lceil\left(n_{y}+1\right), T_{z}=T\right.$ and $h_{z}=h$ or player I has no legal $\left(n_{y}+1\right)^{\text {th }}$ move \bar{p}^{n}, h^{n} (after y was played) such that $T_{\bar{p}^{n}}=T, h^{n}=h$, and $p_{s}^{n}=r_{s}^{n}$ for $s \in f s_{T}$ (or always \leq or always \geq).
There is no problem to carry the definition. Now $\left\langle\bar{r}^{n}: n<\omega\right\rangle$ define a function d^{*} : if $\eta_{1}, \ldots, \eta_{k} \in^{m} 2$ are distinct then $d^{*}\left(\left\langle\eta_{1}, \ldots, \eta_{k}\right\rangle\right)=c$ iff for every (equivalently some) $\zeta_{1}<\cdots<\zeta_{k}$ from B, such that $\eta_{\ell} \triangleleft F\left(\zeta_{\ell}\right)$, $r_{\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}}^{k} \Vdash{ }_{\sim}^{d}\left(\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}\right)=c$ ".

Now apply $2.7(2)$ to this coloring, get $T^{*} \subseteq \omega>2$ as there. Now player I could have chosen initial segments of this T^{*}. (in the $n^{\text {th }}$ move in $\dot{\Phi}_{n}$) and we get easily a contradiction.

H Stage: We fix a winning strategy for player I (whose existence is guaranteed by stage G).

We define a forcing notion Q^{*}. We have $(r, y, f) \in Q^{*}$ iff
(i) $r \in P_{a_{\delta}}^{c n}$
(ii) $y=\left\langle\bar{p}^{\ell}, h^{\ell}, \bar{q}^{\ell}: \ell \leq m(y)\right\rangle$ is an initial segment of a play of $\underline{G m}$ in which player I uses his winning strategy
(iii) f is a finite function from B to $\{0,1\}$ such that $f^{-1}(\{1\}) \in f S_{T_{y}}$ (where $\left.T_{y}=T_{\bar{q}^{m(y)}}\right)$.
(iv) $r=q_{f^{-1}(\{1\})}^{y, m(y)}$.

The Order is the natural one.
I Stage: If $J \subseteq P_{a_{\delta}}^{\mathrm{cn}}$ is dense open then $\left\{\left(r_{;}, y, f\right) \in Q^{*}: r \in J\right\}$ is dense in Q^{*}.
Proof. By 3.8(1) (by the appropriate renaming).
\mathbf{J} Stage: 'We define Q_{δ} in $V^{P_{\delta}}$ as $\left\{(r, y, f) \in Q^{*}: r \in G_{P_{\delta}}\right\}$, the order is as in Q^{*}.

The main point left is to prove the Knaster condition for the partial ordered set $\bar{Q}^{*}=\bar{Q}^{\wedge}\left\langle P_{\delta},{\underset{\sim}{\delta}}, a_{\delta}, e_{\delta}\right\rangle$ demanded in the definition of \mathfrak{K}^{1}. This
will follow by $3.8(3)$ (after you choose meaning and renamings) as done in stages K,L below.
K Stage: So let $i<\delta, \operatorname{cf}(i) \neq \aleph_{1}$, and we shall prove that $P_{\delta+1}^{*} / P_{i}$ satisfies the Knaster condition. Let $p_{\alpha} \in P_{\delta+1}^{*}$ for $\alpha<\omega_{1}$, and we should find $p \in P_{i}, p \Vdash_{P_{i}}$ "there is an unbounded $A \subseteq\left\{\alpha: p_{\alpha} \backslash i \in G_{P_{i}}\right\}$ such that for any $\alpha, \beta \in A, p_{\alpha}, p_{\beta}$ are compatible in $P_{\delta+1}^{*} / G_{P_{\mathrm{i}}}$.

Without loss of generality:
(a) $p_{\alpha} \in P_{\delta+1}^{c n}$.
(b) for some $\left\langle i_{\alpha}: \alpha<\omega_{1}\right\rangle$ increasing continuous with limit δ we have: $i_{0}>i, \operatorname{cf} i_{\alpha} \neq \aleph_{1}, p_{\alpha}\left\lceil\delta \in P_{i_{\alpha+1}}, p_{\alpha}\left\lceil i_{\alpha} \in P_{i_{0}}\right.\right.$.
Let $p_{\alpha}^{0}=p_{\alpha} \upharpoonright i_{0}, p_{\alpha}^{1}=p_{\alpha} \upharpoonright \delta=p_{\alpha} \upharpoonright i_{\alpha+1}, p_{\alpha}(\delta)=\left(r_{\alpha}, y_{\alpha}, f_{\alpha}\right)$, so without loss of generality
(c) $\left.r_{\alpha} \in P_{i_{\alpha+1}}, r_{\alpha}\right\rceil i_{\alpha} \in P_{i_{0}}, m\left(y_{\alpha}\right)=m^{*}$,
(d) $\operatorname{Dom} f_{\alpha} \subseteq i_{0} \cup\left[i_{\alpha}, i_{\alpha+1}\right)$,
(e) $f_{\alpha} \upharpoonright i_{0}$ is constant (remember $\operatorname{otp}(B)=\omega_{1}$),
(f) if $\operatorname{Dom} f_{\alpha}=\left\{j_{0}^{\alpha}, \ldots j_{k_{\alpha}-1}^{\alpha}\right\}$ then $k_{\alpha}=k,\left[j_{\ell}^{\alpha}<i_{\alpha} \Leftrightarrow \ell<k^{*}\right]$, $\left.\bigwedge_{\ell<k^{*}} j_{\ell}^{\alpha}=j^{\ell}, f\left(j_{\ell}^{\alpha}\right)=f\left(j_{\ell}^{\beta}\right), F\left(j_{\ell}^{\alpha}\right)\right)\left\lceil m\left(y_{\alpha}\right)=F\left(j_{\ell}^{\beta}\right)\left\lceil m\left(y_{\beta}\right)\right.\right.$.
The main problem is the compatibility of the $q^{y_{\alpha}, m\left(y_{\alpha}\right)}$. Now by the definition Θ_{α} (in stage E) and $3.8(3)$ this holds.

L Stage: If $c \subset \delta+1$ is closed for \bar{Q}^{\bullet}, then $P_{\delta+1}^{\cdot} / P_{c}^{c n}$ satisfies the Knaster condition.

If c is bounded in δ, choose a successor $i \in(\sup c, \delta)$ for $\bar{Q}\rceil i \in \mathcal{K}_{1}$. We know that $P_{i} / P_{c}^{c n}$ satisfies the Knaster condition and by stage $\mathrm{K}, P_{\delta+1}^{*} / P_{i}$ also satisfies the Knaster condition; as it is preserved by composition we have finished the stage.

So assume c is unbounded in δ and it is easy too. So as seen in stage J, we have finished the proof of 3.1.

Theorem 3.11. If $\lambda \geq \beth_{\omega}, P$ is the forcing notion of adding λ Cohen reals then
$(*)_{1}$ in V^{P}, if $n<\omega d:[\lambda]^{\leq n} \rightarrow \sigma, \sigma<\aleph_{0}$, then for some c.c.c. forcing notion Q we have \mathbb{F}_{Q} 'there are an uncountable $A \subseteq \lambda$ and an one-to-one $F: A \rightarrow^{\omega} 2$ such that d is F-canonical on A " (see definition 2.8).
$(*)_{2}$ if in $V, \lambda \geq \mu \rightarrow_{\text {wsp }}(\kappa)_{\kappa_{0}}$ (see [6]) and in $V^{P}, d:[\mu]^{\leq n} \rightarrow \sigma, \sigma<\aleph_{0}$ then in V^{P} for some c.c.c. forcing notion Q we have \vdash_{Q} 'there are
$A \in[\mu]^{\kappa}$ and one-to-one $F: A \rightarrow^{\omega} 2$ such that d is F-canonical on A".
$(*)_{3}$ if in $V, \lambda \geq \mu \rightarrow_{\mathrm{wsp}}\left(\aleph_{1}\right)_{\mathrm{N}_{2}}^{n}$ and in $V^{P} d:[\mu]^{\leq n} \rightarrow \sigma, \sigma<\aleph_{0}$ then in V^{P} for every $\alpha<\omega_{1}$ and $F: \alpha \rightarrow^{\omega} 2$ for some $A \subseteq \mu$ of order type α and $F^{\prime}: A \rightarrow^{\omega} 2, F^{\prime}(\beta) \stackrel{\text { def }}{=} F(\operatorname{otp}(A \cap \beta)), d$ is F^{\prime}-canonical on A.
$(*)_{4}$ in $V^{P}, 2^{\kappa_{0}} \rightarrow(\alpha, n)^{3}$ for every $\alpha<\omega_{1}, n<\omega$. Really, assuming $V \models$ GCH, we have $\aleph_{n_{3}^{1}} \rightarrow(\alpha, n)^{3}$ (see [6]).

Proof. Similar to the proof of 3.1. Superficially we need more indiscernibility then we get, but getting $\left\langle M_{u}: u \in[B]^{\leq n}\right\rangle$ we ignore $d(\{\alpha, \beta\})$ when there is no u with $\{\alpha, \beta\} \in M_{u}$.

Theorem 3.12. If λ is strongly inaccessible ω-Mahlo, $\mu<\lambda$, then for some c.c.c. forcing notion P of cardinality λ, V^{P} satisfies
(a) $M A_{\mu}$
(b) $2^{\kappa_{0}}=\lambda=2^{\kappa}$ for $\kappa<\lambda$
(c) $\lambda \rightarrow\left[\aleph_{1}\right]_{\sigma, h(n)}^{n}$ for $n<\omega, \sigma<\aleph_{0}, h(n)$ is as in 3.1.

Proof. Again, like 3.1.

4. Partition theorem for trees on large cardinals

Lemma 4.1. Suppose $\mu>\sigma+\aleph_{0}$ and
$(*)_{\mu}$ for every μ-complete forcing notion P, in V^{P}, μ is measurable.
Then
(1) for $n<\omega, \operatorname{Pr}_{e h t}^{f}(\mu, n, \sigma)$.
(2) $\operatorname{Pr}_{\text {eht }}^{f}\left(\mu,<\aleph_{0}, \sigma\right)$, if there is $\lambda>\mu, \lambda \rightarrow\left(\mu^{++}\right)_{2}^{<\omega}$.
(3) In both cases we can have the $P_{r} r_{\text {ehtn }}^{f}$ version, and even choose the ($<_{\alpha}^{*}: \alpha<\mu$) in any of the following ways.
(a) We are given $\left\langle<_{\alpha}^{0}: \alpha<\mu\right\rangle$, and we let for $\eta, \nu \in^{\alpha} 2 \cap T, \alpha \in S P(T)$ (T is the subtree we consider):
$\eta<_{\alpha}^{*} \nu$ if and only if $\operatorname{clp}_{T}(\eta) \ll_{\beta}^{0} \operatorname{clp}_{T}(\nu)$ where $\beta=\operatorname{otp}(\alpha \cap S P(T))$ and $\operatorname{clp}_{T}(\eta)=\langle\eta(j): j \in \lg (\eta), j \in \operatorname{SP}(T)\rangle$.
(b) We are given $\left\langle<_{\alpha}^{0}: \alpha<\mu\right\rangle$, we let that for $\nu, \eta \in^{\alpha} 2 \cap T, \alpha \in S P(T)$: $\eta<_{\alpha}^{*} \nu$ if and only: if $n \uparrow(\beta+1)<_{\beta+1}^{0} \nu \upharpoonright(\beta+1)$ where $\beta=\sup (\alpha \cap S P(T))$.

Remark. 1) $(*)_{\mu}$ holds for a supercompact after Laver treatment. On hypermeasurable see Gitik Shelah [3].
2) We can in $(*)_{\mu}$ restrict ourselves to the forcing notion P actually used. For it by Gitik [2], much smaller large cardinals suffice.
3) The proof of 4.1 is a generalization of a proof of Harrington to Halpern Lauchli theorem from 1978.

Conclusion 4.2. In 4.1 we can get $\operatorname{Pr}_{h t}^{f}(\mu, n, \sigma)$ (even with (3)).
Proof of 4.2. We do the parallel to $4.1(1)$. By $(*)_{\mu}, \mu$ is weakly compact hence by $2.6(2)$ it is enough to prove $\operatorname{Pr}_{a h t}^{f}(\mu, n, \sigma)$. This follows from 4.1(1) by $2.6(1)$.

Proof of Lemma 4.1. 1), 2). Let $\kappa \leq \omega, \sigma(n)<\mu, d_{n} \in \mathrm{Col}_{\sigma(n)}^{n}\left({ }^{\mu>} 2\right)$ for $n<\kappa$.

Choose λ such that $\lambda \rightarrow\left(\mu^{++}\right)_{2^{\mu}}^{<2 \kappa}$ (there is such a λ by assumption for (2) and by $\kappa<\omega$ for (1)). Let Q be the forcing notion ($\left.{ }^{\mu>} 2, \triangleleft\right)$, and $P=P_{\lambda}$ be $\{f: \operatorname{dom}(f)$ is a subset of λ of cardinality $<\mu, f(i) \in Q\}$ ordered naturally. For $i \notin \operatorname{dom}(f)$, take $f(i)=<>$; Let η_{i} be the P-name for $\bigcup\left\{f(i): f \in G_{P}\right\}$. Let $\underset{\sim}{D}$ be a P-name of a normal ultrafilter over μ (in $\left.V^{P}\right)$. For each $n<\omega, d \in \operatorname{Col}_{\sigma(n)}^{n}\left({ }^{\mu>} 2\right), j<\sigma(n)$ and $u=\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$, where $\alpha_{0}<\cdots<\alpha_{n-1}<\lambda$, let ${\underset{\sim}{A}}_{d}^{j}(u)$ be the P_{λ}-name of the set

$$
\begin{array}{r}
A_{d}^{j}(u)=\left\{i<\mu:\left\langle\eta_{\alpha_{\ell}}\right\rceil i: \ell<n\right\rangle \text { are pairwise distinct and } \\
j=d\left(\eta_{\alpha_{0}}\left\lceil i, \ldots, \eta_{\alpha_{n-1}}\lceil i)\right\} .\right.
\end{array}
$$

So ${\underset{\sim}{A}}_{d}^{j}(u)$ is a P_{λ}-name of a subset of μ, and for $j(1)<j(2)<\sigma(n)$ we have $\Vdash_{P_{\lambda}}{ }_{\sim}^{A} A_{d}^{j(1)}(u) \cap{\underset{\sim}{A}}_{j(2)}^{d}(u)=\emptyset$, and $\bigcup_{j<\sigma(n)} A_{d}^{j}(u)$ is a co-bounded subset of $\dot{\mu}$ ". As \Vdash_{P} " \mathfrak{D} is μ-complete uniform ultrafilter on μ ", in V^{P} there is exactly one $j<\sigma(n)$ with $A_{d}^{j}(u) \in \mathfrak{D}$. Let ${\underset{\sim}{d}}_{j}(u)$ be the P-name of this j.

Let $I_{d}(u) \subseteq P$ be a maximal antichain of P, each member of $I_{d}(u)$ forces a value to ${\underset{\sim}{d}}_{j}(u)$. Let $W_{d}(u)=\bigcup\left\{\operatorname{dom}(p): p \in I_{d}(u)\right\}$ and $W(u)=$ $\bigcup\left\{W_{d_{n}}(u): n<\tilde{\kappa}\right\}$. So $W_{d}(u)$ is a subset of λ of cardinality $\leq \mu$ as well as $W(u)$ (as P satisfies the μ^{+}-c.c. and $\left.p \in P \Rightarrow|\operatorname{dom}(p)|<\mu\right)$.

As $\lambda \rightarrow\left(\mu^{++}\right)_{2^{\mu}}^{<2 \kappa}, d_{n} \in \operatorname{Col}_{\sigma_{n}}^{n}\left({ }^{\mu>} 2\right)$ there is a subset Z of λ of cardinality μ^{++}and set $W^{+}(u)$ for each $u \in[Z]^{<\kappa}$ such that:
(i) $W(u) \subseteq W^{+}(u)$ if $u \in[Z]^{<\kappa}$,
(ii) $W^{+}\left(u_{1}\right) \cap W^{+}\left(u_{2}\right)=W^{+}\left(u_{1} \cap u_{2}\right)$,
(iii) if $\left|u_{1}\right|=\left|u_{2}\right|<\kappa$ and $u_{1}, u_{2} \subseteq Z$ then $W^{+}\left(u_{1}\right)$ and $W^{+}\left(u_{2}\right)$ have the same order type and note that $H\left[u_{1}, u_{2}\right] \stackrel{\text { def }}{=} H_{W^{+}\left(u_{1}\right), W^{+}\left(u_{2}\right)}^{O P}$, induces naturally a map from $P \upharpoonright u_{1} \xlongequal{\text { def }}\left\{p \in P: \operatorname{dom}(p) \subseteq W^{+}\left(u_{1}\right)\right\}$ to $P \upharpoonright u_{2} \stackrel{\text { def }}{=}\left\{p \in P: \operatorname{dom}(p) \subseteq W^{+}\left(u_{2}\right)\right\}$.
(iv) if $u_{1}, u_{2} \in[Z]^{<\kappa},\left|u_{1}\right|=\left|u_{2}\right|$ then $H\left[u_{1}, u_{2}\right]$ maps $I_{d_{n}}\left(u_{1}\right)$ onto $I_{d_{n}}\left(u_{2}\right)$ and: $q \Vdash$ " ${\underset{-d}{d}}\left(u_{1}\right)=j " \Leftrightarrow H\left[u_{1}, u_{2}\right](q) \Vdash$ " ${\underset{d}{d}}\left(u_{2}\right)=j$ ",
(v) if $u_{1} \subseteq u_{2} \in[Z]^{<\kappa}, u_{3} \subseteq u_{4} \in[Z]^{<\kappa},\left|u_{4}\right|=\left|u_{2}\right|, H_{u_{2}, u_{4}}^{O P} \operatorname{maps} u_{1}$ onto u_{3} then $H\left[u_{1}, u_{3}\right] \subseteq H\left[u_{2}, u_{4}\right]$.
Let $\gamma(i)$ be the $i^{\text {th }}$ member of Z.
Let $s(m)$ be the set of the first m members of Z and $R_{n}=\{p \in P$: $\left.\operatorname{dom}(p) \subseteq W^{+}(s(n))-\bigcup_{t \subset s(n)} W^{+}(t)\right\}$.

We define by induction on $\alpha<\mu$ a function F_{α} and $p_{u} \in R_{|u|}$ for $u \in \bigcup_{\beta<\alpha}\left[{ }^{\beta} 2\right]^{<\kappa}$ where we let \emptyset_{β} be the empty subset of $\left[{ }^{\beta} 2\right]$ and we behave as if $\left[\beta \neq \gamma \Rightarrow \emptyset_{\beta} \neq \emptyset_{\gamma}\right]$ and we also define $\zeta(\beta)<\mu$, such that:
(i) F_{α} is a function from ${ }^{\alpha>} 2$ into ${ }^{\mu>} 2$, extending F_{β} for $\beta<\alpha$,
(ii) F_{α} maps ${ }^{\beta} 2$ to ${ }^{\zeta(\beta)} 2$ for some $\zeta(\beta)<\mu$ and $\beta_{1}<\beta_{2}<\alpha \Rightarrow \zeta\left(\beta_{1}\right)<$ $\zeta\left(\beta_{2}\right)$,
(iii) $\eta \triangleleft \nu \in^{\alpha>} 2$ implies $F_{\alpha}(\eta) \triangleleft F_{\alpha}(\nu)$,
(iv) for $\eta \epsilon^{\beta} 2, \beta+1<\alpha$ and $\ell<2$, we have $F_{\alpha}(\eta)^{\wedge}\langle\ell\rangle \triangleleft F_{\alpha}\left(\eta^{\wedge}\langle\ell\rangle\right)$,
(v) $p_{u} \in R_{m}$ whenever $u \in\left[{ }^{\beta} 2\right]^{m}, m<\kappa, \beta<\alpha$ and for $u(1) \in[Z]^{m}$ let $p_{u, u(1)}=H[s(|u|), u(1)]\left(p_{u}\right)$.
(vi) $\eta \epsilon^{\beta} 2, \beta<\alpha$, then $p_{\{\eta\}}(\min Z)=F_{\alpha}(\eta)$.
(vii) if $\beta<\alpha, u \in\left[{ }^{\beta} 2\right]^{n}, n<\kappa, h: u \rightarrow s(n)$ one-to-one onto (not necessarily order preserving) then for some $c(u, h)<\sigma(n)$:

$$
\bigcup_{t \subseteq u} p_{t, h^{\prime \prime}(t)} \Vdash_{P_{\lambda}} "{\underset{\sim}{n}}_{n}({\underset{\gamma}{\gamma(0)}}, \ldots,{\underset{\gamma}{\gamma(n-1)}})=c(u, h) ",
$$

(Note: as $p_{u} \in R_{|u|}$ the domains of the conditions in this union are pairwise disjoint.)
(viii) If n, u, β are as in (vii), $u=\left\{\nu_{0}, \ldots, \nu_{n-1}\right\}, \nu_{\ell} \triangleleft \rho_{\ell} \in^{\gamma} 2, \beta \leq \gamma<$ α then $d_{n}\left(F_{\alpha}\left(\rho_{0}\right), \ldots, F_{\alpha}\left(\rho_{n-1}\right)\right)=c(u, h)$ where h is the unique function from u onto $s(n)$ such that $\left[h\left(\nu_{\ell}\right) \leq h\left(\nu_{m}\right) \Rightarrow \rho_{\ell}<_{\gamma}^{\dot{\gamma}} \rho_{m}\right]$.
(ix) if $\beta<\gamma<\alpha, \nu_{1}, \ldots, \nu_{n-1} \in^{\gamma} 2, n<\kappa$, and $\nu_{0} \upharpoonright \beta, \ldots, \nu_{n-1} \upharpoonright \beta$ are pairwise distinct then:

$$
p_{\left\{\nu_{0}\left|\beta, \ldots, \nu_{n}\right| \beta\right\}} \subseteq p_{\left\{\nu_{0}, \ldots, \nu_{n-1}\right\}}
$$

For α limit: no problem.
For $\alpha+1, \alpha$ limit: we try to define $F_{\alpha}(\eta)$ for $\eta \epsilon^{\alpha} 2$ such that $\bigcup_{\beta<\alpha} F_{\beta+1}(\eta$ 个 $\beta) \triangleleft F_{\alpha}(\eta)$ and (viii) holds. Let $\zeta=\bigcup_{\beta<\alpha} \zeta(\beta)$, and for $\eta \in^{\alpha} 2, F_{\alpha}^{0}(\eta)=$ $\bigcup_{\beta<\alpha} F_{\alpha}(\eta \upharpoonright \beta)$ and for $u \in\left[{ }^{\alpha} 2\right]^{<\kappa}, p_{u}^{0} \stackrel{\text { def }}{=} \bigcup\left\{p_{(\nu \beta: \nu \in u\}}^{0}: \beta<\alpha,|u|=\mid\{\nu \mid\right.$ $\beta: \nu \in u\} \mid\}$. Clearly $p_{u}^{0} \in R_{|u|}$.

Then let $h:^{\alpha} 2 \rightarrow Z$ be one-to-one, such that $\eta<_{\alpha}^{*} \nu \Leftrightarrow h(\eta)<h(\nu)$ and let $p \stackrel{\text { def }}{=} \bigcup\left\{p_{u, u(1)}^{0}: u(1) \in[Z]^{<\kappa}, u \in\left[^{\alpha} 2\right]^{<\kappa},|u(1)|=|u|, h^{\prime \prime}(u)=u(1)\right\}$.

For any generic $G \subseteq P_{\lambda}$ to which p belongs, $\beta<\alpha$ and ordinals $i_{0}<\cdots<i_{n-1}$ from Z such that $\left\langle h^{-1}\left(i_{\ell}\right)\lceil\beta: \ell<n\rangle\right.$ are pairwise distinct we have that

$$
B_{\left\{i_{\ell}: \ell<n\right\}, \beta}=\left\{\xi<\mu: d_{n}\left(\eta_{i_{0}} \upharpoonright \xi, \ldots, \eta_{i_{n-1}} \mid \xi\right)=c\left(u, h^{*}\right)\right\}
$$

belongs to $\mathfrak{D}[G]$, where $u=\left\{h^{-1}\left(i_{\ell}\right) \upharpoonright \beta: \ell<n\right\}$ and $h^{*}: u \rightarrow s(|u|)$ is defined by $h^{*}\left(h^{-1}\left(i_{\ell}\right) \upharpoonright \beta\right)=H_{\left\{i_{\ell}: \ell<n\right\}, s(n)}^{O P}\left(i_{\ell}\right)$. Really every large enough $\beta<\mu$ can serve so we omit it. As $\mathfrak{D}[G]$ is μ-complete uniform ultrafilter on μ, we can find $\xi \in(\zeta, \kappa)$ such that $\xi \in B_{u}$ for every $u \in\left[{ }^{\alpha} 2\right]^{n}, n<\kappa$. We let for $\nu \in^{\alpha} 2, F_{\alpha}(\nu)=\eta_{h(i)}[G] \upharpoonright \xi$, and we let $p_{u}=p_{u}^{0}$ except when $u=\{\nu\}$, then:

$$
p_{u}(i)= \begin{cases}p_{u}^{0}(i) & i \neq \gamma(0) \\ F_{\alpha+1}(\nu) & i=\gamma(0)\end{cases}
$$

For $\alpha+1, \alpha$ is a successor: First for $\eta \epsilon^{\alpha-1} 2$ define $F\left(\eta^{\wedge}\langle\ell\rangle\right)=F_{\alpha}(\eta)^{\wedge}\langle\ell\rangle$. Next we let $\left\{\left(u_{i}, h_{i}\right): i<i^{*}\right\}$, list all pairs $(u, h), u \in\left[{ }^{\alpha} 2\right]^{\leq n}, h: u \rightarrow s(|u|)$, one-to-one onto. Now, we define by induction on $i \leq i^{*}, p_{u}^{i}\left(u \in\left[{ }^{\alpha} 2\right]^{<\kappa}\right)$ such that :
(a) $p_{u}^{i} \in R_{|u|}$,
(b) p_{u}^{i} increases with i,
(c) for $i+1$, (vii) holds for $\left(u_{i}, h_{i}\right)$,
(d) if $\nu_{m} \in^{\alpha} 2$ for $m<n, n<\kappa,\left\langle\nu_{m}\lceil(\alpha-1): m<n\rangle\right.$ are pairwise distinct, then $p_{\left\{\nu_{m} \mid(\alpha-1): m<n\right\}} \leq p_{\left\{\nu_{m}: m<n\right\}}^{0}$,
(e) if $\nu \in^{\alpha} 2, \nu(\alpha-1)=\ell$ then $p_{(\nu)}^{0}(0)=F_{\alpha}\left(\nu\lceil(\alpha-1))^{\wedge}\langle\ell\rangle\right.$.

There is no problem to carry the induction.
Now $F_{\alpha+1}\left\lceil^{\alpha} 2\right.$ is to be defined as in the second case, starting with $\eta \rightarrow p_{i \eta)}^{i \cdot}(\eta)$.

For $\alpha=0,1$: Left to the reader.
So we have finished the induction hence the proof of 4.1(1), (2).
3) Left to the reader (the only influence is the choice of h in stage of the induction).

5. Somewhat complimentary negative partition relation in ZFC

The negative results here suffice to show that the value we have for $2^{N_{0}}$ in $\S 3$ is reasonable. In particular the Galvin conjecture is wrong and that for every $n<\omega$ for some $m<\omega, \aleph_{n} \nrightarrow\left[\aleph_{1}\right]_{\aleph_{0}}^{m}$.

See Erdős, Hajnal, Máté, Rado [1] for
Fact 5.1. If $2^{<\mu}<\lambda \leq 2^{\mu}, \mu \nrightarrow[\mu]_{\sigma}^{n}$ then $\lambda \nrightarrow\left[\left(2^{<\mu}\right)^{+}\right]_{\sigma}^{n+1}$.
This shows that if e.g. in 1.4 we want to increase the exponents, to 3 (and still $\mu=\mu^{<\mu}$) e.g. μ cannot be successor (when $\sigma \leq \aleph_{0}$) (by [7], $3.5(2))$.

Definition 5.2. $\operatorname{Pr}_{n p}(\lambda, \mu, \bar{\sigma})$, where $\bar{\sigma}=\left\langle\sigma_{n}: n<\omega\right\rangle$, means that there are functions $F_{n}:[\lambda]^{n} \rightarrow \sigma_{n}$ such that for every $W \in[\lambda]^{\mu}$ for some $n, F_{n}^{\prime \prime}\left([W]^{n}\right)=\sigma(n)$. The negation of this property is denoted by $N P r_{n p}(\lambda, \mu, \bar{\sigma})$.

If $\sigma_{n}=\sigma$ we write σ instead of $\left\langle\sigma_{n}: n\langle\omega\rangle\right.$.
Remark 5.2.A. 1) Note that $\lambda \rightarrow[\mu]_{\sigma}^{<\omega}$ means: if $F:[\lambda]^{<\omega} \rightarrow \sigma$ then for some $A \in[\lambda]^{\mu}, F^{\prime \prime}\left([A]^{<\omega}\right) \neq \sigma$. So for $\lambda \geq \mu \geq \sigma=\aleph_{0}, \lambda \nrightarrow[\mu]_{\sigma}^{<\omega}$, (use $F: F(\alpha)=|\alpha|)$ and $\operatorname{Pr}_{n p}(\lambda, \mu, \sigma)$ is stronger than $\lambda \nrightarrow[\mu]_{\sigma}^{<\omega}$.
2) We do not write down the monotonicity properties of $P r_{n p}$ - they are obvious.

Claim 5.3. 1) We can (in 5.2) w.l.o.g. use $F_{n, m}:[\lambda]^{n} \rightarrow \sigma_{n}$ for $n, m<\omega$ and obvious monotonicity properties holds, and $\lambda \geq \mu \geq n$.
2) Suppose $N \operatorname{Pr}_{n p}(\lambda, \mu, \kappa)$ and $\kappa \nrightarrow[\kappa]_{\sigma}^{n}$ or even $\kappa \nrightarrow[\kappa]_{\sigma}^{<\omega}$. Then the following case of Chang conjecture holds:
$\left(^{*}\right)$ for every model M with universe λ and countable vocabulary, there is an elementary submodel N of M of cardinality μ,

$$
|N \cap \kappa|<\kappa
$$

3) If $N P r_{n p}\left(\lambda, \aleph_{1}, \aleph_{0}\right)$ then $\left(\lambda, \aleph_{1}\right) \rightarrow\left(\aleph_{1}, \aleph_{0}\right)$.

Proof. Easy.
Theorem 5.4. Suppose $\operatorname{Pr}_{n p}\left(\lambda_{0}, \mu, \aleph_{0}\right), \mu$ regular $>\aleph_{0}$ and $\lambda_{1} \geq \lambda_{0}$, and no $\mu^{\prime} \in\left(\lambda_{0}, \lambda_{1}\right)$ is. μ^{\prime}-Mahlo. Then $\operatorname{Pr}_{n p}\left(\lambda_{1}, \mu, \aleph_{0}\right)$.
Proof. Let $\chi=\beth_{8}\left(\lambda_{1}\right)^{+}$, let $\left\{F_{n, m}^{0}: m<\omega\right\}$ list the definable n place functions in the model $\left(H(\chi), \in,<_{\chi}^{*}\right)$, with $\lambda_{0}, \mu, \lambda_{1}$ as parameters, let $F_{n, m}^{1}\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ (for $\left.\alpha_{0}, \ldots, \alpha_{n-1}<\lambda_{1}\right)$ be $F_{n, m}^{0}\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ if it is an ordinal $<\lambda_{1}$ and zero otherwise. Let $F_{n, m}\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ (for $\left.\alpha_{0}, \ldots, \alpha_{n-1}<\lambda_{1}\right)$ be $F_{n, m}^{0}\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ if it is an ordinal $<\omega$ and zero otherwise. We shall show that $F_{n, m}(n, m<\omega)$ exemplify $\operatorname{Pr}_{n p}\left(\lambda_{1}, \mu, \aleph_{0}\right)$ (see 5.3(1)).

So suppose $W \in\left[\lambda_{1}\right]^{\mu}$ is a counterexample to $\operatorname{Pr}\left(\lambda_{1}, \mu, \aleph_{0}\right)$ i.e. for no $n, m, F_{n, m}^{\prime \prime}\left([W]^{n}\right)=\omega$. Let W^{*} be the closure of W under $F_{n, m}^{1}(n, m<\omega)$. Let N be the Skolem Hull of W in $\left(H(\chi), \in,<_{\chi}^{*}\right)$, so clearly $N \cap \lambda_{1}=W^{*}$. Note $W^{\bullet} \subseteq \lambda_{1},\left|W^{\bullet}\right|=\mu$. Also as $\operatorname{cf}(\mu)>\aleph_{0}$ if $A \subseteq W^{\bullet},|A|=\mu$ then for some $n, m<\omega$ and $u_{i} \in[W]^{n}$ (for $i<\mu$), $F_{n, m}^{1}\left(u_{i}\right) \in A$ and $[i<j<\mu \Rightarrow$ $\left.F_{n, m}^{1}\left(u_{i}\right) \neq F_{n ; m}^{1}\left(u_{j}\right)\right]$. It is easy to check that also $W^{1}=\left\{F_{n, m}^{1}\left(u_{i}\right): i<\mu\right\}$ is a counterexample to $\operatorname{Pr}\left(\lambda_{1}, \mu, \aleph_{0}\right)$. In particular, for $n, m<\omega, W_{n, m}=$ $\left\{F_{n, m}^{1}(u): u \in[W]^{n}\right\}$ is a counterexample if it has power μ. W.l.o.g. W is a counterexample with minimal $\delta \stackrel{\text { def }}{=} \sup (W)=\cup\{\alpha+1: \alpha \in W\}$. The above discussion shows that $\left|W^{\bullet} \cap \alpha\right|<\mu$ for $\alpha<\delta$. Obviously of $\delta=\mu$. Let $\left\langle\alpha_{i}: i<\mu\right\rangle$ be a strictly increasing sequence of members of W^{*}, converging to δ, such that for limit i we have $\alpha_{i}=\min \left(W^{*} \backslash \bigcup_{j<i}\left(\alpha_{j}+1\right)\right.$. Let $N=\bigcup_{i<\mu} N_{i}, N_{i} \prec N,\left|N_{i}\right|<\mu, N_{i}$ increasing continuous and w.l.o.g. $N_{i} \cap \delta=N \cap \alpha_{i}$.
α Fact: δ is $>\lambda_{0}$.
Proof. Otherwise we then get an easy contradiction to $\left.\operatorname{Pr}\left(\lambda_{0}, \mu, \aleph_{0}\right)\right)$ as choosing the $F_{n, m}^{0}$ we allowed λ_{0} as a parameter.
β Fact: If F is a unary function definable in $N, F(\alpha)$ is a club of α for every limit ordinal $\alpha(<\mu)$ then for some club C of μ we have

$$
(\forall j \in C \backslash\{\min C\})\left(\exists i_{1}<j\right)\left(\forall i \in\left(i_{1}, j\right)\right)\left[i \in C \Rightarrow \alpha_{i} \in F\left(\alpha_{j}\right)\right] .
$$

Proof. For some club C_{0} of μ we have $j \in C_{0} \Rightarrow\left(N_{j},\left\{\alpha_{i}: i<j\right\}, W\right) \prec$ ($N,\left\{\alpha_{i}: i<\mu\right\}, W$).

We let $C=C_{0}^{\prime}=\operatorname{acc}(C)$ (= set of accumulation points of C_{0}).
We check C is as required; suppose j is a counterexample. So $j=$ $\sup (j \cap C)$ (otherwise choose $i_{1}=\max (j \cap C)$). So we can define, by induction on n, i_{n}, such that:
(a) $i_{n}<i_{n+1}<j$
(b) $\alpha_{i_{n}} \notin F\left(\alpha_{j}\right)$
(c) $\left(\alpha_{i_{n}}, \alpha_{i_{n+1}}\right) \cap F\left(\alpha_{j}\right) \neq \emptyset$.

Why l.c. (C) ? $\models " F\left(\alpha_{j}\right)$ is unbounded below α_{j} " hence $N \models " F\left(\alpha_{j}\right)$ is unbounded below $\alpha_{j}^{\prime \prime}$, but in $N,\left\{\alpha_{i}: i \in C_{0}, i<j\right\}$ is unbounded below α_{j}.

Clearly for some $n, m, \alpha_{j} \in W_{n, m}$ (see above). Now wie can repeat the proof of $[7,3.3(2)]$ (see mainly the end) using only members of $W_{n, m}$.
Note: here we use the number of colors being \aleph_{0}.
β^{+}Fact: W.l.o.g. the C in Fact β is μ.

Proof: Renaming.

γ Fact: δ is a limit cardinal.
Proof: Suppose not. Now δ cannot be a successor cardinal (as cf $\delta=\mu \leq$ $\lambda_{0}<\delta$) hence for every large enough $i,\left|\alpha_{i}\right|=|\delta|$, so $|\delta| \in W^{*} \subseteq N$ and $|\delta|^{+} \in W^{*}$.

So $W^{*} \cap|\delta|$ has cardinality $<\mu$ hence order-type some $\gamma^{*}<\mu$. Choose $i^{*}<\mu$ limit such that $\left[j<i^{*} \Rightarrow j+\gamma^{*}<i^{*}\right]$. There is a definable function F of $\left(H(\chi), \epsilon,<_{\chi}^{*}\right)$ such that for every limit ordinal $\alpha, F(\alpha)$ is a club of α, $0 \in F(\alpha)$, if $|\alpha|<\alpha, F(\alpha) \cap|\alpha|=\emptyset, o \operatorname{tp}(F(\alpha))=\operatorname{cf} \alpha$.

So in N there is a closed unbounded subset $C_{\alpha_{j}}=F\left(\alpha_{j}\right)$ of α_{j} of order type $\leq \operatorname{cf} \alpha_{j} \leq|\delta|$, hence $C_{\alpha_{j}} \cap N$ has order type $\leq \gamma^{*}$, hence for i^{*} chosen above unboundedly many $i<i^{*}, \alpha_{i} \notin C_{\alpha_{i}}$. We can finish by fact β^{+}.
δ Fact: For each $i<\mu, \alpha_{i}$ is a cardinal.
Proof: If $\left|\alpha_{i}\right|<i$ then $\left|\alpha_{i}\right| \in N_{i}$, but then $\left|\alpha_{i}\right|^{+} \in N_{i}$ contradicting Fact; γ, by which $\left|\alpha_{i}\right|^{+}<\delta$, as we have assumed $N_{i} \cap \delta=N \cap \alpha_{i}$.
ε Fact: For a club of $i<\mu, \alpha_{i}$ is a regular cardinal.
Proof: if $S=\left\{i: \alpha_{i}\right.$ singular $\}$ is stationary, then the function $\alpha_{i} \rightarrow \operatorname{cf}\left(\alpha_{i}\right)$ is regressive on S. By Fodor lemma, for some $\alpha^{*}<\delta,\left\{i<\mu: \operatorname{cf} \alpha_{i}<\alpha^{*}\right\}$ is stationary. As $\left|N \cap \alpha^{*}\right|<\mu$ for some $\beta^{*},\left\{i<\mu: \operatorname{cf} \alpha_{i}=\beta^{*}\right\}$ is stationary. Let $F_{1, m}(\alpha)$ be a club of α of order type $\operatorname{cf}(\alpha)$, and by fact β we get a contradiction as in fact γ.
ζ Fact: For a club of $i<\mu, \alpha_{i}$ is Mahlo.
Proof: Use $F_{1, m}(\alpha)=$ a club of α which, if α is a successor cardinal or inaccessible not Mahlo, then it contains no inaccessible, and continue as in fact γ.
ξ Fact: For a club of $i<\mu, \alpha_{i}$ is α_{i}-Mahlo.
Proof: Let $F_{1, m(0)}(\alpha)=\sup \{\zeta: \alpha$ is ζ-Mahlo $\}$. If the set $\left\{i<\mu: \alpha_{i}\right.$ is not α_{i}-Mahlo $\}$ is stationary then as before for some $\gamma \in N,\left\{i: F_{1, m(0)}\left(\alpha_{i}\right)=\gamma\right\}$ is stationary and let $F_{1, m(1)}(\alpha)=$ a club of α such that if α is not $(\gamma+1)$ Mahlo then the club has no γ-Mahlo member. Finish as in the proof of fact δ.

Remark 5.4.A. We can continue and say more.
Lemma 5.5. 1) Suppose $\lambda>\mu>\theta$ are regular cardinals, $n \geq 2$ and
(i) for every regular cardinal κ, if $\lambda>\kappa \geq \theta$ then $\kappa \nrightarrow[\theta]_{\sigma(1)}^{<\omega}$.
(ii) for some $\alpha(*)<\mu$ for every regular $\kappa \in(\alpha(*), \lambda), \kappa \nrightarrow[\alpha(*)]_{\sigma(2)}^{n}$. Then
(a) $\lambda \nRightarrow[\mu]_{\sigma}^{n+1}$ where $\sigma=\min \{\sigma(1), \sigma(2)\}$,
(b) there are functions $d_{1}:[\lambda]^{3} \rightarrow \sigma(1), d_{2}:[\lambda]^{n+1} \rightarrow \sigma(2)$, such that for every $W \in[\lambda]^{\mu}, d_{1}^{\prime \prime}\left([W]^{3}\right)=\sigma(1)$ or $d_{2}^{\prime \prime}\left([W]^{n+1}\right)=\sigma(2)$.
2) Suppose $\lambda>\mu>\theta$ are regular cardinals, and
(i) for every regular $\kappa \in[\theta, \lambda), \kappa \nrightarrow[\theta]_{\sigma(1)}^{<\omega}$,
(ii) $\sup \{\kappa<\lambda: \kappa$ regular $\} \nrightarrow[\mu]_{\sigma(2)}^{n}$.

Then
(a) $\lambda \nrightarrow[\mu]_{\sigma}^{2 n}$ where $\sigma=\min \{\sigma(1), \sigma(2)\}$
(b) there are functions $d_{1}:[\lambda]^{3} \rightarrow \sigma(1), d_{2}:[\lambda]^{2 n} \rightarrow \sigma(2)$ such that for every $W \in[\lambda]^{\mu}, d_{1}^{\prime \prime}\left([W]^{3}\right)=\sigma(1)$ or $d_{2}^{\prime \prime}\left([W]^{2 n}=\sigma(2)\right.$.

Remark. The proof is similar to that of [7] 3.3, 3.2.

Proof. 1) We choose for each $i, 0<i<\lambda, C_{i}$ such that: if i is a successor ordinal, $C_{i}=\{i-1,0\}$; if i is a limit ordinal, C_{i} is a club of i of order type $\operatorname{cf} i, 0 \in C_{i},\left[\mathrm{cf} i<i \Rightarrow \mathrm{cf} i<\min \left(C_{i}-\{0\}\right)\right]$ and $C_{i} \backslash \operatorname{acc}\left(C_{i}\right)$ contains only successor ordinals.

Now for $\alpha<\beta, \alpha>0$ we define by induction on $\ell, \gamma_{\ell}^{+}(\beta, \alpha), \gamma_{\ell}^{-}(\beta, \alpha)$, and then $\kappa(\beta, \alpha), \varepsilon(\beta, \alpha)$.
(A) $\gamma_{0}^{+}(\beta, \alpha)=\beta, \gamma_{0}^{-}(\beta, \alpha)=0$.
(B) if $\gamma_{\ell}^{+}(\beta, \alpha)$ is defined and $>\alpha$ and α is not an accumulation point of $C_{\gamma_{\ell}^{+}(\beta, \alpha)}$ then we let $\gamma_{\ell+1}^{-}(\beta, \alpha)$ be the maximal member of $C_{\gamma_{\ell}^{+}(\beta, \alpha)}$ which is $<\alpha$ and $\gamma_{\ell+1}^{+}(\beta, \alpha)$ is the minimal member of $C_{\gamma_{\ell}^{+}(\beta, \alpha)}$ which is $\geq \alpha$ (by the choice of $C_{\gamma_{\ell}^{+}(\beta, \alpha)}$ and the demands on $\gamma_{\ell}^{+}(\beta, \alpha)$ they are well defined).

So
(B1) (a) $\gamma_{\ell}^{-}(\beta, \alpha)<\alpha \leq \gamma_{\ell}^{+}(\beta, \alpha)$, and if the equality holds then $\gamma_{\ell+1}^{+}(\beta, \alpha)$ is not defined.
(b) $\gamma_{\ell+1}^{+}(\beta, \alpha)<\gamma_{\ell}^{+}(\beta, \alpha)$ when both are defined.
(C) Let $k=k(\beta, \alpha)$ be the maximal number k such that $\gamma_{k}^{+}(\beta, \alpha)$ is defined (it is well defined as $\left\langle\gamma_{\ell}^{+}(\beta, \alpha): \ell<\omega\right\rangle$ is strictly decreasing). So
(C1) $\gamma_{k(\beta, \alpha)}^{+}(\beta, \alpha)=\alpha$ or $\gamma_{k(\beta, \alpha)}^{+}>\alpha, \gamma_{k(\beta, \alpha)}^{+}$is a limit ordinal and α is an accumulation point of $C_{\gamma_{k(\beta, \alpha)}^{+}}(\beta, \alpha)$.
(D) For $m \leq k(\beta, \alpha)$ let us define

$$
\varepsilon_{m}(\beta, \alpha)=\max \left\{\gamma_{\ell}^{-}(\beta, \alpha)+1: \ell \leq m\right\}
$$

Note
(D1) (a) $\varepsilon_{m}(\beta, \alpha) \leq \alpha$ (if defined),
(b) if α is limit then $\varepsilon_{m}(\beta, \alpha)<\alpha$ (if defined),
(c) if $\varepsilon_{m}(\beta, \alpha) \leq \xi \leq \alpha$ then for every $\ell \leq m$ we have

$$
\gamma_{\ell}^{+}(\beta, \alpha)=\gamma_{\ell}^{+}(\beta, \xi), \quad \gamma_{\ell}^{-}(\beta, \alpha)=\gamma_{\ell}^{-}(\beta, \xi), \quad \varepsilon_{\ell}(\beta, \alpha)=\varepsilon_{\ell}(\beta, \xi)
$$

(explanation for (c): if $\varepsilon_{m}(\beta, \alpha)<\alpha$ this is easy (check the definition) and if $\varepsilon_{m}(\beta, \alpha)=\alpha$, necessarily $\xi=\alpha$ and it is trivial).
(d) if $\ell \leq m$ then $\varepsilon_{\ell}(\beta, \alpha) \leq \varepsilon_{m}(\beta, \alpha)$

For a regular $\kappa \in(\alpha(*), \lambda)$ let $g_{\kappa}^{1}:[\kappa]^{<\omega} \rightarrow \sigma(2)$ exemplify $\kappa \nrightarrow[\theta]_{\sigma(1)}^{<\omega}$ and for every regular cardinal $\kappa \in[\theta ; \lambda)$ let $g_{\kappa}^{2}:[\kappa]^{n} \rightarrow \sigma(2)$ exemplify $\kappa \nrightarrow[\alpha(*)]_{\sigma(2)}^{n}$. Let us define the colourings:

Let $\alpha_{0}>\alpha_{1}>\ldots>\alpha_{n}$. Remember $n \geq 2$.
Let $n=n\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ be the maximal natural number such that:
(i) $\varepsilon_{n}\left(\alpha_{0}, \alpha_{1}\right)<\alpha_{0}$ is well defined,
(ii) for $\ell \leq n, \gamma_{\ell}^{-}\left(\alpha_{0}, \alpha_{1}\right)=\gamma_{\ell}^{-}\left(\alpha_{0}, \alpha_{2}\right)$.

We define $d_{2}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ as $g_{\kappa}^{2}\left(\beta_{1}, \ldots, \beta_{n}\right)$ where

$$
\begin{aligned}
\kappa & =\operatorname{cf}\left(\gamma_{n\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)}^{+}\left(\alpha_{0}, \alpha_{1}\right)\right) \\
\beta_{\ell} & =\operatorname{otp}\left[\alpha_{\ell} \cap C_{\gamma_{n\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)}^{+}\left(\alpha_{0}, \alpha_{1}\right)}\right]
\end{aligned}
$$

Next we define $d_{1}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$.
Let $i(*)=\sup \left[C_{\gamma_{n}^{+}\left(\alpha_{0}, \alpha_{2}\right)} \cap C_{\gamma_{n}^{+}\left(\alpha_{1}, \alpha_{2}\right)}\right]$ where $n=n\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right), E$ be the equivalence relation on $C_{\gamma_{n}^{+}\left(\alpha_{0}, \alpha_{1}\right)} \backslash i(*)$ defined by

$$
\gamma_{1} E \gamma_{2} \Leftrightarrow \forall \gamma \in C_{\gamma_{n}^{+}\left(\alpha_{0}, \alpha_{2}\right)}\left[\gamma_{1}<\gamma \leftrightarrow \gamma_{2}<\gamma\right]
$$

If the set $w=\left\{\gamma \in C_{\gamma_{n}^{+}\left(\alpha_{0}, \alpha_{1}\right)}: \gamma>i(*), \gamma=\min \gamma / E\right\}$ is finite, we let $d_{1}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ be $g_{\kappa}^{1}\left(\left\{\beta_{\gamma}: \gamma \in w\right\}\right)$ where $\kappa=\left|C_{\gamma_{n}^{+}\left(\alpha_{0}, \alpha_{1}\right)}\right|, \beta_{\gamma}=$ $\operatorname{otp}\left(\gamma \cap C_{\gamma_{n}^{+}\left(\alpha_{0}, \alpha_{1}\right)}\right)$.

We have defined d_{1}, d_{2} required in condition (b) (though have not yet proved that they work) We still have to define d (exemplifying $\lambda \nrightarrow[\mu]_{\ell}^{n+1}$). Let $n \geq 3$, for $\alpha_{0}>\alpha_{1}>\ldots>\alpha_{n}$, we let $d\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ be $d_{1}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ if w defined during the definition has odd number of members and $d_{2}\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ otherwise.

Now suppose Y is a subset of λ of order type μ, and let $\delta=\sup Y$. Let M be a model with universe λ and with relations Y and $\left\{(i, j): i \in C_{j}\right\}$. Let $\left\langle N_{i}: i<\mu\right\rangle$ be an increasing continuous sequence of telementary submodels of M of cardinality $<\mu$ such that $\alpha(i)=\alpha_{i}=\min \left(Y \backslash N_{i}\right)$ belongs to N_{i+1}, $\sup \left(N \cap \alpha_{i}\right)=\sup (N \cap \delta)$. Let $N=\bigcup_{i<\mu,} N_{i}$. Let $\delta(i)=\delta_{i} \stackrel{\text { def }}{=} \sup \left(N_{i} \cap \alpha_{i}\right)$, so $0<\delta_{i} \leq \alpha_{i}$, and let $n=n_{i}$ be the first natural number such that δ_{i} an accumulation point of $C^{i} \stackrel{\text { def }}{=} C_{\gamma_{n}^{+}\left(\alpha_{i}, \delta(i)\right)}$, let $\varepsilon_{i}=\varepsilon_{n(i)}\left(\alpha_{i}, \delta_{i}\right)$. Note that $\gamma_{n}^{+}\left(\alpha_{i}, \delta_{i}\right)=\gamma_{n}^{+}\left(\alpha_{i}, \varepsilon_{i}\right)$ hence it belongs to N.

Case I: For some (limit) $i<\mu, \operatorname{cf}(i) \geq \theta$ and $(\forall \gamma<i)[\gamma+\alpha(*)<i]$ such that for arbitrarily large $j<i, C^{i} \cap N_{j}$ is bounded in $N_{j} \cap \delta=N_{j} \cap \delta_{j}$.
This is just like the last part in the proof of [7],3.3 using g_{κ}^{1} and d_{1} for $\kappa=\operatorname{cf}\left(\gamma_{n_{i}}^{+}\left(\alpha_{i}, \delta_{i}\right)\right.$.

Case II: Not case I.

Let $S_{0}=\{i<\mu:(\forall \alpha<i)[\gamma+\alpha(*)<i], \operatorname{cf}(i)=\theta\}$. So for every $i \in S_{0}$ for some $j(i)<i,(\forall j)\left[j \in(j(i), i) \Rightarrow C^{i} \cap N_{j}\right.$ is unbounded in $\left.\delta_{j}\right]$. But as $C^{i} \cap \delta_{i}$ is a club of δ_{i}, clearly $(\forall j)\left[j \in(j(i), i) \Rightarrow \delta_{j} \in C^{i}\right]$.

We can also demand $j(i)>\varepsilon_{n(\alpha(i), \delta(i))}(\alpha(i), \delta(i))$.
As S_{0} is stationary, (by not case I) for some stationary $S_{1} \subseteq S_{0}$ and $n(*), j(*)$ we have $\left(\forall i \in S_{1}\right)\left[j(i)=j(*) \wedge n\left(\alpha(i), \delta_{i}\right)=n(*)\right]$.

Choose $i(*) \in S_{1}, i(*)=\sup \left(i(*) \cap S_{1}\right)$, such that the order type of $S_{1} \cap i(*)$ is $i(*)>\alpha(*)$. Now if $i_{2}<i_{1} \in S_{1} \cap i(*)$ then $n\left(\alpha_{i(\cdot)}, \alpha_{i_{1}}, \alpha_{i_{2}}\right)=$ $n(*)$. Now $L_{i(\cdot)} \stackrel{\text { def }}{=}\left\{\operatorname{otp}\left(\alpha_{i} \cap C^{i(\cdot)}\right): i \in S_{1} \cap i(*)\right\}$ are pairwise distinct and are ordinals $<\kappa \stackrel{\text { def }}{=}\left|C^{i(\cdot)}\right|$, and the set has order type $\alpha(*)$. Now apply the definitions of d_{2} and g_{κ}^{2} on $L_{i(\cdot)}$.
2) The proof is like the proof of part (1) but for $\alpha_{0}>\alpha_{1}>\cdots$ we let: $d_{2}\left(\alpha_{0}, \ldots, \alpha_{2 n-1}\right)=g_{\kappa}^{2}\left(\beta_{0}, \ldots, \beta_{n}\right)$ where

$$
\beta_{\ell} \stackrel{\text { def }}{=} \operatorname{otp}\left(C_{\gamma_{n}^{+}\left(\beta_{2 \ell}, \beta_{2 \ell+1}\right)}\left(\beta_{2 \ell}, \beta_{2 \ell+1}\right) \cap \beta_{2 \ell+1}\right)
$$

and in case II note that the analysis gives μ possible β_{ℓ} 's so that we can apply the definition of g_{κ}^{2}.

Definition 5.7. Let $\lambda \not \not_{\operatorname{stg}}[\mu]_{\theta}^{n}$ mean: if $d:[\lambda]^{n} \rightarrow \theta$, and $\left\langle\alpha_{i}: i<\mu\right\rangle$ is strictly increasingly continuous and for $i<j<\mu, \gamma_{i, j} \in\left[\alpha_{i}, \alpha_{i+1}\right]$ then

$$
\theta=\left\{d(w): \text { for some } j<\mu, w \in\left[\left\{\gamma_{i, j}: i<j\right\}\right]^{n}\right\}
$$

Lemma 5.8. 1) $\aleph_{n} \nrightarrow\left[\aleph_{1}\right]_{\aleph_{0}}^{n+1}$ for $n \geq 1$.
2) $\aleph_{n} \not 力_{\mathrm{stg}}\left[\aleph_{1}\right]_{\aleph_{0}}^{n+1}$ for $n \geq 1$.

Proof. 1) For $n=2$ this is a theorem of Torodčevič, and if it holds for $n \geq 2$ by $5.5(1)$ we get that it holds for $\mathrm{n}+1$ (with $n, \lambda, \mu, \theta, \alpha(*), \sigma(1)$, $\sigma(2)$ there corresponding to $n+1, \aleph_{n+1}, \aleph_{1}, \aleph_{0}, \aleph_{0}, \aleph_{0}, \aleph_{0}$ here $)$.
2) Similar.

References

[1] P. Erdős, A. Hajnal, A. Máté, R. Rado, Combinatorial set theory: partition relations for cardinals, Disq. Math. Hung. 13, Akadémiai Kiadó, Budapest, 1984.
[2] M. Gitik, Measurability preserved by κ-complete forcing notion.
[3] M. Gitik, S. Shelah, On certain indestructibility of strong cardinals and a question of Hajnal, Archive für Math. Logic, 28(1989), 35-42.
[4] Halpern, Lauchli, A partition theorem, Trans. A.M.S., 124(1960), 360-367.
[5] S. Shelah, A Weak Generalization of MA to Higher Cardinals, Israel J. of Math, [BSF], 30(1978), 297-306.
[6] S. Shelah, Consisting of Partition Theorem for Graphs and Models, in: Proc. Set Theory and Its Applications, Ontario, Aug 1987, (eds.: J. Steprans and S. Watson), Springer Verlag, Lecture Notes., vol 1401, 167-199.
[7] S. Shelah, Was Sierpinsky right? I, Israel J. Math. 62(1988), 355-380.
[8] S. Shelah and L. Stanley, Generalized Martin Axiom and the Souslin Hypothesis for Higher Cardinals, Israel J. of Math. [BSF], 43(1982), 225-236.
[9] S. Shelah and L. Stanley, Corrigendum to "Generalized Martin's Axiom and Souslin's Hypothesis for Higher Cardinal", Israel J. of Math. 53(1986), 309-314.
[10] S. Shelah, Was Sierpinsky right? III, in preparation.
[11] S. Todorčevič, Partitions of pairs of uncountable ordinals, Acta Math., 159(1987), 261-294.

Saharon Shelah

Institute of Mathematics
The Hebrew University
Jerusalem, Israel

[^0]: * Publication no 288, done summer 86. The author would like to thank the United States - Israel Binational Science Foundation for partially supporting this research.

