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ABSTRACT

. We continue here [7] (see the introduction there) but we do not relay
on it. The motivation was a conjecture of Galvin stating that 2 > w, +
wy — [wl];:(n) is consistent for a suitable h : w — w. In section 5 we disprove

this and give similar negative results. In section 3 we prove the consistency of
the conjecture replacing wy by 2“, which is quite large, starting with an Erdés
cardinal. In section 1 we present iteration lemmas which are needed when we
replace w by a larger A and in section 4 we generalize a theorem of Halpern and
} Lauchli replacing w by a larger A needed for genera.hzmg §3. The work will be
[ . contmued in [10]

" 0. Preliminaries

| | » Let < bea well orderlng of H(X) where H(x) ={z: the transitive closure,
‘ of x has cardinality < X}, agreeing with the usual well- ordermg of the

o 7 " Publication no 288, done summer 86. The author would like to thank the Umted
) States — Israel Bmatlonal Scierice Foundatlon for partially supportmg this research
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638 S. SHELAH
ordinals. P (and @, R) will denote forcing notlons ie. partlal orders with
a minimal element § = 0p.

‘A forcing notion P is A-closed if every increasing sequence of members
of P, of length less than A, has an upper bound.

If P € H(x), then for a sequence p = (p; : 7 < ) of members of P let

=0 o sup{j : {p; : j < j} has an upper bound in P} and define the
canomcal upper bound,of P, &p as follows

(a) the least upper bound of {p, ti< a} in P if there exists such an
element,

(b) the < -first. upper bound of {pi : i < v) if (a')- can’t be applied but there

is such
(c) po if (a) and (b) fail, v > 0,
(d) @p ify=0.

Let po&p; be the canonical upper bound of (p, : £ < 2).
Take [a]* = {6 C a : Jb] = £} and ()<~ = U, [al".

For sets of ordinals, A and B define HJ% as the maximal order
preserving bijection between - initial segments of A and B, i.e, it is the
functien with domain {a € A : otp(an A) < otp(B)}, and Hg’;( )= B if
and only if € A, f € Band otp(a N A) =otp(8N B).

Definition 0.1 X —»* ,_(a) h holds prov.lded whenever F is a function from
[A]<“ to u, C-C A isa club then there is A C C of order type a such that
[w, w2 € [A]<°, Jwy| = w2| = F(wy) = F(ws)].

Definition 0.2 A — [a]y ; if for every function F from [A]" to & there is
A C ) of order type a such that {F(w) : w € [A]"} has power < 4.

Definition 0.3 A forcing notion P satisfies the Knaster condition (has
property K) if for any {p; : # < w,} C P there is an uncountable 4 C w,
such that the conditions p; and p; are compatible whenever 4,5 € A.

1. Introduction

Concerning 1.1-1.3 see Shela}\l [5], Shelah and Stanley [8,9].
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Definition 1.1.' A forcing notion @ satisfies *;, where ¢ is a limit ordinal

< u, if player I has a winning strategy in the following game:
Playing: the game lasts € moves. '
in the o'" the move: ‘
Player I — if o # 0 he chooses (g¢ : ¢ < p*) such that qé" € @ and
(VB < a)(V¢ < pt )p? < g¢ and he chooses a regressive
‘function f, : pt — pt (le. fo(i) <1+414);if a =0 let
q? = @Q, fa = 0.
Player II — chooses (p? : ¢ < p*) such that g¢ < pg € Q. 5

‘The outcome: Player I wins provided whenever p.<'¢ < € < pt, cf(¢) =

cf(€) = p and Age. f3(C) = fa(€) the set {pg : @ <€}V {pf : @ < e} has
an upper bound in Q. :

Definition 1.2. We call (Pl, Q; 1 < i(x), j < i(x)) a xj-iteration
provided that: ’ S '

(a) it is a (< p)-sypport iteration (u is a regular cardinal)

(b) if 4; < iy < i(x), cfiy # p then P, /P;; satisfies *5,. .

The Iteration Lemma 1.3. IfQ = (P;Q; : i <i(x), j <i(x)isa
(< p)-support iteration, (a) or (b) or (c) below hold, then it is a *,-iteration.
(a) i(x) is limit and Q[j(x) is a %% -iteration for every j(*) < i(x).

(b) ( )=j§(x)+1, Qlj(x) isa *¢ -iteration and Q. satisfies *¢, in V55t
(c) ( ) = j(*) + 1, cfj(x) = pt, QIj(*) is a -iteration and for every
successor i < j(x), Py.y/P; satisfies *,. :

Proof. Left to the reader (after reading (5] or [9]). O

Theorem 1.4. Suppose p = p<* < x < ), and ) is a strongly inaccessible

k2-Mahlo cardinal, where k2 is a suitable natural number (see 3.6(2) of [6]),

and assume V = L for the simplicity. Then for some forcing notion P:

(a) P is p-complete, satisfies the p*-c.c., has cardinality ), and VP
. 772;1 _ )\77

(b) IFp A — [u*]3 and even X = [u*]2, for & < p.

(c) if p =N then Ik “MA,”. ' .

(d) if p > Rg then: I+p “for every forcing notion @ of céfdinality <x, p-

complete satisfying «;,, and for any dense sets D; C Q for 1 <19 < A, there

1sad1rectedGCQ,/\GﬁD # 0. ; »
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As the proof is very similar to (7], (particularly after reading section 3)
we do not give details. We shall define below just the systems needed to
complete the proof. More general ones are implicit in [6].

Convention 1.5. We fix a one to one function Cd = Cd,\ u from #> )
onto /\

Remark. Below we could have otp(B;) = u* +'1 with little change.

Definition 1.6. Let 4 < x <k <A A=A, x = x<¥, p=p<+.

1) We call z a (), &, X, u)-precandidate if z = (% : u € I,) where for some
set B, (unique, in fact):
(i) I, = {s: s C By, |s} <2},
(ii) B, is a subset of of order type p*,

- (iii) a® is a subset of A of cardiﬁality < x closed under Cd, |

“(iv) @* N B, = u, . |

(v) ai Naj € afn,,

(vi) fu, v eI, ul=v| then a® and a? have the same order type (and
-0 HZP . maps af onto a )

(vii) if ug,ve € I, for £ =1,2, lug] = [v1], fug] = [val, [ug Uns| = |v1Uv2|
Hﬁpuaz oz Uz Maps ug onto v for £ = 1,2 then I-IaO,P oz and
ug vy v v1
Hf,P oz are compatible. -
z A
2) We say t is a ()\ K x,u)-candidate if it has the form (M7 :.u € I;)
where S o
(@) (i) (IMz]:u€ L) is a ()& X, u)-precandidate (with B, = UL )
Y (ii) L, is a vocabulary with. < x-many < p-ary places predlcates and
- function symbols, ,
(ii_i') each M2 is an' L, model

B¢ ) for u, v € I, |u = |v| Mz (|M’|ﬂ Ile) is a model and in fact
an- elementary submodel of M3, M? and M :

uly *

(B) () for u, v€ I, Ju| = |v|, the function. HIMII M1 IS Al 1somorphlsm
from Mz onto M. » :

" 3) The set Ais a (A K X, 1) system 1f
(A) eachz € 91 is a (A K, x,‘u)-candldate,'
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(B) guessing: if L is as in (2)(c)(ii), M" is an L-model with universe A
then for some r € A, s € B, = M7 < M".
Definition 1.7. 1) We call the system 2 disjoint when:

() if z # y are from 2 and otp(|M¢|) < otp(|M?|) then for some B; C B,
“ B, C B, we have )

| a)-|Bi| + |Ba| < p*
. b) the sets :
| UM - s € (B \ B.]**}
and
U215 € (B, \ B,]**)
have intersection C M} .
2) We call the system 2 almost disjoint when:

(xx) if z,y € A, otp(|MF]) < otp(|M])|) then for some B, C B,
B, C B, we have:
(a) |Bi| +|Bz| < p*,
(b) if s € (B, \ ByJ<2, ¢ € [B, \ B,]<* then |MZ| N |MF| C |M}].

2. Infroducing the partition on trees

Definition 2.1. Let
1) Per(*>2) = {T : where

(a) TC*2 ()eT,

(b) (VneT)(Va<lgn)nlaeT,

() ifneTN*2 a<f < uthen for some
veTN?2 pav, - v |

(d) if p € T then for some v, v,

- v{(0)eT, v (1) eT,

(e) ifn e ’2, 6 <pis a limit ordinal and
{Ma:a<é}CTthenneT.
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22) 'Pery(#>2) = {T €Per(*?2):ifa< pand v, v, € *2NT, then
E 1 '
_[/\ n () €T = N\ w0 1]},

3) Per, (#>2) = {T € Per(*>2) : f p,, vy # vy from *2N T,

~ then V \/ v (€) ¢ T}.

£=0 m=1

4) For T € Per(*>2) let limT = {n € #2: (Va < p)nla € T}.
5) For T € Perj(*>2) let clpr ©+ T — #>2 be the unique one-to-one

function from-sp(T) & {n € T:n°(0) € T,n (1):€ T} onto #>2,
which preserves < and lexicographic order.

6) Let SP(T) =/{lg(n) : n € sp(T")}, sp(n,v) = min{i : n(i) # v(i) or'i =
lg(n) or i = 1§(v)}. S

Definition 2.2. 1) For cardinals u,0 and n <w and T € Per(#>2) let

Col3(T) = {d : d is a function from U, [* 2ﬂT]" to o}. We will write
d(Vo,...,Vn-1) for d({vo,...,vn-1}).

-2) Let <, denote a well ordermg of *2 (in this section it is arbitrary). We
call d € Col"(T) end- homogeneous for {( <..: a < p) provided that: if

a < f are from SP(T), {vy,...,vn-1} CP2NT, (vela : £ < n) are
pairwise distinct and A [y <} v <= vila <, vy, [a] then
. £m

d(UO) oo 7‘Un-.1) = d(UO Ta, o 7 Vn—lll [a)

53): Let Eh Col}(T) = {d € Col}(T) : d is end-homogeneous } (for some
(<oia<m). : : -
'4)For vg, ..., Vn= 15705+ Tl from #>2, we say v ={(vy,...,Vn-1) and

i = (77,,, ,TMa=1) are strongly similar for { <. : o < p) if:

() lg(Ve) = lg(me)

“(ii) sp(ve, Um) = sP(Me, Mm )

(iii) if €1,45, 05,44 <n and a = sp(vy, , vy, ) then

Vig [a <¢‘1 Ve, ra = Ny [a <:x Ne, fa and I(ea (a) = Ty (a)

5)iFor v¢,...,ve_,vd,...,18_, from #>2 wesay v® = (1g,...,v2_,) and
0% = (u8,...,v5_ ) are similar if the truth-values of (i)-(iii) below doe

not depend on t € {a, b} for any £(1),£(2),£(3),£(4) < n:
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(i) lg(VZ(l) ) < lg(V2<2) )
(il) sp(Vays Veray) < SP(Vyay» Viay)
(iil) for o = Sp(yz(l)’ V&z),’)’ ’

and

6) We say d € Col;(T) is almost homogeneous [homogeneous] on T} C T
(for ( <: a < w)) if for every a € SP(T}), 7, 7 € [*2N T1]" which are
strongly similar [similar] we have d(v) = d(). _ ‘

7) We say ( <,: a < p) is nice to T € Per(*>2), provided that: if

"a < f are from SP(T), (o, 8) N'SP(T) = 0, n, # n, € P2N T,
[mla < mlaor mifa=mnla, ni(a) < ny(e)] then ny <3 7. :

Deﬁniﬁon 2.3. 1) .Preht (1, m, o) means: for everyi.'d;“e Col:;(”> 2) for some
T € Per(*>2) and ( < @ < p), d is end homogeneous on T.

2) Prop;(p,n,0) means for every d € Col?(#>2) for some T € Per(*>2)
and ( <) : a < p), d is almost homogeneous on 7. '

3) Prp, (u,n o) means for every d € Col” (#>2) for some T € Per(#>2), d
is homogeneous on T'. :

4) For z € {eht, aht, ht}, Pri(u,n, a) is defined like Prz(,u, @) but we
demand T € Pery (“> 2).

'5) If above we replace eht, aht, ht by ehtn ahtn, hin, respectlvely, this
means ( <,:a < pu) is fixed apriori.

6) Replacing n by “< k", 0 by & = (0 : f < n) .for K -g No, means that

. (dn : n < k) are given, d, € Coly(#>2) and the conclusion holds for

~all d,, (n < k) simultaneously. Replacing “0” by “< ¢” means that the
assertion holds for every o, < 0. : S :

i . Definition 2.4. 1) Prop: (u,n,a(l),o(?)) means: for every d';e Coly
| (#>2) for some T' € Per(#>2) and ( <.,: a < p) for every 7 € |J{[*2NnT]" :
. aesem). S |

|

| - {d(z?) v e ("2 TI™: a € SP(T)),

7 and U are strongly similar for ( <;:a < u)}
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has cardinality < o(2).

2) Prp(p,m,0(1),0(2)) is defined similarly with “similar” instead of
“strongly similar”. » .

3) Pr. (i< %,(0} : €< x) (02 : €< 5)), Prl(,m,0(1), 0(2), Pr (s, <

Ro,d!,52) are defined in the same way.
There are many obvious implications.

Fact 2.5. 1) For every T € Per(* >2) thereis a Ty C T, T) € Per,(*>2).
2) In defining Prf(u,n, o) we can demand T C Ty for any T, € Per(#>2),
similarly for Pr!(u, < ,0).
3) The obvious monotonicity holds.

Claim 2.6. 1) Suppose p is regular, ¢ > N, and Prem(“’" < o) holds.
Then PraM (1, m, < o) holds.

2) If u is weakly compact and Praht (,u,n < 0), 0 < p holds, then
Pr/,(1,n, < o) holds.

3) If u is Ramsey and Praht (u, < No., < 0), 0 < p holds, then Prit (B, <
Ro, < o) holds. :

4) If 4 = w, in the “nice” version of 2.3(5), the orders { <;: a < pu)
disappear.

Proof. Check it. O

The following theorem is a quite strong positive result for p = w.
Halpern Lauchli proved 2.7(1), Laver proved 2.7(2) (and hence (3)), Pincus

pointed out that Halpern Lauchli’s proof can be modified to get 2. 7(2) and
then Pre,u (w,n, < o) and (by it) Prf,(w,n, < o) are easy. :

Theorem 2.7. 1) Ifd € Col}(“>2), o < No, then there are Ty, .. Tu-1 €
Pery(“>2) and ko < k1 < ... < k¢ < ... and s < o such that for every
b <w:ify € Ty, € Th,...,vp-y € Toory, A 1g(Wm) = ke, then

m<n

d(vo,.. ,Vn-1) = 8.
2) We can demand in (1) that

SP(T}) = {ko, k1, ...}

3) Pr,{m (w,n,o) for o < Ny.
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4) Prf, (w,< Ro, {0} :n<w), (062 :n< w)) ifol < Ny and (02 : n < w) |
diverge to infinity.
Definition 2.8. Let d be a function with domain 2 [A]*, A be a set of

ordinals, F be a one-to-one function from A to *()2, <. be a well ordering
. of ©2 for o < a(*) such that F(a) <, F(f) <> o < 3, and ¢ be a cardinal.

1) We say d is (F,o)-canonical on A if for any a; < -+ < an € 4,

\{d(ﬂl, o Ba) H(F(BY), - F(Ba)) similar o
| (F(aa),- -, Flaa)}| <0

2) We define “almost (F,o)-canonical” similarly using "‘strongly similar”
instead of “similar”. '

3. Consistency of a strong partition below the continuum

This section is dedicated to the proof of

Theorem 3.1. Suppose X is the first Erdés cardinal, i.e. the first such that

A = (w)5* and hence A —»% (w,)5* as in definition 0.1. Then, if A is a

Cohen subset of \, in V[A] for some R, -c.c. forcing notion P of cardinality

A\ IFp “MAx, (Knaster) + 2" = \” and: '

1) bp “A— [N}, 7 for suitable b : w — w (explicitly defined below).

© 2) In VP for any colorings d, of \, where d, is n-place, and for any
divergent (0, : n < w) (see below), there is a W C A, [W| = X,
and a function F : W +— “2 such that: d, is (F,0,)-canonical on W
for each n. (See definition 2.8 above.) - ' '

Remark 3.2. 1) h(n) is n! times the number of u € [“2]™ satisfying [if
M1,M2,M3,Ms € u are distinct then sp(m;,72), sp(ns,ns) are distinct] up to
strong similarity for any nice ( <) : a < w).

2) A sequence (0, : n < w) is divergent if Vm 3k Vn 2 ko, > m.

Notation 3.3. For a sequence a = (a;, €; : 1 < a), we call b C a closed if
(i) i€b=a;Cbh '
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(ii) ifi < @, €; =1 and sup(bN i) = 4 then ¢ € b.

Definition 3.4. Let & be the family of Q = (P“Q aj,€; 1 j<a,i<a)

such that

(a) a; €4, o] <y,

(b) a; is closed for (ay, €] : j < 1), e; € {0,1}, and [e; =1 = cfi = },]

(¢) P; is a forcing notion, Q is a P;-name of a forcing notion of power R, .
with minimal element @ or (), and for 51mphc1ty the underlying set of
Qj is C l[w1]< 9 (we do not lose by this).

(d) Ps = {p: pis a function whose domain is a finite subset of 8 and for
i € dom(p), Ikp, “f(i) € Q 7} with the order p < ¢ if and only if for
i € dom(p), qli -5, “p(i) <'qs)".

(e) for j < a, @ is a Pj-name involving only antichains contained in
{p € P; : dom(p) C a;}. |
Forpe P, j <14, j ¢ domp we let p(j) = 0. Note forp e P, j < i,

plJ € P;.
Definition 3 5. For Q€ Ras above (so a= lg(Q))
1) for any b C B < a closed for (ai,e; : ¢ < B) we define P [by
simultaneous induction on f): '
P" ={p€ Ps:dompCb, and for i € domp, p(i) is a canonical name}
i.e., for any z, {p € Pt iplkp “p(i) =2” or plkp “p(t) # 2" } is a
predense subset of P;.

2) For Q as above, a = 1g(Q), take Q18 = (P,-,Qj,aj :1< B8, j<p) for
B < a and the order is the order in P, (if 3> o, QI3 = Q).

3) “b closed for Q" means “b closed for {e;,€; :i <1gQ)”.

Fact 3.6. 1)if Q€ A thenQIBe & |

2) Suppose b C'c C B < 1g(Q), b and c are closed for Q € 8.

(i) If p € P then plb € P,
(ii) If p,q € P™ and p < q then p[b <qlc.
(iii) P <oPjg.
3) lgQ is closed for Q.
4) if Q € &, a =1gQ then P is a dense subset of P, .
5) If b is closed for Q, p,q € Plcg"Q, p < gin P,p5 and i € domp then
gla; Fp, “p(3) < q{i)” hence gla; IFpen “p(¢) <q, q(?)”.
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Definition 3.7. Suppose W = (W, <) is a finite partial order.and Q € &:.
1) INw (Q) is the set of b-s satisfying (a)—(y) below:
(a) b= (b, : we€ W) is an indexed set of Q-closed subsets of 1g(Q), .
(B) W “w; < ws” = by, C by ‘
(y) (€ by, ﬂbwz,wl < w, w; < wthen (Ju e W)¢ €b, /\u< wl/\u <
wy.
We assume b codes (W, <).
2) For b € INw (Q), let

QB = {(po 1w eW) : p, € P2 W = wi < wy = py, rbw, Pu, 1}

with ordermg Q) E p! < P iff /\wew Py < P,

3) Let &' be the family of Q € £ such that for every 8" < 1g(Q) and
(Q1B)-closed b, Py and Ps/P" satisfy the Knaster condition.

Fact 3.8. Suppose Q € &, (W, <) is a finite partial order, b € INw (Q)
and p € QIb].

1) fweW,p, <q€ PF" then there1sr€Q[b] q<rw,p<r in fact

p(7) if y € Domp, \Domq
ru(7) = p.(7) & q(v) ify € b, N Dom q and for some v € W,
“ v<u,v<wand~y€b,
pu(Y) if v € b, Ndom q but the previous case fails

2) Suppose (Wy, <) is a submodel of (W, <), both finite- partial orders,
b € INw, (Q), b, = b2, forw € W;. .
" (a) Ifg e Q[b?] then (g, : w € W1) € Q[b']. -
(B) Ifp € Q[b'] then there is g € Q[b?], gIW, = p, in fact ¢, (7) is p.(7)
ifu e Wy, v € b,, u <w, provided that
(**) ifwl,'wg € W1, w e Wg, w1 < w, W < w and C € bwl ﬂbW2
then for some v € Wy, { € b,, v <wy, v < w,.

(this guarantees that if there are several u’s as above we shall get -
the same value).

3) If Q € &' then Q[b] satisfies the Knaster condition. If § is the minimal
element of W (ie. u € W = W |= 0 < u) then Q[b]/P;™ also satisfies
the Knaster condition and so < oQ[b] when we 1dent1fy p € P with
(p:weW).
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Proof. 1) It is easy to check that each 7, is in Fg®. So, in order to prove

7 € Q[b], we assume W |= u; < u, and have to prove that r,, [b,, =
Let ( € b, . :

First case: ( € Dom(p,, ) U Domg.
So ¢ ¢ Dom(ry,,) (by the definition of r,,) and {( ¢ Domp,, (as

ul-

p € Q[b]) hence ¢ ¢ (Domp,,) U (Domgq) hence ¢ ¢ Dom(r,,) by the -

choice of r,,, so we have finished.
Second case: ( € Domp,, \ Domg.

As p € Q[b] we have py, (¢) = pu, (¢), and by their definition, r,, (¢) =
Pu, (C)a Tug (C) = Dus (C)

Third case: ( € Domgq and (v € W) ( € b, Av < u; Av < w). By the
definition of r,, (¢), we have 7, (¢) = p., (¢)&q(¢), also the same v witnesses
Tuz (€) = Pu, (€)&4(C), (a5 ¢ € by Av S us Av < w = ¢ € by Av S ug Av < w)
and of course p,, (¢) = p., (¢) (as p € Q[b)).

Fourth case: { € Domg and ~(FJv e W) (( € b, Av < u; Av < w).

By the definition of r,,, (¢) we'have 7, (¢) = p,, (¢). It is enough to prove
that 74, () = pu, (C) as we know that p,, (¢) = pu, (¢) (because p € Q[),
uy < u2). If not, then for some vo € W, ¢ € b,, Avg < ug Avy < w. But
b € INw (@), hence (see Def. 3.7(1) condition () applied with ¢, wy, ws, w
there standing for (, vy, 4y, up here) we know that for some v € W, { €
by Av<uvygAv < up. As (W, <) is a partial order, v < vy and vy < w, we
can conclude v < w. So v contradicts our being in the fourth case. So we
have finished the fourth case.

Hence we have finished proving 7 € Q[b]. We also have to prove
q < Ty, but for ( € Domgq we have ¢ € b, (as ¢ € P) and 7, (¢) = q(¢)

because 7,,(() is defined by the second case of the definition as (3v € W) -

CebuyAv<wAv<w),ie v=w.

Lastly we have to prove that p < 7 (in Q[b]). So let u € W, ¢ € Domp,
and we have to prove 7, [ IFp, “pu(¢) <p, Tu(¢)”. As r.(¢) is p,(¢) or
P (¢)&q(¢) this is obvious.

2) Immediate.

3) We prove this by induction on |W|.

For |W| = 0 this is totally trivial. '

For |[W|=1,2 thls is assumed.

For [W| > 2 fix p* € Q[b] for i < w,. Choose a max1mal element v € W and
let ¢ =J{bw : W E w < v}. Clearly c is closed for Q.
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We know that Pg", P;"/P¢" are Knaster by the induction hypothe31s
We also know that pifc € PC" for i < w,, hence for some r € P",

def (. .
riF”AS {z <w :pilceG peo } is uncountable”
hence

IF ”there is an uncountable A! C Asuch that

[i,j € A' = pi, p’ are compatible in P,f““/GPc,,] .

Fix a P"-name A' for such an A'.

Let A% = {z <w; :Ige P, glkie A } Necessarily |A2|=N;, and for
i € A? there is ¢! € P, ¢' I+ i € A', and w.lo.g. p! ¢ < ¢'. Note that
pi&q' € Pgm. :

For i € A? let, 7 be defined using 3. 8(1) (with p*, pi&g'). Let W; =
W\ {v}, b = (b, : weW,).

By the induction hypothesis applied to Wy, b, 7 | Wi, for i € A2
there is an uncountable A3 C A% and for i < j in A3, there is 77 € Q[b],
FIW, < 79, and 7 [W, < 77, Now define 7 € P as follows: its domain
is U{domri : W | w < v}, 7 [(domr%?) = riJ whenever W | w < v.
Why is this a definition? Asif W = w; <vAw; < v, ¢ € by, A € by,
then for some v € W, u < w; Au € w, and ¢ € u. It is easy to check that
réd € Ps". Now 737 I-pen “pl, pl are compatible in Pi™ /Ps"”. ,

So there is 7 € Pf"such that r}? <, p}, <r, pl <r. Asin part (1) of
3.8 we can combine r and 77 to a common upper bound of 7, p’ in Q[b).
|

Claim 3.9. If § is a limit ordinal, and Pi,Qi, a;,e; (i < &) are such that
for each a < 6, Q% = (Pi,Qj,a]-,e;- 11 < @, j < a) belongs to & (8) ,

then for a unique Ps, Q = (Pi,Qj,aj,e;- :1.< 8, j < 6) belongs to & (R!).

' Proof. We define P; by (d) of Definition 3.4. The least easy problem is to

verify the Knaster conditions (for @ € &). The proof is like the preservation
of the c.c.c. under iteration for limit stages. @

Convention 3.9.A. By 3.9 we shall not distinguish strictly between (P;,

iQ aje; i< 6, j<6)and (P, Q¢ 1 i< ).
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Claim 3.10.. If Q € R(8&'), a = 1g(Q), a C « is closed for Q, |a| < R, 91
is a P<"-name-of a forcing notion satisfying (in V= ) the Knaster condition,
its underlying set is a subset of [w;]<"° then there is a unique Q' € £ (&),

ig@)=a+1,Q=Q,Q'la=Q.
Proof. Left to the reader. O

Proof of Theorem 3.1.

A Stage: We force by £, = {Q e f :1g(Q) < A\, Q € H(A)} ordered by

being an initial segment (which is equivalent to forcing a Cohen subset of

A). The generic object is essentially Q" € £, 1g(Q") = ), and then we force

by Py = limQ". Clearly &, is a A-complete forcing notion of cardinality

A, and P, satisfies the c.c.c. Clearly it suffices to prove part (2) of 3.1.
‘Suppose ¢ is a name of a function from [A]* to k, for n <w, g, <w,

(on : m < w) diverges (i.e. Vm 3k V¥n > k 0, > m) and for some Q° € &, .

Q° IFgi  “thereis p € P, [plkp, {d, :n<w)isa
counterexample to (2) of 3.1”].

In V we can define (QC (<A, Q el (<t=>Q¢ = Q€ Mg(Q%),
in QSt1, e €e@) = b Q¢*! forces (in £L,) a value to p and the P,-names
d [¢, g, k, forn <w, ie the values here are still P,-names. Let Q
be the limit of the Q%-s. So Q" € &', 1g(Q") = A, Q" = (P, Q;,0;,e

i £\, j < A), and the P;-names g, , g, k, are defined such that in VPA ,
d., g,, k, contradict (2) (as any P;-name of a bounded subset of X is a

Py (ge)-hame for some £ < A).

B Stage: Let x = x* be large enough and <;, be a well-ordering of H(x).
Now we can apply A — (w1)5* to get 8, B, N, (for s € [B]<") and h,, (for
s,t € [B]<"°, |s| = |t]) such that:

(a) B C A, otp(B) = wy, supB = §, :

(b) N, < (H(x),€,<;), Q@ €N, {d,,0,,k, :n<w)€EN,,

(¢) N,N Ny = Ny,

d) N,nB=s,

(e) if s=tNa,te[B]<" then N, N ) is an initial segment of N, N A,
(f) h,, is an isomorphism from N, onto N, (when defined)

h,, = h;} and ift; C t, s; C s and H°F maps ¢, onto s, then
g g,t - t,s
ht,,s, c ht,s ' ’
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- (h) po € Ny, po IFp, “(d,,0,,k, : n <w) is a counterexample”,
(i) w1 € N,, |Ns| = 8y and if v € Ny, cfy > R; then cf(sup(yN N,)) =
L w. ' |
Let Q = Q' 16, P = P; and P, = P (for ), where a is closed for Q.
Note: P, NN, = P, NNy = Psyp any, NN, = PN N,. Note also vy € AN N,
= a, C /\ N N,.

C Stage: It suffices to show that we can define Q in VP whlch forces
a subset W of B of cardinality X, and F : W — “’2 which exemplify the
desired conclusion in (2), and prove that-Q satisfies the R;-c.c. (in Vs
(and has cardinality R;)) and moreover (see Definitions 3.4 and 3.7(3)) we
also define a5 = USE[B]<N0 N,N6,es=1,Q = QA(Pg,QiS,ag,eg) and prove
Q e &

We let d(u) = d,,, (v).

Let F : B — “2 be one-to-one such that Vn € *>2 31 a € B [n< F(a)].
(This will not be the needed F', just notation). =

For s,t € [B]<", we say s =72 t if |s| = |t|iand V€ € 5, V¢ € t[€ =
B, (¢) = F(€)In = F(Q)In]. Let I = L(F) = {s € [B]<" : (Y #£ € ),
(F(O)In # F(&)Inl}.. -

We define R,, as follows: a sequence (p, : s € I,) € R, if and only if

(i) for s € I., ps € P; NN,

(ii) for some ¢, we have p, IF “d(s) = ¢,”,
(iii) for s,t € I,, s=% t = h,,(p:) = ps,
(lV) fOI‘ S,t S In, Ps [Nsnt =D rNsnt'A

R, is defined similarly omitting (ii).

For z = (p, : s € I,) let n(z) = n, p* = p,, and (if defined)
¢ = c,. Note that we could replace # € R, by a finite subsequence.
Let R = U, Rny R~ = U,c, R,. We define an order on R™ : = < y if
and only if n(z) < n(y), and [s € I,;) At € I,y As Ct=p? <pjl

D Stage: Note the following facts::

D(a) Subfact: If z € R, t € I, and pf < p' € P; N N,, then there is y
such that z < y € R, , p! = p.

Proof. We let for s € I,

def ’
p’s’ = &{hsl,h [Ntl) 181 Cs,t CH,s8 ET;“ tl}&pf
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(This notation means that p? is a function whose domain is the union
of the domains of the conditions mentioned, and for each coordinate we
take the canonical upper bound, see preliminaries.) Why is p? well defined?
Suppose 3 € N, N A (for B € A\ Ny, clearly p¥(8) = 05), s¢ C s, te C ¢,

se=%tofor£=1,2and € Dom l:hsz.tz (p' [Ny, )], and it suffices to show

that p=(8), hy, 4, (P [ Ny, )(B), hy, 4, (p' [ N, )(B). are pairwise comparable.

Let u = N{v € [B]<" : B € N,}, necessarily u C s; N 3, and let
U = h;ll,tz (u). As 8g,te,t € I, s =% te and ue C tg C ¢, necessarily

u1 = uz. Thus v o h;!(B8).=h,},, (8) and so the last two conditions are
equal. '

Now p3(8) = pi(8) = hu, (05 (7)) < hap s, (PFTN)(7)) = (hsz,iz (P; 1
M) @)

We leave to the reader checking the other requirements. O

D(pB) Subfact: If z € R, t € I,, m < n then |J{p? : s € I,, s C t} (as
union of functions) exists and belongs to P; N N,.

Proof. See (iv) in the definition of R, . O

D(y) Subfact: If z <y, z € R,, y € R, then y € R.,.
Proof. Check it. D

D(6) Subfact: If z € R, , n < m, then thereis y € R, z < y.

Proof. By subfact D(3) we can find z! = (p} : t € I,) in R, withz < z'.
Using repeatedly subfact D(a) we can increase z' (finitely many times) to
gety € Ry, O

D(e) Subfact: If z € R, s,t €1,,s=p t,pf <1 E P,NN,, pf <13 €
P NN,, (¥¢ € 1) [F(C)(n) # (Fllny, (O)))(m)] (or just 1[Ny, = by (r2IV,,)

where t;, & {¢ € t : F(£)(n) = (F(h,,(£)))(n)}, s1 = {h,,(€) : € € t1}),

then there is y € Rny1, < y such that r; = p¥ and r, = p!.

VProof. Left to the reader. O
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E Stage t. _
We define: T C 222 by induction on k as follows:

Ty ={(), (1}

Too ={v:veT or 2* <lg(v) <2**! u2* € Ty and
28 <i< 2" Av() =1]=i=2+ (D v(m)2")]}.

m<2k

We define

Tr Emb(k,n) = {h : h is a function from T, into ™* 2 such that

forv,ne Ty :
[n=v & h(n) = h(v)]
[nav < h(n) <h(v)]

(lg(n) = lg(v) = lg(h(n)) = lg(h(v))]
[v =n"(@) = (h(v))lg(h(n))] = 1]

[Ig(n) = 2* = lg(h(n)) = n]}-

| T(k,n) ={Rang h : h € Tr Emb(k,n)},
T(x,n) =\ JT(k,n),
k

T(k,*) = T(k,n).

For T € T(k,*) let n(T) be the unique n such that T € T(k,n) and let

Br ={a€ B: F(a)n(T) is a maximal member of T'},

for={tCBriictnjetnizj=FORT) £ PG,

@T={(p, :8€E fsr):p, ePﬂNs,[sgt/\{.s,t}gfsT =>ps=pt[Ns]}.

t We will have T ¢ “>2 gotten by 2.7(2) and ‘the;n want to get a subtree with as

. few as possible colors, we can find one isomorphic to “~ 2, and there restrict ourselves to
. UnT,.
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Let further : .
Ox = J{Or : T € T(k, %)}

e =|Jex.
k

For p € ©, n; = n(p), T} are defined naturally.
For p,g € ©,p < g iff n; < ng, T; C T; and for every s € fsg, we have
Ps < Gs-

F Stage: Let g : w — w, g € N,, g grows fast enough relative to

(00 : n < w). We define a game Gm. A play of the game lasts after
w moves, in the n'* move player 1 chooses p, € ©, and a function h,
satisfying .the restrictions below and then player II chooses g, € 0,, such
that p, <, (so T, = T;,). Player I loses the play if sometime he has no

legal move; if he never loses, he wins. The restrictions player I has to satisfy
are:

(a,j for m < n, §n < Pa, Py forces a value to g(n + 1),

(b) hy, is a function from [Bz, 9™ to w,

(¢) if m <n= hy,,h, are compatible,- '
©(d) Ifm <n, £ <g(m),s€[Br, ] then pt IF d(s) = hn(s),

(e) Let 81,8, € Domh,. Then h,(s;) =..hn(52) whenever S1, 8 are
similar over n which means:

0 (F(H25.©) ) nlp] = (FQ)) by for ¢ € s,
(i) HOF, preserves the relations sp (F(C1), F(C-z)) </ sp (F(Cg),

F(C4)) and F(Ca) (sp (F(¢1), F(Cz))) = 4 (in the interesting
case (3 # (1,(o implies i = 0).

G Stage/Claim: Player I has a winning strategy in this game.

Proof. As the game is closed, it is determined, so we assume player II has

" a winning strategy , and eventually we shall get a contradiction.- We define

by induction on n, #* and ®, such that
(a) 7™ € R,,, 7™ < 7™+
(b) @, is a finite set of initial segments of plays of the game,

(c) in each member of ®, player II uses his winning strategy,
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(d) if y belongs to ®,, then it has the form (p¥*, h¥¢ g : £ < m(y)); let
- hy, =h¥"™® and T, = T4y m(y) 5 also Ty, Cc"® 2, ¥t <P fors € fsr,-
(e) ,:C ®,,;, P, is closed under taking the initial segments and the

- empty sequence (which too:is an initial segment of-a play) belongs to
. - _

(f) For any y € ®, and T,h either for some.z € ®,41, n, = ny + 1,
y=z[(ny + 1), T, = T and h, = h or player I has no legal (n, + 1)*!
move p”,h™ (after y was played) such that T;» =T, h™ = h, and
pt =17 for s € fsr (or always < or always >).

There is no problem to carry the definition. Now (7" : n < w) define

a function d": if ny,...,m €™ 2 are distinct then d"({n1,..., 7)) = c iff

for every (equivalently some) ¢; < --- < (;'from B, such that n, < F((),

[43 i /

..... e} I d ({41, ’Ck}) =cC

Now apply 2.7(2) to this coloring, get T° C“~ 2 as there. Now player

I could have chosen initial segments of this T (in the nth move in ®,) and

we get easily a contradiction. O ' o

T{C

H Stage: We fix a winning strategy for player I (whose existence is guar—
anteed by stage G).
We define a forcmg notion Q°. We have (’I‘ 2 fleq iff
(i) re P .
(ii) y = (p*, A%, q° : £ < m(y)) is an initial segment of a play of Gm in Wthh
© player I uses his winning strategy - '

(i) f is a finite function from B to {0, 1} such that f~ ({1}) € fsr, (where
T T g )

(iv) r= qu "11((!(’)1})

The Order is the natural one. ‘ ‘
I Stage: If J C P¢" is dense open then {(r;y,f) € Q" : r € J} is dense
in Q.
Prbof.*.By 3.8(1) (by the appropriate renaming). m]

J"Stage: ‘We define Qs in V¥ as {(r,y,f) €Q :r € Gp, }» the order is
as in Q".

The main point left is to prove the Knaster condition-for- the partial
ordered set Q" = Q" (P;, 95’ as,€5) demandéd. in' the definition of A!. This
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will follow by 3.8(3) (after you choose meaning and renamings) as done in
stages K,L below.

K Stage: So let i < §, cf(i) # X,, and we shall prove that P;, /P; satisfies
the Knaster condition. Let p, € P;,, for o < w;, and we should find

p € P, plkp, “there is an unbounded A C {a : ps |1 € G, } such that for

any o, B € A, po,ps are compatidble in P, /Gp”.
Without loss of generality:
a) pa € B51,.

(
(b) for some (i, : a < w;) increasing coﬁtinuous with limit § we have:

iO >i Cfia 76 Nla Da f5 € Ra+1 ’ paria

Let py = pa lio, Pi = Pal6 = Paliat, pa(é) = (Ta»Ya; fa), so without
loss of generality

(¢) 7o € Py, Talia € Py, m{ys) = m’
(d) Dom f, C 4o U [ia,%a+1),
(€) falio is constant (remember otp(B) = w,),
(f) if Dom f, = {j§,...jg -1} then ko = Kk, [j7 < ia & £ < k'),
Neci 38 = 3% £8) = £G)), F(ig)Im(ya) = F(57)Im(ys).
The main problem is the compatibility of the g¥«™¥) . Now by the
definition ©, (in stage E) and 3.8(3) this holds. O

L Stage: If c C 6 + 1 is closed for Q then Py , /P:" satisfies the Knaster
condition.

If ¢ is bounded in 6, choose a successor i € (supe, §) for Qi € &,. We
know that P;/P;" satisfies the Knaster condition and by stage K, Py, /P;
also satisfies the Knaster condition; as it is preserved by composition we
have finished the stage.

So assume ¢ is unbounded in § and it is easy too. So as seen in stage J,
we have finished the proof of 3.1. O

Theorem 3.11. If\ > 1,, P is the forcing notion of adding A Cohen reals
then

(*); in VP ifn <wd: [A\]*" - g, ¢ < R, then for some c.c.c. forcing
notion @ we have Iy “there are an uncountable A C A and an one-
to-one F' : A —* 2 such that d is F-canonical on A” (see definition
2.8).

(X)e finV, A2 p —usp (K)s, (see [6]) and in VP d: [u]*" - 0,0 <Ry
then in VF for some c.c.c. forcing notion Q we have IFg “there are
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A € [u]® and one-to-one F' : A —* 2 such that d is F-canonical on
A7,

(#)3 fin V, A > p—usp ()R, andin VP d: [u]*™ — 0, 0 < Rq then in
V?F for every a < w; and F : o —* 2 for some A C u of order type
. aand F' : A—¥ 2, F'(8) o F(otp(AN f)), d is F'-canonical on A.
(¥)4 in VP, 2% — (a,n)? for every a < w;, n < w. Really, assuming V =

GCH, we have X1 — (a,n)* (see [6]).

Proof. Similar to the proof of 3.1. Superficially we need more indiscerni-
bility then we get, but getting (M, : u € [B]*") we ignore d({a, 3}) when
there is no u with {a,8} € M,. O

Theorem 3.12. If ) is strongly inaccessible w-Mahlo, y < A, then for some
c.c.c. forcing notion P of cardinality A, V¥ satisfies

(a) MA,
(b) 2% =X =2" fork < A
(¢) A= [Ri]7 4,y forn <w, o <R, h(n) is as in 3.1.

Proof. Again, like 3.1. O

4. Partition theorem for trees on large cardinals

Lemma 4.1. Suppose p > o + ¥y and

(¥), for every p-complete forcing notion P, in V¥, p is measurable.

Then
(1) forn <w, Pri (u,n,0).
<w
(2) Prl,(u,< Ro,0), if there is A > u, A — (;ﬁ*)
2
(3) In both cases we can have the Prghm version, and even choose the
(<.: a < u) in any of the following ways.
(a) We are given (<%: a < u), and we let forn,v € 2NT, a € SP(T)
(T is the subtree we consider):

n <, v if and only if clpy.(n) <§ clpy(v) where 8 = otp(aNSP(T))
and clpr(n) = (n(4) : j €1g(n),j € SP(T)).
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(b) We are given (<%: a < ), we let that for v,n €* 2NT, a € SP(T):
n <, v if and only'if n[(B +1) <§,, v[(8+ 1) where 8 = sup(a N SP(T)).

Remark. 1) (x), holds for a supercompact after Laver treatment. On
hypermeasurable see Gitik Shelah [3].

2) We can in (*), restrict ourselves to the forcing notion P actually used.
For it by Gitik [2] much smaller large cardinals suffice.

- 3) The proof of 4.1 is a generalization of a proof of Harrington to Halpern

Lauchli theorem from 1978.
Conclusion 4.2. In 4.1 we can get Pr,(u,n,0) (even with (3)).

Proof of 4.2. We do the parallel to 4.1(1). By (x),, p is weakly compact
hence by 2.6(2) it is enough to prove Priht (#,m,0). This follows from 4.1(1)
by 2.6(1). O

Proof of Lemma 4.1. 1), 2). Let & < w, o(n) < y, d, € Col},,, (+>2) for
n < kK.

Choose A such that A — (u**)52* (there is such a A by assumption
for (2) and by kK < w for (1)). Let Q be the forcing notion (*>2,<), and
P = P, be {f : dom(f) is a subset of A of cardinality < u, f(i) € Q}
ordered naturally. For ¢ ¢ dom(f), take f(i) =<>; Let 5. be the P-name
for U{f(i) : f € Gp}. Let D be a P-name of a normal ultrafilter over u (in

V*). For each n < w, d € Coly,y (*>2), j < o(n) and u = {a,...,0n-1},

where ag < -+ < Q-1 < A, let A{i(u) be the Py-name of the set
Al(u) = {z <p:{n Ti:€<n)are pairwise distinct and

j = A0y T e, 1)}

[£1]

So A’(u) is a Py-name of a subset of y, and for j(1) < j(2) < o(n) we have
IFp, “.Afi(l) (w) N Aﬂ@) (v) =0, and U;,(n) A’ (u) is a co-bounded subset of
p”. Aslkp “D is u-complete uniform ultrafilter on y”, in V' there is exactly
one j < o(n) with A’ (u) € D. Let Zd(u) be the P-name of this j.

Let I;(u) C P be a maximal antichain of P, each member of I;(u)
forces a value to j (u). Let Wy(u) = (J{dom(p) : p € I4(u)} and W(u) =
U{Wy, (u) : n < k}. So Wy(u) is a subset of A of cardinality < p as well as
W (u) (as P satisfies the yt-c.c. and p € P = |dom(p)| < p).

As X — (ptt)sF , d, € Coly (*>2) there is a subset Z of A of
cardinality p*+ and set W (u) for each u € [Z]<* such that:
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() W(w) © W () if u € (2],
(ll) W+(’U,1) N W+(U2) = W+(U1 N 'Uq),
(ili) if |ug| = |uz| < &k and uy,up C Z then W+ (u;) and W+ (u,) have the

def .
same order type and note that Hlu;, u,] = HVOVIi(ux).W’f'(uz) , induces

naturally a map from P [, o {p € P : dom(p) C W*(uy)} to
Plu, o {p € P :dom(p) C Wt (uy)}.

(iv) if ur,us € [Z]<", |u1| = |uz| then H[uy, up]) maps Iy {(u;) onto Iy, (uz)
and: gk} (u1) = "¢ Huy, ua(q) b 5 (uz) = 77
(v) if uy Cup € [Z]%, usg C ug € [Z]°%, |ug| = |ua|, HOF,, maps u,

onto uz then Hluy,us3) C Hlug, uq].
Let ~y(i) be the i*" member of Z.
Let s(m) be the set of the first m members of Z and R, = {p€ P :
dom(p) € W*(s(n)) = Uicomy WF (1)}
We define by induction on a < p a function F, and p, € R, for
u € Uge, [P2]<" where we let 03 be the empty subset of 2] and we behave
as if [B # v = 0g # 0,] and we also define ((8) < u, such that:
(i) Fy is a function from *> 2 into #> 2, extending Fj for 8 < a,
(ii) F, maps #2 to ¢®2 for some ((8) < pand B < B, < a = C(B) <
C(ﬂ2)’ ’
(ili) nav €*> 2 implies F,(n) < Fo(v),
(iv) forn €? 2, B+ 1 < o and ¢ < 2, we have F,(n)"(€) a« F,(n"(¢)),
(V) pu € R,, whenever u € [P2]™, m < &, B < o and for u(1) € [Z]™ let
Puuqyy = H[s(|ul), w(1)](pa) -
(vi) n €7 2, B < @, then p(,, (min Z) = F,(n).
(vii) if 8 < o, u € [°2]*, n < &, h : u — s(n) one-to-one onto (not
necessarily order preserving) then for some c(u, h) < o(n):

‘ Pty Ikp, “dn(?] v ) = c(u, h)”,
v(0)

“v(n-1)
tSu

(Note: as p, € R, the domains of the conditions in this union are
pairwise disjoint.)

(viii) If n,u, 0 are as in (vii), v = {vo,...,Un-1}, Yedpr €7 2, f < v <
o then dy(Fa(po),..., Fa(pn-1)) = c(u,h) where h is the unique
function from u onto s(n) such that [A(vy) < h(vm) = pr <, prm)-
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x)ifB<y<a vy, ..,up-y €72, n <K, and 1y [f,...,v-1 |0 are
pairwise distinct then:

p{uorﬁ ..... v,|8} g Pivg,....ymn_1} -

For a limit: no problem.

For @ + 1. o limit: we try to define F,,(n) for n €* 2 such that U, , Fp+1(n]
B) < Fu(n) and (viii) holds. Let ¢ = g, ¢(B), and for n €* 2, FQ(n) =

def
Us<a Fa(n1B) and for u € [*2]<%, py = U{p{p.pen B < |ul = [{o]
B : v € u}|}. Clearly pl € Ry .

Then let h :* 2 — Z be one-to-one, such that n <, v & h(n) < h(v) and
def "

let p = U{pg,u(l) cu(l) € [Z]<F, u € [*2]<%, |u(1)| = |u|, A" (u) = u(1)}.
For any generic G C P, to which p belongs, § < a and ordinals

ig < -+ < i,y from Z such that (h™!(4,)[0 : £ < n) are pairwise distinct
we have that

B{igzl<n),ﬂ = {g <p: dﬂ(nio [éa s iy ff) = C(’U,, ht)}’

belongs to D[G], where u = {h™!(i,)[8 : £ < n} and h" : u — s(|u|) is
defined by A" (h™ (i) 18) = HG,. ) o (i) Really every large enough
B < u can serve so we omit it. As D[G] is y-complete uniform ultrafilter on
i, we can find £ € (¢, k) such that £ € B, for every u € [*2]", n < k. We
let for v €% 2, F,(v) = Tt [G]1€, and we let Pu = p° except when u = {v},
e | 0@ i# 0

Puli) = {F (v) i=70)

For o+ 1, o is a successor: First for n €27 2 define F(n”(€)) = F,(n)"(f).

Next, we let {(u;, hi) 14 < 1"}, list all pairs (u, h), u € [*2]*", h : u — s(jul),

one-to-one onto. Now, we define by induction on ¢ < 7", pi(u € [*2]<%)

such that :

(a) P, € R,

(b) p, increases with g,

(c) for 7 + 1, (vii) holds for (u;, h;),

(d) if v, €* 2form < n,n <k, (Un[(a—1) : m < n) are pairwise distinct,
then Pl fia-1) m<nt S P imen >

>
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(e) if v e* 2, v(a—1) =12 thenp? , (0) = Fo(vI(a—1))"(¢).

There is no problem to carry the induction.

Now F,41 [ *2 is to be defined as in the second case, starting with
1 = P,y (1)-
For o = 0, 1: Left to the reader.

So we have finished the induction hence the proof of 4.1(1), (2).

3) Left to the reader ( the only influence is the choice of h in stage of the
induction). O

5. Somewhat complimentary negative partition relation in
ZFC

The negative results here suffice to show that the value we have for 2% in
§3 is reasonable. In particular the Galvin conjecture is wrong and that for
every n < w for some m <w, R, A [R,[2.

See Erdds, Hajnal, Maté, Rado [1] for
Fact 5.1. If2<# < A < 2¥, u o [u|? then A A [(2<#)F]n+L.

This shows that if e.g. in 1.4 we want to increase the exponents, to
3 (and still p = p<*) e.g. p cannot be successor (when o < Rg) (by [7],

3.5(2)).

Definition 5.2. Pr,,(\, p,5), where & = (0, : n < w), means that
there are functions F,, : [A|* — o, such that for every W & [A]* for
some n, F, ((W]*) = o(n). The negation of this property is denoted by
NPr,,(\ u,7). '

If 0, = 0 we write o instead of {0, : n < w).

Remark 5.2.A. 1) Note that A — [u|5$¥ means: if F : [\]<“ — ¢ then for
some A € [A]*, F"([A]<“) # 0. Sofor A > u > 0 = Rg, A A {u]5¥, (use
F: F(a) = |a|) and Pr,,(A, p,0) is stronger than A /A [p]$“. '

2) We do not write down the monotonicity properties of Pr,, — they are
obvious.
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Claim 5.3. 1) We can (in 5.2) w.lo.g. use F, ., : [\]* = 0, forn,m < w
and obvious monotonicity properties holds, and X > pu > n.

2) Suppose NPr, (A, u, k) and & 4 [k]? or even k 4 [k]S“. Then the
following case of Chang conjecture holds:

(*) for every model M with universe A and countable vocabulary, there is
an elementary submodel N of M of cardinality p,

INNk| <&
3) If NPTnp(X,Nl,.Ro) then (A, Nl) - (Nla Ro)
Proof. Easy. m

Theorem 5.4. Suppose Pr,, (Ao, u, No), 1 regular > Ry and \; > )Xo, and
no p' € (Ao, Ay) is p'-Mahlo. Then Pr,,(A;, p, o).

Proof. Let x = Jg(M)*, let {F7, : m < w} list the definable n-
place functions in the model (H(x), €, <), with Ao, 1, A, as parameters,

let F, (o, ,a@n-1) (for ag,...,00-1 < M) be FS  (ap,...,0q-1) if
it is an ordinal < A, and zero otherwise. Let F,.,,(ap,...,n-1) (for
Qo,y...,0n-1 < A1) be F?, (ao,...,as-1) if it is an ordinal < w and zero

otherwise. We shall show that F,, ,, (n,m < w) exemplify Pr,,()\;, 1, No)
(see 5.3(1)).

So suppose W € [\;]* is a counterexample to Pr(A;, u,R) i.e. for no
n,m, F, . ((W]") = w. Let W~ be the closure of W under F}  (n,m < w).
Let N be the Skolem Hull of W in (H(x), €, <}), so clearly NN A, = W*.
Note W™ C Ay, [W"| = p. Also as cf(u) > Ry if A C W~, |A| = p then for
some n,m < w and u; € [W]" (fori < p), F} (w;)€Aand i<j<p=
Fy o (w) # Fy o (u;)]. Tt is easy to check that also W' = {F} | (u;) : i < p}
is a counterexample to Pr(A;, 1, o). In particular, for n,m < w, W, ,, =
{Fom(u):ue€[W]"}isa counterexample if it has power u. W.lo.g W
is a counterexample with minimal § < sup(W) =U{a+1: a € W}. The
above discussion shows that |W" Na| < p for a < §. Obviously ¢f § = u. Let
(a; : @ < p) be a strictly increasing sequence of members of W*, converging
to é, such that for limit ¢ we have o; = min(W" \ U,_,(0; +1). Let
N = Ui<u N;, N; < N, |N;| < p, N; increasing continuous and w.l.o.g.
N;né=Nna.

a Fact: § is > Aq.

Proof. Otherwise we then get an easy contradiction to Pr(Xo, u,No)) as
choosing the F? we allowed ), as a parameter.

n,m
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B Fact: If F is a unary function definable in N, F(a) is a club of a for every
limit ordinal a(< p) then for some club C of u we have

(Vj € C\ {min C})(Fi; < 5)(Vi € (41,5))[i € C = o € F(o;)).

Proof. For some club Cy of p we have j € Cy = (N;,{a; : ¢ < j},W) <
(N, {a; 1 i < p},W).
“We let C = C, = acc(C) (= set of accumulation points of Cp).

We check C is-as required; suppose j is a counterexample. So j =
sup(j N C) (otherwise choose 41 = max(j N C)). So we can define, by
induction on n, i,, such that:

(a‘) in < in+1 <j
(b) a;, & F(oy)
(c) (@i, i, ) NF(oy) #0.

Why l.c.(C)? | “F(e;) is unbounded below a;” hence N |= “F(a;) is
unbounded below «;”, but in N, {e; : ¢ € Cy, i < j} is unbounded below
Q. \

Clearly for some n,m,a; € W, ,, (see above). Now we can repeat the

proof of [7,3.3(2)] (see mainly the end) using only members of W, ,,, .
Note: here we use the number of colors being Rg.

B* Fact: W.l.o.g. the C in Fact 8 is p.
Proof: Renaming.

7 Fact: § is a limit cardinal.
Proof: Suppose not. Now § cannot be a successor cardinal (as cfd = p <
Ay < 6) hence for every large enough 1, |a;| = |6, so |6 € W* C N and
|6]1r € W".

So W* N |4| has cardinality < p hence order-type some v* < . Choose

" < p limit such that [j <¢" = j+7" < i"]. There is a definable function
F of (H(x), €, <; ) such that for every limit ordinal o, F(a) is a club of e,

0 € F(a), if |a| < a, F(a)N|a| =0, otp(F(a)) = cfa.

So in N there is a closed unbounded subset Cy, = F(qa;) of a; of order
type < cf o; < |6], hence C,, N N has order type < v, hence for " chosen
above unboundedly many i < i, a; € C,,.. We can finish by fact 5.

0 Fact: For each ¢ < p, o; is a cardinal.
Proof: If [o;| < 7 then |a;| € N;, but then |a;|t € N; contradicting Fact:y,
by which |a;|* < §, as we have assumed N; N § = N Na;.
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e Fact: For a club of i < y, o; is a regular cardinal.
Proof: if § = {i : o; singular} is stationary, then the function o; — cf(e;) |
is regressive on S. By Fodor lemma, for some a” < 6, {i < p: cfo; <" }is ‘
stationary. As [N Na’| < p for some 8, {i < p: cfa; = §"} is stationary.

Let Fy,.(a) be a club of a of order type cf(a), and by fact 8 we get a
contradiction as in fact .

¢ Fact: For a club of ¢ < p, d,— is Mahlo.

Proof: Use F),,(a) = a club of a which, if « is a successor cardinal or
inaccessible not Mahlo, then it contains no inaccessible, and continue as in
fact ~.

& Fact: For a club of 1 < i, o; is o;-Mabhlo.

Proof: Let F o) (&) = sup{(¢ : o is (-Mahlo}. If the set {i < p : o; is not
a;-Mahlo} is stationary then as before for somey € N, {¢ : F} 1,0y (o) = 7}
is stationary and let F} .,y (o) = a club of & such that if « is not (y + 1)-
Mahlo then the club has no v~-Mahlo member. Finish as in the proof of fact
6. O

Remark 5.4.A. We can continue and say more.

Lemma 5.5. 1) Suppose A > p > 0 are regular cardinals, n > 2 and

(i) for every regular cardinal k, if \ > k > 6 then k 4 [0]:(“1’) .

(i) for some a(x) < p for every regular k € (a(*), ), k& 7 [a(*)]3 5 -

Then

(a) A4 [p]2*! where o = min{o(1),0(2)},

(b) there are functions d; : [A\]* — a(1), dy : [\]"*! — o(2), such that for
every W € [A#, d{ ([W1]3) = o(1) or dy ((W]"+!) = ¢(2).

2) Suppose A > y > 0 are regular cardinals, and

(i) for every regular k € [6,)), /> [0 :(“I) ,

(i) sup{x < A : k regular} 7 [u];,, .

Then

(a) X4 [u]* where o = min{o(1),0(2)}

(b) there are functions d, : [\]*'— (1), dy : [\]*" — o(2) such that for
every W € [A|*, d{ (IW]*) = o(1) or d, ([W]?" = 0(2).

Remark. The proof is similar to that of [7] 3.3, 3.2.
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Proof. 1) We choose for each i, 0 < ¢ < A, C; such that: if ¢ is a successor
ordinal, C; = {¢ — 1,0}; if ¢ is a limit ordinal, C; is a club of ¢ of order type
cfi, 0 € C;, [cfi < i = cfi < min(C; — {0})] and C; \ acc(C;) contains only
successor ordinals. '

Now for a < 8, @ > 0 we define by induction on £, v; (8, @), v, (8, ),
and then (8, a), e(F, a).

(A) 75 (B,a) = B, 7, (B,2) = 0.

(B) if v/ (8, ) is defined and > o and « is not an accumulation point of
Clt () then welet v, (6, a) be the maximal member of C + ,
which is < @ and 7/, ".1(B, a) is the minimal member of Cvf (8,2) which

is > a (by the choice of Cﬂ(ﬂ,a) and the demands on ~; (8, a) they
are well defined).

So

(B1) (a)7, (B,a) < a < v/ (8,a), and if the equality holds then 'yz:_l (8, @)
is not defined.

(b) 77, (B,a) < v/ (B,0) when both are defined.

(C) Let k = k(B,c) be the maximal number k such that +}(8,a) is

defined (it is well defined as (v, (8, @) : £ < w) is strictly decreasing).
So

(C1) %ip (B0) = @ 0r %5 > @ 75, is alimit ordinal and a is an

accumulation point of C_+ (8, ).
k(8,0

(D) For m < k(8, @) let us define
| em(0,a) = max{y, (B,a)+1:£< m}.

Note
(D1) (a) em (B, ) < a (if defined),
(b) if o is limit then €,,(8,a) < a (1f defined),
: (c) if £,, (8, @) _<_ ¢ < « then for every £ < m we have

’72—(ﬂ’a) = 'yz(ﬁ7§)) ’Ye- (ﬁaa) =’7; (ﬂa&)a El(ﬁ) CZ) = El(ﬁig)'

(explanation for (c): if &,, (8, @) < « this is easy (check the definition)
and if €., (8, @) = a, necessarily £ = a and it is trivial).

(d) if £ < m then £,(8, @) < en (8, a)
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For a regular x € (a(x), ) letigl : []<¥ — o(2) exemplify « 4 [0]0(1)
and for every regular cardinal x € [6;)) let g2 : [£]* — 0(2) exemplify
k 7> [a(*)]; ) - Let us define the colourings:

Let ag > a; > ... > a,. Remember n > 2.

Let n = n(ap, a;, @) be the maximal natural number such that:
(1) en(@, 1) < g is well defined,
(ii) for £ < mn, v, (w0, 1) =, (a0, a2).

We define da(ag, 1, -.,0,) as g2 (b1,. .., B,) where

K =cf ('7:(0.0,01,,012) (00, 1));

B¢ =otp [a, nC+ (0,01 ]

n(uu ay,az)

Next we define dy (aog, 1, a2) .
Let i(*) = sup [C +aosaz) 1V Oot (e, a,)] where n = n(ap, a1, a3), E be

the equivalence relation on C_+ ., . \ i(*) defined by

NEY, & VY € Clt 0 oy M <70 M <.

Ifthesetw={'y€C

‘7:(00,01)

ty > i(x), ¥ = min'y/E} is finite,
we let d;(ap,1,02) be gi({8y : ¥ € w}) where k =

otp ('y N Ct (aga) )

We have defined d;, d, required in:condition (b) ( though have not yet
proved that they work) We still have to define d (exemplifying A /4 [u];™).

Letn > 3,forap > a1 > ... > an, welet d(ap, ..., a,) bedi(ao, 01, a2) ifw
defined during the definition has odd number of members and d;(ay, . . ., o)
otherwise.

Now suppose Y is a subset of A of order type y, and let 6 =supY. Let
M be a model with universe A and with relations Y and {(¢,7) : i € C;}. Let
(N; : i < p) be an increasing continuous sequence of lelementary submodels
of M of cardinality < p such that (i) =-o; = min(Y \ V;) belongs to Ni,,,
sup(N Na;) = sup(N N§). Let N = |J Ni. Let 6(3) = 6; o sup(NV; N o),

i<p

so0< b, <a;,and let n = n, be the first natural number such that §; an
accumulation point of c¥c S (0 6(0)) let e; =-€,()(0u,6:). Note that
¥} (0, 8;) = v} (0, €:) hence it belongs to N.
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Case I: For some (limit) i < p, cf(i) > 0 and (Vy < 3)[y + o) < 4] such
that for arbitrarily large j < i, C* N N; is bounded in N; N § = N; N §;.
This is just like the last part in the proof of [7],3.3 using g} and d,; for
K= Cf(’Y:,. (i, 6;).

Case II: Not case I.

Let So = {i < g : (Va < i)[y+a(x) <], cf(:) = 8}. So for every i € S,
for some j(7) < 14, (Vj)[j € (j(#),%) = C* N N; is unbounded in 5J-]. But as
CiNé; is a club of &, clearly (Vj)[j € (j(i),i) = 6, € C"].

We can also demand j(i) > €,(a(),60)) ((2), 6(%)).

As S, is stationary, (by not case I) for some stationary S, C S, and
n(x), j(x) we have (¥i € S1)[j(0) = j(*) An(a(i), &) = n(+)]-

Choose i(x) € Sy, i(x) = sup(i(*) N S;), such that the order type of
S1 Ni(x) is i(x) > a(x). Now if iz < i1 € S Ni(x) then n{oy.y, oy, i,) =
n(x). Now L.y = {otp(ai NC):ie SN z(*)} are pairwise distinct

and are ordinals < x = |C**)|, and the set has order type a(). Now apply
the definitions of d; and g2 on L,.,.

2) The proof is like the proof of part (1) but for ag > a; > -+ we let:
da(ag, ..., Qon-1) = g% (B, - - -, Bn) where

def
Be = otp (Cyi(ﬁ%ﬁuﬂ) (Bae, Baey1) N Baesr)

and in case I note that the analysis gives p possible §,’s so that we can
apply the definition of g2. m '

Definition 5.7. Let A /A4, [p]; mean: if d: [A]* — 6, and (o; : ¢ < p) is:
strictly increasingly continuous and for ¢ < j < p, v; ; € {a;, ;11 ) then

6= {d(w) : forsome j < p, we [{y; 1< j}]"}.

Lemma 5.8. 1) R, 4 Ryt forn > 1.
2) Ry, Frarg Rauf? forn > 1.

Proof. 1) For n = 2 this is a theorem of Torodéevi¢, and if it holds for
n > 2 by 5.5(1) we get that it holds for n+1 (with n, A, g, 8, a(x), o(1),
o(2) there corresponding to n+ 1, R,y1, Ny, Ng,No, Ro,Ro here).

2) Similar. :
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