On the bounding, splitting, and distributivity numbers

Alan Dow, Saharon Shelah

Abstract

The cardinal invariants $\mathfrak{h}, \mathfrak{b}, \mathfrak{s}$ of $\mathcal{P}(\omega)$ are known to satisfy that $\omega_{1} \leq$ $\mathfrak{h} \leq \min \{\mathfrak{b}, \mathfrak{s}\}$. We prove that all inequalities can be strict. We also introduce a new upper bound for \mathfrak{h} and show that it can be less than \mathfrak{s}. The key method is to utilize finite support matrix iterations of ccc posets following paper Ultrafilters with small generating sets by A. Blass and S. Shelah (1989).

Keywords: cardinal invariants of the continuum; matrix forcing
Classification: 03E15

1. Introduction

Of course the cardinal invariants of the continuum discussed in this article are very well known, see [15, page 111], so we just give a brief reminder. They deal with the mod finite ordering of the infinite subsets of the integers. We follow convention and let $[\omega]^{\omega}$ (or $[\omega]^{\aleph_{0}}$) denote the family of infinite subsets of ω. A set A is a pseudo-intersection of a family $\mathcal{Y} \subset[\omega]^{\omega}$ if A is infinite and $A \backslash Y$ is finite for all $Y \in \mathcal{Y}$. The family \mathcal{Y} has the strong finite intersection property (sfip) if every finite subset has infinite intersection and \mathfrak{p} is the minimum cardinal for which there is such a family with no pseudointersection. A family $\mathcal{I} \subset \mathcal{P}(\omega)$ is an ideal if it is closed under finite unions and mod finite subsets. An ideal $\mathcal{I} \subset \mathcal{P}(\omega)$ is dense if every $Y \in[\omega]^{\omega}$ contains an infinite member of \mathcal{I}. A set $S \subset \omega$ is unsplit by a family $\mathcal{Y} \subset[\omega]^{\omega}$ if S is mod finite contained in one member of $\{Y, \omega \backslash Y\}$ for each $Y \in \mathcal{Y}$. The splitting number \mathfrak{s} is the minimum cardinal of a family \mathcal{Y} for which there is no infinite set unsplit by \mathcal{Y} (i.e. every $S \in[\omega]^{\omega}$ is split by some member of \mathcal{Y} and \mathcal{Y} is called a splitting family). The bounding number \mathfrak{b} can easily be defined in these same terms, but it is best defined by the mod finite ordering " $<^{*}$ " on the family of functions ω^{ω}. The cardinal \mathfrak{b} is the minimum cardinal for which there is a $<^{*}$-unbounded family $B \subset \omega^{\omega}$ with $|B|=\mathfrak{b}$.

[^0]The finite support iteration of the standard Hechler poset was shown in [2] to produce models of $\aleph_{1}=\mathfrak{s}<\mathfrak{b}$. The consistency of $\aleph_{1}=\mathfrak{b}<\mathfrak{s}=\aleph_{2}$ was established in [17] with a countable support iteration of a special poset we now call $\mathcal{Q}_{\text {Bould }}$. It is shown in [11] that one can use Cohen forcing to select countable chain condition (ccc) subposets of $\mathcal{Q}_{\text {Bould }}$ and finite support iterations to obtain models of $\aleph_{1}<\mathfrak{b}<\mathfrak{s}=\mathfrak{b}^{+}$. This result was improved in [5] to show that the gap between \mathfrak{b} and \mathfrak{s} can be made arbitrarily large. The papers [4], [5] and [6] are able to use ccc versions of the well-known Mathias forcing in their iterations in place of those discovered in [11]. The paper [5] also nicely expands on the method of matrix iterated forcing first introduced in [4], as do a number of more recent papers, see [9], [16] and [10] using template forcing. The distributivity number (degree) \mathfrak{h} was first studied in [1]. It equals the minimum number of dense ideals whose intersection is simply the Fréchet ideal $[\omega]^{<\omega}$. It was shown in [1], that $\mathfrak{p} \leq \mathfrak{h} \leq \min \{\mathfrak{b}, \mathfrak{s}\}$. Our goal is to separate all these cardinals. We succeed but confront a new problem since we use the result, also from [1], that $\mathfrak{h} \leq \operatorname{cof}(\mathfrak{c})$.

2. A new bound on \mathfrak{h}

In [1], a family \mathfrak{A} of maximal almost disjoint families of infinite subsets of ω is called a matrix. A matrix \mathfrak{A} is shattering if the entire collection $\bigcup \mathfrak{A}$ is splitting. Evidently, if $\left\{s_{\alpha}: \alpha<\kappa\right\}$ is a splitting family, then the family $\mathfrak{A}=\left\{\left\{s_{\alpha}, \omega \backslash s_{\alpha}\right\}\right.$: $\alpha<\kappa\}$ is a shattering matrix. A shattering matrix $\mathfrak{A}=\left\{\mathcal{A}_{\alpha}: \alpha<\kappa\right\}$ is refining, if for all $\alpha<\beta<\kappa, \mathcal{A}_{\beta}$ refines \mathcal{A}_{α} in the natural sense that each member of \mathcal{A}_{β} is mod finite contained in some member of \mathcal{A}_{α}. Finally, a base matrix is a refining shattering matrix \mathfrak{A} satisfying that $\bigcup \mathfrak{A}$ is dense in $\left(\mathcal{P}(\omega) /\right.$ fin, $\left.\subset^{*}\right)$ (i.e. a π-base for $\left.\omega^{*}\right)$.

We add condition (6) to the following result from [1].
Lemma 2.1. The value of \mathfrak{h} is the least cardinal κ such that any of the following holds:
(1) the Boolean algebra $\mathcal{P}(\omega) /$ fin is not κ-distributive;
(2) there is a shattering matrix of cardinality κ;
(3) there is a shattering and refining matrix indexed by κ;
(4) there is a base matrix of cardinality κ;
(5) there is a family of κ many nowhere dense subsets of ω^{*} whose union is dense;
(6) there is a sequence $\left\{\mathcal{S}_{\alpha}: \alpha<\kappa\right\}$ of splitting families satisfying that no 1-to-1 selection $\left\langle s_{\alpha}: \alpha \in \kappa\right\rangle \in \Pi\left\{\mathcal{S}_{\alpha}: \alpha \in \kappa\right\}$ has a pseudo-intersection.

Proof: Since (1)-(5) are proven in [1], it is sufficient to prove that for a cardinal κ (3) and (6) are equivalent. First suppose that $\mathfrak{A}=\left\{\mathcal{A}_{\alpha}: \alpha<\kappa\right\}$ is a refining and
shattering matrix. Since the matrix is refining, it follows easily that $\left\{\mathcal{A}_{\beta}: \alpha \leq\right.$ $\beta<\kappa\}$ is a shattering matrix for each $\alpha<\kappa$. Therefore, $\mathcal{S}_{\alpha}=\bigcup\left\{\mathcal{A}_{\beta}: \alpha \leq \beta\right\}$ is a splitting family for each $\alpha<\kappa$. Similarly, the refining property ensures that if $\left\langle a_{\alpha}: \alpha \in \kappa\right\rangle \in \Pi\left\{\mathcal{S}_{\alpha}: \alpha \in \kappa\right\}$, then $\left\{a_{\alpha}: \alpha \in \kappa\right\}$ has no pseudo-intersection.

Now assume that $\left\{\mathcal{S}_{\alpha}: \alpha<\kappa\right\}$ is a sequence of splitting families as in (6). By [1], it is sufficient to prove that $\mathfrak{h} \leq \kappa$, so let us assume that $\kappa<\mathfrak{h}$. We now make an observation about κ : for each infinite $b \subset \omega, \alpha<\kappa$ and family $\mathcal{S}^{\prime} \subset[\omega]^{\omega}$ of cardinality less than κ, there is an infinite $a \subset b$ and an $s \in \mathcal{S}_{\alpha} \backslash \mathcal{S}^{\prime}$ such that $a \subset s$ and s splits b. We prove this claim. We may ignore all members of \mathcal{S}^{\prime} that are \bmod finite disjoint, or \bmod finite include, b. Since the family $\left\{\left\{s^{\prime} \cap b, b \backslash s^{\prime}\right\}: s^{\prime} \in \mathcal{S}^{\prime}\right\}$ is not shattering (as a family of subsets of b) there is an infinite $b^{\prime} \subset b$ that is not split by \mathcal{S}^{\prime}. Choose any $s \in \mathcal{S}_{\alpha}$ that splits b^{\prime} and let $a=s \cap b^{\prime}$. Evidently, s also splits b. Since the ideal generated by a splitting family is dense, we may choose a maximal almost disjoint family \mathcal{A}_{0} contained in the ideal generated by \mathcal{S}_{0}. Let s_{0} denote any mapping from \mathcal{A}_{0} into \mathcal{S}_{0} satisfying that $a \subset s_{0}(a)$ for all $a \in \mathcal{A}_{0}$. Suppose that $\alpha<\kappa$ and that we have chosen a refining sequence $\left\{\mathcal{A}_{\gamma}: \gamma<\alpha\right\}$ of maximal almost disjoint families together with mappings $\left\{s_{\gamma}: \gamma<\alpha\right\}$ so that for each $a \in \mathcal{A}_{\gamma}, a \subset s_{\gamma}(a) \in \mathcal{S}_{\gamma}$. The extra induction assumption is that for all $a \in \mathcal{A}_{\gamma}, s_{\gamma}(a)$ is not an element of $\left\{s_{\beta}\left(a^{\prime}\right): \beta<\gamma\right.$ and $\left.a \subset^{*} a^{\prime} \in \mathcal{A}_{\beta}\right\}$. The existence of the family \mathcal{A}_{α} and the mapping s_{α} satisfying the induction conditions easily follows from the above observation. Now we verify that $\mathfrak{A}=\left\{\mathcal{A}_{\alpha}: \alpha<\kappa\right\}$ satisfies that $\bigcup \mathfrak{A}$ is splitting. Fix any infinite $b \subset \omega$ and choose $a_{\alpha} \in \mathcal{A}_{\alpha}$ for each $\alpha \in \kappa$ so that $b \cap a_{\alpha}$ is infinite. By construction, $\left\{s_{\alpha}\left(a_{\alpha}\right): \alpha \in \kappa\right\}$ is a 1-to- 1 selection from $\Pi\left\{\mathcal{S}_{\alpha}: \alpha \in \kappa\right\}$. Since b is therefore not a pseudo-intersection, there is an $\alpha<\kappa$ such that $b \backslash s_{\alpha}\left(a_{\alpha}\right) \subset b \backslash a_{\alpha}$ is infinite.

The following is an immediate corollary to condition (6) in Lemma 2.1 and provide two approaches to bounding the value of \mathfrak{h}.

Corollary 2.2 ([1], [3]). (1) If \mathfrak{c} is singular, then $\mathfrak{h} \leq \operatorname{cf}(\mathfrak{c})$.
(2) A poset \mathbb{P} forces that $\mathfrak{h} \leq \kappa$ if \mathbb{P} preserves κ and can be written as an increasing chain $\left\{\mathbb{P}_{\alpha}: \alpha<\kappa\right\}$ of completely embedded posets satisfying that each $\mathbb{P}_{\alpha+1}$ adds a real not added by \mathbb{P}_{α}.

Proof: For the statement in (1), let $\left\{\kappa_{\alpha}: \alpha<\operatorname{cf}(\mathfrak{c})\right\}$ be increasing and cofinal in \mathfrak{c}. Let $\left\{x_{\xi}: \xi \in \mathfrak{c}\right\}$ be an enumeration of $[\omega]^{\aleph_{0}}$. To apply (6) from Lemma 2.1, let $\mathcal{S}_{\alpha}=\left\{x_{\xi}:\left(\forall \eta<\kappa_{\alpha}\right) x_{\eta} \not \subset^{*} x_{\xi}\right\}$. For the statement in (2), let G be a \mathbb{P} generic filter and for each $\alpha \in \kappa$, let $G_{\alpha}=G \cap \mathbb{P}_{\alpha}$. To apply (6), let \mathcal{S}_{α} be the set of $x \in[\omega]^{\aleph_{0}}$ that contain no infinite $y \in V\left[G_{\alpha}\right]$. To see that \mathcal{S}_{α} is splitting
in either case, given any infinite $x \subset \omega$, consider an enumeration $\left\{x_{t}: t \in 2^{<\omega}\right\}$. Then, for all $\alpha \in \kappa$, there is an $f_{\alpha} \in 2^{\omega}$ so that $\left\{x_{f_{\alpha} \upharpoonright n}: n \in \omega\right\} \in \mathcal{S}_{\alpha}$.

Our introduction of condition (6) in Lemma 2.1 is motivated by the fact that it provides us with a new approach to bounding \mathfrak{h}. We introduce the following variant of condition (6) in Lemma 2.1 and note that a shattering refining matrix will fail to satisfy the second condition.

Definition 2.3. Let $\kappa<\lambda$ be cardinals and say that a family $\left\{x_{\alpha}: \alpha<\lambda\right\}$ of infinite subsets of ω is (κ, λ)-shattering if for all infinite $b \subset \omega$
(1) the set $\left\{\alpha<\lambda: b \subset^{*} x_{\alpha}\right\}$ has cardinality less than κ; and
(2) the set $\left\{\alpha<\lambda: b \cap x_{\alpha}={ }^{*} \emptyset\right\}$ has cardinality less than λ.

Say that $\left\{x_{\alpha}: \alpha<\lambda\right\}$ is strongly (κ, λ)-shattering if it contains no splitting family of size less than λ.

Needless to say a (κ, λ)-shattering family is strongly (κ, λ)-shattering if $\lambda=\mathfrak{s}$ and this is the kind of families we are interested in. However it seems likely that producing strongly (κ, λ)-shattering families would be interesting (and as difficult) even without requiring that $\lambda=\mathfrak{s}$. Nevertheless \mathfrak{s} is necessarily less than λ as we show next.

Proposition 2.4. If there is a (κ, λ)-shattering family, then $\mathfrak{h} \leq \kappa$ and $\mathfrak{s} \leq \lambda$.

Proof: Let $\mathcal{S}=\left\{x_{\alpha}: \alpha<\lambda\right\}$ be a (κ, λ)-shattering family. Given any infinite $b \subset \omega$, there is a $\beta<\lambda$ such that each of $b \subset^{*} x_{\beta}$ and $b \cap x_{\beta}=^{*} \emptyset$ fail. This means that \mathcal{S} is splitting. By condition (1) in Definition 2.3 and applying condition (6) of Lemma 2.1 with $\mathcal{S}_{\alpha}=\mathcal{S}$ for all $\alpha<\kappa$, it follows that $\mathfrak{h} \leq \kappa$.

For any index set I the standard poset for adding Cohen reals, \mathcal{C}_{I}, is the set of all finite functions into 2 with domain a subset of I where $p<q$ providing $p \supset q$. If $I=\lambda$ is an ordinal, then we may use \dot{x}_{α} to be the canonical \mathcal{C}_{λ}-name $\left\{(\check{n},\{\langle\alpha+n, 1\rangle\}: n \in \omega\}\right.$ (i.e., for $s \in \mathcal{C}_{\lambda}, s \Vdash n \in \dot{x}_{\alpha}$ providing $\left.s(\alpha+n)=1\right)$.

It is routine to verify that, for any regular cardinal $\lambda>\aleph_{1}$, forcing with \mathcal{C}_{λ} will naturally add an $\left(\aleph_{1}, \lambda\right)$-shattering family but it is clear that this family would not be strongly $\left(\aleph_{1}, \lambda\right)$-shattering. Nevertheless, it may be possible with further forcing, to have it become strongly (κ, λ)-shattering for some $\aleph_{1} \leq \kappa<\mathfrak{s}$.

In Theorem 5.9 we will prove that it is consistent with $\aleph_{2}<\kappa^{+}<\mathfrak{c}$ that there is a strongly $\left(\kappa, \kappa^{+}\right)$-shattering family.

Question 2.1. Assume that $\kappa<\lambda$ are regular cardinals and that there is a strongly (κ, λ)-shattering family. We pose the following questions.
(1) Is it consistent that $\kappa^{+}<\lambda$?
(2) Is it consistent that $\lambda<\mathfrak{b}$?
(3) Is it consistent that $\kappa<\mathfrak{b}<\lambda$?

3. Matrix forcing and distinguishing $\mathfrak{h}, \mathfrak{s}, \mathfrak{b}$

In this section we recall the forcing methods for distinguishing \mathfrak{b} and \mathfrak{s} and apply them to prove the main results. We denote by \mathbb{D} the standard (Hechler) poset for adding a dominating real. The poset \mathbb{D} is an ordering on $\omega^{<\omega} \times \omega^{\omega}$ where $(s, f)<(t, g)$ providing $g \leq f$ and s extends t by values that are coordinatewise above g. Given a sfip family \mathcal{F} of subsets of ω, there are two main posets for adding a pseudo-intersection. The Mathias-Prikry style poset is $\mathbb{M}(\mathcal{F})$ and consists of pairs (a, A) where A is in the filter base generated by $\mathcal{F}, a \subset \min (A)$, and $\mathbb{M}(\mathcal{F})$ is ordered by $\left(a_{1}, A_{1}\right)<\left(a_{2}, A_{2}\right)$ providing $a_{2} \subset a_{1} \subset a_{2} \cup A_{2}$ and $A_{1} \subset A_{2}$. When the context is clear, we will let $\dot{x}_{\mathcal{F}}$ denote the canonical name, $\{(\check{n},(a, \omega \backslash n+1)): n \in a \subset n+1\}$, which is forced to be the desired pseudointersection. When \mathcal{U} is a free ultrafilter on $\omega, \mathbb{M}(\mathcal{U})$ was the poset used in [4] and [5] and, in this case, $\dot{x}_{\mathcal{U}}$ is unsplit by the set of ground model subsets of ω. When mixed with matrix iteration methods, the ultrafilter \mathcal{U} can be constructed so as to not add a dominating real.

The Laver style poset, $\mathbb{L}(\mathcal{F})$, is also very useful in matrix iterations and is defined as follows. The members of $\mathbb{L}(\mathcal{F})$ are subtrees T of $\omega^{<\omega}$ with a root or stem, $\operatorname{root}(T)$, and for all $\operatorname{root}(T) \subseteq t \in T$, the set $\operatorname{Br}(T, t)=\{j \in \omega: t \subset j \in T\}$ is an element of the filter generated by \mathcal{F}. This poset is ordered by " \subset ". For each $T \in \mathbb{L}(\mathcal{F})$ and $t \in T$, the subtree $T_{t}=\left\{t^{\prime} \in T: t \cup t^{\prime} \in \omega^{<\omega}\right\}$ is also a condition. The generic function, $\dot{f}_{\mathbb{L}(\mathcal{F})}$, added by $\mathbb{L}(\mathcal{F})$ can be described by the name of the union of the branch of $\omega^{<\omega}$ named by $\left\{\left(\check{t},\left(\omega^{<\omega}\right)_{t}\right): t \in \omega^{<\omega}\right\}$. This poset forces that $\dot{f}_{\mathbb{L}(\mathcal{F})}$ dominates the ground model reals and the range of $\dot{f}_{\mathbb{L}(\mathcal{F})}$ is a pseudointersection of \mathcal{F}. Again, if \mathcal{F} is an ultrafilter, this pseudo-intersection is not split by any ground model set.

For each sfip family \mathcal{U} on ω, each of the posets $\mathbb{D}, \mathbb{M}(\mathcal{U})$, and $\mathbb{L}(\mathcal{U})$ is σ-centered. We just need this for the fact that this ensures that they are upwards ccc.

For a poset P and a set X, a canonical P-name for a subset of X will be a name of the form $\bigcup\left\{\check{x} \times A_{x}: x \in X\right\}$ where for each $x \in X, A_{x}$ is an antichain of P. Of course if \dot{Y} is any P-name of a subset of X, there is a canonical name that is forced to equal it. When we say that a poset P forces a statement, we intend the meaning that every element (i.e. 1_{P}) of P forces that statement. We write $P<\cdot Q$ to mean that P is a complete suborder of Q.

The terminology "matrix iterations" is used in [5], see also forthcoming preprint (F1222) from the second author.

Definition 3.1. For an infinite cardinal κ with uncountable cofinality, and an ordinal ζ, a $\kappa \times \zeta$-matrix iteration is a family

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \zeta\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\rangle\right\rangle
$$

where for each $\alpha<\beta \leq \kappa$ and $\xi<\eta \leq \zeta$:
(1) $\mathbb{P}_{\beta, \xi}$ is a ccc poset;
(2) $\mathbb{P}_{\alpha, \xi}<\cdot \mathbb{P}_{\beta, \xi}<\cdot \mathbb{P}_{\beta, \eta}$;
(3) $\mathbb{P}_{\kappa, \xi}$ is the union of the chain $\left\{\mathbb{P}_{\gamma, \xi}: \gamma<\kappa\right\}$;
(4) $\dot{\mathbb{Q}}_{\alpha, \xi}$ is a $\mathbb{P}_{\alpha, \xi}$-name of a ccc poset and $\mathbb{P}_{\alpha, \xi+1}=\mathbb{P}_{\alpha, \xi} * \dot{\mathbb{Q}}_{\alpha, \xi}$;
(5) if η is a limit, then $\mathbb{P}_{\beta, \eta}=\bigcup\left\{\mathbb{P}_{\beta, \gamma}: \gamma<\eta\right\}$.

One constructs $\kappa \times \zeta$-matrices by recursion on ζ and, for successor steps, by careful choice of the component sequence $\left\{\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa\right\}$. An important observation is that all the work is in the successor steps. The following is from [5, Lemma 3.10]

Lemma 3.2. If ζ is a limit then a family

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \zeta\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\rangle\right\rangle
$$

is a $\kappa \times \zeta$-matrix iteration provided that for all $\eta<\zeta$ and $\beta \leq \kappa$:
(1) $\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \eta\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\eta\right\rangle\right\rangle$ is a $\kappa \times \eta$-matrix iteration; and
(2) $\mathbb{P}_{\beta, \zeta}=\bigcup\left\{\mathbb{P}_{\beta, \xi}: \xi<\zeta\right\}$.

The following is well-known, see for example [16, Section 5] and [13].
Proposition 3.3. For any ζ and $\kappa \times \zeta$-matrix iteration

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \zeta\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\rangle\right\rangle
$$

the extension

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \zeta+1\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta+1\right\rangle\right\rangle
$$

is a $\kappa \times(\zeta+1)$-matrix iteration if either the following holds:
$(1)_{\mathbb{Q}}$ for all $\alpha \leq \kappa, \dot{\mathbb{Q}}_{\alpha, \zeta}$ is the $\mathbb{P}_{\alpha, \zeta}$-name for \mathbb{D};
$(2)_{\mathbb{Q}}$ there is an $\alpha<\kappa$ such that $\dot{\mathbb{Q}}_{\beta, \zeta}$ is the trivial poset for $\beta<\alpha, \dot{\mathbb{Q}}_{\alpha, \zeta}$ is a $\mathbb{P}_{\alpha, \zeta}$-name of a σ-centered poset, and $\dot{\mathbb{Q}}_{\beta, \zeta}=\dot{\mathbb{Q}}_{\alpha, \zeta}$ for all $\alpha \leq \beta \leq \kappa$.

Notice that if we define the extension as in $(1)_{\mathbb{Q}}$ then we will be adding a dominating real, but even if $\dot{\mathbb{Q}}_{\alpha, \zeta}$ is forced to equal \mathbb{D} in $(2)_{\mathbb{Q}}$, the real added will only dominate the reals added by $\mathbb{P}_{\alpha, \zeta}$.

Proposition 3.4 ([4]). Let M be a model of (a sufficient amount of) set-theory and $P \in M$ be a poset that is also contained in M. Then for any $f \in \omega^{\omega}$ that is
not dominated by any $g \in M \cap \omega^{\omega}, P$ forces that $f \not \leq \dot{g}$ for all P-names $\dot{g} \in M$ of elements of ω^{ω}.

Proof: Let $p \in P$ and $n \in \omega$. It suffices to prove that there is a $q<p$ in P and a $k>n$ and $m<f(k)$ such that $q \Vdash \dot{g}(k)=m$. Since $p \in M$, we can work in M and define a function $h \in \omega^{\omega}$ by the rule that, for all $k \in \omega$, there is a $q_{k}<p$ such that $q_{k} \Vdash \dot{g}(k)=h(k)$. Choose any $k>n$ so that $h(k)<f(k)$. Then $q_{k} \Vdash \dot{g}(k)<f(k)$ and proves that $p \Vdash f \leq \dot{g}$.

An analogous result, with the same proof, holds for splitting.
Proposition 3.5. Let M be a model of (a sufficient amount of) set-theory and $P \in M$ be a poset that is also contained in M. If $x \in[\omega]^{\omega}$ satisfies that $y \not \subset x$ for all $y \in M \cap[\omega]^{\omega}$, then P forces that $\dot{y} \not \subset x$ for all P-names $\dot{y} \in M$ for elements of $[\omega]^{\omega}$.

We also use the main construction from [4].
Proposition 3.6. Suppose that

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \zeta\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\rangle\right\rangle
$$

is a $\kappa \times \zeta$-matrix iteration and that $\left\{\dot{f}_{\alpha}: \alpha<\kappa\right\}$ is a sequence satisfying that for all $\alpha<\kappa$:
(1) \dot{f}_{α} is a $\mathbb{P}_{\alpha, \zeta}$-name that is forced to be in ω^{ω};
(2) for all $\beta<\alpha$ and $\mathbb{P}_{\beta, \zeta}$-name \dot{g} of a member of $\omega^{\omega}, \mathbb{P}_{\alpha, \zeta}$ forces that $\dot{f}_{\alpha} \nless \dot{g}$.
Then there is a sequence $\left\{\dot{\mathcal{U}}_{\alpha, \zeta}: \alpha \leq \kappa\right\}$ such that for all $\alpha<\kappa$:
(3) $\dot{\mathcal{U}}_{\alpha, \zeta}$ is a $\mathbb{P}_{\alpha, \zeta}$-name of an ultrafilter on ω;
(4) for $\beta<\alpha, \dot{\mathcal{U}}_{\beta, \zeta}$ is a subset of $\dot{\mathcal{U}}_{\alpha, \zeta}$;
(5) for each $\beta<\alpha$ and each $\mathbb{P}_{\beta, \zeta} * \mathbb{M}\left(\dot{\mathcal{U}}_{\beta, \zeta}\right)$-name \dot{g} of an element of ω^{ω}, $\mathbb{P}_{\alpha, \zeta} * \mathbb{M}\left(\dot{\mathcal{U}}_{\alpha, \zeta}\right)$ forces that $\dot{f}_{\alpha} \nless \dot{g}$; and
(6) $\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \zeta+1\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta+1\right\rangle\right\rangle$ is a $\kappa \times(\zeta+1)$-matrix iteration, where for each $\alpha \leq \kappa, \mathbb{P}_{\alpha, \zeta+1}=\mathbb{P}_{\alpha, \zeta} * \dot{\mathbb{Q}}_{\alpha, \zeta}$ and $\dot{\mathbb{Q}}_{\alpha, \zeta}$ is the $\mathbb{P}_{\alpha, \zeta}$-name for $\mathbb{M}\left(\dot{\mathcal{U}}_{\alpha, \zeta}\right)$.
We record two more well-known preparatory preservation results.
Proposition 3.7 ([2]). Suppose that $M \subset N$ are models of (a sufficient amount of) set-theory and that G is \mathbb{D}-generic over N. If $x \in N \cap[\omega]^{\omega}$ does not include any $y \in M \cap[\omega]^{\omega}$, it will not include any $y \in M[G] \cap[\omega]^{\omega}$.

Proposition 3.8. Assume that $\left\{P_{\alpha}: \alpha \leq \delta\right\}$ is a <--increasing chain of ccc posets with $P_{\delta}=\bigcup\left\{P_{\alpha}: \alpha<\delta\right\}$. Let G_{δ} be P_{δ}-generic. Let $x \in[\omega]^{\omega}$ and $f \in \omega^{\omega}$. Then each of the following holds:
(1) If $f \not \leq g$ for each $g \in V\left[G_{\alpha}\right]$ and for all $\alpha<\delta$, then $f \not \leq g$ for each $g \in V\left[G_{\delta}\right]$.
(2) If x does not contain any $y \in[\omega]^{\omega} \cap V\left[G_{\alpha}\right]$ for all $\alpha<\kappa$, then x does not contain any $y \in[\omega]^{\omega} \cap V\left[G_{\delta}\right]$.

Proof: We prove only (1) since the proof of (2) is similar. If δ has uncountable cofinality, then there is nothing to prove since $V\left[G_{\delta}\right] \cap \omega^{\omega}$ would then equal $\bigcup\left\{V\left[G_{\alpha}\right] \cap \omega^{\omega}: \alpha<\delta\right\}$. Otherwise, consider any P_{δ}-name \dot{g} and condition $p \in P_{\delta}$ forcing that $\dot{g} \in \omega^{\omega}$. We prove that p does not force that $\dot{g}(n)>f(n)$ for all $k<n$. We may assume that \dot{g} is a canonical name, so let $\dot{g}=\bigcup\left\{(\overline{n, m}) \times A_{n, m}: n, m \in \omega \times \omega\right\}$. Choose any $\alpha<\delta$ so that $p \in P_{\alpha}$ and work in $V\left[G_{\alpha}\right]$. We define a function $h \in \omega^{\omega} \cap V\left[G_{\alpha}\right]$. For each $n \in \omega$, we set $h(n)$ to be the minimum m such that there is $q_{n, m} \in A_{n, m}$ having a P_{α}-reduct $p_{n, m} \in G_{\alpha}$. Since $A_{n}=\bigcup\left\{A_{n, m}: m \in \omega\right\}$ is predense in P_{κ}, the set of P_{α}-reducts of members of A_{n} is predense in P_{α}. By hypothesis, there is a $k<n$ such that $h(n)<f(n)$. Since $q_{n, h(m)}$ is compatible with p, this prove that $p \nvdash \dot{g}(n)>f(n)$.

4. Building the models to distinguish $\mathfrak{h}, \mathfrak{b}, \mathfrak{s}$

For simplicity we assume GCH. Let $\aleph_{1} \leq \mu<\kappa<\lambda$ be regular cardinals and assume that $\theta>\lambda$ is a cardinal with cofinality μ. We will need to enumerate names in order to force that $\mathfrak{p} \geq \mu$. For each ccc poset $\tilde{P} \in H\left(\theta^{+}\right)$let $\{\dot{Y}(\tilde{P}, \xi): \xi<\theta\}$ be an enumeration of the set of all canonical \tilde{P}-names of subsets of ω. Also let $\left\{S_{\xi}: \xi<\theta\right\}$ be an enumeration of all subsets of θ that have cardinality less than μ. For each $\eta<\lambda$, let ζ_{η} denote the ordinal product $\theta \cdot \eta$.

Theorem 4.1. There is a ccc poset that forces $\mathfrak{p}=\mathfrak{h}=\mu, \mathfrak{b}=\kappa, \mathfrak{s}=\lambda$ and $\mathfrak{c}=\theta$.

Proof: The poset will be obtained by constructing a $\kappa \times \zeta$-matrix iteration where ζ is the ordinal product $\theta \cdot \lambda$ (the lexicographic ordering on $\lambda \times \theta$). We begin with the $\kappa \times \kappa$-matrix iteration

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \kappa\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\kappa\right\rangle\right\rangle
$$

where, for each $\alpha<\kappa, \mathbb{P}_{\alpha, \alpha}$ forces that $\dot{\mathbb{Q}}_{\alpha, \alpha}$ is \mathbb{D}, for $\beta<\alpha, \dot{\mathbb{Q}}_{\beta, \alpha}$ is the trivial poset, and for $\alpha \leq \beta \leq \kappa, \dot{\mathbb{Q}}_{\beta, \alpha}$ equals $\dot{\mathbb{Q}}_{\alpha, \alpha}$. By Proposition 3.3, there is such a matrix. For each $\alpha<\kappa$, let \dot{f}_{α} be the canonical name for the dominating real added by $\mathbb{P}_{\alpha, \alpha+1}$. By Propositions 3.4 and 3.8, it follows that for all $\beta<\alpha<\kappa$, $\mathbb{P}_{\alpha, \kappa}$ forces that $\dot{f}_{\alpha} \not \leq \dot{g}$ for all $\mathbb{P}_{\beta, \kappa}$-names \dot{g} of elements of ω^{ω}.

We omit the routine enumeration details involved in the recursive construction and state the properties we require of our $\kappa \times \zeta$-matrix iteration. Each step of the
construction uses either (2) of Proposition 3.3 or Proposition 3.6 to choose the next sequence $\left\{\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa\right\}$. In the case of Proposition 3.3 (2), the preservation of inductive condition (1) follows from Proposition 3.4. The preservation through limit steps follows from Proposition 3.8.

There is a matrix-iteration sequence

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \zeta\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\rangle\right\rangle
$$

satisfying each of the following for each $\xi<\zeta$:
(1) for each $\beta<\alpha<\kappa$ and each $\mathbb{P}_{\beta, \xi}$-name \dot{g} for an element of ω^{ω}, $\mathbb{P}_{\alpha, \xi}$ forces that $\dot{f}_{\alpha} \not \leq \dot{g}$;
(2) for each $\beta<\lambda$ with $\zeta_{\beta+1} \leq \xi$ and each $\eta<\theta$, if $\mathbb{P}_{\kappa, \zeta_{\beta}}$ forces that the family $\mathcal{F}_{\beta, \eta}=\left\{\dot{Y}\left(\mathbb{P}_{\kappa, \zeta_{\beta}}, \gamma\right): \gamma \in S_{\eta}\right\}$ has the sfip, then there is a $\bar{\eta}<\zeta_{\beta+1}$ and an $\alpha<\kappa$ such that $\dot{\mathbb{Q}}_{\beta, \bar{\eta}}$ equals the $\mathbb{P}_{\alpha, \bar{\eta}}$-name for $\mathbb{M}\left(\mathcal{F}_{\beta, \eta}\right)$ for all $\alpha \leq \beta \leq \kappa ;$
(3) for each $\beta<\lambda$ such that $\zeta_{\beta}<\xi$, $\mathbb{P}_{\kappa, \zeta_{\beta}+1}$ equals $\mathbb{P}_{\kappa, \zeta_{\beta}} * \mathbb{M}\left(\dot{\mathcal{U}}_{\kappa, \zeta_{\beta}}\right)$ and $\dot{\mathcal{U}}_{\kappa, \zeta_{\beta}}$ is a $\mathbb{P}_{\kappa, \zeta_{\beta}}$-name of an ultrafilter on ω;
(4) for each $\eta<\lambda$ and each $\alpha<\kappa$ such that $\zeta_{\eta}<\xi$, then $\dot{\mathbb{Q}}_{\alpha, \zeta_{\eta}+\alpha}$ is the $\mathbb{P}_{\alpha, \zeta_{\eta}+\alpha}$-name for \mathbb{D}, and $\dot{\mathbb{Q}}_{\beta, \zeta_{\eta}+\alpha}=\dot{\mathbb{Q}}_{\alpha, \zeta_{\eta}+\alpha}$ for all $\alpha \leq \beta \leq \kappa$.
Now we verify that $P=\mathbb{P}_{\kappa, \zeta}$ has the desired properties. Since P is ccc, it preserves cardinals and clearly forces that $\mathfrak{c}=\theta$. It thus follows from Corollary 2.2 that $\mathfrak{p} \leq \mathfrak{h} \leq \mu=\operatorname{cf}(\mathfrak{c})$. If \mathcal{Y} is a family of fewer than μ many canonical P-names of subsets of ω, then there is an $\alpha<\kappa$ and $\eta<\lambda$ such that \mathcal{Y} is a family of $\mathbb{P}_{\alpha, \zeta_{\eta}}$-names. It follows that there is a $\beta<\theta$ such that \mathcal{Y} is equal to the set $\left\{\dot{Y}\left(\mathbb{P}_{\kappa, \zeta_{\beta}}, \gamma\right): \gamma \in S_{\eta}\right\}$. If $\mathbb{P}_{\kappa, \zeta_{\beta}}$ forces that \mathcal{Y} has the sfip, then inductive condition 2 ensures that there is a P-name for a pseudo-intersection for \mathcal{Y}. This shows that P forces that $\mathfrak{p} \geq \mu$. It is clear that inductive condition 1 ensures that $\mathfrak{b} \leq \kappa$. We check that condition 4 ensure that $\mathfrak{b} \geq \kappa$. Suppose that \mathcal{G} is a family of fewer than κ many canonical P-names of members of ω^{ω}. We again find $\eta<\lambda$ and $\alpha<\kappa$ such that \mathcal{G} is a family of $\mathbb{P}_{\alpha, \zeta_{\eta}}$-names. Condition 4 forces there is a function that dominates \mathcal{G}. Finally we verify that condition 3 ensures that P forces that $\mathfrak{s}=\lambda$. If \mathcal{S} is any family of fewer than λ-many canonical P-names of subsets of ω, then there is an $\eta<\lambda$ such that \mathcal{S} is a family of $\mathbb{P}_{\kappa, \zeta_{\eta}}$-names. Evidently, $\mathbb{P}_{\kappa, \zeta_{\eta}+1}$ adds a subset of ω that is not split by \mathcal{S}. There are a number of ways to observe that for each $\eta<\lambda, \mathbb{P}_{\kappa, \zeta_{\eta+1}}$ adds a real that is Cohen over the extension by $\mathbb{P}_{\kappa, \zeta_{\eta}}$. This ensures that P forces that $\mathfrak{s} \leq \lambda$.

In the next result we proceed similarly except that we first add κ many Cohen reals and preserve that they are splitting. We then cofinally add dominating reals with Hechler's \mathbb{D} and again use small posets to ensure $\mathfrak{p} \geq \mu$.

Theorem 4.2. There is a ccc poset that forces $\mathfrak{p}=\mathfrak{h}=\mu, \mathfrak{s}=\kappa, \mathfrak{b}=\lambda$ and $\mathfrak{c}=\theta$.

Proof: We begin with the $\kappa \times \kappa$-matrix iteration

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \kappa\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\kappa\right\rangle\right\rangle
$$

where $\mathbb{P}_{\alpha, \alpha}$ forces that $\dot{\mathbb{Q}}_{\alpha, \alpha}$ is \mathcal{C}_{ω}, for $\beta<\alpha, \dot{\mathbb{Q}}_{\beta, \alpha}$ is the trivial poset, and for $\alpha \leq \beta \leq \kappa, \dot{\mathbb{Q}}_{\beta, \alpha}$ equals $\dot{\mathbb{Q}}_{\alpha, \alpha}$. We let \dot{x}_{α} denote the canonical Cohen real added by $\mathbb{P}_{\alpha, \alpha+1}$. Of course $\mathbb{P}_{\alpha, \alpha+1}$ forces that neither \dot{x}_{α} nor its complement include any infinite subsets of ω that have, for any $\beta<\alpha$, a $\mathbb{P}_{\beta, \alpha+1}$-name. By Proposition 3.8, the inductive condition 4 below holds for $\xi=\kappa$.

Then, proceeding as in the proof of Theorem 4.1, we just assert the existence of a $\kappa \times \zeta$-matrix iteration

$$
\left\langle\left\langle\mathbb{P}_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \zeta\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\rangle\right\rangle
$$

satisfying each of the following for each $\kappa \leq \xi<\zeta$:
(1) for each $\beta<\alpha<\kappa, \mathbb{P}_{\alpha, \xi}$ forces that neither \dot{x}_{α} nor $\omega \backslash \dot{x}_{\alpha}$ include any infinite subset of ω that has a $\mathbb{P}_{\beta, \xi}$-name;
(2) for each $\eta<\lambda$ with $\zeta_{\eta+1} \leq \xi$ and each $\delta<\theta$, if $\mathbb{P}_{\kappa, \zeta_{\eta}}$ forces that the family $\mathcal{F}_{\eta, \delta}=\left\{\dot{Y}\left(\mathbb{P}_{\kappa, \zeta_{\eta}}, \gamma\right): \gamma \in S_{\delta}\right\}$ has the sfip, then there is a $\bar{\delta}<\zeta_{\eta+1}$ and an $\alpha<\kappa$ such that $\dot{\mathbb{Q}}_{\beta, \bar{\delta}}$ equals the $\mathbb{P}_{\alpha, \bar{\delta}}$-name for $\mathbb{M}\left(\mathcal{F}_{\eta, \delta}\right)$ for all $\alpha \leq \beta \leq \kappa ;$
(3) for each $\eta<\lambda$ and each $\alpha<\kappa$ such that $\zeta_{\eta}<\xi$, then $\dot{\mathbb{Q}}_{\alpha, \zeta_{\eta}+\alpha}$ is the $\mathbb{P}_{\alpha, \zeta_{\eta}+\alpha}$-name for $\mathbb{M}\left(\dot{\mathcal{U}}_{\alpha, \zeta_{\beta}}\right)$ where $\dot{\mathcal{U}}_{\alpha, \zeta_{\beta}}$ is a $\mathbb{P}_{\alpha, \zeta_{\beta}}$-name of an ultrafilter on ω, and $\dot{\mathbb{Q}}_{\beta, \zeta_{\eta}+\alpha}=\dot{\mathbb{Q}}_{\alpha, \zeta_{\eta}+\alpha}$ for all $\alpha \leq \beta \leq \kappa$;
(4) for each $\eta<\lambda$ such that $\zeta_{\eta}<\xi, \mathbb{P}_{\kappa, \zeta_{\eta}+1}$ equals $\mathbb{P}_{\kappa, \zeta_{\eta}} * \mathbb{D}$.

Evidently conditions (2) and (3) are similar and can be achieved while preserving condition (1) by Proposition 3.3 (2). The fact that $\mathbb{P}_{\kappa, \zeta_{\eta}} * \mathbb{D}$ preserves condition (1) follows from Proposition 3.7. Condition (1) ensures that $\mathfrak{s} \leq \kappa$, and by arguments similar to those in Theorem 4.1, condition (3) ensures that $\mathfrak{s} \geq \kappa$. The fact that $\mathfrak{b}=\lambda$ (in fact $\mathfrak{d}=\lambda$) follows easily from condition (4). The facts that $\mathfrak{c}=\theta, \mathfrak{p} \geq \mu$ and $\mathfrak{h}=\mu$ are proven exactly as in Theorem 4.1.

5. On (κ, λ)-shattering

In this section we prove, see Theorem 5.9, that it is consistent that strongly $\left(\kappa, \kappa^{+}\right)$-shattering families exist. The method used in this section is the following generalization of matrix iterations used in [8]. A chain $\left\{P_{\alpha}: \alpha<\delta\right\}$ is continuous if for every limit $\alpha<\delta, P_{\alpha}=\bigcup\left\{P_{\beta}: \beta<\alpha\right\}$.

Definition 5.1. Let $\kappa>\omega_{1}$ be a regular cardinal. For an ordinal ζ, a $\kappa \times \zeta$ matrix of posets is a family $\left\{P_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\}$ of ccc posets satisfying for each $\alpha<\kappa$, and $\xi<\eta<\zeta$:
(1) $P_{\alpha, \xi}<\cdot P_{\beta, \xi}$ for all $\alpha<\beta \leq \kappa$;
(2) $P_{\beta, \xi}=\bigcup\left\{P_{\eta, \xi}: \eta<\beta\right\}$ for $\beta \leq \kappa$ with $c f(\beta)>\omega$; and
(3) for some $\gamma<\kappa, P_{\beta, \xi}<\cdot P_{\beta, \eta}$ for all $\gamma \leq \beta \leq \kappa$;
(4) if η is a limit ordinal, there is a cub $C \subset \eta$ and a $\gamma<\kappa$ such that, for all $\gamma \leq \beta<\kappa,\left\{P_{\beta, \delta}: \delta \in C \cup\{\eta\}\right\}$ is a continuous $<-$-increasing chain.

One must be careful with a $\kappa \times \zeta$-matrix since there is no natural extension or definition of $P_{\alpha, \zeta}$ for $\alpha<\kappa$. However, when $\operatorname{cf}(\zeta)>\omega_{1}$ the matrix can be viewed as a matrix type construction of a ccc poset $P_{\kappa, \zeta}$.

Lemma 5.2. If $\left\{P_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\}$ is a $\kappa \times \zeta$-matrix of posets with $\kappa>\omega_{1}$ regular and $\operatorname{cf}(\zeta)>\omega_{1}$, then the poset $P_{\kappa, \zeta}=\bigcup\left\{P_{\kappa, \xi}: \xi<\zeta\right\}$ is ccc and satisfies that $P_{\alpha, \xi}<\cdot P_{\kappa, \zeta}$ for all $\alpha \leq \kappa$ and $\xi<\zeta$.

Proof: Let $\alpha<\kappa$ and $\xi<\zeta$. It follows from property (1) in Definition 5.1 that $P_{\alpha, \xi}<\cdot P_{\kappa, \xi}$. By (3) of Definition 5.1, we have that $\left\{P_{\kappa, \eta}: \xi \leq \eta<\zeta\right\}$ is a $<\cdot-$ chain. This implies that $P_{\kappa, \xi}<\cdot P_{\kappa, \zeta}$. Now we check that $P_{\kappa, \zeta}$ is ccc. Assume that $A \subset P_{\kappa, \zeta}$ has cardinality \aleph_{1}. Choose any $\gamma_{0}<\kappa$ so that $A \subset \bigcup\left\{P_{\beta, \xi}: \beta<\gamma_{0}\right.$, $\xi<\zeta\}$. Similarly choose $\eta<\zeta$ minimal so that $A \subset \bigcup\left\{P_{\beta, \xi}: \beta<\gamma_{0}, \xi<\eta\right\}$. By property (2) of Definition 5.1, there is a $\gamma_{0} \leq \gamma_{1}<\kappa$ such that $A \subset \bigcup\left\{P_{\gamma_{1}, \xi}\right.$: $\xi<\eta\}$. Now choose a cub $C \subset \eta$ as in condition (4) of Definition 5.1, and, using conditions (2) and (3) of Definition 5.1, we can choose $\zeta_{1} \leq \zeta_{2}<\kappa$ so that $A \subset \bigcup\left\{P_{\zeta_{2}, \delta}: \delta \in C\right\} \subset P_{\zeta_{2}, \eta}$. Since $P_{\zeta_{2}, \eta}$ is ccc, it follows that A is not an antichain.

We will use the method of matrix of posets from Definition 5.1 in which our main component posets to raise the value of \mathfrak{s} will be the Laver style posets. Before proceeding it may be helpful to summarize the rough idea of how we generalize the fundamental preservation technique of a matrix iteration. In a $\kappa \times \kappa^{+}$-matrix iteration, one may introduce a sequence $\left\{\dot{a}_{\alpha}: \alpha<\kappa\right\}$ of $P_{\kappa, 1}$-names that have no infinite pseudointersection. With this fixed enumeration, one then ensures that no $P_{\alpha, \gamma}$-name will be forced to be a subset of \dot{a}_{β} for any $\alpha \leq \beta<\kappa$. In the construction introduced in [8], we instead continually add to the list a $P_{0, \gamma+1}$-name \dot{a}_{γ} and at stage $\mu<\kappa^{+}$, we adopt a new enumeration of $\left\{\dot{a}_{\alpha}: \alpha<\mu\right\}$ in order-type κ (coherent with previous listings) and again ensure that no $P_{\alpha, \mu+1^{-}}$ name is a subset of any \dot{a}_{β} for β not listed before α in this new μ th listing. We utilize a \square-principle to make these enumerations sufficiently coherent and to use as the required cub's in condition (4) of Definition 5.1. The greater flexibility in the definition of $\kappa \times \kappa^{+}$-matrix of posets makes this possible.

We recall some notions and results about these studied in [7], [8].
Proposition 5.3. If $P<\cdot P^{\prime}$ are ccc posets, and $\dot{\mathcal{D}} \subset \dot{\mathcal{E}}$ are, respectively, a P name and a P^{\prime}-name of ultrafilters on ω, then $P * \mathbb{L}(\dot{\mathcal{D}})<\cdot P^{\prime} * \mathbb{L}(\dot{\mathcal{E}})$.

Definition 5.4. A family $\mathcal{A} \subset[\omega]^{\omega}$ is thin over a model M if for every I in the ideal generated by \mathcal{A} and every infinite family $\mathcal{F} \in M$ consisting of pairwise disjoint finite sets of bounded size, I is disjoint from some member of \mathcal{F}.

It is routine to prove that for each limit ordinal $\delta, \mathcal{C}_{\delta}$ forces that the family $\left\{\dot{x}_{\alpha}: \alpha \in \delta\right\}$, as defined above, is thin over the ground model. In fact if \mathcal{A} is thin over some model M, then \mathcal{C}_{δ} forces that $\mathcal{A} \cup\left\{\dot{x}_{\alpha}: \alpha \in \delta\right\}$ is also thin over M. This is the notion we use to control that property (1) of the definition of a $\left(\kappa, \kappa^{+}\right)$shattering sequence will be preserved while at the same time raising the value of \mathfrak{s}.

We first note that Proposition 3.5 extends to include this concept.
Proposition 5.5. Suppose that M is a model of a sufficient amount of set-theory and that $\mathcal{A} \subset[\omega]^{\omega}$ is thin over M. Then for any poset P such that $P \in M$ and $P \subset M, \mathcal{A}$ is thin over the forcing extension by P.
Proof: Let $\left\{\dot{F}_{l}: l \in \omega\right\}$ be P-names and suppose that $p \in P$ forces that $\left\{\dot{F}_{l}\right.$: $l \in \omega\}$ are pairwise disjoint subsets of $[\omega]^{k}, k \in \omega$. Also let I be any member of the ideal generated by \mathcal{A}. Working in M, recursively choose $q_{j}<p, j \in \omega$, and H_{j}, l_{j} so that $q_{j} \Vdash \dot{F}_{l_{j}}=\check{H}_{j}$ and $H_{j} \cap \bigcup\left\{H_{i}: i<j\right\}=\emptyset$. The sequence $\left\{H_{j}: j \in \omega\right\}$ is a family in M of pairwise disjoint sets of cardinality k. Therefore there is a j with $H_{j} \cap I=\emptyset$. This proves that p does not force that I meets every member of $\left\{\dot{F}_{l}: l \in \omega\right\}$.

Lemma 5.6 ($[8,3.8])$. Let κ be a regular uncountable cardinal and let $\left\{P_{\beta}\right.$: $\beta \leq \kappa\}$ be a $<\cdot$-increasing chain of ccc posets with $P_{\kappa}=\bigcup\left\{P_{\alpha}: \alpha<\kappa\right\}$. Assume that, for each $\beta<\kappa, \dot{\mathcal{A}}_{\beta}$ is a $P_{\beta+1}$-name of a subset of $[\omega]^{\omega}$ that is forced to be thin over the forcing extension by P_{β}. Also let $\dot{\mathcal{D}}_{0}$ be a $P_{0} * \mathcal{C}_{\{0\} \times \mathfrak{c}}$-name that is forced to be a Ramsey ultrafilter on ω. Then there is a sequence $\left\langle\dot{\mathcal{D}}_{\beta}: 0<\beta<\kappa\right\rangle$ such that for all $\alpha<\beta<\kappa$:
(1) $\dot{\mathcal{D}}_{\beta}$ is a $P_{\beta} * \mathcal{C}_{(\beta+1) \times \mathfrak{c}}$-name;
(2) $\dot{\mathcal{D}}_{\alpha}$ is a subset of $\dot{\mathcal{D}}_{\beta}$;
(3) $P_{\beta} * \mathcal{C}_{(\beta+1) \times \mathfrak{c}}$ forces that $\dot{\mathcal{D}}_{\beta}$ is a Ramsey ultrafilter;
(4) $P_{\alpha} * \mathcal{C}_{(\alpha+1) \times \mathfrak{c}} * \mathbb{L}\left(\dot{\mathcal{D}}_{\alpha}\right)<\cdot P_{\beta} * \mathcal{C}_{(\beta+1) \times \mathfrak{c}} * \mathbb{L}\left(\dot{\mathcal{D}}_{\beta}\right)$; and
(5) $P_{\beta} * \mathcal{C}_{(\beta+1) \times \mathfrak{c}} * \mathbb{L}\left(\dot{\mathcal{D}}_{\beta}\right)$ forces that $\dot{\mathcal{A}}_{\beta}$ is thin over the forcing extension by $P_{\alpha} * \mathcal{C}_{(\alpha+1) \times \mathfrak{c}} * \mathbb{L}\left(\dot{\mathcal{D}}_{\alpha}\right)$.
Lemma 5.7 ($[8,2.7])$. Assume that $P_{0,0}<P_{1,0}$ and that $\dot{\mathcal{A}}$ is a $P_{1,0}$-name of a subset of $[\omega]^{\omega}$. Assume that $\left\langle P_{0, \xi}: \xi<\delta\right\rangle$ and $\left\langle P_{1, \xi}: \xi<\delta\right\rangle$ are $<$-chains such
that $P_{0, \xi}<\cdot P_{1, \xi}$ for all $\xi<\delta$, and that $P_{1, \xi}$ forces that $\dot{\mathcal{A}}$ is thin over the forcing extension by $P_{0, \xi}$ for all $\xi<\delta$. Then $P_{1, \delta}=\bigcup\left\{P_{1, \xi}: \xi<\delta\right\}$ forces that \mathcal{A} is thin over the forcing extension by $P_{0, \delta}=\bigcup\left\{P_{0, \xi}: \xi<\delta\right\}$.

Before proving the next result we recall the notion of a \square_{κ}-sequence. For a set C of ordinals, let $\sup (C)$ be the supremum, $\cup C$, of C and let C^{\prime} denote the set of limit ordinals $\alpha<\sup (C)$ such that $C \cap \alpha$ is cofinal in α. For a limit ordinal α, a set C is a cub in α if $C \subset \alpha=\sup (C)$ and $C^{\prime} \subset C$.

Definition 5.8 ([14]). For a cardinal κ, the family $\left\{C_{\alpha}: \alpha \in\left(\kappa^{+}\right)^{\prime}\right\}$ is a $\square_{\kappa^{-}}$ sequence if for each $\alpha \in\left(\kappa^{+}\right)^{\prime}$:
(1) C_{α} is a cub in α;
(2) if $\operatorname{cf}(\alpha)<\kappa$, then $\left|C_{\alpha}\right|<\kappa$;
(3) if $\beta \in C_{\alpha}^{\prime}$, then $C_{\beta}=C_{\alpha} \cap \beta$.

If there is a \square_{κ}-sequence, then \square_{κ} is said to hold.
Theorem 5.9. It is consistent with $\aleph_{1}<\mathfrak{h}<\mathfrak{s}<\operatorname{cf}(\mathfrak{c})=\mathfrak{c}$ that there is an $(\mathfrak{h}, \mathfrak{s})$-shattering family.

Proof: We start in a model of GCH satisfying \square_{κ} for some regular cardinal $\kappa>\aleph_{1}$. Choose any regular $\lambda>\kappa^{+}$. Fix a \square_{κ}-sequence $\left\{C_{\alpha}: \alpha \in\left(\kappa^{+}\right)^{\prime}\right\}$. We may assume that $C_{\alpha}=\alpha$ for all $\alpha \in \kappa^{\prime}$. For each $\alpha \in\left(\kappa^{+}\right)^{\prime}$, let $o\left(C_{\alpha}\right)$ denote the order-type of C_{α}. When C_{α}^{\prime} is bounded in α with $\eta=\max \left(C_{\alpha}^{\prime}\right)$, then let $\left\{\varphi_{l}^{\alpha}: l \in \omega\right\}$ enumerate $C_{\alpha} \backslash \eta$ in increasing order.

We will construct a $\kappa \times \kappa^{+}$-matrix of posets, $\left\langle P_{\alpha, \xi}: \alpha \leq \kappa, \xi<\kappa^{+}\right\rangle \in H\left(\lambda^{+}\right)$ and prove that the poset $P_{\kappa, \kappa^{+}}$as in Lemma 5.2 has the desired properties. For each $\xi<\eta i<\kappa^{+}$, we will also choose an $\iota(\xi, \eta)<\kappa$ satisfying, as in (3) of the definition of $\kappa \times(\xi+1)$-matrix that $P_{\alpha, \xi}<\cdot P_{\alpha, \eta}$ for all $\iota(\xi, \eta) \leq \alpha<\kappa$. We construct this family by constructing $\left\langle P_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\rangle$ by recursion on limit $\zeta<\kappa^{+}$.

We will recursively define two other families. For each $\alpha<\kappa$ and $\xi<\kappa^{+}$, we will define a set $\operatorname{supp}\left(P_{\alpha, \xi}\right) \subset \xi$ that can be viewed as the union of the supports of the elements of $P_{\alpha, \xi}$ and will satisfy that $\left\{\operatorname{supp}\left(P_{\alpha, \xi}\right): \alpha<\kappa\right\}$ is increasing and covers ξ. For each limit $\eta<\kappa^{+}$of cofinality less than κ and each $n \in \omega$, we will select a canonical $P_{\kappa, \eta+n+1}$-name, $\dot{a}_{\eta+n}$ of a subset ω that is forced to be Cohen over the forcing extension by $P_{\kappa, \eta}$. While this condition looks awkward, we simply want to avoid this task at limits of cofinality κ. Needing notation for this, let $E=\kappa^{+} \backslash \bigcup\{[\eta, \eta+\omega): \operatorname{cf}(\eta)=\kappa\}$.

For each $\alpha<\kappa$ and $\xi<\eta<\kappa^{+}$, we define $\mathcal{A}_{\alpha, \xi, \eta}$ to be the family $\left\{\dot{a}_{\gamma}\right.$: $\left.\gamma \in E \cap \eta \backslash \operatorname{supp}\left(P_{\alpha, \xi}\right)\right\}$. The intention is that for all $\alpha<\xi \leq \eta, \mathcal{A}_{\alpha, \xi, \eta}$ is a family of $P_{\kappa, \eta}$-names which is forced by the poset $P_{\kappa, \eta}$ to be thin over the forcing extension by $P_{\alpha, \xi}$. Let us note that if $\alpha<\beta$ and $\xi \leq \eta$, then $\mathcal{A}_{\alpha, \xi, \eta} \backslash \mathcal{A}_{\beta, \eta, \eta}$
should then be a set of $P_{\beta, \eta}$-names. By ensuring that $\operatorname{supp}\left(P_{\alpha, \xi}\right)$ has cardinality less than κ for all $\alpha<\kappa$ and $\xi<\kappa^{+}$, this will ensure that the family $\left\{\dot{a}_{\eta}: \eta \in E\right\}$ is $\left(\kappa, \kappa^{+}\right)$-shattering. For each $\eta<\kappa^{+}$with cofinality κ we will ensure that $P_{\kappa, \eta+1}$ has the form $P_{\kappa, \eta} * \mathcal{C}_{\kappa \times \lambda}$ and that $P_{\kappa, \eta+2}=P_{\kappa, \eta+1} * \mathbb{L}\left(\dot{\mathcal{D}}_{\kappa, \eta}\right)$ for a $P_{\kappa, \eta+1}$-name $\dot{\mathcal{D}}_{\kappa, \eta}$ of an ultrafilter on ω. This will ensure that $\mathfrak{c} \geq \lambda$ and $\mathfrak{s}=\kappa^{+}$. The sequence defining $P_{\kappa, \eta+3}$ will be devoted to ensuring that $\mathfrak{p} \geq \kappa$.

We start the recursion in a rather trivial fashion. For each $\alpha<\kappa, P_{\alpha, 0}=\mathcal{C}_{\omega}$ and for each $n \in \omega, P_{\alpha, n+1}=P_{\alpha, n} * \mathcal{C}_{\omega}$. We may also let $\iota(n, m)=0$ for all $n<m<\omega$. For each $n \in \omega$, let \dot{a}_{n} be the canonical name of the Cohen real added by the second coordinate of $P_{\kappa, n+1}=P_{\kappa, n} * \mathcal{C}_{\omega}$. For each $\alpha<\kappa$ and $n \in \omega$, define $\operatorname{supp}\left(P_{\alpha, n}\right)$ to be n.

It should be clear that $P_{\kappa, \omega}$ forces that for each $\alpha<\kappa$ and $n \in \omega$, the family $\left\{\dot{a}_{m}: n \leq m \in \omega\right\}$ is thin over the forcing extension by $P_{\alpha, n}$. Assume that P is a poset whose elements are functions with domain a subset of an ordinal ξ. We adopt the notational convention that for a P-name \dot{Q} for a poset, $P *_{\xi} \dot{Q}$ will denote the representation of $P * \dot{Q}$ whose elements have the form $p \cup\{(\xi, \dot{q})\}$ for $(p, \dot{q}) \in P * \dot{Q}$.

We will prove, by induction on limit $\zeta<\kappa^{+}$, there is a $\kappa \times(\zeta+1)$-matrix $\left\{P_{\alpha, \xi}\right.$: $\alpha \leq \kappa, \xi \leq \zeta\}$ and families $\left\{\mathcal{A}_{\alpha, \xi, \eta}: \alpha<\kappa, \xi \leq \eta \leq \zeta\right\}$ satisfying conditions (1) $-(10)$.
(1) For all $\alpha<\beta<\kappa$ and $\xi<\eta<\zeta$, if $P_{\alpha, \xi}<\cdot P_{\beta, \eta}$, then the poset $P_{\beta, \eta}$ forces that the family $\mathcal{A}_{\alpha, \xi, \eta} \backslash \mathcal{A}_{\beta, \eta, \eta}$ is thin over the forcing extension by $P_{\alpha, \xi}$;
(2) for all $\alpha<\kappa$ and $\xi<\zeta$, the elements p of the poset $P_{\alpha, \xi}$ are functions that have a finite domain, $\operatorname{dom}(p)$, contained in ξ;
(3) if C_{ζ}^{\prime} is cub in ζ and $\eta \in C_{\zeta}^{\prime}$, then
(a) $P_{n, \zeta}$ is the trivial poset and $\operatorname{supp}\left(P_{n, \zeta}\right)=\emptyset$ for $n \in \omega$;
(b) $P_{\alpha, \zeta}=P_{\alpha, \eta}$ and $\operatorname{supp}\left(P_{\alpha, \zeta}\right)=\operatorname{supp}\left(P_{\alpha, \eta}\right)$ for all $o\left(C_{\eta}\right) \leq \alpha<o\left(C_{\eta}\right)+\omega$; and
(c) $P_{\alpha, \zeta}=\bigcup\left\{P_{\alpha, \eta}: \eta \in C_{\zeta}^{\prime}\right\}$ and $\operatorname{supp}\left(P_{\alpha, \zeta}\right)=\bigcup\left\{\operatorname{supp}\left(P_{\alpha, \eta}\right): \eta \in C_{\zeta}^{\prime}\right\}$ for all $o\left(C_{\zeta}\right) \leq \alpha<\kappa$;
also, let $\iota(\eta, \zeta)=o\left(C_{\eta}\right)$ for all $\eta \in C_{\zeta}^{\prime}$ and for all $\gamma<\zeta \backslash C_{\zeta}^{\prime}$ let $\iota(\gamma, \zeta)=\iota(\gamma, \eta)$ where $\eta=\min \left(C_{\zeta}^{\prime} \backslash \gamma\right)$;
(4) if $\max \left(C_{\zeta}^{\prime}\right)<\zeta$ then let

$$
\iota_{\zeta}=\max \left(o\left(C_{\zeta}\right), \sup \left\{\iota\left(\varphi_{l}^{\zeta}, \varphi_{l^{\prime}}^{\zeta}+n\right): l \leq l^{\prime}<n<\omega\right\}\right)
$$

and
(a) set $P_{\alpha, \zeta}=P_{\alpha, \varphi_{0}^{\zeta}}$ and $\operatorname{supp}\left(P_{\alpha, \zeta}\right)=\operatorname{supp}\left(P_{\alpha, \varphi_{0}^{\zeta}}\right)$ for all $\alpha<\iota_{\zeta}$;
(b) set, for $\iota_{\zeta} \leq \alpha<\kappa, P_{\alpha, \zeta}=\bigcup\left\{P_{\alpha, \varphi_{l}^{\zeta}+n}: l, n \in \omega\right\}$ and $\operatorname{supp}\left(P_{\alpha, \zeta}\right)=$ $\bigcup\left\{\operatorname{supp}\left(P_{\alpha, \varphi_{l}^{\varsigma}+n}\right): l, n \in \omega\right\} ;$
(c) for each $\gamma \in \varphi_{0}^{\zeta}$ let $\iota(\gamma, \zeta)=\iota\left(\gamma, \varphi_{0}^{\zeta}\right)$, let $\iota\left(\varphi_{0}^{\zeta}, \zeta\right)=o\left(C_{\gamma}\right)$, and for each $\varphi_{0}^{\zeta}<\gamma<\zeta, \iota(\gamma, \zeta)$ is the maximum of $\iota \zeta$ and $\min \left\{\iota\left(\gamma, \varphi_{l}^{\zeta}+n\right): l, n \in \omega\right.$ and $\left.\gamma<\varphi_{l}^{\zeta}+n\right\}$;
(5) if $o\left(C_{\zeta}\right)<\kappa$, then for all $\alpha<\kappa$ and $n \in \omega$:
(a) $P_{\alpha, \zeta+n+1}=P_{\alpha, \zeta+n} * \zeta+n \mathcal{C}_{\omega}$;
(b) $\dot{a}_{\zeta+n}$ in the canonical $P_{0, \zeta+n} *_{\zeta+n} \mathcal{C}_{\omega}$-name for the Cohen real added by the second coordinate copy of \mathcal{C}_{ω};
(c) $\operatorname{supp}\left(P_{\alpha, \zeta+n+1}\right)=\operatorname{supp}\left(P_{\alpha, \zeta}\right) \cup[\zeta, \zeta+n]$; and
(d) $\iota(\zeta+k, \zeta+n+1)=0$ for all $k \leq n$, and for all $\gamma<\zeta, \iota(\gamma, \zeta+n+1)=$ $\iota(\gamma, \zeta)$;
(6) if $o\left(C_{\zeta}\right)=\kappa$, then for all $\alpha<\kappa, P_{\alpha, \zeta+1}=P_{\alpha, \zeta} *{ }_{\zeta} \mathcal{C}_{\alpha+1 \times \lambda}$;
(7) if $o\left(C_{\zeta}\right)=\kappa$, then for all $n \in \omega$ and all $\alpha<\kappa, P_{\alpha, \zeta+3+n}=P_{\alpha, \zeta+3}$;
(8) if $o\left(C_{\zeta}\right)=\kappa$, then there is an $\iota_{\zeta}<\kappa$ such that $P_{\beta, \zeta+2}=P_{\beta, \zeta+1}$ for all $\beta<\iota_{\zeta}$, and there is a sequence $\left\langle\dot{\mathcal{D}}_{\alpha, \zeta}: \iota_{\zeta} \leq \alpha<\kappa\right\rangle$ such that for each $\iota_{\zeta} \leq \alpha<\kappa$:
(a) $\dot{\mathcal{D}}_{\alpha, \zeta}$ is a $P_{\alpha, \kappa+1}$-name of a Ramsey ultrafilter on ω;
(b) for each $\iota_{\zeta} \leq \beta<\alpha, \dot{\mathcal{D}}_{\beta, \zeta} \subset \dot{\mathcal{D}}_{\alpha, \zeta}$;
(c) $P_{\alpha, \zeta+2}=P_{\alpha, \zeta+1} *_{\zeta+1} \mathbb{L}\left(\dot{\mathcal{D}}_{\alpha, \kappa}\right)$;
(9) if $o\left(C_{\zeta}\right)=\kappa$, then for ι_{ζ} chosen as in (8)
(a) for each $\alpha<\iota_{\zeta}, P_{\alpha, \kappa+3}=P_{\alpha, \kappa+2}$;
(b) $P_{\iota_{\zeta}, \zeta+3}=P_{\iota_{\zeta}, \zeta+2} * \zeta+2 \dot{Q}_{\iota_{\zeta}, \zeta+2}$ for some $P_{\iota_{\zeta}, \zeta}$ - name, $\dot{Q}_{\iota_{\zeta}, \zeta+2}$ in $H\left(\lambda^{+}\right)$of a finite support product of σ-centered posets;
(c) for each $\iota_{\zeta}<\alpha<\kappa, P_{\alpha, \zeta+3}=P_{\alpha, \zeta+2} *_{\zeta+2} \dot{Q}_{\iota_{\zeta}, \zeta+2}$;
(10) if $o\left(C_{\zeta}\right)=\kappa$, then for all $\alpha<\kappa, n \in \omega$, and $\gamma<\zeta, \operatorname{supp}\left(P_{\alpha, \zeta+n+1}\right)=$ $\operatorname{supp}\left(P_{\alpha, \zeta}\right) \cup[\zeta, \zeta+n], \iota(\gamma, \zeta+n)=\iota(\gamma, \zeta)$, and $\iota(\zeta+k, \zeta+n)=\iota_{\zeta}$ for all $k<n \in \omega$.

It should be clear from the properties, and by induction on ζ, that for all $\alpha<\kappa$ and $\xi<\zeta$, each $p \in P_{\alpha, \xi}$ is a function with finite domain contained in $\operatorname{supp}\left(P_{\alpha, \xi}\right)$. Similarly, it is immediate from the hypotheses that $\operatorname{supp}\left(P_{\alpha, \xi}\right)$ has cardinality less than κ for all $(\alpha, \xi) \in \kappa \times \kappa^{+}$.

Before verifying the construction, we first prove, by induction on ζ, that the conditions (2)-(10) ensure that for all $\xi \leq \zeta$ and $\eta \in C_{\xi}^{\prime}$:
Claim (a): $P_{\alpha, \eta}<\cdot P_{\alpha, \xi}$ for all $o\left(C_{\eta}\right)+\omega \leq \alpha \in \kappa$.
Claim (b): $P_{\alpha, \eta}=P_{\alpha, \xi}$ for all $\alpha<o\left(C_{\eta}\right)+\omega$.
If $o\left(C_{\xi}\right) \leq \alpha$, then $P_{\alpha, \eta}<\cdot P_{\alpha, \xi}$ follows immediately from clause 2 (c) and, by induction, clauses 3 (a). Now assume $\alpha<o\left(C_{\xi}\right)+\omega$. If C_{ξ}^{\prime} is not cofinal in ξ, then, by induction, $P_{\alpha, \eta}=P_{\alpha, \varphi_{0}^{\xi}}$ and, by clause 3 (a), $P_{\alpha, \varphi_{0}^{\xi}}=P_{\alpha, \xi}$. If C_{ξ}^{\prime} is cofinal in ξ, then choose $\bar{\eta} \in C_{\xi}^{\prime}$ so that $o\left(C_{\bar{\eta}}\right) \leq \alpha<o\left(C_{\bar{\eta}}\right)+\omega$. By clause 2 (b), $P_{\alpha, \xi}=P_{\alpha, \bar{\eta}}$. By the inductive assumption, $P_{\alpha, \eta}=P_{\alpha, \bar{\eta}}$ since one of $\eta=\bar{\eta}$, $\eta \in C_{\bar{\eta}}^{\prime}$ or $\bar{\eta} \in C_{\eta}^{\prime}$ must hold.

The second thing we check is that the conditions (2)-(10) also ensure that for each $\zeta<\kappa^{+},\left\langle P_{\alpha, \eta}: \alpha \leq \kappa, \eta \leq \zeta\right\rangle$ is a $\kappa \times \zeta$-matrix. We assume, by induction on limit ζ, that for $\gamma<\eta<\zeta,\left\{P_{\alpha, \gamma}: \alpha \leq \kappa\right\}$ is a $<\cdot$-chain and that $P_{\alpha, \gamma}<\cdot P_{\alpha, \eta}$ for all η with $\iota(\gamma, \eta) \leq \alpha \leq \kappa$. Note that clauses 3 (c) and 4 (b) of the construction ensure that condition (4) of Definition 5.1 holds. We check the details for $\zeta+1$ and skip the easy subsequent verification for $\zeta+n, n \in \omega$. Suppose first that C_{ζ}^{\prime} is cofinal in ζ and let $\iota(\gamma, \zeta) \leq \alpha<\kappa$ for some $\gamma<\zeta$. Of course we may assume that $\gamma \notin C_{\zeta}^{\prime}$. Since C_{ζ}^{\prime} is cofinal in ζ, let $\eta=\min \left(C_{\zeta}^{\prime} \backslash \gamma\right)$. By induction, $P_{\alpha, \gamma}<\cdot P_{\alpha, \eta}<\cdot P_{\alpha, \zeta}$. Now assume that C_{ζ}^{\prime} is not cofinal in ζ. If $\gamma \leq \varphi_{0}^{\zeta}$, then $\iota(\gamma, \zeta)=\iota\left(\gamma, \varphi_{0}^{\zeta}\right)$, and so we have that $P_{\alpha, \gamma}<\cdot P_{\alpha, \varphi_{0}^{\zeta}}<\cdot P_{\alpha, \zeta}$. If $\varphi_{0}^{\zeta}<\gamma$, then choose any $l \in \omega$ so that $\gamma<\varphi_{l}^{\zeta}$. By construction, $\iota(\gamma, \zeta) \geq \iota\left(\gamma, \varphi_{l}^{\zeta}\right)$ and so for $\iota(\gamma, \zeta) \leq \alpha<\kappa, P_{\alpha, \gamma}<\cdot P_{\alpha, \varphi_{l}^{\zeta}}<\cdot P_{\alpha, \zeta}$.

Now we consider the values of $\mathcal{A}_{\alpha, \xi, \eta}$ for $\alpha<\kappa$ and $\omega \leq \xi \leq \eta$ by examining the names \dot{a}_{γ} for $\gamma \in E$.

By clause (5), \dot{a}_{γ} is a $P_{0, \gamma+1}$-name and γ is in the domain of each $p \in P_{0, \gamma+1}$ appearing in the name. One direction of this next claim is then obvious given that the domain of every element of $P_{\alpha, \xi}$ is a subset of $\operatorname{supp}\left(P_{\alpha, \xi}\right)$.
Claim (c): \dot{a}_{γ} is a $P_{\alpha, \xi}$-name if and only if $\gamma \in \operatorname{supp}\left(P_{\alpha, \xi}\right)$.
Assume that $\gamma \in \operatorname{supp}\left(P_{\alpha, \xi}\right)$. We prove this by induction on ξ. If ξ is a limit, then $\operatorname{supp}\left(P_{\alpha, \xi}\right)$ is defined as a union, hence there is an $\eta<\xi$ such that $\gamma \in$ $\operatorname{supp}\left(P_{\alpha, \eta}\right)$ and $P_{\alpha, \eta}<P_{\alpha, \xi}$. If $\xi=\eta+n$ for some limit η and $n \in \omega$, then $P_{\alpha, \eta}<\cdot P_{\alpha, \xi}$ and so we may assume that $\eta \leq \gamma=\eta+k<\eta+n$ and that $o\left(C_{\eta}\right)<\kappa$. Since $P_{0, \eta+k}<\cdot P_{\alpha, \eta+k}<\cdot P_{\alpha, \eta+n}=P_{\alpha, \xi}$, it follows that \dot{a}_{γ} is a $P_{\alpha, \xi}$ name.

We prove by induction on ξ, ξ a limit, that for all $\gamma<\xi$:
Claim (d): for all $\alpha<\iota(\gamma+1, \xi), \gamma$ is not in $\operatorname{supp}\left(P_{\alpha, \xi}\right)$.
First consider the case that C_{ξ}^{\prime} is cofinal in ξ and let η be the minimum element of $C_{\xi}^{\prime} \backslash(\gamma+1)$. By definition $\iota(\gamma+1, \xi)$ is equal to $\iota(\gamma+1, \eta)$ and the claim follows since we have that $\operatorname{supp}\left(P_{\iota(\gamma+1, \xi), \zeta}\right)=\operatorname{supp}\left(P_{\iota(\gamma+1, \xi), \eta}\right)$. Now assume that C_{ξ}^{\prime} is not cofinal in ξ and assume that $\alpha<\iota(\gamma+1, \xi)$. We break into cases: $\gamma<\varphi_{0}^{\xi}$ and $\varphi_{0}^{\xi} \leq \gamma<\xi$. In the first case $\iota(\gamma, \xi)=\iota\left(\gamma, \varphi_{0}^{\xi}\right)$ and the claim follows by induction and the fact that $\operatorname{supp}\left(P_{\alpha, \varphi_{0}^{\xi}}\right)=\operatorname{supp}\left(P_{\alpha, \xi}\right)$ for all $\alpha<\iota(\gamma, \xi)$. Now consider $\varphi_{0}^{\xi} \leq \gamma<\xi$. If $\alpha<\iota \xi$, then $P_{\alpha, \xi}=P_{\alpha, \varphi_{0}^{\xi}}$ and, since $\iota_{\xi} \leq \iota(\gamma+1, \xi), \gamma$ is not in $\operatorname{supp}\left(P_{\alpha, \varphi_{0}^{\xi}}\right)$. Otherwise, choose $l, n \in \omega$ so that $\iota \xi \leq \alpha<\iota(\gamma+1, \xi)=\iota\left(\gamma+1, \varphi_{l}^{\xi}+n\right)$ as in the definition of $\iota(\gamma, \xi)$. By the minimality in the choice of $\varphi_{l}^{\xi}+n$, it follows that γ is not in $\operatorname{supp}\left(P_{\alpha, \varphi^{\prime}+n}^{\xi}\right)$ for
all $l^{\prime}, n \in \omega$. Since $\operatorname{supp}\left(P_{\alpha, \xi}\right)$ is the union of all such sets, it follows that γ is not in $\operatorname{supp}\left(P_{\alpha, \xi}\right)$.

Next we prove, by induction on ζ, that the matrix so chosen will additionally satisfy condition (1). We first find a reformulation of condition (1). Note that by Claim (c), $\mathcal{A}_{\alpha, \xi, \eta}=\left\{\dot{a}_{\gamma}: \gamma \in E \cap \eta \backslash \operatorname{supp}\left(P_{\alpha, \xi}\right)\right\}$.
Claim (e): For each $\alpha<\kappa$ and $\xi<\eta<\zeta$ and finite subset $\left\{\gamma_{i}: i<m\right\}$ of $E \cap \eta \backslash \operatorname{supp}\left(P_{\alpha, \xi}\right)$ there is a $\beta<\kappa$ such that $\iota(\xi, \eta) \leq \beta,\left\{\gamma_{i}: i<m\right\} \subset \operatorname{supp}\left(P_{\beta, \eta}\right)$ and $P_{\beta, \eta}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is thin over the forcing extension by $P_{\alpha, \xi}$.

Let us verify that Claim (e) follows from condition (1). Let α, ξ, η and $\left\{\gamma_{i}\right.$: $i<m\}$ be as in the statement of Claim (e). Choose $\beta<\kappa$ so that $\iota(\xi, \eta)$ and each $\iota\left(\gamma_{i}+1, \eta\right)$ is less than β. Then $P_{\alpha, \xi}<\cdot P_{\beta, \eta}$ and $\left\{\dot{a}_{\gamma_{i}}: i<m\right\} \subset \mathcal{A}_{\alpha, \xi, \eta} \backslash \mathcal{A}_{\beta, \eta, \eta}$. This value of β satisfies the conclusion of Claim (e).

Now assume that Claim (e) holds and we prove that condition (1) holds. Assume that $P_{\alpha, \xi}<\cdot P_{\delta, \eta}$. To prove that $\mathcal{A}_{\alpha, \xi, \eta} \backslash \mathcal{A}_{\delta, \eta, \eta}$ is forced by $P_{\delta, \eta}$ to be thin over the forcing extension by $P_{\alpha, \xi}$, it suffices to prove this for any finite subset of $\mathcal{A}_{\alpha, \xi, \eta} \backslash \mathcal{A}_{\delta, \eta, \eta}$. Thus, let $\left\{\gamma_{i}: i<m\right\}$ be any finite subset of $\operatorname{supp}\left(P_{\delta, \eta}\right) \cap E \cap \eta \backslash \operatorname{supp}\left(P_{\alpha, \xi}\right)$. Choose β as in the conclusion of the claim. If $\beta \leq \delta$, then $P_{\delta, \eta}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is thin over the forcing extension because $P_{\beta, \eta}<\cdot P_{\delta, \eta}$ does. Similarly, if $\delta<\beta$, then $P_{\delta, \eta}$ being completely embedded in $P_{\beta, \eta}$ cannot force that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is not thin over the forcing extension by $P_{\alpha, \xi}$.

We assume that $\omega \leq \zeta<\kappa^{+}$is a limit and that $\left\langle P_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta\right\rangle$ have been chosen so that conditions (1)-(10) are satisfied. We prove, by induction on $n \in \omega$, that there is an extension $\left\langle P_{\alpha, \xi}: \alpha \leq \kappa, \xi<\zeta+n\right\rangle$ that also satisfies conditions (1)-(10).

For $n=1$, we define the sequence $\left\langle P_{\alpha, \zeta}: \alpha<\kappa\right\rangle$ according to the requirement of (3) or (4) as appropriate. It follows from Lemma 5.7 that (2) will hold for the extension $\left\langle P_{\alpha, \xi}: \alpha<\kappa, \xi<\zeta+1\right\rangle$. Conditions (3)-(10) hold since there are no new requirements. We must verify that the condition in Claim (e) holds for $\eta=\zeta$. Let α, ξ and $\left\{\gamma_{i}: i<m\right\}$ be as in the statement of Claim (e) with $\eta=\zeta$. Let $C_{\zeta}=\left\{\eta_{\beta}: \beta<o\left(C_{\zeta}\right)\right\}$ be an order-preserving enumeration. We first deal with case that C_{ζ}^{\prime} is cofinal in ζ. Choose any $\beta_{0}<\kappa$ large enough so that $\gamma_{i} \in \operatorname{supp}\left(P_{\beta_{0}, \zeta}\right)$ for all $i<m$. Choose $\beta_{0}<\beta$ so that $\iota\left(\xi, \eta_{\beta_{0}}\right) \leq \beta$. Now we have that $P_{\alpha, \xi}<\cdot P_{\beta, \eta_{\beta_{0}}}$ and $P_{\beta, \eta_{\beta_{0}}}<\cdot P_{\beta, \zeta}$. Applying Claim (e) to $\eta_{\beta_{0}}$, we have that $P_{\beta, \eta_{\beta_{0}}}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is thin over the forcing extension by $P_{\alpha, \xi}$. As in the proof of Claim (e), this implies that $P_{\beta, \zeta}$ forces the same thing.

Now the case that C_{ζ}^{\prime} is not cofinal in ζ. If $\alpha<\iota_{\zeta}$, then apply Claim (e) to choose β so that $P_{\beta, \iota_{\zeta}}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is not thin over the extension by $P_{\alpha, \xi}$. Since $P_{\beta, \iota_{\zeta}}<P_{\beta, \zeta}$ holds for all $\beta, P_{\beta, \zeta}$ also forces that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is not thin over the extension by $P_{\alpha, \xi}$. If $\iota_{\zeta} \leq \alpha$, first choose $\delta<\kappa$ large enough so that $\iota(\xi, \zeta)$ and each $\iota\left(\gamma_{i}+1, \zeta\right)$ is less than δ. Since $\left\{\gamma_{i}: i<m\right\}$ is a subset of $\operatorname{supp}\left(P_{\delta, \zeta}\right)$, we can choose $l<\omega$ large enough so that $\left\{\gamma_{i}: i<\omega\right\} \subset \operatorname{supp}\left(P_{\delta, \varphi_{l}^{\zeta}}\right)$. Applying Claim (e) to $\eta=\varphi_{l}^{\zeta}$, we choose β as in the claim. As we have seen, there is no loss to assuming that $\delta \leq \beta$ and, since $P_{\beta, \varphi_{l}^{\zeta}}<\cdot P_{\beta, \zeta}$, this completes the proof.

If $o\left(C_{\zeta}\right)<\kappa$, then the construction of $\left\langle P_{\alpha, \zeta+n}: n \in \omega, \alpha<\kappa\right\rangle$ is canonical so that conditions (2)-(10) hold. We again verify that Claim (e) holds for all values of η with $\zeta<\eta<\zeta+\omega$. Let α, ξ and $\left\{\gamma_{i}: i<m\right\}$ be as in Claim (e) for $\eta=\zeta+n$. We may assume that $\left\{\gamma_{i}: i<m\right\} \cap \zeta=\left\{\gamma_{i}: i<\bar{m}\right\}$ for some $\bar{m} \leq m$. If $\xi<\zeta$, let $\bar{\xi}=\xi$, otherwise, choose any $\bar{\xi}<\zeta$ so that $P_{\alpha, \zeta}=P_{\alpha, \bar{\xi}}$. Note that $\left\{\gamma_{i}: \bar{m} \leq i<m\right\}$ is disjoint from the interval $[\zeta, \xi)$. Choose $\beta<\kappa$ to be greater than $\iota(\bar{\xi}, \zeta)$ and each $\iota\left(\gamma_{i}+1, \zeta\right), i<\bar{m}$, and so that $P_{\beta, \zeta}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<\bar{m}\right\}$ is thin over the extension by $P_{\alpha, \bar{\xi}}$. If $\bar{m}=m$ we are done by the fact that $P_{\alpha, \xi}$ is isomorphic to $P_{\alpha, \bar{\xi}} * \mathcal{C}_{\omega}$. In fact, we similarly have that $P_{\beta, \xi}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<\bar{m}\right\}$ is thin over the forcing extension by $P_{\alpha, \xi}$. Since $P_{\beta, \zeta+n}$ forces that $\bigcup\left\{\dot{a}_{\gamma_{i}}: \bar{m} \leq i<m\right\}$ is a Cohen real over the forcing extension by $P_{\beta, \xi}$ it also follows that $P_{\beta, \zeta+n}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is thin over the extension by $P_{\alpha, \xi}$.

Now we come to the final case where $o\left(C_{\zeta}\right)=\kappa$ and the main step to the proof. The fact that Claim (e) will hold for $\eta=\zeta+1$ is proven as above for the case when $o\left(C_{\zeta}\right)<\kappa$ and C_{ζ}^{\prime} is cofinal in ζ. For values of $n>3$, there is nothing to prove since $P_{\alpha, \zeta+3+k}=P_{\alpha, \zeta+3}$ for all $k \in \omega$. We also note that $\zeta+n \notin E$ for all $n \in \omega$.

At step $\eta=\zeta+2$ we must take great care to preserve Claim (e) and at step $\zeta+3$ we make a strategic choice towards ensuring that \mathfrak{p} will equal κ. Indeed, we begin by choosing the lexicographic minimal pair, $\left(\xi_{\zeta}, \alpha_{\zeta}\right)$, in $\zeta \times \kappa$ with the property that there is a family of fewer than κ many canonical $P_{\alpha_{\zeta}, \xi_{\zeta}}$-names of subsets of ω and a $p \in P_{\alpha_{\zeta}, \xi_{\zeta}}$ that forces over $P_{\kappa, \zeta}$ that there is no pseudointersection. If there is no such pair, then let $\left(\alpha_{\zeta}, \xi_{\zeta}\right)=(\omega, \zeta+1)$. Choose ι_{ζ} so that $P_{\alpha_{\zeta}, \xi_{\zeta}}<\cdot P_{\iota_{\zeta}, \zeta+1}$.

Assume that $\alpha, \xi,\left\{\gamma_{i}: i<m\right\}$ are as in Claim (e). We first check that if $\xi<\zeta+2$, then there is nothing new to prove. Indeed, simply choose $\beta<\kappa$ large enough so that $P_{\beta, \zeta+1}$ has the properties required in Claim (e) for $P_{\alpha, \xi}$. Of course it follows that $P_{\beta, \zeta+2}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is thin over the extension by $P_{\alpha, \xi}$ since $P_{\beta, \zeta+1}$ already forces this.

This means that we need only consider instances of Claim (e) in which $\xi=\zeta+2$. The analogous statement also holds when we move to $\zeta+3$. For each $\beta<\kappa$, let

$$
T_{\beta}=E \cap \operatorname{supp}\left(P_{\beta+1, \zeta}\right) \backslash \operatorname{supp}\left(P_{\beta, \zeta}\right)
$$

and note that $P_{\beta+1, \zeta+1}$ forces that $\left\{\dot{a}_{\gamma}: \gamma \in T_{\beta}\right\}$ is thin over the extension by $P_{\beta, \zeta+1}$. Most of the work has been done for us in Lemma 5.6. Except for some minor re-indexing, we can assume that the sequence $\left\{P_{\beta}: \beta<\kappa\right\}$ in the statement of Lemma 5.6 is the sequence $\left\{P_{\beta, \zeta}: \beta<\kappa\right\}$. We also have that $P_{\beta, \zeta} * \mathcal{C}_{(\beta+1) \times \mathfrak{c}}$ is isomorphic to $P_{\beta, \zeta+1}$. We can choose any $P_{0, \zeta+1}$-name $\dot{\mathcal{D}}_{0, \zeta}$-name of a Ramsey ultrafilter on ω. The family $\left\{\dot{a}_{\gamma}: \gamma \in T_{\beta}\right\}$ will play the role of $\dot{\mathcal{A}}_{\beta}$ in the statement of Lemma 5.6 , and we let $\left\{\dot{\mathcal{D}}_{\beta, \zeta}: 0<\beta<\kappa\right\}$ be the sequence as supplied in Lemma 5.6.

Now assume that $\alpha<\kappa$ and that $\left\{\gamma_{i}: i<m\right\} \subset E \cap \zeta \backslash \operatorname{supp}\left(P_{\alpha, \zeta+1}\right)$. Let $\left\{\dot{F}_{l}: l \in \omega\right\}$ be any sequence of $P_{\alpha, \zeta+2}$-names of pairwise disjoint elements of [$\left.\omega\right]^{k}$ for some $k \in \omega$. We must find a sufficiently large $\beta<\kappa$ so that $P_{\beta, \zeta+2}$ forces that $\dot{a}_{\gamma_{0}} \cup \cdots \cup \dot{a}_{\gamma_{m-1}}$ is disjoint from \dot{F}_{l} for some $l \in \omega$. Let $\left\{\beta_{j}: j<\bar{m}\right\}$ be the set (listed in increasing order) of $\beta<\kappa$ such that $T_{\beta} \cap\left\{\gamma_{i}: i<m\right\}$ is not empty and let $\beta_{m}=\beta_{m-1}+1$. By re-indexing we can assume there is a sequence $\left\{m_{j}: j \leq \bar{m}\right\} \subset m+1$ so that $\gamma_{i} \in T_{\beta_{j}}$ for $m_{j} \leq i<m_{j+1}$. Although $P_{\beta, \zeta+2}=P_{\beta, \zeta+1}$ for values of $\beta<\iota \zeta$, we will let $\bar{P}_{\beta, \zeta+2}=P_{\beta, \zeta+1} * \zeta+1 \mathbb{L}\left(\dot{\mathcal{D}}_{\beta, \zeta}\right)$ for $\beta<\iota_{\zeta}$, and for consistent notation, let $\bar{P}_{\beta, \zeta+2}=P_{\beta, \zeta+2}$ for $\iota_{\zeta} \leq \beta<\kappa$. We note that $\left\{\dot{F}_{l}: l \in \omega\right\}$ is also sequence of $\bar{P}_{\alpha, \zeta+2}$-names of pairwise disjoint elements of $[\omega]^{k}$.

For each $j<\bar{m}$, let \dot{L}_{j+1} be the $\bar{P}_{\beta_{j}+1, \zeta+2}$-name of those l such that \dot{F}_{l} is disjoint from $\bigcup\left\{\dot{a}_{\gamma_{i}}: i<m_{j+1}\right\}$. It follows, by induction on $j<\bar{m}$, that $\bar{P}_{\beta_{j}+1, \zeta+2}$ forces that \dot{L}_{j+1} is infinite since $\bar{P}_{\beta_{j}+1, \zeta+2}$ forces that $\left\{\dot{a}_{\gamma_{i}}: m_{j} \leq\right.$ $\left.i<m_{j+1}\right\}$ is thin over the forcing extension by $\bar{P}_{\beta_{j}, \zeta+2}$. It now follows $\bar{P}_{\beta_{m}, \zeta+2}$ forces that $\left\{\dot{a}_{\gamma_{i}}: i<m\right\}$ is thin over the forcing extension by $\bar{P}_{\alpha, \zeta+2}$. If $\beta_{m}<\iota_{\zeta}$, let $\beta=\iota_{\zeta}$, otherwise, let $\beta=\beta_{m}$. It follows that $P_{\beta, \zeta+2}$ forces that $\left\{\dot{a}_{\gamma_{i}}\right.$: $i<m\}$ is thin over the forcing extension by $P_{\alpha, \zeta+2}<\cdot \bar{P}_{\alpha, \zeta+2}$. This completes the verification of Claim (e) for the case $\eta=\zeta+2$ and we now turn to the final case of $\eta=\zeta+3$.

We have chosen the pair $\left(\alpha_{\zeta}, \xi_{\zeta}\right)$ when choosing ι_{ζ}. Let $\dot{Q}_{\iota_{\zeta}, \zeta+2}$ be the $P_{\iota_{\zeta}, \zeta+2^{-}}$ name of the finite support product of all posets of the form $\mathbb{M}(\mathcal{F})$ where \mathcal{F} is a family of fewer than κ canonical $P_{\alpha_{\zeta}, \xi_{\zeta}}$-names of subsets of ω that is forced to have the sfip. Since $P_{\alpha_{\zeta}, \xi_{\zeta}} \in H\left(\lambda^{+}\right)$the set of all such families \mathcal{F} is an element of $H\left(\lambda^{+}\right)$. This is our value of $\dot{Q}_{\iota_{\zeta}, \zeta+2}$ as in condition (9) for the definition of $P_{\beta, \zeta+3}$ for all $\beta<\kappa$. The fact that Claim (e) holds in this case follows immediately from the induction hypothesis and Proposition 5.5. We also note that $P_{\iota_{\zeta}, \zeta+3}$
forces that every family of fewer than κ many canonical $P_{\alpha_{\zeta}, \xi_{\zeta}}$-names that is forced to have the sfip is also forced by $P_{\kappa, \zeta+3}$ to have a pseudo-intersection. This means that for values of $\zeta^{\prime}>\zeta$ with $o\left(C_{\zeta}^{\prime}\right)=\kappa$, the pair $\left(\alpha_{\zeta}, \xi_{\zeta}\right)$ will be lexicographically strictly smaller than the choice for ζ^{\prime}. In other words, the family $\left\{\left(\xi_{\zeta}, \alpha_{\zeta}\right): \zeta<\kappa^{+}, \operatorname{cf}(\zeta)=\kappa\right\}$ is strictly increasing in the lexicographic ordering.

Now we can verify that $P_{\kappa, \kappa^{+}}$forces that $\mathfrak{p} \geq \kappa$. If it does not, then there is a $\delta<\kappa$ and a family, $\left\{\dot{y}_{\gamma}: \gamma<\delta\right\}$ of canonical $P_{\kappa, \kappa^{+}}$-names of subsets of ω with some $p \in P_{\kappa, \kappa^{+}}$forcing that the family has sfip but has no pseudo-intersection. By an easy modification of the names, we can assume that every condition in $P_{\kappa, \kappa^{+}}$ forces that the family $\left\{\dot{y}_{\gamma}: \gamma<\delta\right\}$ is forced to have sfip. Choose any $\xi<\kappa^{+}$so that $p \in P_{\kappa, \xi}$ and every \dot{y}_{γ} is a $P_{\kappa, \xi}$-name. Choose $\alpha<\kappa$ large enough so that $p \in P_{\alpha, \xi}, \iota(\bar{\zeta}, \xi)$, and each $\alpha_{\gamma}, \gamma<\delta$, is less than α. It follows that \dot{y}_{γ} is a $P_{\alpha, \xi}$ name for all $\gamma<\delta$. Since the family $\left\{\left(\xi_{\zeta}, \alpha_{\zeta}\right): \zeta<\kappa^{+}, \operatorname{cf}(\zeta)=\kappa\right\}$ is strictly increasing in the lexicographic ordering, and this ordering on $\kappa^{+} \times \kappa$ has order type κ^{+}, there is a minimal $\zeta<\kappa^{+}($with $\operatorname{cf}(\zeta)=\kappa)$ such that $(\xi, \alpha) \leq\left(\xi_{\zeta}, \alpha_{\xi}\right)$. By the assumption on $(\alpha, \xi),\left(\xi_{\zeta}, \alpha_{\xi}\right)$ will be chosen to equal (ξ, α). One of the factors of the poset $\dot{Q}_{\iota_{\zeta}, \zeta+2}$ will be chosen to be $\mathbb{M}\left(\left\{\dot{y}_{\gamma}: \gamma<\delta\right\}\right)$. This proves that $P_{\kappa, \zeta+3}$ forces $\left\{\dot{y}_{\gamma}: \gamma<\delta\right\}$ does have a pseudo-intersection.

It should be clear from condition (8) in the construction that $P_{\kappa, \kappa^{+}}$forces that $\mathfrak{s} \geq \kappa^{+}$. To finish the proof we must show that $P_{\kappa, \kappa^{+}}$forces that $\left\{\dot{a}_{\gamma}: \gamma \in E\right\}$ is $\left(\kappa, \kappa^{+}\right)$-shattering. Since \dot{a}_{γ} is forced to be a Cohen real over the extension by $P_{\kappa, \gamma}$, condition (2) in Definition 2.3 of $\left(\kappa, \kappa^{+}\right)$-shattering holds. Finally, we verify condition (1) of Definition 2.3. Choose any $P_{\kappa, \kappa^{+}}$name \dot{b} of an infinite subset of ω. Choose any $(\alpha, \xi) \in \kappa \times \kappa^{+}$so that \dot{b} is a $P_{\alpha, \xi}$-name. The set $E \cap \operatorname{supp}\left(P_{\alpha, \xi}\right)$ has cardinality less than κ. For any $\gamma \in E \backslash \operatorname{supp}\left(P_{\alpha, \xi}\right)$, there is a $(\beta, \zeta) \in \kappa \times \kappa^{+}$such that $\left\{\dot{a}_{\gamma}\right\}$ is thin over the forcing extension by $P_{\alpha, \xi}$. It follows trivially that $P_{\beta, \zeta}$ forces that \dot{b} is not a (mod finite) subset of \dot{a}_{γ}.

6. Questions

(1) Is it consistent to have $\omega_{1}<\mathfrak{h}<\mathfrak{b}<\mathfrak{s}$ and \mathfrak{c} regular?
(2) Is it consistent to have $\omega_{1}<\mathfrak{h}<\mathfrak{s}<\mathfrak{b}$ and \mathfrak{c} regular?

Question (2) has been answered in [12].

References

[1] Balcar B., Pelant J., Simon P., The space of ultrafilters on \mathbb{N} covered by nowhere dense sets, Fund. Math. 110 (1980), no. 1, pages 11-24.
[2] Baumgartner J. E., Dordal P., Adjoining dominating functions, J. Symbolic Logic 50 (1985), no. 1, 94-101.
[3] Blass A., Applications of superperfect forcing and its relatives, Conf. Set Theory and Its Applications, Toronto, 1987, Lecture Notes in Math., 1401, Springer, Berlin, 1989, pages 18-40.
[4] Blass A., Shelah S., Ultrafilters with small generating sets, Israel J. Math. 65 (1989), no. 3, 259-271.
[5] Brendle J., Fischer V., Mad families, splitting families and large continuum, J. Symbolic Logic 76 (2011), no. 1, 198-208.
[6] Brendle J., Raghavan D., Bounding, splitting, and almost disjointness, Ann. Pure Appl. Logic 165 (2014), no. 2, 631-651.
[7] Dow A., Shelah S., On the cofinality of the splitting number, Indag. Math. (N.S.) 29 (2018), no. 1, 382-395.
[8] Dow A., Shelah S., Pseudo P-points and splitting number, Arch. Math. Logic 58 (2019), no. 7-8, 1005-1027.
[9] Fischer V., Friedman S. D., Mejía D. A., Montoya D. C., Coherent systems of finite support iterations, J. Symb. Log. 83 (2018), no. 1, 208-236.
[10] Fischer V., Mejia D. A., Splitting, bounding, and almost disjointness can be quite different, Canad. J. Math. 69 (2017), no. 3, 502-531.
[11] Fischer V., Steprāns J., The consistency of $\mathfrak{b}=\kappa$ and $\mathfrak{s}=\kappa^{+}$, Fund. Math. 201 (2008), no. 3, 283-293.
[12] Goldstern M., Kellner J., Mejía D. A., Shelah S., Preservation of splitting families and cardinal characteristics of the continuum, Israel J. Math. 246 (2021), no. 1, 73-129.
[13] Ihoda J. I., Shelah S., Souslin forcing, J. Symbolic Logic 53 (1988), no. 4, 1188-1207.
[14] Jech T., Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003.
[15] Kunen K., Vaughan J.E., eds., Handbook of Set-theoretic Topology, North-Holland Publishing Co., Amsterdam, 1984.
[16] Mejía D. A., Matrix iterations and Cichon's diagram, Arch. Math. Logic 52 (2013), no. 3-4, 261-278.
[17] Shelah S., On cardinal invariants of the continuum, Conf. Axiomatic Set Theory, Boulder, 1983, Contemp. Math., 31, Amer. Math. Soc., Providence, 1984, pages 183-207.
A. Dow:

Department of Mathematics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223-0001, North Carolina, U.S.A.

E-mail: adow@charlotte.edu
S. Shelah:

Department of Mathematics, Rutgers University,
Hill Center for the Mathematical Sciences, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, New Jersey, U.S.A.
current address:
Einstein Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 9190401, Israel
E-mail: shelah@math.rutgers.edu

[^0]: DOI 10.14712/1213-7243.2024.001
 The research of the second author was supported by the United States-Israel Binational Science Foundation (BSF Grant no. 2010405), and by the NSF grant No. NSF-DMS 1101597.

