On the bounding, splitting, and distributivity numbers

Alan Dow, Saharon Shelah

Abstract. The cardinal invariants $\mathfrak{h}, \mathfrak{s}, \mathfrak{s}$ of $\mathcal{P}(\omega)$ are known to satisfy that $\omega_1 \leq \mathfrak{h} \leq \min{\{\mathfrak{b}, \mathfrak{s}\}}$. We prove that all inequalities can be strict. We also introduce a new upper bound for \mathfrak{h} and show that it can be less than \mathfrak{s} . The key method is to utilize finite support matrix iterations of ccc posets following paper Ultrafilters with small generating sets by A. Blass and S. Shelah (1989).

Keywords: cardinal invariants of the continuum; matrix forcing

Classification: 03E15

1. Introduction

Of course the cardinal invariants of the continuum discussed in this article are very well known, see [15, page 111], so we just give a brief reminder. They deal with the mod finite ordering of the infinite subsets of the integers. We follow convention and let $[\omega]^{\omega}$ (or $[\omega]^{\aleph_0}$) denote the family of infinite subsets of ω . A set A is a pseudo-intersection of a family $\mathcal{Y} \subset [\omega]^{\omega}$ if A is infinite and $A \setminus Y$ is finite for all $Y \in \mathcal{Y}$. The family \mathcal{Y} has the strong finite intersection property (sfip) if every finite subset has infinite intersection and \mathfrak{p} is the minimum cardinal for which there is such a family with no pseudointersection. A family $\mathcal{I} \subset \mathcal{P}(\omega)$ is an ideal if it is closed under finite unions and mod finite subsets. An ideal $\mathcal{I} \subset \mathcal{P}(\omega)$ is dense if every $Y \in [\omega]^{\omega}$ contains an infinite member of \mathcal{I} . A set $S \subset \omega$ is unsplit by a family $\mathcal{Y} \subset [\omega]^{\omega}$ if S is mod finite contained in one member of $\{Y, \omega \setminus Y\}$ for each $Y \in \mathcal{Y}$. The splitting number \mathfrak{s} is the minimum cardinal of a family \mathcal{Y} for which there is no infinite set unsplit by \mathcal{Y} (i.e. every $S \in [\omega]^{\omega}$ is *split* by some member of \mathcal{Y} and \mathcal{Y} is called a splitting family). The bounding number \mathfrak{b} can easily be defined in these same terms, but it is best defined by the mod finite ordering "<" on the family of functions ω^{ω} . The cardinal \mathfrak{b} is the minimum cardinal for which there is a $<^*$ -unbounded family $B \subset \omega^{\omega}$ with $|B| = \mathfrak{b}.$

DOI 10.14712/1213-7243.2024.001

The research of the second author was supported by the United States-Israel Binational Science Foundation (BSF Grant no. 2010405), and by the NSF grant No. NSF-DMS 1101597.

332

A. Dow, S. Shelah

The finite support iteration of the standard Hechler poset was shown in [2] to produce models of $\aleph_1 = \mathfrak{s} < \mathfrak{b}$. The consistency of $\aleph_1 = \mathfrak{b} < \mathfrak{s} = \aleph_2$ was established in [17] with a countable support iteration of a special poset we now call $\mathcal{Q}_{\text{Bould}}$. It is shown in [11] that one can use Cohen forcing to select countable chain condition (ccc) subposets of $\mathcal{Q}_{\text{Bould}}$ and finite support iterations to obtain models of $\aleph_1 < \mathfrak{b} < \mathfrak{s} = \mathfrak{b}^+$. This result was improved in [5] to show that the gap between \mathfrak{b} and \mathfrak{s} can be made arbitrarily large. The papers [4], [5] and [6] are able to use ccc versions of the well-known Mathias forcing in their iterations in place of those discovered in [11]. The paper [5] also nicely expands on the method of matrix iterated forcing first introduced in [4], as do a number of more recent papers, see [9], [16] and [10] using template forcing. The distributivity number (degree) \mathfrak{h} was first studied in [1]. It equals the minimum number of dense ideals whose intersection is simply the Fréchet ideal $[\omega]^{<\omega}$. It was shown in [1], that $\mathfrak{p} \leq \mathfrak{h} \leq \min\{\mathfrak{b}, \mathfrak{s}\}$. Our goal is to separate all these cardinals. We succeed but confront a new problem since we use the result, also from [1], that $\mathfrak{h} \leq \operatorname{cof}(\mathfrak{c})$.

2. A new bound on \mathfrak{h}

In [1], a family \mathfrak{A} of maximal almost disjoint families of infinite subsets of ω is called a matrix. A matrix \mathfrak{A} is *shattering* if the entire collection $\bigcup \mathfrak{A}$ is splitting. Evidently, if $\{s_{\alpha} : \alpha < \kappa\}$ is a splitting family, then the family $\mathfrak{A} = \{\{s_{\alpha}, \omega \setminus s_{\alpha}\}: \alpha < \kappa\}$ is a shattering matrix. A shattering matrix $\mathfrak{A} = \{\mathcal{A}_{\alpha} : \alpha < \kappa\}$ is *refining*, if for all $\alpha < \beta < \kappa$, \mathcal{A}_{β} refines \mathcal{A}_{α} in the natural sense that each member of \mathcal{A}_{β} is mod finite contained in some member of \mathcal{A}_{α} . Finally, a *base matrix* is a refining shattering matrix \mathfrak{A} satisfying that $\bigcup \mathfrak{A}$ is dense in $(\mathcal{P}(\omega)/\operatorname{fin}, \subset^*)$ (i.e. a π -base for ω^*).

We add condition (6) to the following result from [1].

Lemma 2.1. The value of \mathfrak{h} is the least cardinal κ such that any of the following holds:

- (1) the Boolean algebra $\mathcal{P}(\omega)/\text{ fin is not }\kappa\text{-distributive};$
- (2) there is a shattering matrix of cardinality κ ;
- (3) there is a shattering and refining matrix indexed by κ ;
- (4) there is a base matrix of cardinality κ ;
- (5) there is a family of κ many nowhere dense subsets of ω* whose union is dense;
- (6) there is a sequence $\{S_{\alpha} : \alpha < \kappa\}$ of splitting families satisfying that no 1-to-1 selection $\langle s_{\alpha} : \alpha \in \kappa \rangle \in \Pi\{S_{\alpha} : \alpha \in \kappa\}$ has a pseudo-intersection.

PROOF: Since (1)–(5) are proven in [1], it is sufficient to prove that for a cardinal κ (3) and (6) are equivalent. First suppose that $\mathfrak{A} = \{\mathcal{A}_{\alpha} : \alpha < \kappa\}$ is a refining and shattering matrix. Since the matrix is remning, it follows easily that $\{\mathcal{A}_{\beta}: \alpha \leq \beta\}$ is a shattering matrix for each $\alpha < \kappa$. Therefore, $\mathcal{S}_{\alpha} = \bigcup \{\mathcal{A}_{\beta}: \alpha \leq \beta\}$ is a splitting family for each $\alpha < \kappa$. Similarly, the refining property ensures that if $\langle a_{\alpha}: \alpha \in \kappa \rangle \in \Pi \{\mathcal{S}_{\alpha}: \alpha \in \kappa\}$, then $\{a_{\alpha}: \alpha \in \kappa\}$ has no pseudo-intersection.

Now assume that $\{S_{\alpha} : \alpha < \kappa\}$ is a sequence of splitting families as in (6). By [1], it is sufficient to prove that $\mathfrak{h} \leq \kappa$, so let us assume that $\kappa < \mathfrak{h}$. We now make an observation about κ : for each infinite $b \subset \omega$, $\alpha < \kappa$ and family $\mathcal{S}' \subset [\omega]^{\omega}$ of cardinality less than κ , there is an infinite $a \subset b$ and an $s \in \mathcal{S}_{\alpha} \setminus \mathcal{S}'$ such that $a \subset s$ and s splits b. We prove this claim. We may ignore all members of \mathcal{S}' that are mod finite disjoint, or mod finite include, b. Since the family $\{\{s' \cap b, b \setminus s'\}: s' \in \mathcal{S}'\}$ is not shattering (as a family of subsets of b) there is an infinite $b' \subset b$ that is not split by \mathcal{S}' . Choose any $s \in \mathcal{S}_{\alpha}$ that splits b' and let $a = s \cap b'$. Evidently, s also splits b. Since the ideal generated by a splitting family is dense, we may choose a maximal almost disjoint family \mathcal{A}_0 contained in the ideal generated by \mathcal{S}_0 . Let s_0 denote any mapping from \mathcal{A}_0 into \mathcal{S}_0 satisfying that $a \subset s_0(a)$ for all $a \in \mathcal{A}_0$. Suppose that $\alpha < \kappa$ and that we have chosen a refining sequence $\{\mathcal{A}_{\gamma}: \gamma < \alpha\}$ of maximal almost disjoint families together with mappings $\{s_{\gamma}: \gamma < \alpha\}$ so that for each $a \in \mathcal{A}_{\gamma}, a \subset s_{\gamma}(a) \in \mathcal{S}_{\gamma}$. The extra induction assumption is that for all $a \in \mathcal{A}_{\gamma}$, $s_{\gamma}(a)$ is not an element of $\{s_{\beta}(a'): \beta < \gamma \}$ and $a \subset^* a' \in \mathcal{A}_{\beta}$. The existence of the family \mathcal{A}_{α} and the mapping s_{α} satisfying the induction conditions easily follows from the above observation. Now we verify that $\mathfrak{A} = \{\mathcal{A}_{\alpha} : \alpha < \kappa\}$ satisfies that $\bigcup \mathfrak{A}$ is splitting. Fix any infinite $b \subset \omega$ and choose $a_{\alpha} \in \mathcal{A}_{\alpha}$ for each $\alpha \in \kappa$ so that $b \cap a_{\alpha}$ is infinite. By construction, $\{s_{\alpha}(a_{\alpha}): \alpha \in \kappa\}$ is a 1-to-1 selection from $\Pi\{S_{\alpha}: \alpha \in \kappa\}$. Since b is therefore not a pseudo-intersection, there is an $\alpha < \kappa$ such that $b \setminus s_{\alpha}(a_{\alpha}) \subset b \setminus a_{\alpha}$ is infinite.

The following is an immediate corollary to condition (6) in Lemma 2.1 and provide two approaches to bounding the value of \mathfrak{h} .

Corollary 2.2 ([1], [3]). (1) If \mathfrak{c} is singular, then $\mathfrak{h} \leq \mathrm{cf}(\mathfrak{c})$.

(2) A poset \mathbb{P} forces that $\mathfrak{h} \leq \kappa$ if \mathbb{P} preserves κ and can be written as an increasing chain $\{\mathbb{P}_{\alpha} : \alpha < \kappa\}$ of completely embedded posets satisfying that each $\mathbb{P}_{\alpha+1}$ adds a real not added by \mathbb{P}_{α} .

PROOF: For the statement in (1), let $\{\kappa_{\alpha} : \alpha < \operatorname{cf}(\mathfrak{c})\}\$ be increasing and cofinal in \mathfrak{c} . Let $\{x_{\xi} : \xi \in \mathfrak{c}\}\$ be an enumeration of $[\omega]^{\aleph_0}$. To apply (6) from Lemma 2.1, let $\mathcal{S}_{\alpha} = \{x_{\xi} : (\forall \eta < \kappa_{\alpha}) x_{\eta} \not\subset^* x_{\xi}\}\$. For the statement in (2), let G be a \mathbb{P} generic filter and for each $\alpha \in \kappa$, let $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. To apply (6), let \mathcal{S}_{α} be the set of $x \in [\omega]^{\aleph_0}$ that contain no infinite $y \in V[G_{\alpha}]$. To see that \mathcal{S}_{α} is splitting in either case, given any infinite $x \subset \omega$, consider an enumeration $\{x_t : t \in 2^{<\omega}\}$. Then, for all $\alpha \in \kappa$, there is an $f_{\alpha} \in 2^{\omega}$ so that $\{x_{f_{\alpha} \upharpoonright n} : n \in \omega\} \in S_{\alpha}$.

Our introduction of condition (6) in Lemma 2.1 is motivated by the fact that it provides us with a new approach to bounding \mathfrak{h} . We introduce the following variant of condition (6) in Lemma 2.1 and note that a shattering refining matrix will fail to satisfy the second condition.

Definition 2.3. Let $\kappa < \lambda$ be cardinals and say that a family $\{x_{\alpha} : \alpha < \lambda\}$ of infinite subsets of ω is (κ, λ) -shattering if for all infinite $b \subset \omega$

- (1) the set $\{\alpha < \lambda : b \subset^* x_\alpha\}$ has cardinality less than κ ; and
- (2) the set $\{\alpha < \lambda : b \cap x_{\alpha} =^* \emptyset\}$ has cardinality less than λ .

Say that $\{x_{\alpha}: \alpha < \lambda\}$ is strongly (κ, λ) -shattering if it contains no splitting family of size less than λ .

Needless to say a (κ, λ) -shattering family is strongly (κ, λ) -shattering if $\lambda = \mathfrak{s}$ and this is the kind of families we are interested in. However it seems likely that producing strongly (κ, λ) -shattering families would be interesting (and as difficult) even without requiring that $\lambda = \mathfrak{s}$. Nevertheless \mathfrak{s} is necessarily less than λ as we show next.

Proposition 2.4. If there is a (κ, λ) -shattering family, then $\mathfrak{h} \leq \kappa$ and $\mathfrak{s} \leq \lambda$.

PROOF: Let $S = \{x_{\alpha} : \alpha < \lambda\}$ be a (κ, λ) -shattering family. Given any infinite $b \subset \omega$, there is a $\beta < \lambda$ such that each of $b \subset^* x_{\beta}$ and $b \cap x_{\beta} =^* \emptyset$ fail. This means that S is splitting. By condition (1) in Definition 2.3 and applying condition (6) of Lemma 2.1 with $S_{\alpha} = S$ for all $\alpha < \kappa$, it follows that $\mathfrak{h} \leq \kappa$. \Box

For any index set I the standard poset for adding Cohen reals, C_I , is the set of all finite functions into 2 with domain a subset of I where p < q providing $p \supset q$. If $I = \lambda$ is an ordinal, then we may use \dot{x}_{α} to be the canonical C_{λ} -name $\{(\check{n}, \{\langle \alpha + n, 1 \rangle\} : n \in \omega\}$ (i.e., for $s \in C_{\lambda}, s \Vdash n \in \dot{x}_{\alpha}$ providing $s(\alpha + n) = 1$).

It is routine to verify that, for any regular cardinal $\lambda > \aleph_1$, forcing with C_{λ} will naturally add an (\aleph_1, λ) -shattering family but it is clear that this family would not be strongly (\aleph_1, λ) -shattering. Nevertheless, it may be possible with further forcing, to have it become strongly (κ, λ) -shattering for some $\aleph_1 \leq \kappa < \mathfrak{s}$.

In Theorem 5.9 we will prove that it is consistent with $\aleph_2 < \kappa^+ < \mathfrak{c}$ that there is a strongly (κ, κ^+) -shattering family.

Question 2.1. Assume that $\kappa < \lambda$ are regular cardinals and that there is a strongly (κ, λ) -shattering family. We pose the following questions.

(1) Is it consistent that $\kappa^+ < \lambda$?

On the bounding, splitting, and distributivity numbers

- (2) Is it consistent that $\lambda < \mathfrak{b}$?
- (3) Is it consistent that $\kappa < \mathfrak{b} < \lambda$?

3. Matrix forcing and distinguishing $\mathfrak{h}, \mathfrak{s}, \mathfrak{b}$

In this section we recall the forcing methods for distinguishing \mathfrak{b} and \mathfrak{s} and apply them to prove the main results. We denote by \mathbb{D} the standard (Hechler) poset for adding a dominating real. The poset \mathbb{D} is an ordering on $\omega^{<\omega} \times \omega^{\omega}$ where (s, f) < (t, g) providing $g \leq f$ and s extends t by values that are coordinatewise above g. Given a sfip family \mathcal{F} of subsets of ω , there are two main posets for adding a pseudo-intersection. The Mathias–Prikry style poset is $\mathbb{M}(\mathcal{F})$ and consists of pairs (a, A) where A is in the filter base generated by \mathcal{F} , $a \subset \min(A)$, and $\mathbb{M}(\mathcal{F})$ is ordered by $(a_1, A_1) < (a_2, A_2)$ providing $a_2 \subset a_1 \subset a_2 \cup A_2$ and $A_1 \subset A_2$. When the context is clear, we will let $\dot{x}_{\mathcal{F}}$ denote the canonical name, $\{(\check{n}, (a, \omega \setminus n + 1)): n \in a \subset n + 1\}$, which is forced to be the desired pseudointersection. When \mathcal{U} is a free ultrafilter on ω , $\mathbb{M}(\mathcal{U})$ was the poset used in [4] and [5] and, in this case, $\dot{x}_{\mathcal{U}}$ is unsplit by the set of ground model subsets of ω . When mixed with matrix iteration methods, the ultrafilter \mathcal{U} can be constructed so as to not add a dominating real.

The Laver style poset, $\mathbb{L}(\mathcal{F})$, is also very useful in matrix iterations and is defined as follows. The members of $\mathbb{L}(\mathcal{F})$ are subtrees T of $\omega^{<\omega}$ with a root or stem, $\operatorname{root}(T)$, and for all $\operatorname{root}(T) \subseteq t \in T$, the set $\operatorname{Br}(T,t) = \{j \in \omega : t^{\frown} j \in T\}$ is an element of the filter generated by \mathcal{F} . This poset is ordered by " \subset ". For each $T \in \mathbb{L}(\mathcal{F})$ and $t \in T$, the subtree $T_t = \{t' \in T : t \cup t' \in \omega^{<\omega}\}$ is also a condition. The generic function, $\dot{f}_{\mathbb{L}(\mathcal{F})}$, added by $\mathbb{L}(\mathcal{F})$ can be described by the name of the union of the branch of $\omega^{<\omega}$ named by $\{(\check{t}, (\omega^{<\omega})_t) : t \in \omega^{<\omega}\}$. This poset forces that $\dot{f}_{\mathbb{L}(\mathcal{F})}$ dominates the ground model reals and the range of $\dot{f}_{\mathbb{L}(\mathcal{F})}$ is a pseudointersection of \mathcal{F} . Again, if \mathcal{F} is an ultrafilter, this pseudo-intersection is not split by any ground model set.

For each sfip family \mathcal{U} on ω , each of the posets \mathbb{D} , $\mathbb{M}(\mathcal{U})$, and $\mathbb{L}(\mathcal{U})$ is σ -centered. We just need this for the fact that this ensures that they are upwards ccc.

For a poset P and a set X, a canonical P-name for a subset of X will be a name of the form $\bigcup \{\tilde{x} \times A_x : x \in X\}$ where for each $x \in X$, A_x is an antichain of P. Of course if \dot{Y} is any P-name of a subset of X, there is a canonical name that is forced to equal it. When we say that a poset P forces a statement, we intend the meaning that every element (i.e. 1_P) of P forces that statement. We write P < Q to mean that P is a complete suborder of Q.

The terminology "matrix iterations" is used in [5], see also forthcoming preprint (F1222) from the second author.

Definition 3.1. For an infinite cardinal κ with uncountable cofinality, and an ordinal ζ , a $\kappa \times \zeta$ -matrix iteration is a family

$$\langle \langle \mathbb{P}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi \leq \zeta \rangle, \langle \dot{\mathbb{Q}}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi < \zeta \rangle \rangle$$

where for each $\alpha < \beta \leq \kappa$ and $\xi < \eta \leq \zeta$:

- (1) $\mathbb{P}_{\beta,\xi}$ is a ccc poset;
- (2) $\mathbb{P}_{\alpha,\xi} < \mathbb{P}_{\beta,\xi} < \mathbb{P}_{\beta,\eta};$
- (3) $\mathbb{P}_{\kappa,\xi}$ is the union of the chain $\{\mathbb{P}_{\gamma,\xi}: \gamma < \kappa\};$
- (4) $\dot{\mathbb{Q}}_{\alpha,\xi}$ is a $\mathbb{P}_{\alpha,\xi}$ -name of a ccc poset and $\mathbb{P}_{\alpha,\xi+1} = \mathbb{P}_{\alpha,\xi} * \dot{\mathbb{Q}}_{\alpha,\xi};$
- (5) if η is a limit, then $\mathbb{P}_{\beta,\eta} = \bigcup \{\mathbb{P}_{\beta,\gamma} : \gamma < \eta\}.$

One constructs $\kappa \times \zeta$ -matrices by recursion on ζ and, for successor steps, by careful choice of the component sequence $\{\hat{\mathbb{Q}}_{\alpha,\xi}: \alpha \leq \kappa\}$. An important observation is that all the work is in the successor steps. The following is from [5, Lemma 3.10]

Lemma 3.2. If ζ is a limit then a family

$$\langle \langle \mathbb{P}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi \leq \zeta \rangle, \langle \hat{\mathbb{Q}}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi < \zeta \rangle \rangle$$

is a $\kappa \times \zeta$ -matrix iteration provided that for all $\eta < \zeta$ and $\beta \leq \kappa$:

- (1) $\langle \langle \mathbb{P}_{\alpha,\xi} : \alpha \leq \kappa, \xi \leq \eta \rangle$, $\langle \hat{\mathbb{Q}}_{\alpha,\xi} : \alpha \leq \kappa, \xi < \eta \rangle \rangle$ is a $\kappa \times \eta$ -matrix iteration; and
- (2) $\mathbb{P}_{\beta,\zeta} = \bigcup \{\mathbb{P}_{\beta,\xi} \colon \xi < \zeta \}.$

The following is well-known, see for example [16, Section 5] and [13].

Proposition 3.3. For any ζ and $\kappa \times \zeta$ -matrix iteration

$$\langle \langle \mathbb{P}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi \leq \zeta \rangle, \langle \mathbb{Q}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi < \zeta \rangle \rangle$$

the extension

$$\langle \langle \mathbb{P}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi \leq \zeta + 1 \rangle, \langle \dot{\mathbb{Q}}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi < \zeta + 1 \rangle \rangle$$

is a $\kappa \times (\zeta + 1)$ -matrix iteration if either the following holds:

- $(1)_{\mathbb{Q}}$ for all $\alpha \leq \kappa$, $\mathbb{Q}_{\alpha,\zeta}$ is the $\mathbb{P}_{\alpha,\zeta}$ -name for \mathbb{D} ;
- (2)_Q there is an $\alpha < \kappa$ such that $\dot{\mathbb{Q}}_{\beta,\zeta}$ is the trivial poset for $\beta < \alpha$, $\dot{\mathbb{Q}}_{\alpha,\zeta}$ is a $\mathbb{P}_{\alpha,\zeta}$ -name of a σ -centered poset, and $\dot{\mathbb{Q}}_{\beta,\zeta} = \dot{\mathbb{Q}}_{\alpha,\zeta}$ for all $\alpha \leq \beta \leq \kappa$.

Notice that if we define the extension as in $(1)_{\mathbb{Q}}$ then we will be adding a dominating real, but even if $\dot{\mathbb{Q}}_{\alpha,\zeta}$ is forced to equal \mathbb{D} in $(2)_{\mathbb{Q}}$, the real added will only dominate the reals added by $\mathbb{P}_{\alpha,\zeta}$.

Proposition 3.4 ([4]). Let M be a model of (a sufficient amount of) set-theory and $P \in M$ be a poset that is also contained in M. Then for any $f \in \omega^{\omega}$ that is

336

Sh:E83

not dominated by any $g \in M \cap \omega^{\omega}$, P forces that $f \not\leq \dot{g}$ for all P-names $\dot{g} \in M$ of elements of ω^{ω} .

PROOF: Let $p \in P$ and $n \in \omega$. It suffices to prove that there is a q < p in Pand a k > n and m < f(k) such that $q \Vdash \dot{g}(k) = m$. Since $p \in M$, we can work in M and define a function $h \in \omega^{\omega}$ by the rule that, for all $k \in \omega$, there is a $q_k < p$ such that $q_k \Vdash \dot{g}(k) = h(k)$. Choose any k > n so that h(k) < f(k). Then $q_k \Vdash \dot{g}(k) < f(k)$ and proves that $p \nvDash f \leq \dot{g}$.

An analogous result, with the same proof, holds for splitting.

Proposition 3.5. Let M be a model of (a sufficient amount of) set-theory and $P \in M$ be a poset that is also contained in M. If $x \in [\omega]^{\omega}$ satisfies that $y \not\subset x$ for all $y \in M \cap [\omega]^{\omega}$, then P forces that $\dot{y} \not\subset x$ for all P-names $\dot{y} \in M$ for elements of $[\omega]^{\omega}$.

We also use the main construction from [4].

Proposition 3.6. Suppose that

$$\langle \langle \mathbb{P}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi \leq \zeta \rangle, \langle \dot{\mathbb{Q}}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi < \zeta \rangle \rangle$$

is a $\kappa \times \zeta$ -matrix iteration and that $\{f_{\alpha} : \alpha < \kappa\}$ is a sequence satisfying that for all $\alpha < \kappa$:

- (1) \dot{f}_{α} is a $\mathbb{P}_{\alpha,\zeta}$ -name that is forced to be in ω^{ω} ;
- (2) for all $\beta < \alpha$ and $\mathbb{P}_{\beta,\zeta}$ -name \dot{g} of a member of ω^{ω} , $\mathbb{P}_{\alpha,\zeta}$ forces that $\dot{f}_{\alpha} \not< \dot{g}$.

Then there is a sequence $\{\dot{\mathcal{U}}_{\alpha,\zeta}: \alpha \leq \kappa\}$ such that for all $\alpha < \kappa$:

- (3) $\dot{\mathcal{U}}_{\alpha,\zeta}$ is a $\mathbb{P}_{\alpha,\zeta}$ -name of an ultrafilter on ω ;
- (4) for $\beta < \alpha$, $\dot{\mathcal{U}}_{\beta,\zeta}$ is a subset of $\dot{\mathcal{U}}_{\alpha,\zeta}$;
- (5) for each $\beta < \alpha$ and each $\mathbb{P}_{\beta,\zeta} * \mathbb{M}(\dot{\mathcal{U}}_{\beta,\zeta})$ -name \dot{g} of an element of ω^{ω} , $\mathbb{P}_{\alpha,\zeta} * \mathbb{M}(\dot{\mathcal{U}}_{\alpha,\zeta})$ forces that $\dot{f}_{\alpha} \not\leq \dot{g}$; and
- (6) $\langle \langle \mathbb{P}_{\alpha,\xi} : \alpha \leq \kappa, \xi \leq \zeta + 1 \rangle, \langle \dot{\mathbb{Q}}_{\alpha,\xi} : \alpha \leq \kappa, \xi < \zeta + 1 \rangle \rangle$ is a $\kappa \times (\zeta + 1)$ -matrix iteration, where for each $\alpha \leq \kappa$, $\mathbb{P}_{\alpha,\zeta+1} = \mathbb{P}_{\alpha,\zeta} * \dot{\mathbb{Q}}_{\alpha,\zeta}$ and $\dot{\mathbb{Q}}_{\alpha,\zeta}$ is the $\mathbb{P}_{\alpha,\zeta}$ -name for $\mathbb{M}(\dot{\mathcal{U}}_{\alpha,\zeta})$.

We record two more well-known preparatory preservation results.

Proposition 3.7 ([2]). Suppose that $M \subset N$ are models of (a sufficient amount of) set-theory and that G is \mathbb{D} -generic over N. If $x \in N \cap [\omega]^{\omega}$ does not include any $y \in M \cap [\omega]^{\omega}$, it will not include any $y \in M[G] \cap [\omega]^{\omega}$.

Proposition 3.8. Assume that $\{P_{\alpha} : \alpha \leq \delta\}$ is a $\langle \cdot \cdot \text{increasing chain of ccc}$ posets with $P_{\delta} = \bigcup \{P_{\alpha} : \alpha < \delta\}$. Let G_{δ} be P_{δ} -generic. Let $x \in [\omega]^{\omega}$ and $f \in \omega^{\omega}$. Then each of the following holds:

A. Dow, S. Shelah

- (1) If $f \leq g$ for each $g \in V[G_{\alpha}]$ and for all $\alpha < \delta$, then $f \leq g$ for each $g \in V[G_{\delta}]$.
- (2) If x does not contain any $y \in [\omega]^{\omega} \cap V[G_{\alpha}]$ for all $\alpha < \kappa$, then x does not contain any $y \in [\omega]^{\omega} \cap V[G_{\delta}]$.

PROOF: We prove only (1) since the proof of (2) is similar. If δ has uncountable cofinality, then there is nothing to prove since $V[G_{\delta}] \cap \omega^{\omega}$ would then equal $\bigcup \{V[G_{\alpha}] \cap \omega^{\omega} : \alpha < \delta\}$. Otherwise, consider any P_{δ} -name \dot{g} and condition $p \in P_{\delta}$ forcing that $\dot{g} \in \omega^{\omega}$. We prove that p does not force that $\dot{g}(n) > f(n)$ for all k < n. We may assume that \dot{g} is a canonical name, so let $\dot{g} = \bigcup \{(\overline{n,m}) \times A_{n,m} : n, m \in \omega \times \omega\}$. Choose any $\alpha < \delta$ so that $p \in P_{\alpha}$ and work in $V[G_{\alpha}]$. We define a function $h \in \omega^{\omega} \cap V[G_{\alpha}]$. For each $n \in \omega$, we set h(n) to be the minimum m such that there is $q_{n,m} \in A_{n,m}$ having a P_{α} -reduct $p_{n,m} \in G_{\alpha}$. Since $A_n = \bigcup \{A_{n,m} : m \in \omega\}$ is predense in P_{κ} , the set of P_{α} -reducts of members of A_n is predense in P_{α} . By hypothesis, there is a k < n such that h(n) < f(n). Since $q_{n,h(m)}$ is compatible with p, this prove that $p \not \models \dot{g}(n) > f(n)$.

4. Building the models to distinguish $\mathfrak{h}, \mathfrak{b}, \mathfrak{s}$

For simplicity we assume GCH. Let $\aleph_1 \leq \mu < \kappa < \lambda$ be regular cardinals and assume that $\theta > \lambda$ is a cardinal with cofinality μ . We will need to enumerate names in order to force that $\mathfrak{p} \geq \mu$. For each ccc poset $\tilde{P} \in H(\theta^+)$ let $\{\dot{Y}(\tilde{P},\xi): \xi < \theta\}$ be an enumeration of the set of all canonical \tilde{P} -names of subsets of ω . Also let $\{S_{\xi}: \xi < \theta\}$ be an enumeration of all subsets of θ that have cardinality less than μ . For each $\eta < \lambda$, let ζ_{η} denote the ordinal product $\theta \cdot \eta$.

Theorem 4.1. There is a ccc poset that forces $\mathfrak{p} = \mathfrak{h} = \mu$, $\mathfrak{b} = \kappa$, $\mathfrak{s} = \lambda$ and $\mathfrak{c} = \theta$.

PROOF: The poset will be obtained by constructing a $\kappa \times \zeta$ -matrix iteration where ζ is the ordinal product $\theta \cdot \lambda$ (the lexicographic ordering on $\lambda \times \theta$). We begin with the $\kappa \times \kappa$ -matrix iteration

$$\langle \langle \mathbb{P}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi \leq \kappa \rangle, \langle \mathbb{Q}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi < \kappa \rangle \rangle$$

where, for each $\alpha < \kappa$, $\mathbb{P}_{\alpha,\alpha}$ forces that $\dot{\mathbb{Q}}_{\alpha,\alpha}$ is \mathbb{D} , for $\beta < \alpha$, $\dot{\mathbb{Q}}_{\beta,\alpha}$ is the trivial poset, and for $\alpha \leq \beta \leq \kappa$, $\dot{\mathbb{Q}}_{\beta,\alpha}$ equals $\dot{\mathbb{Q}}_{\alpha,\alpha}$. By Proposition 3.3, there is such a matrix. For each $\alpha < \kappa$, let \dot{f}_{α} be the canonical name for the dominating real added by $\mathbb{P}_{\alpha,\alpha+1}$. By Propositions 3.4 and 3.8, it follows that for all $\beta < \alpha < \kappa$, $\mathbb{P}_{\alpha,\kappa}$ forces that $\dot{f}_{\alpha} \leq \dot{g}$ for all $\mathbb{P}_{\beta,\kappa}$ -names \dot{g} of elements of ω^{ω} .

We omit the routine enumeration details involved in the recursive construction and state the properties we require of our $\kappa \times \zeta$ -matrix iteration. Each step of the

338

Sh:E83

construction uses either (2) of Proposition 3.3 or Proposition 3.6 to choose the next sequence $\{\dot{\mathbb{Q}}_{\alpha,\xi}: \alpha \leq \kappa\}$. In the case of Proposition 3.3 (2), the preservation of inductive condition (1) follows from Proposition 3.4. The preservation through limit steps follows from Proposition 3.8.

There is a matrix-iteration sequence

$$\langle \langle \mathbb{P}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi \leq \zeta \rangle, \langle \hat{\mathbb{Q}}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi < \zeta \rangle \rangle$$

satisfying each of the following for each $\xi < \zeta$:

- (1) for each $\beta < \alpha < \kappa$ and each $\mathbb{P}_{\beta,\xi}$ -name \dot{g} for an element of ω^{ω} , $\mathbb{P}_{\alpha,\xi}$ forces that $\dot{f}_{\alpha} \not\leq \dot{g}$;
- (2) for each $\beta < \lambda$ with $\zeta_{\beta+1} \leq \xi$ and each $\eta < \theta$, if $\mathbb{P}_{\kappa,\zeta_{\beta}}$ forces that the family $\mathcal{F}_{\beta,\eta} = \{\dot{Y}(\mathbb{P}_{\kappa,\zeta_{\beta}},\gamma): \gamma \in S_{\eta}\}$ has the sfip, then there is a $\bar{\eta} < \zeta_{\beta+1}$ and an $\alpha < \kappa$ such that $\dot{\mathbb{Q}}_{\beta,\bar{\eta}}$ equals the $\mathbb{P}_{\alpha,\bar{\eta}}$ -name for $\mathbb{M}(\mathcal{F}_{\beta,\eta})$ for all $\alpha \leq \beta \leq \kappa$;
- (3) for each $\beta < \lambda$ such that $\zeta_{\beta} < \xi$, $\mathbb{P}_{\kappa,\zeta_{\beta}+1}$ equals $\mathbb{P}_{\kappa,\zeta_{\beta}} * \mathbb{M}(\dot{\mathcal{U}}_{\kappa,\zeta_{\beta}})$ and $\dot{\mathcal{U}}_{\kappa,\zeta_{\beta}}$ is a $\mathbb{P}_{\kappa,\zeta_{\beta}}$ -name of an ultrafilter on ω ;
- (4) for each $\eta < \lambda$ and each $\alpha < \kappa$ such that $\zeta_{\eta} < \xi$, then $\dot{\mathbb{Q}}_{\alpha,\zeta_{\eta}+\alpha}$ is the $\mathbb{P}_{\alpha,\zeta_{\eta}+\alpha}$ -name for \mathbb{D} , and $\dot{\mathbb{Q}}_{\beta,\zeta_{\eta}+\alpha} = \dot{\mathbb{Q}}_{\alpha,\zeta_{\eta}+\alpha}$ for all $\alpha \leq \beta \leq \kappa$.

Now we verify that $P = \mathbb{P}_{\kappa,\zeta}$ has the desired properties. Since P is ccc, it preserves cardinals and clearly forces that $\mathfrak{c} = \theta$. It thus follows from Corollary 2.2 that $\mathfrak{p} \leq \mathfrak{h} \leq \mu = \mathrm{cf}(\mathfrak{c})$. If \mathcal{Y} is a family of fewer than μ many canonical *P*-names of subsets of ω , then there is an $\alpha < \kappa$ and $\eta < \lambda$ such that \mathcal{Y} is a family of $\mathbb{P}_{\alpha,\zeta_{\eta}}$ -names. It follows that there is a $\beta < \theta$ such that \mathcal{Y} is equal to the set $\{\dot{Y}(\mathbb{P}_{\kappa,\zeta_{\beta}},\gamma): \gamma \in S_{\eta}\}$. If $\mathbb{P}_{\kappa,\zeta_{\beta}}$ forces that \mathcal{Y} has the sfip, then inductive condition 2 ensures that there is a *P*-name for a pseudo-intersection for \mathcal{Y} . This shows that P forces that $\mathfrak{p} \geq \mu$. It is clear that inductive condition 1 ensures that $\mathfrak{b} \leq \kappa$. We check that condition 4 ensure that $\mathfrak{b} \geq \kappa$. Suppose that \mathcal{G} is a family of fewer than κ many canonical *P*-names of members of ω^{ω} . We again find $\eta < \lambda$ and $\alpha < \kappa$ such that \mathcal{G} is a family of $\mathbb{P}_{\alpha,\zeta_{\eta}}$ -names. Condition 4 forces there is a function that dominates \mathcal{G} . Finally we verify that condition 3 ensures that P forces that $\mathfrak{s} = \lambda$. If S is any family of fewer than λ -many canonical P-names of subsets of ω , then there is an $\eta < \lambda$ such that \mathcal{S} is a family of $\mathbb{P}_{\kappa,\zeta_n}$ -names. Evidently, $\mathbb{P}_{\kappa,\zeta_n+1}$ adds a subset of ω that is not split by \mathcal{S} . There are a number of ways to observe that for each $\eta < \lambda$, $\mathbb{P}_{\kappa,\zeta_{\eta+1}}$ adds a real that is Cohen over the extension by $\mathbb{P}_{\kappa,\zeta_n}$. This ensures that P forces that $\mathfrak{s} \leq \lambda$.

In the next result we proceed similarly except that we first add κ many Cohen reals and preserve that they are splitting. We then cofinally add dominating reals with Hechler's \mathbb{D} and again use small posets to ensure $\mathfrak{p} \geq \mu$.

Theorem 4.2. There is a ccc poset that forces $\mathfrak{p} = \mathfrak{h} = \mu$, $\mathfrak{s} = \kappa$, $\mathfrak{b} = \lambda$ and $\mathfrak{c} = \theta$.

PROOF: We begin with the $\kappa \times \kappa$ -matrix iteration

$$\langle \langle \mathbb{P}_{lpha,\xi} \colon lpha \leq \kappa, \ \xi \leq \kappa
angle, \langle \dot{\mathbb{Q}}_{lpha,\xi} \colon lpha \leq \kappa, \ \xi < \kappa
angle
angle$$

where $\mathbb{P}_{\alpha,\alpha}$ forces that $\dot{\mathbb{Q}}_{\alpha,\alpha}$ is \mathcal{C}_{ω} , for $\beta < \alpha$, $\dot{\mathbb{Q}}_{\beta,\alpha}$ is the trivial poset, and for $\alpha \leq \beta \leq \kappa$, $\dot{\mathbb{Q}}_{\beta,\alpha}$ equals $\dot{\mathbb{Q}}_{\alpha,\alpha}$. We let \dot{x}_{α} denote the canonical Cohen real added by $\mathbb{P}_{\alpha,\alpha+1}$. Of course $\mathbb{P}_{\alpha,\alpha+1}$ forces that neither \dot{x}_{α} nor its complement include any infinite subsets of ω that have, for any $\beta < \alpha$, a $\mathbb{P}_{\beta,\alpha+1}$ -name. By Proposition 3.8, the inductive condition 4 below holds for $\xi = \kappa$.

Then, proceeding as in the proof of Theorem 4.1, we just assert the existence of a $\kappa \times \zeta$ -matrix iteration

$$\langle \langle \mathbb{P}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi \leq \zeta \rangle, \langle \hat{\mathbb{Q}}_{\alpha,\xi} \colon \alpha \leq \kappa, \ \xi < \zeta \rangle \rangle$$

satisfying each of the following for each $\kappa \leq \xi < \zeta$:

- (1) for each $\beta < \alpha < \kappa$, $\mathbb{P}_{\alpha,\xi}$ forces that neither \dot{x}_{α} nor $\omega \setminus \dot{x}_{\alpha}$ include any infinite subset of ω that has a $\mathbb{P}_{\beta,\xi}$ -name;
- (2) for each $\eta < \lambda$ with $\zeta_{\eta+1} \leq \xi$ and each $\delta < \theta$, if $\mathbb{P}_{\kappa,\zeta_{\eta}}$ forces that the family $\mathcal{F}_{\eta,\delta} = \{\dot{Y}(\mathbb{P}_{\kappa,\zeta_{\eta}},\gamma): \gamma \in S_{\delta}\}$ has the sfip, then there is a $\bar{\delta} < \zeta_{\eta+1}$ and an $\alpha < \kappa$ such that $\dot{\mathbb{Q}}_{\beta,\bar{\delta}}$ equals the $\mathbb{P}_{\alpha,\bar{\delta}}$ -name for $\mathbb{M}(\mathcal{F}_{\eta,\delta})$ for all $\alpha \leq \beta \leq \kappa$;
- (3) for each $\eta < \lambda$ and each $\alpha < \kappa$ such that $\zeta_{\eta} < \xi$, then $\dot{\mathbb{Q}}_{\alpha,\zeta_{\eta}+\alpha}$ is the $\mathbb{P}_{\alpha,\zeta_{\eta}+\alpha}$ -name for $\mathbb{M}(\dot{\mathcal{U}}_{\alpha,\zeta_{\beta}})$ where $\dot{\mathcal{U}}_{\alpha,\zeta_{\beta}}$ is a $\mathbb{P}_{\alpha,\zeta_{\beta}}$ -name of an ultrafilter on ω , and $\dot{\mathbb{Q}}_{\beta,\zeta_{\eta}+\alpha} = \dot{\mathbb{Q}}_{\alpha,\zeta_{\eta}+\alpha}$ for all $\alpha \leq \beta \leq \kappa$;
- (4) for each $\eta < \lambda$ such that $\zeta_{\eta} < \xi$, $\mathbb{P}_{\kappa,\zeta_{\eta}+1}$ equals $\mathbb{P}_{\kappa,\zeta_{\eta}} * \mathbb{D}$.

Evidently conditions (2) and (3) are similar and can be achieved while preserving condition (1) by Proposition 3.3 (2). The fact that $\mathbb{P}_{\kappa,\zeta_{\eta}} * \mathbb{D}$ preserves condition (1) follows from Proposition 3.7. Condition (1) ensures that $\mathfrak{s} \leq \kappa$, and by arguments similar to those in Theorem 4.1, condition (3) ensures that $\mathfrak{s} \geq \kappa$. The fact that $\mathfrak{b} = \lambda$ (in fact $\mathfrak{d} = \lambda$) follows easily from condition (4). The facts that $\mathfrak{c} = \theta$, $\mathfrak{p} \geq \mu$ and $\mathfrak{h} = \mu$ are proven exactly as in Theorem 4.1.

5. On (κ, λ) -shattering

In this section we prove, see Theorem 5.9, that it is consistent that strongly (κ, κ^+) -shattering families exist. The method used in this section is the following generalization of matrix iterations used in [8]. A chain $\{P_\alpha : \alpha < \delta\}$ is continuous if for every limit $\alpha < \delta$, $P_\alpha = \bigcup \{P_\beta : \beta < \alpha\}$.

Definition 5.1. Let $\kappa > \omega_1$ be a regular cardinal. For an ordinal ζ , a $\kappa \times \zeta$ -matrix of posets is a family $\{P_{\alpha,\xi}: \alpha \leq \kappa, \xi < \zeta\}$ of ccc posets satisfying for each $\alpha < \kappa$, and $\xi < \eta < \zeta$:

- (1) $P_{\alpha,\xi} < P_{\beta,\xi}$ for all $\alpha < \beta \leq \kappa$;
- (2) $P_{\beta,\xi} = \bigcup \{ P_{\eta,\xi} : \eta < \beta \}$ for $\beta \leq \kappa$ with $cf(\beta) > \omega$; and
- (3) for some $\gamma < \kappa$, $P_{\beta,\xi} < P_{\beta,\eta}$ for all $\gamma \leq \beta \leq \kappa$;
- (4) if η is a limit ordinal, there is a cub $C \subset \eta$ and a $\gamma < \kappa$ such that, for all $\gamma \leq \beta < \kappa$, $\{P_{\beta,\delta} : \delta \in C \cup \{\eta\}\}$ is a continuous $< \cdot$ -increasing chain.

One must be careful with a $\kappa \times \zeta$ -matrix since there is no natural extension or definition of $P_{\alpha,\zeta}$ for $\alpha < \kappa$. However, when $cf(\zeta) > \omega_1$ the matrix can be viewed as a matrix type construction of a ccc poset $P_{\kappa,\zeta}$.

Lemma 5.2. If $\{P_{\alpha,\xi}: \alpha \leq \kappa, \xi < \zeta\}$ is a $\kappa \times \zeta$ -matrix of posets with $\kappa > \omega_1$ regular and $cf(\zeta) > \omega_1$, then the poset $P_{\kappa,\zeta} = \bigcup \{P_{\kappa,\xi}: \xi < \zeta\}$ is ccc and satisfies that $P_{\alpha,\xi} < P_{\kappa,\zeta}$ for all $\alpha \leq \kappa$ and $\xi < \zeta$.

PROOF: Let $\alpha < \kappa$ and $\xi < \zeta$. It follows from property (1) in Definition 5.1 that $P_{\alpha,\xi} < P_{\kappa,\xi}$. By (3) of Definition 5.1, we have that $\{P_{\kappa,\eta}: \xi \leq \eta < \zeta\}$ is a <-chain. This implies that $P_{\kappa,\xi} < P_{\kappa,\zeta}$. Now we check that $P_{\kappa,\zeta}$ is ccc. Assume that $A \subset P_{\kappa,\zeta}$ has cardinality \aleph_1 . Choose any $\gamma_0 < \kappa$ so that $A \subset \bigcup \{P_{\beta,\xi}: \beta < \gamma_0, \xi < \zeta\}$. Similarly choose $\eta < \zeta$ minimal so that $A \subset \bigcup \{P_{\beta,\xi}: \beta < \gamma_0, \xi < \eta\}$. By property (2) of Definition 5.1, there is a $\gamma_0 \leq \gamma_1 < \kappa$ such that $A \subset \bigcup \{P_{\gamma_1,\xi}: \xi < \eta\}$. Now choose a cub $C \subset \eta$ as in condition (4) of Definition 5.1, and, using conditions (2) and (3) of Definition 5.1, we can choose $\zeta_1 \leq \zeta_2 < \kappa$ so that $A \subset \bigcup \{P_{\zeta_2,\delta}: \delta \in C\} \subset P_{\zeta_2,\eta}$. Since $P_{\zeta_2,\eta}$ is ccc, it follows that A is not an antichain.

We will use the method of matrix of posets from Definition 5.1 in which our main component posets to raise the value of \mathfrak{s} will be the Laver style posets. Before proceeding it may be helpful to summarize the rough idea of how we generalize the fundamental preservation technique of a matrix iteration. In a $\kappa \times \kappa^+$ -matrix iteration, one may introduce a sequence $\{\dot{a}_{\alpha}: \alpha < \kappa\}$ of $P_{\kappa,1}$ -names that have no infinite pseudointersection. With this fixed enumeration, one then ensures that no $P_{\alpha,\gamma}$ -name will be forced to be a subset of \dot{a}_{β} for any $\alpha \leq \beta < \kappa$. In the construction introduced in [8], we instead continually add to the list a $P_{0,\gamma+1}$ -name \dot{a}_{γ} and at stage $\mu < \kappa^+$, we adopt a new enumeration of $\{\dot{a}_{\alpha}: \alpha < \mu\}$ in order-type κ (coherent with previous listings) and again ensure that no $P_{\alpha,\mu+1}$ name is a subset of any \dot{a}_{β} for β not listed before α in this new μ th listing. We utilize a \Box -principle to make these enumerations sufficiently coherent and to use as the required cub's in condition (4) of Definition 5.1. The greater flexibility in the definition of $\kappa \times \kappa^+$ -matrix of posets makes this possible. We recall some notions and results about these studied in [7], [8].

Proposition 5.3. If $P \lt P'$ are ccc posets, and $\dot{\mathcal{D}} \subset \dot{\mathcal{E}}$ are, respectively, a *P*-name and a *P'*-name of ultrafilters on ω , then $P * \mathbb{L}(\dot{\mathcal{D}}) \lt P' * \mathbb{L}(\dot{\mathcal{E}})$.

Definition 5.4. A family $\mathcal{A} \subset [\omega]^{\omega}$ is thin over a model M if for every I in the ideal generated by \mathcal{A} and every infinite family $\mathcal{F} \in M$ consisting of pairwise disjoint finite sets of bounded size, I is disjoint from some member of \mathcal{F} .

It is routine to prove that for each limit ordinal δ , C_{δ} forces that the family $\{\dot{x}_{\alpha}: \alpha \in \delta\}$, as defined above, is thin over the ground model. In fact if \mathcal{A} is thin over some model M, then C_{δ} forces that $\mathcal{A} \cup \{\dot{x}_{\alpha}: \alpha \in \delta\}$ is also thin over M. This is the notion we use to control that property (1) of the definition of a (κ, κ^+) -shattering sequence will be preserved while at the same time raising the value of \mathfrak{s} .

We first note that Proposition 3.5 extends to include this concept.

Proposition 5.5. Suppose that M is a model of a sufficient amount of set-theory and that $\mathcal{A} \subset [\omega]^{\omega}$ is thin over M. Then for any poset P such that $P \in M$ and $P \subset M$, \mathcal{A} is thin over the forcing extension by P.

PROOF: Let $\{\dot{F}_l : l \in \omega\}$ be *P*-names and suppose that $p \in P$ forces that $\{\dot{F}_l : l \in \omega\}$ are pairwise disjoint subsets of $[\omega]^k$, $k \in \omega$. Also let *I* be any member of the ideal generated by \mathcal{A} . Working in *M*, recursively choose $q_j < p, j \in \omega$, and H_j, l_j so that $q_j \Vdash \dot{F}_{l_j} = \check{H}_j$ and $H_j \cap \bigcup \{H_i : i < j\} = \emptyset$. The sequence $\{H_j : j \in \omega\}$ is a family in *M* of pairwise disjoint sets of cardinality *k*. Therefore there is a *j* with $H_j \cap I = \emptyset$. This proves that *p* does not force that *I* meets every member of $\{\dot{F}_l : l \in \omega\}$.

Lemma 5.6 ([8, 3.8]). Let κ be a regular uncountable cardinal and let $\{P_{\beta}: \beta \leq \kappa\}$ be a $\langle \cdot \cdot$ -increasing chain of ccc posets with $P_{\kappa} = \bigcup \{P_{\alpha}: \alpha < \kappa\}$. Assume that, for each $\beta < \kappa$, $\dot{\mathcal{A}}_{\beta}$ is a $P_{\beta+1}$ -name of a subset of $[\omega]^{\omega}$ that is forced to be thin over the forcing extension by P_{β} . Also let $\dot{\mathcal{D}}_0$ be a $P_0 * \mathcal{C}_{\{0\} \times \mathfrak{c}}$ -name that is forced to be a Ramsey ultrafilter on ω . Then there is a sequence $\langle \dot{\mathcal{D}}_{\beta}: 0 < \beta < \kappa \rangle$ such that for all $\alpha < \beta < \kappa$:

- (1) $\dot{\mathcal{D}}_{\beta}$ is a $P_{\beta} * \mathcal{C}_{(\beta+1) \times \mathfrak{c}}$ -name;
- (2) $\dot{\mathcal{D}}_{\alpha}$ is a subset of $\dot{\mathcal{D}}_{\beta}$;
- (3) $P_{\beta} * \mathcal{C}_{(\beta+1) \times \mathfrak{c}}$ forces that $\hat{\mathcal{D}}_{\beta}$ is a Ramsey ultrafilter;
- (4) $P_{\alpha} * \mathcal{C}_{(\alpha+1)\times\mathfrak{c}} * \mathbb{L}(\dot{\mathcal{D}}_{\alpha}) < P_{\beta} * \mathcal{C}_{(\beta+1)\times\mathfrak{c}} * \mathbb{L}(\dot{\mathcal{D}}_{\beta});$ and
- (5) $P_{\beta} * \mathcal{C}_{(\beta+1)\times\mathfrak{c}} * \mathbb{L}(\dot{\mathcal{D}}_{\beta})$ forces that $\dot{\mathcal{A}}_{\beta}$ is thin over the forcing extension by $P_{\alpha} * \mathcal{C}_{(\alpha+1)\times\mathfrak{c}} * \mathbb{L}(\dot{\mathcal{D}}_{\alpha}).$

Lemma 5.7 ([8, 2.7]). Assume that $P_{0,0} < P_{1,0}$ and that \dot{A} is a $P_{1,0}$ -name of a subset of $[\omega]^{\omega}$. Assume that $\langle P_{0,\xi} : \xi < \delta \rangle$ and $\langle P_{1,\xi} : \xi < \delta \rangle$ are $\langle \cdot \cdot chains$ such

342

Sh:E83

that $P_{0,\xi} < P_{1,\xi}$ for all $\xi < \delta$, and that $P_{1,\xi}$ forces that $\dot{\mathcal{A}}$ is thin over the forcing extension by $P_{0,\xi}$ for all $\xi < \delta$. Then $P_{1,\delta} = \bigcup \{P_{1,\xi} : \xi < \delta\}$ forces that \mathcal{A} is thin over the forcing extension by $P_{0,\delta} = \bigcup \{P_{0,\xi} : \xi < \delta\}$.

Before proving the next result we recall the notion of a \Box_{κ} -sequence. For a set C of ordinals, let $\sup(C)$ be the supremum, $\bigcup C$, of C and let C' denote the set of limit ordinals $\alpha < \sup(C)$ such that $C \cap \alpha$ is cofinal in α . For a limit ordinal α , a set C is a cub in α if $C \subset \alpha = \sup(C)$ and $C' \subset C$.

Definition 5.8 ([14]). For a cardinal κ , the family $\{C_{\alpha} : \alpha \in (\kappa^{+})'\}$ is a $\Box_{\kappa^{-}}$ sequence if for each $\alpha \in (\kappa^{+})'$:

- (1) C_{α} is a cub in α ;
- (2) if $cf(\alpha) < \kappa$, then $|C_{\alpha}| < \kappa$;
- (3) if $\beta \in C'_{\alpha}$, then $C_{\beta} = C_{\alpha} \cap \beta$.

If there is a \Box_{κ} -sequence, then \Box_{κ} is said to hold.

Theorem 5.9. It is consistent with $\aleph_1 < \mathfrak{h} < \mathfrak{s} < \mathrm{cf}(\mathfrak{c}) = \mathfrak{c}$ that there is an $(\mathfrak{h}, \mathfrak{s})$ -shattering family.

PROOF: We start in a model of GCH satisfying \Box_{κ} for some regular cardinal $\kappa > \aleph_1$. Choose any regular $\lambda > \kappa^+$. Fix a \Box_{κ} -sequence $\{C_{\alpha} : \alpha \in (\kappa^+)'\}$. We may assume that $C_{\alpha} = \alpha$ for all $\alpha \in \kappa'$. For each $\alpha \in (\kappa^+)'$, let $o(C_{\alpha})$ denote the order-type of C_{α} . When C'_{α} is bounded in α with $\eta = \max(C'_{\alpha})$, then let $\{\varphi_l^{\alpha} : l \in \omega\}$ enumerate $C_{\alpha} \setminus \eta$ in increasing order.

We will construct a $\kappa \times \kappa^+$ -matrix of posets, $\langle P_{\alpha,\xi} : \alpha \leq \kappa, \xi < \kappa^+ \rangle \in H(\lambda^+)$ and prove that the poset P_{κ,κ^+} as in Lemma 5.2 has the desired properties. For each $\xi < \eta i < \kappa^+$, we will also choose an $\iota(\xi,\eta) < \kappa$ satisfying, as in (3) of the definition of $\kappa \times (\xi + 1)$ -matrix that $P_{\alpha,\xi} < P_{\alpha,\eta}$ for all $\iota(\xi,\eta) \leq \alpha < \kappa$. We construct this family by constructing $\langle P_{\alpha,\xi} : \alpha \leq \kappa, \xi < \zeta \rangle$ by recursion on limit $\zeta < \kappa^+$.

We will recursively define two other families. For each $\alpha < \kappa$ and $\xi < \kappa^+$, we will define a set $\operatorname{supp}(P_{\alpha,\xi}) \subset \xi$ that can be viewed as the union of the supports of the elements of $P_{\alpha,\xi}$ and will satisfy that $\{\operatorname{supp}(P_{\alpha,\xi}): \alpha < \kappa\}$ is increasing and covers ξ . For each limit $\eta < \kappa^+$ of cofinality less than κ and each $n \in \omega$, we will select a canonical $P_{\kappa,\eta+n+1}$ -name, $\dot{a}_{\eta+n}$ of a subset ω that is forced to be Cohen over the forcing extension by $P_{\kappa,\eta}$. While this condition looks awkward, we simply want to avoid this task at limits of cofinality κ . Needing notation for this, let $E = \kappa^+ \setminus \bigcup \{[\eta, \eta + \omega): \operatorname{cf}(\eta) = \kappa\}$.

For each $\alpha < \kappa$ and $\xi < \eta < \kappa^+$, we define $\mathcal{A}_{\alpha,\xi,\eta}$ to be the family $\{\dot{a}_{\gamma}: \gamma \in E \cap \eta \setminus \operatorname{supp}(P_{\alpha,\xi})\}$. The intention is that for all $\alpha < \xi \leq \eta$, $\mathcal{A}_{\alpha,\xi,\eta}$ is a family of $P_{\kappa,\eta}$ -names which is forced by the poset $P_{\kappa,\eta}$ to be thin over the forcing extension by $P_{\alpha,\xi}$. Let us note that if $\alpha < \beta$ and $\xi \leq \eta$, then $\mathcal{A}_{\alpha,\xi,\eta} \setminus \mathcal{A}_{\beta,\eta,\eta}$

A. Dow, S. Shelah

should then be a set of $P_{\beta,\eta}$ -names. By ensuring that $\operatorname{supp}(P_{\alpha,\xi})$ has cardinality less than κ for all $\alpha < \kappa$ and $\xi < \kappa^+$, this will ensure that the family $\{\dot{a}_{\eta} : \eta \in E\}$ is (κ, κ^+) -shattering. For each $\eta < \kappa^+$ with cofinality κ we will ensure that $P_{\kappa,\eta+1}$ has the form $P_{\kappa,\eta} * \mathcal{C}_{\kappa \times \lambda}$ and that $P_{\kappa,\eta+2} = P_{\kappa,\eta+1} * \mathbb{L}(\dot{\mathcal{D}}_{\kappa,\eta})$ for a $P_{\kappa,\eta+1}$ -name $\dot{\mathcal{D}}_{\kappa,\eta}$ of an ultrafilter on ω . This will ensure that $\mathfrak{c} \geq \lambda$ and $\mathfrak{s} = \kappa^+$. The sequence defining $P_{\kappa,\eta+3}$ will be devoted to ensuring that $\mathfrak{p} \geq \kappa$.

We start the recursion in a rather trivial fashion. For each $\alpha < \kappa$, $P_{\alpha,0} = C_{\omega}$ and for each $n \in \omega$, $P_{\alpha,n+1} = P_{\alpha,n} * C_{\omega}$. We may also let $\iota(n,m) = 0$ for all $n < m < \omega$. For each $n \in \omega$, let \dot{a}_n be the canonical name of the Cohen real added by the second coordinate of $P_{\kappa,n+1} = P_{\kappa,n} * C_{\omega}$. For each $\alpha < \kappa$ and $n \in \omega$, define $\sup(P_{\alpha,n})$ to be n.

It should be clear that $P_{\kappa,\omega}$ forces that for each $\alpha < \kappa$ and $n \in \omega$, the family $\{\dot{a}_m : n \leq m \in \omega\}$ is thin over the forcing extension by $P_{\alpha,n}$. Assume that P is a poset whose elements are functions with domain a subset of an ordinal ξ . We adopt the notational convention that for a P-name \dot{Q} for a poset, $P *_{\xi} \dot{Q}$ will denote the representation of $P * \dot{Q}$ whose elements have the form $p \cup \{(\xi, \dot{q})\}$ for $(p, \dot{q}) \in P * \dot{Q}$.

We will prove, by induction on limit $\zeta < \kappa^+$, there is a $\kappa \times (\zeta + 1)$ -matrix $\{P_{\alpha,\xi} : \alpha \leq \kappa, \xi \leq \zeta\}$ and families $\{\mathcal{A}_{\alpha,\xi,\eta} : \alpha < \kappa, \xi \leq \eta \leq \zeta\}$ satisfying conditions (1)–(10).

(1) For all $\alpha < \beta < \kappa$ and $\xi < \eta < \zeta$, if $P_{\alpha,\xi} < P_{\beta,\eta}$, then the poset $P_{\beta,\eta}$ forces that the family $\mathcal{A}_{\alpha,\xi,\eta} \setminus \mathcal{A}_{\beta,\eta,\eta}$ is thin over the forcing extension by $P_{\alpha,\xi}$;

(2) for all $\alpha < \kappa$ and $\xi < \zeta$, the elements p of the poset $P_{\alpha,\xi}$ are functions that have a finite domain, dom(p), contained in ξ ;

(3) if C'_{ζ} is cub in ζ and $\eta \in C'_{\zeta}$, then

- (a) $P_{n,\zeta}$ is the trivial poset and $\operatorname{supp}(P_{n,\zeta}) = \emptyset$ for $n \in \omega$;
- (b) $P_{\alpha,\zeta} = P_{\alpha,\eta}$ and $\operatorname{supp}(P_{\alpha,\zeta}) = \operatorname{supp}(P_{\alpha,\eta})$ for all $o(C_{\eta}) \le \alpha < o(C_{\eta}) + \omega$; and
- (c) $P_{\alpha,\zeta} = \bigcup \{P_{\alpha,\eta} \colon \eta \in C'_{\zeta}\}$ and $\operatorname{supp}(P_{\alpha,\zeta}) = \bigcup \{\operatorname{supp}(P_{\alpha,\eta}) \colon \eta \in C'_{\zeta}\}$ for all $o(C_{\zeta}) \leq \alpha < \kappa$;

also, let $\iota(\eta, \zeta) = o(C_{\eta})$ for all $\eta \in C'_{\zeta}$ and for all $\gamma < \zeta \setminus C'_{\zeta}$ let $\iota(\gamma, \zeta) = \iota(\gamma, \eta)$ where $\eta = \min(C'_{\zeta} \setminus \gamma)$;

(4) if $\max(C'_{\zeta}) < \zeta$ then let

$$\iota_{\zeta} = \max(o(C_{\zeta}), \sup\{\iota(\varphi_{l}^{\zeta}, \varphi_{l'}^{\zeta} + n) \colon l \le l' < n < \omega\})$$

and

- (a) set $P_{\alpha,\zeta} = P_{\alpha,\varphi_{\alpha}^{\zeta}}$ and $\operatorname{supp}(P_{\alpha,\zeta}) = \operatorname{supp}(P_{\alpha,\varphi_{\alpha}^{\zeta}})$ for all $\alpha < \iota_{\zeta}$;
- (b) set, for $\iota_{\zeta} \leq \alpha < \kappa$, $P_{\alpha,\zeta} = \bigcup \{ P_{\alpha,\varphi_{l}^{\zeta}+n} \colon l,n \in \omega \}$ and $\operatorname{supp}(P_{\alpha,\zeta}) = \bigcup \{ \operatorname{supp}(P_{\alpha,\varphi_{l}^{\zeta}+n}) \colon l,n \in \omega \};$

- (c) for each $\gamma \in \varphi_0^{\zeta}$ let $\iota(\gamma, \zeta) = \iota(\gamma, \varphi_0^{\zeta})$, let $\iota(\varphi_0^{\zeta}, \zeta) = o(C_{\gamma})$, and for each $\varphi_0^{\zeta} < \gamma < \zeta$, $\iota(\gamma, \zeta)$ is the maximum of ι_{ζ} and $\min\{\iota(\gamma, \varphi_l^{\zeta} + n) \colon l, n \in \omega \text{ and } \gamma < \varphi_l^{\zeta} + n\};$
- (5) if $o(C_{\zeta}) < \kappa$, then for all $\alpha < \kappa$ and $n \in \omega$:
 - (a) $P_{\alpha,\zeta+n+1} = P_{\alpha,\zeta+n} *_{\zeta+n} C_{\omega};$
- (b) $\dot{a}_{\zeta+n}$ in the canonical $P_{0,\zeta+n} *_{\zeta+n} \mathcal{C}_{\omega}$ -name for the Cohen real added by the second coordinate copy of \mathcal{C}_{ω} ;
- (c) $\operatorname{supp}(P_{\alpha,\zeta+n+1}) = \operatorname{supp}(P_{\alpha,\zeta}) \cup [\zeta,\zeta+n];$ and
- (d) $\iota(\zeta + k, \zeta + n + 1) = 0$ for all $k \le n$, and for all $\gamma < \zeta$, $\iota(\gamma, \zeta + n + 1) = \iota(\gamma, \zeta)$;
- (6) if $o(C_{\zeta}) = \kappa$, then for all $\alpha < \kappa$, $P_{\alpha,\zeta+1} = P_{\alpha,\zeta} *_{\zeta} C_{\alpha+1 \times \lambda}$;
- (7) if $o(C_{\zeta}) = \kappa$, then for all $n \in \omega$ and all $\alpha < \kappa$, $P_{\alpha,\zeta+3+n} = P_{\alpha,\zeta+3}$;
- (8) if $o(C_{\zeta}) = \kappa$, then there is an $\iota_{\zeta} < \kappa$ such that $P_{\beta,\zeta+2} = P_{\beta,\zeta+1}$ for all

 $\beta < \iota_{\zeta}$, and there is a sequence $\langle \dot{\mathcal{D}}_{\alpha,\zeta} : \iota_{\zeta} \leq \alpha < \kappa \rangle$ such that for each $\iota_{\zeta} \leq \alpha < \kappa$:

- (a) $\dot{\mathcal{D}}_{\alpha,\zeta}$ is a $P_{\alpha,\kappa+1}$ -name of a Ramsey ultrafilter on ω ;
- (b) for each $\iota_{\zeta} \leq \beta < \alpha, \, \dot{\mathcal{D}}_{\beta,\zeta} \subset \dot{\mathcal{D}}_{\alpha,\zeta};$
- (c) $P_{\alpha,\zeta+2} = P_{\alpha,\zeta+1} *_{\zeta+1} \mathbb{L}(\dot{\mathcal{D}}_{\alpha,\kappa});$
- (9) if $o(C_{\zeta}) = \kappa$, then for ι_{ζ} chosen as in (8)
 - (a) for each $\alpha < \iota_{\zeta}$, $P_{\alpha,\kappa+3} = P_{\alpha,\kappa+2}$;
- (b) $P_{\iota_{\zeta},\zeta+3} = P_{\iota_{\zeta},\zeta+2} *_{\zeta+2} \dot{Q}_{\iota_{\zeta},\zeta+2}$ for some $P_{\iota_{\zeta},\zeta}$ -name, $\dot{Q}_{\iota_{\zeta},\zeta+2}$ in $H(\lambda^{+})$ of a finite support product of σ -centered posets;
- (c) for each $\iota_{\zeta} < \alpha < \kappa$, $P_{\alpha,\zeta+3} = P_{\alpha,\zeta+2} *_{\zeta+2} \dot{Q}_{\iota_{\zeta},\zeta+2}$;

(10) if $o(C_{\zeta}) = \kappa$, then for all $\alpha < \kappa$, $n \in \omega$, and $\gamma < \zeta$, $\operatorname{supp}(P_{\alpha,\zeta+n+1}) = \operatorname{supp}(P_{\alpha,\zeta}) \cup [\zeta, \zeta+n], \iota(\gamma, \zeta+n) = \iota(\gamma, \zeta)$, and $\iota(\zeta+k, \zeta+n) = \iota_{\zeta}$ for all $k < n \in \omega$.

It should be clear from the properties, and by induction on ζ , that for all $\alpha < \kappa$ and $\xi < \zeta$, each $p \in P_{\alpha,\xi}$ is a function with finite domain contained in $\operatorname{supp}(P_{\alpha,\xi})$. Similarly, it is immediate from the hypotheses that $\operatorname{supp}(P_{\alpha,\xi})$ has cardinality less than κ for all $(\alpha, \xi) \in \kappa \times \kappa^+$.

Before verifying the construction, we first prove, by induction on ζ , that the conditions (2)–(10) ensure that for all $\xi \leq \zeta$ and $\eta \in C'_{\mathcal{E}}$:

Claim (a): $P_{\alpha,\eta} < P_{\alpha,\xi}$ for all $o(C_{\eta}) + \omega \le \alpha \in \kappa$. Claim (b): $P_{\alpha,\eta} = P_{\alpha,\xi}$ for all $\alpha < o(C_{\eta}) + \omega$.

If $o(C_{\xi}) \leq \alpha$, then $P_{\alpha,\eta} < P_{\alpha,\xi}$ follows immediately from clause 2 (c) and, by induction, clauses 3 (a). Now assume $\alpha < o(C_{\xi}) + \omega$. If C'_{ξ} is not cofinal in ξ , then, by induction, $P_{\alpha,\eta} = P_{\alpha,\varphi_0^{\xi}}$ and, by clause 3 (a), $P_{\alpha,\varphi_0^{\xi}} = P_{\alpha,\xi}$. If C'_{ξ} is cofinal in ξ , then choose $\bar{\eta} \in C'_{\xi}$ so that $o(C_{\bar{\eta}}) \leq \alpha < o(C_{\bar{\eta}}) + \omega$. By clause 2 (b), $P_{\alpha,\xi} = P_{\alpha,\bar{\eta}}$. By the inductive assumption, $P_{\alpha,\eta} = P_{\alpha,\bar{\eta}}$ since one of $\eta = \bar{\eta}$, $\eta \in C'_{\bar{\eta}}$ or $\bar{\eta} \in C'_{\eta}$ must hold.

A. Dow, S. Shelah

The second thing we check is that the conditions (2)–(10) also ensure that for each $\zeta < \kappa^+$, $\langle P_{\alpha,\eta} : \alpha \leq \kappa, \eta \leq \zeta \rangle$ is a $\kappa \times \zeta$ -matrix. We assume, by induction on limit ζ , that for $\gamma < \eta < \zeta$, $\{P_{\alpha,\gamma} : \alpha \leq \kappa\}$ is a $< \cdot$ -chain and that $P_{\alpha,\gamma} < \cdot P_{\alpha,\eta}$ for all η with $\iota(\gamma,\eta) \leq \alpha \leq \kappa$. Note that clauses 3 (c) and 4 (b) of the construction ensure that condition (4) of Definition 5.1 holds. We check the details for $\zeta + 1$ and skip the easy subsequent verification for $\zeta + n$, $n \in \omega$. Suppose first that C'_{ζ} is cofinal in ζ and let $\iota(\gamma,\zeta) \leq \alpha < \kappa$ for some $\gamma < \zeta$. Of course we may assume that $\gamma \notin C'_{\zeta}$. Since C'_{ζ} is cofinal in ζ , let $\eta = \min(C'_{\zeta} \setminus \gamma)$. By induction, $P_{\alpha,\gamma} < \cdot P_{\alpha,\eta} < \cdot P_{\alpha,\zeta}$. Now assume that C'_{ζ} is not cofinal in ζ . If $\gamma \leq \varphi_0^{\zeta}$, then $\iota(\gamma,\zeta) = \iota(\gamma,\varphi_0^{\zeta})$, and so we have that $P_{\alpha,\gamma} < \cdot P_{\alpha,\varphi_0^{\zeta}} < \cdot P_{\alpha,\zeta}$. If $\varphi_0^{\zeta} < \gamma$, then choose any $l \in \omega$ so that $\gamma < \varphi_l^{\zeta}$. By construction, $\iota(\gamma,\zeta) \geq \iota(\gamma,\varphi_l^{\zeta})$ and so for $\iota(\gamma,\zeta) \leq \alpha < \kappa, P_{\alpha,\gamma} < \cdot P_{\alpha,\varphi_1^{\zeta}} < \cdot P_{\alpha,\zeta}$.

Now we consider the values of $\mathcal{A}_{\alpha,\xi,\eta}$ for $\alpha < \kappa$ and $\omega \leq \xi \leq \eta$ by examining the names \dot{a}_{γ} for $\gamma \in E$.

By clause (5), \dot{a}_{γ} is a $P_{0,\gamma+1}$ -name and γ is in the domain of each $p \in P_{0,\gamma+1}$ appearing in the name. One direction of this next claim is then obvious given that the domain of every element of $P_{\alpha,\xi}$ is a subset of $\operatorname{supp}(P_{\alpha,\xi})$.

Claim (c): \dot{a}_{γ} is a $P_{\alpha,\xi}$ -name if and only if $\gamma \in \operatorname{supp}(P_{\alpha,\xi})$.

Assume that $\gamma \in \operatorname{supp}(P_{\alpha,\xi})$. We prove this by induction on ξ . If ξ is a limit, then $\operatorname{supp}(P_{\alpha,\xi})$ is defined as a union, hence there is an $\eta < \xi$ such that $\gamma \in \operatorname{supp}(P_{\alpha,\eta})$ and $P_{\alpha,\eta} < P_{\alpha,\xi}$. If $\xi = \eta + n$ for some limit η and $n \in \omega$, then $P_{\alpha,\eta} < P_{\alpha,\xi}$ and so we may assume that $\eta \leq \gamma = \eta + k < \eta + n$ and that $o(C_{\eta}) < \kappa$. Since $P_{0,\eta+k} < P_{\alpha,\eta+k} < P_{\alpha,\eta+n} = P_{\alpha,\xi}$, it follows that \dot{a}_{γ} is a $P_{\alpha,\xi}$ name.

We prove by induction on ξ , ξ a limit, that for all $\gamma < \xi$:

Claim (d): for all $\alpha < \iota(\gamma + 1, \xi), \gamma$ is not in $\operatorname{supp}(P_{\alpha,\xi})$.

First consider the case that C'_{ξ} is cofinal in ξ and let η be the minimum element of $C'_{\xi} \setminus (\gamma + 1)$. By definition $\iota(\gamma + 1, \xi)$ is equal to $\iota(\gamma + 1, \eta)$ and the claim follows since we have that $\operatorname{supp}(P_{\iota(\gamma+1,\xi),\zeta}) = \operatorname{supp}(P_{\iota(\gamma+1,\xi),\eta})$. Now assume that C'_{ξ} is not cofinal in ξ and assume that $\alpha < \iota(\gamma + 1, \xi)$. We break into cases: $\gamma < \varphi_0^{\xi}$ and $\varphi_0^{\xi} \leq \gamma < \xi$. In the first case $\iota(\gamma, \xi) = \iota(\gamma, \varphi_0^{\xi})$ and the claim follows by induction and the fact that $\operatorname{supp}(P_{\alpha,\varphi_0^{\xi}}) = \operatorname{supp}(P_{\alpha,\xi})$ for all $\alpha < \iota(\gamma,\xi)$. Now consider $\varphi_0^{\xi} \leq \gamma < \xi$. If $\alpha < \iota_{\xi}$, then $P_{\alpha,\xi} = P_{\alpha,\varphi_0^{\xi}}$ and, since $\iota_{\xi} \leq \iota(\gamma + 1,\xi)$, γ is not in $\operatorname{supp}(P_{\alpha,\varphi_0^{\xi}})$. Otherwise, choose $l, n \in \omega$ so that $\iota_{\xi} \leq \alpha < \iota(\gamma + 1,\xi) = \iota(\gamma + 1,\varphi_l^{\xi} + n)$ as in the definition of $\iota(\gamma,\xi)$. By the minimality in the choice of $\varphi_l^{\xi} + n$, it follows that γ is not in $\operatorname{supp}(P_{\alpha,\varphi_{\ell}^{\xi}+n})$ for

all $l', n \in \omega$. Since $\operatorname{supp}(P_{\alpha,\xi})$ is the union of all such sets, it follows that γ is not in $\operatorname{supp}(P_{\alpha,\xi})$.

Next we prove, by induction on ζ , that the matrix so chosen will additionally satisfy condition (1). We first find a reformulation of condition (1). Note that by Claim (c), $\mathcal{A}_{\alpha,\xi,\eta} = \{\dot{a}_{\gamma}: \gamma \in E \cap \eta \setminus \operatorname{supp}(P_{\alpha,\xi})\}.$

Claim (e): For each $\alpha < \kappa$ and $\xi < \eta < \zeta$ and finite subset $\{\gamma_i: i < m\}$ of $E \cap \eta \setminus \operatorname{supp}(P_{\alpha,\xi})$ there is a $\beta < \kappa$ such that $\iota(\xi,\eta) \leq \beta$, $\{\gamma_i: i < m\} \subset \operatorname{supp}(P_{\beta,\eta})$ and $P_{\beta,\eta}$ forces that $\{\dot{a}_{\gamma_i}: i < m\}$ is thin over the forcing extension by $P_{\alpha,\xi}$.

Let us verify that Claim (e) follows from condition (1). Let α, ξ, η and $\{\gamma_i: i < m\}$ be as in the statement of Claim (e). Choose $\beta < \kappa$ so that $\iota(\xi, \eta)$ and each $\iota(\gamma_i + 1, \eta)$ is less than β . Then $P_{\alpha,\xi} < P_{\beta,\eta}$ and $\{\dot{a}_{\gamma_i}: i < m\} \subset \mathcal{A}_{\alpha,\xi,\eta} \setminus \mathcal{A}_{\beta,\eta,\eta}$. This value of β satisfies the conclusion of Claim (e).

Now assume that Claim (e) holds and we prove that condition (1) holds. Assume that $P_{\alpha,\xi} < P_{\delta,\eta}$. To prove that $\mathcal{A}_{\alpha,\xi,\eta} \setminus \mathcal{A}_{\delta,\eta,\eta}$ is forced by $P_{\delta,\eta}$ to be thin over the forcing extension by $P_{\alpha,\xi}$, it suffices to prove this for any finite subset of $\mathcal{A}_{\alpha,\xi,\eta} \setminus \mathcal{A}_{\delta,\eta,\eta}$. Thus, let $\{\gamma_i: i < m\}$ be any finite subset of $\sup(P_{\delta,\eta}) \cap E \cap \eta \setminus \sup(P_{\alpha,\xi})$. Choose β as in the conclusion of the claim. If $\beta \leq \delta$, then $P_{\delta,\eta}$ forces that $\{\dot{a}_{\gamma_i}: i < m\}$ is thin over the forcing extension because $P_{\beta,\eta} < P_{\delta,\eta}$ does. Similarly, if $\delta < \beta$, then $P_{\delta,\eta}$ being completely embedded in $P_{\beta,\eta}$ cannot force that $\{\dot{a}_{\gamma_i}: i < m\}$ is not thin over the forcing extension by $P_{\alpha,\xi}$.

We assume that $\omega \leq \zeta < \kappa^+$ is a limit and that $\langle P_{\alpha,\xi} \colon \alpha \leq \kappa, \xi < \zeta \rangle$ have been chosen so that conditions (1)–(10) are satisfied. We prove, by induction on $n \in \omega$, that there is an extension $\langle P_{\alpha,\xi} \colon \alpha \leq \kappa, \xi < \zeta + n \rangle$ that also satisfies conditions (1)–(10).

For n = 1, we define the sequence $\langle P_{\alpha,\zeta}: \alpha < \kappa \rangle$ according to the requirement of (3) or (4) as appropriate. It follows from Lemma 5.7 that (2) will hold for the extension $\langle P_{\alpha,\xi}: \alpha < \kappa, \xi < \zeta + 1 \rangle$. Conditions (3)–(10) hold since there are no new requirements. We must verify that the condition in Claim (e) holds for $\eta = \zeta$. Let α, ξ and $\{\gamma_i: i < m\}$ be as in the statement of Claim (e) with $\eta = \zeta$. Let $C_{\zeta} = \{\eta_{\beta}: \beta < o(C_{\zeta})\}$ be an order-preserving enumeration. We first deal with case that C'_{ζ} is cofinal in ζ . Choose any $\beta_0 < \kappa$ large enough so that $\gamma_i \in \text{supp}(P_{\beta_0,\zeta})$ for all i < m. Choose $\beta_0 < \beta$ so that $\iota(\xi, \eta_{\beta_0}) \leq \beta$. Now we have that $P_{\alpha,\xi} < P_{\beta,\eta_{\beta_0}}$ and $P_{\beta,\eta_{\beta_0}} < P_{\beta,\zeta}$. Applying Claim (e) to η_{β_0} , we have that $P_{\beta,\eta_{\beta_0}}$ forces that $\{\dot{a}_{\gamma_i}: i < m\}$ is thin over the forcing extension by $P_{\alpha,\xi}$. As in the proof of Claim (e), this implies that $P_{\beta,\zeta}$ forces the same thing.

A. Dow, S. Shelah

Now the case that C'_{ζ} is not cofinal in ζ . If $\alpha < \iota_{\zeta}$, then apply Claim (e) to choose β so that $P_{\beta,\iota_{\zeta}}$ forces that $\{\dot{a}_{\gamma_i}: i < m\}$ is not thin over the extension by $P_{\alpha,\xi}$. Since $P_{\beta,\iota_{\zeta}} < P_{\beta,\zeta}$ holds for all β , $P_{\beta,\zeta}$ also forces that $\{\dot{a}_{\gamma_i}: i < m\}$ is not thin over the extension by $P_{\alpha,\xi}$. If $\iota_{\zeta} \leq \alpha$, first choose $\delta < \kappa$ large enough so that $\iota(\xi,\zeta)$ and each $\iota(\gamma_i + 1,\zeta)$ is less than δ . Since $\{\gamma_i: i < m\}$ is a subset of $\operatorname{supp}(P_{\delta,\zeta})$, we can choose $l < \omega$ large enough so that $\{\gamma_i: i < \omega\} \subset \operatorname{supp}(P_{\delta,\varphi_l^{\zeta}})$. Applying Claim (e) to $\eta = \varphi_l^{\zeta}$, we choose β as in the claim. As we have seen, there is no loss to assuming that $\delta \leq \beta$ and, since $P_{\beta,\varphi_l^{\zeta}} < P_{\beta,\zeta}$, this completes the proof.

If $o(C_{\zeta}) < \kappa$, then the construction of $\langle P_{\alpha,\zeta+n} : n \in \omega, \alpha < \kappa \rangle$ is canonical so that conditions (2)–(10) hold. We again verify that Claim (e) holds for all values of η with $\zeta < \eta < \zeta + \omega$. Let α, ξ and $\{\gamma_i : i < m\}$ be as in Claim (e) for $\eta = \zeta + n$. We may assume that $\{\gamma_i : i < m\} \cap \zeta = \{\gamma_i : i < \overline{m}\}$ for some $\overline{m} \leq m$. If $\xi < \zeta$, let $\overline{\xi} = \xi$, otherwise, choose any $\overline{\xi} < \zeta$ so that $P_{\alpha,\zeta} = P_{\alpha,\overline{\xi}}$. Note that $\{\gamma_i : \overline{m} \leq i < m\}$ is disjoint from the interval $[\zeta, \xi)$. Choose $\beta < \kappa$ to be greater than $\iota(\overline{\xi}, \zeta)$ and each $\iota(\gamma_i + 1, \zeta), i < \overline{m}$, and so that $P_{\beta,\zeta}$ forces that $\{\dot{a}_{\gamma_i} : i < \overline{m}\}$ is thin over the extension by $P_{\alpha,\overline{\xi}}$. If $\overline{m} = m$ we are done by the fact that $P_{\alpha,\xi}$ is isomorphic to $P_{\alpha,\overline{\xi}} * \mathcal{C}_{\omega}$. In fact, we similarly have that $P_{\beta,\xi}$ forces that $\{\dot{a}_{\gamma_i} : i < \overline{m}\}$ is thin over the forcing extension by $P_{\alpha,\xi}$. Since $P_{\beta,\zeta+n}$ forces that $\{\dot{a}_{\gamma_i} : \overline{m} \leq i < m\}$ is a Cohen real over the forcing extension by $P_{\beta,\xi}$ it also follows that $P_{\beta,\zeta+n}$ forces that $\{\dot{a}_{\gamma_i} : i < m\}$ is thin over the star.

Now we come to the final case where $o(C_{\zeta}) = \kappa$ and the main step to the proof. The fact that Claim (e) will hold for $\eta = \zeta + 1$ is proven as above for the case when $o(C_{\zeta}) < \kappa$ and C'_{ζ} is cofinal in ζ . For values of n > 3, there is nothing to prove since $P_{\alpha,\zeta+3+k} = P_{\alpha,\zeta+3}$ for all $k \in \omega$. We also note that $\zeta + n \notin E$ for all $n \in \omega$.

At step $\eta = \zeta + 2$ we must take great care to preserve Claim (e) and at step $\zeta + 3$ we make a strategic choice towards ensuring that \mathfrak{p} will equal κ . Indeed, we begin by choosing the lexicographic minimal pair, $(\xi_{\zeta}, \alpha_{\zeta})$, in $\zeta \times \kappa$ with the property that there is a family of fewer than κ many canonical $P_{\alpha_{\zeta},\xi_{\zeta}}$ -names of subsets of ω and a $p \in P_{\alpha_{\zeta},\xi_{\zeta}}$ that forces over $P_{\kappa,\zeta}$ that there is no pseudo-intersection. If there is no such pair, then let $(\alpha_{\zeta},\xi_{\zeta}) = (\omega,\zeta+1)$. Choose ι_{ζ} so that $P_{\alpha_{\zeta},\xi_{\zeta}} < P_{\iota_{\zeta},\zeta+1}$.

Assume that $\alpha, \xi, \{\gamma_i: i < m\}$ are as in Claim (e). We first check that if $\xi < \zeta + 2$, then there is nothing new to prove. Indeed, simply choose $\beta < \kappa$ large enough so that $P_{\beta,\zeta+1}$ has the properties required in Claim (e) for $P_{\alpha,\xi}$. Of course it follows that $P_{\beta,\zeta+2}$ forces that $\{\dot{a}_{\gamma_i}: i < m\}$ is thin over the extension by $P_{\alpha,\xi}$ since $P_{\beta,\zeta+1}$ already forces this.

This means that we need only consider instances of Claim (e) in which $\xi = \zeta + 2$. The analogous statement also holds when we move to $\zeta + 3$. For each $\beta < \kappa$, let

$$T_{\beta} = E \cap \operatorname{supp}(P_{\beta+1,\zeta}) \setminus \operatorname{supp}(P_{\beta,\zeta})$$

and note that $P_{\beta+1,\zeta+1}$ forces that $\{\dot{a}_{\gamma}: \gamma \in T_{\beta}\}$ is thin over the extension by $P_{\beta,\zeta+1}$. Most of the work has been done for us in Lemma 5.6. Except for some minor re-indexing, we can assume that the sequence $\{P_{\beta}: \beta < \kappa\}$ in the statement of Lemma 5.6 is the sequence $\{P_{\beta,\zeta}: \beta < \kappa\}$. We also have that $P_{\beta,\zeta} * C_{(\beta+1)\times c}$ is isomorphic to $P_{\beta,\zeta+1}$. We can choose any $P_{0,\zeta+1}$ -name $\dot{\mathcal{D}}_{0,\zeta}$ -name of a Ramsey ultrafilter on ω . The family $\{\dot{a}_{\gamma}: \gamma \in T_{\beta}\}$ will play the role of $\dot{\mathcal{A}}_{\beta}$ in the statement of Lemma 5.6, and we let $\{\dot{\mathcal{D}}_{\beta,\zeta}: 0 < \beta < \kappa\}$ be the sequence as supplied in Lemma 5.6.

Now assume that $\alpha < \kappa$ and that $\{\gamma_i: i < m\} \subset E \cap \zeta \setminus \operatorname{supp}(P_{\alpha,\zeta+1})$. Let $\{\dot{F}_l: l \in \omega\}$ be any sequence of $P_{\alpha,\zeta+2}$ -names of pairwise disjoint elements of $[\omega]^k$ for some $k \in \omega$. We must find a sufficiently large $\beta < \kappa$ so that $P_{\beta,\zeta+2}$ forces that $\dot{a}_{\gamma_0} \cup \cdots \cup \dot{a}_{\gamma_{m-1}}$ is disjoint from \dot{F}_l for some $l \in \omega$. Let $\{\beta_j: j < \overline{m}\}$ be the set (listed in increasing order) of $\beta < \kappa$ such that $T_\beta \cap \{\gamma_i: i < m\}$ is not empty and let $\beta_m = \beta_{m-1} + 1$. By re-indexing we can assume there is a sequence $\{m_j: j \leq \overline{m}\} \subset m+1$ so that $\gamma_i \in T_{\beta_j}$ for $m_j \leq i < m_{j+1}$. Although $P_{\beta,\zeta+2} = P_{\beta,\zeta+1}$ for values of $\beta < \iota_{\zeta}$, we will let $\overline{P}_{\beta,\zeta+2} = P_{\beta,\zeta+1} *_{\zeta+1} \mathbb{L}(\dot{\mathcal{D}}_{\beta,\zeta})$ for $\beta < \iota_{\zeta}$, and for consistent notation, let $\overline{P}_{\beta,\zeta+2} = P_{\beta,\zeta+2}$ for $\iota_{\zeta} \leq \beta < \kappa$. We note that $\{\dot{F}_l: l \in \omega\}$ is also sequence of $\overline{P}_{\alpha,\zeta+2}$ -names of pairwise disjoint elements of $[\omega]^k$.

For each $j < \overline{m}$, let \dot{L}_{j+1} be the $\overline{P}_{\beta_j+1,\zeta+2}$ -name of those l such that \dot{F}_l is disjoint from $\bigcup \{\dot{a}_{\gamma_i}: i < m_{j+1}\}$. It follows, by induction on $j < \overline{m}$, that $\overline{P}_{\beta_j+1,\zeta+2}$ forces that \dot{L}_{j+1} is infinite since $\overline{P}_{\beta_j+1,\zeta+2}$ forces that $\{\dot{a}_{\gamma_i}: m_j \leq i < m_{j+1}\}$ is thin over the forcing extension by $\overline{P}_{\beta_j,\zeta+2}$. It now follows $\overline{P}_{\beta_m,\zeta+2}$ forces that $\{\dot{a}_{\gamma_i}: i < m\}$ is thin over the forcing extension by $\overline{P}_{\alpha,\zeta+2}$. If $\beta_m < \iota_{\zeta}$, let $\beta = \iota_{\zeta}$, otherwise, let $\beta = \beta_m$. It follows that $P_{\beta,\zeta+2}$ forces that $\{\dot{a}_{\gamma_i}: i < m\}$ is thin over the forcing extension by $P_{\alpha,\zeta+2} < \overline{P}_{\alpha,\zeta+2}$. This completes the verification of Claim (e) for the case $\eta = \zeta + 2$ and we now turn to the final case of $\eta = \zeta + 3$.

We have chosen the pair $(\alpha_{\zeta}, \xi_{\zeta})$ when choosing ι_{ζ} . Let $\dot{Q}_{\iota_{\zeta}, \zeta+2}$ be the $P_{\iota_{\zeta}, \zeta+2}$ name of the finite support product of all posets of the form $\mathbb{M}(\mathcal{F})$ where \mathcal{F} is a family of fewer than κ canonical $P_{\alpha_{\zeta}, \xi_{\zeta}}$ -names of subsets of ω that is forced to have the sfip. Since $P_{\alpha_{\zeta}, \xi_{\zeta}} \in H(\lambda^+)$ the set of all such families \mathcal{F} is an element of $H(\lambda^+)$. This is our value of $\dot{Q}_{\iota_{\zeta}, \zeta+2}$ as in condition (9) for the definition of $P_{\beta, \zeta+3}$ for all $\beta < \kappa$. The fact that Claim (e) holds in this case follows immediately from the induction hypothesis and Proposition 5.5. We also note that $P_{\iota_{\zeta}, \zeta+3}$ 350

forces that every family of fewer than κ many canonical $P_{\alpha_{\zeta},\xi_{\zeta}}$ -names that is forced to have the sfip is also forced by $P_{\kappa,\zeta+3}$ to have a pseudo-intersection. This means that for values of $\zeta' > \zeta$ with $o(C'_{\zeta}) = \kappa$, the pair $(\alpha_{\zeta},\xi_{\zeta})$ will be lexicographically strictly smaller than the choice for ζ' . In other words, the family $\{(\xi_{\zeta},\alpha_{\zeta}): \zeta < \kappa^{+}, \operatorname{cf}(\zeta) = \kappa\}$ is strictly increasing in the lexicographic ordering. Now we can verify that $P_{\kappa,\kappa^{+}}$ forces that $\mathfrak{p} \geq \kappa$. If it does not, then there is

a $\delta < \kappa$ and a family, $\{\dot{y}_{\gamma}: \gamma < \delta\}$ of canonical $P_{\kappa,\kappa^{+}}$ -names of subsets of ω with some $p \in P_{\kappa,\kappa^{+}}$ forcing that the family has sfip but has no pseudo-intersection. By an easy modification of the names, we can assume that every condition in $P_{\kappa,\kappa^{+}}$ forces that the family $\{\dot{y}_{\gamma}: \gamma < \delta\}$ is forced to have sfip. Choose any $\xi < \kappa^{+}$ so that $p \in P_{\kappa,\xi}$ and every \dot{y}_{γ} is a $P_{\kappa,\xi}$ -name. Choose $\alpha < \kappa$ large enough so that $p \in P_{\alpha,\xi}, \iota(\bar{\zeta},\xi)$, and each $\alpha_{\gamma}, \gamma < \delta$, is less than α . It follows that \dot{y}_{γ} is a $P_{\alpha,\xi}$ name for all $\gamma < \delta$. Since the family $\{(\xi_{\zeta}, \alpha_{\zeta}): \zeta < \kappa^{+}, \operatorname{cf}(\zeta) = \kappa\}$ is strictly increasing in the lexicographic ordering, and this ordering on $\kappa^{+} \times \kappa$ has order type κ^{+} , there is a minimal $\zeta < \kappa^{+}$ (with $\operatorname{cf}(\zeta) = \kappa$) such that $(\xi, \alpha) \leq (\xi_{\zeta}, \alpha_{\xi})$. By the assumption on $(\alpha, \xi), (\xi_{\zeta}, \alpha_{\xi})$ will be chosen to equal (ξ, α) . One of the factors of the poset $\dot{Q}_{\iota_{\zeta},\zeta+2}$ will be chosen to be $\mathbb{M}(\{\dot{y}_{\gamma}: \gamma < \delta\})$. This proves that $P_{\kappa,\zeta+3}$ forces $\{\dot{y}_{\gamma}: \gamma < \delta\}$ does have a pseudo-intersection.

It should be clear from condition (8) in the construction that P_{κ,κ^+} forces that $\mathfrak{s} \geq \kappa^+$. To finish the proof we must show that P_{κ,κ^+} forces that $\{\dot{a}_{\gamma}: \gamma \in E\}$ is (κ,κ^+) -shattering. Since \dot{a}_{γ} is forced to be a Cohen real over the extension by $P_{\kappa,\gamma}$, condition (2) in Definition 2.3 of (κ,κ^+) -shattering holds. Finally, we verify condition (1) of Definition 2.3. Choose any P_{κ,κ^+} -name \dot{b} of an infinite subset of ω . Choose any $(\alpha,\xi) \in \kappa \times \kappa^+$ so that \dot{b} is a $P_{\alpha,\xi}$ -name. The set $E \cap \operatorname{supp}(P_{\alpha,\xi})$ has cardinality less than κ . For any $\gamma \in E \setminus \operatorname{supp}(P_{\alpha,\xi})$, there is a $(\beta,\zeta) \in \kappa \times \kappa^+$ such that $\{\dot{a}_{\gamma}\}$ is thin over the forcing extension by $P_{\alpha,\xi}$. It follows trivially that $P_{\beta,\zeta}$ forces that \dot{b} is not a (mod finite) subset of \dot{a}_{γ} .

6. Questions

(1) Is it consistent to have $\omega_1 < \mathfrak{h} < \mathfrak{b} < \mathfrak{s}$ and \mathfrak{c} regular?

(2) Is it consistent to have $\omega_1 < \mathfrak{h} < \mathfrak{s} < \mathfrak{b}$ and \mathfrak{c} regular?

Question (2) has been answered in [12].

References

- Balcar B., Pelant J., Simon P., The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), no. 1, pages 11–24.
- Baumgartner J.E., Dordal P., Adjoining dominating functions, J. Symbolic Logic 50 (1985), no. 1, 94–101.

- [3] Blass A., Applications of superperfect forcing and its relatives, Conf. Set Theory and Its Applications, Toronto, 1987, Lecture Notes in Math., 1401, Springer, Berlin, 1989, pages 18–40.
- Blass A., Shelah S., Ultrafilters with small generating sets, Israel J. Math. 65 (1989), no. 3, 259–271.
- [5] Brendle J., Fischer V., Mad families, splitting families and large continuum, J. Symbolic Logic 76 (2011), no. 1, 198–208.
- [6] Brendle J., Raghavan D., Bounding, splitting, and almost disjointness, Ann. Pure Appl. Logic 165 (2014), no. 2, 631–651.
- [7] Dow A., Shelah S., On the cofinality of the splitting number, Indag. Math. (N.S.) 29 (2018), no. 1, 382–395.
- [8] Dow A., Shelah S., Pseudo P-points and splitting number, Arch. Math. Logic 58 (2019), no. 7–8, 1005–1027.
- [9] Fischer V., Friedman S. D., Mejía D. A., Montoya D. C., Coherent systems of finite support iterations, J. Symb. Log. 83 (2018), no. 1, 208–236.
- [10] Fischer V., Mejia D. A., Splitting, bounding, and almost disjointness can be quite different, Canad. J. Math. 69 (2017), no. 3, 502–531.
- [11] Fischer V., Steprāns J., The consistency of $\mathfrak{b} = \kappa$ and $\mathfrak{s} = \kappa^+$, Fund. Math. **201** (2008), no. 3, 283–293.
- [12] Goldstern M., Kellner J., Mejía D.A., Shelah S., Preservation of splitting families and cardinal characteristics of the continuum, Israel J. Math. 246 (2021), no. 1, 73–129.
- [13] Ihoda J. I., Shelah S., Souslin forcing, J. Symbolic Logic 53 (1988), no. 4, 1188–1207.
- [14] Jech T., Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003.
- [15] Kunen K., Vaughan J. E., eds., Handbook of Set-theoretic Topology, North-Holland Publishing Co., Amsterdam, 1984.
- [16] Mejía D.A., Matrix iterations and Cichon's diagram, Arch. Math. Logic 52 (2013), no. 3–4, 261–278.
- [17] Shelah S., On cardinal invariants of the continuum, Conf. Axiomatic Set Theory, Boulder, 1983, Contemp. Math., 31, Amer. Math. Soc., Providence, 1984, pages 183–207.

A. Dow:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE, 9201 UNIVERSITY CITY BLVD, CHARLOTTE, NC 28223-0001, NORTH CAROLINA, U.S.A.

E-mail: adow@charlotte.edu

S. Shelah:

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY,

HILL CENTER FOR THE MATHEMATICAL SCIENCES, 110 FRELINGHUYSEN RD.,

PISCATAWAY, NJ 08854-8019, NEW JERSEY, U.S.A.

current address:

EINSTEIN INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, GIVAT RAM, JERUSALEM 9190401, ISRAEL

E-mail: shelah@math.rutgers.edu

(Received June 6, 2022, revised October 1, 2023)