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ON SPECTRUM OF x-RESPLENDENT MODELS

SAHARON SHELAH

ABSTRACT. We prove that some natural “outside” property of counting models
up to isomorphism is equivalent (for a first order class) to being stable.

For a model, being resplendent is a strengthening of being x-saturated.
Restricting ourselves to the case k > |T'| for transparency, a model M is k-
resplendent means:

when we expand M by < k individual constants (¢; : ¢ < «) , if

(M, ¢i)<a has an elementary extension expandable to be a model

of T" where Th((M, ¢;)i<a) C T7,|T'| < k then already (M, ¢;)ica

can be expanded to a model of T” .
Trivially any saturated model of cardinality A is A-resplendent. We ask: how
many x-resplendent models of a (first order complete) theory T of cardinality
X are there? Naturally we restrict ourselves to cardinals A = A% + 2|71, Then
we get a complete and satisfying answer: this depend just on T being stable or
unstable. In this case proving that for stable T" we get few, is not hard; in fact
every resplendent model of T is saturated hence determined by its cardinality
up to isomorphism. The inverse is more problematic because naturally we
have to use Skolem functions with any a < x places. Normally we use relevant
partition theorems (Ramsey theorem or Erdés-Rado theorem), but in our case
the relevant partitions theorems fails so we have to be careful.

0. INTRODUCTION

Our main conclusion speaks on stability of first order theories, but the major (and
the interesting) part of the proof has little to do with it and can be read without
knowledge of classification theory (only the short proof of 1.8 uses it), except the
meaning of k¥ < x(T) which we can take as the property we use, see inside 2.1(1)
here (or see [Sh:E59, 1.5(2)] or [Sh:c]). The point is to construct a model in which
for some infinite sequences of elements we have appropriate automorphisms,so we
need to use ”Skolem” functions with infinitely many places. Now having functions
with infinite arity make obtaining models generated by indiscernibles harder. More
specifically, the theory of the Skolemizing functions witnessing resplendence for
(M, b) is not continuous in Th(M,b). So we use a weaker version of indiscernibility
hence though having a linear order is usually a very strong requirement (see [Sh:E59,
§3]), in our proof we use it as if we only have trees (with x levels).

In [Sh:a] or [Sh:c, VI 5.3-5.6] we characterized first order T" and cardinals A such
that for some first order complete 71, T' C Ty, |T1| = A and any 7(T)-reduct of a
model of T} is saturated.

In [Sh:225] we find the spectrum of strongly N.—saturated models, but have
nothing comparable for strongly R;—saturated ones (on better computation of the
numbers see [Sh:225a], and more in [Sh:331, 3.2]). Our interest was:

Publication 363. This was supposed to be Ch V to the book “Non-structure” and probably
will be if it materialize. Was circulated around 1990.
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(A): an instance of complete classification for an “outside” question: the
question here is the function giving the number up to isomorphism of x-
resplendent models of a (first order complete) theory T as a function of the
cardinality, we concentrate on the case A = A% + 2/7|

(B): an “external” definition of stability which happens to be the dividing
line.

Earlier we have such an equivalent ”external” definition of stability by saturation
of ultra-powers, i.e. Keisler order, see [Sh:c]. Baldwin had told me he was writing a
paper on resplendent models: for Ro—stable one there are few (< 2%¢) such models
in any cardinality; and for T not superstable — there are 2* models of cardinality
A (up to isomorphism).

Note that resplendent models are strongly Np—homogeneous and really the non-
structure are related. The reader may thank Rami Grossberg for urging me to add
more explanation to 1.9.
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1. RESPLENDENCY
Our aim is to prove 1.2 below (“k-resplendent” is defined in 1.4).

Convention 1.1. T is a fixed first order complete theory; recall that 7(T') = 7,
T(M) = 7 is the vocabulary of T, M respectively and L is first order logic, so
L, =1L(7) is the first order language with vocabulary 7.

‘We show here

Theorem 1.2. The following are equivalent (see Definition 1.4 below) for a regular
uncountable k:
(1): kK < w(T), see e.g. 2.1(1),
(ii): there is a non-saturated k-resplendent model of T (see Definition 1.4
below),
(iii): for every A = \* > oTI T has > X non-isomorphic k-resplendent
models,
(iv): for every A = A" > 2171 T has 2* non-isomorphic k-resplendent models.

Proof: The implication (i) =- (iii) follows from the main Lemma 1.9 below; the
implication (iii) = (ii) is trivial, and (ii) = (i) follows from 1.8 below. Lastly,
trivially (iv) = (iii) and (i) = (iv) by 3.142.22.

Remark 1.3. (1) If we omit condition (iv) we save §3 as well as the depen-
dency on a theorem from [Sh:309] using only an easy relative.
(2) In the proof the main point is (i) = (iii) (and (i) = (iv), i.e., the
non-structure part).
(3) Remember: T is unstable iff x(T") = cc.
(4) Notice that every saturated model M is || M ||-resplendent (see 1.4(2) be-
low). Actually a little more.

Definition 1.4. (1): A model M is (k,€)-resplendent (where £ = 0,1,2,3) if:
for every elementary extension N of M and expansion N1 of N satisfying
[T(ND)\T(N)| < k and o < K, ¢; € M for i < a and Ty € Th(Ny,¢;)ica
satisfying (>k)‘3T1 below, there is an expansion (M, c;) of (M, ¢;) to a
model of Ty, when:

(%)%, 2 Case 0: ¢ =0: |Ti| <k,
Case 1: ¢ =1: for some 7 C 7(Ny), || < K and T} CL(7" U
{c; i < a}),
Case 2: ¢ =2: Ty is k—recursive (see 1.4(4) below),
Case 3: (=3: T)=Th(Ny,c¢),., (but remember that Ny has
only < k relations and functions not of M ).
(2): K-resplendent means (k, 3)-resplendent.
(8): Assume M is a model of T, ¢ € *~|M| and M; is an expansion of (M,¢).
We say that Mz witnesses (k,{)-resplendence for ¢ in M, when:
for every first order Ty such that

Th(M,E)ng & |T(T1)\T(T)| <K
and (>s<)éT1 holds, we have:
Mz is a model of Ty up to renaming the symbols in 7(T1) \ 7(M, ¢).

(4): For M,Ny, {(¢; : i < a) and Ty C Th(Ny1,¢)ica as in part (1), Ty is
K-recursive when:

<o <o
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(a): K =Ng and Ty is recursive (assuming the vocabulary of T is repre-
sented in a recursive way or

(b): k> RVg and for some 7" C 7(Ny), |7*| < K the following holds:
if po(wo, ..., 2n—1) € L(7') for £ = 1,2 and there is an automorphism
m of T (see parts (9)), where ™ C 7' C 7(Ny) such that 7 is the
identity on 7 and 7(p1) = w2 and By < B1 < ... < « then

w1(cpy,cays---) €T iff  wa(csyscpy,y---) € Th.
(5): We say f is an (M, N)-elementary mapping when f is a partial one-to-
one function from M to N, (M) = 7(N) and for every p(zo,...,Tn—1) €
L(r(M)) and ag,...,an—1 € M we have:

M = plag,...,an—1] iff N E¢lf(ao),. .., flan-1)
(6): f is an M—elementary mapping if it is an (M, M )—elementary mapping.
(7): M is k-homogeneous if : B
for any M —elementary mapping [ with |Dom(f)] < k and a € M
there is an M —elementary mapping g such that:

fCg  Dom(g) = {a} UDom(f).
(8): M s strongly k-homogeneous if for any M-elementary mapping f with
| Dom(f)| < & there is an automorphism g of M, such that f C g.

(9): Let 1 C 7 be vocabularies. We say that 7 is an automorphism of To
over 11 when: m is a permutation of To, ™ maps any predicate P € 15 to a

predicate of To with the same arity, ™ maps any function symbol of F' €
to a function symbol of 7o of the same arity and w|Ty is the identily.
(10): For w, 12 as in part (9) let 7 be the permutation of the set of formulas
in the vocabulary mo which m induce.
Example 1.5. There is, for each regular x, a theory T, such that:
(a): T} is superstable of cardinality ,
(b): for A > k, T, has 2* non-isomorphic (x, 1)-resplendent models.
Note:
Fact 1.6. (1) If T =7(M), and
[ Cr&|f|<k = M]|7 is saturated |

then M is (k,1)-resplendent.
(2) If M is saturated of cardinality X then M is A-resplendent.

Proof: Easy, e.g., see [Sh:a] and not used here elsewhere.

Proof of 1.5: Let Ag = {k\ (i+1):4 < x} and Ay = Ay U {(0}. For every linear
order I of cardinality A > k we define a model M;:

its universe is

TUu{(s,t,i,xy:sel,teclii<AzecA and [ Es<t = x€ Ao},

(and of course, without lost of generality, no quadruple (s, t,4,x) as above belongs
to I), its relations are:

P = I
R = {<s,t,<s,t,i,z>>:s€], tel, (s,t,i,x>€|M1|\P},
Qo = {(s,tyi,z): (s, t,i,x) € M|\ P, a« €z} fora<k.
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In order to have the elimination of quantifiers we also have two unary functions F,
F5 defined by:

sel = Fi(s)= Fg(s) 8,
(s, t,i,x) € |MI\I = Fi((s,t,i,x) S&FQ(<StZZL'>) t.

It is easy to see that:
(a): In My, the formula

P(a) & P(y) & (32)(R(z,9,2) & N ~Qalz

a<k
linearly orders PM in fact defines <r;

(b): Th(M;) has elimination of quantifiers;

(c): if 7 C 7(My), |7| < K then M; | 7 is saturated;

(d): Th(M7;) does not depend on I (as long as it is infinite) and we call it T};

(e): T} is superstable.
Hence: T,, = Th(Mj) is superstable, does not depend on I, and

Mp= My if and only if I = J,

and by 1.6 M is (k,1)-resplendent. I

Fact 1.7. (1) M is (k,3)-resplendent implies M is (k,{)-resplendent implies
M s (k,0)-resplendent.
(2) M is (k,0)-resplendent implies M is k-compact.

(3) M is (k,2)-resplendent implies M is k-homogeneous, even strongly k-homogeneous

(see Definition 1.4(7),(8)).

(4) If M is (k,2)-resplendent £ > Rg and {@, : n < w} is an indiscernible set
in |[M]|, then it can be extended to an indiscernible set of cardinality || M]|
(similarly for sequences).

(5) M is (k,3)-resplendent implies M is k-saturated.

(6) If k > |T| then the notions of 1.4 “(k,€)-resplendent” for £ =0,1,2,3, are
equivalent.

Proof: Straightforward, for example
(3) For given a;,b; € M (for i < a, where a < k) let
T, = {g(a;))=0b;:i<a}U
{(Vz,y)(9(x) =g(y) = z=y), (Vo)3Fy)(g(y) =)} U
g

{(Vwo, ces ,xn_l)[R(xo, ce ,xn_l) = R( (.To), ce ,g(l‘n_l))] :
R an n-place predicate of 7(M)} U

{(Vxo, ..., 2n-1)[F(g(x0),...) = g(F(xg,...))]:
F an n-place function symbol of 7(M)}.

(4) For notational simplicity let a,, = a,,. Let T be, with P a unary predicate, g a
unary function symbol,

{ “g is a one-to-one function into P” } U{P(a,) :n <w} U
{(Vwo,...,xn_l) /\ P(zy) & N w0 # 2m & ©lag, ..., an-1]

l<m<n
= o(zo,..., zn,l)} :
o(x0, . Tpn1) € L(T(M))}
[ T
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Conclusion 1.8. If M is k—resplendent, k > k(T) + Ny then M is saturated.

Proof: By 1.7(5) M is k—saturated, so without loss of generality || M| > k. Hence,
by [Sh:a] or [Sh:c, IIT,3.10(1),p.107], it is enough to prove: for I an infinite indis-
cernible C M, dim(I, M) = ||M||. But this follows by 1.7(4). Bis
Main Lemma 1.9. Suppose that k = cf(k) < &(T) (for example, T unstable, K
regular) and A = X+ 2IT1 . Then T has > \ pairwise non-isomorphic k-resplendent
models of cardinality .

Before embarking on the proof, we give some explanations.

Remark 1.10. (1) We conjecture that we can weaken in 1.9 the hypothesis
“N= X4 21T o «X = A<# 4 2|T1” This holds for many \’s, see [Sh:309,
§2]; but we have not looked at this. See §3.

(2) We naturally try to imitate [Sh:a], [Sh:c, VII,§2, VIII,§2] or [Sh:E59, §3],[Sh:331].

In the proof of the theorem, the difficulty is that while expanding to take
care of resplendency, we naturally will use Skolem functions with infinite
arity, and so we cannot use compactness so easily.

If the indiscernibility is not clear, the reader may look again at [Sh:a] or
[Sh:c, VII,§2], (tree indiscernibility). We get below first a weaker version
of indiscernibility, as it is simpler to get it, and is totally harmless if we
would like just to get > A non-isomorphic models by the old version [Sh:300,
I11,4.2(2)] or the new [Sh:309, §2]

Explanation 1.11. Note that the problem is having to deal with sequences of < &
elements b = (b; : i < ¢€), € infinite. The need to deal with such b with all theories
of small vocabulary is not serious — there is a “universal one” though possibly of
larger cardinality, i.e., if M =T, b; € M for i < ¢, € < k, we can find a f.o. theory
Ty = Ty (b) satisfying Th(M,b;)i<c C T1, |T1| < (2!T1#l€h)<% such that:

if Th(M,b;)ice CT" and |[7(T)\7(T)\{bi i < €e}| <K

then renaming the predicates and function symbols outside T, we

get T C T(b)

— this is possible by Robinson consistency lemma. Let us give more details.

Claim 1.12. (1) Let My be a model, 79 = 7(Mo), b = (b; : i < k) where
by € My fori < e and 6 > Xg be a cardinal. Let 7 = 70 U {b; : i < €}
s0 My = (Mo, b;)i<c is a 71-model. Then there is a theory Ty = Ty[b] =
Ty[b, M), depending only on 19, 71 and Th(My), i.e., essentially on tp({(b; :
i <e€),0, M) such that:

(a): 7o = 7(T2) = 7(¢,70) extends 11 and has cardinality < 2IT1+0+lel
(b): for every Ma, T, the model Ms is expandable to a model of T’,

when:
(a): My is a 71 —model,
(8): Ms can be expanded to a model of Tb,

(7): Th(Msy) C T', equivalently some elementary extension of Mo
s expandable to a model of T,
(0): T is foo. and |T(T") \ 7(M2)| < 0,
(a)t: if 0 > |T| + |e| then |1a| < 2<% is enough.
(2) If in part (1), clause (§) of (b) is weakened to
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(0)2: T" is foo., and |T(T")\ 7(M2)| < 6,
then we can strengthen (a) to
(a)a: T2 = 7(T%) extends 71 and has cardinality < Y 2ImITrtRotlel
n<
(@)d: if 0 > (|T| + |e])T then || < 3. 2<H is enough.
n<
Proof: 1) We ignore function symbols and individual constants as we can replace
them by predicates. Let

T ={T": T fo.complete theory, Th(M;) C T’ and
7(T")\ (M) has cardinality < 6}.

This is a class; we say that 77, T € T are isomorphic over Th(M;) (see [Sh:8])
when there is a function h satisfying:
(a): h is one-to-one,
(b): Dom(h) = 7(7"),
(c): Ramg(h) = (I"),
(d): h preserves arity (i.e., the number of places, and of course being predi-
cate/function symbols),
(e): h | (7(My)) = identity,
(f): for a f.o. sentence ¥ = ¥(R1,...,Ry) € L[r(T")], where Ry,..., Ry are
the non-logical symbols occurring in v, we have

1/}(R17"'5Rk) ETI e w(h(Rl)aah(Rk)) ET”'

Now note that
M, T/ = has cardinality < 2l7ol+lel+0,

Now let {17 : o < 2I7l+l+01 Jist members of T such that every equivalence
class of being isomorphic over Th(M;) is represented. (7(T7)\ 71 : o < 2l7olFlel+0)
are pairwise disjoint.

Note that Th(M;) C T\, Let Ty = U{T., : o < 2I7ol+lel+01 anq

B, T4 is consistent.

Why? By Robinson consistency theorem.

Let Ty be any completion of Tj. So condition (a) holds; proving (b) should be
easy.

Let us prove (a)™; this is really the proof that a theory T, |T'| < 6, has a model
in 2<¢ universal for models of T of cardinality < #. We shall define by induction
on a < 0, a theory T2 such that:

(A): T§ = Th(M),

(B): T2 a f.o. theory,

(C): 72 = 7(T?) has cardinality < 2l7ol+lel+lal+Ro,

(D): T2, 72 are increasing continuous in «,

B): ifm Cr' Cr, [ <l +al, 7 S 7N =7, TE Ly ST C
L[r"], T" complete and |7\ 7| = {R},
then we can find R’ € 72, \ 72 such that of the same arity.

T"[replacing R by R'| C T2,

[e3

There is no problem to carry out the induction, and J 772 is as required.
a<f

2) Similar. B2
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Explanation 1.13. So for M |= T, b € "M, we can choose T1[b] 2 Th(M,b)
depending on Th(M, b) only, such that:
(®): M = “T is k-resplendent if for every b € "> M, (M,b) is expandable to
a model of T5[b].
W.Lo.g. 7(T5[b]) depends on £g(b) and 7o only, so it is 7(¢g(b), Tar). )
The things look quite finitary but 75[b] is not continuous in Th(M,b). Le.,
() & (xx), where
(¥): b € "> M, for a < §, (& a limit ordinal) fg(b%) = ¢, and for every n,
i1 <...<in <eand a formula p(x;,,...,2;, ) € L(rar) for some 8 < §:

B<a<s = MEb],. .. b 1=pbs, ... b,

117

(xx): for any ¢ € L(72) for some 8 < §:
ﬂSOZS(; = I:(PGTQ[B&] - QDETQ[BﬁH

[You can make T} [b] somewhat continuous function of the sequence b if we look at
sub-sequences as approximations, not the type, but this is not used.]
This explain Why you need “infinitary Skolem functions”.

We shall try to construct M such that for every b € M, (M,b) is expandable
to a model of Ty[b], so if 75 = 7(Tx[b]) \ 7(M,b), this means we have to define
finitary relations/functions R (for R € 75). We write here b as a sequence of
parameters but from another prospective the predicate/function symbol Rp(—)
has e + arity(R)—places.

Explaning the first construction 1.14. (i.e., 2.19 below)

Eventually we build a generalization of EM(*2), ¥), a model with skeleton a,
(n € "2 )\) witnessing x < x(T'), but the functions have any o < & places but not &,
and the indiscernibility demand is weak. We start as in [Sh:E59, §2], so for some
formulas (¢q(x,7,a) : a < k) we have (where a, = (a,) for n € "\):

neEN&ve N = p,lay,a,) .

Without loss of generality, for any o < k for some sequence Gy = (Guy : £ <
lg(Ja)) of unary function symbols for any 1 € ", Gypa = Galay) == (Ga(ay) :
0 < 1g(Ja)), so we can look at {a, : n € "A} as generators. For W € [FA]<", let
Nw = N[W] be the submodel which {a, : n € W} generates. So we would like to
have:

(): Nw has the finitary Skolem function (for 7'), and moreover
Nw has the finitary Skolem function for T5[b] for each b € *~ (Ny),
(8): monotonicity: Wy C Wy = Ny, C Ny,.
So if % C "\, then N[%] = {Nw : W € "Z[%]} is a k-resplendent model of
cardinality A.
(7): Indiscernibility: (We use here very “minimal” requirement (see below)
but still enough for the omitting type in (1) below):
(1): ne"X\% = N[%] omits p, =: {@a(,an)a) : @ < K}; (satis-
faction defined in N[®)]),
(2): meAnNu = N|[%] realizes p,.
Now (2) was already guaranteed: a,, realizes p;,.
For (1) it is enough
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(1): if W e "= [*X], n € "A\W then p,, is omitted by Ny (satisfaction defined
in N["A]).
Fix W, n for (1)’. A sufficient condition is
(1)": for a < & large enough, (G,;a~¢ : ¢ < A) is indiscernible over Ny in
N[,
[if k-(T) < oo, immediately suffices; in the general case, and avoiding classification
theory, use

p;; = {Qpa(-ra@n[(aJrl)) & ﬁ()0(-Z'a@n[af(n(oz)Jd)) ta< ﬁ}
SO we use

Sﬁl(za g(/x) = 90(1(50,@; I Eg(ga)) A ﬂgpa(z, g(/l I (Eg(ga), 2€g(ga)))
in the end].
Note: as |W| < k&, for some a(x) < &, for every n € ©\
Wn{v:n|a(x) <ver\}is a singleton

and W € W, (see below), this will be enough to omit the type. The actual
indiscernibility is somewhat stronger.

Further Explanation: On the one hand, we would like to deal with arbitrary se-
quences of length < x, on the other hand, we would like to retain enough freedom
to have the weak indiscernibility. What do we do? We define our “®” (not as nice
as in [Sh:E59, §2], i.e., [Sh:a, Ch.VII §3]) by & approximations indexed by a < k.
For a < k, we essentially have Ny, for
WeW,={W: WC"\ |[W|<kand
the function n — n [ a (n € W) is one-to-one }.

Now, W, is partially ordered by C but (for o < ) is not directed. For o < 5 we
have W, C Wy and W, = |J W, is equal to [FA]<".
a<k
So if we succeed to carry out the induction for a < k, arriving to a = k the

direct limit works and no new sequence of length < k arises.
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2. PROOF OF THE MAIN LEMMA
In this section we get many models using a weak version of indiscernibility.

Context 2.1. (1) T is a fix complete first order theory, k < k(T), ¢ =
(pa(z,y) : a < k) is a fixed witness for k < x(T'), that is
(¥): for any A, for some model M of T and sequence (a, : ) € "=\) with

a, € M wehave: ife < k,n € "\, o < Athen M = ¢ a,, amﬁﬁ<a>]if(°‘:’7(€)).

(2) Let u be infinite large enough cardinal; p = 3,(|T]) is O.K.

REMARK: Why are we allowed in 2.1(1) to use ¢q(x,y) instead o(x,7)? We can
work in 7°%, see [Sh:c, Ch. IIT] and anyhow this is, in fact, just a notational change.

Definition 2.2. (1) Fora <k and p € “p, let I, = I = I;" be the model

({V € (K:u) v [04 = P},Ei <i)i<na
where _ _
B, = {(mv):imermverunli=vli},
<; = {(n,v):n Ew and n(i)<v(@)}.
(2) Let W, = WH = {
from W we have n |

C ®u : W has cardinality < & and for any n # v
#vlal}, and Weo = | Wp.

B<a
(3) We say that W is a—invariant, or («, p)—invariant, when W C W, and:

Q‘ Wi, Wy € Wy, h is a one-to-one function from Wi onto Wy and
nla=nhn)laforne W,
then W1 e W & Wy e W.
(4) We say W C W, is hereditary if it W CW e W = W' e W

°

Definition 2.3. (1) Let 0 = Op,, be the minimal cardinal satisfying:

(a): 0 =0~">|T|,

(b): if M is a model of T, b € "> M, then there is a complete (first order)
theory T* with Skolem functions extending Th(M,b) such that:
if T 2 Th(M,b) and 7(T") \ 7y 5 has cardinality <
then there is a one-to-one mapping from 7(1") into 7(T™) over Ty p
preserving arity and being a predicate / function symbol, and mapping
T’ into T*.

(2) Fore < k, let T[T, €] be a vocabulary consisting of Tr, the individual con-
stants be for & < e, and the n-place predicates Rr.j, for j <6 and n-place
function symbols Fr ;. for j <@0.

For e < Kk and a complete theory T® in the vocabulary T4 U {Qg (& <e}
extending T, let T*[T®] be a complete first order theory in the vocabulary
T[T, €] such that if (M,b) is a model of T®, then T*[T®)] is as in clause (b)
of part (1).

(3) For M =T and e < k and b € €M, let T*[b, M| = T*[Th(M, b)].

Remark 2.4. Note that 6 is well defined by 1.12. In fact, # = II{2/71*7 . o+ < k}
is OK.

Main Definition 2.5. We say that m is an approzimation (or an c—approximation,
or (o, p) ~approzimation) if

(*)1: a<k (SO o= Qym = a(m));
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(x)2: m consists of the following (so we may give them subscript or superscript
m):

(a): a model M = My,;

(b): a set F = Fu of symbols of functions, each f € F has an interpre-

tation, a function fyn with range C M, but when no confusion arises

we may write f instead of fm, (or f™, note that the role of those f-s

is close to that of function symbols in vocabularies, but not equal to);

(c): each f € F has (s < k places, to each place ¢ (i.e., an ordinal

¢ < Cr) a unique ne € “p, ne = ng =n(f, ) is attached such that
[C#E = nc#nel,

and the (-th variable of f wvaries on I , i.e., fu(...,T¢,.. )c<¢, 18
well defined iff N\ x¢c € I, = IH;

¢<Cy
we may write fo(..., vy, .. Jpewls] nstead fu(. .., Vn(p.e)s---)c<c,» where
wlf] = {n(f,¢): ¢ < (s} and f € F = (IW € W)[w[f] = {nla:ne€
W1, see clause (e) below;

(d): for each b € ">|M|, an expansion My of (M,b) to a model of
T*[b, M], (see above in Definition 2.8; so My has Skolem functions
and it witnesses k-resplendency for this sequence in M );

(€): W =W, €W, which is a—invariant and hereditary;

(£): for W € W, Ny which is the submodel of M with universe

fCoomes o De<ey w FEF, Fne, . e<e, well defined,
and nc € W for every (},

(g): a function f = £,

such that m satisfies the following:

(A): M is a model of T,

(B): [witness for k < k(T):] for our fixed sequence of first order formulas
(pc(z,y) : ¢ < K) from L(rp) depending neither on « nor on m) we have
foc€F for (<K, p€®pu (we also call them f/‘)“g) such that:

(i): f) is a one place function , with Cf;’g,ng”’g from clause (c) being
1, p respectively.

(ii): f;, (1) = [}, (o) if v [ ¢ =va2 | ¢ and they are well defined, i.c.
pe<ve € ",

(iii): if pe € “p, ve € I, for £ =1,2 and ¢ < k then:

M= oc (£ xn) f5, 0 (v2)] it [ 1 (CHD) = w2 T (CHD)),
(C): Nw < M, for W eW,

(D): [f = f,, witness an amount of resplendency]
(a): the domain of £ is a subset of

Fo = {f: f:<f5:€<5f), ef <k, fe €F, and
Cr. does not depend on ¢, call it (5 and
for ¢ < (5 the sequence n(fe,() does not
depend on €, call it n(f,C)},
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(B): for f € Dom(f), f(f) is a function with domain

{o(@): o(z) is a7[T,ef]-term, and T = (x¢ : § € u)
for some finite subset u = u, of € }

and if o(z) € Dom(f(f)) then
f(f)(0(@) € ZIf]:==1{f € F : (s = (5 & (V< Cp)(n(f, Q) = n(f, O},

(): e if f € Dom(f) and b = <ff(""yn(fyc)7"')€<§f thenthe uni-
verse of My is {f((-- . vyi.e)s- - o<y 2 f € FIf]}

o if(f(f))(o(@)=f € F, WeW,u € W and v¢ [a)n(f, )

for ¢ < (s, and T = (z¢ : £ € u), and b= f(v) = (f-(V) :
£7), then

O’MT’(<f§(. ces Ve ')<<<f €€ u>) = f*( ces Ve, ')<<<f'

[ezplaining (v): we may consider b € Nw, N Ny, and we better have that
the witnesses for resplendency demands, specialized to b, in Ny, and in Ny, are
compatible so that in the end resplendency holds].

However, we shall not get far without at least more closure and coherence of the
parts of m.

Definition 2.6. (1) An approzimation m is called full if Wy = Wq(m), and
is called semi—full if W < q(m) © Wm © W) and is called almost full if it
is semi full when « is limit ordinal and full when « is a non-limit ordinal.

(2) An approximation m is f-resplendent if B < am and

if  WeWgNWy and f € Fy, and

n(f,Q):¢< ¢t C{vavew),
then f € Dom(fn).

(3) In part (2), if we omit B, we mean § = am, and “< 5*7 means for every
B <pr.
(4) An approzimation m is called term closed if:
(E): Closure under terms of T: B
Assume that u C *pu, |u| < &, and for some W € Wy, u C{n | a:
a € W}, and (ne = ¢ < ¢*) lists uw with no repetitions and f; € F,
¢ < n, satisfies {n(fe,() : (< (5} C u, o is an n-place 7(T')-term
s0 0 = 0(x0,...,Tn-1). Then for some f € Fn satisfying ¢y = ¢*,
n(f,¢) = ne, for any choice of (v, : n € u) such that n<v, € “u for
neu, and {v, :ne€u} CW' €W for some W' we have

fm("'?’/’?’"')new[f] :J(...,fg“(...,Vn,...)n@u[m,...)kn

(this clause may be empty, but it helps to understand clause (F); note
that it is not covered by 2.5(D) as the functions are not necessarily with
the same domain, hence this says something even for o the identity:
so this implies that in clause (f) of Definition 2.5 we can demand
{mm(f, Q) (< (et =W).
(F): Closure under terms of T(Mg):

Assume that w C “p, |u| < k, and (nc : ¢ < ¢*) lists u with no
repetitions, and for some W € Wy, u C{n[a:ne W} Ifn<w
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and f* € Fn forl <n, f=(f-:e < e(x)) € Dom(fy), and
n(fe,;¢) €u  for ¢ < (s, and
n(f,¢) eu  for (< (e, and
be = fe(-o s vn(focys - )e - Jore < e(x),
B = <b6 re< 6(*)> and O'(IE(), s 7$n71) 5 a T(ME)*t@’f’m,
then for some [ € Fy we have w[f] = u and:
if vy 613 forneu and{VWZUGU}EWm, then

fm ( <oy Upy e ')nEu = OJME ( .. 7f1f1( cey Vﬁ(f['vC)’ .. ')C<C(f[)’ .. ')Z<n .
Observation 2.7. In Definition 2.6(4) in clauses (E),(F) it suffice to restrict

ourselves to the case n =1 and o is the identity.

Proof: By 2.5(D)(y).
Of course some form of indiscernibility will be needed.

Definition 2.8. (1) Let E be the family of equivalence relations E on
{v € (") : v without repetitions },
or a subset of it, such that
PPEP? = (g(vh) = lg(P?).
(2) Let E, be the family of E € E such that
veDom(E) = (v [a:(<lg(p)) is without repetitions.
(3) Let E2 € E,, be the following equivalence relation:
P EY 2 iff for some ( < k we have
(i) vt el ("),
(ii) vlla=vilafore<,
(iii) (vl | a:e < () is with no repetitions,
(iv) the set {e < (: v}l #V2} is finite.

(3A) We say that (0, 0*) are immediate neighbours if (g(v') = (g(v?), and for
some & < lg(') we have (Ve < ()(e # & & vl =1v2); so the difference
with (3) is that “finite” is replaced by “a singleton”.

(4) Let EY,, be defined like E, strengthening clause (iii) to

(iii)*: for some B < «, the sequence (V! | B : e < () is with no repeti-
tions.
(5) For a <k and W C W, let
seq, (W) = {v: v €"> (%u) is with no repetitions,

and for some W € W we have
{ve : € <tg(v)} C W, and hence
(ve T a: ¢ < Lg(v)) is with no repetitions }.

(6) We define EL, as we define EY in part (3) above, omitting clause (iv). We

define E1<a paralelly as in part (4).

REMARK: The reader may concentrate on EY, so the “weakly” version below.

Definition 2.9. (1) An approzimation m is called E—indiscernible if
(a): E € Eqm) refine Ei(m),
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(b): if v', 7% € seqy(m)(Ww) and ' E 2, then there is g (in fact, a
unique g = goy ») such that
(@): g is an (My, My)—elementary mapping,
(8): Dom(g) = {f((vh) : ¢ < (p)) 2 f € P and I is a one-to-one
function from (; into Lg(D*) such that n(f,¢) < Vé},
(M) 9(f({vpe €< () = f((yi(o_: ¢ <)) for f,h as above;
(C): Assume 1717772 € Seq(x(m)(wm); flaf2 € Dom(fm); ¢ = §f1 =
(2, and for some one-to-one function h from ¢* to lg(7*) we have
n(ft¢) = Vhic) ['o for ,m=1,2, and v* E 02, Let

b = <ff(<”£(g) (< (M) e < lg(fY)).
Then there is g such that
(): g is an (Mi‘l‘,Mi;‘)felementary mapping,
(B): g =95 2 from clause (b) above.
2) An approzimation m is strongly indiscernible if it is E' . —indiscernible.
o(m)
3) (a) An approzimation m is weakly indiscernible when it is BV , | -indiscernibility.
a(m)
(b) An approxzimation m is weakly/strongly nice if it is term closed and
weakly/strongly indiscernible.

(c) An approxzimation m weakly/strongly good if it is weakly/strongly nice
and is almost full.

(d) An approzimation m is weakly/strongly excellent if it is weakly/strongly
good, and is resplendent, see Definition 2.6(2),(3).

Discussion 2.10. Why do we have the weak and strong version?

In the proof of the main subclaim 2.19 below the proof for the weak version is
easier but we get from it a weaker conclusion: > AT non-isomorphic k-resplendent
of cardinality X\ = \*, whereas from the strong version we would get 2*. But see §3.

Claim 2.11. Let m be an approximation.
(1) In the definition of “m is E® ~indiscernible”, it is enough to deal with im-
mediate EO -neighbors (see Definition 2.8(3)).
(2) If m is weakly/strongly excellent then m is weakly/strongly good.
(3) If m is weakly/strongly good thenm is weakly/strongly nice.
(4) If am = 0,E € Ey, then m is E-indiscernible if and only if m is strongly
indiscernible.
Definition 2.12. (1) For approxzimations my, msy let “my <p ma” or “my < my
as witnessed by h” mean that:
(@): a(my) < a(ms),
(b): Wm1 - sz;
(¢): h is a partial function from F, into Fu,,
(d): if h(f2) = f1 then they have the same arity (i.e., (i = () and

C<§“11 = nml(flag) :nm2(f27§) ra(ml)a
(€): if f1 € P, and W € Wy, and
{vlam):veW}={nm(f1,0): ¢ <G},
then there is one and only one fo € Fu, satisfying

h(f2) = fi and {nm,(f2,() : ¢ < C}Zl} ={v[am):veW},
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(£): for W € Wy, , the mapping g2 [W, h] defined below is an elementary

my
embedding from Ny* into N2, where:
(x): if f1 € Py, Jo € Fm, are as in clause (e) (so h(f2) = f1),

and
a= {“1(...,1@,...)4<<h, and {V<:§<C?1}§W

(s0.a.€ NI, then (g2 [W,B)(a) = (..., v, Jeccs
(8): if [' = (fi : € < &) € Dom(fwm,) and 1, (f',¢) < ¢ € *™p
for ¢ < (R, P={ff:¢<¢e € (Fn,), and (77 = ;?11, and
E<ckC<Cn = n(f20) =& h(f2) = fL, then
(a): f? € Dom(f, ), B
(B): 1 (ma (7)) (o(re + € € 0)))) = (B (F) 0l : € € w)),
when u is a finite subset of €
(7)_ assume ve € I for { < C}‘f, and W = {v; : ¢ < C;?ll},
bt = <f£( c Ve )¢ 2§ <€), then the mapping gm2[W, h] (see
clause (f) above) is an isomorphism from Mg‘;l I INW| onto
Mgy? | [Nyl
(2) We say that (mg, hfj 1 B < a,y < B) is an inverse system of approximations
if
(a): mg is a f-approzimation (for B < a),
(b): m, ghg mg for v < S,
(c): hg is the identity,
(d): if fo < 1 < B2 < & then h? =hj} o h}?.
(3) We say that an inverse system of approximations (mlg,hg B <a,y<pB)
is continuous at d if:
(a): 0 <« is a limit ordinal,
(b): Wiy = U{ Wy, : B <6},
(€): Py = U{Dom(_hg) : B <6}, )
(d): Dom(fy;) = {f? : for some B < & and f' € Dom(fn,) of length
lg(f?) we have hi(f2) = f¢ for € < lg(f?) }.

Discussion: Having chosen above our order, when can we get the appropriate indis-
cernibility? As we are using finitary partition theorem (with finitely many colours),
we cannot make the type of candidates for b fixed. However we may have a priory
enough indiscernibility to fix the type of enough b’’s and then use the indiscernible
existence to uniforming the related Mjp’s.

Claim 2.13. There is an excellent 0-approzimation.

Proof: Recall that the sequence (¢, (z,y) : @ < k) exemplifies k < k(T'), see 2.1
above. Hence by clause (b) of [Sh:E59, 1.10(3)], we can find a template ® proper
for the tree Iy, i.c., *=pu, with skeleton (a, : n € "= p) such that for v € "u and
p € “Fly we have

EM("Zu, @) = ¢a(ay,a,) iff  p<v.

Without loss of generality, for some unary function symbols F* € 7(®), we have
EM("2u, ®) = “F.(ay) = an.” for n € ®u. Now, by induction on & < x we choose
®. such that
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(a): ®. is a template proper for =y which is nice (see [Sh:E59, 1.7] + [Sh:E59,
18(2)),

(b): 7(®.) has cardinality < 6 (see Definition 2.3),

(c): &9 =9,

(d): the sequence (P, : e < k) is increasing with ¢, that is,

(<e = 7(®)CT(P) and EM'("Zp, &) < EM'("Zp, .),

(e): the sequence (P, : ¢ < k) is continuous, i.e., if £ is a limit ordinal then
T((I)a) = CU T((I)C)a

(f): if & = (oi(z) : i < 7¥) is a sequence of length < x of unary terms in
7(®.), and M=+t = EM! (%2, ®. 1), and for v € "u we define b = by ,, as

(@M (@) i < i) € T (EM ({v}, eta)),

then we can interpret a model Mg“ of T*[b, M*! | 77] in M*+!, which
means
(a): if R € 7p[b, Mt | 7(T)]\ 77 is a k-place predicate, then there is a
(k + 1)-place predicate R, € 7(®.11) \ 7(P.) such that

Mf"'l E Rlco,...cx—1] iff M= Rieo,. .., ch1,a.],

(B): if F' € Tpp pesrpr(ry \ 71 18 @ k—place function symbol, then there
is a (k + 1)-place function symbol Fy € 7(P.41) \ 7(P.) such that

MEEJrl E “Flco,...coo1] =¢" iff M= “Flco,...,cho1,a,] = .

Let us carry out the induction; note that there is a redundancy in our contraction:
each relevant b is taken care of in the e-th stage for every ¢ < & large enough,
independently, for the different e-s.

For ¢ = 0:
Let (I)Q = &.

For a limit e:
Let @, be the direct limit of (D¢ : ¢ < &).

Fore=(+1:

Let the family of sequences of the form 7 = (o;(x) : i < ¢*), where o;(z) is a unary
term in 7(®¢), i* < k, be listed as (67 (z) : v < 0), with 67 (z) = (0] () : i < iy).
Let M} be a 0T -resplendent (hence strongly 6-homogeneous and k-resplendent)
elementary extension of EMl(”z,u, ®¢), and let M. = M} | 77, and choose v* € " pu.
For each v < 0 let b). =: (0] (ay+) : i < i,). Now, (M.,b].) can be expanded to a
model Mgv* of T*[bY., M.], and let

T(T*[b, M) \7r = {R5) :j < 0,n <w}U{F; )} :j<0,n<w},

where R}’ is an n-place predicate and F;;| is an n-place function symbol. Next
we shall define an expansion M7 of M. Its vocabulary is

T(Pe) U{Rery jns Feryjn 2§ < 8,mn <w},

where R -, is an (n + 1)-place predicate, Fr . j, is an (n 4+ 1)-place function
symbol, and no one of them is in 7(®¢) (and there are no repetitions in their list).
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Almost lastly, for v € * let g, be an automorphism of M, mapping EM*({v*}, ®;)
onto EM*({v}, ®); moreover such that for any 7(®¢)-term o(z) we have g, (o (a,~)) =
o(ay) (hence § <k = gu(av-1¢) = ayj¢ using o(x) = F; (z)).

Now we actually define M expanding M M}

RE;] n = {(gl/(CO)agu(cl)a ... 7gu(cn—1)agu(au*)) :
Mgz* = RS (co, - en1) }s

" 7; jn 18 an (n + 1)-place function such that

MECW* = Fj(cos- . ycpnm1) = ¢ implies

Fs'ysjn(gl/(co)a"'agl/(cn 1) )_gl/( )
We further expand M1 to MXT, with vocabulary of cardinality < 6 and with
Skolem functions.

Now we apply 1 has the Ramsey property” (see [Sh:E59, 1.14(4)] see “even”
there, [Sh:E59, 1.18]) to get ®. = ®¢iq, 7(P.) = 7(MIT), such that for every

“Rk>

n<w,Vi,...,V, €, and first order formula ¢(z1,...,2,) € L(1(®.)), for some
Ny--oyNn € "1 we have

(@) M = Plan,, . ay,] it EMU (%20, @) = plan,. . - a,],

(B): N1y mn), (U1, ..., vp) are similar in 52 p.

It is easy to check that ®. = &, is as required.

So we have defined the sequence (. : ¢ < k) satisfying the requirements above,
and let @, be its limit. It is as required in the claim. | PRE

Claim 2.14. Assume o < k is a limit ordinal and <m.y,h Y < B <) isan
inverse system of approximations.

(1) There are my, hS (for v < a) such that (my,h5 : v < 8 < a+1) is an
inverse system of approximations continuous at c.

(2) For the following properties, if each my41 (for v < «) satisfies the prop-
erty, then so does my: term closed, semi full, almost full, resplendent,
weakly/strongly indiscernible, weakly /strongly nice, E- indiscernible for
any E € E, weakly/strongly good, weakly/strongly excellent.

Proof: Let Wy, = |J Wy, and let Mg = My, for 3 < a. We shall define
<a

Fo = Py, My = Mia and N, = Njj~ and Mg = Mllj“a below.

First let .%, (formal set, consisting of function symbols not of functions), hg
(8 < a) be the inverse limit of (#5,h? : v < 3 < o), ie.,

(o): hﬂ is a partial function from .#, onto .#3, and in Definition 2.12.
(B): h hBohO‘for'y<ﬁ<Oz
() Fa= U Dom(h”‘)
B<a

(0): If By < o, fg € Fp, for B € [Py, @), satisty hg(fg) = fy when 8, <y <

B < «, then for one and only one f € .%, we have:

(p=C(p for Be[Bua)  and  npe=J{npc: B <B<al,
(€): every f € %, has the form of f in (4),
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(Q): [, areasin (B) of Definition 2.5, i.e., for any p € “u and { < k we have
B<a = h%‘(f;[B,C) = f;:&nﬁ-

Second, we similarly choose fy,.. .

Thirdly, we choose M,, and interpretation of f (for f € #,) and M; when

be {Rang(f) : f € Fa & (¥ < (p)(Ev € W)(n[ < v)}

for some W € W_,. Though we can use the compactness theorem, it seems to me
more transparent to use ultraproduct . So let D be an ultrafilter on o containing

all co-bounded subsets of a. Let M, = [] Mg/D. If f € Z,, let By < o and
B<a

(fy 17 € [By,)) be such that By <y <a = hJ(f) = f,, so <77£ FBr: ¢ <Cp)

has no repetitions. Now, when ng <Qve €%, let

fu(ooyve,..)={cy: v < a)/D,
where
veE Br.a) = cy= (hg‘(f)mw)(...,yg,...) € M,,
v < By = cyisany member of M,.
So My, is well defined for W € W ().

Fourth, if b = (b : € < e(x)) € "> (M), be = f™(...,v¢, .. Je<c,.» and By < «
and for v € [Bs,a): fye € Py, (fr.e i€ <e(x)) € Dom(fn,), and hﬁ(fmg) = f.,
then we let b7 = (b : & < e(x)) where b2 is f™(...,v¢,.. )eec,. if B € [B, )
and b2 is any member of M, if 3 < B, and lastly we define Mg =TI Mlii /D.

BE[Bxa)
We still have to check that if for the same b we get two such definitions, then they
agree, but this is straightforward.

Fifth, we choose M;* for other b € "> (M,,) for which Mz is not yet defined to
satisfy clause (d) of Definition 2.5; note that by the choice of Wy, those choices
do not influence the preservation of weakly/strongly indiscernible. So m,, is well
defined and one can easily check that it is as required. | PR

Claim 2.15. Assume a =+ 1 < k, and my is a S—approzimation.
(1) There are hy and an a—approximation mg such that my <y, mg, My, =
My, , M7 =M™, and Dom(h,) = F, .
(2) If my is weakly/strongly nice, then mo is weakly/strongly nice.
(3) If my is weakly/strongly indiscernible , then mo is weakly/strongly indis-
cernible; simply for E-indiscernible, E € E,.

Proof: (1) Should be clear. B
Let a(mz) = o, Wi, = Wy, My, = My, and M;" = M;™ for b € "= (My,).
Then let
Fm, ={95n: [ € Fp,his a function with domain {ns¢: { < (s}
satisfying h(ny.c) € Suc(ny.c) = {np.c~(v) : v <t}
where for g = gy n we let (; = (y and ny ¢ = h(nyc), and if ve € I, . for ( <,
(: gf), then

9 ve, ) =M v, ) € Miny < M,
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We define h, by:
Dom(h,) = P, and h.(gfn) = f.
Lastly let
Dom(fn,) = {{g- : € <e(x)) : for some f = (f. : £ < &(x)) € Dom(fm,)

and a function h with domain

{nt..c: ¢ < (g} ie., does not depend on e

we have e <e(x) = g-=grn },
and if b, f,5 = (gf..n 1 € < (f) € Dom(f,) are as above, 0(Z) is a [T, e(*)]~term,
T = (v¢ : £ € u), and u is a finite subset of £(x) and (fu,(f))(c(Z)) = f, then
(fn, (9))(0(T)) = gy.h-

Now check.
2), 3) Easy. | PRE
Definition 2.16. (1) For approzimations my,ma, let my <* my mean that

a(my) = a(ma) and my <y, mg with h being the identity on Fn, C Fn,,
and W, € Wy, and £, C £, the last mean that if f € Dom(fy,) then
f € Dom(fy,) and the function fw,(f) is equal to the function fw, (f).
(2) Let my <* ma mean that
(a): my <*mg,
(b): if f € Fu, then f € Dom(fy,).
Observation 2.17. (1) <* is a partial order, my <* my, and

mp <*my = my < mo, and
my <*my <* mg = mp <* ms, and
m <*mp <m3g = m; <* ms.

(2) Each <*—increasing chain of length < 0% has a lub (essentially its union).
If all members of the chain are weakly/strongly indiscernible, then so is the
lub.

(3) If (m. : € < K) is <*—increasing then its lub m is resplendent and € < Kk =
m. <* m. So if each m. is weakly/strongly good then m is weakly/strongly
excellent.

PROOF: : Easy.
As a warm up.

Claim 2.18. (1) For any a—approzimation mg there is a full, term closed a—
approrimation my such that mg <* my.
(2) Ifmg is an a—approzimation, then there is a a—approzimation my such that
my <* my and Dom(fy,) = Fu,.
Proof: 1) Let My, = M, and M™ = M;™ for b € "> (My,). Let Wy, = W,
and let (7y : v < 4*) list the sequences 7 € "~ (") such that (ve | a: ( < lg(D))
is without repetitions and {v¢ : ¢ < lg(?)} € W,. Let 7, = (vy ¢ : ¢ < (F) and
define py, =: (vy ¢ [ o : ¢ < Lg(Dy)), and W, =: {v, ¢ : ( <} for v < v*. Let
By = otp{m1 <7 : (Vy2 <M)(Py, # i)}
For each W € W, \ Wy, let M! be an elementary submodel of My, of
cardinality 6 such that

WiCW A Wi eWn, = Mgt <My and
ber> (My') = MM | |IMgH| < M.
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Let (aw,; : ¢ < 0) list the elements of M. For § < 8+ and i < 6 we choose fgz;
such that if v < v*& 8, = B then (y, , = lg(,) = 1g(p,) = lg(7s, )-and 1(fs,i,¢) =
P, and we define f5' by: if ve € I, for ¢ < (y, ., and (v : ( < (F, ) = 7y then
f"};( s Uy gy e ) = aw,i-

Next, Fm, almost is Fn, U{fg,i: 8 < By, i < 0}, just we term-close it. Lastly
fin, is defined as fy,, recalling that Dom(fy,, ) is required just to be a subset of F.

2)  Also easy.
Let M* be a ||Muy,||"-resplendent elementary extension of My,. We define an

a—approximation m; as follows:

(a): Om; = Omg, W, = Wiy, My, = M7,

(b): if b € "7 (Mp,), then M;" is an elementary extension of M;",

(c): fm, 2 fin, and Dom(fy,) = Fpy,,

(d): Ty = Fng B

(e): if (fm, (/))(0¢(7%)) = f, n(f,C) < vy € “p, and

b= (fM (.. v Je<e; i€ <ej)  and ¢ = (2 i e ),
then

my

fml(. ces Ve, ')C<Cf = O’ME (<fz( ces Ve, ‘)§<§f NS u>)
L PRE

Main Claim 2.19. Assume mg is a weakly nice approximation. Then there is a
weakly good approximation my such that mg <* my with Wy, = Wy, .

Proof: By 2.18(1)+(2) there is a full term closed my such that my <* my; and
Dom(fin,) = Fm,. We would like to “correct”m; so that it is weakly indiscernible.
Let my be an am,—approximation as guaranteed in the Claim 2.20 below, so it is
good and reflecting we clearly see that mg <* my and even mg <* ms.

Main SubClaim 2.20. (1) Assumemy is a weakly nice a—approzimation and
my <* my and Dom(fy,) = Fu, and Wy, is an ideal (that is closed under
finite union). Then there is a good a—approzimation my such that:

(a): amy, = Omy s Fmy = Fmys fng = iy, and Wy, = Wy,
(b) my <" mo;
(2) We may add
(c) Assume
(a): n < w and fo € F,, Vf € Lys,0) for ¢ < (g, £ <m, and A is a
finite set of formulas in L(7r)
(B): m < w and for k < m we have f¥ = (f¥ : e < ¢;) € Dom(fy,) and
ng <w and gre € Fm, (for £ < ny) satisfying

<77(gk,€,§) 10 < Cgk,e) = <77(fkaC) (< gf"))

and V£7< € Ly for £ < np,C < (g, and Ay is a finite set of
formulas in L(7[Cg, 7(T')]).
Then we can find pé forl < ny, ( < (s and ng Jor £ <ny, ¢ < (g for
{ < ng, k <m such that
(i): pt e Lyt0.0) for ¢ < Cg, and pr¢ € Lypr ¢y for ¢ < (e for £ <n,k <
m7
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(ii): the sequences (pé tl<n, < () NPkl <npk<m, (<)
and <l/é <, C<Cp) vhe s L < ng, kb <m, ¢ < (p) are similar
(see Definition ),

(iii): the A-type realized by the sequence

(i

b
0 (Ve ey, 1< m)
in My, is equal to the A~type which the sequence

4
(FCspes e Je<ey, 1L <)
realizes in My, ,
(iv): for k < ma, the Ax—type realized by the sequence

Va4
<g,‘:z(. NN -)C<wa Sl < ng)

in the model M?}Z"“Z:e«k) (- Ve Decciecey) is equal to the Ay ~type

realized by the sequence

< mjy

4
gk,l(- c PR ')C<ka 4 < ng)
in the model M},

< € m2 55<5k‘>

(v): if k1, ke < m then

(. .. Vﬁﬁ .. .)<<<:€<€k>

k =
(fErma(..., vl -)<<<fk-1 e <én)
k
<fsk2’m2(' : 'aVCZ’ - ')<<<fk‘2 HE < Ehy)
if and only if

k
<f8kl’m1(. .. ,pcl, .. ')<<<f’“1 re<eEp) =
k
(fma( 02, o<y € < Ehy)s
(vi): if £ < my, k <m, £* <n, then

il

if and only if

s, = G e

0" 4
T Deees, = IR P ey

Discussion 2.21. Now we have to apply the Ramsey theorem to recapture weak
indiscernibility. Why we only promise my <* m;& Dom(fy,,) = Fy,, not that my
is excellent? As T*[b, M] is not a continuous function of (b, M) and, more done
to earth, as during the proof we need to know the type of b whenever we consider

types in M;"*in order to know T*[b, M)

Usually a partition theorem on what we already have is used at this moment,
but partition of infinitary functions tend to contradict ZFC. However, in the set A
expressing what we need, the formulas are finitary. So using compactness we will
reduce our problem to the consistency of the set A of first order formulas in the
variables

{fCmes Jecepy s FE€F™ and ¢ < Gp = n(f,¢) < nc € "u}.
This can be easily reduced to the consistency of a set A of formulas in L(7r) (first
order). B B
We can get A because for all relevant b we know T*[b, M].
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Proof: Let Y = {ys( v, pewyy © f € Fmy and vy € I for n € w[f]} be a set
of individual variables W1th no repetitions, recalling that w[ 1 ={nlf.e] e < ¢r}
For each f € Dom(fy,) and 7 = (v, : 1 e_w[f]) such that v, € I, let 77, be
7[T,1gf] where w([f] = w[f.] for each e < fg(f); pedantically a copy of it over 77 so

(f1,01) # (f2,02) = T N TR 5 = Tr. Let 75 = U{Tﬁl7 : f, 7 as above } U 7p.

Let g ; be a one to one function from 7T, 1g( f)] onto 7, Which is the identity
on 7 preserve the arity and being a predicate function symbol, individual constant.
Let g7 be the mapping from L(7[T, lg(f)]) onto (77 ;) which g ; induce.

We now define a set A (the explanations are for the use in the proof of X; below).

&0 A:AOUA1UAQUA3UA4UA5UA6UA7UA8Where

(a): Ao = {@C(yfgl L) yfgz’gﬂ(,,z))t: where t = truth if and only if
il(C+1) =wel((+1)] and ¢ < K, pr € “p, and vy € I, for £ =1,2}
[explanation: to satisfy (iii) in clause (B) of Definition 2.5].

(b): Ay = {yf* ) =Yg ) ¢ < K,pe € “pyvp € I for £ = 1,2 and

nC=w 1)
[explanation:to satisfy (ii) in clause (B) of Definition 2.5].
(©): Ao = {Ys( vy dmewsy = O s UhsCowmdnewtsy -+ -) + Fo(fe 1 £ < m) and

(vy :m € w[f]) are as in clause (E) of Deﬁmtlon 2. 6( ) for my }.
[explanation:this is preservation of the witnesses for closure under terms
of 7, in clause (E) of Definition 2.6(4) for my].

(d): As = {yf(...,un,...)WEw[f] = U(' ) fe( R Vn(féa C)v - ')C<C(f‘7)7 s )i<n
f(ff £ < n)and (f- : € < e(x)) € Dom(fy,) are as in clause (F) of
Definition 2.6(4)}.

[explanation: this is preservation of the witness for closure under terms
of the 7(Mj)-’s as in clause (F) of Definition 2.6(4) for my).

(€): Aa ={@(- s Up(veryewens - Je<n 2 P(To,s ... Tn—1) € L(7r) and fo €
Fmo and (" = (5, for £ < n, and ve € Iy, ) for ¢ < (" and My, =
(p[...,f?o(...,l/c,...><<C*,...)e<n}

[explanation: this is for being above mg, the L(7r)-formulas].
(f): As like Ay for the My-’s that is
As = {SD("'7yfi(mq’/(m»)g<g*1---)1<n: for some f,7 and (fy : £ < n) we
have ¢(zo,...,2n—1) € L(7f7 ;) and f € Dom(fn,),((f) = ¢* = (s, fr €

Fungs N(f:C) = n(fe,¢) for ( < ¢*, £ <mand M, = @+ [ (o 06, o< -

[explanation: this is for being above my, the formulas from the M —s].
(8): Ae = {o(- - up( cecerr Je<n = (.. 1 Yfe(v2 oo De<n
o(xg,y . 1) € L))TT) and ¢* = ¢(fe), fe € y‘“l,uf € Ly, ifk=1,2
and ¢ < ¢* such that for exactly one ¢ < ¢* we have v} # ¢}
[explanation: this is for weak indiscernibility, see Definition 2.9(1) clause
(b) and Definition 2.9(3).]. o
(h): A7 = {(Vo1...z0)[@1(20, ... 2n_1) = 2(20, ..., 2n_1)]: forsome f!, f> €
Fu,lg(f!) = 1g(f2) n(f¢,¢) avg € " for ¢ < 1g(f*) and n(f'.¢1) =
U(JFQ, () = Vél = V@v Pe € L(Tff,lﬂ) and gfjll’pl (p1) = g];2l7u2 (p2)}
[Explanation: this has to show the existence of the M;: we can avoid
this if we change the main definition such that instead Mj we have M; ;]
(i): As = {90(---,yfg(...,u;,...k«*,-- Je<n = (-3 Yfo(p?,)eceer - Josn < for

some f € Dom(fw,), f, 7,7, 7% and (f; : £ < n) we have @(z0, ..., 2p-1) €

')€<n}
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L(t7,), fo € Py, Cro = Cnlfe, Q) = ne € pfor ¢ < (7, and w(f) C
{ne : ¢ < ¢*}, and for k = 1,2 we have 7 <11/éC € “u for ¢ < ¢*, and

n(f,¢) = ne, = ve, = vh,}
Clearly (e.g. for the indiscernibility we use term closure)

(X1): A is a set of first order formulas in the free variables from Y and the
vocabulary 7% such that an a—approximation m satisfying (i) below is as
required if and only if clause (ii) below holds where

(1): P = Py fn = fnyy, Wi = Wiy,

(if): interpreting yr( v, ),cuy € Y a8 f™(.o vy Jnewly) and the
predicates and relation symbols in each 77 ; naturally, My is a model
of A or more exactly not My but the common expansion of the M;"-’s
for b€ {(f™(...,vc,.. Je<er € <€) f = (fc: e <€) € Dom(fn,),
and ve € In(f,{)}

So it is enough to prove
(X3): A has a model.

We use the compactness theorem, so let A* C A be finite. We say that v € “pu
appears in A%, if for some variable YF(ootrms Y mewls] appearing as a free variable in
some ¢ € A% we have v € {v,; : n € w[f]} or some formula in A* belongs to
(77 ;) \ L(rr). We may also say “v appears in ¢”, and/or “f(..., vy, .. )pcwlf
appears in A" (or in ).

Let ng = [A®]. Now, for each n € “u the set of v € I} appearing in A*, which we

call J7¥, is finite but on U Jy we know only that its cardinality is < . Note that,
IS

moreover, nj =: max{|J{*| : n € “u} is well defined < Rg as well as mg = [A* N Ag|.

For each n € “p we can find a finite set u, C x such that:

(®):  (1): if 1 # v € J7, then min{( : v1(¢) # 12(()} € u,
(i): if pclfy, (1), £, c(v2)]® from clause (B) appears in A* N Ag, then
¢,¢(+1eu,

(iii): o € u,,.

(iv): [u] < (n3)? + 25+ 1.
Clearly n5 = max{|u,| : n € *p} is well defined (< Ry), so without loss of generality,
neE“w = |uy|=ns.

Let v C “u be finite, in fact of size < |A%| = n{ such that:

(I): if gog[yfglw(,jl),yf;%C(,,Z)]t appears in A N Ag, so £ € {1,2} = v, € J7,
then p; € v for £ € ({1,2},

Now, for all n € *1 \ v we replace in A® all members of Jy by one vy € I} and
we call what we get A’ i.e., we identify some variables. It suffices to prove A’ is
consistent. Now, by the choice of the set v also A? is of the right kind, i.e., C A.

[Why? We should check the formulas ¢, in A® N A; for each ¢ < 8; let it be
replaced by ¢’ € AP, If in ¢ € Ag N A% by clause (ii) of ® this substitution has
no affect on . If ¢ € Ay, either ¢’ = ¢ or ¢’ is trivially true. If p € As, clearly
¢ € Asz. If ¢ € Ay then ¢ € Ay as mq is nice hence weakly indiscernible, i.e.
clause (b) of Definition 2.9(1) (and the demand f; € Fn,). If ¢ € As, similarly
using clause (c) of Definition 2.9(1). Lastly if ¢ € Ag we just note that similarly is
preserved and similarly for ¢ € A7 U Ag].
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We then transform A? to A® by replacing each ¢ by ¢, gotten by replacing, for
each p € v, every v € JJ' by v e #u where vH(B) = v(B) if B € aU u, and
vl (8) = 0 otherwise. It suffices to prove the consistency of A°. Now, the effect is
renaming variables and again A® C A. Let p* = (pj : k < k*) list the p € “p which
appear in A° such that plo € v. Let n = pilason, € v, andlet T ={p:p =
(pr ok < Kk*),me<pr € ", (Ve)(a < e < k&e ¢ uy, — pr(e) = 0) and p is similar
to p* i.e., for ki, ko < k* and € < k we have py, (€) < pr,(€) = pj, (€) < p,(€)}-

For each p € T we can try the following model as a candidate to be a model of

A¢. Tt expand My, , and if symbols from 7y, \ 7r appear they are interpreted as
m

(e (9):e <18 )
yr(...,v¢, .. )c<¢, appearing in A° the element fu, (..., v¢,...)¢c<c, of My,. Call
this the p-interpretation. Considering the formulas in A°NA; for i € {0,...,5,7}
they always holds. For the formulas in A° N Ag, Ag we can use a partition theorem
on trees with |n3| < Ny levels (use [Sh:E59, 1.16](4), which is an overkill, but has
the same spirit (or [Sh:c, AP2.6, p.662])). | PP

their g;;—images are interpreted in M . Lastly we assign to the variable

Claim 2.22. There is an increasing continuous inverse system of approzimations
<m’y7hg:7§l€7 ﬁ§a§’€>
such that each m. is weakly excellent.

Proof: By induction on o < & we choose m, and (hf : 3 < a) with our inductive
hypothesis being
(x):  (a): (mgl,hg 181 < a,y < B < a) is an inverse system of approxima-
tions,
(b): mg is a weakly excellent S—approximation,
For a = 0:
A weakly excellent good 0—approximation exists by 2.13.

For o limit:
Clearly (mgl,hg 1 B < a,y < B < «) is an inverse system of good weakly excellent
approximations with a(mg) = . So by 2.14 we can find m,, h§ (8 < «) as required.

Fora=p(5+1:
By 2.15(14-2) there is m}, ; a weakly nice a—approximation such that mg <* m, .
By 2.19 there is a full term closed a—approximation my ; such that mj , <* m7 |
and my, ; is good. We can choose by induction on € € [1, k] good a—approximations
Mg e, <*—increasing continuously, my . <* Mg c41.

For € = 1, my . is defined; for e limit use 2.17(2), for e successor use 2.19, and
My =: Mgy, is good by 2.17(3). [ P

Claim 2.23. Assume mq, hS for a < k,v <« asin 2.22 with p =\ and A = \* >
0 (e.g., A=\ > 2‘T‘). Then there are > X\ pairwise non-isomorphic k-resplendent
models of T of cardinality X.

Proof: Let m = m, and I C *Z\, |I| = X and for simplicity {n € "X\ : n(¢) = 0
for every large enough ¢ < k} U\ C I. Let My be the submodel of M,, with
universe

{f (""Vn(f,C)v"')g«f:fegzm and n(f,¢) € IN"A for every(<§f}.
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Trivially, ||M;]| < A* = X and by clause (B) of Definition 2.5 clearly by 2.1(1)
it follows that the sequence (a, : 7 € \) is with no repetitions for each ¢ < A
hence by the indiscernibility the sequence (a, : n € I) is with no repetition, so
1M > 1] > A, so [[My] = A

Now, My is a k-resplendent model of T as m being weakly excellent is full and
resplendent.

For ¢ <k, v € “Alet a, = f7(n) (€ My) for any n € IS N 1.

The point is:

(®): Form e "\, vy €N vy 1 y=nlv, vy #nl (y+1), we have:
® the type {@(z, ayp(r41)) = (.0, ) iy < K}
is realized in M7 if and only if n € I.

[Why? The implication “<” holds by clause (B)(iii) of Definition 2.5. For the other
direction, if ¢ € My, then for some W € W, satisfying W C I, we have c € N{}},
and as n ¢ I and |W| < & clearly for some o < x we have

{vinladveubnWw =40.
Let ¢ = fu, (- V¢, .- )c<es, Where f € F, so ve = n(f,(). By the continuity of

the system, for some v € (a, k) we have f € Dom(hZ), and it suffices to prove that

2

MI ): “ SD[Ca an[('y+1)] = (ID[C) al/,y]
By the definition of a system, m is full. Choose v € I, ; recalling m, <pr m, it
suffices to prove that

M, = (M) v Je<css gy (an)] =
(P[(h:(f))( < Ve, ‘)<<<f7f:['y7'y(a”/)] 7.

But m, is weakly excellent, hence it is ngilrldiscelrnible7 and hence the requirement
holds. ]

Now use [Sh:309, §2] to get among those models, > A non-isomorphic; putting
in the eventually zero n € *A does not matter.

b

| PR
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3. STRENGTHENING

Claim 3.1. If there is strongly excellent k-approzimation m and p > X = \* > 2|71,
then T has 2% non-isomorphic k—resplendent models of cardinality \.

Proof: This time use Theorem [Sh:331, 2.3]. For any I C *Z\ which includes ">\,
let M7 < My, be defined as in the proof of 2.23. For n € ") let a, = f;ﬁ(n), and
for n € "X of length v+ 1 let ' =n [ v (n(y) + 1), and for any v € I,, V' € I,y

let @y = (f; ,41(V), £ 41 (¥)); the choice of (v,7') is immaterial. Let

o((To 1 < K)) = (Fy) (/\ (p(y,2a,0) = w(y,:ca,l)> :
a<k
Now we can choose fr: My — .\, such that
(a): if fr(b) = o({t; : i < i*)) such that ¢, € I N "X with no repetitions and
(S T[/ﬁ)\;r],
then for some W € Wy, and v < k such that (n [ v:n € W) is with no
repetition we have {t; : i < i*} = W and for some f € F, with ¢; = (,
and n(f,() = t¢ for ¢ < ¢! we have b = ful(... sty o<, and
(b): fi(b) =n e Iif b= a, (see above).
The new point is that we have to prove the statement (x) in [Sh:331, 2.3](c)(5).
So assume that for ¢ = 1,2 and o < w: b, € 2(My,), fr,(b%) = & (%,), and
th = (t2. : € < eq). Assume furthermore that ¢}, = 2, &}, = tZ for a <  (call it

a?r Yo

then “(t,,) though possibly I} # I5), and the truth value of each statement
(v eln ”)\)( Nvie=t., rsi)

1<K
does not depend on ¢ € {1,2}. Assume further that M;, = ¢(...,bl,...)y<x, and
we shall prove that My, = @(...,b2,...)y<x; this suffices.
First note that, as fr,, fr, C f(mz/\), necessarily Ba = Bi (so call it Ea). Now,

M, Eol.., bly, .. .)y<x means that for some ¢; € My, we have

My, E /\ pler, by,o] = —pler, by al,

Y<K
and let ¢ = fl( ey My ')er[fll' Let

J = {n:n <ty for some a < kK, j < lg(ta) } and
Jf = {nimelor lgn) =rand Va<k)(nlaclJ)}.

By the assumption, J is <—closed, J C I; N I, moreover Jfr = J2+. Let v < K be
minimal such that n € w[fi]\ JT = n |~ ¢ J, and the sequence (n(f1,¢) | v :
¢ < (y) is with no repetitions and f; € Dom(hZ).

Now we can choose v, € Iy, ¢y from I such that n(fi1,{) € J* = v. =
n(f1,¢). Let fo € P, be such that hZ(f2) = h5(f1) and n(fa, () = v¢ for ¢ <
Cro = (- Basily, o = f™ (..., vg, .. )e<e,, € M1, witness that

M, = (B[ ¢al@,ba0) = (@, ba1)]
a<k
(recalling My, , My, < Mx>y)).
| ESI
Recall and add
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Definition 3.2. (1) EL € E (see Definition 2.8) is defined like EY, (see Defi-
nition 2.8(3)) except that we omit clause (iv) there.
(2) For a < k define E2 € E as the following equivalence relation on {v : v €
5> (%), v with no repetition}
PYE202 if and only if
(i) ', 0% € > (®u) are with no repetition.
(ii) o', 72 have the same length, all it C*.
(ili) v}la=vla for (< ("
(iv) for every ¢ € “u, the sets uf; ={(< ¢ :n« Vf} are finite equal and
(Wi Ceuy), (V¢ cuy) are similar.

Claim 3.3. (1) In 2.22 we can demand that every wm., is Bl —indiscernible i.e.
get the strong version.
(2) Moreover we can get even B2 -indiscernibility.

Proof:

(1) Very similar to the proof of 2.22. In fact, we need to repeat §2 with minor
changes. One point is that defining “good” we use E#; the second is that we should
not that this indiscernibility demand is preserved in limits, this is 2.14, 2.17. In
fact this is the “strongly” version which is carried in §2 the until 2.19. From then
on we should replace “weakly” by “strongly” and change the definition of Ag, Ag
appropriately in the proof of 2.20.

(2) Similarly, only we need a stronger partition theorem in the end of the proof
of 2.20, but it is there anyhow. [ P

Remark 3.4. Clearly in many cases in 3.1, A = A\<" > § suffices, and it seems
to me that with high probability for all. Similarly for getting many s-resplendent
models no one elementarily embeddable into another.
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