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Abstract
Let I be the family of graphs on w; without cliques or independent
subsets of size wi. We prove that

(a) it is consistent with CH that every G € K has 2“! many pairwise
non-isomorphic subgraphs,

(b) the following proposition holds in L: (%) there is a G € K such
that for each partition (A,B) of w1 either G = G[A] or G =
G[B],

(c) the failure of (x) is consistent with ZFC.

12

1 Introduction

We assume only basic knowledge of set theory — simple combinatorics for
section 2, believing in L = {* defined below for section 3, and finite support
iterated forcing for section 4.
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Answering a question of R. Jamison, H. A. Kierstead and P. J. Nyikos
[5] proved that if an n-uniform hypergraph G = (V, E) is isomorphic to each
of its induced subgraphs of cardinality |V'|, then G must be either empty or
complete. They raised several new problems. Some of them will be investi-
gated in this paper. To present them we need to introduce some notions.

An infinite graph G = (V, E) is called non-trivial iff G' contains no clique
or independent subset of size |V'|. Denote the class of all non-trivial graphs on
wy by K. Let I(G) be the set of all isomorphism classes of induced subgraphs
of G = (V, E) with size |V].

H. A. Kierstead and P. J. Nyikos proved that [[(G)| > w for each G € K
and asked whether |I(G)| > 2¢ or |I(G)| > 2“* hold or not. In [3] it was
shown that (i) |I(G)| > 2 for each G € K, (ii) under {* there exists a
G € K with |I(G)| = w;. In section 2 we show that if ZFC is consistent, then
so is ZFC + CH + “|I(G)| = 2 for each G € K”. Given any G € K we
will investigate its partition tree. Applying the weak < principle of Devlin
and Shelah [2] we show that if this partition tree is a special Aronszajn tree,
then |I(G)| > w;. This result completes the investigation of problem 2 of [5]
for wy.

Consider a graph G = (V,E) . We say that G is almost smooth if it
is isomorphic to G[W]| whenever W C V with |V \ W| < |V|. The graph
G is called quasi smooth iff it is isomorphic either to G[W] or to G[V \ W]
whenever W C V. H. A. Kierstead and P. J. Nyikos asked (problem 3)
whether an almost smooth, non-trivial graph can exist. In [3] various models
of ZFC was constructed which contain such graphs on w;. It was also shown
that the existence of a non-trivial, quasi smooth graph on w; is consistent
with ZFC. But in that model CH failed. In section 3 we prove that $+, and
so V=L, too, implies the existence of such a graph.

In section 4 we construct a model of ZFC in which there is no quasi-
smooth G € K. Our main idea is that given a G € K we try to construct a
partition (Ag, A) of wy which is so bad that not only G % G[A;] in the ground
model but certain simple generic extensions can not add such isomorphisms
to the ground model. We divide the class K into three subclasses and develop
different methods to carry out our plan.

The question whether the existence of an almost-smooth G € K can be
proved in ZFC is still open.

We use the standard set-theoretical notation throughout, cf [4]. Given a
graph G = (V, E) we write V(G) =V and E(G) = E. If H C V(G) we
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define G[H] to be (H, E(G) N [H]?). Given z € V take G(z) = {y € V :
{z,y} € E}. If G and H are graphs we write G = H to mean that G and H
are isomorphic. If f : V(G) — V(H) is a function we denote by f : G = H
the fact that f is an isomorphism between G and H.

Given a set X let Bij,(X) be the set of all bijections between subsets of
X. If G=(V,E) is a graph take

Iso,(G) = {f € Bijp(V) : f: G[dom(f)] = G[ran(f)]} .

We denote by Fin(X,Y) the set of all functions mapping a finite subset of
XtoY.

Given a poset P and p,q € P we write p||,¢q to mean that p and ¢ are
compatible in P.

The axiom {7 claims that there is a sequence (S, : @ < wy) of contable
sets such that for each X C wy we have a closed unbounded C' C wy satisfying
XNnvesS, andCnNrveSs, for each v e C.

We denote by TC(z) the transitive closure of a set x. If k is a cardinal
take H, = {z : |[TC(2z)| < k} and H,, = (H,, €).

Let us denote by D, the club filter on w;.

2 I(G) can be always large

Theorem 2.1 Asume that GCH holds and every Aronszajn-tree is special.
Then |I(G)| = 2“1 for each G € K.

Remark: S.Shelah proved, [7, chapter V. §6,7], that the assumption of
theorem 2.1 is consistent with ZFC.
During the proof we will apply the following definitions and lemmas.

Lemma 2.2 Assume that G € K, A € [w1]** and [{G(zx)NA: 2 € wy| = wy.
Then |I(G)| = 2.

Proof: See [3, theorem 2.1 and lemma 2.13]. =

Definition 2.3 Consider a graph G = (wq, E).
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1. For each v € w; let us define the ordinal 7, € w; and the sequence
<§$ y < %> as follows: put & = 0 and if (¢4 : @ < ) is defined, then
take

& = min{{: Vo <y > &7 and ({€, &} € Eiff {¢, v} € E)}.
If & = v, then we put v, = 7.
2. Given v, € wy write v <% p iff & = &8 for each v < 7,

3. Take T¢ = <w1, —<G>. Tq is called the partition tree of G.

Lemma 2.4 IfG = (wy, E) € K with |I(G)| < 2%, then T is an Aronszajn
tree.

Proof: By the construction of 7€, if v,y € wi, v < pand G(v) Nv =
G(p) Ny, then v <% p. So the levels of T¢ are countable by lemma 2.2. On
the other hand, 7¢ does not contain w;-branches, because the branches are
prehomogeneous subsets and G is non-trivial. =

Definition 2.5 1. Let F' : (2¥)<“" — 2 and A C w;. We say that a
function ¢ : w; — 2 is an A-diamond for F iff, for any h € (2¢¥)“1,
{a€ A: F(h[a) = g(a)} is a stationary subset of w;.

2. A C w is called a small subset of wy iff for some F' : (2¥)<“" — 2 no
function is an A-diamond for F.

3. J ={A Cuw;:Ais asmall subset of w; }.

In [2] the following was proved:

Theorem 2.6 If2¥ < 2“* then J is a countably complete, proper, normal
ideal on w;.

After this preparation we are ready to prove theorem 2.1.
Proof: Assume that G = (wy, E) € K.

II(G)| < 2* and a contradiction will be derived.

Since 2¥' = wy, we can fix a sequence {G, : v <w;} of graphs on w,
such that for each Y € [w;]“? there is a v < w; with G[Y] = G,. Write
GV = <W1, EV>
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Consider the Aronszajn-tree 7¢ = <w1, —<G>. Since every Aronszajn-tree
is special and 7 is a countably complete ideal on wy, there is an antichain S

in 7¢ with S ¢ J. Take
A:{aEwlelaeS(a—<Ga)}.
Now property (%) below holds:

(%) VoeSVpe (SUA)\o+1
doe ANo ({o,a} € Eiff {p,a} ¢ E).

Indeed, if for each @« € ANo we had {o,a} € E iff {p,a} € E, then
o <% p would hold by the construction of 7¢.

Let v €wy,0€ S, T C SNoand f: G[(ANo)UT] — G, be an
embedding. Define F'(v,0,T, f) € 2 as follows:

Fw,o,T, f)=1iff Ix €e G,Va € Ano){xz, f(a)} € E, iff {0,a} € E).

In case wo = o, under suitable encoding, I’ can be viewed as a function
from (2¥)<“* to 2.

Since S ¢ J, there is a g € 2“1 such that for every v € wy =2¥ T C S
and f: G[AUT] = G, the set

Sp={oc€S:g(lc)=F(v,0,TNo, f[o)}

is stationary. Take T'= {0 € S : g(¢) = 0}. Choose an ordinal ¥ < w; and a
function f with f: G[AUT] = G,. For each 0 < wy with 0 = wo it follows,
by (%), that

ceTiff Ix ewy Yae SNo ({z, f(a)} € E, iff {0,a} € E).
Thus g(o) = 0 iff F(v,0,T No, f[o) = 1, for each 0 € S, that is, Sp = 0,
which is a contradiction. m

3 A quasi-smooth graph under

Theorem 3.1 If $t holds, then there exists a non-trivial, quasi-smooth
graph on wy.
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Proof: Given a set X, ACP(X) and FCBij,(X) take

Cl(A, F) = ({B:B> Aand VBy, B, € BYf € FVY € [X]™
{By U By, "By, B,AY} CBY .

We say that A is F-closed it A = CI(A, F). Given A, DCP(X), we say that
D is uncovered by A if |D\A| = w for each A € A and D € D.

Lemma 3.2 Assume that FCBIj,(X) is a countable set, A°, A'\CP(X) are
countable, F-closed families. If DCP(X) is a countable family which is
uncovered by A° U AL, then there is a partition (Bo, By) of X such that D is
uncovered by C1I(A"U {B;},F) fori < 2.

Proof: We can assume that F is closed under composition. Fix an enumer-
ation {(Dy, kn, Fryin, Ap) in € wof Dxwx F<x{{(i,A):i €2, Aec A}
By induction on n, we will pick points z,, € X and will define finite sets, BY

and B}, such that BY N B! =0 and B,CB:_,.

Assume that we have done it for n — 1. Write F,, = (fo, ..., fr_1). Take

By = Buy UUJ{f{Bur 1 <k}
Pick an arbitrary point z,, € D, \(A, U B, ). Put
By =B,

and . '
By = By U{an} U{f; (@) 1§ < K}

Next choose a partition (B°, B') of X with B" D U{B! : n < w} for i < 2.
We claim that it works. Indeed, a typical element of CI1(A* U {B'}, F) has
the form

C=AulJ{fB :j <k},
where A€ A, k<wand fy,..., fr_1 €F. So, if D € D, then

D\CD {I’n . Dn:D,An:A,in:iand Fn: <f07---7fk71>}

because x, ¢ A and f; ' (x,,) € B'™" by the constuction. m
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Consider a sequence F' = (fo, ..., fn—1). Given a family FCBij,(X) we
say that F' is an F-term provided f; = f or f; = f~! for some f € F, for
each i < n. We denote the function fyo---o f,_1 by F as well. We will
assume that the empty term denotes the identity function on X. If [ < n

take v ' = (fo, ..., fic1) and Fyy = (fi,. .., fu—1). Let
Sub(F) = {(fipr -+ fuy) 1S mig < .. <y <.

Given f € F and z,y € X with ¢ dom(f) and y ¢ ran(f) let F/*¥ be
the term that we obtain replacing each occurrence of f and of f~!in F with
fU{{z,y)} and with f~' U {(y, z)}, respectively.

Lemma 3.3 Assume that FCBij,(X), ACP(X) is F-closed, Fy, ..., F,_;
are F-terms, zg,...,2n-1 € X, Ag,..., An_1 € A such that for each i <n

(%) % ¢ | J{F"A; : F € Sub(F)}.

If feF, e X\dom(f), Y € [X\ran(f)]* with |ANY| < w for each
A € A, then there are infinitely many y € Y such that (x) remains true when
replacing f with f U {{x,y)}, that is,

(%) s ¢ \J{F"Ai: F e Sub(F/*)}
for each i < n.

Proof: It is enough to prove it for n = 1. Write F' = (fo..., fx_1), A = Ay,
z = zy. Take
Yra={y €Y : (xx) holds for y} .

Now we prove the lemma by induction on k.
If £ =0, then Yp 4 = Y\ A. Suppose we know the lemma for £ — 1. Using
the induction hypothesis we can assume that (f) below holds:

(1) Y = {Yoma:l <0G eSub(qF=),G # Fi+v)

Assume that |Yr 4| < w and a contradiction will be derived.

First let us remark that either f,_; = f or fr_1 = f~! by (}).
Case 1:f,_; = fL.

Then Yr4DY\A by (f), so we are done.
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Case 2:f,_1=f.
In this case x € A and for all but finitely many y € Y we have z =
FJ=9(z). Then for each y,y € Y take

l(y,y") = max {l <n:Vi<l F({fy(x) = F(’;)xy/(:p)}
By Ramsey’s theorem, we can assume that [(y,y’) = [ whenever y,y" € Y.
Clearly | < n. Then F(’;)xy(:c) F(’Bx’y/(a:) but F(’;ff)’(a:) = F(];ff)/(a:), SO
fi=f'and F(J;ff)/(x) = x for each y € Y. Thus z = _1)F/*¥(z) for each
y € Y, which contradicts () because x € A.

The lemma is proved. =

We are ready to construct our desired graph.

First fix a sequence (M, : a < wy) of countable, elementary submodels of
some H) with (M, : v < a) € M, for each o < wy, where A is a large enough
regular cardinal.

Then choose a {-sequence (S, : a < wy) € My for the uncountable sub-
sets of wy, that is , {a <w; : X Na=5,} ¢ NS(w;) whenever X € [w;]“".
We can also assume that S, is cofinal in « for each limit «.

We will define, by induction on «,

1. graphs G, = (wa, E,) with G3 = G,[wf] for § < a,
2. countable sets F, € Iso,(Ga),

satisfying the induction hypotheses (I)—(II) below:
(I) {Suy : v < a} is uncovered by I, U J, where

I, =Cl{G(v)Nv:v € wa}, U Fs)

B

and
Jo = CI{\G(v) : v e wa}, | Fp).

BLa
To formulate (II) we need the following definition.

Definition 3.4 Assume that a = §+ 1 and Y Cwa. We say that Y is large
if Vn € w, Y ((fi,z;) i <n), Vh
if



nodi fi ed: 1994- 08- 30

revi sion: 1994-08- 30

370

October 6, 2003 9

1. Vi<n3da; < B fi € Fa,,
2. Vi <nwao <x; <wp,
3. Vi < nran(f;)CY,
4. Vi # j <nran(f;) Nran(f;) =0
5. h € Fin(Y Nwpg,2) and dom(h) NU {ran(f;) : i <n} =10,
then
Jy € Y N [wf,wa) such that
6. Vi <n Vz € dom(f;) ({y, fi(x)} € E, iff {z;,x} € E,),
7. Vz € dom(h) {y,z} € E, iff h(z) = 1.
Take
(II) If « = B+ 1, then wa is large.

The construction will be carried out in such a way that (Gs: < a) € M,
and (Fpg: f < a) € M,.

To start with take Gy = (0, ) and F = {(}}. Assume that the construc-
tion is done for 3 < a.
Case 1:«a is limit.

We must take G, = U{Gjs : 8 < a}. We will define sets F2, F1Clso,(Ga)
and will take F, = FOU F..

Let

Fo={f €Is0,(Go) N M, : I{a, : n <w)Ca sup{a, :n < w}=aq,
flwa, € Fo, and flway, : Gq, = Gy, [ran(f)] for each n € w}.
Take F~ = U FPUFL I, = U Igand J, = U Js. Clearly F-CM,

<o f<a <o
with F~ € My41, so Myi1 | “|F 7| = w”. Obviously both I, and J, are
F~-closed and S = {S,5 : § < a} is uncovered by them.
;From now on we work in M,,; to construct F.. For WCwa write
Ly ={v<a:Wn(wr+w) is large}.
Take

Wy ={(W, f) € (P(wa) N M,) X (UgcaFs) : Ly is cofinal in o
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and f: G, =G, [W Nwyyl for some 5 < a} .
We want to find functions g/ > f for (W, f) € W, such that
(A) g™ Go = Go[W]

(B) taking F! = {gw’f (W, f) € Wa} the induction hypothesis (I) remains
true.

First we prove a lemma:

Lemma 3.5 If (W, f) € W, g € Is0,(Ga, Go[W]), 9 D f, l¢\f] < w, then
(i) for each x € W\dom(f) the set

{yeW:gU{{z,y)} € Isop(Ga, Ga[W])}

1s cofinal in wa.

(ii) for each y € W\ran(f) the set
{r eW :gU{{(z,y)} € Is0,(Ga, Gu[W])}
is cofinal in wa.

Proof: (i): Define the function h : ran(g)\ran(f) — 2 with h(g(z)) =1
iff {z,2} € E,. Choose 8 € Ly with ran(h)Cwf and v; < (3. Since
W N (wf + w) is large, we have a y € W N (w3, wf + w) such that

1. {y, f(2)} € E, iff {z,z} € E, for each z € dom(f)
2. {y,9(2)} € E, iff h(g(z)) =i for each z € dom(g)\dom(f).

But this means that g U {(z,y)} € Is0,(Gq, Go[W]).
(ii) The same proof works using that w3 + w is large for each § < . ®

By induction on n, we will pick points z, € wa and will construct
families of partial automorphisms, {g,‘f’ S (W f) € Wa} such that ¢/ =

U {g,‘f”f :n < wy will work.
During the inductive construction we will speak about F,-terms and
about functions which are represented by them in the n™ step.
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If F'= (ho,...hx—1) is an Fy-term and n € w take Fj,) = jo o -0 jr_1
where

gvs if h; = g™/,
ji=1q (@)™ if b= (g™),
h; otherwise.

First fix an enumeration {{((W,,, fu) ; tn,in) : 1 <n < w} of W, X wa x 2 and
an enumeration (((F,; 11 < ln), Jn, (Ani 21 <ly), Dy)n < w) of the quadru-
ples ((Fo, ..., Fr_1),7, (Ao, ..., Ax_1), D) where k < w, Fy, ..., Fp_1 are F,-
terms, 7 € 2, D € § and either j =0 and Ay, ..., Ax—1 € I, or j =1 and
Ag,..., A1 € Jg, .

During the inductive construction conditions (i)—(v) below will be satis-
fied:

(i) 90" = f
(i) gV € Isoy(Ga, Go[W))

(iit) g > g, [gI\fl < w

i) zi ¢ USF/ Ay« F € Sub(F},;) ¢ for each i < [, and k < n
n]* R, )

(v) if i, = 1, then u,, € dom(g/V»/n),
if 4,, = 0, then either u, ¢ W, or u, € ran(g¥V=/).

If n =0, then take ggV’f = f.

If n > 0, then let ¢/ = g4 whenever (W, f) # (W, f,). Assume that
in =0, (W, f) = (W,, f) and u, ¢ dom(g"";"*). Then, by lemma 3.5, the
set YV = {y eW : g " U{{tn,y)} € Is0p(Ga, Ga[W])} is unbounded in wa.
Since the members of I U J, are bounded in wa, we can apply lemma 3.3

to pick a point y € Y such that taking ¢V = ¢V U {{u,, )} condition

(iv) holds.
If i, =1 and (W, f) = (W, f.), then the same argument works.
Finally pick a point

on & DA\ {FjAns : F € Sub(F,,),i < 1, }.

The inductive construction is done.
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Take ¢/ = U {gXV’f n < w}. By (v),
gV Gra =2 Gua W),

By (iv), we have
and so it follows that {S,5: # < a} is uncovered by I, U J,.
Case 2:a =+ 1.
To start with we fix an enumeration {<(<ff, zky i < my), hk> k€ w} of
pairs (((fi,x;) : i <n),h) satisfying 3.4.1-5.
If k € w take

By = h; {0} U {ff(y) Li < ny, v € dom(fF) and {1/, xf} ¢ Eﬁ}
and
By =h'{1}U {ff(l/) Li < ng, v € dom(fF) and {1/, xf} € Eﬁ}.

Applying lemma 3.2 w-many times we can find partitions (C?,C¥), k < w,
of w3 such that taking

Iy =C (I u{Cikew}, U F)
v<p
and
Ji=Cl((Isu{cy:kew}, U F)
v<p
the set {S, : v < 3} is uncovered by Ij U J;.

We can assume that ByCC} for i < 2 and k < w because Bf € Jz and
Bj € I3. Take

Ea:EﬁU{{y,wﬁ—i-n}:V<w5,n6wanduEB}1}

and

Fo =0,

By the construction of G, = (wa, E,), it follows that wa is large, so (II)
holds. On the other hand

Iy ={XUY:X €I} Y € [wa]*}
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and
Jo={XUY: X €J},Y € [wa]™}.

so {Suy : 7 < a} is uncovered by I, U J,. Finally S, is cofinal in wa but
the elements of I, U J, are all bounded, so the induction hypothesis (I) also
holds.

The construction is done. Take E = U{E, : a <w;} and G = (w1, E).
By (I), G is non-trivial. Finally, we must prove that G is quasy smooth.
Consider a set Y Cw;. The following lemma is almost trivial.

Lemma 3.6 For each oo < wy either Y N (wa +w) or (wa+ w)\Y is large.

Proof: Assume on the contrary that there are pairs (((f;,z;) 17 <n),h)
and (((fi,x;) :n <i<n+k), h') showing that neither Y N (war + w) nor
(wa +w)\Y is large. Then (((fi,x;) : i <n+k),hUh') shows that wa +w
is not large. m

So we can assume that the set
L={a<w :YNwa+w)is large}

is uncountable and to complete the proof of theorem 3.1 it is enough to show
that in this case G = G[Y]. By {*, we can find a club subset CCL' such
that Y Nwy € M, C Nwy € M, and wy = v whenever v € C. We can
assume that 0 € C.

Write C' = {7, : v <w;}. By induction on v < w;, we will construct
functions f, such that

(a) fu: Gy =GLY] fu € F,

(b) <fu p< V> € Msup{'yu+1:u<1/}-

Take fo = 0. If v = p + 1, then let f, = ¢g¥™"Ju. If v is limit, then
put f, = U{f,:pn <v}. Clearly (a) and (b) remains valid. Finally put
f=U{f,:v <w}. Then f:G = G[Y], so the theorem is proved. m

4 A model without quasi-smooth graphs

Given an Aronszajn-tree T = (w7, <) define the poset Qr as follows: the
underlying set of Or consists of all functions f mapping a finite subset of
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wi to w such that f~'{n} is antichain in T for each n € w. The ordering on
Qr is as expected: f <g, g iff f D g. For v < w; denote by T the set of
elements of T with height . Take T'.s = U T,. If x € Ts and v < 9, let

y<68
x[7 be the unique element of 7., which is comparable with z. We write C for

the poset (Fin(wy,2), D), that is, forcing with C adds w;-many Cohen reals
to the ground model.

Theorem 4.1 If ZF is consistent, then so is ZFC + “there are no non-trivial
quasi-smooth graphs on wy”.

Proof: Assume that GCH holds in the ground model. Consider a finite
support iteration (P, Q); : i < ws,j < wy) satisfying (a)—(c) below:

(a) If j < wy is even, then Q; = C.
(b) If j < wy is odd, then Vi = “Q; = Qr, for some Aronszajn-tree T;”.
(c) VP2 = “cvery Aronszajn tree is special”.

We will show that V2 does not contain non-trivial, quasi-smooth graphs
on wj.

To start with we introduce some notation. Consider a graph G = (V, E).
For x € V define the function tpg(z) : V' \ {z} — 2 by the equation G(z) =
tpa(z)"H{1}. Given A C V write tpg(z, A) = tpg(z)[A.

If ACVandt e 24 take rlg(t) = {z € V\ A : tpg(x, A) = t} and
tl(t) = {z € V\ A: |tpe(z, A)At| < w}. Forz € V and A C V put
twing(z, A) = rlg(tpe(z, A)).

For A C V define the equivalence relation = 4 on V' \ A as follows:

r=gay iff |tpa(z, A)Atpa(y, A))| < w.

For x € V'\ A denote by [z]¢ 4 the equivalence class of x in =¢ 4. Clearly
[z]g.a =I5 (tpa(z, A)). Write G/ =¢ 4 for the family of equivalence classes
of =g a.

We divide K into three subclasses, Iy, 1 and Ko, and investigate them
separately to show that VI = “(VG € K;) G is not quasi-smooth” for i < 3.
Take

Ko={GeK:3A€[wn]" |G/ =ca|=uw},

Ki={GeK: VA€ [wn] Tz |w\ [z]ga| <wi}
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and

Ko =K\ (Ko UK,).

4.1 G ek

First we recall a definition of [1].

Definition 4.2 A poset P is stable if
VB e [P|Y3B* € [P|“Vpe P 3p <p3Ip* € B*Vbe B (p|,biff p*||,b).

We will say that p’ and p* are twins for B and that B* shows the stability of
P for B.

Lemma 4.3 P, is stable.

Proof: First let us remark that it is enough to prove that both C and Qr are
stable for any Aronszajn-tree for in [1] it was proved that any finite support
iteration of stable, c.c.c. posets is stable.

It is clear that C is stable. Assume that 7T is an Aronszajn tree and
B C [Qr]”. Fix a countable ordinal ¢ with {dom(p) : p € B} C T-s and
take B* = {p € Qr : dom(p) C T<siw}. It is not hard to see that B* shows
the stability of P for B. m

For G € K take G € K} iff there is an A € [w;]” such that the set
{z :|[z]c.a| <w} is uncountable.

Given G € Ky we will write G € K iff there are disjoint sets Ag, A; €
[w1]” such that

(1) z =g, yiff x =g 4, y for each z,y € wy \ Ag U Ay,
(2) the set {z : |[z]g,4,] < w} is uncountable.

Lemma 4.4 Assume CH. If G € K|, then there is a partition (Vo, V1) of wy
so that for each stable c.c.c. poset P we have

VP = “G is not isomorphic to G[V] fori € 2”.

Proof: Pick Ay, A; € [w;]” witnessing G € K{,. Write A = Ay U A;. Take
E = E(G).

Let x be a large enough regular cardinal and fix an increasing sequence
(N, : v < wyq) of countable, elementary submodels of H, such that



nodi fi ed: 1994- 08- 30

revi sion: 1994-08- 30

370

October 6, 2003 16

(i) G, A, Ay, Ay € Ny,
(ii) (N, :v<p) e N, for p<w.
For z € w; \ A take
rank(z) = min{v : z € N, }.
Fix a partition (S, S1) of wy with |Sy| = |S1]| = w;. Take
Vi = A, Urank 1S,

for i € 2.

We show that the partition (Vp, V1) works.

Assume on the contrary that P is a stable c.c.c. poset, f is a P-name of
a function, py € P and '

por—“f : G = G[Vp]”.

Without loss of generality we can assume that po = 1p. Now for each
¢ € Ay choose a maximal antichain J. C P and a function h. : J. — V such
that gi—“f~1(&) = he(r)” for each ¢ € J.,.

Take B = U{J. : ¢ € Ay} and pick a countable B* C P showing the
stability of P for B.

For b € P define the partial function dt, : w; — 24° as follows. Let
x € wy. If there is a function ¢ € 240 so that

(a) t(c) =1 <= for each q € I.. if ¢ and b are compatible conditions, then
{z,he(q)} € E,

(b) t(c) =0 <= for each ¢ € I. if ¢ and b are compatible conditions, then
{z he(q)} ¢ E,

then take dt,(z) = t. Otherwise ¢ dom dt,.

Sublemma 4.4.1 If pi— “f(a:) =1y”, then there are p’ < p and b € B* such
that b and p' are twins for B and dt,(z) = tpa(y, Ao)-

Proof: By the choice of B*, we can find ap’ < pand ab € B* so that p’ and b
are twins for B. Let ¢ € Ag. For each ¢q € J,, if ¢ and p" are compatible in P,
then {y,c} € F iff {z,h.(q)} € E , because, taking r as a common extension
of ¢ and p/, we have ri— “f(&) = § and f(h;(\c)) =¢”. So{y,c} € E iff for
each ¢ € I, if ¢ and p’ are compatible, then {x,h.(q)} € E. But p’ and b are
twins for U{J. : ¢ € Ao}, so dtp(z) = dt,(z) = tpa(y, Ap). =
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Sublemma 4.4.2 There is a b € B* such that
(%) {t € randt, : |75 (t)] S w}| = wy.
Proof: Let G be a P-generic filter over V. Put

F = {tpc(y, Ao) : y € Vo \ Ao, | [¥]c,a,] < w}.

Then |F| = wq, so we can write F = {t, : v < w}. Fix sequences
(pp:v<w) C G, (v,:v<w) Cw and (y, :v <w;) C w; such that
pu—f(x,) = vy,” and tpg(y,, Ao) = t,. By sublemma 4.4.1,

U randt, O F.

beB*

But B* is countable, so we can find a b € B* satisfying (%) above. =
Fix b € B* with property (). Consider the structure

N = (P[(BUB*),B,B*,{J.,h.: c € Ayp)) .

By CH, there is a v < w; with N/ € N,.. Pick p € Sy \v. Since G, N, b € N,,,
it follows that dt, € N, C N,. By (*) and (ii), there is a

t e randt, N (N, \ | Ne)

E<p

with |rlf;(f)| < w. Then

(1) rlg(t) € N\ U Ne
E<p

Pick z € w; with dty(z) = ¢. Find p € G and y € V; such that p < b
and pl%“f(x) = y”. By sublemma 4.4.1, there are p’ < p and v/ € B*
such that p’ and ¥’ are twins for B and dty (z) = tpg(y, Ag). But p < b, so
dty(z) = dty(z). Indeed, let ¢ € Ay and assume that dty(z)(c) = 1. Pick
q € J, which is compatible with ¢'. By the definition of dty, it follows that
{h.(q),x} € E. Since p’ and b’ are twins for B, so p’ and ¢ also have a
common extension ¢’ in P. But p’ < p < b, so ¢’ witnesses that b and ¢ are
compatible. Thus, by the definition of dt;,, we have dt,(x)(c) = 1.

Thus tpe(y, Ag) = dty(z) = dtp(x) = t. By (f), this implies that
rank(y) = p. But, by the construction of the partition (Vp, V), there are
no y € Vp with rank(y) = p. Contradiction, the lemma is proved. m
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Lemma 4.5 Assume CH. If G € K, then
V€ ¢ there is a partition (V, Vi) of wy so that
for each stable c.c.c. poset P we have:

Vet = “G s not isomorphic to G[V;] fori €27, 7

Proof: . Fix a set A € [w]” witnessing G € K and a bijection f: A — w
in V. Let 7 : w — 2 be the characteristic function of a Cohen real from V¢,
Take A; = (f or)~*{i} for i < 2. Then (A, A;) is a partition of A. Using a
trivial density argument we can see that  #Zg 4 y implies © #¢g 4, y for i < 2
and for z,y € w; \ A. Thus V¢ = “Ag and A, witness G € K},”. Applying
lemma 4.4 in V¢ we get the desired partition of w;. m

Lemma 4.6 In VI if G € Ky is quasi-smooth, then G € K.

Proof: Choose a set A € [w;]” witnessing G € Kg and a bijection f : A — w.
Pick o < ws, av is even, with A, f, G € V=, From now on we work in V7.
Let {[z,]¢.a : ¥ < w1} be an enumeration of the equivalence classes of =¢ 4.
Fix a partition (o, [1) of wy into uncountable pieces. Let r : w — 2 be the
characteristic function of a Cohen real from V7 *¢. Take A; = (f o7)~1{i}
for i < 2. Then (Ag, A;) is a partition of A. Using a trivial density argument
we can see that © #q 4 y implies © #¢g 4, y for i < 2 and for z,y € wy \ A.
For 7 € 2 put

B;=A,U{x, :ve [} U{[z,Jea\{z,}:vel_}
Clearly (By, By) is a partition of w; and
BN [xy)aa, = BiN(z,)ga = {z.}.
So G[B;] € K*. But G is quasi-smooth, so G = G[B;] for some i € 2 in V2,

Thus G € K is proved. =

4.2 GekKy

We say that a poset P has property Priff for each sequence (p, : v < w;) C P
there exist disjoint sets Uy, Uy € [w;]** such that whenever o € Uy and 3 € Uy
we have p | ,p.
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Lemma 4.7 C has property Pr.
Indeed, C has property K.
Lemma 4.8 If T is an Aronszajn-tree, then Qr has property Pr.

Proof: Let (p, :a <w;) C P be given. We can assume that there are a
stationary set S C wy, p* € Qr, v* <wi, n € wand {z; : i <n} C T such
that for each o € §

(a) z[a € dom(p,) for each = € dom(p,) with height,(z) > a,
(b Pa (T<a =p5,

)
(¢) |[dom(pa) NTo| = n,
)

(d) writing dom(p,) N T, = {zf,..., 25 1}, 2 <on ... <ow ZT9_q, the
sequence <pa (x§),- - Da (SL’S{?I)> is independent from «,
(e) v* < a and the elements x§[v*, ..., x5 ,[7* are pairwise distinct,

(f) a¢[y* = 2 for i < n.
For each 3 <wy and ¥ = (Yo, ..., yn—1) € (Tp)" take
Sy ={ae S\ p:z}[f =y for each i <n}.
Let
C*={d<wn \7V:VB8<doVye (Ip)" (IS5 <w—5S; Cd)}.

Now {p, : « € SN C*} are wy; members of P, so for some a < f € SNC*
the conditions p, and pg are compatible. Since p,(zf) = pg(xlﬁ ), ¥ and xlﬁ
are incomparable in T for [ < n. So for some v < a, z[v # xf [v whenever
[ < n. On the other hand, for [ # m < n we have x?[v # 22 [V because
[V = 2z # 2y = 20 [y*. Take y¢ = 2¢[v and y? = 27 [v for | < n and
write @ = <y8, . ,ygfl>, b= <y8, . ,yfhl> . The elements {y&,y° : i < n}
are pairwise different, so for each o/ € Sz and 3’ € Sj the conditions p, and
pp are compatible. But |Sz| = |S3| = w1, because o € Sz, § € S, v < o and
acC* =m

A poset P is called well-met if any two compatible elements py and p; of
P have a greatest lower bound denoted by pg A p;.
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Lemma 4.9 Assume that the poset P has property Pr and V¥ = “the poset
Q@ has property Pr”. Let {(pa,qa) : @ < w1} C P % Q. Then there are
disjoint sets Uy, Uy € [w1|”" such that for each v € Uy and 6 € Uy the
conditions (p, q,) and (ps, qs) are compatible, in other words, p, and ps have
a common extension p, 5 in P with p,si— g, || ¢ 7. If P is well-met, then
we can find conditions {p,, : a € Uy U Uy} in P with p., < p, such that
Pl A psi—"q, |lq g7 for each v € Uy and § € U;.

Proof: Let U be a P-name for the set U = {a: po € Gp}, where Gp is the P-
generic filter. Since P satisfies c.c.c., there is a p* € P with p* \%“|U| =w;”.
Since V¥ |=“Q has property Pr”, there is a condition p < p* and there are
P-names such that pi— V; = {a : v < wi} € [U]*", fori € 2, and qq
and s} are compatible whenever 7,0 € wy”. Choose conditions p; < p and

ordinals 39, !, with pXi—*“ &l = 31" for i < 2.

Now consider the sequence A = {pff : v < wp}. Since P has property
Pr, there are disjoint, uncountable sets Cp, Cy C A such that p} and pj are
compatible whenever v € Cy and 6 € (. Take U; = {ﬁ; : v € C;} for
1 € 2. We can assume that UyNU; = (). Let v € Cy and § € C; and let
p” be a common extension of p¥ and p;. Then p"i—“3, 35 € U, that is, P
and pg are in Gp”, so p”, must be a common extension of Pgo and pg- So

p”\%“ﬁg € Vo and 8} € V1", thus p”l%“qﬁg and ¢g: are compatible in @7, so

<p627962> IP+q <pﬁ§vqﬁg>'
Suppose that P is well-met. Take pl = pX A pg and ply = p5 A par.
ﬁfy Y Y 65 66
It works because we can use p; A pj as p” in the argument of the previous
paragraph. m

Lemma 4.10 If (R, :a < p,Ss: 0 <p) is a finite support iteration such
that Ve |=4S, has property Pr” for a < p, then R, has property Pr, as
well.

Proof: We prove this lemma by induction on p. The successor case is covered
by lemma 4.9. Assume that p is limit. Let (p¢ : £ <wi) C R,. Without loss
of generality we can assume that (supp(pe) : £ < wy) forms a A-system with
kernel d. Fix v < p with d C v. By the induction hypothesis, the poset
R, has property Pr, so there exist disjoint sets Uy, U; € [w1]*" such that
whenever ¢ € Uy and n € Uy we have pe||, p,. But pel|, p, implies pgﬂRﬂp77
because supp(pg) Nsupp(p,) C v, so R, has property Pr, as well. m
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The previous lemmas yield the following corollary.
Lemma 4.11 P, has property Pr.
Given G = (wy, E) € Ky and &, a, f € wy with € € a N [ take
D?(a,ﬁ) ={vet:{av} e Eiff {6,v} ¢ E}.
Lemma 4.12 [f G € K1, then
() VE € wy Teg(€) € wi Vo, B € wi \ ec(§) [DE (o, B)] < w.

Proof: Since G € Ky, we have an © € w;y with |w; \ [z]¢] < w;. Choose
€c(§) € wy \ € with wy \ [z]e C eg(§). It works because a, 5 > eg(§) implies
a, € [r]le. m

The bipartite graph (w; x 2, {{(,0),(u, 1)} : v < p <w;}) will be de-
noted by [wy;w].

Lemma 4.13 If G € K4, then neither G nor its complement may have a —
not necessarily spanned — subgraph isomorphic to [wy;ws].

Proof: Let G = (w1, E). Write E(a) = {£ € wy : {{,a} € E}. Assume
on the contrary that A, B € [w;]*" are disjoint sets such that {«,3} € F
whenever o € A and # € B with a < 3. Without loss of generality we can
assume that (A\ a+1)Ne(a) =0 for each a« € A. Write A = {ae : € < wi}.
Then for { € wy the set F(§) = (AN ag) \ E(agyq) is finite because agpq >
€(ag) and (ANag) \ E(B) = 0 for all but countable many § € B. By Fodor’s
lemma, we can assume that F'({) = F for each £ € S, where S is a stationary
subset of w; containing limit ordinals only. Let T'= {£ € S : F' C a¢} and
take W = {ag41 : £ € T'}. Then G[W] is an uncountable complete subgraph
of G. Contradiction. m

Lemma 4.14 If G € K, and V° |=“Q has property Pr”, then
Ve G 2 G fori < 27,

where f :wy — 2 is the C-generic function over V.
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Proof: Assume on the contrary that
(@) +—<h: G = GO}

To simplify our notations, we will write E for E(G), D¢(o, 8) for D?(a,ﬁ)
and €(&) for e ().

Let Cp = {0 < wy : £ < 0 implies ¢(§) < 0}. Clearly Cy is club. Take
Cy={0<w :(pq) SRS = f~Ho}n 5”}. Since C x (@ satisfies c.c.c, the
set (U is club. Put Cy = Cy N 4.

Now for each o < wy let 6, = min(Cs \ @ + 1) and choose a condition
(Pas @a) < (p,q) and a countable ordinal 7, such that

<pou QOz> Hi“h(é‘a) = ’?a” .

Since v, > 0, > €() for each o € wy, we can fix a stationary set S C w;
and a finite set D such that D, (4, 7.) = D for each a € S. Since C is well-
met, applying lemma 4.9 we can find disjoint uncountable subsets Sy, S C S
and a sequence (p, : a € SoUSy) C C with pl, < p, such that p, A pi—
“Ga |l q5” for each a € Sy and 3 € S;.

We can assume that the sets {dom(p;,) : @ € Sp} and {dom(p}) : 3 € S1}
form A-systems with kernels dy and dy, respectively.

Take Y = {a € Sy : {00} € B} and V¢! = {a € 51 : {§, 00} ¢ E} for
§<wp. Write V; = {§ <wp [V =wi} and Z; = wy \ Y] for i < 2.

By 4.13, the sets Z; are countable. Pick & € Cy with DUdyUd,UZyUZ; C
€. Let & =min(Cy\{+1) and £’ = min(Cy \ &' + 1) . Since dgUd; C £ and
VY] = [Y{] = wi, we can choose a; € Y\ £ with dom(p),,) N [§,&') = 0 for
i =0,1. The set W = Dg/(04y,0a,) N [£,&')is finite because 0,, > a; > &' >
€(¢’) for i < 2. Choose a C-name ¢ such that p,, A p, i “q is a common
extension of qu, and qa, n Q7 and take

r= <p'cm Up,, U{(1):ve W},q>.
Since W N (dom(pl,,) U dom(pl, )) =0, r is a condition.
Pick a condition r" < r from C @ and an ordinal 7 such that r'+—“h(&) =
7”. Now n € [£,£') because £, £’ € Cy. Since
P T(6a,) = Yay, 2(€) = 7 and h is an isomorphism”,

50 {0y, €} € E and {d,,,&} ¢ E imply that {7.,,7} € F and {y.,,n} ¢ E.
But Dy, (00,,7a;) = D and D C € 50 {64y, n} € E and {da,,n} ¢ E, that is,

n € W. But ri—*“ran(h) = f~1{0} and f~{0} N W = 0", contradiction. m
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4.3 G el
Given a non-trivial graph G = (V| E) with V € [w;]*" define

NG)={0€ew :Ja eV a>¢and |twing(a, VN )| < w}.
The following lemma obviously holds.

Lemma 4.15 If Gy and G, are graphs on uncountable subsets of wi, Gog =
G, then I'(Gy) = I'(G1) mod NS, .

Lemma 4.16 Given G € K\ Ky and S C wy there is a partition (Vy, V1) of
wy such that T'(G[Vo]) € S mod NS, and I'(G[V4]) C wy \ S mod NS, .

Proof: Let x be a large enough regular cardinal and fix an increasing,
continuous sequence (NN, : v < w;) of countable, elementary submodels of
H,. = (H,,€) such that G,S € Ny and (N, : v < p) € Nyyq for p < wy.
Write v, = N, Nwy and C' = {7, : v < wi}. Take Vo = U (741 \ 1) and

ves
Vi=wi\Vo= U (41 \ W)

vewi\S
It is enough to prove that I'(G[Vy]) C S mod NS,,. Assume that v, €
L(GVo)), v =v, @ > 7, a € Vg and |twingpy(a, v, N Vp)| = w. Since G, v,
Y N Vo € Nyy1 and |G/ =a vy, | < w, we have tpaapg (o, 7 N Vo) € N
and so twingpy(a, v») C Nyyq as well. Thus o € y,41 \ 7. Hence a € V
implies 7, = v € S which was to be proved. m

Lemma 4.17 If G € K\ Ky and T'(G) # 0 mod NS,,, then G is not quasi-

smooth.

Proof: Assume that S = I'(G) is stationary and let (Sp, S1) be a partition of
S into stationary subsets. By lemma 4.16, there is a partition (Vy, V) of wq
with T'(G([Vi]) NS C S;. Then G[V;] and G can not be isomorphic by lemma
4.15. m

Let us remark that G € Ky iff G € K\ Ky and there is an A € [w]* and
x € wy \ A such that |[z]g.a| = w1 \ [z]¢a] = wi.

Given G € Ky we will write G € K} iff there are two disjoint, countable
subsets of wy, Ay and A, and there is an = € wi, such that |[x]g4,] =
w1\ [#lg,a0| = w1 and [z] 4, \ A1 = [2]@ a0 \ Ao,
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Lemma 4.18 If G € K,, then G € (K})V°.

Proof: Assume that A € [w]” and = € w; witness G € Ky in the ground
model. Fix a bijection f: A — w in V. Let r : w — 2 be the characteristic
function of a Cohen real from V€. Take A; = (f or)"'{i}. By a simple
density argument, we can see that [x]g 4, = []g.a = [2]g.a,. Thus Ay, A;
and z show that g € ). =

Lemma 4.19 Assume that every Aronszajn tree is special. If G € K, then
there is a partition (Vo, V1) of wy such that T'(G[Vi]) is stationary for i < 2.

Proof: Choose Ag, A; and x witnessing G € K. Let A = Ag U A;. Take
Co = [z]g.a, \ 4, C1 = (w1 \ [7]c.4,) \ A and consider the partition trees 7; of
G[C;] for i € 2 (see definition 2.3). These trees are Aronszajn-trees because
(G is non-trivial. Fix functions h;: C; — w specializing 7;. We can find
natural numbers ny and n; such that the sets S; = {v : by "{n;} N (T;), # 0}
are stationary, that is, h; '{n;} meets stationary many level of 7;. Take
Bi=h;"{n;} and Y; = {c € C;: I € B; ¢ <1 b}.

Pick any 6 € S;. Let b € B;N (7;)s. If c€ Y;\ (7;)<s, ¢ # b, then ¢[d # b
by the construction of Yi. So tpagpy; (e (Ti)<s) = thaa;(cld, (Ti)<s) #
tPcapy;)(b; (7i)<s) by the definition of the partition tree. This means that
twingy;) (b, (7:)<s) = {b}. Thus ¢ € I'(G[Y;]) provided (7;)<s C § and b >
0. But these requirements exclude only a non-stationary subset of S;. So
['(G[Yi]) D S; mod NS,,.

Let V; = Y;UA;U(Cy_;\ Y1) for i € 2 and consider the partition (Vp, V7)
ofwy . If z € V,\(Y;UA,), then tps(z, A;) # tpa(b, A;) for any b € B; because
Co C [7]g.a;, and Cy C wy \ [7]g.4,- So I'(G[V;]) D S; mod NS, holds. =

Now we are ready to conclude the proof of theorem 4.1. We will work in
VFer - Assume that G € K. We must show that G is not quasi-smooth.

Pick a v < w, with G € (K)V" and Q, = C. Assume first that G €
(Ko)V™ . If G were quasi-smooth in VP2, G € (K£)P2 would hold by lemma
4.6. So we can assume that G' € (K3)™. Since P,, is a stable, c.c.c. poset,
sois P,,/P,y1. So, by lemma 4.5, there is a partition (Vo, V) of wy in V1
such that V2 |=“G is not isomorphic to G[V;] fori < 2”.

Assume that G € (K1)V"™". Since P,, has property Pr, so is P,,/P,.;.
Thus, by lemma 4.14, the partition (Vp, V) of w; given by the Q,-generic
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Cohen reals in VF»+1 has the property that V2 =G is not isomorphic to
G[V;] fori < 2.
Finally assume that G € (K5)V". By lemma 4.18, we have G € (K,)V ™"+

Since P,, satisfies c.c.c, it follows that G € (IC'Q)VPw2 . So applying lemma 4.19
we can find a partition (Vp, V1) of w; such that both I'(G[Vy]) and T'(G[V4]) are
stationary. Thus, by lemma 4.17, neither G[V;] nor G[V;] are quasi-smooth.
So G itself can not be quasi-smooth. =
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