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Abstract

Let K be the family of graphs on ω1 without cliques or independent
subsets of size ω1. We prove that

(a) it is consistent with CH that every G ∈ K has 2ω1 many pairwise
non-isomorphic subgraphs,

(b) the following proposition holds in L: (∗) there is a G ∈ K such

that for each partition (A,B) of ω1 either G ∼= G[A] or G ∼=
G[B],

(c) the failure of (∗) is consistent with ZFC.

1 Introduction

We assume only basic knowledge of set theory — simple combinatorics for
section 2, believing in L |= ♦+ defined below for section 3, and finite support
iterated forcing for section 4.
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dation, Publication 370

†The second author was supported by the Hungarian National Foundation for Scientific
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October 6, 2003 2

Answering a question of R. Jamison, H. A. Kierstead and P. J. Nyikos
[5] proved that if an n-uniform hypergraph G = 〈V,E〉 is isomorphic to each
of its induced subgraphs of cardinality |V |, then G must be either empty or
complete. They raised several new problems. Some of them will be investi-
gated in this paper. To present them we need to introduce some notions.

An infinite graph G = 〈V,E〉 is called non-trivial iff G contains no clique
or independent subset of size |V |. Denote the class of all non-trivial graphs on
ω1 by K. Let I(G) be the set of all isomorphism classes of induced subgraphs
of G = 〈V,E〉 with size |V |.

H. A. Kierstead and P. J. Nyikos proved that |I(G)| ≥ ω for each G ∈ K
and asked whether |I(G)| ≥ 2ω or |I(G)| ≥ 2ω1 hold or not. In [3] it was
shown that (i) |I(G)| ≥ 2ω for each G ∈ K, (ii) under ♦+ there exists a
G ∈ K with |I(G)| = ω1. In section 2 we show that if ZFC is consistent, then
so is ZFC + CH + “|I(G)| = 2ω1 for each G ∈ K”. Given any G ∈ K we
will investigate its partition tree. Applying the weak ♦ principle of Devlin
and Shelah [2] we show that if this partition tree is a special Aronszajn tree,
then |I(G)| > ω1. This result completes the investigation of problem 2 of [5]
for ω1.

Consider a graph G = 〈V,E〉 . We say that G is almost smooth if it
is isomorphic to G[W ] whenever W ⊂ V with |V \W | < |V |. The graph
G is called quasi smooth iff it is isomorphic either to G[W ] or to G[V \W ]
whenever W ⊂ V . H. A. Kierstead and P. J. Nyikos asked (problem 3)
whether an almost smooth, non-trivial graph can exist. In [3] various models
of ZFC was constructed which contain such graphs on ω1. It was also shown
that the existence of a non-trivial, quasi smooth graph on ω1 is consistent
with ZFC. But in that model CH failed. In section 3 we prove that ♦+, and
so V=L, too, implies the existence of such a graph.

In section 4 we construct a model of ZFC in which there is no quasi-
smooth G ∈ K. Our main idea is that given a G ∈ K we try to construct a
partition (A0, A1) of ω1 which is so bad that not only G 6∼= G[Ai] in the ground
model but certain simple generic extensions can not add such isomorphisms
to the ground model. We divide the class K into three subclasses and develop
different methods to carry out our plan.

The question whether the existence of an almost-smooth G ∈ K can be
proved in ZFC is still open.

We use the standard set-theoretical notation throughout, cf [4]. Given a
graph G = 〈V,E〉 we write V (G) = V and E(G) = E. If H ⊂ V (G) we
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October 6, 2003 3

define G[H] to be 〈H,E(G) ∩ [H]2〉. Given x ∈ V take G(x) = {y ∈ V :
{x, y} ∈ E}. If G and H are graphs we write G ∼= H to mean that G and H
are isomorphic. If f : V (G) → V (H) is a function we denote by f : G ∼= H
the fact that f is an isomorphism between G and H.

Given a set X let Bijp(X) be the set of all bijections between subsets of
X. If G = 〈V,E〉 is a graph take

Isop(G) = {f ∈ Bijp(V ) : f : G[dom(f)] ∼= G[ran(f)]} .

We denote by Fin(X, Y ) the set of all functions mapping a finite subset of
X to Y .

Given a poset P and p, q ∈ P we write p‖
P
q to mean that p and q are

compatible in P .
The axiom ♦+ claims that there is a sequence 〈Sα : α < ω1〉 of contable

sets such that for each X ⊂ ω1 we have a closed unbounded C ⊂ ω1 satisfying

X ∩ ν ∈ Sν and C ∩ ν ∈ Sν for each ν ∈ C.
We denote by TC(x) the transitive closure of a set x. If κ is a cardinal

take Hκ = {x : |TC(x)| < κ} and Hκ = 〈Hκ,∈〉.
Let us denote by Dω1 the club filter on ω1.

2 I(G) can be always large

Theorem 2.1 Asume that GCH holds and every Aronszajn-tree is special.

Then |I(G)| = 2ω1 for each G ∈ K.

Remark: S.Shelah proved, [7, chapter V. §6,7], that the assumption of
theorem 2.1 is consistent with ZFC.

During the proof we will apply the following definitions and lemmas.

Lemma 2.2 Assume that G ∈ K, A ∈ [ω1]
ω1 and |{G(x)∩A : x ∈ ω1| = ω1.

Then |I(G)| = 2ω1.

Proof: See [3, theorem 2.1 and lemma 2.13].

Definition 2.3 Consider a graph G = 〈ω1, E〉.
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October 6, 2003 4

1. For each ν ∈ ω1 let us define the ordinal γν ∈ ω1 and the sequence〈
ξνγ : γ ≤ γν

〉
as follows: put ξν0 = 0 and if 〈ξνα : α < γ〉 is defined, then

take

ξνγ = min {ξ : ∀α < γ ξ > ξνα and ({ξνα, ξ} ∈ E iff {ξνα, ν} ∈ E)} .

If ξνγ = ν, then we put γν = γ.

2. Given ν, µ ∈ ω1 write ν ≺G µ iff ξνγ = ξµγ for each γ ≤ γν .

3. Take T G =
〈
ω1,≺

G
〉
. TG is called the partition tree of G.

Lemma 2.4 If G = 〈ω1, E〉 ∈ K with |I(G)| < 2ω1, then T G is an Aronszajn

tree.

Proof: By the construction of T G, if ν, µ ∈ ω1, ν < µ and G(ν) ∩ ν =
G(µ)∩ ν, then ν ≺G µ. So the levels of T G are countable by lemma 2.2. On
the other hand, T G does not contain ω1-branches, because the branches are
prehomogeneous subsets and G is non-trivial.

Definition 2.5 1. Let F : (2ω)<ω1 → 2 and A ⊂ ω1. We say that a
function g : ω1 → 2 is an A-diamond for F iff, for any h ∈ (2ω)ω1 ,
{α ∈ A : F (hdα) = g(α)} is a stationary subset of ω1.

2. A ⊂ ω1 is called a small subset of ω1 iff for some F : (2ω)<ω1 → 2 no
function is an A-diamond for F .

3. J = {A ⊂ ω1 : A is a small subset of ω1}.

In [2] the following was proved:

Theorem 2.6 If 2ω < 2ω1 , then J is a countably complete, proper, normal

ideal on ω1.

After this preparation we are ready to prove theorem 2.1.
Proof: Assume that G = 〈ω1, E〉 ∈ K.
|I(G)| < 2ω1 and a contradiction will be derived.
Since 2ω1 = ω2, we can fix a sequence {Gν : ν < ω1} of graphs on ω1

such that for each Y ∈ [ω1]
ω1 there is a ν < ω1 with G[Y ] ∼= Gν . Write

Gν = 〈ω1, Eν〉.
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October 6, 2003 5

Consider the Aronszajn-tree T G =
〈
ω1,≺G

〉
. Since every Aronszajn-tree

is special and I is a countably complete ideal on ω1, there is an antichain S
in T G with S /∈ J . Take

A =
{
α ∈ ω1 : ∃σ ∈ S(α ≺G σ)

}
.

Now property (∗) below holds:

(∗) ∀σ ∈ S ∀ρ ∈ (S ∪ A) \ σ + 1

∃α ∈ A ∩ σ ({σ, α} ∈ E iff {ρ, α} /∈ E).

Indeed, if for each α ∈ A ∩ σ we had {σ, α} ∈ E iff {ρ, α} ∈ E, then
σ ≺G ρ would hold by the construction of T G.

Let ν ∈ ω1, σ ∈ S, T ⊂ S ∩ σ and f : G[(A ∩ σ) ∪ T ] → Gν be an
embedding. Define F (ν, σ, T, f) ∈ 2 as follows:

F (ν, σ, T, f) = 1 iff ∃x ∈ Gν(∀α ∈ A ∩ σ)({x, f(α)} ∈ Eν iff {σ, α} ∈ E).

In case ωσ = σ, under suitable encoding, F can be viewed as a function
from (2ω)<ω1 to 2.

Since S /∈ J , there is a g ∈ 2ω1 such that for every ν ∈ ω1 = 2ω, T ⊂ S
and f : G[A ∪ T ] ∼= Gν , the set

ST = {σ ∈ S : g(σ) = F (ν, σ, T ∩ σ, fdσ)}

is stationary. Take T = {σ ∈ S : g(σ) = 0}. Choose an ordinal ν < ω1 and a
function f with f : G[A ∪ T ] ∼= Gν . For each σ < ω1 with σ = ωσ it follows,
by (∗), that

σ ∈ T iff ∃x ∈ ω1 ∀α ∈ S ∩ σ ({x, f(α)} ∈ Eν iff {σ, α} ∈ E).

Thus g(σ) = 0 iff F (ν, σ, T ∩ σ, fdσ) = 1, for each σ ∈ S, that is, ST = ∅,
which is a contradiction.

3 A quasi-smooth graph under ♦+

Theorem 3.1 If ♦+ holds, then there exists a non-trivial, quasi-smooth

graph on ω1.
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October 6, 2003 6

Proof: Given a set X, A⊂P(X) and F⊂Bijp(X) take

Cl(A,F) =
⋂
{B : B ⊃ A and ∀B0, B1 ∈ B ∀f ∈ F ∀Y ∈ [X]<ω

{B0 ∪ B1, f
′′B0, B04Y }⊂B} .

We say that A is F-closed if A = Cl(A,F). Given A,D⊂P (X), we say that
D is uncovered by A if |D\A| = ω for each A ∈ A and D ∈ D.

Lemma 3.2 Assume that F⊂Bijp(X) is a countable set, A0, A1⊂P(X) are
countable, F-closed families. If D⊂P (X) is a countable family which is

uncovered by A0 ∪A1, then there is a partition (B0, B1) of X such that D is

uncovered by Cl(Ai ∪ {Bi} ,F) for i < 2.

Proof: We can assume that F is closed under composition. Fix an enumer-
ation {〈Dn, kn, Fn, in, An〉 : n ∈ ω} of D×ω×F<ω×{〈i, A〉 : i ∈ 2, A ∈ Ai}.
By induction on n, we will pick points xn ∈ X and will define finite sets, B0

n

and B1
n, such that B0

n ∩B
1
n = ∅ and Bi

n⊂B
i
n+1.

Assume that we have done it for n− 1. Write Fn = 〈f0, . . . , fk−1〉. Take
Bn−1 = B0

n−1 ∪B
1
n−1 and

B−n = Bn−1 ∪
⋃ {

f ′′j Bn−1 : j < k
}
.

Pick an arbitrary point xn ∈ Dn\(An ∪ B−n ). Put

Bin
n = Bin

n−1

and
B1−in

n = B1−in
n−1 ∪ {xn} ∪

{
f−1j (xn) : j < k

}
.

Next choose a partition (B0, B1) of X with Bi ⊃ ∪{Bi
n : n < ω} for i < 2.

We claim that it works. Indeed, a typical element of Cl(Ai ∪ {Bi},F) has
the form

C = A ∪
⋃ {

f ′′j B
i : j < k

}
,

where A ∈ A, k < ω and f0, . . . , fk−1 ∈ F . So, if D ∈ D, then

D\C ⊃ {xn : Dn = D,An = A, in = i and Fn = 〈f0, . . . , fk−1〉}

because xn /∈ A and f−1j (xn) ∈ B1−i by the constuction.
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October 6, 2003 7

Consider a sequence F = 〈f0, . . . , fn−1〉. Given a family F⊂Bijp(X) we
say that F is an F-term provided fi = f or fi = f−1 for some f ∈ F , for
each i < n. We denote the function f0 ◦ · · · ◦ fn−1 by F as well. We will
assume that the empty term denotes the identity function on X. If l ≤ n
take (l)F = 〈f0, . . . , fl−1〉 and F(l) = 〈fl, . . . , fn−1〉. Let

Sub(F ) =
{〈
fi0, . . . , fil−1

〉
: l ≤ n, i0 < . . . < il−1 < n

}
.

Given f ∈ F and x, y ∈ X with x /∈ dom(f) and y /∈ ran(f) let F f,x,y be
the term that we obtain replacing each occurrence of f and of f−1 in F with
f ∪ {〈x, y〉} and with f−1 ∪ {〈y, x〉}, respectively.

Lemma 3.3 Assume that F⊂Bijp(X), A⊂P (X) is F-closed, F0, . . . , Fn−1

are F-terms, z0, . . . , zn−1 ∈ X, A0, . . . , An−1 ∈ A such that for each i < n

(∗) zi /∈
⋃
{F ′′Ai : F ∈ Sub(Fi)} .

If f ∈ F , x ∈ X\dom(f), Y ∈ [X\ran(f)]ω with |A ∩ Y | < ω for each

A ∈ A, then there are infinitely many y ∈ Y such that (∗) remains true when
replacing f with f ∪ {〈x, y〉}, that is,

(∗∗) zi /∈
⋃ {

F ′′Ai : F ∈ Sub(F f,x,y
i )

}

for each i < n.

Proof: It is enough to prove it for n = 1. Write F = 〈f0 . . . , fk−1〉, A = A0,
z = z0. Take

YF,A = {y ∈ Y : (∗∗) holds for y} .

Now we prove the lemma by induction on k.
If k = 0, then YF,A = Y \A. Suppose we know the lemma for k−1. Using

the induction hypothesis we can assume that (†) below holds:

(†) Y =
⋂ {

YG,F ′′
(l)

A : l ≤ n,G ∈ Sub((l)F
f,x,y), G 6= F f,x,y

}
.

Assume that |YF,A| < ω and a contradiction will be derived.
First let us remark that either fk−1 = f or fk−1 = f−1 by (†).

Case 1:fk−1 = f−1.
Then YF,A⊃Y \A by (†), so we are done.
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October 6, 2003 8

Case 2:fk−1 = f .
In this case x ∈ A and for all but finitely many y ∈ Y we have z =

F f,x,y(x). Then for each y, y′ ∈ Y take

l(y, y′) = max
{
l ≤ n : ∀i < l F f,x,y

(i) (x) = F f,x,y′

(i) (x)
}
.

By Ramsey’s theorem, we can assume that l(y, y ′) = l whenever y, y′ ∈ Y .

Clearly l < n. Then F f,x,y
(l) (x) 6= F f,x,y′

(l) (x) but F f,x,y
(l−1)(x) = F f,x,y′

(l−1) (x), so

fl = f−1 and F f,x,y
(l−1)(x) = x for each y ∈ Y . Thus z = (l−1)F

f,x,y(x) for each
y ∈ Y , which contradicts (†) because x ∈ A.

The lemma is proved.

We are ready to construct our desired graph.
First fix a sequence 〈Mα : α < ω1〉 of countable, elementary submodels of

some Hλ with 〈Mγ : γ < α〉 ∈Mα for each α < ω1, where λ is a large enough
regular cardinal.

Then choose a ♦-sequence 〈Sα : α < ω1〉 ∈ M0 for the uncountable sub-
sets of ω1, that is , {α < ω1 : X ∩ α = Sα} /∈ NS(ω1) whenever X ∈ [ω1]

ω1 .
We can also assume that Sα is cofinal in α for each limit α.

We will define, by induction on α,

1. graphs Gα = 〈ωα,Eα〉 with Gβ = Gα[ωβ] for β < α,

2. countable sets Fα ∈ Isop(Gα),

satisfying the induction hypotheses (I)–(II) below:

(I) {Sωγ : γ ≤ α} is uncovered by Iα ∪ Jα where

Iα = Cl({G(ν) ∩ ν : ν ∈ ωα} ,
⋃

β≤α

Fβ)

and
Jα = Cl({ν\G(ν) : ν ∈ ωα} ,

⋃

β≤α

Fβ).

To formulate (II) we need the following definition.

Definition 3.4 Assume that α = β + 1 and Y⊂ωα. We say that Y is large
if ∀n ∈ ω, ∀ 〈〈fi, xi〉 : i < n〉, ∀h
if
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October 6, 2003 9

1. ∀i < n ∃αi < β fi ∈ Fαi ,

2. ∀i < n ωαi ≤ xi < ωβ,

3. ∀i < n ran(fi)⊂Y ,

4. ∀i 6= j < n ran(fi) ∩ ran(fj) = ∅

5. h ∈ Fin(Y ∩ ωβ, 2) and dom(h) ∩
⋃
{ran(fi) : i < n} = ∅,

then
∃y ∈ Y ∩ [ωβ, ωα) such that

6. ∀i < n ∀x ∈ dom(fi) ({y, fi(x)} ∈ Eα iff {xi, x} ∈ Eα),

7. ∀z ∈ dom(h) {y, z} ∈ Eα iff h(z) = 1.

Take

(II) If α = β + 1, then ωα is large.

The construction will be carried out in such a way that 〈Gβ : β ≤ α〉 ∈ Mα

and 〈Fβ : β < α〉 ∈ Mα.
To start with take G0 = 〈∅, ∅〉 and F = {∅}. Assume that the construc-

tion is done for β < α.
Case 1:α is limit.

We must take Gα = ∪{Gβ : β < α}. We will define sets F 0
α,F

1
α⊂Isop(Gα)

and will take Fα = F0
α ∪ F

1
α.

Let

F0
α = {f ∈ Isop(Gα) ∩Mα : ∃ 〈αn : n < ω〉⊂α sup {αn : n < ω} = α,

fdωαn ∈ Fαn and fdωαn : Gαn
∼= Gαn [ran(f)] for each n ∈ ω} .

Take F− =
⋃

β<α
Fβ ∪ F0

α, I
−
α =

⋃
β<α

Iβ and J−α =
⋃

β<α
Jβ. Clearly F−⊂Mα

with F− ∈ Mα+1, so Mα+1 |= “|F−| = ω”. Obviously both I−α and J−α are
F−-closed and S = {Sωβ : β ≤ α} is uncovered by them.

¿From now on we work in Mα+1 to construct F 1
α. For W⊂ωα write

LW = {ν < α : W ∩ (ων + ω) is large}.
Take

Wα = {〈W, f〉 ∈ (P (ωα) ∩Mα)× (∪β<αFβ) : LW is cofinal in α
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October 6, 2003 10

and f : Gγf
∼= Gγf [W ∩ ωγf ] for some γf < α

}
.

We want to find functions gW,f ⊃ f for 〈W, f〉 ∈ Wα such that

(A) gW,f : Gα
∼= Gα[W ]

(B) taking F 1
α =

{
gW,f : 〈W, f〉 ∈ Wα

}
the induction hypothesis (I) remains

true.

First we prove a lemma:

Lemma 3.5 If 〈W, f〉 ∈ Wα, g ∈ Isop(Gα, Gα[W ]), g ⊃ f , |g\f | < ω, then

(i) for each x ∈ W\dom(f) the set

{y ∈ W : g ∪ {〈x, y〉} ∈ Isop(Gα, Gα[W ])}

is cofinal in ωα.

(ii) for each y ∈ W\ran(f) the set

{x ∈ W : g ∪ {〈x, y〉} ∈ Isop(Gα, Gα[W ])}

is cofinal in ωα.

Proof: (i): Define the function h : ran(g)\ran(f) → 2 with h(g(z)) = 1
iff {z, x} ∈ Eα. Choose β ∈ LW with ran(h)⊂ωβ and γf ≤ β. Since
W ∩ (ωβ + ω) is large, we have a y ∈ W ∩ [ωβ, ωβ + ω) such that

1. {y, f(z)} ∈ Eα iff {x, z} ∈ Eα for each z ∈ dom(f)

2. {y, g(z)} ∈ Eα iff h(g(z)) = i for each z ∈ dom(g)\dom(f).

But this means that g ∪ {〈x, y〉} ∈ Isop(Gα, Gα[W ]).
(ii) The same proof works using that ωβ + ω is large for each β < α.

By induction on n, we will pick points zn ∈ ωα and will construct
families of partial automorphisms,

{
gW,f
n : 〈W, f〉 ∈ Wα

}
such that gW,f =

∪
{
gW,f
n : n < ω

}
will work.

During the inductive construction we will speak about Fα-terms and
about functions which are represented by them in the nth step.
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If F = 〈h0, . . . hk−1〉 is an Fα-term and n ∈ ω take F[n] = j0 ◦ · · · ◦ jk−1
where

ji =





gW,f
n if hi = gW,f ,
(gW,f

n )−1 if hi = (gW,f)−1,
hi otherwise.

First fix an enumeration {〈〈Wn, fn〉 , un, in〉 : 1 ≤ n < ω} ofWα×ωα×2 and
an enumeration 〈〈〈Fn,i : i < ln〉 , jn, 〈An,i : i < ln〉 , Dn〉n < ω〉 of the quadru-
ples 〈〈F0, . . . , Fk−1〉 , j, 〈A0, . . . , Ak−1〉 , D〉 where k < ω, F0, . . . , Fk−1 are Fα-
terms, j ∈ 2, D ∈ S and either j = 0 and A0, . . . , Ak−1 ∈ I−α or j = 1 and
A0, . . . , Ak−1 ∈ J−α .

During the inductive construction conditions (i)–(v) below will be satis-
fied:

(i) gW,f
0 = f

(ii) gW,f
n ∈ Isop(Gα, Gα[W ])

(iii) gW,f
n ⊃ gW,f

n−1, |g
W,f
n \f | < ω

(iv) zk /∈
⋃ {

F ′′[n]Ak,i : F ∈ Sub(Fk,i)
}
for each i < lk and k < n

(v) if in = 1, then un ∈ dom(gWn,fn
n ),

if in = 0, then either un /∈ Wn or un ∈ ran(gWn,fn
n ).

If n = 0, then take gW,f
0 = f .

If n > 0, then let gW,f
n = gW,f

n−1 whenever 〈W, f〉 6= 〈Wn, fn〉. Assume that

in = 0, 〈W, f〉 = 〈Wn, fn〉 and un /∈ dom(gWn,fn
n−1 ). Then, by lemma 3.5, the

set Y =
{
y ∈ W : gW,f

n−1 ∪ {〈un, y〉} ∈ Isop(Gα, Gα[W ])
}
is unbounded in ωα.

Since the members of I−α ∪ J−α are bounded in ωα, we can apply lemma 3.3
to pick a point y ∈ Y such that taking gWn,fn

n = gWn,fn
n−1 ∪ {〈un, y〉} condition

(iv) holds.
If in = 1 and 〈W, f〉 = 〈Wn, fn〉, then the same argument works.
Finally pick a point

zn /∈ Dn\
⋃ {

F ′′[n]An,i : F ∈ Sub(Fn,i), i < ln
}
.

The inductive construction is done.
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Take gW,f = ∪
{
gW,f
n : n < ω

}
. By (v),

gW,f
n : Gωα

∼= Gωα[W ].

By (iv), we have

zk ∈ Dk\
⋃ {

F ′′k,iAk,i : i < lk
}

and so it follows that {Sωβ : β ≤ α} is uncovered by Iα ∪ Jα.
Case 2:α = β + 1.

To start with we fix an enumeration
{〈
〈〈f k

i , x
k
i 〉 : i < nk〉, hk

〉
: k ∈ ω

}
of

pairs 〈〈〈fi, xi〉 : i < n〉 , h〉 satisfying 3.4.1–5.
If k ∈ ω take

B0
k = h−1k {0} ∪

{
fk
i (ν) : i < nk, ν ∈ dom(f k

i ) and
{
ν, xk

i

}
/∈ Eβ

}

and

B1
k = h−1k {1} ∪

{
fk
i (ν) : i < nk, ν ∈ dom(f k

i ) and
{
ν, xk

i

}
∈ Eβ

}
.

Applying lemma 3.2 ω-many times we can find partitions (C0
k , C

k
1 ), k < ω,

of ωβ such that taking

I+β = Cl((Iβ ∪
{
C1

k : k ∈ ω
}
,

⋃

γ≤β

Fγ)

and
J+
β = Cl((Iβ ∪

{
C0

k : k ∈ ω
}
,

⋃

γ≤β

Fγ)

the set {Sωγ : γ ≤ β} is uncovered by I+β ∪ J+
β .

We can assume that Bi
k⊂C

i
k for i < 2 and k < ω because B0

k ∈ Jβ and
B1

k ∈ Iβ. Take

Eα = Eβ ∪
{
{ν, ωβ + n} : ν < ωβ, n ∈ ω and ν ∈ B1

n

}

and
Fα = ∅.

By the construction of Gα = 〈ωα,Eα〉, it follows that ωα is large, so (II)
holds. On the other hand

Iα =
{
X ∪ Y : X ∈ I+β , Y ∈ [ωα]<ω

}
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and
Jα =

{
X ∪ Y : X ∈ J+

β , Y ∈ [ωα]<ω
}
.

so {Sωγ : γ < α} is uncovered by Iα ∪ Jα. Finally Sωα is cofinal in ωα but
the elements of Iα ∪ Jα are all bounded, so the induction hypothesis (I) also
holds.

The construction is done. Take E = ∪{Eα : α < ω1} and G = 〈ω1, E〉.
By (I), G is non-trivial. Finally, we must prove that G is quasy smooth.
Consider a set Y⊂ω1. The following lemma is almost trivial.

Lemma 3.6 For each α < ω1 either Y ∩ (ωα+ ω) or (ωα+ ω)\Y is large.

Proof: Assume on the contrary that there are pairs 〈〈〈fi, xi〉 : i < n〉 , h〉
and 〈〈〈fi, xi〉 : n ≤ i < n + k〉 , h′〉 showing that neither Y ∩ (ωα + ω) nor
(ωα+ ω)\Y is large. Then 〈〈〈fi, xi〉 : i < n+ k〉 , h ∪ h′〉 shows that ωα+ ω
is not large.

So we can assume that the set

L = {α < ω1 : Y ∩ (ωα + ω) is large}

is uncountable and to complete the proof of theorem 3.1 it is enough to show
that in this case G ∼= G[Y ]. By ♦+, we can find a club subset C⊂L′ such
that Y ∩ ωγ ∈ Mγ , C ∩ ωγ ∈ Mγ and ωγ = γ whenever γ ∈ C. We can
assume that 0 ∈ C.

Write C = {γν : ν < ω1}. By induction on ν < ω1, we will construct
functions fν such that

(a) fν : Gγν
∼= Gγν [Y ], fν ∈ Fγν ,

(b) 〈fµ : µ < ν〉 ∈ Msup{γµ+1:µ<ν}.

Take f0 = ∅. If ν = µ + 1, then let fν = gY ∩ωγν ,fµ . If ν is limit, then
put fν = ∪{fµ : µ < ν}. Clearly (a) and (b) remains valid. Finally put
f = ∪{fν : ν < ω1}. Then f : G ∼= G[Y ], so the theorem is proved.

4 A model without quasi-smooth graphs

Given an Aronszajn-tree T = 〈ω1,≺〉 define the poset QT as follows: the
underlying set of QT consists of all functions f mapping a finite subset of
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ω1 to ω such that f−1{n} is antichain in T for each n ∈ ω. The ordering on
QT is as expected: f ≤QT

g iff f ⊃ g. For γ < ω1 denote by Tγ the set of
elements of T with height γ. Take T<δ =

⋃
γ<δ

Tγ. If x ∈ Tδ and γ < δ, let

xdγ be the unique element of Tγ which is comparable with x. We write C for
the poset 〈Fin(ω1, 2),⊃〉, that is, forcing with C adds ω1-many Cohen reals
to the ground model.

Theorem 4.1 If ZF is consistent, then so is ZFC + “there are no non-trivial

quasi-smooth graphs on ω1”.

Proof: Assume that GCH holds in the ground model. Consider a finite
support iteration 〈Pi, Qj : i ≤ ω2, j < ω2〉 satisfying (a)–(c) below:

(a) If j < ω2 is even, then Qj = C.

(b) If j < ω2 is odd, then V Pj |= “Qj = QTj for some Aronszajn-tree Tj”.

(c) V Pω2 |=“every Aronszajn tree is special”.

We will show that V Pω2 does not contain non-trivial, quasi-smooth graphs
on ω1.

To start with we introduce some notation. Consider a graph G = 〈V,E〉.
For x ∈ V define the function tpG(x) : V \ {x} → 2 by the equation G(x) =
tpG(x)

−1{1}. Given A ⊂ V write tpG(x,A) = tpG(x)dA.
If A ⊂ V and t ∈ 2A, take rlG(t) = {x ∈ V \ A : tpG(x,A) = t} and

rl∗G(t) = {x ∈ V \ A : |tpG(x,A)4t| < ω}. For x ∈ V and A ⊂ V put
twinG(x,A) = rlG(tpG(x,A)).

For A ⊂ V define the equivalence relation ≡G,A on V \ A as follows:

x ≡G,A y iff |tpG(x,A)4tpG(y, A))| < ω.

For x ∈ V \A denote by [x]G,A the equivalence class of x in ≡G,A. Clearly
[x]G,A = rl∗G(tpG(x,A)). Write G/ ≡G,A for the family of equivalence classes
of ≡G,A.

We divide K into three subclasses, K0, K1 and K2, and investigate them
separately to show that V Pω2 |= “(∀G ∈ Ki) G is not quasi-smooth” for i < 3.
Take

K0 = {G ∈ K : ∃A ∈ [ω1]
ω |G/ ≡G,A | = ω1},

K1 = {G ∈ K : ∀A ∈ [ω1]
ω ∃x |ω1 \ [x]G,A| < ω1}
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and
K2 = K \ (K0 ∪ K1).

4.1 G ∈ K0

First we recall a definition of [1].

Definition 4.2 A poset P is stable if

∀B ∈ [P ]ω ∃B∗ ∈ [P ]ω ∀p ∈ P ∃p′ ≤ p ∃p∗ ∈ B∗ ∀b ∈ B (p′‖
P
b iff p∗‖

P
b).

We will say that p′ and p∗ are twins for B and that B∗ shows the stability of
P for B.

Lemma 4.3 Pω2 is stable.

Proof: First let us remark that it is enough to prove that both C and QT are
stable for any Aronszajn-tree for in [1] it was proved that any finite support
iteration of stable, c.c.c. posets is stable.

It is clear that C is stable. Assume that T is an Aronszajn tree and
B ⊂ [QT ]

ω. Fix a countable ordinal δ with {dom(p) : p ∈ B} ⊂ T<δ and
take B∗ = {p ∈ QT : dom(p) ⊂ T<δ+ω}. It is not hard to see that B∗ shows
the stability of P for B.

For G ∈ K take G ∈ K∗0 iff there is an A ∈ [ω1]
ω such that the set

{x : |[x]G,A| ≤ ω} is uncountable.
Given G ∈ K0 we will write G ∈ K′0 iff there are disjoint sets A0, A1 ∈

[ω1]
ω such that

(1) x ≡G,A0 y iff x ≡G,A1 y for each x, y ∈ ω1 \ A0 ∪ A1,

(2) the set {x : |[x]G,A0| ≤ ω} is uncountable.

Lemma 4.4 Assume CH. If G ∈ K′0, then there is a partition (V0, V1) of ω1

so that for each stable c.c.c. poset P we have

V P |= “G is not isomorphic to G[Vi] for i ∈ 2”.

Proof: Pick A0, A1 ∈ [ω1]
ω witnessing G ∈ K′0. Write A = A0 ∪ A1. Take

E = E(G).
Let κ be a large enough regular cardinal and fix an increasing sequence

〈Nν : ν < ω1〉 of countable, elementary submodels of Hκ such that
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(i) G,A,A0, A1 ∈ N0,

(ii) 〈Nν : ν < µ〉 ∈ Nµ for µ < ω1.

For x ∈ ω1 \A take

rank(x) = min{ν : x ∈ Nν}.

Fix a partition (S0, S1) of ω1 with |S0| = |S1| = ω1. Take

Vi = Ai ∪ rank−1Si

for i ∈ 2.
We show that the partition (V0, V1) works.
Assume on the contrary that P is a stable c.c.c. poset, ḟ is a P -name of

a function, p0 ∈ P and
p0‖—“ḟ : G ∼= G[V0]”.

Without loss of generality we can assume that p0 = 1P . Now for each
c ∈ A0 choose a maximal antichain Jc ⊂ P and a function hc : Jc → V such
that q‖—“ḟ−1(ĉ) = ĥc(r)” for each q ∈ Jc.

Take B =
⋃
{Jc : c ∈ A0} and pick a countable B∗ ⊂ P showing the

stability of P for B.
For b ∈ P define the partial function dtb : ω1 → 2A0 as follows. Let

x ∈ ω1. If there is a function t ∈ 2A0 so that

(a) t(c) = 1 ⇐⇒ for each q ∈ Ic if q and b are compatible conditions, then
{x, hc(q)} ∈ E,

(b) t(c) = 0 ⇐⇒ for each q ∈ Ic if q and b are compatible conditions, then
{x, hc(q)} /∈ E,

then take dtb(x) = t. Otherwise x /∈ domdtb.

Sublemma 4.4.1 If p‖—“ḟ(x) = y”, then there are p′ ≤ p and b ∈ B∗ such
that b and p′ are twins for B and dtb(x) = tpG(y, A0).

Proof: By the choice of B∗, we can find a p′ ≤ p and a b ∈ B∗ so that p′ and b
are twins for B. Let c ∈ A0. For each q ∈ Jc, if q and p′ are compatible in P ,
then {y, c} ∈ E iff {x, hc(q)} ∈ E , because, taking r as a common extension

of q and p′, we have r‖—“ḟ(x̂) = ŷ and ḟ(ĥq(c)) = ĉ”. So {y, c} ∈ E iff for
each q ∈ Ic if q and p′ are compatible, then {x, hc(q)} ∈ E. But p′ and b are
twins for

⋃
{Jc : c ∈ A0}, so dtb(x) = dtp(x) = tpG(y, A0).
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Sublemma 4.4.2 There is a b ∈ B∗ such that

(∗) |{t ∈ ran dtb : |rl
∗
G(t)| ≤ ω}| = ω1.

Proof: Let G be a P -generic filter over V . Put

F = {tpG(y, A0) : y ∈ V0 \ A0, |[y]G,A0| ≤ ω}.

Then |F| = ω1, so we can write F = {tν : ν < ω1}. Fix sequences
〈pν : ν < ω1〉 ⊂ G, 〈xν : ν < ω1〉 ⊂ ω1 and 〈yν : ν < ω1〉 ⊂ ω1 such that
pν‖—“ḟ(xν) = yν” and tpG(yν , A0) = tν . By sublemma 4.4.1,

⋃

b∈B∗

ran dtb ⊇ F .

But B∗ is countable, so we can find a b ∈ B∗ satisfying (∗) above.

Fix b ∈ B∗ with property (∗). Consider the structure

N = 〈P d(B ∪ B∗), B, B∗, 〈Jc, hc : c ∈ A0〉〉 .

By CH, there is a ν < ω1 with N ∈ Nν . Pick µ ∈ S1 \ν. Since G, N , b ∈ Nν ,
it follows that dtb ∈ Nν ⊂ Nµ. By (∗) and (ii), there is a

t ∈ ran dtb ∩ (Nµ \
⋃

ξ<µ

Nξ)

with |rl∗G(t)| ≤ ω. Then

(†) rl∗G(t) ⊂ Nµ \
⋃

ξ<µ

Nξ.

Pick x ∈ ω1 with dtb(x) = t. Find p ∈ G and y ∈ V0 such that p ≤ b
and p‖—“ḟ(x) = y”. By sublemma 4.4.1, there are p′ ≤ p and b′ ∈ B∗

such that p′ and b′ are twins for B and dtb′(x) = tpG(y, A0). But p ≤ b, so
dtb(x) = dtb′(x). Indeed, let c ∈ A0 and assume that dtb′(x)(c) = 1. Pick
q ∈ Jq which is compatible with b′. By the definition of dtb′, it follows that
{hc(q), x} ∈ E. Since p′ and b′ are twins for B, so p′ and q also have a
common extension q′ in P . But p′ ≤ p ≤ b, so q′ witnesses that b and q are
compatible. Thus, by the definition of dtb, we have dtb(x)(c) = 1.

Thus tpG(y, A0) = dtb′(x) = dtb(x) = t. By (†), this implies that
rank(y) = µ. But, by the construction of the partition (V0, V1), there are
no y ∈ V0 with rank(y) = µ. Contradiction, the lemma is proved.
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Lemma 4.5 Assume CH. If G ∈ K∗0, then
V C |=“ there is a partition (V0, V1) of ω1 so that

for each stable c.c.c. poset P we have:

V C∗P |= “G is not isomorphic to G[Vi] for i ∈ 2”. ”

Proof: . Fix a set A ∈ [ω1]
ω witnessing G ∈ K∗0 and a bijection f : A → ω

in V. Let r : ω → 2 be the characteristic function of a Cohen real from V C.
Take Ai = (f ◦ r)−1{i} for i < 2. Then (A0, A1) is a partition of A. Using a
trivial density argument we can see that x 6≡G,A y implies x 6≡G,Ai

y for i < 2
and for x, y ∈ ω1 \ A. Thus V C |= “A0 and A1 witness G ∈ K′0”. Applying
lemma 4.4 in V C we get the desired partition of ω1.

Lemma 4.6 In V Pω2 , if G ∈ K0 is quasi-smooth, then G ∈ K∗0.

Proof: Choose a set A ∈ [ω1]
ω witnessing G ∈ K0 and a bijection f : A→ ω.

Pick α < ω2, α is even, with A, f , G ∈ V Pα. From now on we work in V Pα.
Let {[xν ]G,A : ν < ω1} be an enumeration of the equivalence classes of ≡G,A.
Fix a partition (I0, I1) of ω1 into uncountable pieces. Let r : ω → 2 be the
characteristic function of a Cohen real from V Pα∗C. Take Ai = (f ◦ r)−1{i}
for i < 2. Then (A0, A1) is a partition of A. Using a trivial density argument
we can see that x 6≡G,A y implies x 6≡G,Ai

y for i < 2 and for x, y ∈ ω1 \ A.
For i ∈ 2 put

Bi = Ai ∪ {xν : ν ∈ Ii} ∪ {[xν ]G,A \ {xν} : ν ∈ I1−i}.

Clearly (B0, B1) is a partition of ω1 and

Bi ∩ [xν ]G,Ai
= Bi ∩ [xν ]G,A = {xν}.

So G[Bi] ∈ K∗. But G is quasi-smooth, so G ∼= G[Bi] for some i ∈ 2 in V Pω2 .
Thus G ∈ K∗0 is proved.

4.2 G ∈ K1

We say that a poset P has property Pr iff for each sequence 〈pν : ν < ω1〉 ⊂ P
there exist disjoint sets U0, U1 ∈ [ω1]

ω1 such that whenever α ∈ U0 and β ∈ U1

we have pα‖P pβ.
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Lemma 4.7 C has property Pr.

Indeed, C has property K.

Lemma 4.8 If T is an Aronszajn-tree, then QT has property Pr.

Proof: Let 〈pα : α < ω1〉 ⊂ P be given. We can assume that there are a
stationary set S ⊂ ω1, p

∗ ∈ QT , γ
∗ < ω1, n ∈ ω and {zi : i < n} ⊂ T such

that for each α ∈ S

(a) xdα ∈ dom(pα) for each x ∈ dom(pα) with heightT (x) ≥ α,

(b) pαdT<α = p∗,

(c) |dom(pα) ∩ Tα| = n,

(d) writing dom(pα) ∩ Tα = {xα
0 , . . . , x

α
n−1}, x

α
0 <On . . . <On xα

n−1, the

sequence
〈
pα(x

α
0 ), . . . , pα(x

α
n−1)

〉
is independent from α,

(e) γ∗ < α and the elements xα
0 dγ

∗, . . . , xα
n−1dγ

∗ are pairwise distinct,

(f) xα
i dγ

∗ = zi for i < n.

For each β < ω1 and ȳ = 〈y0, . . . , yn−1〉 ∈ (Tβ)
n take

Sȳ = {α ∈ S \ β : xα
i dβ = yi for each i < n}.

Let

C∗ = {δ < ω1 \ γ
∗ : ∀β < δ ∀ȳ ∈ (Tβ)

n (|Sȳ| ≤ ω → Sȳ ⊂ δ)}.

Now {pα : α ∈ S ∩ C∗} are ω1 members of P , so for some α < β ∈ S ∩ C∗

the conditions pα and pβ are compatible. Since pα(x
α
l ) = pβ(x

β
l ), x

α
l and xβ

l

are incomparable in T for l < n. So for some ν < α, xα
l dν 6= xβ

l dν whenever
l < n. On the other hand, for l 6= m < n we have xα

l dν 6= xβ
mdν because

xα
l dγ

∗ = zl 6= zm = xβ
mdγ

∗. Take yal = xα
l dν and ybl = xβ

l dν for l < n and

write ā =
〈
ya0 , . . . , y

a
n−1

〉
, b̄ =

〈
yb0, . . . , y

b
n−1

〉
. The elements {ya

i , y
b
i : i < n}

are pairwise different, so for each α′ ∈ Sā and β ′ ∈ Sb̄ the conditions pα′ and
pβ′ are compatible. But |Sā| = |Sb̄| = ω1, because α ∈ Sā, β ∈ Sb̄, ν < α and
α ∈ C∗.

A poset P is called well-met if any two compatible elements p0 and p1 of
P have a greatest lower bound denoted by p0 ∧ p1.
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Lemma 4.9 Assume that the poset P has property Pr and V P |= “the poset
Q has property Pr”. Let {〈pα, qα〉 : α < ω1} ⊂ P ∗ Q. Then there are

disjoint sets U0, U1 ∈ [ω1]
ω1 such that for each γ ∈ U0 and δ ∈ U1 the

conditions 〈pγ, qγ〉 and 〈pδ, qδ〉 are compatible, in other words, pγ and pδ have
a common extension pγ,δ in P with pγ,δ‖—“qγ ‖Q qδ”. If P is well-met, then

we can find conditions {p′α : α ∈ U0 ∪ U1} in P with p′α ≤ pα such that

p′γ ∧ p′δ‖—“qγ ‖Q qδ” for each γ ∈ U0 and δ ∈ U1.

Proof: Let U̇ be a P -name for the set U = {α : pα ∈ GP}, where GP is the P -
generic filter. Since P satisfies c.c.c., there is a p∗ ∈ P with p∗‖—“|U̇ | = ω1”.
Since V P |=“Q has property Pr”, there is a condition p ≤ p∗ and there are
P -names such that p‖— “Vi = {α̇i

γ : γ < ω1} ∈ [U ]ω1 , for i ∈ 2, and qα̇0
γ

and qα̇1
δ
are compatible whenever γ, δ ∈ ω1”. Choose conditions p∗γ ≤ p and

ordinals β0
γ , β

1
γ , with p∗γ‖—“ α̇i

γ = β̂i
γ” for i < 2.

Now consider the sequence A = {p∗γ : γ < ω1}. Since P has property
Pr, there are disjoint, uncountable sets C0, C1 ⊂ A such that p∗γ and p∗δ are
compatible whenever γ ∈ C0 and δ ∈ C1. Take Ui = {βi

γ : γ ∈ Ci} for
i ∈ 2. We can assume that U0 ∩ U1 = ∅. Let γ ∈ C0 and δ ∈ C1 and let
p′′ be a common extension of p∗γ and p∗δ . Then p′′‖—“β0

γ, β
1
δ ∈ U̇ , that is, pβ0

γ

and pβ1
δ
are in GP”, so p′′, must be a common extension of pβ0

γ
and pβ1

δ
. So

p′′‖—“β0
γ ∈ V0 and β1

δ ∈ V1”, thus p
′′‖—“qβ0

γ
and qβ1

δ
are compatible in Q”, so〈

pβ0
γ
, qβ0

γ

〉
‖P∗Q

〈
pβ1

δ
, qβ1

δ

〉
.

Suppose that P is well-met. Take p′β0
γ
= p∗γ ∧ pβ0

γ
and p′

β1
δ
= p∗δ ∧ pβ1

δ
.

It works because we can use p∗γ ∧ p∗δ as p′′ in the argument of the previous
paragraph.

Lemma 4.10 If 〈Rα : α ≤ µ, Sβ : β < µ〉 is a finite support iteration such

that V Rα |=“Sα has property Pr” for α < µ, then Rµ has property Pr, as
well.

Proof:We prove this lemma by induction on µ. The successor case is covered
by lemma 4.9. Assume that µ is limit. Let 〈pξ : ξ < ω1〉 ⊂ Rµ. Without loss
of generality we can assume that 〈supp(pξ) : ξ < ω1〉 forms a ∆-system with
kernel d. Fix ν < µ with d ⊂ ν. By the induction hypothesis, the poset
Rν has property Pr, so there exist disjoint sets U0, U1 ∈ [ω1]

ω1 such that
whenever ξ ∈ U0 and η ∈ U1 we have pξ‖Rν pη. But pξ‖Rν pη implies pξ‖Rµpη
because supp(pξ) ∩ supp(pη) ⊂ ν, so Rµ has property Pr, as well.
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The previous lemmas yield the following corollary.

Lemma 4.11 Pω2 has property Pr.

Given G = 〈ω1, E〉 ∈ K1 and ξ, α, β ∈ ω1 with ξ ∈ α ∩ β take

DG
ξ (α, β) = {ν ∈ ξ : {α, ν} ∈ E iff {β, ν} /∈ E}.

Lemma 4.12 If G ∈ K1, then

(∗) ∀ξ ∈ ω1 ∃εG(ξ) ∈ ω1 ∀α, β ∈ ω1 \ εG(ξ) |D
G
ξ (α, β)| < ω.

Proof: Since G ∈ K1, we have an x ∈ ω1 with |ω1 \ [x]ξ| < ω1. Choose
εG(ξ) ∈ ω1 \ ξ with ω1 \ [x]ξ ⊂ εG(ξ). It works because α, β > εG(ξ) implies
α, β ∈ [x]ξ.

The bipartite graph 〈ω1 × 2, {{〈ν, 0〉 , 〈µ, 1〉} : ν < µ < ω1}〉 will be de-
noted by [ω1;ω1].

Lemma 4.13 If G ∈ K1, then neither G nor its complement may have a —

not necessarily spanned — subgraph isomorphic to [ω1;ω1].

Proof: Let G = 〈ω1, E〉. Write E(α) = {ξ ∈ ω1 : {ξ, α} ∈ E}. Assume
on the contrary that A, B ∈ [ω1]

ω1 are disjoint sets such that {α, β} ∈ E
whenever α ∈ A and β ∈ B with α < β. Without loss of generality we can
assume that (A \α+1)∩ ε(α) = ∅ for each α ∈ A. Write A = {αξ : ξ < ω1}.
Then for ξ ∈ ω1 the set F (ξ) = (A ∩ αξ) \ E(αξ+1) is finite because αξ+1 >
ε(αξ) and (A∩αξ) \E(β) = ∅ for all but countable many β ∈ B. By Fodor’s
lemma, we can assume that F (ξ) = F for each ξ ∈ S, where S is a stationary
subset of ω1 containing limit ordinals only. Let T = {ξ ∈ S : F ⊂ αξ} and
take W = {αξ+1 : ξ ∈ T}. Then G[W ] is an uncountable complete subgraph
of G. Contradiction.

Lemma 4.14 If G ∈ K1 and V C |=“Q has property Pr”, then

V C∗Q |= “G 6∼= G[f−1{i}] for i < 2”,

where f : ω1 → 2 is the C-generic function over V .



3
7
0
 
 
r
e
v
i
s
i
o
n
:
1
9
9
4
-
0
8
-
3
0
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
1
9
9
4
-
0
8
-
3
0
 
 

October 6, 2003 22

Proof: Assume on the contrary that

〈p, q〉 ‖—“ḣ : G ∼= G[f−1{0}]”.

To simplify our notations, we will write E for E(G), Dξ(α, β) for DG
ξ (α, β)

and ε(ξ) for εG(ξ).
Let C0 = {δ < ω1 : ξ < δ implies ε(ξ) < δ}. Clearly C0 is club. Take

C1 = {δ < ω1 : 〈p, q〉 ‖—“ḣ′′δ̂ = f−1{0} ∩ δ̂”}. Since C ∗Q satisfies c.c.c, the
set C1 is club. Put C2 = C0 ∩ C1.

Now for each α < ω1 let δα = min(C2 \ α + 1) and choose a condition
〈pα, qα〉 ≤ 〈p, q〉 and a countable ordinal γα such that

〈pα, qα〉 ‖—“ḣ(δ̂α) = γ̂α”.

Since γα ≥ δα > ε(α) for each α ∈ ω1, we can fix a stationary set S ⊂ ω1

and a finite set D such that Dα(δα, γα) = D for each α ∈ S. Since C is well-
met, applying lemma 4.9 we can find disjoint uncountable subsets S0, S1 ⊂ S
and a sequence 〈p′α : α ∈ S0 ∪ S1〉 ⊂ C with p′α ≤ pα such that p′α ∧ p′β‖—
“qα ‖Q qβ” for each α ∈ S0 and β ∈ S1.

We can assume that the sets {dom(p′α) : α ∈ S0} and {dom(p′β) : β ∈ S1}
form ∆-systems with kernels d0 and d1, respectively.

Take Y 0
ξ = {α ∈ S0 : {ξ, δα} ∈ E} and Y 1

ξ = {α ∈ S1 : {ξ, δα} /∈ E} for
ξ < ω1. Write Yi = {ξ < ω1 : |Y

i
ξ | = ω1} and Zi = ω1 \ Yi for i < 2.

By 4.13, the sets Zi are countable. Pick ξ ∈ C2 with D∪d0∪d1∪Z0∪Z1 ⊂
ξ. Let ξ ′ = min(C2 \ ξ+1) and ξ ′′ = min(C2 \ ξ′+1) . Since d0 ∪ d1 ⊂ ξ and
|Y 0

ξ | = |Y
1
ξ | = ω1, we can choose αi ∈ Y i

ξ \ ξ
′′ with dom(p′αi) ∩ [ξ, ξ ′) = ∅ for

i = 0, 1. The set W = Dξ′(δα0 , δα1) ∩ [ξ, ξ ′)is finite because δαi ≥ αi ≥ ξ′′ >
ε(ξ′) for i < 2. Choose a C-name q such that p′α0

∧ p′α1
‖— “q is a common

extension of qα0 and qα1 in Q” and take

r =
〈
p′α0

∪ p′α1
∪ {〈ν, 1〉 : ν ∈ W}, q

〉
.

Since W ∩ (dom(p′α0
) ∪ dom(p′α1

)) = ∅, r is a condition.

Pick a condition r′ ≤ r from C ∗Q and an ordinal η such that r′‖—“ḣ(ξ̂) =
η̂”. Now η ∈ [ξ, ξ ′) because ξ, ξ ′ ∈ C1. Since

r′‖—“ḣ(δαi) = γ̂αi, ḣ(ξ̂) = η̂ and ḣ is an isomorphism”,

so {δα0 , ξ} ∈ E and {δα1 , ξ} /∈ E imply that {γα0 , η} ∈ E and {γα1, η} /∈ E.
But Dαi(δαi , γαi) = D and D ⊂ ξ so {δα0 , η} ∈ E and {δα1 , η} /∈ E, that is,
η ∈ W . But r‖—“ran(ḣ) = f−1{0} and f−1{0} ∩ Ŵ = ∅”, contradiction.
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4.3 G ∈ K2

Given a non-trivial graph G = 〈V,E〉 with V ∈ [ω1]
ω1 define

Γ(G) = {δ ∈ ω1 : ∃α ∈ V α ≥ δ and |twinG(α, V ∩ δ)| ≤ ω}.

The following lemma obviously holds.

Lemma 4.15 If G0 and G1 are graphs on uncountable subsets of ω1, G0
∼=

G1, then Γ(G0) = Γ(G1) mod NSω1.

Lemma 4.16 Given G ∈ K \ K0 and S ⊂ ω1 there is a partition (V0, V1) of
ω1 such that Γ(G[V0]) ⊂ S mod NSω1 and Γ(G[V1]) ⊂ ω1 \ S mod NSω1.

Proof: Let κ be a large enough regular cardinal and fix an increasing,
continuous sequence 〈Nν : ν < ω1〉 of countable, elementary submodels of
Hκ = 〈Hκ,∈〉 such that G, S ∈ N0 and 〈Nν : ν ≤ µ〉 ∈ Nµ+1 for µ < ω1.
Write γν = Nν ∩ ω1 and C = {γν : ν < ω1}. Take V0 =

⋃
ν∈S

(γν+1 \ γν) and

V1 = ω1 \ V0 =
⋃

ν∈ω1\S
(γν+1 \ γν).

It is enough to prove that Γ(G[V0]) ⊂ S mod NSω1 . Assume that γν ∈
Γ(G[V0]), γν = ν, α ≥ γν , α ∈ V0 and |twinG[V0](α, γν ∩ V0)| = ω. Since G, ν,
γν ∩ V0 ∈ Nν+1 and |G/ ≡G,V0∩γν | ≤ ω, we have tpGG[V0](α, γν ∩ V0) ∈ Nν+1

and so twinG[V0](α, γν) ⊂ Nν+1 as well. Thus α ∈ γν+1 \ γν . Hence α ∈ V0
implies γn = ν ∈ S which was to be proved.

Lemma 4.17 If G ∈ K \ K0 and Γ(G) 6= ∅ mod NSω1, then G is not quasi-

smooth.

Proof: Assume that S = Γ(G) is stationary and let (S0, S1) be a partition of
S into stationary subsets. By lemma 4.16, there is a partition (V0, V1) of ω1

with Γ(G([Vi])∩S ⊂ Si. Then G[Vi] and G can not be isomorphic by lemma
4.15.

Let us remark that G ∈ K2 iff G ∈ K \ K0 and there is an A ∈ [ω1]
ω and

x ∈ ω1 \ A such that |[x]G,A| = |ω1 \ [x]G,A| = ω1.
Given G ∈ K2 we will write G ∈ K′2 iff there are two disjoint, countable

subsets of ω1, A0 and A1, and there is an x ∈ ω1, such that |[x]G,A0| =
|ω1 \ [x]G,A0 | = ω1 and [x]G,A0 \ A1 = [x]G,A1 \ A0.
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Lemma 4.18 If G ∈ K2, then G ∈ (K′2)
V C
.

Proof: Assume that A ∈ [ω1]
ω and x ∈ ω1 witness G ∈ K2 in the ground

model. Fix a bijection f : A → ω in V. Let r : ω → 2 be the characteristic
function of a Cohen real from V C. Take Ai = (f ◦ r)−1{i}. By a simple
density argument, we can see that [x]G,A0 = [x]G,A = [x]G,A1 . Thus A0, A1

and x show that g ∈ K′2.

Lemma 4.19 Assume that every Aronszajn tree is special. If G ∈ K′2, then
there is a partition (V0, V1) of ω1 such that Γ(G[Vi]) is stationary for i < 2.

Proof: Choose A0, A1 and x witnessing G ∈ K′2. Let A = A0 ∪ A1. Take
C0 = [x]G,A0 \A, C1 = (ω1 \ [x]G,A0) \A and consider the partition trees Ti of
G[Ci] for i ∈ 2 (see definition 2.3). These trees are Aronszajn-trees because
G is non-trivial. Fix functions hi:Ci → ω specializing Ti. We can find
natural numbers n0 and n1 such that the sets Si = {ν : h−1i {ni} ∩ (Ti)ν 6= ∅}
are stationary, that is, h−1i {ni} meets stationary many level of Ti. Take
Bi = h−1i {ni} and Yi = {c ∈ Ci : ∃b ∈ Bi c ¹Ti b}.

Pick any δ ∈ Si. Let b ∈ Bi ∩ (Ti)δ. If c ∈ Yi \ (Ti)<δ, c 6= b, then cdδ 6= b
by the construction of Yi. So tpGG[Yi]

(c, (Ti)<δ) = tpGG[Yi]
(cdδ, (Ti)<δ) 6=

tpGG[Yi](b, (Ti)<δ) by the definition of the partition tree. This means that
twinG[Yi](b, (Ti)<δ) = {b}. Thus δ ∈ Γ(G[Yi]) provided (Ti)<δ ⊂ δ and b ≥
δ. But these requirements exclude only a non-stationary subset of Si. So
Γ(G[Yi]) ⊃ Si mod NSω1 .

Let Vi = Yi∪Ai∪(C1−i \Y1−i) for i ∈ 2 and consider the partition (V0, V1)
of ω1 . If z ∈ Vi\(Yi∪Ai), then tpG(z, Ai) 6= tpG(b, Ai) for any b ∈ Bi because
C0 ⊂ [x]G,Ai

and C1 ⊂ ω1 \ [x]G,Ai
. So Γ(G[Vi]) ⊃ Si mod NSω1 holds.

Now we are ready to conclude the proof of theorem 4.1. We will work in
V Pω2 . Assume that G ∈ K. We must show that G is not quasi-smooth.

Pick a ν < ω2 with G ∈ (K)V
Pν

and Qν = C. Assume first that G ∈
(K0)

V Pν
. If G were quasi-smooth in V Pω2 , G ∈ (K∗0)

Pω2 would hold by lemma
4.6. So we can assume that G ∈ (K∗0)

Pν . Since Pω2 is a stable, c.c.c. poset,
so is Pω2/Pν+1. So, by lemma 4.5, there is a partition (VO, V1) of ω1 in V Pν+1

such that V Pω2 |=“G is not isomorphic to G[Vi] for i < 2”.
Assume that G ∈ (K1)

V Pν
. Since Pω2 has property Pr, so is Pω2/Pν+1.

Thus, by lemma 4.14, the partition (VO, V1) of ω1 given by the Qν-generic
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Cohen reals in V Pν+1 has the property that V Pω2 |=“G is not isomorphic to

G[Vi] for i < 2”.

Finally assume thatG ∈ (K2)
V Pν

. By lemma 4.18, we haveG ∈ (K′2)
V Pν+1

.

Since Pω2 satisfies c.c.c, it follows thatG ∈ (K′2)
V Pω2 . So applying lemma 4.19

we can find a partition (V0, V1) of ω1 such that both Γ(G[V0]) and Γ(G[V1]) are
stationary. Thus, by lemma 4.17, neither G[V0] nor G[V1] are quasi-smooth.
So G itself can not be quasi-smooth.
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