CHARACTERIZING AN \aleph_ϵ-Saturated
MODEL OF SUPERSTABLE NDOP
THEORIES BY ITS $L_{\infty,\aleph_\epsilon}$-THEORY
SH401

SAHARON SHELAH
The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel
Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA
MSRI
Berkeley, CA USA

Abstract. Assume a complete countable first order theory is superstable with
NDOP. We knew that any \aleph_ϵ-saturated model of the theory is \aleph_ϵ-prime over a
non-forking tree of “small” models and its isomorphism type can be characterized by
its $L_{\infty,\kappa}$-(dimension quantifiers)-theory; or if you prefer - appropriate cardinal invari-
ants. We go here one step further providing cardinal invariants which are as finitary
as seems reasonable.

Partially supported by the United States-Israel Binational Science Foundation and the NSF, and
I thank Alice Leonhardt for the beautiful typing.
Revised with proofreading for the Journal
Done Oct/89
Publ No. 401
Latest Revision - 05/Dec/20

Typeset by AMSTeX
After the main gap theorem was proved (see [Sh:c]), in discussion, Harrington expressed a desire for a finer structure - of finitary character (when we have a structure theorem at all). I point out that the logic L_{∞, \aleph_0} (d.q.) (where d.q. stands for dimension quantifier) does not suffice: suppose; e.g. for $T = \text{Th}(\lambda \times \omega^2, E_n)_{n<\omega}$ where $(\alpha, \eta) \in E_n(\beta, \nu) := \eta \upharpoonright n = \nu \upharpoonright n$ and for $S \subseteq \omega^2$ define $M_S = M \upharpoonright \{((\alpha, \eta)) : [\eta \in S \Rightarrow \alpha < \omega_1] \text{ and } [\eta \in S \setminus S \Rightarrow \alpha < \omega]\}$. Hence, it seems to me we should try L_{∞, \aleph_0} (d.q.) (essentially, in \mathcal{E} we can quantify over sets which are included in the algebraic closure of finite sets, see below 1.1, 1.3), and Harrington accepts this interpretation. Here the conjecture is proved for \aleph_0-saturated models. I.e., the main theorem is $M \equiv L_{\infty, \aleph_0}$ (d.q.) $\iff M \cong N$ for \aleph_0-saturated models of a superstable countable (first order) theory T without dop. For this we analyze further regular types, define a kind of infinitary logic (more exactly, a kind of type of \bar{a} in M), “looking only up” in the definition (when thinking of the decomposition theorem). Recall that for as \aleph_0-saturated model M of a superstable DNOP theory an \aleph_0-decomposition is $\langle M_\eta, a_\eta : \eta \in \mathcal{F} \rangle$ where

(a) $I \subseteq \omega^>\text{ord}$ is nonempty closed under initial segments
(b) $M_\eta \prec M$ is \aleph_0-saturated
(c) $\nu \prec \eta \in I \Rightarrow M_\nu \prec M_\eta$
(d) if $\nu = \eta \smallfrown (\bar{\alpha}) \in I$ then M_ν is \aleph_0-prime over $M_\eta \cup \{a_\nu\}$ and $\text{tp}(a_\eta, M_\eta)$ is orthogonal to M_ρ for $\rho \prec \nu$ and (the last is not essential but clarifies)
(e) $\langle M_\eta : \eta \in I \rangle$ is non-forking enough: for every $\nu \in I$ the set $\{a_\eta : \eta \in \text{Suc}(I(\nu))\} \subseteq M$ is independent over M_ν.

The point is that if $\eta = \nu \smallfrown (\bar{\alpha})$, M_η, a_η are chosen then to a large extent $\langle M_\rho, a_\rho : \eta \prec \rho \in I \rangle$ is determined. But the amount of “to a large extent” which suffices in [Sh:c], is not sufficient here, we need to find a finer understanding. In particular, we certainly do not like to “know” (M_ν, a_η). So we consider a pair (\mathcal{A}, B) where $A \subseteq M_\nu$, $A \cup \{a_\eta\} \subseteq B \subseteq M_\eta$, $\text{stp}_s(B, A) \vdash \text{stp}_s(B, M_\nu)$ and we try to define the type of such pairs in a way satisfying:

(a) it can be impressed in our logic L_{∞, \aleph_0}
(b) it expresses the essential information in $\langle M_\rho, a_\rho : \eta \prec \rho \in I \rangle$.

To carry out the isomorphism proof we need: (1.27) the type of the sum is the sum of types (infinitary types) assuming first order independence. The main point of the proof is to construct an isomorphism between M_1 and M_2 when $M_1 \equiv L_{\infty, \aleph_0}$ (d.q.) $M_2, \text{Th}(M_\ell) = T$ where T and $\equiv L_{\infty, \aleph_0}$ (q.d.) are as above. So by [Sh:c, X] it is
enough to construct isomorphic decompositions. The construction of isomorphic decompositions is by ω approximations, in stage n, $\sim n$ levels of the decomposition tree are approximated, i.e. we have $I_n^\ell \subseteq n^2 $ Ord and $\bar{a}_n^{n,\ell} \in M_\ell$ for $\eta \in I_n, \ell = 1, 2$ such that $\text{tp}(\bar{a}_n^{n,1} \cdot \bar{a}_n^{n,1} \cdots \bar{a}_n^{n,1}, \emptyset, M) = \text{tp}(\bar{a}_n^{n,2} \cdot \bar{a}_n^{n,2} \cdots \bar{a}_n^{n,2}, \emptyset, M)$ with $\bar{a}_n^{n,\ell}$ being ε-finite, so in stage $n + 1$, choosing $\bar{a}_{n+1}^{n+1,\ell}$ we cannot take care of all types $\bar{a}_{n+1\ell}^{n+1,\ell}$ so addition theorem takes care. So though we are thinking on \aleph_ε decompositions (i.e., the M_η’s are \aleph_ε-saturated), we get just a decomposition.

In the end of §1 (in 1.37) we point up that the addition theorem holds in fuller generalization. In the second section we deal with a finer type needed for shallow T, in the appendix we discuss how absolute is the isomorphism type.

Of course, we may consider replacing “\aleph_ε-saturated models of an NDOP superstable countable T” by “models of an NDOP \aleph_0-stable countable T”. But the use of ε-finite sets seems considerably less justifiable in this context, it seems more reasonable to use finite sets, i.e., $L^\infty,\aleph_0 (d.q.)$. But subsequently Hrushovski and Bouscaren proved that even if T is \aleph_0-stable, $L^\infty,\aleph_0 (d.q.)$ is not sufficient to characterize models of T up to isomorphism. This is not sufficient even if one considers the class of all \aleph_ε-saturated models rather than all models. The first example is \aleph_0-stable shallow of depth 3, and the second one is superstable (non \aleph_0-stable), NOTOP, non-multi-dimensional.

If we deal with \aleph_ε-saturated models of shallow (superstable NDOP) theories T, we can bound the depth of the quantification $\gamma = DP(T)$; i.e. $L^\infty,\aleph_\varepsilon$ suffice.

We assume the reader has a reasonable knowledge of [Sh:c, V, §1, §2] and mainly [Sh:c, V, §3] and of [Sh:c, X].

Here is a slightly more detailed guide to the paper. In 1.1 we define the logic $L^\infty,\aleph_\varepsilon$ and in 1.3 give a back and forth characterization of equivalence in this logic which is the operative definition for this paper.

The major tools are defined in 1.7, 1.11. In particular, the notion of tp_α defined in 1.5 is a kind of a depth α look-ahead type which is actually used in the final construction. In 1.28 we point out that equivalence in the logic $L^\infty,\aleph_\varepsilon$ implies equivalence with respect to tp_α for all α. Proposition 1.14 contains a number of important concrete assertions which are established by means of Facts 1.16-1.23. In general these explain the properties of decompositions over a pair (B, A). Claim 1.27 (which follows from 1.26) is a key step in the final induction. Definition 1.30 establishes the framework for the proof that two \aleph_ε-saturated structures that have the same tp_∞ are isomorphic. The induction step is carried out in 1.35.

I thank Baldwin for reading the typescript pointing needed corrections and writing down some explanations.

-1.1 Notation: The notation is of [Sh:c], with the following additions (or reminders).

If $\eta = \nu^\ast (\alpha)$ then we let $\eta^- = \nu$; for I a set of sequences ordinals we let
$\text{Suc}_T(\eta) = \{\nu : \text{for some } \alpha, \nu = \eta^*(\alpha) \in I\}$.
We work in \mathcal{C}^{eq} and for simplicity every first order formula is equivalent to a relation.

(1) \perp means orthogonal (so q is $\perp p$ means q is orthogonal to p),
remember $p \perp A$ means p orthogonal to A; i.e. $p \perp q$ for every
$q \in S(\text{acl}(A))$ (in \mathcal{C}^{eq})
(2) \perp_a means almost orthogonal
(3) \perp_w means weakly orthogonal
(4) $\frac{\bar{a}}{B}$ and \bar{a}/B means $tp(\bar{a}, B)$
(5) $\frac{A}{B}$ or A/B means $tp_*(A, B)$
(6) $A + B$ means $A \cup B$
(7) $\bigcup\{B_i : i < \alpha\}$ means $\{B_i : i < \alpha\}$ is independent over A
(8) $A \bigcup C$ means $\{A, C\}$ is independent over B
(9) $\{C_i : i < \alpha\}$ is independent over (B, A) means that1
\[j < \alpha \Rightarrow tp_*(C_j, \bigcup\{C_i \cup B : i \neq j\}) \text{ does not fork over } A \]
(10) regular type means stationary regular type $p \in S(A)$ for some A
(11) for $p \in S(A)$ regular and C a set of elements realizing p, $\dim(C, p)$ is
\[\text{Max}\{|I| : I \subseteq C \text{ is independent over } A\} \]
(12) $\text{acl}(A) = \{c : \text{tp}(c, A) \text{ is algebraic}\}$
(13) $\text{dc}(A) = \{c : \text{tp}(c, A) \text{ is realized by one and only one element}\}$
(14) $Dp(p)$ is depth (of a stationary type, see [Sh:c, X, Definition 4.3, p.528, Definition
4.4, p.529])
(15) $\text{Cb}(p)$ is the canonical base of a stationary type p (see [Sh:c, III.6.10, p.134])
(16) B is \aleph_ε-atomic over A if for every finite sequence \bar{b} from A, for some find
$A_0 \subseteq A$ we have $stp(\bar{b}, A_0) \vdash stp(\bar{b}, A)$, equivalently for some ε-finite
$A_0 \subseteq \text{acl}(A)$ we have $tp(\bar{b}, A_0) \vdash tp(\bar{b}, \text{acl}(A))$.

1Actually by the non-forking calculus this is equivalent to $\{C_i : i \leq \alpha\}$ is independent over A
where we let $C_\alpha = B$.

§1 \(\aleph_\gamma \)-saturated models

We first define our logic, but as said in §0, we shall only use the condition from 1.4. \(T \) is always superstable complete first order theory.

1.1 Definition. 1) The logic \(L_{\infty, \aleph_\gamma} \) is slightly stronger than \(L_{\infty, \aleph_0} \), it consists of the set of formulas in \(L_{\infty, |T|^+} \) such that any subformula of \(\psi \) of the form \((\exists \bar{x}) \phi \) is actually the form

\[
(\exists \bar{x}^0, \bar{x}^1) \left[\varphi_1(\bar{x}^1, \bar{y}) \land \bigwedge_{i<\ell_\bar{x}^1} (\theta_i(\bar{x}^1_i, \bar{x}^0) \land (\exists^{<\aleph_0}z)\theta_i(z, \bar{x}^0)) \right],
\]

with \(\bar{x}^0 \) finite, \(\bar{x}^1 \) not necessarily finite but of length \(< |T|^+ \); so \(\varphi \) “says” \(\bar{x}^1 \subset acl(\bar{x}^0) \); note that always our final proof of the theorem uses \(|T| \geq \aleph_0 \).

2) \(L_{\infty, \aleph_\gamma}(d.q.) \) is like \(L_{\infty, \aleph_\gamma} \) but we have cardinality quantifiers and moreover dimensional quantifiers (as in [Sh:c, XIII,1.2,p.624]), see below.

3) The logic \(L_{\infty, \aleph_\gamma}^\gamma \) consist of the formulas of \(L_{\infty, \aleph_\gamma} \) such that \(\varphi \) has quantifier depth \(< \gamma \) (but we start the inductive definition by defining the quantifier depth of all first order as zero).

4) \(L_{\infty, \aleph_\gamma}(d.q.) \) is like \(L_{\infty, \aleph_\gamma}^\gamma \) but we have cardinality quantifiers and moreover dimensional quantifiers.

1.2 Remark. 1) In fact the dimension quantifier is used in a very restricted way (see Definition 1.9 and Claim 1.28 + Claim 1.30).

2) The reader may ignore this logic altogether and use just the characterization of equivalence in claim 1.4.

1.3 Convention. 1) \(T \) is a fixed first order complete theory, \(\mathfrak{C} \) is the “monster” model, as in [Sh:c], so is \(\kappa \)-saturated; \(\mathfrak{C}^{eq} \) is as in [Sh:c, III,6.2,p.131]. We work in \(\mathfrak{C}^{eq} \) so \(M, N \) vary on elementary submodels of \(\mathfrak{C}^{eq} \) of cardinality \(< \kappa \). We assume \(T \) is superstable with NDOP (countability is used only in the Proof of 1.5 for bookkeeping, i.e., in the proof of 1.30 and 1.29).

Remember \(a, b, c, d \) denote members of \(\mathfrak{C}^{eq} \), \(\bar{a}, \bar{b}, \bar{c}, \bar{d} \) denote finite sequences of members of \(\mathfrak{C}^{eq} \), \(A, B, C \) denote subsets of \(\mathfrak{C}^{eq} \) of cardinality \(< \kappa \).

Remember \(acl(A) \) is the algebraic closure of \(A \), i.e.

\[
\{ b : \text{for some first order and } n < \omega, \varphi(x, \bar{y}) \text{ and } \bar{a} \subseteq A \text{ we have } \mathfrak{C}^{eq} \models \varphi[b, \bar{a}] \land (\exists^{\leq n}y)\varphi(y, \bar{a}) \}
\]

and \(\bar{a} \) denotes \(Rang(\bar{a}) \) in places where it stands for a set (as in \(acl(\bar{a}) \)). We write
$\bar{a} \in A$ instead of $\bar{a} \in \omega^>(A)$.

2) A is ϵ-finite, if for some $\bar{a} \in \omega^> A, A = acl(\bar{a})$. (So for stable theories a subset of an ϵ-finite set is not necessarily ϵ-finite but as T is superstable, a subset of an ϵ-finite set is ϵ-finite as if $B \subseteq acl(\bar{a}), \bar{b} \in B$ is such that $tp(\bar{a}, B)$ does not fork over \bar{b}, then trivially $acl(\bar{b}) \subseteq A$ and if $acl(\bar{b}) \neq B,$ $tp_*(B, \bar{a}^* \bar{b})$ forks over B, hence $([Sh:c, III,0.1])$ $tp(\bar{a}, B)$ forks over \bar{b}, a contradiction.
So if $acl(A) = acl(B)$, then A is ϵ-finite iff B is ϵ-finite).

3) When T is superstable by $[Sh:c, IV,Table 1,p.169]$ for $F = F^\kappa_{\aleph_0}$, all the axioms there hold and we write \aleph_ϵ instead of F and may use implicitly the consequences in $[Sh:c, IV,\S3]$.

We may instead Definition 1.1 use directly the standard characterization from 1.4; as actually less is used we state the condition we shall actually use:

1.4 Claim. For models M_1, M_2 of T we have $M_1 \equiv_{L_\infty, \aleph_\epsilon(d.q.)} M_2$ iff

- there is a non-empty family \mathcal{F} such that:

 (a) each $f \in \mathcal{F}$ is an (M_1, M_2)-elementary mapping, (so Dom(f) $\subseteq M_1$, Rang(f) $\subseteq M_2$)

 (b) for $f \in \mathcal{F}$, Dom(f) is ϵ-finite (see 1.3(2)) above

 (c) if $f \in \mathcal{F}, \bar{a}_\ell \in M_\ell (\ell = 1, 2)$ then for some $g \in \mathcal{F}$ we have:

 $f \subseteq g$ and $acl(\bar{a}_1) \subseteq$ Dom(f) and $acl(\bar{a}_2) \subseteq$ Rang(f)

 (d) if $f \cup \{\langle a_1, a_2 \rangle\} \in \mathcal{F}$ and $tp(a_1, Dom(f))$ is stationary and regular then $dim(\{a_1^1 \in M_1 : f \cup \{\langle a_1^1, a_2 \rangle\} \in \mathcal{F}\}, M_1)$

 $= dim(\{a_2^2 \in M_2 : f \cup \{\langle a_1, a_2^2 \rangle\} \in \mathcal{F}\}, M_2)$.

Our main theorem is

1.5 Theorem. Suppose T is countable (superstable complete first order theory) with NDOP.

Then

(1) the $L_{\infty, \aleph_\epsilon}(d.q.)$ theory of an \aleph_ϵ-saturated model characterizes it up to isomorphism.

(2) Moreover, if M_1, M_2 are \aleph_ϵ-saturated models of T (so $M_\ell < C^{eq}$) and \boxtimes_{M_0, M_1} of 1.4 holds, then M_1, M_2 are isomorphic.

By 1.4, it suffices to prove part (2).
The proof is broken into a series of claims (some of them do not use NDOP, almost all do not use countability; but we assume T is superstable complete all the time (1.7(1)).

1.6 Discussion: Let us motivate the notation and Definition below.

Recall from the introduction that we are thinking of a triple (M, N, a) which may appear in \mathcal{K}_ε-decomposition $(\langle M_\eta, a_\eta : \eta \in I \rangle)$ of N, in the sense that for some $\eta \in I \setminus \{<\}$ we have $(M, M', a) = (M_\eta, M_\eta, a_\eta)$ so M, M' are \mathcal{K}_ε-saturated, $a_\eta \in M' \setminus M$, M' is \mathcal{K}_ε-prime over $M + a$ and $\text{tp}(a, M)$ is regular. But this is “too large for us” hence we consider an approximation (A, B) where $A \subseteq M(= M_{\eta^-})$, $A \subseteq B \subseteq M'(= M_\eta)$, $a = a_\eta \in B$ and $B/M(= B/M_{\eta^-})$ does not fork over A. We would like to define the α-type of (A, B) in N, which tries to say something on the decomposition above $(M, M', a) = (M_{\eta^-}, M_\eta, a_\eta)$, i.e., on $(M_\rho, a_\rho : \eta < \rho \in I)$. There are two natural “successor” of (A, B) we may choose in this context: the first 1.7 below replaces (A, B) to (A', B') such that $A \subseteq A' \subseteq M(= M_{\eta^-})$, $B \subseteq B' \subseteq M'(= M_{\eta})$ and (as M' is \mathcal{K}_ε-prime over $M + a$) we have $\text{stp}_{\ast}(B', A' \cup B) \vdash \text{stp}(B', M)$, so $\text{tp}(B', A' \cup B)$ is almost orthogonal to A'; we can think of this as “advancing in the same model”; in other words as A, B are ε-finite, we have to increase them in order to capture even (M, M'). This is formalized by \leq_a in Definition 1.7 below.

The second is to pass from $(M_{\eta^-}, M_\eta, a_\eta)$ to (M_η, M_ν, a_ν) for some ν an immediate successor of η in I. So the old B is included in the new A' and $B' = A' \cup \{a\}$ where $\text{tp}(a, A')$ is regular and is orthogonal to A (as in the decomposition we require $\text{tp}(a_\eta, M_{\eta^-})(M_\nu$ when $\nu < \eta^-)$. This is formalized by \leq_b in Definition 1.7 below.

1.7 Definition. 1) $\Gamma = \{(A, B) : A \subseteq B \text{ are } \varepsilon\text{-finite}\}$. Let $\Gamma(M) = \{(A, B) \in \Gamma : A \subseteq B \subseteq M\}$.

2) For members (A, B) of Γ we may also write (B/A); if $A \not\subseteq B$ we mean $(B \cup A/A)$.

3) $(B_1/A_1) \leq_a (B_2/A_2)$ (usually we omit a) if both are in Γ and

- $A_1 \subseteq A_2$, $B_1 \subseteq B_2$, $B_1 \cup A_2$ and $B_2/A_1 + A_2 \perp_a A_2$.

4) $(B_1/A_1) \leq_b (B_2/A_2)$ if $A_2 = B_1, B_2 \setminus A_2 = \emptyset$ and B_2/A_2 is regular orthogonal to A_1.

5) \leq^* is the transitive closure of $\leq_a \cup \leq_b$. (So it is a partial order, whereas in general $\leq_a \cup \leq_b$ and \leq_b are not).

6) We can replace A, B by sequences listing them (we do not always strictly distinguish).

Remark. The following observation may clarify.

1.8 Observation. If $(B_1/A_1) \leq^* (B_2/A_2)$ then we can find $(B'_\ell : \ell \leq n)$ and
\[\langle c_\ell : 1 \leq \ell < n \rangle \text{ for some } n \geq 1, \text{ satisfying } \langle \frac{B_\ell}{A_\ell} \rangle \leq_b \langle \frac{B'_\ell}{A'_\ell} \rangle, c_\ell \in B'_{\ell+1}, \text{ regular,} \]
\[\frac{B'_{\ell+1}}{c_\ell+B'_{\ell}} \perp_a B'_{\ell}, A_2 = B'_{n-1}, B_2 = B'_n. \]

Remark. 1) Note that actually \(\leq_a \) is transitive. This means that in a sense \(\leq_b \) is enough, \(\leq_a \) inessential.
2) We may in 1.7(4) use \(\bar{b} = \langle c \rangle \), does not matter.

Proof. By the definition of \(\leq^* \) there are \(k < \omega \) and \(\langle \frac{B'_\ell}{A'_\ell} \rangle \) for \(\ell \leq k \) such that:
\[\langle \frac{B'_\ell}{A'_\ell} \rangle \leq_{x(\ell)} \langle \frac{B'_{\ell+1}}{A'_{\ell+1}} \rangle \text{ for } \ell \leq k \text{ and } x(\ell) \in \{a,b\} \text{ and } \langle \frac{B'_0}{A'_0} \rangle = \langle \frac{B_1}{A_1} \rangle, \langle \frac{B'_k}{A'_k} \rangle = \langle \frac{B_2}{A_2} \rangle \text{ and} \]
without loss of generality \(x(2\ell) = a,x(2\ell+1) = b \). Let \(N_0 < \mathcal{C} \) be \(\aleph_\varepsilon \)-prime over \(\emptyset \) such that \(A^0 \subseteq N_0, B_0 \subseteq N_0 \) and \(f_0 = \text{id}_{A_0} \). We choose by induction on \(\ell \leq k, N_{\ell+1}, f_{\ell+1} \) such that:
\[\begin{align*}
(1) & \text{ Dom}(f_{\ell+1}) = B^\ell \\
(2) & N_\ell < N_{\ell+1} \\
(3) & \text{if } x(\ell) = b \text{ then } f_{\ell+1} \text{ is an extension of } f_\ell \text{ which necessarily has domain } A_\ell, \text{ check) with domain } B^\ell \text{ such that } f_\ell(B^\ell) \bigcup N_\ell \text{ and } N_{\ell+1} \text{ is } \aleph_\varepsilon\text{-prime} \\
& \text{ over } N_\ell \cup f_\ell(B^\ell) \\
(4) & \text{if } x(\ell) = a \text{, then } f_{\ell+1} \text{ maps } A^\ell \text{ into } N_{\ell-1}, B^\ell \text{ into } N_\ell \text{ and } N_{\ell+1} = N_\ell.
\end{align*} \]
This is straightforward. Now on \(\langle N_\ell : \ell \leq k+1 \rangle \) we repeat the argument (of choosing \(\langle B_\ell : \ell \leq n \rangle \)) in the proof of 1.14(6) above, i.e., choose \(B^\ell \subseteq A_\ell \) by downward induction on \(\ell \) large enough as required. \(\square_{1.8} \)

1.9 Definition. 1) We define \(\text{tp}_\alpha[\langle B^\alpha_A, M \rangle \text{ for } A \subseteq B \subseteq M, A \text{ and } B \text{ are} \varepsilon\text{-finite and } \alpha \text{ is an ordinal} \) and \(\mathcal{S}_\alpha(\langle B^\alpha_A, M \rangle, \mathcal{S}_\alpha(A, M) \text{ and } \mathcal{S}'_\alpha(\langle B^\alpha_A, M \rangle, \mathcal{S}'_\alpha(A, M) \text{ by induction on } \alpha \text{ (we mean simultaneously; of course, we use appropriate variables):} \]
\[\begin{align*}
(1) & \text{tp}_0[\langle B^A_A, M \rangle \text{ is the first order type of } A \cup B \\
(2) & \text{tp}_{\alpha+1}[\langle B^A_A, M \rangle = \text{the triple } \langle Y_{A,B,M}^{1,\alpha}, Y_{A,B,M}^{2,\alpha}, \text{tp}_\alpha(\langle B^A_A, M \rangle) \rangle \text{ where} \\
& \text{where:} \\
& Y_{A,B,M}^{1,\alpha} = \text{tp}_\alpha[\langle B^A_A, M \rangle : \text{for some } A', B' \text{ we have } \langle B^A_A \rangle \leq_a \langle B'^A_A \rangle \in \Gamma(M) \rangle,}
\end{align*} \]
and \(Y_{A,B,M}^{2,\alpha} =: \{ (\Upsilon, \lambda_{\Upsilon,M,B}) : \Upsilon \in \mathcal{I}_\alpha(A,B,M) \} \)

where

\[
\lambda_{\Upsilon,M,B} = \dim \left[\{ d : \text{tp}_\alpha([B+d],M) = \Upsilon \} \right], \quad B:
\]

(\(c \)) for \(\delta \) a limit ordinal, \(\text{tp}_\delta([B],M) = \langle \text{tp}_\alpha([B],M) : \alpha < \delta \rangle \)
(this includes \(\delta = \infty \), really \(\|M\| + \) suffice).

(\(d \)) \(\mathcal{I}_\alpha(A,M) = \left\{ \text{tp}_\alpha([B],M) : \text{for some } B \text{ such that } B \subseteq M, \right. \)

\((\begin{Bmatrix} B \\ \end{Bmatrix}) \in \Gamma(M) \}

(\(e \)) \(\mathcal{I}_\alpha(A,M) = \left\{ \text{tp}_\alpha([B],M) : \text{for some } c \in M \text{ we have} \right. \)

\(c \perp A \) and \(c \) is regular

(\(f \)) \(\mathcal{I}_\alpha(A,M) = \left\{ \text{tp}_\alpha([A],M) : c \in M \text{ and } c \) regular \}

2) We define also \(\text{tp}_\alpha[A,M] \), for \(A \) an \(\epsilon \)-finite subset of \(M \):

(\(a \)) \(\text{tp}_0[A,M] = \) first order type of \(A \)

(\(b \)) \(\text{tp}_{\alpha+1}[A,M] = \) the triple \(\langle Y_{A,M}^{1,\alpha}, Y_{A,M}^{2,\alpha}, \text{tp}_\alpha[A,M] \rangle \) where

\(Y_{A,M}^{1,\alpha} =: \mathcal{I}_\alpha(A,M) \) and

\(Y_{A,M}^{2,\alpha} =: \left\{ (\Upsilon, \dim\{ d \in M : \text{tp}_\alpha([A+d],M) = \Upsilon \}) : \Upsilon \in \mathcal{I}_\alpha(A,M) \right\} \)

(\(c \)) \(\text{tp}_\delta[A,M] = \langle \text{tp}_\alpha(A,M) : \alpha < \delta \rangle \)

3) \(\text{tp}_\alpha[M] = \text{tp}_\alpha[\emptyset,M] \).

1.10 Discussion: Clearly \(\text{tp}([B],M) \) is intended, on the one hand, to be expressible by our logic and, on the other hand, to express the isomorphism type of \(M \) “in the direction of \(\langle B \rangle^n \)”. To really say it we need to go back to the \(\aleph_\epsilon \)-decompositions of \(M \), a central notion of [Sh:c, Ch.X].

For the reader’s benefit, by the referee request, let us review informally the proof in [Sh:c, Ch.X]. Let \(M \) be an \(\aleph_\epsilon \)-saturated model, and we choose \(\langle M_\eta : \eta \in I \cap ^n \text{Ord}, (a_\eta : \eta \in I \cap ^{n+1} \text{Ord}) \rangle \) by induction on \(n \). For \(n = 0 \), of course, \(I \cap ^0 \text{Ord} = \{ \langle \rangle \} \), we let \(N_{\langle \rangle} < M \) be \(\aleph_\epsilon \)-prime over \(\emptyset \) and let \(I_{\langle \rangle} \) a maximal subset of \(\{ c \in M : \text{tp}(c, N_{\langle \rangle}) \text{ regular} \} \) which is independent over \(N_{\langle \rangle} \), let \(\langle a_{\langle \alpha \rangle} : \alpha < |I_{\langle \rangle}| \rangle \) list \(I_{\langle \rangle} \). Similarly for \(n+1, \eta \in I \cap ^{n+1} \text{Ord} \), let \(N_\eta < M \) be \(\aleph_\epsilon \)-prime over \(M_{\eta} + a_\eta \), let \(I_\eta \) be a maximal subset of \(\{ c \in M : \text{tp}(c, M_\eta) \text{ is regular} \)
orthogonal to \(M_{\eta^-} \) independent over \(N_\eta \). Lastly, let \(\langle c_\eta^{<\alpha} : \alpha < |I_\eta| \rangle \) list \(I_\eta \) and let \(I \cap \\name{Ord}^{n+1} = \{\eta^- < \alpha : \eta \in I \cap |I| \\text{ and } \alpha < |I_\eta| \} \).

To carry this we use the existence of \(\aleph_c \)-prime models (and the local character of indpendent). Also looking at the set \(\bigcup\{M_\eta : \eta \in I\} \), its first order type is determined by the non-forking calculus. In fact, for any \(\eta \in I\{<>\} \), the set \(\bigcup\{\eta_\nu : \eta_\nu \in I\}, \bigcup\{N_\eta : \neg(\eta \leq \nu) \text{ and } \nu \in I\} \) are independent over \(N_\eta \). Let \(N < M \) be \(\aleph_c \)-prime over \(\bigcup\{\eta_\nu : \eta \in I\} \), now if \(M = N \) we are done decomposing \(M \), if not some \(c \in M \setminus N \) realize a regular type (we use density of regular types). By NDOP, the \(\text{tp}(c, N) \) is not orthogonal to some \(N_\eta \). Choose \(\eta \) of minimal length hence \(\nu < \eta \Rightarrow \text{tp}(c, M_\eta) \perp N_\nu \). By properties of regular types, without loss of generality \(\text{tp}(c, N) \) does not fork over \(N_\eta \), so we get a contradiction to the maximality of \(\{a_\nu : \nu \in \text{Suc}_I(\eta)\} \) (this explains the role of \(\mathcal{P} \) in Definition 1.11(5) below).

We are interested in the possible trees \(\langle N_\nu : \eta \cup \nu \in I \rangle \).

Now the tree determines \(M \) up to isomorphism, but there are “incidental” choices, so two trees may give isomorphic models (for investigating the number of non isomorphic models it is enough to find sufficiently pairwise far trees \(I \)).

We like to get exact information and in as finitary way as we can. So we replace \((M_{\eta^-}, M_\eta, a_\eta) \) by \((B_A^{\langle} \rangle \), where \(A \subseteq M_{\eta^-}, A + a_\eta \subseteq B \subseteq M_\eta, \text{tp}(B, M_{\eta^-}) \) does not fork over \(A \).

Now for \(\eta \in I\{<>\} \) we are interested in the possible trees \(\langle N_\nu : \eta \cup \nu \in I \rangle \), over \((N_{\eta^-}, N_\eta, a_\eta) \). But not only different trees may be equivalent (giving isomorphic \(\aleph_c \)-prime models) but the other part of the tree, \(\langle N_\nu : \nu \in I \text{ but } \neg(\eta \cup \nu) \rangle \) may apriori cause non equivalent trees to contribute the same toward understanding \(M \).

This is done in [Sh:c, Ch.XII], but here we have to deal with \(\varepsilon \)-finite \(A, B \).

The following claim 1.11 really does not add to [Sh:c, Ch.X], it just collects the relevant information which is proved there, or which follows immediately (particularly using the parameter \((A, B) \)). We allow here \(a_\eta/M_{\eta^-} \) - to be not regular, but this is not serious: we can here deal exclusively with this case and we can omit this requirement in [Sh:c, Ch.X]; however, this does not eliminate the use of regular types (in the proof that \(M \) is \(\aleph_c \)-prime over every \(\aleph_c \)-decomposition of it).

1.11 Definition. 1) \(\langle N_\eta, a_\eta : \eta \in I \rangle \) is an \(\aleph_c \)-decomposition inside \(M \) above (or for over) the pair \((B_A^{\langle} \rangle \) (but we may omit the “\(\aleph_c - \)”) if:

\((a) \) \(I \) a set of finite sequences of ordinals closed under initial segments

\((b) \) \(\langle \rangle, \langle 0 \rangle \in I, \eta \in I \setminus \{\langle \rangle \} \Rightarrow \langle 0 \rangle \not\subseteq \eta, \) let \(I^- = I \setminus \{\langle \rangle \} \), really \(a_\langle \rangle \) is meaningless

\((c) \) \(A \subseteq N_\langle \rangle, B \subseteq N_{\langle 0 \rangle}, N_\langle \rangle \setminus B \) and \(\text{dc} \langle a_\langle 0 \rangle \rangle \subseteq \text{dc} \langle B \rangle \),

\((d) \) if \(\nu = \eta^\langle \alpha \rangle \in I \) then \(N_\nu \) is \(\aleph_c \)-primary over \(N_\eta \cup \bar{a}_\nu, N_\langle \rangle \) is \(\aleph_c \)-prime over \(A \).
(e) for $\eta \in I$ such that $k = \ell g(\eta) > 1$ the type $a_\eta/N_{\eta}(k-1)$ is orthogonal to $N_{\eta}(k-2)$.

(f) $\eta \prec \nu \Rightarrow N_\eta \prec N_\nu$.

(g) M is \aleph_ν-saturated and $N_\eta \prec M$ for $\eta \in I$.

(h) if $\eta \in I \setminus \{\langle \rangle \}$, then $\{a_\nu : \nu \in \text{Suc}_I(\eta)\}$ is (a set of elements realizing over N_η types orthogonal to N_η and is) an independent set over N_η.

2) We replace “inside M” by “of M” if in addition

(i) in clause (h) the set is maximal.

3) $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ν-decomposition inside M if $(a), (d), (e), (f), (g), (h)$ of part (1) holds and in clause (h) we allow $\eta = \langle \rangle$ (call this (h)$^+$). We add “over A” if $A \subseteq M_{\prec}$.

4) $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ν-decomposition of M if in addition to 1.11(3) and we have the stronger version of clause (i) of 1.11(2) by including $\eta = \langle \rangle$, i.e. we have:

\[(i)^+ \text{ for } \nu \in I, \text{ the set } \{a_\eta : \eta \in \text{Suc}_I(\nu)\} \text{ is a maximal subset of } M \text{ independent over } N_\nu.\]

We may add “over A” if $A \subseteq M$.

5) If $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ν-decomposition inside M we let

$\mathcal{P}(\langle N_\eta, a_\eta : \eta \in I \rangle, M) = \left\{ p \in S(M) : p \text{ regular and for some } \eta \in I \setminus \{\langle \rangle \} \text{ we have} \right.$

\[p \text{ is orthogonal to } N_\eta - \text{ but not to } N_\eta \right\}.

As said earlier it is natural to use regular types.

1.12 Definition. 1) We say that $\langle N_\eta, a_\eta : \eta \in I \rangle$, an \aleph_ν-decomposition inside M, is J-regular if $J \subseteq I$ and:

\[(*) \text{ for each } \eta \in I \setminus J \text{ there are } c_\eta \text{ such that } a_\eta \in a\ell(N_\eta^- + c_\eta)

\[
\frac{c_\eta}{N_\eta^-} \text{ is regular and if } \eta \neq \langle \rangle \text{ then } \frac{a_\eta}{N_\eta^+ + c_\eta} \perp_{N_\eta^-}.
\]

2) We say “$\langle N_\eta, a_\eta : \eta \in I \rangle$ is a regular \aleph_ν-decomposition inside M [of M]” if it is an \aleph_ν-decomposition inside M [of M] which is \emptyset-regular.

3) We say “$\langle N_\eta, a_\eta : \eta \in I \rangle$ is a regular \aleph_ν-decomposition inside M [of M] over $\langle \rangle$” if it is an \aleph_ν-decomposition inside M [of M] over $\langle \rangle$ which is $\{\langle \rangle\}$-regular.

\[\text{without loss of generality } c_\eta = a_\eta\]
1.13 Claim. 1) Every \aleph_ε-saturated model has an \aleph_ε-decomposition (i.e. of it).
2) If M is \aleph_ε-saturated, $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ε-decomposition inside M, then for some J, and N_η, a_η for $\eta \in J\setminus I$ we have: $I \subseteq J$ and $\langle N_\eta, a_\eta : \eta \in J \rangle$ is an \aleph_ε-decomposition of M (even a $(J\setminus I)$-regular one).
3) If M is \aleph_ε-saturated, $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ε-decomposition of M then M is \aleph_ε-primary and \aleph_ε-minimal3 over $\bigcup_{\eta \in I} N_\eta$; if in addition $\langle N_\eta, a_\eta : \eta \in \{\langle\rangle, (0)\} \rangle$ is an \aleph_ε-decomposition inside M above $(\bigcup_{\eta \in I} N_\eta)^B$, then $\langle N_\eta, a_\eta : \eta \in I \& (\eta \neq \langle\rangle \rightarrow (0) \leq \eta) \rangle$ is an \aleph_ε-decomposition of M above $(\bigcup_{\eta \in I} N_\eta)^B$.
4) If $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ε-decomposition inside M above $(\bigcup_{\eta \in I} N_\eta)^B$, then it is an \aleph_ε-decomposition inside M.
5) If $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ε-decomposition inside M [above $(\bigcup_{\eta \in I} N_\eta)^B$], $\eta \in I$, $[\eta \in I \setminus \{\langle\rangle\}], \alpha = \min\{\beta : \eta^\varepsilon(\beta) \notin I\}, \nu = \eta^\varepsilon(\alpha), a_\nu \in M\setminus N_\eta, a_\eta$ is orthogonal to M_η if $\eta^\varepsilon(\nu) \neq \langle\rangle$, $N_\nu < M$ is \aleph_ε-primary over $N_\eta + a_\nu$ and $a_\nu \bigcup_{\eta \in I} N_\eta\bigcup_{\rho \in I} N_\rho$ (enough to demand $\{a_\rho : \rho^\varepsilon = \eta$ and $\rho \in I\}$ is independent over a_ν/N_η) then $\langle N_\rho, a_\rho : \rho \in I \cup \{\nu\} \rangle$ is an \aleph_ε-decomposition inside M over $(\bigcup_{\eta \in I} N_\eta)^B$.
6) Assume $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ε-decomposition of M, if p is regular (stationary) and not orthogonal to M (e.g. $p \in S(M)$) then for one and only one $\eta \in I$, there is a regular (stationary) $q \in S(N_\eta)$ not orthogonal to p such that: if η^ε is well defined (i.e. $\eta \neq \langle\rangle$), then $p \perp N_\eta$.
7) Assume $I = \bigcup_{\alpha < \alpha(\star)} I_\alpha$, for each α we have $\langle N_\eta, a_\eta : \eta \in I_\alpha \rangle$ is an \aleph_ε-decomposition inside M [above $(\bigcup_{\eta \in I} N_\eta)^B$] and for each $\eta \in I$ for every $n < \omega$ and $\nu_\ell = \eta^\varepsilon(\beta_\ell) \in I$ for $\ell < n$, for some α we have: $\{\nu_\ell : \ell < n\} \subseteq I_\alpha$ (e.g. I_α increasing). Then $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ε-decomposition inside M [above $(\bigcup_{\eta \in I} N_\eta)^B$].
8) In (7), if $\eta \neq \langle\rangle$ and some ν_ℓ is not α-maximal in I and a_ν/N_η is regular, it is enough:
\[\ell_1 < \ell_2 < n \Rightarrow \bigvee_{\alpha < \alpha(\star)} \{\nu_\ell_1, \nu_\ell_2\} \subseteq I_\alpha\].
9) If $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ε-decomposition inside $M, I_1, I_2 \subseteq I$ are closed under initial segments and $I_0 = I_1 \cap I_2$ then $\bigcup_{\eta \in I_1} N_\eta \bigcup_{\eta \in I_0} N_\eta \bigcup_{\eta \in I_2} N_\eta$.

3here we use NDOP
10) Assume that for $\ell = 1,2$ that $\langle N_\eta^\ell, a_\eta^\ell : \eta \in I \rangle$ is an \mathcal{K}_ϵ-decomposition inside M_ℓ, and for $\eta \in I$ the function f_η is an isomorphism from N_η^1 onto N_η^2 and $\eta \smallsetminus \nu \Rightarrow f_\eta \subseteq f_\nu$. Then $\bigcup_{\eta \in I} f_\eta$ is an elementary mapping; if in addition $\langle N_\eta^\ell, a_\eta^\ell : \eta \in I \rangle$ is an \mathcal{K}_ϵ-decomposition of M_ℓ (for $\ell = 1,2$) then $\bigcup_{\eta \in I} f_\eta$ can be extended to an isomorphism from M_1 onto M_2.

11) If $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \mathcal{K}_ϵ-decomposition inside M (above $\langle B_A \rangle$) and $M^- \prec M$ is \mathcal{K}_ϵ-prime over $\bigcup_{\eta \in I} N_\eta$ then $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \mathcal{K}_ϵ-decomposition of M (above $\langle B_A \rangle$).

12) If $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \mathcal{K}_ϵ-decomposition inside M/\mathcal{A} of M (above $\langle M_A \rangle$) and $a_\eta' \in N_\eta$ and N_η is \mathcal{K}_ϵ-prime over $N_\eta^- + a_\eta'$ for $\eta \in I \\setminus \{<\} \{a_{<0}\}$ or at least $\text{dcl}(a_{<0}) \subseteq \text{dcl}(B)$ then $\langle N_\eta, a_\eta' : \eta \in I \rangle$ is an \mathcal{K}_ϵ-decomposition inside M/\mathcal{A} of M (above $\langle B_A \rangle$).

Proof. 1), 2), 3), 5), 6), 9)-12). Repeat the proofs of [Sh:c, X]. (Note that here a_η/N_η is not necessarily regular, a minor change).

4), 7) Check.

8) As $\text{Dp}(p) > 0 \Rightarrow p$ is trivial, by [Sh:c, ChX,7.2,p.551] and [Sh:c, ChX,7.3]. $\square_{1.13}$

We shall prove:

1.14 Claim. 1) If M is \mathcal{K}_ϵ-saturated, $\langle B_A \rangle \in \Gamma(M)$, then there is $\langle N_\eta, a_\eta : \eta \in I \rangle$, an \mathcal{K}_ϵ-decomposition of M above $\langle B_A \rangle$.

2) Moreover if $\langle N_\eta, a_\eta : \eta \in I \rangle$ satisfies clauses (a) -- (h) of Definition 1.11(1), we can extend it to satisfy clause (i) of 1.11(2), too.

3) If $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \mathcal{K}_ϵ-decomposition of M above $\langle B_A \rangle$, $M^- \prec M$ is \mathcal{K}_ϵ-prime over $\bigcup_{\eta \in I} N_\eta$ then:

(a) $\langle N_\eta : \eta \in I \rangle$ is a \mathcal{K}_ϵ-decomposition of M^-

(b) we can find an \mathcal{K}_ϵ-decomposition $\langle N_\eta, a_\eta : \eta \in J \rangle$ of M such that $J \supseteq I$ and $[\eta \in J \setminus I \iff (\eta \neq \langle \rangle \text{ and } \neg \langle \rangle \smallsetminus \eta)]$, moreover the last phrase follows from the previous ones.

4) If in 3)(b) the set $J \setminus I$ is countable (finite is enough for our applications), then necessarily M, M^- are isomorphic, even adding all members of an ϵ-finite subset of M^- as individual constants.

5) If $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \mathcal{K}_ϵ-decomposition of M above $\langle B_A \rangle, I \subseteq J$ and
\(<N_\eta, a_\eta : \eta \in J>\) is an \(\aleph_\epsilon\)-decomposition of \(M, M^- \prec M\) is \(\aleph_\epsilon\)-prime over \(\bigcup_{\eta \in I} N_\eta\)
and \((B^l_A) \leq^* (B^1_A)\) and \(B_1 \subseteq M\) and \(c \in M\) and \(c \upharpoonright B_1 \perp A_1\) and \(c \upharpoonright B_1\) is (stationary and) regular.

\([\alpha]\) \(c \upharpoonright B_1 \perp \bigcup_{\eta \in J \setminus \{\rangle\}} N_\eta\)
\([\beta]\) \(c \upharpoonright B_1\) is not orthogonal to some \(p \in \mathcal{P}(\langle N_\eta, a_\eta : \eta \in I>, M\)).

6) If \(\langle N_\eta, a_\eta : \eta \in I\rangle\) is an \(\aleph_\epsilon\)-decomposition of \(M\) above \((B^l_A)\), \(\text{then the set } \mathcal{P} = \mathcal{P}(\langle N_\eta : \eta \in I\rangle, M)\) depends on \((B^l_A)\) and \(M\) only (and not on \(\langle N_\eta : \eta \in I\rangle\) or \(M^-\) when \(M^- \prec M\) is \(\aleph_\epsilon\)-prime over \(\bigcup\{N_\eta : \eta \in I\}\)), recalling:

\[\mathcal{P} = \mathcal{P}(\langle N_\eta : \eta \in I\rangle, M) = \left\{ p \in S(M) : p \text{ regular and for some } \eta \in I \setminus \{\rangle\}, \text{ we have :} \right\}
\[p \text{ is orthogonal to } N_\eta^- \text{ but not to } N_\eta \}\]

So let \(\mathcal{P}(\langle B^l_A\rangle, M) =: \mathcal{P}(\langle N_\eta : \eta \in I\rangle, M)\).

7) If \(B^l_A\) is regular of depth zero or just \(B^l_A \leq^* B^{'l}_A\) regular of depth zero and \(M\) is \(\aleph_\epsilon\)-saturated and \(B \subseteq M\) \(\text{then}\)

\(\text{(a) for any } \alpha, \text{ we have } tp_{\alpha}(\langle B^l_A\rangle, M) \text{ depend just on } tp_{0}(\langle B^l_A\rangle, M)\)
\(\text{(b) if } (B^l_A) \leq^* (B^{'l}_A) \in \Gamma(M) \text{ then } tp_{\alpha}(\langle B^{'l}_A\rangle, M) \text{ depends just on } tp_{0}(\langle B^l_A\rangle, M) \text{ (and} \langle A, B, A', B \rangle \text{ but not on } M)\).

8) For \(\alpha < \beta\), from \(tp_{\beta}(\langle B^l_A\rangle, M)\) we can compute \(tp_{\alpha}(\langle B^l_A\rangle, M)\).

9) If \(f\) is an isomorphism from \(M_1\) onto \(M_2, A_1 \subseteq B_1\) are \(\epsilon\)-finite subsets of \(M_1\) and \(f(A_1) = A_2, f(B_1) = B_2\) \(\text{then}\)

\[tp_{\alpha}(\langle B^l_A_1\rangle, M_1) = tp_{\alpha}(\langle B^l_A_2\rangle, M_2)\]

(more pedantically \(tp_{\alpha}(\langle B^l_A_2\rangle, M_2) = f[tp_{\alpha}(\langle B^l_A_1\rangle, M_1)]\) or considered the \(A_\ell, B_\ell\) as indexed sets).

We delay the proof (parts (1), (2), (3) are proved after 1.22, part (4), (6) after 1.23, and after it parts (5), (7), (8). Part (9) is obvious.

\[\text{(401) revisi...} \]
1.15 Definition. 1) If \((B, A) \in \Gamma(M)\), \(M\) is \(\aleph_\varepsilon\)-saturated let \(\mathcal{P}\) from Claim 1.14(6) above (by 1.14(6) this is well defined as we shall prove below). 2) Let \(\mathcal{P} = \left\{ p : p \text{ is (stationary regular and) parallel to some } p' \in \mathcal{P} \right\}\).

1.16 Definition. If \(\langle N_\eta, a_\eta : \eta \in J \rangle\) is a decomposition inside \(\mathcal{C}\) for \(\ell = 1, 2\) we say that \(\langle N_1, a_\eta : \eta \in J \rangle \leq_{\text{direct}} \langle N_2, a_\eta : \eta \in J \rangle\) if:

(a) \(N^1_0 \prec N^2_0\)
(b) \(N^2_0 \uplus \left\{ a_\alpha : \langle \alpha \rangle \in J \right\} \cap N^1_0\)
(c) for \(\eta \in J \setminus \{ \langle \rangle \}, N_\eta \) is \(\aleph_\varepsilon\)-prime over \(N^1_\eta \cup N^2_\eta\).

1.17 Claim. 1) \(M\) is \(\aleph_\varepsilon\)-prime over \(A\) iff \(M\) is \(\aleph_\varepsilon\)-primary over \(A\) iff \(M\) is \(\aleph_\varepsilon\)-saturated, \(A \subseteq M, M\) is \(\aleph_\varepsilon\)-atomic over \(A\) (see 1.1(18)) for every \(I \subseteq M\) indiscernible over \(A\) we have: dim \(I, M\) \(\leq \aleph_0\) iff \(M\) is \(\aleph_\varepsilon\)-saturated, \(A \subseteq M, M\) is \(\aleph_\varepsilon\)-atomic over \(A\) and for every finite \(B \subseteq M\) and regular (stationary) \(p \in S(A \cup B)\), we have dim \(p, M\) \(\leq \aleph_0\).

2) If \(N_1, N_2\) are \(\aleph_\varepsilon\)-prime over \(A\), then they are isomorphic over \(A\).

Proof. By [Sh:c, IV,4.18] (see Definition [Sh:c, IV,4.16], noting that we replace \(F_{\aleph_0}\) by \(\aleph_\varepsilon\) and that part (4) there disappears when we are speaking on \(F_{\aleph_0}\)).

However, we need more specific information saying that “minor changes” preserve being \(\aleph_\varepsilon\)-prime; this is done in 1.18 below, parts of it are essentially done in [Sh 225] but we give full proof.

1.18 Fact. 0) If \(A\) is countable, \(N\) is \(\aleph_\varepsilon\)-primary over \(A\) then \(N\) is \(\aleph_\varepsilon\)-primary over \(\emptyset\).

1) If \(N\) is \(\aleph_\varepsilon\)-prime over \(\emptyset\), \(A\) countable, \(N^+\) is \(\aleph_\varepsilon\)-prime over \(N \cup A\) then \(N^+\) is \(\aleph_\varepsilon\)-prime over \(\emptyset\).

2) If \(\langle N_n : n < \omega \rangle\) is increasing, each \(N_n\) is \(\aleph_\varepsilon\)-prime over \(\emptyset\) or just \(\aleph_\varepsilon\)-constructible over \(\emptyset\) and \(N_\omega\) is \(\aleph_\varepsilon\)-prime over \(\emptyset\), (note that if each \(N_n\) is \(\aleph_\varepsilon\)-saturated then \(N_\omega = \bigcup_{n<\omega} N_n\)).

2A) If \(N\) is \(\aleph_\varepsilon\)-prime over \(C, \bar{a}, \bar{b} \subseteq N, \text{tp}(\bar{b}, \bar{a})\) is regular (stationary) and orthogonal to \(C\) then dim \(\text{tp}(\bar{b}, \bar{a}), N\) \(\leq \aleph_0\); also if \(q \in S(C \cup \bar{a})\) is a non-forking extension
Proof. In the proof of 1.18(1)-(6),(10) we do not use “T has NDOP”.

1.19 Remark. In the proof of 1.18(1)-(6),(10) we do not use “T has NDOP”.

Proof. 0) There is \(\{a_\alpha : \alpha < \alpha^*\} \), a list of members of \(N \) in which every member of \(N\setminus A \) appears such that for \(\alpha < \alpha^* \) we have: \(tp(a_\alpha, A \cup \{a_\beta : \beta < \alpha\}) \) is \(\aleph_\varepsilon \)-isolated (which means just \(F^\varepsilon_{\aleph_0} \)-isolated).

[Why? by the definition of “\(N \) is \(\aleph_\varepsilon \)-primary over \(A^* \)”]. Let \(\{b_n : n < \omega\} \) list \(A \) (if \(A = \emptyset \) the conclusion is trivial so without loss of generality \(A \neq \emptyset \)), hence we can find such a sequence \(\langle b_n : n < \omega \rangle \). Now define \(\beta^* = \omega + \beta \) and \(b_{\omega+\alpha} = a_\alpha \).
for $\alpha < \alpha^*$. So $\{b_\beta : \beta < \beta^*\}$ lists the elements of N (possibly with repetitions, remember $A \subseteq N$ and check). We claim that $\text{tp}(b_\beta, \{b_\gamma : \gamma < \beta\})$ is $F_{\aleph_0}^*$-isolated for $\beta < \beta^*$.

(Why? if $\beta \geq \omega$, let $\beta' = \beta - \omega$ (so $\beta < \alpha^*$), now the statement above means $\text{tp}(a_{\beta'}, A \cup \{a_\gamma : \gamma < \beta\})$ is $F_{\aleph_0}^*$-isolated which we know; if $\beta < \omega$ this statement is trivial]. By the definition of \(\text{"F}_{\aleph_0}^*\text{-primary"} \), clearly $\langle b_\beta : \beta < \omega + \alpha \rangle$ exemplify that N is $F_{\aleph_0}^*\text{-primary over } \emptyset$.

1) Note

\((\ast)_1 \) if N is \aleph_c-primary over \emptyset and $A \subseteq N$ is finite then N is \aleph_c-primary over A [why? see [Sh: c, IV, 3.12](3), p.180 (of course, using [Sh: c, IV, Table 1, p.169] for $\text{F}_{\aleph_0}^*$)]

\((\ast)_2 \) if N is \aleph_c-primary over \emptyset, $A \subseteq N$ is finite and $p \in S^m(N)$ does not fork over A and $p \upharpoonright A$ is stationary then for some $\{\bar{a}_\ell : \ell < \omega\}$ we have: $\bar{a}_\ell \in N$ realize p, $\{\bar{a}_\ell : \ell < \omega\}$ is independent over A and $p \upharpoonright (A \cup \bigcup_{\ell < \omega} \bar{a}_\ell) \vdash p$ [why? [Sh: c, IV, proof of 4.18] (i.e. by it and [Sh: c, 4.9](3), 4.11) or let N' be \aleph_c-primary over $A \cup \bigcup_{\ell < \omega} \bar{a}_\ell$ and note: N' is \aleph_c-primary over A (proof like the one of 1.18(0)) but also N is \aleph_c-primary over A so by uniqueness of the \aleph_c-primary model N' is isomorphic to N over A, so without loss of generality $N' = N$; and easily N' is as required].

Now we can prove 1.18(1), for any $\bar{c} \in \omega^+A$, we can find a finite $B_1^\bar{c} \subseteq N$ such that $\text{tp}(\bar{c}, N)$ does not fork over $B_1^\bar{c}$, let $\bar{b}_\ell \in \omega^+N$ realize $\text{stp}(\bar{a}, B_1^\bar{a})$ and let $B_c = B_1^\bar{c} \cup \bar{b}_c$, so $\text{tp}(\bar{c}, N)$ does not fork over B_c and $\text{tp}(\bar{c}, B_c)$ is stationary, hence we can find $\langle \bar{a}_\ell^\bar{c} : \ell < \omega\rangle$ as in $(\ast)_2$ (for $\text{tp}(\bar{c}, B_c)$). Let $A' = \cup\{B_c : \bar{c} \in \omega^+A\} \cup \{ \bar{a}_\ell^\bar{c} : \bar{c} \in \omega^+A \text{ and } \ell < \omega\}$, so A' is a countable subset of N and $\text{tp}(A, A') \vdash \text{tp}(A, N) = \text{stp}(A, N)$. As N is \aleph_c-primary over \emptyset we can find a sequence $\langle d_\alpha : \alpha < \alpha^* \rangle$ and $\langle w_\alpha : \alpha < \alpha^* \rangle$ such that $N = \{d_\alpha : \alpha < \alpha^*\}$ and $w_\alpha \subseteq \alpha$ is finite and $\text{stp}(d_\alpha, \{d_\beta : \beta \in w_\alpha\}) \vdash \text{stp}(d_\alpha, \{d_\beta : \beta < \alpha\})$ and $\beta < \alpha \Rightarrow d_\beta \neq d_\alpha$.

We can find a countable set $W \subseteq \alpha^*$ such that $A' \subseteq \{d_\alpha : \alpha \in W\}$ and $\alpha \in W \Rightarrow w_\alpha \subseteq W$. Let $A'' = \{a_\alpha : \alpha \in W\}$. By [Sh: c, IV, §2, §3] without loss of generality W is an initial segment of α^*.

Easily

\[
\alpha < \alpha^* \land \alpha \notin W \Rightarrow \text{stp}(d_\alpha, \{d_\beta : \beta \in w_\alpha\}) \vdash \text{stp}(d_\alpha, A \cup \{d_\beta : \beta < \alpha\}).
\]
As N^+ is \aleph_ϵ-primary over $N \cup A$ we can find a list $\{d_\alpha : \alpha \in [\alpha^*, \alpha^{**})\}$ of $N^+ \setminus (N \cup A)$ such that $tp(d_\alpha, N \cup A \cup \{d_\beta : \beta \in [\alpha^*, \alpha^{**})\})$ is \aleph_ϵ-isolated. So $\langle d_\alpha : \alpha \notin W, \alpha < \alpha^{**}\rangle$ exemplifies that N^+ is \aleph_ϵ-primary over $A \cup A''$, hence by 1.18(0) we know that N^+ is \aleph_ϵ-primary over \emptyset.

2) We shall use the characterization of “N is $F^{\alpha}_{\aleph_0}$-prime over A” in 1.17, more exactly we use the last condition in 1.17(1) for $A = \emptyset, M = N_\omega$. Clearly N_ω is \aleph_ϵ-saturated (as it is \aleph_ϵ-prime over $\bigcup_{n<\omega} N_n$). Suppose $B \subseteq N_\omega$ is finite and $p \in S(B)$ is (stationary and) regular.

Case 1: p not orthogonal to $\bigcup_{n<\omega} N_n$.

So for some $n < \omega, p$ is not orthogonal to N_n, hence there is a regular $p_1 \in S(N_n)$ such that p, p_1 are not orthogonal. Let $A_1 \subseteq N_n$ be finite such that p_1 does not fork over A and $p_1 \upharpoonright A_1$ is stationary. So by [Sh:c, V, 2] we know $\dim(p, N_\omega) = \dim(p_1 \upharpoonright A_1, N_\omega)$, hence it suffices to prove that the latter is \aleph_0. Now this holds by [Sh:c, V, 1.16](3), p. 237 or imitate the proof of (*)$_2$ above.

Case 2: p is orthogonal to $\bigcup_{n<\omega} N_n$.

Note that if each N_n is \aleph_ϵ-prime then $\bigcup_{n<\omega} N_n$ is \aleph_ϵ-saturated hence $N = \bigcup_{n<\omega} N_n$ hence this case does not arise. Let $A = \bigcup_{n<\omega} N_n$, so $\dim(p, N) \leq \aleph_0$ follows from 2A) below.

Alternatively (and work even if we replace N_η by a set $A_n, F^{\alpha}_{\aleph_0}$-constructible over \emptyset, see below).

2A) By 2B).

2B) The first inequality as immediate (as T is superstable and \bar{a}, \bar{b} are finite), so let us concentrate on the second. Let $B \subseteq C$ be a finite set such that $tp_*(\bar{a} \bar{b}, C)$ does not fork over B and $stp_*(\bar{a} \bar{b}, B) \models stp_*(\bar{a} \bar{b}, C)$. Recall $q \in S(N)$ extend $\bar{a} \bar{b}$ and do not fork over \bar{b}, let $b^* \in C$ realize q and let $q_1 = stp(\bar{a} b^*, B \cup \bar{b})$ and $q_2 = stp(\bar{b}, C \cup \bar{b})$. Now by the assumption of our case q_1 is orthogonal to $tp_*(C, B)$ hence (see [Sh:c, V, 3]) $q_1 \vdash q_2$ and let $\{a_\alpha : \alpha < \alpha^*\} \subseteq (q_1 \upharpoonright (\bar{b} \cup B))(N)$ be a maximal set independent over $C + \bar{b}$, so $|\alpha^*| \leq \dim(\bar{a}/(C + \bar{b}), N)$ and $q \upharpoonright (C \cup \bar{b} \cup \{a_\alpha : \alpha < \alpha^*\}) \models q$. Also clearly $stp_*(\{a_\alpha : \alpha < \alpha^*\}, \bar{b} \cup B) \models stp_*(\{a_\alpha : \alpha < \alpha^*\}, \bar{b} \cup C)$. Together $\dim(q_1, N) \leq |\alpha^*|$ and as $|B| < \aleph_0 = \kappa_r(T) \leq \kappa_s(B)$, clearly $\dim(\bar{a}/\bar{b}, N) < \aleph_0 + \dim(q_1, N)^+$, so we are done.

We can use a different proof for part (2), note:

\otimes_1 if $\kappa = cf(\kappa) \geq \kappa_r(T)$ and B_α is F^α_κ-constructible over A for $\alpha < \delta, \delta \leq \kappa$
and \(\alpha < \beta < \delta \Rightarrow B_\alpha \subseteq B_\beta \) then \(\bigcup_{\alpha<\delta} B_\alpha \) is \(\mathbf{F}_\kappa^a \)-constructible over \(A \)

[why? see [Sh:c, IV,§3], [Sh:c, IV,5.6,p.207] for such arguments, assume \(\mathcal{A}_\alpha = \langle A, \{a_i^\alpha : i < \iota_\alpha\}, \{B_i^\alpha : i < \iota_\alpha\} \rangle \) is an \(\mathbf{F}_\kappa^a \)-construction of \(B_\alpha \) over \(A \).

Without loss of generality \(i < j < i_\alpha \Rightarrow a_i^\alpha \neq a_i^\alpha \), and choose by induction on \(\zeta, \langle u_\zeta^\alpha : \alpha < \delta \rangle \) such that: \(u_\zeta^\alpha \subseteq i_\alpha, u_\zeta^\alpha \) increasing continuous in \(i, u_0^\alpha = \emptyset, |u_{\zeta+1}^\alpha| \leq \kappa, u_\zeta^\alpha \) is \(\mathcal{A}_\alpha \)-closed and \(\alpha < \beta < \delta \) implies \(\{a_j^\beta : j \in u_\zeta^\alpha\} \subseteq \{a_j^\beta : j \in u_\zeta^\alpha\} \) and \(\text{tp}_*(\{a_j^\beta : i \in u_\zeta^\alpha\}, \cup \{a_i^\alpha : i < i_\alpha\}) \) does not fork over \(A \cup \{a_i^\alpha : i < i_\alpha\} \). Now find a list \(\langle a_j : j < j^* \rangle \) such that for each \(\zeta, \{j : a_j \in a_i^\alpha : i < i_\alpha \} \) for some \(\alpha < \delta, \epsilon < \zeta \) is an initial segment \(\beta_\zeta \) of \(j^* \) and \(\beta_{\zeta+1} \leq \beta_\zeta + \kappa \).

We use \(\otimes_1 \) for \(\kappa = \aleph_0 \).

So each \(N_n \) is \(\aleph_\epsilon \)-constructible over \(\emptyset \) hence \(\bigcup_{n<\omega} N_n \) is \(\aleph_\epsilon \)-constructible over \(\emptyset \) and also \(N_\omega \) is \(\aleph_\epsilon \)-constructible over \(\bigcup_{n<\omega} N_n \) hence \(N_\omega \) is \(\aleph_\epsilon \)-constructible over \(\emptyset \). But \(N_\omega \) is \(\aleph_\epsilon \)-saturated hence \(N_\omega \) is \(\aleph_\epsilon \)-primary over \(\emptyset \). Similarly we use: if \(B \) is \(\mathbf{F}_\kappa^a \)-constructible over \(A, \kappa \geq \kappa_\tau(T) \) and \(I_1 \) is indiscernible over \(A, |I_1| > \kappa \) then for some \(J \subseteq I_1 \) of cardinality \(\leq \kappa, I_1 \cap J \) is an indiscernible set over \(B \).

3) Suppose \(N'_2 \) is \(\aleph_\epsilon \)-saturated and \(N_1 + a \subseteq N'_3 \). As \(N_2 \) is \(\aleph_\epsilon \)-prime over \(N_0 + \bar{a} \) and \(N_0 + \bar{a} \subseteq N_1 + \bar{a} \subseteq N'_3 \) we can find an elementary embedding \(f_0 \) of \(N_2 \) into \(N'_3 \) extending \(\text{id}_{N_0+a} \). By [Sh:c, V,3.3], the function \(f_1 = f_0 \cup \text{id}_{N_1} \) is an elementary mapping and clearly \(\text{Dom}(f_1) = N_1 \cup N_2 \). As \(N_3 \) is \(\aleph_\epsilon \)-prime over \(N_1 \cup N_2 \) and \(f_1 \) is an elementary mapping from \(N_1 \cup N_2 \) into \(N'_3 \) which is an \(\aleph_\epsilon \)-saturated model there is an elementary embedding \(f_3 \) of \(N_3 \) into \(N'_3 \) extending \(f_2 \). So as for any such \(N'_3 \) there is such \(f_3 \), clearly \(N_3 \) is \(\aleph_\epsilon \)-prime over \(N_1 + \bar{a} \), as required.

4) Let \(N_0 \) be \(\aleph_0 \)-prime over \(\emptyset \) and let \(\{p_i : i < \alpha\} \subseteq S(N_0) \) be a maximal family of pairwise orthogonal regular types. Let \(I_i = \{\bar{a}_n^i : n < \omega \} \subseteq C \) be a set of elements realizing \(p_i \) independent over \(N_0 \) and let \(I = \bigcup_{i<\alpha} I_i \) and \(N'_i \) be \(\mathbf{F}_{\aleph_0}^a \)-prime over \(N_0 \cup I \).

Now

\[(*) \text{ if } \bar{a}, \bar{b} \subseteq N'_1 \text{ and } \bar{a}/\bar{b} \text{ is regular (hence stationary), then } \dim(\bar{a}/\bar{b}, N'_1) \leq \aleph_0. \]

[Why? If \(\bar{a}/\bar{b} \perp N_0 \) then \(\dim(\bar{a}/\bar{b}, N'_1) \leq \aleph_0 \) by part (2A) and the choice of the \(p_i \)

and \(I_i \) for \(i < \alpha \). If \(\bar{a}/\bar{b} \perp N_0 \), then for some \(\bar{b}' \perp \bar{a} \subseteq N_0 \) realizing \(\text{stp}(\bar{b}' \perp \bar{a}, \emptyset) \), we have \(\bar{a}'/\bar{b}' + \bar{a}/\bar{b} \) hence \(\dim(\bar{a}/\bar{b}, N'_1) = \dim(\bar{a}'/\bar{b}', N'_1) \), so without loss of generality \(\bar{b}' \perp \bar{a} \subseteq N_0 \), similarly without loss of generality there is \(i(*) < \alpha \) such that \(\bar{a}/\bar{b} \subseteq p_i(*) \) and \(p_i(*) \) does not fork over \(\bar{b} \) now easily \(\dim(\bar{a}/\bar{b}, N'_1) = \dim(\bar{a}/\bar{b}, N_0) + \dim(p_i(*), N_0) \leq \aleph_0 + \aleph_0 = \aleph_0 \) (see [Sh:c, V,1.6](3)). So we have proved \((*) \).]
Now use 1.17(1) to deduce: N_1' is $\mathbf{F}_{\aleph_1}^a$-prime over \emptyset hence (by uniqueness of \aleph_c-prime model, 1.17(2)) $N_1' \cong N_1$.

By renaming without a loss of generality $N_1' = N_1$. Now

$$\text{(**)(a) } (N_1, c)_{c \in N_0}, (N_2, c)_{c \in N_0} \text{ are } \aleph_c\text{-saturated and }$$

$$(\beta) \text{ if } \bar{a} \in \mathcal{C}, \bar{b} \in N_\ell, \bar{a}/\bar{b} \text{ a regular type and } \bar{a}/\bar{b} \text{ (for } \ell = 1 \text{ or } \ell = 2),$$

then

$$\dim(\bar{a}/(\bar{b} \cup N_0), N_\ell) = \aleph_0.$$

[Why? Remember that we work in $(C^\text{eq}, c)_{c \in N_0}$. The “$\aleph_c$-saturated” follows from the second statement.

Note: $\dim(\bar{a}/(\bar{b} \cup N_0), N_\ell) \leq \dim(\bar{a}/\bar{b}, N_\ell) \leq \aleph_0$ (first inequality by monotonicity, second inequality by 1.17(1) and the assumption “N_ℓ is \aleph_c-prime over \emptyset”). If \bar{a}/\bar{b} is not orthogonal to N_0 then for some $i < \alpha$ we have $p_i \pm (\bar{a}/\bar{b})$ so easily (using “N_ℓ is \aleph_c-saturated”) we have $\dim(\bar{a}/(\bar{b} \cup N_0), N_\ell) = \dim(p_i, N_\ell) \geq ||I_i|| = \aleph_0$; so together with the previous sentence we get equality. Lastly, if $\bar{a}/\bar{b} \subseteq N_0$ by part (2B) of 1.18, we have $\dim(\bar{a}/(\bar{b} \cup N_0), N_\ell) < \aleph_0 \Rightarrow \dim(\bar{a}/\bar{b}, N_\ell) < \aleph_0$ which contradicts the assumption “\aleph_c-saturated”]. So we have proved (**) hence by 1.17(1) we get “N_1, N_2 are isomorphic over N_0'” as required.

5) This is proved similarly as if N is \aleph_c-prime over A and $B \subseteq N$ is ε-finite then N is \aleph_c-prime over $A + B$ and also over A' if $A + B \subseteq A' \subseteq \text{acl}(A + B)$, see part (10).

6) By [Sh:c, V.3.2].

7) First assume that $A_2^c \subseteq N_1$ and a/N_1 is regular. As N_1 is \aleph_c-prime over $N_0 \cup N_1'$ and as T has NDOP (i.e. does not have DOP) we know (by [Sh:c, X.2.1.2.2, p.512]) that N_1 is \aleph_c-minimal over $N_0 \cup N_1'$ and a/N_1 is not orthogonal to N_0 or to N_1'. But $a/N_1 \perp N_0$ by an assumption, so a/N_1 is not orthogonal to N_1' hence there is a regular $p' \in S(N_1')$ not orthogonal to $\frac{a}{N_1}$ hence (by [Sh:c, V.1.12, p.236]) p' is realized say by $a' \in N_2$. By [Sh:c, V.3.3], we know that N_2 is \aleph_c-prime over $N_1 + a'$. We can find N_2' which is \aleph_c-prime over $N_1' + a'$ and N_2'' which is \aleph_c-prime over $N_1 \cup N_2$ hence by part (3) of 1.18 we know that N_2'' is \aleph_c-prime over $N_1 + a'$ so by uniqueness, i.e. 1.17(1), without loss of generality $N_2'' = N_2$ hence we are done. In general by induction on α choose $N_{2,0}^\alpha$ such that $N_{2,0}^\alpha$ is \aleph_c-prime over $N_1' \cup A_2^c, N_{2,0}^\alpha$ is increasing with α and $N_1 \cup N_{2,0}^\alpha$. Easily for some $\alpha, N_{2,0}^\alpha$ is defined N_1' but not $N_{2,0}^\alpha+1$. Necessarily N_2 is \aleph_c-prime over $N_1' \cup N_{2,0}^\alpha$. Lastly let $a' \in N_{2,0}^\alpha$ be such that $\text{tp}(a', N_1 \cup N_{2,0}^\alpha)$ does not fork over $N_1 + a'$. Easily $N_{2,0}^\alpha$ is \aleph_c-prime over $N_1' + a'$ by (1.17(1)).

8) Similar easier proof.

9) Let N_0' be \aleph_c-prime over A such that $B \cup N_0'$, and let N_1' be \aleph_c-prime over
\[N_0' \cup B.\] By 1.18(1), we know that \(N_0'\) is \(R_e\)-prime over \(\emptyset\), and by 1.18(10) below \(N_1'\) is \(R_e\)-prime over \(A \cup B\), hence by 1.17(2) we know that \(N_1', N_1\) are isomorphic over \(A \cup B\) hence without loss of generality \(N_1' = N_1\) and so \(N_0 = N_0'\) is as required.

\[\text{□}_{1.18}\]

1.20 Fact. Assume \(\langle N_1^\eta, a_\eta : \eta \in I \rangle \leq_{\text{direct}} \langle N_2^\eta, a_\eta : \eta \in I \rangle\) (see Definition 1.16) and \(A \subseteq B \subseteq N_{1,0}^\eta\) and \(\bigwedge_{\eta \in I} N_2^\eta < M\).

(1) If \(\nu = \eta^\ast \langle \alpha \rangle \in I\), then \(N_2^\eta \bigcup N_1^\nu\) and even \(N_2^\eta \bigcup \left(\bigcup_{\rho \in I} N_1^\rho \right)\); and

\[\eta \triangleleft \nu \in I \text{ implies } N_2^\nu \bigcup \left(\bigcup_{\rho \in I} N_1^\rho \right)\].

(2) \(\langle N_2^\eta, a_\eta : \eta \in I \rangle\) is an \(R_e\)-decomposition inside \(M\) above \(\langle B_A \rangle\) iff \(\langle N_1^\eta, a_\eta : \eta \in I \rangle\) is an \(R_e\)-decomposition inside \(M\) above \(\langle B_A \rangle\).

(3) Similarly replacing “\(R_e\)-decomposition inside \(M\) above \(\langle B_A \rangle\)” by “\(R_e\)-decomposition of \(M\) above \(\langle B_A \rangle\)”.

\[\text{Proof.}\] 1) We prove the first statement by induction on \(\ell g(\eta)\). If \(\eta = < >\) this is clause (b) by the Definition 1.16 and clause (d) of Definition 1.11(1) (and [Sh:c, V.3.2]). If \(\eta \\

\[\leq_{\text{direct}}\langle \eta^{-} \rangle\) (by condition (e) of Definition 1.11(1)). By the induction hypothesis \(N_2^\eta \bigcup N_1^\eta\) and we know \(N_2^\eta\) is \(R_e\)-primary over \(N_1^\eta\).

\[\eta^{-} \cup N_1,\] we know this implies that no \(p \in S(N_1^\eta)\) orthogonal to \(N_1^{-}\) is realized in \(N_2^\eta\) hence \(\bar{a}_{N_1^\eta} \perp \bar{N}_2^\eta\), so \(\bar{a}_{N_1^\eta} \perp \bar{a}_{N_2^\eta}\) hence \(N_1^\eta \perp N_2^\eta\) hence \(N_1^\nu \bigcup N_2^\nu\) as required.

The other statements hold by the non-forking calculus (remember if \(\eta = \nu^{-} \langle \alpha \rangle \in I\) then use \(\text{tp}(\bigcup \{N_2^\eta : \eta \leq \rho \in I \}, N_1^\eta)\) is orthogonal to \(N_1^\nu\) or see details in the proof of 1.21(1)(a)).

2) By Definition 1.16, for \(\ell = 1, 2\) we have: \(\langle N_2^\eta, a_\eta : \eta \in I \rangle\) is a decomposition inside \(C\) and by assumption \(\bigwedge_{\eta \in I} N_1^\eta < N_2^\eta < M\). So for \(\ell = 1, 2\) we have to prove

\[\langle N_2^\eta, a_\eta : \eta \in I \rangle\] is an \(R_e\)-decomposition inside \(M\) for \(\langle B_A \rangle\)” assuming this holds for

\(1 - \ell\). We have to check Definition 1.11(1).
Clauses 1.5(1)(a),(b) for \(\ell \) holds because they hold for \(1 - \ell \).

Clause 1.5(1)(c) holds as by the assumptions \(A \subseteq B \subseteq N^1_{\prec <0>} < N^2_{\prec <0>}, A \subseteq N^1_{\prec <\ell>} \) and \(N^1_{\prec <0>} \bigcup N^2_{\prec <\ell>} \).

Clauses 1.5(1)(d),(e),(f),(h) holds as \(\langle N^1_{\eta}, a_\eta : \eta \in I \rangle \) is a decomposition inside \(C \) (for \(\ell = 1 \) given, for \(\ell = 2 \) easily checked).

Clause 1.5(1)(g) holds as \(\bigwedge_{\eta} N^1_{\eta} < N^2_{\eta} < M \) is given and \(M \) is \(\aleph_\nu \)-saturated.

3) First we do the “only if” direction; i.e. prove the maximality of \(\langle N^1_{\eta}, a_\eta : \eta \in I \rangle \) as an \(\aleph_\nu \)-decomposition inside \(M \) for \((\mathcal{R}) \) (i.e. condition (i) from 1.11(2)), assuming it holds for \(\langle N^2_{\eta}, a_\eta : \eta \in I \rangle \). If this fails, then for some \(\eta \in I \setminus \{<>\} \) and \(a \in M, \{a_{\eta^{-}\langle<>\alpha\rangle} : \eta^{-} < \alpha > \in I\} \cup \{a\} \) is independent over \(N^1_{\eta} \) and \(a \not\in \{a_{\eta^{-}\langle<>\alpha\rangle} : \eta^{-} < \alpha \} \) and \(\alpha_{\eta^{-}} \perp N^1_{\eta} \). Hence, if \(\eta^{-}\langle<>\alpha\rangle \in I \) for \(\ell < k \) then \(\bar{a} = \langle a^\ell\rangle^{-}\langle<>\alpha_{\ell}\rangle : \ell < k \) realizes over \(N^1_{\eta} \) a type orthogonal to \(N^1_{\eta} \), but \(N^1_{\eta} \prec N^1_{\eta}, N^1_{\eta} \prec N^2_{\eta} \) and \(N^1_{\eta} \bigcup N^2_{\eta} \) (see 1.20(1), hence (by [Sh:c, V,2.8])

\[
\text{tp}(\bar{a}, N^2_{\eta}) \perp N^2_{\eta} \quad \text{hence \{a\} \cup \{a_{\eta^{-}\langle<>\alpha\rangle} : \ell < k \} \text{ is independent over } N^2_{\eta} \text{ but } k, \eta^{-}\langle<>\alpha_{\ell}\rangle \in I \text{ for } \ell < k \text{ were arbitrary so } \{a\} \cup \{a_{\eta^{-}\langle<>\alpha\rangle} : \eta^{-}\langle<>\alpha\rangle \in I\} \text{ is independent over } N^2_{\eta} \text{ contradicting condition (i) from Definition 1.11(2) for } \langle N^2_{\eta}, a_\eta : \eta \in I \rangle.
\]

For the other direction use: if the conclusion fails, then for some \(\eta \in I \setminus \{<>\} \) and \(a \in M \setminus N^2_{\eta} \{a_{\eta^{-}\langle<>\alpha\rangle} : \eta^{-} < \alpha > \in I\} \) the set \(\{a_{\eta^{-}\langle<>\alpha\rangle} : \eta^{-}\langle<>\alpha\rangle \in I\} \cup \{a\} \) is independent of \(N^2_{\eta} \) and \(\text{tp}(a, N^2_{\eta}) \) is orthogonal to \(N^2_{\eta} \); let \(N' \prec M \) be \(\aleph_\nu \)-prime over \(N^2_{\eta} + a \). But \(N^2_{\eta} \) is \(\aleph_\nu \)-prime over \(N^1_{\eta} \cup N^2_{\eta} \) (by the definition of \(\prec \)-direct) so by NDOP \(\text{tp}(a, N^2_{\eta}) \pm N^1_{\eta} \) hence there is a regular \(q \in S(N^1_{\eta}) \) such that \(q \pm \text{tp}(a, N^2_{\eta}) \). Hence some \(a' \in N' \) realizes \(q \), clearly \(\{a_{\eta^{-}\langle<>\alpha\rangle} : \eta^{-} < \alpha > \in I\} \cup \{a'\} \) is independent over \(N^2_{\eta} \) (and \(a' \not\in \{a_{\eta^{-}\langle<>\alpha\rangle} : \eta^{-} < \alpha \} \)) hence over \((N^2_{\eta}, N^1_{\eta}) \) and easily we get contradiction. \(\square_{1.20} \)

1.21 Fact. Assume \(\langle N^1_{\eta}, a^1_\eta : \eta \in I \rangle \) is an \(\aleph_\nu \)-decomposition inside \(M \).

1) If \(N^1_{\eta} < N^2_{\eta} < M, N^2_{\eta} \) is \(\aleph_\nu \)-prime over \(\emptyset \) and \(N^2_{\eta} \bigcup \{a_{\eta^{-}\langle<>\alpha\rangle} : \eta^{-} < \alpha > \in I\} \) then

\[
(a) \begin{bmatrix}
N^2_{\eta} \\
N^1_{\eta} \bigcup_{\eta \in I} N^1_{\eta}
\end{bmatrix}
\]

and
(β) we can find \(N^2_\eta (\eta \in I \backslash \{<>\}) \) such that \(N^2_\eta \prec M \), and
\[
\langle N^1_\eta, a^1_\eta : \eta \in I \rangle \leq_{\text{direct}} \langle N^2_\eta, a^1_\eta : \eta \in I \rangle.
\]

2) If \(C_b \frac{a^1_\eta}{N^1_\eta} \subseteq N^0_\eta < N^1_\eta \) or at least \(N^0_\eta < N^1_\eta \) and \(\frac{a^1_\eta}{N^1_\eta} \pm N^0_\eta \) whenever \(\alpha > \in I \) then we can find \(N^0_\eta \prec M \) and \(a^0_\eta \in N_\eta \) (for \(\eta \in I \backslash \{<>\} \)) such that
\[
\langle N^0_\eta, a^0_\eta : \eta \in I \rangle \leq_{\text{direct}} \langle N^1_\eta, a^0_\eta : \eta \in I \rangle.
\]

3) In part (2), if in addition we are given \((B^*_\eta : \eta \in I) \) such that \(B^*_\eta \) is an \(\varepsilon \)-finite subset of \(N_\eta \), \(\text{tp}(B^*_\eta, N_\eta) \) does not fork over \(N^0_\eta \) and \(B^*_\eta \subseteq N^0_\eta \) then we can demand in the conclusion that \(\eta \in I \Rightarrow B^*_\eta \subseteq N^0_\eta \).

Proof. 1) For proving (α) let \(\{\eta_i : i < i^*\} \) list the set \(I \) such that \(\eta_i \prec \eta_j \Rightarrow i < j \), so \(\eta_0 = <> \) and without loss of generality for some \(\alpha^* \) we have
\(\eta_i \in \{< \alpha > : < \alpha > \in I \} \Leftrightarrow i \in [1, \alpha^*) \). Now we prove by induction on \(\beta \in [1, i^*) \) that \(N^2_<> \cup \{N^1_\eta : i < \beta \} \). For \(\beta = 1 \) this is assumed. For \(\beta \) limit use the local character of non-forking.

If \(\beta = \gamma + 1 \in [1, \alpha^*) \), then by repeated use of [Sh:c, V,3.2] (as \(\{a_{\eta_j} : j \in [1, \beta]\} \) is independent over \((N^1_<>), N^2_<> \) and \(N^1_<> \) is \(\aleph \)-saturated and \(N^1_\eta (j \in [1, \gamma]) \) is \(\aleph \)-prime over \(N^1_\gamma + a_{\eta_j} \)) we know that \(\text{tp}(a_{\eta_\gamma}, N^2_<> \cup \bigcup_{\eta_i < \gamma} N^1_{\eta_i}) \) does not fork over \(N^1_<> \). Again by [Sh:c, V,3.2], the type \(\text{tp}(N^1_{\eta_\gamma}, N^2_<> \cup \bigcup_{\eta_i < \gamma} N^1_{\eta_i}) \) does not fork over \(N^1_<> \) hence \(\bigcup_{\eta_i < \beta} N^1_{\eta_i} \cup N^2_<> \) and use symmetry.

Lastly, if \(\beta = \gamma + 1 \in [\alpha^*, i^*) \), \(\text{tp}(a_{\eta_\gamma}, N_{\eta_\gamma}) \) is orthogonal to \(N^1_<> \) and even to \(N^1_{(\eta_\gamma)_-} \) so again by non-forking and [Sh:c, V,3.2] we can do it, so clause (α) holds.

For clause (β), we choose \(N^2_{\eta_i} \) for \(i \in [1, i^*) \) by induction on \(i < i^* \) such that \(N^2_{\eta_i} \prec M \) is \(\aleph \)-prime over \(N^2_{\eta_i} \cup N^1_{\eta_i} \). By the non-forking calculus we can check Definition 1.7.

2) We let \(\{\eta_i : i < i^*\} \) be as above, now we choose \(N^0_{\eta_i}, a^0_{\eta_i} \) by induction on \(i \in [1, i^*) \) such that:
\[
(\ast) \quad N^0_{\eta_i} < N^1_{\eta_i} \quad \text{and} \quad \bigcup_{N^0_{\eta_i}} N^1_{\eta_i} \quad \text{and} \quad N^1_{\eta_i} \text{ is } \aleph \text{-prime over } N^0_{\eta_i} \cup N^1_{\eta_i}
\]
\[
(\ast\ast) \quad a^0_{\eta_i} \in N^0_{\eta_i} \quad \text{and} \quad N^0_{\eta_i} \text{ is } \aleph \text{-prime over } N^0_{\eta_i} + a^0_{\eta_i}.
\]

The induction step has already been done: if \(\ell g(\eta_i) > 1 \) by 1.18(7) and if \(\ell g(\eta_i) = 1 \)
Proof of 1.14. □

1.22 Fact. 1) If \(\langle N^1_\eta, a_\eta : \eta \in I \rangle \leq^*_{\text{direct}} \langle N^2_\eta, a_\eta : \eta \in I \rangle \) and both are \(\aleph \)-decompositions of \(M \) above \(\langle B^2_\eta \rangle \), then
\[
\mathcal{P}(\langle N^1_\eta, a_\eta : \eta \in I \rangle, M) = \mathcal{P}(\langle N^2_\eta, a_\eta^2 : \eta \in I \rangle, M).
\]

Proof. By Definition 1.11(5) it suffices to prove, for each \(\eta \in I \setminus \{<>\} \) that

\((*) \) for regular \(p \in S(M) \) we have
\[
p \perp N^1_\eta^- \& \ p \pm N^1_\eta \Leftrightarrow p \perp N^2_\eta^- \& \ p \pm N^2_\eta.
\]

Now consider any regular \(p \in S(M) \): first assume \(p \perp N^1_\eta^- \& \ p \pm N^1_\eta \) where \(\eta \in I \setminus \{<>\} \) so \(p \pm N^2_\eta \) (as \(N^1_\eta < N^2_\eta \) and \(p \pm N^1_\eta \)) and we can find a regular \(q \in S(N^1_\eta) \) such that \(q \pm p \); so as \(p \perp N^1_\eta^- \) also \(q \perp N^1_\eta^- \), now \(q \perp N^2_\eta^- \) (as \(N^1_\eta \bigcup N^2_\eta^- \) and \(q \perp N^1_\eta \) see [Sh:c, V,2.8]) hence \(p \perp N^2_\eta^- \).

Second, assume \(p \perp N^2_\eta^- \& \ p \pm N^2_\eta \) where \(\eta \in I \setminus \{<>\} \); remember \(N^1_\eta^- \), \(N^1_\eta \), \(N^2_\eta \), \(N^3_\eta \) are \(\aleph \)-saturated, \(N^1_\eta \bigcup N^2_\eta^- \) and \(N^2_\eta \) is \(\aleph \)-prime over \(N^1_\eta \cup N^2_\eta^- \) and \(T \) does not have \(N^1_\eta^- \)

DOP. Hence \(N^2_\eta \) is \(\aleph \)-minimal over \(N^1_\eta \cup N^2_\eta^- \) and every regular \(q \in S(N^2_\eta) \) is not orthogonal to \(N^1_\eta \) or to \(N^2_\eta^- \). Also as \(p \pm N^2_\eta \) there is a regular \(q \in S(N^2_\eta) \) not orthogonal to \(p \), so as \(p \perp N^2_\eta^- \) also \(q \perp N^2_\eta^- \); hence by the previous sentence \(q \pm N^1_\eta \) hence \(p \perp N^1_\eta \). Lastly, as \(p \perp N^2_\eta^- \) and \(N^1_\eta^- < N^2_\eta^- \) clearly \(p \perp N^1_\eta^- \), as required. □

At last we start proving 1.14.

Proof of 1.14. 1) Let \(N^0 < \mathcal{C} \) be \(\aleph \)-primary over \(A \), without loss of generality \(N^0 \bigcup B \) (but not necessarily \(N^0 < M \)), and let \(N^1 \) be \(\aleph \)-primary over \(N^0 \cup B \).

Now by 1.18(0) the model \(N^0 \) is \(\aleph \)-primary over \(\emptyset \) and by 1.18(1) the model \(N^1 \) is \(\aleph \)-primary over \(\emptyset \) hence (by 1.18(10)) is \(\aleph \)-primary over \(B \), hence without loss of generality \(N^1 < M \). Let \(N_{<>} := N^0, N_{<0>} = N^1, I = \{<>, <0>\} \) and \(a_{<>} = B \). More exactly \(a_\eta \) is such that \(\text{dcl}\{a_\eta\} = \text{dcl}(B) \). Clearly \(\langle N_\eta, a_\eta : \eta \in I \rangle \) is an \(\aleph \)-decomposition inside \(M \) above \(\langle B^1_A \rangle \). Now apply part (2) of 1.14 proved below.
2) By 1.13(4) we know $\langle N_\eta, a_\eta : \eta \in \ell \rangle$ is an \aleph_ℓ-decomposition inside M, by 1.18(2) we then find $J \supseteq I$ and N_η, a_η for $\eta \in J \setminus I$ such that $\langle N_\eta, a_\eta : \eta \in I \rangle$ is an \aleph_ℓ-decomposition of M. By 1.18(3), $\langle N_\eta, a_\eta : \eta \in J' \rangle$ is an \aleph_ℓ-decomposition of M above $\langle \beta \rangle$ where $J' = \{ \eta \in J : \eta \in \eta \}$.

3) Part (a) holds by 1.13(2),(3). As for part (b) by 1.13(2) there is $\langle N_\eta, a_\eta : \eta \in J \rangle$, an \aleph_ℓ-decomposition of M with $I \subseteq J$; easily $[\{0\} \subseteq J \Rightarrow \eta \in I]$. \Box

1.23 Fact. If $\langle N_\eta^\ell, a_\eta^\ell : \eta \in \ell \rangle$ are \aleph_ℓ-decompositions of M above $\langle \beta \rangle$, for $\ell = 1, 2$ and $N_{\ell \gg} = N_{\ell \gg}^2$, then $\mathcal{P}(\langle N_\eta^1, a_\eta^1 : \eta \in I^1 \rangle, M) = \mathcal{P}(\langle N_\eta^2, a_\eta^2 : \eta \in I^2 \rangle, M)$.

Proof. By 1.14(3)(b) we can find $J^1 \supseteq I^1$ and N_η^1, a_η^1 for $\eta \in J^1 \setminus I^1$ such that $\langle N_\eta^1, a_\eta^1 : \eta \in J^1 \rangle$ is an \aleph_ℓ-decomposition of M and moreover we have $\eta \in J^1 \setminus I^1 \Leftrightarrow \eta \neq \{\} \& \neg \{\{0\} \neq \eta \}$. Let $J^2 = I^2 \cup (J^1 \setminus I^1)$ and for $\eta \in J^2 \setminus I^2$ let $a_\eta^2 := a_\eta^1$, $N_\eta^2 := N_\eta^1$. Easily $\langle N_\eta^2, a_\eta^2 : \eta \in J^2 \rangle$ is an \aleph_ℓ-decomposition of M. By 1.13(6) we know that for every regular $p \in S(M)$ there is (for $\ell = 1, 2$) a unique $\eta(p, \ell) \in J^\ell$ such that $p \pm N\eta(p, \ell) \& p \preceq N\eta(p, \ell)$ (note $\langle \rangle$ – meaningless). By the uniqueness of $\eta(p, \ell)$, if $\eta(p, 1) \in J^1 \setminus I^1$ then as it can serve as $\eta(p, 2)$ clearly it is $\eta(p, 2)$ so $\eta(p, 2) = \eta(p, 1) \in J^1 \setminus I^1 = J^2 \setminus I^2$; similarly $\eta(p, 2) \in J^2 \setminus I^2 \Rightarrow \eta(p, 1) \in J^1 \setminus I^1$ and $\eta(p, 1) = \{\} \Leftrightarrow \eta(p, 2) = \{\}$. So

(*) $\eta(p, 1) \in I^1 \setminus \{\} \Leftrightarrow \eta(p, 2) \in I^2 \setminus \{\}.$

But

(**) $\eta(p, \ell) \in I^\ell \setminus \{\} \Rightarrow p \in \mathcal{P}(\langle N_\eta^\ell, a_\eta^\ell : \eta \in I^\ell \rangle, M).$

Together we finish. \Box

We continue proving 1.14.

Proof of 1.14(4). Let $A^* \subseteq M^-$ be ε-finite, so we can find an ε-finite $B^* \subseteq \cup\{N_\eta : \eta \in I\}$ such that $\text{stp}(A^*, B^*) \vdash \text{stp}(A^*, \cup\{N_\eta : \eta \in I\})$. Hence, there is a finite non empty $I^* \subseteq I$ such that $\langle \rangle \in I^*$, $I^* \cup \langle \rangle$ is closed under initial segments and $B^* \subseteq \cup\{N_\eta : \eta \in I^*\}$, so of course $\text{stp}_\nu(A^*, \cup\{N_\eta : \eta \in I^*\}) \vdash \text{stp}(A^*, \cup\{N_\eta : \eta \in I\})$.

We can also find $\langle B_\eta^* : \eta \in I^* \rangle$ such that B_η^* is an ε-finite subset of $\{N_\eta : B_\eta = \text{acl}(B_\eta^*) \cup B^* \subseteq \{B_\eta^* : \eta \in I^*\}, \eta \neq \langle \rangle \Rightarrow a_\eta \subseteq B_\eta^* \text{ and if } \eta < \nu \in I^* \text{ then } B_\eta^* \subseteq B_\nu^* \text{ and } \text{tp}_\nu(B_\nu^*, N_\nu) \text{ does not fork over } B_\eta^* \text{. Without loss of generality } B \subseteq B_{\angle \angle}^*.$

For $\eta \in I \setminus I^*$ let $B_\eta^* = B_\eta^* \setminus \{\ell \} \text{ where } \ell < \ell \text{ is maximal such that } \eta \mid \ell \in I^*, \text{ such } \ell \text{ exists if } \ell g(\eta) \text{ is finite and } \langle \rangle \in I^*$. (401)
Let $N^1_\eta = N_\eta$ and $a^1_\eta = a_\eta$ for $\eta \in I$ and without loss of generality $J \neq I$ hence $J \setminus I \neq \emptyset$.

Let $N^2_\eta \prec M$ be \mathcal{K}_ε-prime over $\bigcup \nu \in J \setminus I N_\nu$; letting $J \setminus I = \{ \eta_1 : i < i^* \}$ be such that $[\eta_i < \eta_j \Rightarrow i < j]$ we can find $N^2_{\eta_i,i} \prec M$ (for $i \leq i^*$) increasing continuous, $N^2_{\eta_i,0} = N^2_\eta$ and $N^2_{\eta_i,i+1} \prec N^2_{\eta_i,i} \cup N_\eta$ hence over $N^2_{\eta_i,i} + a_\eta$. Lastly, without loss of generality $N^2_{\eta_i,i^*} = N^2_\eta$.

By 1.18(1), (2) we know N^2_η is \mathcal{K}_ε-primary over \emptyset and (using repeatedly 1.18(6) + finite character of forking) we have $N^2_\eta \bigsqcup a_{<0}$. By 1.18(4)

$N^0_\eta, N^0_{\eta'} \prec N^0_\eta, N^0_{\eta'}$ is \mathcal{K}_ε-primary over \emptyset and N^1_η, N^2_η are isomorphic over N^0_η. By 1.21(1) we can for $\eta \in I$ choose $N^2_\eta \prec M$ with $N^1_\eta \subset N^2_\eta$ and $(N^1_\eta, a^0_\eta : \eta \in I) \leq^{\text{direct}} (N^2_\eta, a^0_\eta : \eta \in I)$. Similarly, by 1.21(2) (here $\text{Succ}(\prec) = \{ \emptyset \}$) we can choose an \mathcal{K}_ε-decomposition $\langle N^0_\eta, a^0_\eta : \eta \in I \rangle$ with $\langle N^0_\eta, a^0_\eta : \eta \in I \rangle \leq^{\text{direct}} (N^1_\eta, a^1_\eta : \eta \in I)$. Moreover, we can demand $\eta \in I^* \Rightarrow B^* \subseteq N^0_\eta$ using 1.21(3). By 1.13(12) + 1.14(3) we know that $\langle N^1_\eta, a^0_\eta : \eta \in I \rangle$ is an \mathcal{K}_ε-decomposition of M^- and easily $\langle N^2_\eta, a^0_\eta : \eta \in I \rangle$ is an \mathcal{K}_ε-decomposition of M. Now choose by induction on $\eta \in I$ an isomorphism f_η from N^1_η onto N^2_η such that $\nu \vDash f_\nu \subseteq f_\eta$ and $\eta \in I^* \Rightarrow f_\eta \upharpoonright B^*_\eta = \text{id}_{B^*_\eta}$. For $\eta = \emptyset$ we have chosen N^0_η such that N^1_η, N^2_η are isomorphic over N^0_η. For the induction step note that $f_\eta \cup \text{id}_{N^0_\eta}$ is an elementary mapping as $N^2_{\eta^*} \bigsqcup N^0_\eta$ and $f_\eta \cup \text{id}_{N^0_\eta}$ can be extended to an isomorphism f_η from N^1_η onto N^2_η as N^ℓ_η is \mathcal{K}_ε-primary (in fact even \mathcal{K}_ε-minimal) over $N^\ell_{\eta^*} \cup N^0_{\eta^*}$ for $\ell = 1, 2$ (which holds easily). If $\eta \in I^*$ there is no problem to add $f_\eta \upharpoonright B^*_\eta = \text{id}_{B^*_\eta}$. Now by 1.13(3) the model M^- is \mathcal{K}_ε-saturated and \mathcal{K}_ε-primary and \mathcal{K}_ε-minimal over $\bigcup_{\eta \in J} N_\eta = \bigcup_{\eta \in I} N^1_\eta$; similarly M is \mathcal{K}_ε-primary over $\bigcup_{\eta \in I} N^2_\eta$. Now f_η is an elementary mapping from $\bigcup_{\eta \in I} N^1_\eta$ onto $\bigcup_{\eta \in I} N^2_\eta$ hence can be extended to an isomorphism f from M^- into M. Moreover as $\text{stp}_{\ast}(A^*, \cup \{ B^*_\eta : \eta \in I^* \}) \models \text{stp}(A^*, \{ N^1_\eta : \eta \in I \})$, by [Sh:c, CH.XII, §4] we have $\text{tp}_{\ast}(A^*, \cup \{ B^*_\eta : \eta \in I^* \}) \models \text{tp}(A^*, \{ N^1_\eta : \eta \in I \})$ hence $\text{tp}_{\ast}(A^*, \cup \{ B^*_\eta : \eta \in I^* \})$ has a unique extension as a complete type over $\cup \{ N^1_\eta : \eta \in I \}$ hence over $\cup \{ N^2_\eta : \eta \in I \}$.
so without loss of generality $f \upharpoonright A^* = \text{id}_{A^*}$. By the \aleph_ϵ-minimality of M over $\bigcup_{\eta \in I} N_\eta$ (see 1.13(3)), f is onto M, so f is as required.

We delay the proof of 1.14(5).

Proof of 1.14(6). Let $\langle N^\ell, a^\ell_\eta : \eta \in I^\ell \rangle$ for $\ell = 1, 2$, be \aleph_ϵ-decompositions of M above (S^ℓ), so $\text{dcl}(a^\ell_\eta) = \text{dcl}(B)$. Let $p \in S(M)$, and assume that $p \in \mathcal{P}(\langle N^1_\eta, a^1_\eta : \eta \in I^1 \rangle, M)$, i.e., for some $\eta \in I^1 \setminus \{< >\}$, $(p_\eta \perp N_{\eta^\perp})$ and $p_\eta \pm N_\eta$. We shall prove that the situation is similar for $\ell = 2$; i.e., $p \in \mathcal{P}(\langle N^2_\eta, a^2_\eta : \eta \in I^2 \rangle, M)$; by symmetry this suffices.

Let $n = \ell g(\eta)$, choose $\langle B_\ell : \ell \leq n \rangle$ and d such that:

(a) $A \subseteq B_0$,

(b) $B \subseteq B_1$,

(c) $a^\ell_\eta \upharpoonright \ell \subseteq B_\ell \subseteq N^1_\eta \upharpoonright \ell$, for $\ell \leq n$

(d) $B_{\ell+1} \cup \bigcup_{N^1_\eta \upharpoonright \ell} B_\ell$

(e) $\frac{B_{\ell+1}}{B_{\ell+1} \upharpoonright N^1_\eta \upharpoonright \ell} \upharpoonright N^{1+1}_\eta \upharpoonright \ell$

(\zeta) $d \in B_n$, $a^\ell_\eta \upharpoonright d$ is regular $\pm p$, (hence $\perp B_{n-1}$)

(\eta) B_ℓ is ϵ-finite.

[Why such $\langle B_\ell : \ell \leq n \rangle$ exists? We prove by induction on n that for any $\eta \in I$ of length n and ϵ-finite $B' \subseteq N_\eta$, there is $\langle B_\ell : \ell \leq n \rangle$ satisfying (a) – (e), (\eta) such that $B' \subseteq B_n$. Now there is $p' \in S(N^1_\eta)$ regular not orthogonal to p, let $B^1 \subseteq N^1_\eta$ be an ϵ-finite set extending $Cb\left(p'\right)$. Applying the previous sentence to η, B^1 we get $\langle B_\ell : \ell \leq n \rangle$, let $d \in N_\eta$ realize $p' \upharpoonright B_n$.

Now as $n > 0$, $\text{tp}(d, B_n) \perp N_\eta$ hence $\text{tp}(d, B_n) \perp B_{n-1}$, hence $\text{tp}(d, B_n) \perp \text{tp}(N_{\eta^\perp}, B_n)$, hence as $\text{tp}(d, B_n)$ is stationary, by [Sh:c, V.1.2](2), p.231, the types $\text{tp}(d, B_n), \text{tp}(N_{\eta^\perp}, B_n)$ are weakly orthogonal so $\text{tp}(d, B_n) \vdash \text{tp}(d, N_{\eta^\perp} \cup B_n)$ hence $\frac{B_n + d}{B_{n-1} + a^\eta_\eta} \vdash \frac{B_n + d}{N^{1+1}_\eta + a^\eta_\eta}$.

Now replace B_n by $B_n \cup \{d\}$ and we finish.

Note that necessarily

(\delta) $\frac{B_n \bigcup N^1_\eta \upharpoonright m \text{ for } m \leq n.}$

[Why? By the non-forking calculus].

(\epsilon) $\frac{B_n}{B_{m} \upharpoonright \ell \upharpoonright \eta} \perp_{a} B_m$ for $m < n$.

[Why? As $N^1_\eta \upharpoonright m$ is \aleph_ϵ-saturated].
Choose \(D^* \subseteq N^2_{<\eta} \) finite such that \(\frac{B_n}{N^2_{<\eta} + B} \) does not fork over \(D^* + B \).

[Note: we really mean \(D^* \subseteq N^2_{<\eta} \), not \(D^* \subseteq N^1_{<\eta} \).

We can find \(N^3_{<\eta}, \aleph \)-prime over \(\emptyset \) such that \(A \subseteq N^3_{<\eta} < N^2_{<\eta} \) and \(D^* \cup A N^3_{<\eta} \) and \(N^2_{<\eta} \) is \(\aleph \)-prime over \(N^3_{<\eta} \cup D^* \) (by 1.18(9)). Hence \(B_n \cup A N^3_{<\eta} \) and \(B_n \cup B N^3_{<\eta} \) (by the non-forking calculus). As \(tp(B, N^2_{<\eta}) \) does not fork over \(A \subseteq N^3_{<\eta} \subseteq N^2_{<\eta} \) by 1.21(2) we can find \(N^3_{\eta}, a^3_{\eta} \) (for \(\eta \in I^2 \setminus \{<\eta>\} \), such that \(\langle N^3_{\eta}, a^3_{\eta} : \eta \in I \rangle \) is an \(\aleph \)-decomposition inside \(M \) above \((B_n^I)^{\perp} \) and \(\langle N^3_{\eta}, a^3_{\eta} : \eta \in I^2 \rangle \) \(\leq \) \(\aleph \) \(\langle N^2_{\eta}, a^3_{\eta} : \eta \in I^2 \rangle \) and \(a^3_{<0>} = a^3_{<1>} \) (remember \(dcl(a^3_{<0>}) = dcl(B) \)). By 1.20(2) we know \(\langle N^3_{\eta}, a^3_{\eta} : \eta \in I^2 \rangle \) is an \(\aleph \)-decomposition of \(M \) above \((B_n)^{\perp} \).

By 1.22 it is enough to show \(p \in \mathcal{P}((N^3_{\eta}, a^3_{\eta} : \eta \in I^2), M) \). Let \(N^4_{<\eta} < N^2_{<\eta} \) be \(\aleph \)-prime over \(N^3_{<\eta} \cup B_0 \). Now by the non-forking calculus \(B \cup (N^3_{<\eta} \cup B_0) \) [why? because

\[(a) \text{ as said above } B_n \cup B N^3_{<\eta} \text{ but } B_0 \subseteq B_n \text{ so } B_0 \cup B N^3_{<\eta} \text{, and}
\]

\[(b) \text{ as } B \cup N^1_{<\eta} \text{ and } B_0 \subseteq N^1_{<\eta} \text{ we have } B \cup B_0 \text{ so } B_0 \cup B
\]

hence (by (a) + (b) as \(A \subseteq B \))

\[(c) \frac{B_0}{N^3_{<\eta} + B} \text{ does not fork over } A,
\]

also

\[(d) B \cup A N^3_{<\eta} \text{ (as } A \subseteq N^3_{<\eta} \subseteq N^2_{<\eta} \text{ and } tp(B, N^2_{<\eta}) \text{ does not fork over } A)
\]

putting (c) and (d) together we get

\[(e) \cup \langle N^4_{<\eta}, B, N^3_{<\eta} \rangle \]

hence the conclusion].

Hence \(B \cup B_0 \) so \(B \cup N^4_{<\eta} \) (by 1.18(6)) and so \((N^3_{<\eta}) \) is \(\aleph \)-prime over \(N^3_{<\eta} + dcl(a^3_{<0>}) = N^3_{<\eta} + dcl(B) \) we have \(N^4_{<\eta} \cup N^3_{<\eta} \) and by 1.21(1) we can choose \(N^4_{<\eta} < M \) (for \(\eta \in I^2 \setminus \{<\eta>\} \), such that \(\langle N^4_{<\eta}, a^3_{<\eta} : \eta \in I^2 \rangle \geq \aleph \) \(\langle N^3_{<\eta}, a^3_{<\eta} : \eta \in I^2 \rangle \).

So by 1.20(1) \(\langle N^4_{<\eta}, a^3_{<\eta} : \eta \in I^2 \rangle \) is an \(\aleph \)-decomposition of \(M \) above \((B_n)^{\perp} \) hence \(a^3_{<0>}/N^4_{<\eta} \) does not fork over \(A \) but \(A \subseteq B_0 \subseteq N^4_{<\eta} \) so \(a^3_{<\eta>/N^4_{<\eta}} \) does not fork over \(B_0 \)
and by 1.22 it is enough to prove \(p \in \mathcal{P}(\langle N_{\eta}^4, a_{\eta}^3 : \eta \in I^2 \rangle, M) \). Now as said above \(
abla B \cup N_{\eta}^4 \) and \(B \cup N_{\eta}^3 \) so together \(B \cup N_{\eta}^4 \) also we have \(A \subseteq B_0 \subseteq N_{\eta}^4 \), hence \(B \cup N_{\eta}^4 \) and

\[
\frac{B_n}{B_0 + B} \equiv \frac{B_n}{B_0 + a_{\eta}^0} \perp_a B_0 \text{ (by } (\epsilon)^+ \text{ above) but } a_{\eta}^3 \cup N_{\eta}^4 \text{ hence } \frac{B_n}{N_{\eta}^4 + a_{\eta}^0} \text{ is }
\]

\(\kappa \)-isolated. Also letting \(B'_n = B_n \setminus \{d\} \) we have \(\frac{B_n}{N_{\eta}^4 + a_{\eta}^0} \) is \(\kappa \)-isolated and \(\frac{B_n}{B_0} \) (by clause \((\zeta) \)), and clearly \(d \cup (N_{\eta}^4 \cup B'_n) \) so \(\frac{d}{B_n} \perp N_{\eta}^4 \). Hence we can find \(\langle N_{\eta}^5, a_{\eta}^5 : \eta \in I^5 \rangle \) an \(\kappa \)-decomposition of \(M \) above \(\langle B_n \rangle \) such that \(N_{\eta}^5 = N_{\eta}^4 \), \(\text{dcl}(B_n) = \text{dcl}(a_{\eta}^5) \), \(B_n \setminus \{d\} \subseteq N_{\eta}^5 \) and \(d = a_{\eta}^5 \) (on \(d \) see clause \((\zeta) \) above) so \(\frac{d}{B_n} \cup N_{\eta}^5 \).

By 1.23 it is enough to show \(p \in \mathcal{P}(\langle N_{\eta}^5, a_{\eta}^5 : \eta \in I^5 \rangle, M) \) which holds trivially as \(\text{tp}(d, B_n \setminus \{d\}) \) witness. \(\square_{1.14(6)} \)

Proof of 1.14(5). By 1.8, with \(A, B, A_1, B_1 \) here standing for \(A_1, B_1, A_2, B_2 \) there, we know that there are \(\langle B'_\ell : \ell \leq n \rangle, \langle c_\ell : 1 \leq \ell < n \rangle \) as there. By 1.18(9) we can choose \(N_{\eta}^4 \) such that \(B_0 \subseteq N_{\eta}^4 \cup B_1, N_{\eta}^4 \) is \(\kappa \)-primary over \(\emptyset \). Then

we choose \(\langle N_{\eta}^4, a_{\eta}^4 : \eta \in \{<, <, 0, 0, <, 0, 0, <, 0, 0, \ldots, <, 0, 0, \ldots, 0 > \} \rangle \), (where

\[
N_{\eta}^4_{0, 0, \ldots, 0} \cap M \text{ and } \ell > 0 \Rightarrow a_{\eta}^4_{0, 0, \ldots, 0} = c_\ell B'_{\eta g(\eta)} \subseteq N_{\eta}^4 \text{ and we choose }
\]

\(N_{\eta}^4 \) by induction on \(\ell g(\eta) \) being \(\kappa \)-prime over \(N_{\eta}^4 \cup a_{\eta}^4 \) hence \(a_{\eta}^4 / N_{\eta}^4 \) does not fork over \(B'_{\eta g(\eta)} \) hence \(N_{\eta}^4 \) is \(\kappa \)-prime also over \(N_{\eta}^4 \cup B'_{\eta g(\eta)} \). So \(\langle N_{\eta}^4, a_{\eta}^4 : \eta \in \{<, \ldots, 0 \} \rangle \) is an \(\kappa \)-decomposition inside \(M \) for \(\langle B_1 \rangle \). Now apply first 1.14(2) and then 1.14(6).

Proof of 1.14(7). Should be easy. Note that

\((*)_1\) for no \(\langle B'_n \rangle \) do we have \(\langle B'_n \rangle \leq a \langle B'_m \rangle \)

Why? By the definition of Depth zero.

\((*)_2\) if \(\langle B'_n \rangle < a \langle B'_m \rangle \), then also \(\langle B'_n \rangle \) satisfies the assumption.

Hence
(**) for no \((B_1^{A_1}), (B_2^{A_2})\) do we have
\[
\begin{align*}
(B/A) \leq_a (B_1/A_1) <_b (B_2/A_2).
\end{align*}
\]
[Why? As also \((B_1^{A_1})\) satisfies the assumption].

Now we can prove the statement by induction on \(\alpha\) for all pairs \((B/A)\) satisfying the assumption. For \(\alpha = 0\) the statement is a tautology. For \(\alpha\) limit ordinal reread clause (c) of Definition 1.9(1). For \(\alpha = \beta + 1\), reread clause (b) of Definition 1.9(1): on \(\text{tp}_\beta((B/A), M)\) use the induction hypothesis also for computing \(Y^{1,B}_{A,B,M}\) (and reread the definition of \(\text{tp}_0\), in Definition 1.9(1), clause (a)). Lastly \(Y^{2,\beta}_{A,B,M}\) is empty by (*) above.

Proof of 1.14(8), (9). Read Definition 1.9. \(\square_{1.14(5), (7), (8), (9)}\)

Discussion. In particular, the following Claim 1.26 implies that if \(\langle N_\eta, a_\eta : \eta \in I \rangle\) is an \(\kappa_\varepsilon\)-decomposition of \(M\) above \((B/A)\) and \(M^-\) is \(\kappa_\varepsilon\)-prime over \(\cup\{N_\eta : \eta \in I\}\), then \((B/A)\) has the same \(\text{tp}_\alpha\) in \(M\) and \(M^-\).

1.24 Claim. 1) Assume that \(M_1 \prec M_2\) are \(\kappa_\varepsilon\)-saturated, \((B/A) \in \Gamma(M_1).\) Then the following are equivalent:

\(\begin{align*}
(a) & \text{ if } p \in \mathcal{P}((B/A), M_1) \\
& \text{(see 1.14(6) for definition; so } p \in S(M_1) \text{ is regular) then } p \text{ is not realized in } M_2 \\
(b) & \text{ there is an } \kappa_\varepsilon \text{-decomposition of } M_1 \text{ above } (B/A), \text{ which is also an } \kappa_\varepsilon \text{-decomposition of } M_2 \text{ above } (B/A) \\
(c) & \text{ every } \kappa_\varepsilon \text{-decomposition of } M_1 \text{ above } (B/A) \text{ is also an } \kappa_\varepsilon \text{-decomposition of } M_2 \text{ above } (B/A).
\end{align*}\)

2) If \(M\) is \(\kappa_\varepsilon\)-saturated, \((B_1^{A_1}) \leq^* (B_2^{A_2})\) are both in \(\Gamma(M)\) then \(\mathcal{P}((B_2/A_2), M) \subseteq \mathcal{P}((B_1/A_1), M)\).

3) The conditions in 1.24(1) above implies
\(\begin{align*}
(d) & \text{ } p \in \mathcal{P}((B/A), M_2) \Rightarrow p \pm M_1.
\end{align*}\)
Proof. 1) (c) ⇒ (b).

By 1.14(1) there is an \(\mathcal{N}_\varepsilon \)-decomposition of \(M_1 \) above \((B_1)^A \). By clause (c) it is also an \(\mathcal{N}_\varepsilon \)-decomposition of \(M_2 \) above \((B_1)^A \), just as needed for clause (b).

(b) ⇒ (a)

Let \(\langle N_\eta, a_\eta : \eta \in I \rangle \) be as said in clause (b). By 1.14(3)(b) we can find \(J_1, I \subseteq J_1 \) and \(N_\eta, a_\eta \) (for \(\eta \in J_1 \setminus I \)) such that \(\langle N_\eta, a_\eta : \eta \in J_1 \rangle \) is an \(\mathcal{N}_\varepsilon \)-decomposition of \(M_1 \) and \(\nu \in J_1 \setminus I \Rightarrow \nu(0) > 0 \). Then we can find \(J_2, J_1 \subseteq J_2 \) and \(N_\eta, a_\eta \) (for \(\eta \in J_2 \setminus J_1 \)) such that \(\langle N_\eta : \eta \in J_2 \rangle \) is an \(\mathcal{N}_\varepsilon \)-decomposition of \(M_2 \) (by 1.14(2)). By 1.14(3)(b), \(\nu \in J_2 \setminus I \Rightarrow \nu(0) > 0 \). So \(\eta \in I \setminus \{\langle \rangle \} \Rightarrow \text{Suc}_j(\eta) = \text{Suc}_j(\eta) \), hence

\[(*) \text{ if } \eta \in I \setminus \{\langle \rangle \} \text{ and } q \in S(N_\eta) \text{ is regular orthogonal to } N_\eta^- \text{ then the stationarization of } q \text{ in } S(M_1) \text{ is not realized in } M_2.\]

Now if \(p \in \mathcal{P}(\langle B_1 \rangle, M_1) \) then \(p \in S(M_1) \) is regular and (see 1.14(1), 1.11(5)) for some \(\eta \in I \setminus \{\langle \rangle \}, p \perp N_\eta^- \), \(p \perp N_\eta \), so there is a regular \(q \in S(N_\eta) \) not orthogonal to \(p \). Now no \(c \in M_2 \) realizes the stationarization of \(q \) over \(M_1 \) (by \(* \) above), hence this applies to \(p \), too.

(a) ⇒ (c)

Let \(\langle N_\eta, a_\eta : \eta \in I \rangle \) be an \(\mathcal{N}_\varepsilon \)-decomposition of \(M_1 \) above \((B_1)^A \). We can find \(\langle N_\eta, a_\eta : \eta \in J \rangle \) an \(\mathcal{N}_\varepsilon \)-decomposition of \(M_1 \) such that \(I \subseteq J \) and \(\nu \in J \setminus I \Rightarrow \nu(0) > 0 \) (by 1.14(3)(b)), so \(M \) is \(\mathcal{N}_\varepsilon \)-prime over \(\cup\{N_\eta : \eta \in J\} \). We should check that \(\langle N_\eta : a_\eta : \eta \in I \rangle \) it is also an \(\mathcal{N}_\varepsilon \)-decomposition of \(M_2 \) above \((B_1)^A \), i.e. Definition 1.11(1),(2). Now in 1.11(1), clauses (a)-(h) are immediate, so let us check clause (i) (in 1.11(2)). Let \(\eta \in I \setminus \{\langle \rangle \} \), now is \(\{a_{\eta^-(a)} : \eta^-(a) \in I\} \) really maximal (among independent over \(N_\eta \) sets of elements of \(M_2 \) realizing a type from \(\mathcal{P}_\eta = \{p \in S(N_\eta) : p \text{ orthogonal to } N_\eta^-\}\)?)? This should be clear from clause (a) (and basic properties of dependencies and regular types).

2) By 1.14(5).
3) Left to the reader. \(\square_{1.24} \)

1.25 Conclusion: Assume \(M_1 \prec M_2 \) are \(\mathcal{N}_\varepsilon \)-saturated and \((B_1)^A \leq^* (B_2)^A \) both in \(\Gamma(M_1) \). If clause (a) (equivalently (b) or (c)) of 1.24 holds for \((B_1)^A, M_1, M_2 \) then they hold for \((B_2)^A, M_1, M_2 \).

Proof. By 1.24(2), clause (a) for \((B_1)^A, M_1, M_2 \) implies clause (a) for \((B_2)^A, M_1, M_2 \). \(\square_{1.25} \)
1.26 Claim. If \((B_1, A_1) \in \Gamma(M)\) and \((N_\eta, a_\eta : \eta \in I)\) is an \(\aleph_\epsilon\)-decomposition of \(M\) above \((B_1, A_1)\) and \(M^- \subseteq M\) is \(\aleph_\epsilon\)-saturated and \(\bigcup_{\eta \in I} N_\eta \subseteq M^-\) and \(\alpha\) is an ordinal then
\[
\text{tp}_\alpha \left[\left(\frac{B_1}{A_1}\right), M \right] = \text{tp}_\alpha \left[\left(\frac{B_1}{A_1}\right), M^- \right]
\]

Proof. We prove this by induction on \(\alpha\) (for all \(B, A, (N_\eta, a_\eta : \eta \in I), I, M\) and \(M^-\) as above). We can find an \(\aleph_\epsilon\)-decomposition \((N_\eta, a_\eta : \eta \in J)\) of \(M\) with \(I \subseteq J\) (by 1.13(4) + 1.13(2)) such that \(\eta \in J \setminus I \iff \eta \neq \langle \rangle\) and \(\neg\langle 0 \rangle \leq \eta\) and so \(M\) is \(\aleph_\epsilon\)-prime over \(\bigcup_{\eta \in J} N_\eta\) and also over \(M^- \cup \{N_\eta : \eta \in J \setminus I\}\).

Case 0: \(\alpha = 0\).
Trivial.

Case 1: \(\alpha\) is a limit ordinal.
Trivial by induction hypothesis (and the definition of \(\text{tp}_\alpha\)).

Case 2: \(\alpha = \beta + 1\).
We can find \(M^* < M^-\) which is \(\aleph_\epsilon\)-prime over \(\bigcup_{\eta \in I} N_\eta\), so as equality is transitive it is enough to prove
\[
\text{tp}_\alpha \left[\left(\frac{B_1}{A_1}\right), M^* \right] = \text{tp}_\alpha \left[\left(\frac{B_1}{A_1}\right), M^- \right]
\]
and
\[
\text{tp}_\alpha \left[\left(\frac{B_1}{A_1}\right), M^* \right] = \text{tp}_\alpha \left[\left(\frac{B_1}{A_1}\right), M \right].
\]
By symmetry, this means that it is enough to prove the statement when \(M^-\) is \(\aleph_\epsilon\)-prime over \(\bigcup_{\eta \in I} N_\eta\).

Looking at the definition of \(\text{tp}_{\beta+1}\) and remembering the induction hypothesis our problems are as follows:

First component of \(\text{tp}_\alpha\):
given \((B_1)_{A_1} \leq (B_2)_{A_2}\), \(B_2 \subseteq M\), it suffices to find \((B_3)_{A_3}\) such that:

\[
(*) \text{ there is } f \in \text{AUT}(C) \text{ such that: } f \upharpoonright B_1 = \text{id}_{B_1}, f(A_2) = A_3, \\
f(B_2) = B_3 \text{ and } B_3 \subseteq M^- \text{ and } tp_\beta[(B_2)_{A_2}, M] = tp_\beta[(B_3)_{A_3}, M^-] \\
\text{(pedantically we should replace } B_\ell, A_\ell \text{ by indexed sets).}
\]

We can find \(J', M'\) such that:

(i) \(I \subseteq J' \subseteq J, |J'| < \aleph_0, J' \text{ closed under initial segments,}

(ii) \(M' < M\) is \(\aleph_\epsilon\)-prime over \(M^- \cup \{N_\eta : \eta \in J' \setminus I\}\)

(iii) \(B_2 \subseteq M'\).

The induction hypothesis for \(\beta\) applies, and gives

\[
\text{tp}_\beta[(B_2)_{A_2}, M] = \text{tp}_\beta[(B_2)_{A_2}, M'].
\]

By 1.14(4) there is \(g\), an isomorphism from \(M'\) onto \(M^-\) such that \(g \upharpoonright B_1 = \text{id}\).

So clearly \(g(B_2) \subseteq M^-\) hence

\[
\text{tp}_\beta[(B_2)_{A_2}, M'] = \text{tp}_\beta[(g(B_2))_{g(A_2)}, M^-].
\]

So \((B_3)_{A_3} =: g(A_2)_{B_2}\) is as required.

Second component for \(\text{tp}_\alpha\):

So we are given \(\Upsilon\), a \(\text{tp}_\beta\) type, (and we assign the lower part as \(B\)) and we have to prove that the dimension in \(M\) and in \(M^-\) are the same, i.e.

\[
\dim(I, M) = \dim(I^-, M), \text{ where: } I = \{c \in M : \Upsilon = \text{tp}_\beta\((c)_{B_1}, M)\} \text{ and } \\
I^- = \{c \in M^- : \Upsilon = \text{tp}_\beta\((c)_{B_1}, M^-)\}.
\]

Let \(p\) be such that:

\[
\text{tp}_\beta\((c)_{B_1}, M) = \Upsilon \Rightarrow p = \frac{c}{B_1}.\text{ Necessarily } p \perp A_1 \text{ and } p \text{ is regular (and stationary)}. \\
\text{Clearly } I^- \subseteq I, \text{ so without loss of generality } I \neq \emptyset \text{ hence } p \text{ is really well defined, now}
\]

\[
(*) \text{ for every } c \in I \text{ for some } k < \omega, c'_\ell \in M^- \text{ realizing } p \text{ for } \ell < k \text{ we have } c \\
\text{depends on } \{c'_0, c'_1, \ldots, c'_{k-1}\} \text{ over } B_1.
\]

[Why? Clearly \(p \perp N_{<}\) (as \(B_1 \bigcup N_{<}\) and \(p \perp A_1\)) hence

\[
\text{tp}_\ast\left(\bigcup_{\eta \in J' \setminus I} N_\eta, N_{<}\right) \perp p \text{ hence}
\]
tp_{\ast}(\bigcup_{\eta \in J \setminus I} N_{\eta}, M^-) \perp p, \text{ but } M \text{ is } \aleph_\epsilon\text{-prime over } M^- \cup \bigcup_{\eta \in J \setminus I} N_{\eta}\text{ hence by } [Sh:c, V.3.2, p.250] \text{ for no } c \in M \setminus M^- \text{ is } tp(c, M^-) \text{ a stationarization of } p \text{ hence by } [Sh:c, V.1.16](3) \text{ clearly } (\ast) \text{ follows}.

If the type } p \text{ has depth zero, then by } 1.14(7):

\[I = \{ c \in M : tp(c, B) = p \} \text{ and } \]
\[I^- = \{ c \in M^- : tp(c, B) = p \}. \]

Now we have to prove \(\dim(I, A) = \dim(I^-, A) \), as \(A \) is \(\varepsilon \)-finite and \(M, M^- \) are \(\aleph_\varepsilon \)-saturated and \(I^- \subseteq I \) clearly \(\aleph_0 \leq \dim(I^-, A) \leq \dim(I, A) \). Now the equality follows by \((\ast) \) above.

So we can assume “\(p \) has depth > zero”, hence (by \([Sh:c, X.7.2]\)) that the type \(p \) is trivial; hence, see \([Sh:c, X.7.3]\), in \((\ast) \) without loss of generality \(k = 1 \) and dependency is an equivalence relation, so for “same dimension” it suffices to prove that every equivalence class (in \(M \) i.e. in \(I \)) is representable in \(M^- \) i.e. in \(I^- \). By the remark on \((\ast) \) in the previous sentence (\(\forall d_1 \in I)(\exists d_2 \in I^-)[\neg d_1 \cup d_2] \). So it is enough to prove that:

\[\bigotimes \text{ if } d_1, d_2 \in M \text{ realize same type over } B_1, \text{ which is (stationary and) regular, and are dependent over } B_1 \text{ and } d_1 \in M^- \text{ then there is } d_2' \in M^- \text{ such that } \]
\[\frac{d_2'}{B_1 + d_2} = \frac{d_2}{B_1 + d_1} \text{ and } tp_{\beta}((B_1 + d_2'), B_1) = tp_{\beta}((B_1 + d_2), B_1). \]

Let \(M_0 = N_{\langle \rangle} \). There are \(J', M_1, M_1^+ \) such that

\((\ast)_{1(i)} J' \subseteq J \) is finite (and of course closed under initial segments)

\((ii) \) \(\langle \rangle \in J', \langle 0 \rangle \notin J' \)

\((iii) \) \(M_1 \prec M \) is \(\aleph_\varepsilon \)-prime over \(\cup \{ N_{\eta} : \eta \in J' \} \)

\((iv) \) \(M_1^+ \prec M \) is \(\aleph_\varepsilon \)-prime over \(M_1 \cup M^- \) (and \(M_1 \bigcup M_0 M^- \))

\((v) \) \(d_2 \in M_1^+ \).

Now the triple \((B_1 + d_2), M_1, M\) satisfies the demand on \((B_1), M^-, M\) (because \((B_1) \leq star (B_1 + d_2), M^-\) by 1.25. Hence by the induction hypothesis we know that

\[tp_{\beta}((B_1 + d_2), B_1) = \]
By 1.29(4) there is an isomorphism f from M_1^+ onto M^- which is the identity on $B_1 + d_1$; let $d_2' = f(d_2)$ so:

$$tp_\beta \left[\left(\frac{B_1 + d_2}{B_1} \right), M_1^+ \right] = tp_\beta \left[\left(\frac{B_1 + d_2'}{B_1} \right), M^- \right].$$

Together

$$tp_\beta \left[\left(\frac{B_1 + d_2}{B_1} \right), M \right] = tp_\beta \left[\left(\frac{B_1 + d_2'}{B_1} \right), M^- \right].$$

As $\{d_1, d_2\}$ is not independent over B_1, also $\{f(d_1), f(d_2)\} = \{d_1, f(d_2)\}$ is not independent over B_1, hence, as p is regular

$$(*) \{d_2, f(d_2)\} \text{ is not independent over } B_2.$$
Together we have proved \bigoplus, hence finished proving the equality of the second component.

Third component: Trivial.
So we have finished the induction step, hence the proof. \(\square\)

1.27 Claim. 1) Suppose M is \aleph_ϵ-saturated, $A \subseteq B \subseteq M$, $(\binom{B}{A}) \in \Gamma$, $\bigwedge_{\ell=1}^2 [A \subseteq A_\ell \subseteq M]$, $A = acl(A), A_\ell$ are ϵ-finite, $\binom{A}{A_1} = \binom{B}{A}, B \uplus A_1$ and $B \uplus A_2$.

Then $tp_\alpha \left[\left(\frac{A_1 \uplus B}{A_1} \right), M \right] = tp_\alpha \left[\left(\frac{A_2 \uplus B}{A_2} \right), M \right]$ for any ordinal α.

2) Suppose M is \aleph_ϵ-saturated, $B \subseteq M$, $(\binom{B}{A}) \in \Gamma, \bigwedge_{\ell=1}^2 [A \subseteq A_\ell \subseteq M], A = acl(A),$ $B = acl(B), A_\ell = acl(A_\ell), A_\ell$ is ϵ-finite, $\binom{A}{A_1} = \binom{A}{A_2}, B \uplus A_1, B \uplus A_2, f : A_1 \overset{\text{onto}}{\to} A_2$ an elementary mapping, $f \restriction A = id_A, g \supseteq f \cup id_B, g$ elementary mapping from $B_1 = acl(B \cup A_1)$ onto $B_2 = acl(B \cup A_2)$.

Then $g \left(tp_\alpha \left[\left(\frac{B_1}{A_1} \right), M \right] \right) = tp_\alpha \left[\left(\frac{B_2}{A_2} \right), M \right]$ for any ordinal α.

3) Assume that

(a) $A_\ell = acl(A_\ell) \subseteq B_\ell = acl(B_\ell) \subseteq M^\ell$ for $\ell = 1, 2$

(b) $A_\ell \subseteq A_\ell^+ \subseteq acl(A_\ell^+) \subseteq M^\ell$ for $\ell = 1, 2$
(c) \(B_\ell \bigcup_{A_\ell} A_\ell^- \) for \(\ell = 1, 2 \)

(d) \(f \) is an elementary mapping from \(A_1 \) onto \(A_2 \)

(e) \(g \) is an elementary mapping from \(A_1^+ \) onto \(A_2^+ \)

(f) \(f \upharpoonright A_1 = g \upharpoonright A_1 \)

(g) \(h \) is an elementary mapping from \(B_1^+ = acl(B_1 \cup A_1^+) \) onto \(B_2^+ = acl(B_2 \cup A_2^+) \)

(h) \(f(tp_A[(B_1^+, A_1)], M_1]) = tp_A[(B_2^+, A_2)], M_2]. \)

Then \(h(tp_A[(B_1^+, A_1^+)], M_1]) = tp_A[(B_2^+, A_2^+)], M_2]. \)

Proof. 1) Follows from part (2).

2) We can find \(A_3 \subseteq M \) such that:

(i) \(\frac{A_3}{A} = \frac{A}{A} \)

(ii) \(A_3 \bigcup (B \cup A_1 \cup A_2) \).

Hence without loss of generality \(A_1 \bigcup A_2 \) and even \(\bigcup \{B, A_1, A_2\} \). Now we can find \(N_{>\ell}, \) an \(\mathcal{N}_e \)-prime model over \(\emptyset, N_{<\ell} < M, A \subseteq N_{<\ell} \) and \((B \cup A_1 \cup A_2) \bigcup N_{<\ell} \)

(e.g. choose \(\{A_1^\alpha \cup A_2^\alpha \cup B^\alpha : \alpha \leq \omega\} \subseteq M \) indiscernible over \(A, A_1^\alpha = A_1, A_2^\alpha = A_2, B^\omega = B \) and let \(N_{<\ell} < M \) be \(\mathcal{N}_e \)-primary over \(\bigcup_{\eta \in \omega} (A_1^\eta \cup A_2^\eta \cup B^\eta \cup A) \).

Now find \(\langle N_\eta, a_\eta : \eta \in I \rangle \) an \(\mathcal{N}_e \)-decomposition of \(M \) with \(acl(a_{<0}) = acl(B), acl(a_{<1}) = acl(A_1), acl(a_{<2}) = acl(A_2). \)

Let \(I = \{\eta \in J : \eta = <\ell \text{ or } < 0 > \subseteq \eta \} \) and \(J' = I \cup \{< 1 >, < 2 >\} \). Let \(N_\eta > M^* \) be \(\mathcal{N}_e \)-prime over \(N_{<1}, N_{<2} \). By 1.12 there is \(\langle N_\eta, a_\eta : \eta \in I \rangle \) an \(\mathcal{N}_e \)-decomposition of \(M > B \) such that \(\langle N_\eta, a_\eta : \eta \in I \rangle \) is direct \(\langle N_\eta, a_\eta : \eta \in I \rangle \).

Let \(M' \prec M \) be \(\mathcal{N}_e \)-prime over \(\bigcup_{\eta \in I} N_\eta \) and \(M' < M \). Let \(M' \prec M \) be \(\mathcal{N}_e \)-prime over \(\bigcup_{\eta \in I} N_\eta \).

Now by 1.26 we have \(\langle B, A \rangle, M = \langle B, A \rangle, M \rangle \) for \(\ell = 1, 2 \) hence it suffices to find an automorphism of \(M' \) extending \(g \). Let \(B^+ = acl(N_{<0} \cup B), A_1^+ = acl(B' \cup A_1) \), let \(\bar{a}_1 \) list \(A_1^* \) be such that \(\bar{a}_2 = g(\bar{a}_1) \).

Clearly \(tp(\bar{a}_1, B^+) \) does not fork over \(A \subseteq B \) and \(acl(B) = B \) and so \(stp(\bar{a}_1, B^+) = stp(\bar{a}_2, B^+) \). Also \(tp(A_2, B^+ \cup A_1) \) does not fork over \(A \) hence \(tp(\bar{a}_2, B^+ \cup \bar{a}_1) \) does not fork over \(A \) hence \(\{\bar{a}_1, \bar{a}_2\} \) is independent over \(B^+ \) hence there is an elementary mapping \(g^+ \) from

\(A \) to
acl\(B^+ \cup \bar{a}_1\) onto acl\((B^+ \cup \bar{a}_2), g^+ \supseteq \text{id}_{\text{acl}}\) and even \(g' = g^+ \cup (g^+)\) is an elementary embedding.

Let \(\bar{a}_1^1\) lists acl\((N_{<\alpha} \cup A_1)\) so clearly \(\bar{a}_2 =: g^+(\bar{a}_1^1)\) list acl\((N_{<\alpha} \cup A_2)\). Clearly \(g' \upharpoonright (\bar{a}_1^1 \cup \bar{a}_2^1)\) is an elementary mapping from \(\bar{a}_1^1 \cup \bar{a}_2^1\) onto itself. Now \(N_{<\alpha}^2\) is \(\aleph\)-primary over \(N_{<\alpha} \cup A_1 \cup A_2\) and \(N_{<\alpha} \cup A_1 \cup A_2 \subseteq \bar{a}_1^1 \cup \bar{a}_2^1 \subseteq \text{acl}(N_{<\alpha} \cup A_1 \cup A_2)\) so by 1.18(10) \(N_{<\alpha}^2\) is \(\aleph\)-primary over \(N_{<\alpha} \cup \bar{a}_1^1 \cup \bar{a}_2^1\) hence we can extend \(g' \upharpoonright (\bar{a}_1^1 \cup \bar{a}_2^1)\) to an automorphism \(h_{<\alpha}\) of \(N_{<\alpha}^2\) so clearly \(h_{<\alpha} \upharpoonright N_{<\alpha} = \text{id}_{N_{<\alpha}}\). Let \(\bar{a}_1^1\) list acl\((B^+ \cup A_1)\) and \(\bar{a}_2^2 = g^+(\bar{a}_1^1)\). So \(\text{tp}(\bar{a}_1^1, N_{<\alpha}^2)\) does not fork over \(\bar{a}_1^1 \subseteq N_{<\alpha}^2\) and acl\((\bar{a}_1^1)\) is an elementary mapping from \(\bar{a}_1^1\) onto \(\text{acl}(\bar{a}_1^1)\) (as \(\aleph\)-primary and \(\aleph\)-minimal over the former. Hence \(h_{<\alpha} \cup g^+ \cup \text{id}_{N_{<\alpha}}\) can be extended to an automorphism of \(N_{<\alpha}^2\) which we call \(h_{<\alpha}\).

Now we define by induction on \(n \in [2, \omega)\) for every \(\eta \in I\) of length \(n\), an automorphism \(h_{\eta}\) of \(N_{\eta}^2\) extending \(h_{\eta-} \cup \text{id}_{N_{\eta-}}\), which exists as \(N_{\eta}^2\) is \(\aleph\)-primary over \(N_{\eta-} \cup N_{\eta}\) (and \(N_{\eta}^2 \subseteq \bigcup_{\eta \in I} N_{\eta}\)). Now \(\bigcup_{\eta \in I} N_{\eta}\) is an elementary mapping (as \(\langle N_{\eta}^2 : \eta \in I \rangle\) is a non-forking tree; i.e. 1.13(10)), with domain and range \(\bigcup_{\eta \in I} N_{\eta}^2\) hence can be extended to an automorphism \(h^*\) of \(M'\), (we can demand \(h^* \upharpoonright M^- = \text{id}_{M^-}\) but not necessarily). So as \(h^*\) extends \(g\), the conclusion follows. 3) Similarly to (2).

\[\square_{1.27} \]

1.28 Claim. 1) For every \(\Upsilon = \text{tp}_\delta([\bar{a}, M], \bar{a}, \bar{b}\) listing \(A, B\) respectively there is \(\psi = \psi(\bar{x}_A, \bar{x}_B) \in \text{L}_{\infty, \aleph_\omega(q.d.)}\) of depth \(\delta\) such that:

\[\text{tp}_\delta\left([\bar{A}_B], M\right) = \Upsilon \iff M \models \psi(\bar{a}, \bar{b}). \]

2) Assume \(\otimes_{M_1, M_2}\) of 1.4 holds as exemplified by the family \(\mathcal{F}\) and \(\langle \bar{a} \rangle \in \Gamma(M_1)\) and \(g \in \mathcal{F}, \text{Dom}(g) = B; \text{ and } \alpha\) an ordinal then

\[\text{tp}_\alpha\left([\bar{B}_A], M\right) = \text{tp}_\alpha\left([\bar{g}(B)], M_2\right). \]

3) Similarly for \(\text{tp}_\alpha([A], M), \text{tp}_\alpha[M]\).
Proof. Straightforward (remember we assume that every first order formula is equivalent to a predicate). □

1.29 Proof of Theorem 1.2. [The proof does not require that the M^ℓ are \aleph_ϵ-saturated, but only that 1.27, 1.28 hold except in constructing $g_{\alpha(*)}$ (see $\otimes_{14}, \otimes_{15}$ in 1.30(E), we could instead use NOTOP].

So suppose

\((*)_0\) $M^1 \equiv_{L_{\infty,\kappa}, (d.q.)} M^2$ or (at least) \otimes_{M^1,M^2} from 1.4 holds.

We shall prove $M^1 \cong M^2$. By 1.28 (i.e. by 1.28(1) if the first possibility in $(*)_0$ holds and by 1.28(2) if the second possibility in $(*)_0$ holds)

So it suffices to prove:

1.30 Claim. Assume that T is countable. If M^1, M^2 are \aleph_ϵ-saturated models (of T, T as in 1.5), then:

\((*)_1\) $M^1 \cong M^2$.

Proof. Let $\langle W_k, W'_k : k < \omega \rangle$ be a partition of ω to infinite sets (so pairwise disjoint).

1.31 Explanation: (If seems opaque, the reader may return to it after reading parts of the proof).

We shall now define an approximation to a decomposition. That is we are approximating a non-forking tree $\langle N^\ell_\eta, a^\ell_\eta : \eta \in I^* \rangle$ of countable elementary submodels of M^ℓ for $\ell = 1, 2$ and $\langle f^*_\eta : \eta \in I^* \rangle$ such that f^*_η an isomorphism from N^1_η onto N^2_η increasing with η such that M^ℓ is \aleph_ϵ-prime over $\bigcup_{\eta \in I^*} N^\ell_\eta$.

In the approximation Y we have:

\((\alpha)\) I approximating I^*,

[it will not be $I^* \cap^{\geq} \text{Ord}$ but we may “discover” more immediate successors to each $\eta \in I$; as the approximation to N_η improves we have more regular types, but some member of I will be later will drop]

\((\beta)\) A^ℓ_η approximates N^ℓ_η and is ϵ-finite

\((\gamma)\) a^ℓ_η is the a^ℓ_η (if η survives, i.e. will not be dropped)
(δ) $B^\ell_\eta, b^\ell_\eta,m$ expresses commitments on constructing A^ℓ_η: we “promise”
$B^\ell_\eta \subseteq N^\ell_\eta$ and B^ℓ_η is countable; b^ℓ_η,m for $m < \omega$ list B^ℓ_η (so in the choice
$B^\ell_\eta \subseteq M^\ell$ there is some arbitrariness).

(ε) f_η approximate f^*_η

(ζ) p^ℓ_η,m also expresses commitments on the construction.

Since there are infinitely many commitments that we must meet in a construction
of length ω and we would like many chances to meet each of them, the sets W_k, W'_k
are introduced as a further bookkeeping device. At stage n in the construction we
will deal e.g. with the b^ℓ_η,m for η that are appropriate and for $m \in W_k$ for some
$k < n$ and analogously for p^ℓ_η,m and the W'_k.

Note that while the A^ℓ_η satisfy the independence properties of a decomposition,
the B^ℓ_η do not and may well intersect non-trivially. Nevertheless, a conflict arises
if an $a^\ell_\eta,<_i \in I$ falls into B^ℓ_η since the $a^\ell_\eta,<_i$ are supposed to represent independent
elements realizing regular types over the model approximated by A^ℓ_η but now $a^\ell_\eta,<_i \in I$
is that model. This problem is addressed by pruning $\eta^* < i >$ from the tree I.

1.32 Definition. An approximation Y to an isomorphism consist of:

(a) natural numbers n, k^* and index set: $I \subseteq ^n \geq \text{Ord}$
(and n minimal)

(b) $\langle A^\ell_\eta, B^\ell_\eta, a^\ell_\eta, b^\ell_\eta,m : \eta \in I \text{ and } m \in \bigcup_{k < k^*} W_k \rangle$ for $\ell = 1, 2$ (this is an approxi-
imated decomposition)

(c) $\langle f_\eta : \eta \in I \rangle$

(d) $\langle p^\ell_\eta,m : \eta \in I \text{ and } m \in \bigcup_{k < k^*} W'_k \rangle$

such that:

(1) I closed under initial segments

(2) $\ll \in I$

(3) $A^\ell_\eta \subseteq B^\ell_\eta \subseteq M^\ell$, A^ℓ_η is ϵ-finite, $acl(A^\ell_\eta) = A^\ell_\eta$, B^ℓ_η is countable,
$B^\ell_\eta = \{b^\ell_\eta,m : m \in \bigcup_{k < k^*} W_k \}$

(4) $A^\ell_\nu \subseteq A^\ell_\eta$ if $\nu < \eta \in I$
(5) if \(\eta \in I \setminus \langle \rangle \), then \(a^\ell_\eta \) is a (stationary) regular type and \(a^\ell_\eta \in A^\ell_\eta \); if in addition \(\ell g(\eta) > 1 \) then \(\frac{a^\ell_\eta}{A^\ell_{\eta^-}} \perp A^\ell_{\langle \eta^- \rangle} \) (note that we may decide \(a^\ell_{\langle \rangle} \) be not defined or \(\in A^\ell_{\langle \rangle} \))

(6) \(\frac{A^\ell_\eta}{A^\ell_{\eta^-} + a_\eta} \perp_A \) if \(\eta \in I, \ell g(\eta) > 0 \)

(7) if \(\eta \in I, \) not \(<\)-maximal in \(I, \) then the set \(\{ a^\ell_\nu : \nu \in I \text{ and } \nu^- = \eta \} \) is a maximal family of elements realizing over \(A^\ell_\eta \) regular types \(\perp A^\ell_{\langle \eta^- \rangle} \) (when \(\eta^- \) is defined), independent over \((A^\ell_\eta, B^\ell_\eta) \), (and we can add: if \(\nu_1^- = \nu_2^- = \eta \) and \(a^\ell_{\nu_1} \pm a^\ell_{\nu_2} \) then \(a^\ell_{\nu_1} \mid A_\eta = a^\ell_{\nu_2} \mid A_\eta \))

(8) \(f_\eta \) is an elementary map from \(A^1_\eta \) onto \(A^2_\eta \)

(9) \(f_{\langle \eta^- \rangle} \subseteq f_\eta \) when \(\eta \in I, \ell g(\eta) > 0 \)

(10) \(f_\eta(a^\ell_\eta) = a^2_\eta \)

(11) \(f_\eta \left(\text{tp}_\infty \left[\left(A^1_\eta \right)^1, M^1 \right] \right) = \text{tp}_\infty \left[\left(A^2_\eta \right)^2, M^2 \right] \) when \(\eta \in I \setminus \{ \langle \rangle \} \)

(\(\beta \)) \(f_{\langle \rangle} \left(\text{tp}_\infty \left[A^1_{\langle \rangle}, M^1 \right] \right) = \text{tp}_\infty \left[A^2_{\langle \rangle}, M^2 \right] \)

(12) \(B^\ell_\eta \prec M^\ell \), moreover, \(B^\ell_\eta \subseteq n a \) \(M^\ell \), i.e., if \(\bar{a} \subseteq N^\ell_\eta, b \in M^\ell \setminus B^\ell_\eta \) and \(M^\ell \models \varphi(b, \bar{a}) \) there for some \(b' \in B^\ell_\eta, | = \varphi(b', \bar{a}) \) and \(b \notin acl(\bar{a}) \Rightarrow b' \notin acl(A) \)

(13) \(\langle p^\ell_{\eta, m} : m \in \bigcup_{k < k^*} W_k \rangle \) is a sequence of types over \(A^\ell_\eta \) (so \(\text{Dom}(p^\ell_{\eta, m}) \) may be a proper subset of \(A^\ell_\eta \)).

1.33 Notation. We write \(n = n_Y = n[Y], I = I_Y = I[Y], A^\ell_\eta = A^\ell_\eta[Y], B^\ell_\eta = B^\ell_\eta[Y], f_\eta = f^Y_\eta = f_\eta[Y], a^\ell_\eta = a^\ell_\eta[Y], b^\ell_\eta = b^\ell_\eta[Y], k^* = k^*[Y] \) and \(p^\ell_{\eta, m} = p^\ell_{\eta, k[Y]} \).

Remark. We may decide to demand: each \(\frac{a^\ell_{\langle \rangle}}{A^\ell_\eta} \) is strongly regular; also: if two such types are not orthogonal then they are equal (or at least have same witness \(\varphi \) for \((\varphi, \frac{a^\ell_{\langle \rangle}}{A^\ell_\eta}) \) regular). This is easy here as the models are \(\aleph_c \)-saturated (so take \(p' \pm p, \text{rk}(p') \) minimal).

1.34 Observation. \((*)_1 \) implies that there is an approximation, (see 1.29).
Proof. Let $I = \{<>\}, A^<_{\ell>} = ac\ell(\emptyset), k^* = 1$ and then choose countable $B^<_{\ell}$ to
satisfy condition (12) and then choose $f_{\eta}, p^\ell_{\eta,k}, b^\ell_{\eta,m}$ (for $k \in W'_0$ and $m \in W_0$) as required.

1.35 Main Fact. For any approximation $Y, i \in \bigcup_{k<k^*_Y} (W_k \cup W'_k)$ and $m \leq n_Y$ and
$\ell(*) \in \{1, 2\}$ we can find an approximation Z such that:

$\Box(a)$ $n_Z = \max\{m+1, n_Y\}, I_Z \cap m^\geq \Ord = I_Y \cap m^\geq \Ord,$
we mean m not n_Y and $k^*_Z = k^*_Y + 1$

$\Box(b)$ if $\eta \in I_Y, \ell g(\eta) < m$ then

$A^\ell_{\eta}[Z] = A^\ell_{\eta}[Z], a^\ell_{\eta}[Z] = a^\ell_{\eta}[Z]$

$B^\ell_{\eta}[Z] = B^\ell_{\eta}[Y]$

$\Box(c)$ if $\eta \in I_Y \cap I_Z, k < k^*_Y$ and $j \in W'_k$ then

$p^\ell_{\eta,j}[Z] \equiv p^\ell_{\eta,j}[Y]$

$\Box(d)$ if $\eta \in I_Y \cap I_Z, k < k^*_Y$ and $j \in W_k$ then

$b^\ell_{\eta,j}[Z] = b^\ell_{\eta,j}[Y]$

$\Box(e)$ if $\eta \in I_Y, \ell g(\eta) = m, k < k^*_Y$ and $i \in W_k$ and the element $b \in M^\ell(*)$ satisfies clauses (a), (b) below then for some such b we have: $A^\ell(*)[Z] = ac\ell(A^\ell(*)[Y] \cup \{b\});$ where

$\Box(f)$ one of the conditions (i),(ii) listed below holds for b

$\Box(g)$ for no b is (i) satisfied (so $\ell g(\eta) \geq 0$ and $b \in M^\ell(*)$,

$b^\ell_{\eta,i} \not\in A^\ell(*)[Y]$ and $\ell g(\eta) > 0 \Rightarrow \frac{b}{A^\ell(*)[Y]} \perp_a A^\ell(*)[Y]$

(iii) for no b is (i) satisfied (so $\ell g(\eta) > 0$) and $b \in M^\ell(*)$,

$b^\ell_{\eta,i} \bigcup_{\ell g(\eta) > 0} \perp_a A^\ell(*)[Y]$

\[\text{recall that } i \text{ is part of the information given in the main fact, and of course, } k \text{ is uniquely determined by } i.\]
(γ)² assume η ∈ IY, ℓg(η) = m, k < k_Y and i ∈ W_k^\prime then we have:

(a) if p_{η,i}^{\ell(*)} is realized by some b ∈ M^{\ell(*)} such that

\[
\text{Rk}
\left(\frac{b}{A_\eta^{\ell(*)}[Y]}, L, \infty\right) = \text{R}
\left(p_{η,i}^{\ell(*)}, L, \infty\right)
\]

then for some such b we have

\[A_\eta^{\ell(*)}[Z] = acl\left(A_\eta^{\ell(*)}[Y] \cup \{b\}\right)\]

(b) if the assumption of clause (a) fails but p_{η,i}^{\ell(*)} is realized
by some b ∈ M^{\ell(*)} \setminus A_\eta^{\ell(*)} such that

\[\left[\ellg(\eta) > 0 \Rightarrow \frac{b}{A_\eta^{\ell(*)}[Y]} \perp_a A_\eta^{\ell(*)}[Y]\right]\]

then for some such b we have

\[A_\eta^{\ell(*)}[Z] = acl\left(A_\eta^{\ell(*)}[Y] \cup \{b\}\right)\]

(δ) If η ∈ IY and ℓg(η) = m, then \(B_\eta^{\ell}[Z] = \{b_{\eta,j}^{\ell}[Y] : j ∈ \{W_k : k < k_Z^\prime\}\}\)
is a countable subset of M^\ell, containing \(B_\nu^\ell[Z] : \nu ≤ η\) and \(ν ∈ Y\) ∪ \(B_\eta^{\ell}[Y]\),
with \(B_\eta^{\ell}[Z] < M^\ell\) moreover \(B_\eta^{\ell}[Z] \subseteq na M^\ell\) i.e. if \(\bar{a} ⊆ B_\eta^{\ell}[Z], \varphi(x, \bar{y})\) is
first order and \(∃x ∈ M^\ell ∩ acl(\bar{a})\) \(\varphi(x, \bar{a})\) then \(∃x ∈ B_\eta^{\ell}[Z] ∩ acl(\bar{a})\) \(\varphi(x, \bar{a})\)
and \(\{a_\eta^{\ell} <_\alpha [Y] : η^\prime(\alpha) ∈ IY\) and \(a_\eta^{\ell} <_\alpha [Y] \notin B_\eta^{\ell}[Z]\}\) is independent over
\(\langle B_\eta^{\ell}[Z], A_\eta^{\ell}[Y]\rangle\)

(ε) if η ∈ IY, ℓg(η) > m, then η ∈ IZ ⇔ a_{η|\{m+1\}}^{\ell}[Y] \notin B_\eta^{\ell}[m][Z]

(ζ) if η ∈ IY ∩ IZ, ℓg(η) > m then \(A_\eta^{\ell}[Z] = acl(A_\eta^{\ell}[Y] ∪ A_\eta^{\ell}[m][Z]\) and

\(B_\eta^{\ell}[Z] = B_\eta^{\ell}[Y]\)

(η) if η ∈ IZ \setminus IY then η⁻ ∈ IY and ℓg(η) = m + 1

(θ) \(\{p_{η,i}^{\ell}[Z] : i ∈ W_{k_Z^\prime−1}^\prime\}\) is “rich enough”, e.g. include all finite types over \(A_\eta^{\ell}\)

(ι) \(\{b_{η,i}^{\ell} : i ∈ W_{k_Z^\prime−1}^\prime\}\) list \(B_\eta^{\ell}[Z]\), each appearing infinitely often.
Proof. First we choose $A_{\eta}^{\ell([Z]}$ for $\eta \in I$ of length m according to condition $(\gamma) = (\gamma)^1 + (\gamma)^2$. (Note: one of the clauses $(\gamma)^1, (\gamma)^2$ necessarily holds trivially as $\bigcup_{k} W_k \cap \bigcup_{k} W'_k = \emptyset$).

Second, we choose (for such η) an elementary mapping f^Z_η extending f^Y_η and a set $A_{\eta}^{3-\ell([Z]} \subseteq M^{3-\ell([Z]}$ satisfying “f^Z_η is from $A_{\eta}^{1}[Z]$ onto $A_{\eta}^{3-\ell([Z]}$” such that

\[(*)_2 \text{ if } m > 0, \text{ then } f^Z_\eta (\text{tp}_\infty (\langle A_{\eta}^{1}[Y], M_1 \rangle)) = \text{tp}_\infty (\langle A_{\eta}^{2}[Y], M_2 \rangle)\]

\[(*)_3 \text{ if } m = 0, \text{ then } f^Z_\eta (\text{tp}_\infty (A_{\eta}^{1}[Z], M_1)) = \text{tp}_\infty (A_{\eta}^{2}[Z], M_2).\]

[Why possible? If we ask just the equality of tp$_\alpha$ for an ordinal α, this follows by the first component of tp$_{\alpha+1}$. But (overshooting) for $\alpha \geq \lceil (||M_1|| + ||M_2||)/\omega \rceil$, equality of tp$_\alpha$ implies equality of tp$_\infty$.]

Third, we choose $B_{\eta}^{\ell}[Z]$ for $\eta \in I_Y$, $\ell \eta(\eta) = m$ according to condition (δ) (here we use the countability of the language, you can do it by extending it ω times) in both sides, i.e. for $\ell = 1, 2$.

Fourth, let $I' = \{ \eta \in I : \text{ if } \ell \eta(\eta) > m \text{ then } a^{\ell_{\eta(m)+1}}[Y] \notin B_{\eta^\ell m}[Z] \}$ (this will be $I_Y \cap I_Z$).

Fifth, we choose $A_{\eta}^{\ell}[Z]$ for $\eta \in I'$: if $\ell \eta(\eta) < m$, let $A_{\eta}^{\ell}[Z] = A_{\eta}^{\ell}[Y]$, if $\ell \eta(\eta) = m$ this was done, lastly if $\ell \eta(\eta) > m$, let $A_{\eta}^{\ell}[Z] = \text{act} (A_{\eta}^{\ell}[Y] \cup A_{\eta}^{\ell}[m])[Z]$.

Sixth, by induction on $k \leq n_Y$ we choose f^Z_η for $\eta \in I'$ of length k: if $\ell \eta(\eta) < m$, let $f^Z_\eta = f^Y_\eta$, if $\ell \eta(\eta) = m$ this was done, lastly if $\ell \eta(\eta) > m$ choose an elementary mapping from A_{η}^{1} onto A_{η}^{2} extending $f^Y_\eta \cup f^Z_\eta$ (possible as $f^Y_\eta \cup f^Z_\eta$ is an elementary mapping and Dom$(f^Y_\eta) \cap$ Dom$(f^Z_\eta) = A_{\eta}^{\ell([Z]}$, Dom$(f^Y_\eta) \cup$ Dom$(f^Z_\eta) \subseteq A_{\eta}^{\ell([Z]}$)

and $A_{\eta}^{\ell([Z]} = \text{act}(A_{\eta}^{\ell([Z]}).$ Now f^Z_η satisfies clause (11) of Definition 1.32 when $\ell \eta(\eta) > m$ by applying 1.27(3).

Seventh, for $\eta \in I'$, of length $m < n_Z$, let $v_\eta =: \{ \alpha : \eta^<\alpha(\alpha) \in I \}$, and we choose $\{a^{\eta^<\alpha}[Z] : \alpha \in u_\eta \}$, $[\alpha \in u_\eta \Rightarrow \eta^<\alpha(\alpha) \notin I]$, a set of elements of M^1 realizing (stationary) regular types over $A^{1}_{\eta}[Z]$, orthogonal to $A_{\eta}[Y]$ when $\ell \eta(\eta) > 0$, such that it is independent over $(\bigcup \{a^{\eta^<\alpha}[Y] : \eta^<\alpha(\alpha) \in I' \} \cup B^{1}_{\eta}[Z], A^{1}_{\eta}[Z])$ and maximal under those restrictions. Without loss of generality $\sup(v_\eta) < \min(u_\eta)$ and for $\alpha_1 \in v_\eta \cup u_\eta$ and $\alpha_2 \in u_\eta$ we have:
\[(\ast)_1 \text{ if (for the given } \alpha_2 \text{ and } \eta \text{) } \alpha_1 \text{ is minimal such that } \]
\[\frac{a_{n_i}^{\langle \alpha_1 \rangle} \cap [Z]}{A_{n_i}^1[Z]} \perp \frac{a_0^{\langle \alpha_2 \rangle} \cap [Z]}{A_{0}^1[Z]} \]
\[\frac{a_0^{\langle \alpha_1 \rangle} \cap [Z]}{A_{0}^1[Z]} = \frac{a_0^{\langle \alpha_2 \rangle} \cap [Z]}{A_{0}^1[Z]} \]
\[(\ast)_2 \text{ if } \alpha_1 < \alpha_2, \text{ and } a_{n_i}^{\langle \alpha_1 \rangle} \cap [Z]/A_{n_i}^1[Z] = a_{n_i}^{\langle \alpha_2 \rangle} \cap [Z]/A_{n_i}^1[Z] \text{ and for some } b \in M^1 \]
\[\text{realizing } \frac{a_{n_i}^{\langle \alpha_1 \rangle} \cap [Z]}{A_{n_i}^1[Z]} \text{ we have} \]
\[b \uplus a_{n_i}^{\langle \alpha_2 \rangle} \text{ and} \]
\[\text{tp}_{\infty} \left[\left(a_{n_i}^{\langle \alpha_1 \rangle} \cap [Z], M \right) \right] = \text{tp}_{\infty} \left[\left(a_{n_i}^{\langle \alpha_2 \rangle} \cap [Z], M \right) \right] \]
\[\text{and } \alpha_1 \text{ is minimal (for the given } \alpha_2 \text{ and } \eta \text{) then} \]
\[\text{tp}_{\infty} \left[\left(a_{n_i}^{\langle \alpha_1 \rangle} \cap [Z], M \right) \right] = \text{tp}_{\infty} \left[\left(a_{n_i}^{\langle \alpha_2 \rangle} \cap [Z], M \right) \right] . \]

Easily (as in [Sh: c, X]) if \(\alpha \in u_{\eta} \) and \(\eta^{\langle \beta \rangle} \in I' \) then \(a_{n_i}^{\langle \alpha \rangle} \cap [Z] \perp \frac{a_{n_i}^{\langle \alpha_2 \rangle} \cap [Y]}{A_{n_i}^1[Y]} \).

For \(\alpha \in u_{\eta} \) let \(A_{n_i}^1 \cap [Z] = \text{acl} \left(A_{n_i}^1[Y] \cup \{ a_{n_i}^{\langle \alpha \rangle} \cap [Z] \} \right) \).

Eighth, by the second component in the definition of \(\text{tp}_{\alpha+1} \) (see Definition 1.9) we can choose (for \(\alpha \in u_{\eta} \)) \(a_{n_i}^{\langle \alpha \rangle} \cap [Z], A_{n_i}^2 \cap [Z] \) and then \(f_{n_i}^{\langle \alpha \rangle} \) as required (see (7) of Definition 1.32).

Ninth and lastly, we let \(I_{\eta} = I' \cup \eta^{\langle \beta \rangle} ; \eta \in I', \ell g(\eta) = m < n_{\eta} \text{ and } \alpha \in u_{\eta} \) and we choose \(B_{\eta}^{i} \) for \(\eta \in I_{\eta} \setminus I_{Y} \) and the \(p_{n_i}^{i}, b_{n_i}^{i} \) as required (also in other case left).

\[\square_{1.35} \]

1.36 Finishing the Proof of 1.11. We define by induction on \(n < \omega \) an approximation \(Y_0 = Y(n) \). Let \(Y_0 \) be the trivial one (as in observation 1.30(C)).

\(Y_{n+1} \) is gotten from \(Y_n \) as in 1.35 for \(m_n, i_n \leq n, \ell_n(\ast) \in \{1, 2\} \) defined by reasonable bookkeeping (so \(i_n \in \bigcup_{k < k_{n}^{Y(n)}} (W_k \cup W'_k) \)) such that any triples appear infinitely often; without loss of generality: if \(n_1 < n_2 \) & \(\eta \in I_{n_1}^{i} \cap I_{n_2}^{i} \) then \(\eta \in \bigcap_{n=n_1}^{n_2} I_{n}^{i} \).

Let \(I^* = (I^*[\eta]) =: \{ \eta : \text{ for every large enough } n, \eta \in I_{n} \} ; \)

for \(\eta \in I^* \) let: \(A_{\eta}^{i} = \bigcup_{n<\omega} A_{\eta}^{i}[Y_{n}], f_{\eta}^{i} = \bigcup_{n<\omega} f_{\eta}^{Y(n)} \) and

\[\text{for } \eta \in I^* \text{ let: } A_{\eta}^{i} = \bigcup_{n<\omega} A_{\eta}^{i}[Y_{n}], f_{\eta}^{i} = \bigcup_{n<\omega} f_{\eta}^{Y(n)} \text{ and} \]
$B_{\eta}^\ell[*] = \bigcup_{n<\omega} B_{\eta}^\ell[Y_n]$.

Easily

1. $<> \in I^*$ and $I^* \subseteq \omega^>\text{Ord}$ is closed under initial segments

2. for $\eta \in I^*$, $\left< B_{\eta}^\ell[Y_n] : n < \omega \text{ and } \eta \in I[Y_n] \right>$ is an increasing sequence of \subseteq_{na}-elementary submodels of M^ℓ

[Why? By clause (12) of Definition 1.32, Main Fact 1.35, clauses $(\beta)(a), (\delta), (\zeta)$.]

hence

3. for $\eta \in I^*$, $B_{\eta}^\ell[*] \subseteq_{\text{na}} M^\ell$.

Also

4. $\nu \triangleleft \eta \in I^* \Rightarrow B_{\nu}^\ell[*] \subseteq B_{\eta}^\ell[*]$.

[Why? Because for infinitely many $n, m = \ell g(\eta)$ and clause (δ) of Main Fact 1.35].

5. if $\eta \in I[Y_{n_1}] \cap I^*$, $\eta^- = \nu$ and $n_1 \leq n_2$ then

$$A_{\eta}^\ell[Y_{n_1}] \bigcup_{A_{\nu}^\ell[Y_{n_2}]}$$

[Why? Prove by induction on n_2 (using the non-forking calculus), for $n_2 = n_1$ this is trivial, so assume $n_2 > n_1$. If $m(n_2-1) > \ell g(\nu)$ we have $A_{\nu}^\ell[Y_{n_2}] = A_{\nu}^\ell[Y_{n_2-1}]$ (see 1.35, clause $(\beta)(a)$ and we have nothing to prove. If $m(n_2-1) < \ell g(\nu)$ then we note that $A_{\nu}^\ell[Y_{n_2}] = \text{acl}(A_{\nu}^\ell[Y_{n_2-1}] \cup A_{\nu}^\ell[Y_{m(n_2-1)}])$ and $A_{\nu}^\ell[Y_{n_2}] = \bigcup_{A_{\nu}^\ell[Y_{m(n_2-1)}]}$ (as $\nu \in I[Y_{n_2}]$, by 1.35 clause (δ) last phrase) and now use clauses (5), (6) of Definition 1.35. Lastly if $m(n_2-1) = \ell g(\nu)$ again use $\nu \in I[Y_{n_2}]$ by 1.35, clause (δ), last phrase].

6. if $\eta \in I[Y_{n_1}] \cap I^*$, $\eta^- = \nu$ and $n_1 \leq n_2$ then

$$A_{\eta}^\ell[X_{n_1}] \perp_a A_{\nu}^\ell.$$

[Why? By clause (6) of Definition 1.32, and orthogonality calculus].

7. if $\eta \in I^*$, then $A_{\eta}^\ell[*] \subseteq B_{\eta}^\ell[*] < M^\ell$ moreover

8. $A_{\eta[*]} \subseteq_{\text{na}} B_{\eta[*]} \subseteq_{\text{na}} M^\ell$.

(401)
We can now use the induction hypothesis (and \([\text{BeSh 307}, 5.3, p. 292]\)).

Why? The second relation holds by \(\otimes_2\). The first relation we prove by induction on \(\ell g(\eta)\); clearly \(A^\ell_\eta[\ast] = acl(A^\ell_\eta[\ast])\) because \(A^\ell_\eta[Y_n]\) increases with \(n\) by 1.35 and \(A^\ell_\eta[Y_n] = acl(A^\ell_\eta[Y_n])\) by clause (3) of Definition 1.32. We prove \(\langle A^\ell_\eta\rangle[\ast] \subseteq B^\ell_\eta[\ast]\) by induction on \(m = \ell g(\eta)\), so suppose this is true for every \(m' < m\), \(m = \ell g(\eta), \eta \in I^*\), let \(\varphi(x)\) be a formula with parameters in \(A^\ell_\eta[\ast]\) realized in \(M^\ell\) as above say by \(b \in M^\ell\). As \(A^\ell_\eta[Y_n] : n < \omega, \eta \in Y_n\) is increasing with union \(A^\ell_\eta[\ast]\), clearly for some \(n\) we have \(b \cup A^\ell_\eta[\ast]\).

So \(\{\varphi(x)\} = p^\ell_{\eta,i}\) for some \(i\) and for some \(n' > n\) defining \(Y_{n' + 1}\) we have used 1.35 with \((\ell(\ast), i, m)\) there being \((\ell, i, \ell g(\eta))\) here, hence we consider clause (\(\gamma\))^2 of 1.35. So the case left is when the assumption of both clauses (a) and (b) of (\(\gamma\))^2 fail, so we have \(\ell g(\eta) > 0\) and

\[
\begin{align*}
b' \notin A^\ell_\eta[Y_{n'}], b' \in M^\ell \models \varphi[b'] \Rightarrow \frac{b'}{A^\ell_\eta[Y_{n'}]} \pm A^\ell_\eta[\ast].
\end{align*}
\]

We can now use the induction hypothesis (and [\text{BeSh 307, 5.3, p.292}]).

\(\bigoplus_{\alpha} \) if \(\eta \in I^* \) and \(\ell = 1, 2\), then
\(\{a^\ell_{\eta, <\alpha}[\ast] : \eta^\ast(\alpha) \in I^*\}\) is a maximal subset of
\[
\{c \in M^\ell : \frac{c}{A^\ell_\eta[\ast]} \text{ regular, } c \bigcup A^\ell_\eta[\ast] \text{ and } \ell g(\eta) > 0 \Rightarrow \frac{c}{A^\ell_\eta[\ast]} \perp A^\ell_\eta[\ast]\}
\]

independent over \((A^\ell_\eta[\ast], B^\ell_\eta[\ast]).\)

[Why? Note clause (7) of Definition 1.32 and clause (\(\delta\)) of Main Fact 1.35.]

\(\otimes_{\alpha} \) \(A^\ell_{\langle \ast \rangle} = B^\ell_{\langle \ast \rangle}\)

[Why? By the bookkeeping every \(b \in B^\ell_{\langle \ast \rangle}\) is considered for addition to \(A^\ell_{\langle \ast \rangle}\) see 1.35, clause (\(\gamma\))^1, subclause (b)(i) and for () there is nothing to stop us.]

\(\bigotimes_{\alpha} \) \(\otimes_{\alpha} \) \(A^\ell_{\langle \ast \rangle} = B^\ell_{\langle \ast \rangle}\)

[Why? If not, as \(A^\ell_\eta[\ast] \subseteq B^\ell_\eta[\ast]\) by [\text{BeSh 307, Th.B, p.277}] there is \(c \in B^\ell_\eta[\ast] \setminus A^\ell_\eta[\ast]\) such that: \(\frac{c}{A^\ell_\eta[\ast]} = p\). As \(c \in B^\ell_\eta[\ast] = \bigcup B^\ell_\eta[Y_n]\), for every \(n < \omega\) large enough \(c \in B^\ell_\eta[Y_n]\), and \(p\) does not fork over \(A^\ell_\eta[Y_n]\). So for some such \(n\)
the triple \((i_n, \ell_n, m_n)\) is such that \(\ell_n = \ell, m_n = \ell g(\eta)\) and \(b^\ell_{n,i_n} = c\), so by clause
\((\gamma)^2(b)(ii)\) of 1.35 we have \(c \in A^\ell_{\eta}[Y_n] \subseteq A^\ell_{\eta}[\ast].\]

\[\bigotimes_{11} \text{ if } \eta \in I^*, \ell \in \{1, 2\} \text{ then } \{a^\ell_{\eta^\ell < \alpha} : \eta^\ell(\alpha) \in I^*\} \text{ is a maximal subset of } \{c \in M^\ell : \frac{c}{A^\ell_{\eta}[\ast]} \text{ regular, } \perp A^\ell_{\eta^\ell}[\ast] \text{ when meaningful}\} \text{ independent over } A^\ell_{\eta}[\ast].\]

[Why? If not, then for some \(c \in M, \{a^\ell_{\eta^\ell(\alpha)} : \eta^\ell(\alpha) \in I^*\} \cup \{c\} \text{ is independent over } A^\ell_{\eta}[\ast] \text{ and } \text{tp}(c, A^\ell_{\eta}[\ast]) \text{ is regular (and stationary). Hence by } \bigotimes_{10} \text{ we have } \{a^\ell_{\eta}[Y_n] : \eta^\ell(\alpha) \in I^*\} \cup \{c\} \text{ is independent over } (A^\ell_{\eta}[\ast], B^\ell_{\eta}[\ast]). \text{ Now for large enough } n \text{ we have } c \bigcup A^\ell_{\eta}[Y_n] \text{ and by } \bigotimes_{10} \text{ we have } c \bigcup B^\ell_{\eta}[Y_n], \text{ hence } A^\ell_{\eta}[\ast] \text{ not independent over } (A^\ell_{\eta}[Y_n], B^\ell_{\eta}[Y_n]), \text{ but } \{a^\ell_{\eta^\ell(\alpha)}[Y_n] : \eta^\ell(\alpha) \in I[Y_n]\} \text{ is independent over } (A^\ell_{\eta}[Y_n], B^\ell_{\eta}[Y_n]). \text{ So there is a finite set } w \text{ of ordinals such that } \alpha \in w \Rightarrow \eta^\ell(\alpha) \in I[Y_n] \text{ and } \{c\} \cup \{a^\ell_{\eta^\ell(\alpha)}[Y_n] : \alpha \in w\} \text{ is not independent over } (A^\ell_{\eta}[Y_n], B^\ell_{\eta}[Y_n]), \text{ and without loss of generality } w \text{ is minimal. Let } n_1 \in [n, \omega) \text{ be such that } \alpha \in w \Rightarrow a^\ell_{\eta^\ell(\alpha)} \in B^\ell_{\eta}[\ast] \Rightarrow a^\ell_{\eta}[Y_n]; \text{ clearly exist as } w \text{ is finite and let } u = \{\alpha \in w : a^\ell_{\eta^\ell(\alpha)} \notin B^\ell_{\eta}[\ast]\}; \text{ clearly } \alpha \in u \Rightarrow \eta^\ell < \alpha \in I^*. \text{ Now } \{a^\ell_{\eta^\ell(\alpha)}[\ast] : \eta^\ell(\alpha) \in I^*\} \cup B^\ell_{\eta}[\ast] \text{ includes } \{a^\ell_{\eta^\ell(\alpha)}[Y_n] : \alpha \in w\}, \text{ easy contradiction to the second sentence above.}]

\[\bigoplus_{12} f^\ast_\eta = \bigcup_{m < \omega} f^\ast_m[Y_n] \text{ (for } \eta \in I^*) \text{ is an elementary map from } A^\ell_{\eta}[\ast] \text{ onto } A^\ell_{\eta}[\ast],\]

[Easy].

\[\bigoplus_{13} f^\ast =: \bigcup_{\eta \in I^*} f^\ast_{\eta} \text{ is an elementary mapping from } \bigcup_{\eta \in I^*} A^\ell_{\eta}[\ast] \text{ onto } \bigcup_{\eta \in I^*} A^\ell_{\eta}[\ast].\]

[Clear using by \(\otimes_5 \oplus \otimes_6 \oplus \bigoplus_{12} \) and non-forking calculus].

\[\bigoplus_{14} \text{ We can find } \langle d^\ell_\alpha : \alpha < \alpha(\ast) \rangle \text{ such that:}\]

\(a\) \(d^\ell_\alpha \in M^\ell, \beta < \alpha \Rightarrow d^\ell_\beta \neq d^\ell_\alpha \)
\(\text{tp}(d^\ell_\alpha, \bigcup_{\eta \in I^*} A^\ell_{\eta}[\ast] \cup \{d^\ell_\beta : \beta < \alpha\}) \text{ is } \aleph_1\text{-isolated and } \mathbf{F}_{\aleph_0}^\ell\text{-isolated, and}\)

\(b\) \(g_{\alpha} = \bigcup_{\eta \in I^*} f^\ast_\eta \cup \{(d^1_\alpha, d^2_\alpha) : \alpha < \alpha(\ast)\} \text{ is an elementary mapping,}\)
(c) $\alpha(*)$ is maximal, i.e., we cannot find $d^1_{\alpha(*)}$ such that the demand in
(a) holds for $\alpha(*) + 1$.

[Why? We can try to choose by induction on α, a member d^1_α of $M^1 \setminus \bigcup_{\eta \in I[\alpha]} A^\ell_\eta \cup \{d^1_\beta : \beta < \alpha\}$ such that tp(d^1_α, $\bigcup_{\eta \in I[\alpha]} A^\ell_\eta \cup \{d^1_\beta : \beta < \alpha\}$) is \aleph_ε-isolated and $F^\ell_{\aleph_0}$-isolated.

So for some $\alpha(*)$, d^1_α is well defined iff $\alpha < \alpha(*)$ (as $\beta < \alpha \Rightarrow d^1_\beta \neq d^1_\alpha \in M^1$). Now choose by induction on $\alpha < \alpha(*)$, $d^2_\alpha \in M^2$ as required above, possible by $^*M^2_\ell$ being \aleph_ε-saturated (see [Sh:c, XII.2.1,p.591], [Sh:c, IV.3.10,p.179].]

\otimes_{15} Dom($g_{\alpha(*)}$), Rang($g_{\alpha(*)}$) are universes of elementary submodels of M^1, M^2 respectively called M^1_ℓ, M^2_ℓ respectively.

[Why? See [Sh:c, XII.1.2](2),p.591 and the proof of \otimes_{14}.

Alternatively, choose a formula $\psi(x, \vec{a})$ such that:

(a) $\vec{a} \subseteq$ Dom($g_{\alpha(*)}$) and $\models \exists x \psi(x, \vec{a})$ but no $b \in$ Dom($g_{\alpha(*)}$) satisfy $\varphi(x, \vec{a})$

(b) under clause (a), Rk($\psi(x, \vec{a})$, $\mathbb{L}_{\tau(T)}$, ∞) is minimal

(or just has no extension in $S($Dom($g_{\alpha(*)})$) forking over \vec{a}).

Let $\{\varphi_\ell(x, \vec{y}) : \ell < \omega\}$ list that $\mathbb{L}_{\tau(T)}$-formulas and we choose by induction on ℓ as formula $\psi_n(x, \vec{a}_n)$ such that:

(i) $\vec{a} \subseteq$ Dom($g_{\alpha(*)}$)

(ii) $\models (\exists x)\psi_n(x, \vec{a}_n)$

(iii) $\psi_{n+1}(x, \vec{a}_{n+1}) \models \psi_n(x, \vec{a}_n)$

(iv) $\psi_0(x, \vec{a}_0) = \psi(x, \vec{a})$

(v) for any formula $\psi'(x, \vec{a}')$ satisfying the demands on $\psi_{n+1}(x, \vec{a}_{n+1})$ we have

Rk($\psi_{n+1}(x, \vec{a}_{n+1})$, $\{\varphi_n(x, \vec{y}_n)\}$, 2) $< \operatorname{Rk}(\psi'(x, \vec{a}), \{\varphi_n(x, \vec{y})\}$, 2)

(on this rank see [Sh:c, II,§2]).

So $p = \{\psi_n(x, \vec{a}_n) : n < \omega\}$ has an extension in $S($Dom($g_{\alpha(*)})$) call it q. Now q is \aleph_ε-isolated because $\psi(x, \vec{a}) \in q \in S($Dom($g_{\alpha(*)})$. For every n, $\psi_{n+1}(x, \vec{a}_n) \models q \models \{\varphi_n(x, \vec{y}_n)\}$ by clause (v) above so as $\psi_{n+1}(x, \vec{a}_n) \in q$ and this holds for every n

clearly q is $F_{\aleph_0}^\ell$-isolated.

\otimes_{16} If $M^\ell \neq M^\ell_\ell$ then for some $d \in M_\ell \setminus M^\ell_\ell$, $\frac{d}{M^\ell_\ell}$ is regular.
[Why? By [BeSh 307, Th.5.9,p.298] as $N^\ell_\eta \subseteq M^\ell$ by \otimes_7.]

\otimes_7 if $M^\ell \neq M'_\ell$ then for some $\eta \in I^*$, there is $d \in M^\ell \setminus M'_\ell$ such that $\frac{d}{A^\ell_\eta[*]}$ is regular, $d \bigcup A'_\eta[*]$ and $\left[\ell g(\eta) > 0 \Rightarrow \frac{d}{A^\ell_\eta[*]} \perp A'_\eta[*] \right]$.

[Why? By [Sh:c, XII,1.4,p.529] every non-algebraic $p \in S(M'_\ell)$ is not orthogonal to some $A^\ell_\eta[*]$ so by \otimes_16 we can choose $\eta \in I^*$ and $d \in M^\ell \setminus M'_\ell$ such that $\frac{d}{A^\ell_\eta[*]}$ is regular $\pm A^\ell_\eta[*]$; without loss of generality $\ell g(\eta)$ is minimal, now $A^\ell_\eta[*] \subseteq M^\ell$ and by [BeSh 307, 4.5,p.290] without loss of generality $d \bigcup A'_\eta[*]$; the last clause is by \otimes_16.

"$\ell g(\eta)$ minimal"].

$\oplus_7 M^\ell = M'_\ell$.

[Why? By $\oplus_11 + \oplus_17$.

\oplus_7 there is an isomorphism from M_1 onto M_2 extending $\bigcup f^*_\eta$.

[Why? By $\oplus_7 + \otimes_15$ we have $M'_1 \cong M'_2$, so by \otimes_18 we are done]. $\square_1.36 \square_1.30$

1.37 Lemma. Assume $B \bigcup C, A = acl(A) = B \cap C$ and A, B, C are ϵ-finite,

$A \bigcup B \bigcup C \subseteq M, M$ an \aleph_ϵ-saturated model of T. For notational simplicity make A a set of individual constants.

Then $\text{tp}_{L_\infty, \aleph_\epsilon,d.q.}(B + C; M) = \text{tp}_{L_\infty, \aleph_\epsilon,d.q.}(B; M) + \text{tp}_{L_\infty, \aleph_\epsilon,d.q.}[C; M]$ where

1.38 Definition. 1) For any logic L and \vec{b} a sequence from a model M, let

$$\text{tp}_{L}(\vec{b}; M) = \left\{ \varphi(\vec{x}) : M \models \varphi[B], \varphi \text{ a formula in the vocabulary of } M, \right.$$ from the logic L (with free variables from \vec{x}, where $\vec{x} = \langle x_i : i < \ell g(\vec{b}) \rangle$).

2) Replacing \vec{b} by a set B means we use the variables $\langle x_b : b \in B \rangle$.

3) Saying $p_1 = p_2 + p_3$ in 1.37 means that we can compute p_1 from p_2 and p_3 (and the knowledge how the variables fit and the knowledge of T, of course).
Proof of the Lemma 1.37.
It is enough to prove:

1.39 Claim. Assume

(a) M^1, M^2 are κ-saturated and
(b) $A^i_1 \cup A^i_2$ for $i = 1, 2$
(c) $A^i_1 = ac\ell(A^i_0)$ and A^i_m is ϵ-finite for $i = 1, 2$ and $m < 3$
(d) for $m = 0, 1, 2$ we have $f_m : A^1_m \rightarrow A^2_m$ is an elementary mapping preserving tp_∞ (in M^1, M^2 respectively) and
(e) $f_0 \subseteq f_1, f_2$.

Then there is an isomorphism from M^1 onto M^2 extending $f_1 \cup f_2$.

Proof of 1.39. Repeat the proof of 1.5, but starting with Y_0 such that $A^\ell_{<\cdot}[Y_0] = A^\ell_0, A^\ell_{<\cdot}[Y_0] = A^\ell_1, A^\ell_{<\cdot}[Y_0] = A^\ell_2, f^\ell_{<\cdot} = f_0, f^\ell_{<0} = f_1, f^\ell_{<1} = f_2$ and that $\langle \cdot \rangle, \langle 0 \rangle, \langle 1 \rangle$ belongs to all $I[Y_0]$. During the construction we preserve $\langle 0 \rangle, \langle 1 \rangle \in I[Y_n]$ and for helping to preserve this we add also the demand

$\oplus_{2,m} B^\ell_{<\cdot}[Y_n] \cup A^\ell_1 \cup A^\ell_2$.

During the proof, when we have to increase $B^\ell_{<\cdot}$, we use 1.18(1) + 1.16(1).

Discussion: A natural version of 1.39 to say is the conclusion only that $tp_\alpha[A_{1}^1 \cup A_{1}^2, M^1] = tp_\alpha[A_{1}^2 \cup A_{2}^2, M^2]$ and to prove this by induction on α. The case $\alpha = 0$ and α limit are obvious. If $\alpha = \beta + 1$, for the condition of \leq_a, we use the induction hypothesis and claim 1.27(1). The condition involving \leq_b is similar but harder.
§2 Finer Types

We shall use here alternative types showing us probably a finer way to manipulate tp.

2.1 Convention. T is superstable, NDOP M,N are \aleph_ϵ-saturated $\prec C^{eq}$.

2.2 Definition. $\Gamma_3 = \left\{ \left(\bar{b} / \bar{a} \right) : \bar{a} \subseteq \bar{b} \text{ are } \epsilon\text{-finite} \right\}$

$\Gamma_1 = \left\{ \left(\bar{p} / \bar{a} \right) : \bar{a} \text{ is } \epsilon\text{-finite, } p \in S(\bar{a}) \text{ is regular (so stationary)} \right\}$

$\Gamma_2 = \left\{ \left(\bar{p}, r / \bar{a} \right) : \bar{a} \text{ is } \epsilon\text{-finite, } p \text{ is a regular type of depth } > 0, \right.$

$p \pm \bar{a}$ (really only the equivalence class p/\pm matters),

$r = r(x, \bar{y}) \in S(\bar{a})$ is such that for (c, \bar{b}) realizing r, $c/(\bar{a} + \bar{b})$ is regular $\pm p$, and $\bar{b} / \bar{a} = (r | \bar{y}) \perp p \right\}$.

We may add (to Γ_x) superscripts:

$(\alpha) f$ if \bar{a} (or $\bar{a} \cdot \bar{b}$) is finite

$(\beta) s$: for Γ_3 if \bar{b} / \bar{a} is stationary, for Γ_1 if p is stationary which holds always and
do Γ_2 if r is stationary and every automorphism of C over \bar{a} fix p/\pm

$(\gamma) c$ if \bar{a} (or \bar{a}, \bar{b}) are algebraically closed.

2.3 Claim. If p is regular of depth > 0 and $p \pm \bar{a}$ and \bar{a} is ϵ-finite then for some $\bar{a}', \bar{a} \subseteq \bar{a}' \subseteq acl(\bar{a})$ and for some q we have $\left(\bar{p}, q / \bar{a}' \right) \in \Gamma^s_2$.

Proof. Use, e.g., [Sh:c, V,4.11,p.272], assume $\bar{b} / \bar{a} \pm p$; we can define inductively equivalence relations E_n, with parameters from $acl(\bar{a}')$, $\bar{a}' = \bar{a} \cdot (\bar{b} / E_0) \cdot \cdots \cdot (\bar{b} / E_{n-1})$, such that $tp(\bar{b} / E_n, acl(\bar{a}''))$ is semi-regular. By superstability this stop for some n hence $\bar{b} \subseteq acl(\bar{a}')$. For some first m $tp(\bar{b} / E_m, acl(\bar{a}''))$ is $\pm p$, by [Sh:c, X,7.3](5),p.552 the type is regular (as because p is trivial having depth > 0; see [Sh:c, X,7.2,p.551]). $\Box_{2.3}$
2.4 Definition. We define by induction on an ordinal \(\alpha \) the following (simultaneously): note — if a definition of something depends on another which is not well defined, neither is the something

\[
\begin{align*}
\text{tp}_\alpha^1 \left[\left(\frac{p}{\bar{a}} \right) \right], M & \quad \text{for} \quad \left(\frac{p}{\bar{a}} \right) \in \Gamma_1, \bar{a} \subseteq M \\
\text{tp}_\alpha^2 \left[\left(\frac{p, r}{\bar{a}} \right) \right], M & \quad \text{for} \quad \left(\frac{p, r}{\bar{a}} \right) \in \Gamma_1, \bar{a} \subseteq M \\
\text{tp}_\alpha^3 \left[\left(\frac{\bar{b}}{\bar{a}} \right) \right], M & \quad \text{for} \quad \left(\frac{\bar{b}}{\bar{a}} \right) \in \Gamma_3^e, \bar{a} \subseteq \bar{b} \subseteq M
\end{align*}
\]

Case A \(\alpha = 0 \):

\[
\begin{align*}
\text{tp}_\alpha^1 \left[\left(\frac{p}{\bar{a}} \right) \right], M & \quad \text{is} \quad \text{tp}((c, \bar{a}), \emptyset) \quad \text{for any} \quad c \text{ realizing } p. \\
\text{tp}_\alpha^2 \left[\left(\frac{p, r}{\bar{a}} \right) \right], M & \quad \text{is} \quad \text{tp}((c, \bar{b}, \bar{a}), \emptyset) \quad \text{for any} \quad (c, \bar{b}) \text{ realizing } r \\
\text{tp}_\alpha^3 \left[\left(\frac{\bar{b}}{\bar{a}} \right) \right], M & \quad \text{is} \quad \text{tp}((\bar{b}, \bar{a}), \emptyset)
\end{align*}
\]

(i.e., the type and the division of the variables between the sequences).

Case B \(\alpha = \beta + 1 \):

(a) \(\text{tp}_\alpha^1 \left[\left(\frac{p}{\bar{a}} \right) \right], M \) is:

Subcase a1: if \(p \) has depth zero, it is \(w_p(M/\bar{a}) \) (the \(p \)-weight, equivalently, the dimension)

Subcase a2: if \(p \) has depth > 0 (hence is trivial), then it is \(\{ \langle y, \lambda_{\bar{a}, p}^y \rangle : y \} \) where

\[
\lambda_{\bar{a}, p}^y = \dim(I_{\bar{a}, p}[M], a) \quad \text{where} \quad I_{\bar{a}, p}[M] = \left\{ c \in M : c \text{ realize } p \text{ and } y = \text{tp}_\beta^3 \left[\left(\frac{a\ell(a+c)}{a\ell(a)} \right) , M \right] \right. \\
\left. \begin{array}{l}
\text{where } \bar{a}^* \text{ list } acl(\bar{a}) \text{ and } \bar{c}^* \text{ list } acl(\bar{a} + c) \end{array} \right\}
\]

an alternative probably more transparent and simpler in use is:
\[\lambda_{\bar{a},p} = \dim \left\{ c \in M : c \text{ realizes } p \text{ and} \right. \]
\[y = \{ \text{tp}_3^\beta \left[\frac{ac\ell(\bar{a} + c')}{ac\ell(\bar{a})} \right], M \} : c' \in p(M) \text{ and } c' \bigcup c \} \]
\[\text{pedantically } y = \{ \text{tp}_3^\beta \left[\frac{<c' > \bar{a}^*}{\bar{a}^* \bar{a}} \right], M \} \text{ where} \]
\[\bar{a}^* \text{ list } acl(\bar{a}) \text{ and} \]
\[\bar{c}^* \text{ list } acl(\bar{a} + c'), c' \in p(M) \text{ and } c' \bigcup c \} \}

(b) \text{tp}_a^2 \left[(\bar{p},r) \right], M \text{ is:} \]
\[\text{tp}_a^1 \left[\frac{c}{b^+} \right], M \text{ for any } (c, \bar{b}) \text{ realizing } r, b^+ = ac\ell(\bar{a} + \bar{b}), \text{i.e., } b^+ \text{ lists } acl(\bar{a} + \bar{b}) \text{ (so not well defined if we get at least two different cases; so remember } c/b^+ \in S(b^+)). \]

(c) \text{tp}_a^3 \left[\frac{\bar{b}}{\bar{a}} \right], M \text{ is} \]
\[\left\{ \langle p, \text{tp}_a^2 \left[(\bar{p},r) \right], M \rangle : (\bar{p},r) \in \Gamma_2^* \text{ and } p \perp \bar{a} \right\} . \]

Case C: \(\alpha \text{ limit} \): For any \(\ell \in \{1,2,3\} \) and suitable object OB:
\[\text{tp}_a^\ell[OB,M] = \langle \text{tp}_b^\ell[OB,M] : \beta < \alpha \rangle . \]

2.5 Definition. 1) For \(\left(\bar{p} \right)_a \in \Gamma_1 \) where \(\bar{a} \in M \), let (remembering 1.14(8)):
\[\mathcal{P}_M^{\left(\bar{a} \right)} = \left\{ q \in S(M) : q \text{ regular and } : q \pm p \text{ or for some } \right. \]
\[c \in p(M) \text{ we have } q \in \mathcal{P}_M \left(\bar{a} \right) \} \} . \]

2) For \(\left(\bar{p},r \right)_a \in \Gamma_2 \) let
\[\mathcal{P}_M^{\left(\bar{p},r \right)_a} = \left\{ q \in S(M) : q \text{ regular and } : q \pm p \text{ or for some } \right. \]
\[(c,\bar{b}) \in r(M), q \in \mathcal{P}_M \left(\bar{a} + \bar{b} \right) \} . \]
3) For a set \mathcal{P} of (stationary) regular types not orthogonal to M_1, let $M_1 \leq \mathcal{P} M_2$ means $M_1 \prec M_2$ and for every $p \in \mathcal{P}$ and $\bar{c} \in M_2, M_1 \perp p$.

4) If (in (3)), $\mathcal{P} = \mathcal{P}^{M_1}_{(\bar{a})}$ we may write (\bar{p}) instead \mathcal{P}, similarly if $\mathcal{P} = \mathcal{P}^{M_1}_{(\bar{a}, \bar{r})}$ we may write (\bar{p}, \bar{r}).

2.6 Claim. :
1) From $tp_{\alpha}^{1}(\bar{p}, M)$ we can compute $tp_{\alpha}^{1}(\bar{p}, M)$ if $Dp(p) < \alpha$.

2) From $tp_{\alpha}^{2}(\bar{p}, q), M$ we can compute $tp_{\alpha}^{2}(\bar{p}, q), M$ if $Dp(p) < \alpha$.

3) From $tp_{\alpha}^{3}(\bar{b}, M)$ we can compute $tp_{\alpha}^{3}(\bar{b}, M)$ if $Dp(\bar{b}/\bar{a}) < \alpha$.

4) If Definition 2.5(2) we can replace “some $(c, \bar{b}) \in r(M)$” by “every $(c, \bar{b}) \in r(M)$”.

Proof. 1),2),3) We prove this by induction on α. By the definition.
4) Left to the reader.

2.7 Observation. From $tp_{\alpha}(OB, M)$ we can compute $tp_{\beta}(OB, M)$ and $tp_{\beta}[OB, M]$ is well defined if $\beta \leq \alpha$ and the former is well defined.

2.8 Lemma. For every ordinal α the following holds:

1) tp_{α}^{1} is well defined
2) tp_{α}^{2} is well defined.
3) tp_{α}^{3} is well defined.
4) If $\bar{a} \in M_1, (\bar{p}) \in \Gamma_1, M_1 \leq (\bar{a}) M_2$ then

$$tp_{\alpha}^{1}[\bar{p}], M_1 = tp_{\alpha}^{1}[\bar{p}], M_2.$$

5) If $\bar{a} \in M_1, (\bar{p}, \bar{r}) \in \Gamma_2, M_1 \leq (\bar{a}) M_2$ then

$$tp_{\alpha}^{2}[\bar{p}, \bar{r}], M_1 = tp_{\alpha}^{2}[\bar{p}, \bar{r}], M_2.$$

6) If $\bar{a} \subseteq \bar{b} \subseteq M_1, (\bar{b}) \in \Gamma_3, M_1 \leq (\bar{a}) M_2$ then

$$tp_{\alpha}^{3}[\bar{b}], M_1 = tp_{\alpha}^{3}[\bar{b}], M_2.$$

\[5\text{i.e. in all the cases we have tried to define it in Definition 2.9}\]
Proof. We prove it, by induction on α, simultaneously (for all clauses and parameters).

If α is zero, they hold trivially by the definition.

If α is limit, they hold trivially by the definition and induction hypothesis. So for the rest of the proof let $\alpha = \beta + 1$.

Proof of (1)$_\alpha$. If p has depth zero — check directly.

If p has depth > 0 - by (3)$_\beta$

(i.e. induction hypothesis) no problem.

Proof of (2)$_\alpha$. Like 1.27 (and (4)$_\alpha$).

Proof of (3)$_\alpha$. Like (2)$_\alpha$.

Proof of (4)$_\alpha$. Like 1.26 (and (3)$_\beta$,(6)$_\beta$).

Proof of (5)$_\alpha$. By (2)$_\alpha$ we can look only at (c, b^+) in M_1, then use (4)$_\alpha$.

Proof of (6)$_\alpha$. By (5)$_\alpha$. $\square_{2,8}$

2.9 Lemma. For an ordinal α restricting ourselves to the cases (the types p, p_1 being) of depth $< \alpha$:

(A1) Assume $\binom{p}{\vec{a}} \in \Gamma_1$, $\vec{a} \subseteq \vec{a}_1 \subseteq M, \vec{a}_1$ is ϵ-finite, $\vec{a}_1 \perp p$ and p_1 is the station-

arization of p over \vec{a}_1.

Then from $tp^{1}_\alpha[(\binom{p}{\vec{a}}), M]$ we can compute $tp^{1}_\alpha[(\binom{p_1}{\vec{a}_1}), M]$.

(A2) Under the assumption of (A1) also the inverse computations are O.K.

(A3) Assume $\binom{p_1}{\vec{a}_1} \in \Gamma_1$ for $\ell = 1, 2, \vec{a} \subseteq M$ and $p_1 \pm p_2$.

Then from $tp^{1}_\alpha[(\binom{p_1}{\vec{a}_1}), M]$ (and $tp((\vec{a}, c_1, c_2), \emptyset)$ where c_1, c_2 realizes p_1, p_2 respectively, of course) we can compute $tp^{1}_\alpha[(\binom{p_2}{\vec{a}_1}), M]$.

(B1) Assume $\binom{p_\ell,r_\ell}{\vec{a}_1} \in \Gamma_2^{sc}$ for $\ell = 1, 2, \vec{a} \subseteq M$ and $p_1 \pm p_2$.

Then (from the first order information on $\vec{a}, p_1, p_2, r_1, r_2$, of course, and)

$tp^{2}_\alpha[(\binom{p_1,r_1}{\vec{a}_1}, M)]$ we can compute $tp^{2}_\alpha[(\binom{p_2,r_2}{\vec{a}_1}, M)]$.

(B2) Assume $\vec{a} \subseteq \vec{a}_1 \subseteq M, \vec{a}_1 \perp p, \binom{p,r}{\vec{a}} \in \Gamma_2^{c}, r \subseteq r_1 \in S(\vec{a}_1), r_1$ does not fork over \vec{a}, (so $\binom{p_1}{\vec{a}_1} \in \Gamma_2$).

Then from $tp^{2}_\alpha[(\binom{p_1}{\vec{a}_1}, M)]$ we can compute $tp^{2}_\alpha[(\binom{p_2}{\vec{a}_1}, M)]$.

(B3) Under the assumption of (B2), the inverse computation are O.K.

(C1) Assume \(\bar{b} /\bar{a} \in \Gamma_3, \bar{a} \subseteq \bar{b} \subseteq M, \bar{a} \subseteq \bar{a}_1, \bar{b} \cup \bar{a}_1, \bar{a}_1 = acl(\bar{a}_1 + \bar{b})\).

Then from \(tp^3_\alpha[(\bar{b} /\bar{a}), M]\) we can compute \(tp^3_\alpha[(\bar{a}_1 /\bar{a}), M]\).

(C2) Under the assumptions of (C1) the inverse computation is O.K.

(C3) Assume \(\bar{b} /\bar{a} \in \Gamma_3, \bar{b} \subseteq \bar{b}^*, \bar{b}^* \perp_{\bar{a}} \bar{a}^* = acl(\bar{b}^*)\). Then from \(tp^3_\alpha[(\bar{b} /\bar{a}), M]\) we can compute

\[
\left\{tp^3_\alpha[(\bar{b}^* /\bar{a}), M] : \bar{b} \subseteq \bar{b}^* \subseteq M \text{ and } \bar{b}^* /\bar{b} = \bar{b}^* /\bar{b}\right\}.
\]

Proof. We prove it, simultaneously, for all clauses and parameters, by induction on \(\alpha\) and the order of the clauses.

For \(\alpha = 0\): easy.

For \(\alpha\) limit: very easy.

So assume \(\alpha = \beta + 1\).

Proof of (A1)\(\alpha\). As \(p\) is stationary \(\perp \bar{a}_1\), for every \(c \in p(M), c /\bar{a} \vdash c /\bar{a}_1\), which necessarily is \(p_1\), hence \(p(M) = p_1(M)\). Also the dependency relation on \(p(M)\) is the same over \(\bar{a}_1\), hence dimension. So it suffices to show:

\((\ast)\) for \(c \in p(M)\), from \(tp^3_\beta[(\frac{acl(\bar{a}+c)}{acl(\bar{a})}), M]\) we can compute \(tp^3_\beta[(\frac{acl(\bar{a}_1+c)}{acl(\bar{a}_1)}), M]\).

But this holds by (C1)\(\beta\).

Proof of (A2)\(\alpha\). Similar using (C2)\(\beta\).

Proof of (A3)\(\alpha\). If \(p_1\) (equivalently \(p_2\)) has depth zero — the dimensions are equal.

Assume they have depth \(> 0\) hence are trivial and dependency over \(\bar{a}\) is an equivalence relation on \(p_1(M) \cup p_2(M)\).

Now for \(c_1 \in p_1(M)\), from \(tp^3_\beta[(\frac{acl(\bar{a}+c_1)}{acl(\bar{a})}), M]\) we can compute for every complete type over \(acl(\bar{a} + c_1)\) not forking over \(\bar{a}\), and \(\bar{d}\) realizing \(r\), \(tp^3_\beta[(\frac{acl(\bar{a}_1+\bar{c}_1)}{acl(\bar{a}_1)}, M)]\) — by (C1)\(\beta\), then we can compute for each such \(r, \bar{d}\)
\[
\left\{ \text{tp}_\beta^3 \left[\left(\frac{\text{acl}(\bar{a} + \bar{d} + c_2)}{\text{acl}(\bar{a} + \bar{d})}, M \right) \right] : c_2 \in p_2(M) \text{ and } \frac{c_2}{\text{acl}(\bar{a} + \bar{d} + c_1)} \perp_a (\bar{a} + \bar{d}) \right\}
\]

(necessarily \(c_2 \cup \bar{d}\))

(this by \((C3)_\beta\)).

Proof of \((B1)_\alpha\). As in earlier cases we can restrict ourselves to the case \(\text{Dp}(p_\ell) > 0\). We can find \((c_\ell, b_\ell) \in r_\ell(M), \bar{b}_1 \cup \bar{d}_1, c_1 \bar{b}_1 \cup \bar{b}_2\) (by [Sh:c, X,7.3](6)). By 2.8(2) (and the definition) from \(\text{tp}_\alpha^1\left[\left(\frac{p_{r_1}}{\text{acl}(\bar{a} + b_1)}, M\right)\right]\) we can compute that it is equal to \(\text{tp}_\alpha^1\left[\left(\frac{c_1}{\text{acl}(\bar{a} + b_1)}\right), M\right]\).

By \((A1)_\alpha\) we can compute \(\text{tp}_\alpha^1\left[\left(\frac{c_2}{\text{acl}(\bar{a} + b_1 + b_2)}\right), M\right]\) hence by \((A3)_\alpha\) we can compute \(\text{tp}_\alpha^1\left[\left(\frac{c_2}{\text{acl}(\bar{a} + b_1 + b_2)}\right), M\right]\).

Now use \((A2)_\alpha\) to compute \(\text{tp}_\alpha^1\left[\left(\frac{c_2}{\text{acl}(\bar{a} + b_2)}\right), M\right]\) and by 2.8(2), 2.4(2) it is equal to \(\text{tp}_\alpha^2\left[\left(\frac{p_{r_2}}{\bar{a}}\right), M\right]\).

Proof of \((B2)_\alpha\). Choose \((c, \bar{b}) \in r(M)\) such that \(c \bar{b} \cup \bar{a}_1\).

From \(\text{tp}_\alpha^2\left[\left(\frac{p_{r_1}}{\bar{a}}\right), M\right]\) we can compute \(\text{tp}_\alpha^1\left[\left(\frac{c}{\bar{a} + \bar{b}}\right), M\right]\) (just — see 2.8(2) and Definition 2.4), from it we can compute \(\text{tp}_\alpha^1\left[\left(\frac{c}{\bar{a} + \bar{b} + \bar{a}_1}\right), M\right]\) by \((A1)_\alpha\), from it we can compute \(\text{tp}_\alpha^2\left[\left(\frac{p_{r_2}}{\bar{a}_1}\right), M\right]\) (see 2.8(2) and Definition 2.4).

Proof of \((B3)_\alpha\). Let \(\left(\frac{p_{r_1}}{b_1}\right) \in \Gamma_\ell, p \perp \bar{a}_1\) be given. So necessarily \(\frac{\bar{a}_1}{\bar{a}} = p\) (this to enable us to use \((B2), 3\)). It suffices to compute \(\text{tp}_\alpha^2\left[\left(\frac{p_{r_1}}{b_1}\right), M\right]\) and we can discard the case \(\text{Dp}(p) = 0\).

So \(p\) is regular \(\pm \bar{a}_1, \perp \bar{a}_1\), hence \(p \pm \bar{b}_1 \perp \bar{a}_1\), and as \(\bar{a} \subseteq \bar{b}, \bar{a} = \text{acl}(\bar{b})\) we can find \((\frac{p_{r_1}}{\bar{b}_1}) \in \Gamma_2\), (see 2.3) and we know \(\text{tp}_\alpha^2\left[\left(\frac{p_{r_1}}{\bar{b}_1}\right), M\right]\), and we can find \(r_2\), a complete type over \(\bar{b}_1\) extending \(r_1\) which does not fork over \(\bar{b}_1\). From \(\text{tp}_\alpha^2\left[\left(\frac{p_{r_1}}{\bar{b}_1}\right), M\right]\) we can compute \(\text{tp}_\alpha^2\left[\left(\frac{p_{r_2}}{\bar{b}_1}\right), M\right]\) by \((B2)_\alpha\), and from it \(\text{tp}_\alpha^2\left[\left(\frac{p_{r_1}}{b_1}\right), M\right]\) by \((B1)_\alpha\).

Proof of \((C2)_\alpha\). Similar, use \((B3)_\alpha\) instead of \((B2)_\alpha\).
Proof of $(C3)_\alpha$. Without loss of generality $\frac{b^*}{b}$ is semi regular, let p^* be a regular type not orthogonal to it and without loss of generality $\text{Dp}(p^*) > 0 \Rightarrow \frac{b^*}{b}$ regular (as in 2.3).

If p^* has depth zero, then the only p appearing in the definition $\text{tp}_\alpha^3(\frac{b^*}{b}, M)$ is p^* (up to \pm) and this is easy. Then tp_α^2 is just the dimension and we have no problem.

So assume p^* has depth > 0. We can by $(B1)_\alpha, (B2)_\alpha$ compute $\text{tp}_\alpha^2 [(p', q'), M]$ when $p' \pm \bar{b}, p' \pm p^*$ (regardless of the choice of \bar{b}^*). Next assume $p' \pm p^*$; by $(B1)_\alpha$ without loss of generality q' does not fork over \bar{b}. As $\text{Dp}(p^*) > 0$, it is trivial (and we assume $w_p(\bar{b}^*, \bar{b}) = 1$) hence \bar{b}^*/\bar{b} is regular so in $\text{tp}_\alpha^2 [(p', q'), M]$ we just lose a weight 1 for one specific tp_α^3 type: the one \bar{b}^* realizes concerning which we have a free choice. We are left with the cases $p' \pm \bar{b}, p' \pm p^*$; well we know tp_α^3, but we have to add tp_α^3? Use Claim 2.6(3) (and $(A1)_\alpha$ as we add a parameter).

2.10 Claim. $\text{tp}_\gamma^3 [\frac{b^*}{b}, a, M], \text{tp}_\gamma^3 [\bar{b}, a, M], \text{tp}_\gamma^3 [M]$ are expressible by formulas in $L_{\gamma^\infty, \aleph_{\gamma}}^\gamma$ (d.q.).

By 2.9 we have

2.11 Conclusion. If $\text{Dp}(T) < \infty$ then:
1) From $\text{tp}_\infty^3 [(\frac{B}{A}), M]$ we can compute $\text{tp}_\infty^3 [(\frac{B}{A}), M]$ (the type from §1).
2) Similarly from $\text{tp}_\infty^3 [A, M]$ we can compute $\text{tp}_\infty^3 [(A), M]$.

From 2.6, 2.10, 2.11 and 1.30 we get

2.12 Corollary. If $\gamma = \text{Dp}(T)$ and M, N are \aleph_γ-saturated, then

$$M \cong N \iff \text{tp}_\gamma^3 [M] = \text{tp}_\gamma^3 [N] \iff M \cong L_{\gamma^\infty, \aleph_{\gamma}}^\gamma (d.q.) N.$$
APPENDIX

The following clarifies several issues raised by Baldwin. A consequence of

the existence of nice invariants for characterization up to isomorphism (or
characterization of the models up to isomorphism by their \(\mathcal{L} \)-theory for
suitable logic \(\mathcal{L} \))

naturally give absoluteness, e.g. extending the universe say by nice forcing preserve
non-isomorphism. So negative results for

\((*)\) is non-isomorphism (of models of \(T \)) preserved by forcing by “nice forcing
notions”?

implies that we cannot characterize models up to isomorphism by their \(\mathcal{L} \)-theory
when the logic \(\mathcal{L} \) is “nice”, i.e. when \(\text{Th}_{\mathcal{L}}(M) \) preserved by nice forcing notions.
So coding a stationary set by the isomorphism type can be interpreted as strong
evidence of “no nice invariants”, see [Sh 220]. Baldwin, Laskowski, Shelah [BLSh
464] show that not only for every unsuperstable; but also for some quite trivial
superstable (with NDOP, NOTOP) countable \(T \), there are non-isomorphic models
which can be made isomorphic by some ccc (even \(\sigma \)-centered) forcing notion. This
shows that the lack of a really finite characterization is serious.
Can we still get from the characterization in this paper an absoluteness result?
Note that for preserving \(\aleph_{\varepsilon} \)-saturation (for simplicity for models of countable \(T \))
we need to add no reals\(^6\), and in order not to erase distinction of dimensions we
want not to collapse cardinals, so the following questions is natural, for a first order
(countable) complete \(T \):

\((*)_{T} \) assume \(V_1 \subseteq V_2 \) are transitive models of ZFC with the same cardinals
and reals, the theory \(T \in V_1 \). If the models \(M_1, M_2 \) are from \(V_1 \) and they are
models of \(T \) not isomorphic in \(V_1 \); must they still be not isomorphic in \(V_2 \)\(^7\)

\((*)_{T,\kappa} \) like \((*)_{T}^{1} \) we assume in addition \(\mathcal{P}(\kappa)^{V_1} = \mathcal{P}(\kappa)^{V_2} \).

2.13 Theorem. 1) For countable first order complete \(T \) the answer to \((*)_{T} \) and
\((*)_{T,\kappa} \) for any \(\kappa \) is negative except when possibly \(T \) is superstable, NDOP, NOTOP.
2) For any first order complete \(T \) for the class of \(\aleph_{\varepsilon} \)-saturated models, the answer
to \((*)_{T,[T]} \) is negative except possible when \(T \) is superstable with NDOP.

\(^6\) (the set of \(\{\text{acl}(\bar{a}) : \bar{a} \in \omega^\omega M\} \) is absolute but the set of their enumeration and of the
\(\{f \upharpoonright (\text{acl}(\bar{a})) : f \in \text{AUT}(\mathcal{C}), f(\bar{a}) = \bar{a}\} \) is not).

\(^7\) Note we did not say they have the same \(\omega \)-sequences of ordinals, e.g. if \(V_2 = V_1^{\mathcal{P}, P \text{ Prikry}} \)
forcing, then the assumption of \((*)_{T} \) holds though a new \(\omega \)-sequence of ordinals was added. So
for \(V_1 \subseteq V_2 \) as in \((*)_{T} \), the \(\mathcal{L}_{\infty,\aleph_1} \)-theory is not necessarily preserved.
Proof. By quoting.

So we restrict ourselves to these. It should be quite transparent that $L_{\infty, \kappa, (q.d.)}$-theory is preserved from V_1 to V_2 (as well as the set of sentences in the logic).

Hence

2.14 Theorem. For the class of κ-saturated models of superstable NDOP, NTO-TOP theory T the answer to $(*)_{T, |T|}$ is yes.

Proof. In V_1 for $\ell = 1, 2$ let $\sA_\ell = \{ A \subseteq M^\eq_\ell : A$ is ε-finite and $\acl(A) = A \}$. Clearly the same definition gives \sA_ℓ in V_2 and M_1, M_2 are κ-saturated also in V_2.

$A \in \sA_\ell \Rightarrow |A| \leq |T|$ and let $\sF^* = \{ f :$ for some $A_1 \in \sA_2$ and A_2, \sA_2, f is a one-to-one function from A_1 onto A_2 which is an (M_1, M_2)-elementary mapping$\}$. Again this definition gives the same set. We can define a rank function $\rk: \sF^* \to \Ord \cup \{ \infty \}$ such that $\rk(f) = \infty$ iff $(M_1, a)_{a \in \Dom(f)} \equiv_{L_{\infty, \kappa, (d.q.)}} (M_2, f(a))_{a \in \Dom(f)}$ and it too is absolute.

Easily in both universes

(a) $M_1 \cong M_2$ iff $M_1 \equiv_{L_{\infty, \kappa, (d.q.)}} M_2$.

[Why? By Theorem 1.5.]

(b) $M_2 \equiv_{L_{\infty, \kappa_0, (d.q.)}} M_2$ iff there is $\sF \subseteq \sF^*$ as in $\otimes M_1, M_2$ from 1.4.

[Why? By 1.4.]

(c) there is $\sF \subseteq \sF^*$ as in $\otimes M_1, M_2$ from 1.4 iff ∞ belongs to the range of the rank function.

[Why? Well known.]
REFERENCES.

