BOREL WHITEHEAD GROUPS SAHARON SHELAH Institute of Mathematics The Hebrew University Jerusalem, Israel Rutgers University Mathematics Department New Brunswick, NJ USA > **MSRI** Berkeley, CA USA ABSTRACT. We investigate the Whiteheadness of Borel abelian groups (\(\ceig_1\)-free, without loss of generality as otherwise this is trivial). We show that CH (and even WCH) implies any such abelian group is free, and always \aleph_2 -free. I would like to thank Alice Leonhardt for the beautiful typing. First Typed - 98/Mar/4 Latest Revision - 99/May/17 §1, §2 done, Fall '89 Publication no. 402 ¹⁹⁹⁸ Mathematics Subject Classification 03C60, 03E15, 20K20. Key words and phrases. Abelian groups, Whitehead groups, Borel sets, Borel Abelian groups. # §0 Introduction It is independent of set theory whether every Whitehead group is free [Sh 44]. The problem is called Whitehead's problem. In addition, Whitehead's problem is independent of set theory even under the continuum hypothesis [Sh:98]. An interesting problem suggested by Dave Marker is the Borel version of Whitehead's problem, namely, Question: Is every Whitehead group coded by a Borel set free? (For a precise definition of a Borel code, see below.) In the present paper, we will give a partial answer to this question. **0.1 Definition.** 1) We say that $\bar{\psi} = \langle \psi_0, \psi_1 \rangle$ is a code for a Borel abelian group - (a) $\psi_0(\dots,\dots)$ codes a Borel equivalence relation $E=E^{\bar{\psi}}$ on a subset $B_*=B_*^{\bar{\psi}}$ of $^{\omega}2$ so $[\psi_0(\eta,\eta)\leftrightarrow\eta\in B_*]$ and $[\psi_0(\eta,\nu)\to\eta\in B_*$ & $\nu\in B_*]$, the group will have a set of elements $B = B_*^{\bar{\psi}}/E^{\bar{\psi}}$ - (b) $\psi_1 = \psi_1(x, y, z)$ codes a Borel set of triples from $^{\omega}2$ such that $\{(x/E^{\bar{\psi}},y/E^{\bar{\psi}},z/E^{\bar{\psi}}):\psi_1(x,y,z)\}$ is the graph of a function from $B\times B$ to B such that (B, +) is an abelian group. - 2) We say Borel⁺ if (b) is replaced by: - (b)' ψ_1 codes a Borel function from $B_* \times B_*$ to B_* which respects $E^{\bar{\psi}}$, the function is called + and (B, +) is an abelian group (well, we should denote the function which + induces from $(B_*/E^{\bar{\psi}}) \times (B_*/E^{\bar{\psi}})$ into $B_*/E^{\bar{\psi}}$ by e.g. $+_{E^{\bar{\psi}}}$, but are not strict). - 3) We let $B^{\bar{\psi}} = B_{\bar{\psi}} = (B, +)$ be the group coded by $\bar{\psi}$; abusing notation we may write B for $B_{\bar{\psi}}$. - 4) An abelian group B is called Borel if it has a Borel code similarly "Borel $^+$ ". ### Clearly 0.2 Observation: The set of codes for Borel abelian groups is Π_2^1 . An interesting problem suggested by Dave Marker is the Borel version of Whitehead's problem: namely 0.3 Question: Is every Borel⁺ Whitehead group free? In this paper we will give a partial answer to this question, even for the "Borel" (without +) version. We will show that every Borel Whitehead group is \aleph_2 -free. In particular, the continuum hypothesis implies that every Borel Whitehead group is free. This latter result provides a contrast to the author's proof ([Sh:98]) that it is consistent with CH that there is a Whitehead group of cardinality \aleph_1 which is not We refer the reader to [EM] for the necessary background material on abelian groups. Suppose B is an uncountable \aleph_1 -free abelian group. Let $S_0 = \{G \subset B : |G| = \aleph_0\}$ and B/G is not \aleph_1 -free. It is well known that if B is not \aleph_2 -free, then S_0 is stationary. We will argue that the converse is true for Borel abelian groups and the answer is quite absolute. Lastly, we deal with weakening Borel to Souslin. 0.4 <u>Question</u>: If B is an \aleph_2 -free Borel abelian group, what can be the n in the analysis of a nonfree \aleph_2 -free abelian subgroup of B from [Sh 161] (or see [EM] or [Sh 523])? We thank Todd Eisworth and the referee for corrections. # §1 On №2-Freeness 1.1 Hypothesis. Let B be an \aleph_1 -free Borel abelian group. Let $\bar{\psi}$ be a Borel code for B. Let $S_B = S_{\bar{\psi}} = \{K \subseteq B : K \text{ is a countable subgroup and } B/K \text{ is not } \aleph_1\text{-free}\}.$ **1.2 Lemma.** 1) If S_B is stationary, then B is not \aleph_2 -free. 2) Moreover, there is an increasing continuous sequence $\langle G_i : i < \omega_1 \rangle$ of countable subgroups of B such that G_{i+1}/G_i is not free for each $i < \omega_1$. Remark. On such proof in model theory see [Sh 43, §2], [BKM78] and [Sch85]. *Proof.* We work in a universe $V \models ZFC$. Force with $\mathbf{P} = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function from } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p \text{ is a function } P = \{p : p : p \text{ is a function } P = \{p :$ some $\alpha < \omega_1$ to ω_2 . Let $G \subseteq \mathbf{P}$ be V-generic and let V[G] denote the generic extension. Since **P** is \aleph_1 -closed, forcing with **P** adds no new reals. Thus $\bar{\psi}$ still codes B in the generic extension, i.e. $B^{V[G]}_{\bar{\psi}} = B^V_{\bar{\psi}}$. Forcing with **P** also adds no new countable subsets of B hence "B is \aleph_1 -free" holds in V iff it holds in V[G]. Similarly if $K \subset B$ is countable, then "B/K is \aleph_1 -free" holds in V iff it holds in V[G]. Thus, $S_{\bar{\psi}}^V = S_{\bar{\psi}}^{V[G]}$. Moreover, since **P** is proper, $S_{\bar{\psi}}$ remains stationary (see [Sh:f, Ch.III]). Since $V[G] \models CH$, we can write $$B = \bigcup_{\alpha < \omega_1} B_{\alpha},$$ where $\bar{B} = \langle B_{\alpha} : \alpha < \omega_1 \rangle$ is an increasing continuous chain of countable pure subgroups. Let $S = \{\alpha < \omega_1 : B/B_\alpha \text{ is not } \aleph_1\text{-free}\}$. Since $S_{\bar{\psi}}$ is stationary (as a subset of $[B]^{\aleph_0}$), clearly S is a stationary subset of ω_1 . So $V[G] \models$ "B is not free". By Pontryagin's criteria for each $\alpha \in S$ there are $n_{\alpha} \in \omega$ and $a_0^{\alpha}, \ldots, a_{n_{\alpha}}^{\alpha}$ such that $$PC(B_{\alpha} \cup \{a_0^{\alpha}, \dots, a_{n_{\alpha}}^{\alpha}\})/B_{\alpha}$$ is not free, where PC(X) = PC(X, B) is the pure closure of the subgroup of B which X generates. We choose n_{α} minimal with this property. Work in V[G]. Let κ be a regular cardinal such that $\mathcal{H}(\kappa)$ satisfies enough axioms of set theory to handle all of our arguments, and let <* be a well ordering of $\mathcal{H}(\kappa)$. Let $N \leq (\mathcal{H}(\kappa), \in, <^*)$ be countable such that $\bar{\psi}, S, \langle B_\alpha : \alpha < \omega_1 \rangle$ and $\langle \langle a_0^{\alpha}, \dots, a_{n_{\alpha}}^{\alpha} \rangle : \alpha < \omega_1 \rangle$ belong to N. The model N has been built in V[G], but since forcing with **P** adds no new reals, there is a transitive model $N_0 \in V$ isomorphic to N and let h be an isomorphism from N onto N_0 . Clearly h maps ψ to ψ . From now on we work in V. Hence $\mathcal{H}(\kappa)$ below is different from the one above. We build an increasing continuous elementary chain $\langle N_{\alpha} : \alpha < \omega_1 \rangle$, choosing N_{α} by induction on α , each N_{α} countable as follows. Note the N_{α} 's are neither necessarily transitive nor even well founded. Let $\Gamma = \Gamma_{\alpha} = \{\varphi(v) : N_{\alpha} \models \text{``}\{\delta \in h(S) : \varphi(\delta)\}\)$ is stationary" and $\varphi \in \Phi_{\alpha}$ where Φ_{α} is the set of first order formulas with parameters from N_{α} in the vocabulary $\{\in,<^*\}$ and with the only free variable v. Let $\leq_{\Gamma_{\alpha}}$ be the following partial order of $\Gamma_{\alpha} : \theta \leq_{\Gamma_{\alpha}} \varphi$ iff $N_{\alpha} \models \text{``}(\forall x)[\varphi(x) \to \theta(x)]$ ". Let t_{α} be a subset of Γ_{α} such that: - (a) t_{α} is downward closed, i.e. if $\theta \leq_{\Gamma_{\alpha}} \varphi$ and $\varphi \in t_{\alpha}$ then $\theta \in t_{\alpha}$ - (b) t_{α} is directed - (c) for some countable $M_{\alpha} \prec (\mathcal{H}(\kappa), \in, <^*)$ to which N_{α} belongs, if $\Gamma \in M_{\alpha}, \Gamma \subseteq \Gamma_{\alpha}$ is a dense subset of Γ_{α} then $t_{\alpha} \cap \Gamma \neq \emptyset$. Clearly by the density if $\varphi \in \Gamma_{\alpha}$ and $\theta \in \Phi_{\alpha}$, then $\varphi \wedge \theta \in \Gamma_{\alpha}$ or $\varphi \wedge \neg \theta \in \Gamma_{\alpha}$. Thus, t_{α} is a complete type over N_{α} . Since N_{α} has definable Skolem functions (as $<^*$ was a well ordering), we can let $N_{\alpha+1}$ be the Skolem hull of $N_{\alpha} \cup \{b_{\alpha}\}$ where $N_{\alpha} \prec N_{\alpha+1}, b_{\alpha} \in N_{\alpha+1}$ realizes t_{α} . We claim that $N_{\alpha+1}$ has no "new natural numbers", i.e. if $N_{\alpha+1} \models$ "c is a natural numbers" then $c \in N_{\alpha}$. Why? As $c \in N_{\alpha+1}$ clearly for some $f \in N_{\alpha}$ we have $N_{\alpha} \models$ "f is a function with domain ω_1 , the countable ordinals" and $N_{\alpha+1} \models$ " $f(b_{\alpha}) = c$ ". Let $$\mathscr{D}_f = \big\{ \varphi(v) \in \Gamma_\alpha : N_\alpha \models \text{``}(\forall x)(\varphi(x) \to f(x) \text{ is not a natural number}) \text{''}$$ or for some $d \in N_\alpha$ we have $$N_\alpha \models \text{``}(\forall x)(\varphi(x) \to f(x) = d) \text{''} \big\}.$$ It is easy to check that \mathscr{D}_f is a subset of Γ_{α} , it belongs to M_{α} and it is a dense subset of Γ_{α} ; hence $t_{\alpha} \cap \mathscr{D}_f \neq \emptyset$. Let $\varphi(x) \in \mathscr{D}_f \cap t_{\alpha}$, so $N_{\alpha+1} \models \varphi[b_{\alpha}]$, and by the definition of \mathscr{D}_f we get the desired conclusion. If $N_{\alpha} \models$ "b is a countable ordinal" then $N_{\alpha+1} \models$ "b < b_{α} & b_{α} is a countable ordinal". Also $N_{\alpha+1} \models$ " $b_{\alpha} \in h(S)$ ". We claim that b_{α} is the least ordinal of $N_{\alpha+1} \backslash N_{\alpha}$ in the sense of $N_{\alpha+1}$. Assume $N_{\alpha+1} \models$ "c is a countable ordinal, $c < b_{\alpha}$ " so for some $f \in N_{\alpha}$ we have $N_{\alpha} \models$ " $f : \omega_1 \to \omega_1$ is a function" and $N_{\alpha+1} \models$ " $c = f(b_{\alpha})$ ", $N_{\alpha+1} \models$ " $f(b_{\alpha}) < b_{\alpha}$ ". Then $N_{\alpha} \models$ " $\{\beta \in h(S) : f(\beta) < \beta\}$ is a stationary subset of ω_1 ". Let $\mathscr{D} = \{\varphi(v) \in \Gamma_{\alpha} : N_{\alpha} \models$ " $(\forall v)(\varphi(v) \to v)$ is a countable ordinal)" and $N_{\alpha} \models$ " $(\exists \gamma < \omega_1)(\forall v)(\varphi(v) \to f(v) = \gamma) \lor (\forall v)(\varphi(v) \to f(v) \ge v)$ "}. By Fodor's lemma (which N_{α} satisfies) \mathscr{D} is a dense subset of Γ_{α} and clearly $\mathscr{D} \in M_{\alpha}$. Since t_{α} is sufficiently generic, there is a $\gamma \in N_{\alpha}$ such that $N_{\alpha+1} \models$ " $f(b_{\alpha}) = \gamma$ ". Now N_{α} is not necessarily wellfounded but it has standard ω and without loss of generality $N_{\alpha}\models$ " $a\subseteq\omega$ " implies $a=\{n<\omega:N_{\alpha}\models$ " $n\in a$ "} so as $h(\bar{\psi})=\bar{\psi}$ clearly $N_{\alpha}\models$ " $x/E^{\bar{\psi}}\in B$ " $\Rightarrow x/E^{\bar{\psi}}\in B$, and $N_{\alpha}\models$ " $x,y,z\in B_*,x/E^{\bar{\psi}}+y/E^{\bar{\psi}}=z/E^{\bar{\psi}}$ " $\Rightarrow x/E^{\bar{\psi}}+y/E^{\bar{\psi}}=z/E^{\bar{\psi}}$. Also if $N_{\alpha}\models$ " $x/E^{\bar{\psi}},y/E^{\bar{\psi}}$ are distinct members of B, i.e. $\neg xE^{\psi}y$ ", then $x/E^{\bar{\psi}}\neq y/E^{\bar{\psi}}$. For each $\alpha < \omega_1$, if $N_{\alpha} \models "b < \omega_1"$, let B_b^{α} be the group $(h(\bar{B}))_b$ as interpreted in N_{α} , i.e. N_{α} thinks that B_b^{α} is the *b*-th group in the increasing chain $h(\bar{B})$. Clearly $B_b^{\alpha} \subseteq B$ if $E^{\bar{\psi}}$ is the equality, otherwise let \mathbf{j}_b^{α} map $(x/E^{\bar{\psi}})^{N_{\alpha}}$ to $x/E^{\bar{\psi}}$, so \mathbf{j}_b^{α} embeds B_b^{α} into B; let this image be called G_b^{α} . Also in N_{α} there is a bijection between B_b^{α} and ω . If $\gamma > \alpha$, since $N_{\alpha} \preceq N_{\gamma}$ have the same natural numbers, clearly $B_b^{\alpha} = B_b^{\gamma}$ when $E^{\bar{\psi}}$ is equality or $\mathbf{j}_b^{\alpha} = \mathbf{j}_b^{\gamma}$ and $G_b^{\alpha} = G_b^{\gamma}$ in the general case. In particular, $G_{b_{\alpha}}^{\alpha+1}$ is the union of $\{G_b^{\alpha}: N_{\alpha} \models \text{``}b < \omega_1\text{''}\}$. For $\alpha < \omega_1$, let $G_{\alpha} = G_{b_{\alpha}}^{\alpha+1}$ and let $(h(\langle \langle b_{\ell}^{\alpha} : \ell \leq n_{\alpha} \rangle : \alpha \in S \rangle))(b_{\alpha}) \in N_{\alpha+1}$ be $\langle (a_{\ell}^{b_{\alpha}}/E^{\bar{\psi}})^{N_{\alpha}} : \ell \leq m_{\alpha} \rangle$, so $N_{\alpha+1}$ thinks that $\langle a_{\ell}^{b_{\alpha}}/E^{\bar{\psi}} : \ell \leq m_{\alpha} \rangle$ witness that $h(B)/B_{b_{\alpha}}^{\alpha+1}$ is not free. Clearly $a_0^{b_{\alpha}}/E^{\bar{\psi}}, \ldots, a_{m_{\alpha}}^{b_{\alpha}}/E^{\bar{\psi}} \in G_{\alpha+1}$ and $$PC(G_{\alpha} \cup \{a_0^{b_{\alpha}}/E^{\bar{\psi}}, \dots, a_{m_{\alpha}}^{b_{\alpha}}/E^{\bar{\psi}}\})/G_{\alpha}$$ is not free. So $G_{\alpha+1}/G_{\alpha}$ is not free. Let $G=\bigcup_{\alpha<\omega_1}G_{\alpha}$. Then G is not free. But G is a subgroup of B, thus B is not \aleph_2 -free. $\square_{1.2}$ *Remark.* Instead of the forcing we could directly build the N_{α} 's but we have to deal with stationary subsets of $[^{\omega}2]^{\aleph_0}$ instead of ω_1 . 1.3 Corollary. If B is an \aleph_1 -free Borel abelian group, then B is \aleph_2 -free if and only if $\{K \subseteq B : |K| = \aleph_0 \text{ and } B/K \text{ is } \aleph_1\text{-free}\}$ is not stationary. <u>1.4 Fact</u>: If $2^{\aleph_0} < 2^{\aleph_1}$ then every Borel Whitehead group B is \aleph_2 -free. *Proof.* By [DvSh 65] (or see [EM]) as $2^{\aleph_0} < 2^{\aleph_1}$ we have: if G be a Whitehead group of cardinality \aleph_1 (hence is \aleph_1 -free) and $G = \bigcup_{\alpha < \omega_1} G_{\alpha}$ is such that $\langle G_{\alpha} : \alpha < \omega_1 \rangle$ is an increasing continuous chain of countable subgroups, then $\{\alpha: G_{\alpha+1}/G_{\alpha} \text{ is not free}\}\$ does not contain a closed unbounded set (see [EM, Ch.XII,1.8]). Thus, if B is not \aleph_2 -free, then the subgroup G constructed in the proof of lemma 1.2 is not Whitehead. Since being Whitehead is a hereditary property (see [EM]), B is not Whitehead. $\square_{1.4}$ The lemma shows that 1.5 Conclusion. For Borel abelian groups $B^{\bar{\psi}}$, " $B^{\bar{\psi}}$ is \aleph_2 -free" is absolute (in fact it is a \sum_{1}^{1} property of $\bar{\psi}$). *Proof.* The formula will just say that there is a model of a suitable fragment of ZFC (e.g. ZC) with standard ω to which $\bar{\psi}$ belongs and it satisfies " $B^{\bar{\psi}}$ is \aleph_2 -free". $\square_{1.5}$ # §2 On ℵ₂-free Whitehead **2.1 Theorem.** If B is a Borel Whitehead group, then B is \aleph_2 -free. <u>2.2 Conclusion</u>: (CH or just $2^{\aleph_0} < 2^{\aleph_1}$) Every Whitehead Borel abelian group is free. Before we prove we quote [Sh 44, Definition 3.1]. - **2.3 Definition.** 1) If L is a subset of the \aleph_1 -free abelian group, G, PC(L, G) is the smallest pure subgroup of G which contains L. Note that if H is a pure subgroup of $G, L \subseteq H$ then PC(L, G) = PC(L, H). We omit G if it is clear. - 2) If H is a subgroup of G, L a finite subset of $G, a \in G$, then the statement $\pi(a, L, H, G)$ means that: $PC(H \cup L) = PC(H) \oplus PC(L)$ but for no $b \in PC(H \cup L)$ $L \cup \{a\}$) do we have $PC(H \cup L \cup \{a\}) = PC(H) \oplus PC(L \cup \{b\})$. *Proof.* Assume B is not \aleph_2 -free. We repeat the proof of Lemma 1.2. So in $V^{\mathbf{P}}$, B is a non-free \aleph_1 -free abelian group of cardinality \aleph_1 . Hence by [Sh 44, p.250,3.1(3)], B satisfies possibility I or possibility II where we have chosen $\bar{B} = \langle B_{\alpha} : \alpha < \beta \rangle$ ω_1 increasing continuous with B_{α} a countable pure subgroup, $B = \bigcup B_{\alpha}$; the possibilities are explained below. The proof splits into the two cases. Possibility I: By [Sh 44, p.250]. So we can find (still in $V^{\mathbf{P}}$) an ordinal $\delta < \omega_1$ and $a_i^{\ell} \in B$ for $i < \omega_1, \ell < n_i$ such that - (A) $\{a_{\ell}^i + B_{\delta} : i < \omega_1, \ell \leq n_i\}$ is independent in B/B_{δ} - (B) $\pi(a_{n_i}^{\ell}, L_i, B_{\delta}, B)$ where $L_i = \{a_{\ell}^i : \ell < n_i\}.$ This situation does not survive well under the process and the proof of Lemma 1.2 but after some analysis a revised version will. Without loss of generality $n_i = n(*) = n^*$ (by the pigeon hole principle). Let $N \prec (\mathcal{H}(\chi), \in, <^*)$ be countable such that $B_{\delta}, B, \langle B_{\alpha} : \alpha < \omega_1 \rangle, \langle \langle a_0^i, \dots, a_{n_i}^i \rangle : i < \omega_1 \rangle$ belong to N. We can find $M \in V, M \cong N$; without loss of generality M is transitive (so $M \models$ "n is a natural number" iff n is a natural number). We now work in V. Let $\mathfrak{B} \prec (\mathcal{H}(\chi), \in, <^*)$ be countable, $M \in \mathfrak{B}$, note that $\mathcal{H}(\chi)^{\mathfrak{B}} \neq \mathcal{H}(\chi)$ and $\mathcal{H}(\chi)^V = \mathcal{H}(\chi) \neq \mathcal{H}(\chi)^{V^{\mathbf{P}}}$. Let Φ_M be the set of first order formulas $\varphi(v)$ in the vocabulary $\{\in,<^*\}$ and parameters from M and the only free variable v. Now we imitate the proof of [Sh 202]. Let $\Gamma = \{\varphi(v) \in \Phi_M : M \models ``\{\alpha < \omega_1 : \varphi(\alpha)\} \text{ is}$ uncountable}" (equivalently Γ is $\{a \subseteq \omega_1 : |a| = \aleph_1\}^M$). We can find $\langle t_{\eta}(v) : \eta \in \mathbb{R}^M \rangle$ ω_2 such that: (a) each $t_n(v)$ a suitable generic subset of Γ , i.e. Γ is ordered by $\varphi_1(v) \leq \varphi_2(v)$ if $M \models (\forall v)(\varphi_2(v) \rightarrow \varphi_1(v))$ so $t_{\eta}(v)$ is directed, downward closed and is not disjoint to any dense subset of Γ from \mathfrak{B} (b) for $k < \omega, \eta_0, \dots, \eta_{k-1} \in {}^{\omega}2$ which are pairwise distinct $\langle t_{\eta_0}(v), \ldots, t_{\eta_{k-1}}(v) \rangle$ is generic too (for Γ^k), i.e. if $\mathscr{D} \in \mathfrak{B}$ is a dense subset of Γ^k then $\prod t_{\eta_\ell}(v)$ is not disjoint to \mathscr{D} . (See explanation in the end of the proof of case II). So for each $\eta, t_{\eta}(v)$ is a complete type over M hence we can find $M_{\eta}, M \prec M_{\eta}, M_{\eta}$ the Skolem hull of $M \cup \{y_{\eta}\}$ such that y_{η} realizes $t_{\eta}(v)$ in M_{η} . So $M_{\eta} \models "y_{\eta}$ a countable ordinal". Without loss of generality if $M_{\eta} \models "\rho \in "2"$ then $\rho \in "2"$ and $\rho(n) = i \Leftrightarrow M_n \models "\rho(n) = i" \text{ when } n < \omega, i < 2.$ Let $h: N \to M$ be the isomorphism from N onto M (so $h \in V^{\mathbf{P}}$). We still use $B_{\delta}!$ As $\bar{a} = \langle \langle a_{\ell}^i : \ell \leq n^* \rangle : i < \omega_1 \rangle \in N$ we can look at \bar{a} and $h(\bar{a})$ as a twoplace function (with variables written as superscript and subscript). So we can let $a_{\ell}^{\eta}(\ell \leq n^*, \eta \in {}^{\omega}2)$ be reals such that: $M_{\eta} \models {}^{\omega}h(\bar{a})_{\ell}^{y_{\eta}} = a_{\ell}^{\eta}$. By absoluteness $a_{\eta}^{\ell} \in B \text{ (more exactly } a_{\eta}^{\ell} \in B_* = B_*^{\bar{\psi}}, a_n^{\ell}/E^{\bar{\psi}} \in B) \text{ and } \pi(a_{n^*}^{\eta}, \langle a_{\ell}^{\eta} : \ell < n^* \rangle, B_{\delta}, B).$ If we can prove that $\langle a_{\ell}^{\eta} : \eta \in {}^{\omega}2, \ell \leq n^* \rangle$ is independent over $B_{\delta}(=h(B_{\delta}))$, then the proof of [Sh:98, 3.3] finish our case: proving B is not Whitehead group. But independence is just a demand on every finite subset. So it is enough to prove \otimes if $k < \omega, \eta_0, \ldots, \eta_{k-1} \in {}^{\omega}2$ are distinct, then $\{a_{\ell}^{\eta_m} : \ell \leq n^*, m < k\}$ is independent over B_{δ} . We prove this by induction on k. For k=0 this is vacuous, for k=1 it is part of the properties of each $\langle a_{\ell}^{\eta} : \ell \leq n^* \rangle$. So let us prove it for k+1. Remember that $\langle t_{\eta_0}(v), \ldots, t_{\eta_k}(v) \rangle$ (more exactly $\prod_{\ell \in \mathcal{U}} t_{\eta_\ell}(v)$) is a generic subset of Γ^k . Assume the desired conclusion fails. So by absoluteness we can find $\varphi_{\ell}(v) \in$ $t_{\eta_{\ell}}(v)$ and $s_{\ell}^{m} \in \mathbb{Z}$ for $m \leq k, \ell \leq n^{*}$ such that: \oplus if $t'_{\eta_m}(v) \subseteq \Gamma$ is generic over \mathfrak{B} for $m \leq k$, moreover $\langle t'_{\eta_m}(v) : m \leq k \rangle$ is a generic subset of Γ^{k+1} over \mathfrak{B} and $\varphi_m(v) \in t'_{\eta_m}(v)$, then (defining M'_{η_m} by $t'_{\eta_m}(v)$ and $a_\ell^{\eta_m}$ as before) $\sum_{\ell \leq n_\ell^*} s_\ell^m a_\ell^{\eta_m} = t \in B_\delta$. Clearly for $m \leq k$ we have $M \models \text{``}\{v : \varphi_m(v) \land v \text{ a countable ordinal}\}\$ has order type ω_1 " and without loss of generality also $M \models$ " $\{v : M \models$ " $\neg \varphi_m(v) \land v \text{ a countable } \}$ ordinal"} has order type ω_1 ". So in M there are $g_0, \ldots, g_k \in M$ such that: $M \models "g_i$ is a permutation of ω_1 , for $i \leq k$ we have $(\forall v)(\varphi_0(v) \leftrightarrow \varphi_0(g_i(v)))$ and $g_0(v), g_1(v), \ldots, g_k(v)$ are pairwise distinct". Let for $m \leq k, t_{\eta_0}^i(v) = \{\varphi(v) \in \Gamma : \varphi(g_i(v)) \in t_{\eta_0}(v)\}$. Let in $M_{\eta_0}, y_{\eta_0}^i = t_{\eta_0}(v)$ $[g_i(y_{\eta_0})]^{M_{\eta_0}}, a_\ell^{\eta_0,i} = [h(\bar{a})_\ell^{(y_{\eta_0}^i)}]^{M_{\eta_0}}.$ Now $y_{\eta_0}^i$ realizes $t_{\eta_0}^i(v)$ and M_{η_0} is also the Skolem hull of $M \cup \{y_{\eta_0}^i\}$ and $\langle t_{\eta_0}^i(v), t_{\eta_1}(v), \dots, t_{\eta_k}(v) \rangle \subseteq \Gamma^{k+1}$ is generic over \mathfrak{B} and $\varphi_0(v) \in t_{\eta_0}^i(v), \varphi_1(v) \in t_{\eta_1}(v), \dots, \varphi_k(v) \in t_{\eta_k}(v)$. Hence for each $i \leq k$ in Bwe have $\sum_{\ell \le n^*} s_{\ell}^{0} a_{\ell}^{\eta_0, i} + \sum_{0 < m \le k \atop *} s_{\ell}^{m} a_{\ell}^{\eta_m} = t \in B_{\delta}.$ By linear algebra $\{a_{\ell}^{\eta_0,i}:i\leq k,\ell\leq n^*\}$ is not independent (actually, i=0,1suffices - just subtract the equations). By absoluteness this holds in M_{η_0} . But the formula saying this is false holds in $(\mathcal{H}(\chi), \in, <^*)$ hence in N, hence in M, hence in M_{η} (it speaks on \bar{a}, B, B_{δ}), contradiction. So \oplus fails hence \otimes holds so (as said before \otimes) we have finished Possibility I. Possibility II of [Sh 44, p.250]: In this case we have "not possibility I" but $S = \{\delta < \omega_1 : \delta \text{ a limit ordinal and there are } a_\ell^\delta \text{ for } \ell \leq n_\delta \text{ such that } \pi(a_{\eta_\delta}^\delta, \{a_\ell^\delta : \ell < n_\delta\}, B_\delta, B)\}$ is stationary; all in $V^{\mathbf{P}}$. Now without loss of generality we can find $\langle \alpha_n^\delta : n < \omega \rangle$ such that: $\alpha_n^\delta < \alpha_{n+1}^\delta, \delta = \bigcup_{n < \omega} \alpha_n^\delta$, and there are $y_m^\delta \in B_{\delta+1}, t_m^\delta \in B_{\delta+1}$ $B_{\alpha_{n}^{\delta}+1}$ and $s_{m,\ell}^{\delta} \in \mathbb{Z}$, (for $\ell < n_{\delta}$) such that: $$\boxtimes (*)_0 \ y_0^{\delta} = a_{n_{\delta}}^{\delta} \text{ and }$$ $$(*)_2 \ s_{m,n_\delta}^\delta y_{m+1}^\delta = \sum_{\ell < n_\delta} s_{m,\ell}^\delta a_\ell^\delta + y_m^\delta + t_m^\delta$$ - $(*)_3$ $s_{m,n_{\delta}}^{\delta} > 1$, morever if s is a proper divisor of $s_{m,n_{\delta}}^{\delta}$ (e.g. 1) then $sy_{m+1,n_{\delta}}^{\delta}$ is not in $B_{\delta} + \langle \{a_i^{\delta} : \ell < n_{\delta}\} \cup \{y_m^{\delta}\} \rangle_B$ - (*)₄ if $\alpha \in \delta \setminus \{\alpha_n^{\delta} : n < \omega\}$ then $PC_B(B_{\alpha+1} \cup \{a_0^{\delta}, \dots, a_{n_{\delta}}^{\delta}\}) = PC_B(B_{\alpha} \cup \{a_0^{\delta}, \dots, a_{n_{\delta}}^{\delta}\}) + B_{\alpha+1}$ [why? known, or see later.] - (a) each $t_{\eta}(v) \subseteq \Gamma$ is generic over \mathfrak{B} as before hence - (b) for $k < \omega$ and pairwise distinct $\eta_0, \ldots, \eta_{k-1} \in {}^{\omega}2, \langle t_{\eta_0}, \ldots, t_{\eta_{k-1}} \rangle$ is generic for Γ^k over \mathfrak{B} - (c) letting M_{η}, y_{η} be such that: $M \prec M_{\eta}, M_{\eta}$ the Skolem hull of $M_{\eta} \cup \{y_{\eta}\}, y_{\eta}$ realizes $t_{\eta}(v)$ in M_{η} we have - (i) $M_{\eta} \models "y_{\eta}$ is a countable ordinal $\in S$ " - (ii) $M \models$ "a is a countable ordinal" $\Rightarrow M_{\eta} \models$ "a $< y_{\eta}$ " - (iii) if $y \in M_{\eta}$ satisfies (i) + (ii) then $M_{\eta} \models "y_{\eta} \leq y"$. So looking at $h: N \to M$ the isomorphism, then $\alpha_n^{\eta} =: [h(\bar{\alpha})]_n^{y_{\eta}}$ for $n < \omega$ satisfies: $$M_{\eta} \models$$ " α_n^{η} a countable ordinal" $$M_{\eta} \models "\alpha_n^{\eta} < \alpha_{n+1}^{\eta} < y_{\eta}"$$ $M_{\eta} \models$ "the set $\{[h(\bar{\alpha})]_{n}^{y_{\eta}} : n < \omega\}$ is unbounded below y_{η} " hence $\{\alpha_n^{\eta}: n < \omega\} \subseteq M$ is unbounded among the countable ordinals of M. Now by easy manipulation (see proof below): (c) if $$\eta_1 \neq \eta_2 \in {}^{\omega}2$$ then $\{\alpha_n^{\eta_1} : n < \omega\} \cap \{\alpha_n^{\eta_2} : n < \omega\}$ is finite. (We can be lazy here demanding just that no $\{\alpha_n^{\eta}: n < \omega\}$ is included in the union of a finite set with the union of finitely many sets of the form $\{\alpha_n^{\nu}: n < \omega\}$ where $\nu \in {}^{\omega}2\backslash\{\eta\}$, which follows from pairwise generic, and one has to do slightly more abelian group theory work below). Now we can let $a_{\ell}^{\eta} = [(h(\bar{a}))_{\ell}^{y_{\eta}}]^{M_{\eta}}$. By linear algebra we get the independence of $\{a_{\ell}^{\eta}: \eta \in {}^{\omega}2 \text{ and } \ell \leq n^*\}$ over $A = B \cap M$ i.e. $\{a/E^{\psi}: a \in B_* \cap M\}$ hence a contradiction to our being in possibility II (or directly get \otimes in the proof in the case possibility I holds). An alternative is the following: We are assuming that in $V^{\mathbf{P}}$, possibility I fails. So also in V, letting $A = M \cap B^{\bar{\psi}}$ the following set is countable: $K[A] =: \{\langle a_{\ell} : \ell \leq n \rangle : n < \omega, a_{\ell} \in B, \langle a_{\ell} : \ell \leq n \rangle \}$ independent over A in B and $\pi(a_n, \{a_{\ell} : \ell < n\}, A, B)\}$ (see proof later). For each such $\bar{a} = \langle a_{\ell} : \ell \leq n \rangle$ we can look at a relevant type it realizes over A $$t(\bar{a}, A) = \{(\exists y)(sy = \sum_{\ell \le n} s_{\ell} x_{\ell}) : B \models (\exists y)(sy = \sum s_{\ell} a_{\ell}),$$ $$s, s_{\ell} \text{ integers}\}$$ so $\{t(\bar{a}, A) : \bar{a} \in K[A]\}$ is countable. But for the $\eta \in {}^{\omega}2$ the types $t(\langle a_{\ell}^{\eta} : \ell < n_{\eta} \rangle, A)$ are pairwise distinct, contradiction, so actually case II never occurs We still have some debts in the treatment of possibility II. Why do clauses (b) and (c) hold? For each n we let $$\Gamma_{M,n} = \left\{ \varphi(v) : (i) \quad \varphi(v) \text{ is a first order formula with parameters from } M \right.$$ $$(ii) \quad \text{for some } \beta_{\ell}^* \in M \cap \omega_1 \text{ for } \ell < n \text{ we have}$$ $$M \models \text{``}(\forall v)(\varphi(v) \to v \in h(S)) \& \bigwedge_{\ell < n} (h(\bar{\alpha}))_{\ell}^v = \beta_{\ell}^*)$$ $$(iii) \quad M \models \text{``}(\forall \beta < \omega_1)(\exists^{\text{stat}} v < \aleph_1)[(\varphi(v) \& \beta < (h(\bar{\alpha}))_n^v)]\text{''} \right\}.$$ Now note: - $\otimes_0 \Gamma_{M,n} \subseteq \Gamma_M$ - \otimes_1 if $\varphi(v) \in \Gamma_M$ and $n < \omega$ then for some $m \in [n, \omega)$ and $\beta_\ell \in M \cap \omega_1$ for $\ell < m$ we have " $\varphi(v)$ & $\bigwedge_{\ell < m}$ " $(h(\bar{\alpha}))^v_\ell = \beta_\ell$ " belongs to $\Gamma_{M,m}$ - \otimes_2 if $\varphi(v) \in \Gamma_{M,n}$ and $\beta \in M \cap \omega_1$ then $\varphi'(v) = \varphi(v)$ & $\beta < (h(\bar{\alpha}))_n^v$ belongs to $\Gamma_{M,n}$. Now let $\langle \mathscr{D}_n : n < \omega \rangle$ be the family of dense open subsets of Γ_M which belong to \mathfrak{B} . We choose by induction on $n, \langle \varphi_{\eta}(v) : \eta \in {}^{n}2 \rangle, k_{\eta} < \omega$ such that: - $(\alpha) \varphi_n(v) \in \Gamma_{M,k_n}$ - $(\beta) \ \varphi_n(v) \in \mathscr{D}_\ell \ \text{if} \ \ell < \ell g(\eta)$ - $(\gamma) \varphi_{\eta}(v) \leq_{\Gamma} \varphi_{\eta^{\hat{}}(i)}(v) \text{ for } i = 0, 1$ - (δ) if $\eta_0 \neq \eta_1 \in {}^n 2, \eta_i \triangleleft \nu_i \in {}^{n+1} 2$ for i = 0, 1 and $k_{\eta_0} \leq k < k_{\nu_0}$ and $M \models (\forall v)(\varphi_{\nu_0}(v) \to (h(\bar{\alpha}))_k^v = \beta)$ then $M \models (\forall v)[\varphi_{\nu_1}(v) \to \bigwedge_{\ell \leq k \dots} (h(\bar{\alpha}))_\ell^v \neq \beta].$ There is no problem to do it and $t_{\eta}(v) = \{\varphi(v) \in \Gamma_M : \varphi(v) \leq_{\Gamma_M} \varphi_{\eta \upharpoonright n}(v) \text{ for some } n < \omega\}$ for $\eta \in {}^{\omega}2$ are as required. ### Why does \boxtimes hold? For $\delta \in S$ let $w_{\delta} = \{\alpha < \delta : PC_B(B_{\alpha+1} \cup \{a_0^{\delta}, \dots, a_{n_{\alpha}}^{\delta}\}) \text{ is not equal to } PC_B(B_{\alpha} \cup \{a_0^{\delta}, \dots, a_{n,\alpha}^{\delta}\}) + B_{\alpha+1} \subseteq B\}.$ Let $S' = \{\delta \in S : (\forall \alpha < \delta)(|w_{\delta} \cap \alpha| < \aleph_0)\}$, if S' is stationary we get \boxtimes , otherwise $S \setminus S'$ is stationary, and for $\delta \in S \setminus S'$ let $\alpha_{\delta} = \min\{\alpha : w_{\delta} \cap \alpha \text{ is infinite}\}$. By Fodor's lemma for some $\alpha(*) < \omega_1, S'' = \{\delta \in S \setminus S' : \alpha_{\delta} = \alpha(*)\}$ is stationary hence uncountable and we can get possibility I, contradiction. $\square_{2.1}$ # §3 Refinements We may wonder if we can weaken the demand "Borel". - **3.1 Definition.** 1) We say $\bar{\psi}$ is a code for a Souslin abelian group if in Definition 0.1 we weaken the demand on ψ_0, ψ_1 to being a \sum_{1}^{1} relation. - 2) A model M of a fragment of ZFC is essentially transitive if: - (a) if $M \models$ "x is an ordinal" and $(\{y : y <^M x\}, \in^M)$ is well ordered then x is an ordinal and $M \models$ " $y \in x$ " $\Leftrightarrow y \in x$ - (b) if α is an ordinal, $(\{y:y<^M\alpha\},\in^M)$ is well ordered and $M\models$ " α an ordinal, $\operatorname{rk}(x)=\alpha$ ", then $M\models$ " $y\in x$ " $\Leftrightarrow y\in x$. - 3) For M essentially transitive with standard ω such that $\bar{\psi} \in M$ let B^M is $B^{\bar{\psi}}$ as interpreted in M and $\operatorname{trans}(M) = \{x \in M : x \text{ as in (b) of part (2)}\}.$ - 3.2 Fact. 1) " $\bar{\psi}$ codes a Souslin abelian group" in a Π_2^1 property. - 2) If M is a model of a suitable fragment of set theory (comprehension is enough), then M is isomorphic to an essentially transitive model. - 3) If M is an essentially transitive model with standard ω of a suitable fragment of ZFC and $\bar{\psi} \in \operatorname{trans}(M)$, (note $\bar{\psi}$ is really a pair of subsets of $\mathscr{H}(\aleph_0)$), then as $B^M = (B^{\bar{\psi}})^M \subseteq \operatorname{trans}(M)$ there is a homomorphism \mathbf{j}_M from B^M into $B = B^{\bar{\psi}}$ such that $M \models \text{``}t = x/E^{\bar{\psi}}$ '' implies $\mathbf{j}_M(t) = x/E^{\bar{\psi}}$. - 4) If $M \prec N$ are as in (3), then $\mathbf{j}_M \subseteq \mathbf{j}_N$. *Proof.* Straightforward. **3.3 Claim.** 1) In 1.2, 2.1 we can assume that $B = B^{\bar{\psi}}$ is only Souslin. 2) If $B = B^{\bar{\psi}}$ is not \aleph_2 -free, then case I of $[Sh \ 44](3.1)$ holds, moreover the conclusion of case I in the proof of 2.1 holds. *Remark.* If only ψ_1 is Souslin, i.e. is \sum_{1}^{1} , just repeat the proofs. *Proof.* For both we imitate the proof of 2.1. In both possibilities, for each $\eta \in {}^{\omega}2$, let G_{η} be the group which $\bar{\psi}$ defines in M_{η} , (the M_{η} 's chosen as there). So $\mathbf{j}_{M_{\eta}}$ is a homomorphism from G_{η} into B. However, $\mathbf{j}_M \subseteq \mathbf{j}_{M_{\eta}}$ and \mathbf{j}_M is one to one (noting that h, the unique isomorphism from N onto M, is the identity on $({}^{\omega}2) \cap N$, hence on $B_* \cap N$, and also $B^V = B^{V^P}$). Let $B' = \operatorname{Rang}(\mathbf{j}_M)$. Now in defining $\pi(x, L, B', B)$ we can add that we cannot find $L' \cup \{x'\} \subseteq PC(B'_{\delta} \cup L \cup \{x\})$ such that $\pi(x', L', B', B)$ and |L'| < |L|, i.e. the n is minimal. As B is \aleph_1 -free, this implies that $\mathbf{j}_M \upharpoonright PC(B' \cup \{a_{\ell}^n : \ell \leq n^*\}, B)^{M_{\eta}}$ is one to one and by easy algebraic argument, we can get, for 2.1, non-Whiteheadness and for 1.2, non \aleph_2 -freeness. - 3.4 Fact. 1) " $B^{\bar{\psi}}$ is non- \aleph_2 -free" is a \sum_1^1 -property of $\bar{\psi}$, assuming $B^{\bar{\psi}}$ is a \aleph_1 -free Souslin abelian group. - 2) " $\bar{\psi}$ codes a \aleph_1 -free Souslin abelian group" is a Π_2^1 -property of $\bar{\psi}$. Proof. Just check. # REFERENCES. - [BKM78] Jon Barwise, Matt Kaufmann, and Michael Makkai. Stationary logic. Annals of Mathematical Logic, 13:171–224, 1978. - [DvSh 65] Keith J. Devlin and Saharon Shelah. A weak version of \diamondsuit which follows from $2^{\aleph_0} < 2^{\aleph_1}$. Israel Journal of Mathematics, **29**:239–247, 1978. - [EM] Paul C. Eklof and Alan Mekler. Almost free modules: Set theoretic methods, volume 46 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1990. - [Sch85] J. Schmerl. Transfer theorems and their application to logics. In J.Barwise and S.Feferman, editors, *Model Theoretic Logics*, pages 177–209. Springer-Verlag, 1985. - [Sh 44] Saharon Shelah. Infinite abelian groups, Whitehead problem and some constructions. *Israel Journal of Mathematics*, **18**:243–256, 1974. - [Sh 43] Saharon Shelah. Generalized quantifiers and compact logic. *Transactions of the American Mathematical Society*, **204**:342–364, 1975. - [Sh:98] Saharon Shelah. Whitehead groups may not be free, even assuming CH. II. Israel Journal of Mathematics, **35**:257–285, 1980. - [Sh 202] Saharon Shelah. On co- κ -Souslin relations. Israel Journal of Mathematics, 47:139–153, 1984. - [Sh 161] Saharon Shelah. Incompactness in regular cardinals. *Notre Dame Journal of Formal Logic*, **26**:195–228, 1985. - [Sh 523] Saharon Shelah. Existence of Almost Free Abelian groups and reflection of stationary set. *Mathematica Japonica*, **45**:1–14, 1997. arxiv:math.LO/9606229. - [Sh:f] Saharon Shelah. Proper and improper forcing. Perspectives in Mathematical Logic. Springer, 1998.