Postscript to Shelah & Fremlin p90

D.H.Fremlin

University of Essex, Colchester 25 September 1991

1. The statement (\ddagger) of Shelah & Fremlin P90, 2G, can be strengthened, as follows. Write (\ddagger^*) for the statement

there is a closed negligible set $Q \subseteq [0,1]$ such that $(\mu_L)_*(Q^{-1}[D]) \ge \mu_L^*D$ for every $D \subseteq [0,1]$.

Proposition If \mathbb{P} is a partially ordered set as in Shelah & Fremlin P90, then $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} (\ddagger^*)$.

proof (a) Take X and \mathbb{P} and μ and Ψ as in Shelah & Fremlin p90, §1. Then if $D \subseteq X$ and $\epsilon > 0$, there is a closed set $F \subseteq X$, with $\mu F \ge \mu^* D - \epsilon$, such that

$$1_{\mathbb{P}} \Vdash_{\mathbb{P}} \Psi \cap \lceil F \rceil \subseteq \lceil R^{\gamma - 1} [D],$$

writing $\lceil F \rceil$ for the \mathbb{P} -name for a closed subset of X corresponding to F.

P Choose k_0' such that $2^{-k_0'} \leq \frac{1}{4}\epsilon$, and a closed set F_0 such that $\mu F_0 = \mu^*(D \cap F_0) \geq \mu^*D - \frac{1}{2}\epsilon$. Set $F = \{x : \forall k \geq k_0', \ \mu^*(D \cap \{w : w | k = x | k\}) > 2^{-k+1}\mu\{w : w | k = x | k\}\}.$

Then F is closed, and

$$F_0 \setminus F \subseteq \{x : x \in F_0, \exists k \ge k'_0, \mu(F_0 \cap \{w : w \mid k = x \mid k\}) \le 2^{-k+1} \mu\{w : w \mid k = x \mid k\}\}$$

has measure at most $2^{-k_0'+1} \le \frac{1}{2}\epsilon$, so $\mu F \ge \mu^* D - \epsilon$.

Now suppose that σ is a \mathbb{P} -name such that

$$1\!\!1_{\mathbb{P}}\Vdash_{\mathbb{P}}\sigma\in\Psi\cap\ulcorner F\urcorner.$$

Set r = 1, $L_k = n_k$ for every $k \in \mathbb{N}$ and follow the argument of Lemma 1R of Shelah & Fremlin p90 down to the end of part (c), but insisting at the beginning that $k_0 \ge k'_0$.

Observe that

$$p_3 \Vdash_{\mathbb{P}} \sigma \supseteq s$$
,

where $s = \langle H_i(\mathbf{v}_i^*) \rangle_{i < k_1}$, as in part (d) of the proof of Lemma 1R. Also $\#(\tilde{J}_k) \leq 2^{-k} n_k$ for all $k \geq k_0$, so that

$$\mu\{x: s \subseteq x, x(k) \notin \tilde{J}_k \ \forall \ k \ge k_1\} > (1 - 2^{-k_1 + 1})\mu\{x: s \subseteq x\};$$

but as

$$p_3 \Vdash_{\mathbb{P}} \sigma \in \ulcorner F \urcorner, s \subseteq \sigma,$$

we must have

$$\mu^*(D \cap \{x : s \subseteq x\}) > 2^{-k_1 + 1} \mu\{x : s \subseteq x\},$$

and there is a $\tilde{z} \in D$ such that $s \subseteq \tilde{z}$ and $\tilde{z} \notin \tilde{J}_k$ for every $k \ge k_1$.

(b) Now we find that

$$1_{\mathbb{P}} \Vdash_{\mathbb{P}} \forall D \subseteq \lceil X \rceil, \lceil \mu \rceil_* (\lceil R \rceil^{-1}[D]) \ge \lceil \mu \rceil^* D.$$

P Let Δ_0 be a \mathbb{P} -name for a subset of X, and ϵ , ϵ' (ground-model) rationals such that

$$1_{\mathbb{P}} \Vdash_{\mathbb{P}} \ulcorner \mu \urcorner^* \Delta_0 > \epsilon > \epsilon'.$$

Take $\beta < \kappa$ such that whenever Γ is a \mathbb{P}_{β} -name for a closed subset of X and

$$\mathbb{1}_{\mathbb{P}_{\beta}} \Vdash_{\mathbb{P}_{\beta}} \lceil \mu \rceil \Gamma > 1 - \epsilon$$

then there is a \mathbb{P}_{β} -name for a member of $\Gamma \cap \Delta_0$. Now taking Δ to be a \mathbb{P}_{β} -name for the subset of X consisting of those members of Δ_0 which can be represented by \mathbb{P}_{β} -names, we see that

$$1_{\mathbb{P}_{\beta}} \Vdash_{\mathbb{P}_{\beta}} \ulcorner \mu \urcorner^* \Delta \ge \epsilon.$$

Using part (a) in $V^{\mathbb{P}_{\beta}}$, we have a \mathbb{P}_{β} -name Γ for a closed subset of X such that

$$1\!\!1_{\mathbb{P}_\beta} \Vdash_{\mathbb{P}_\beta} (\lceil \mu \rceil \Gamma \geq \epsilon' \ \& \ 1\!\!1_{\mathbb{P}'} \Vdash_{\mathbb{P}'} \Psi^{(\beta)} \cap \Gamma \subseteq \lceil R \rceil^{-1} [\Delta]),$$

expressing \mathbb{P} as an iteration $\mathbb{P}_{\beta} * \mathbb{P}'$ as in the proof of Theorem 1S of SHELAH & FREMLIN P90. But this must mean that

$$1_{\mathbb{P}} \Vdash_{\mathbb{P}} \ulcorner \mu \urcorner_* (\ulcorner R \urcorner^{-1} [\Delta_0]) \ge \epsilon',$$

and as ϵ' was arbitrary this proves the claim. **Q**

(c) This proves the result for (X, μ) rather than for $([0, 1], \mu_L)$. But as remarked in 2G of Shelah & Fremlin P90, we have a continuous inverse-measure-preserving $f: X \to [0, 1]$ such that $\mu^* f^{-1}[D] = \mu_L^*[D]$

for every $D\subseteq [0,1];$ so that setting $Q=\{(f(x),f(y)):(x,y)\in \overline{R}\}$ we obtain the result for Lebesgue measure, as stated.

2. In fact wse can go a little further: in $V^{\mathbb{P}}$, Q has the property that whenever $D \subseteq [0,1]$ and E is a measurable set such that $\mu_*(E \setminus D) = 0$, then $\mu(E \setminus Q^{-1}[D]) = 0$.

To see this, follow the arguments above, observing that it is enough to consider closed E, and that the set F of part (a) of the proof can be taken to be a subset of E.

Reference

Shelah S. & Fremlin D.H. [p90] 'Pointwise compact and stable sets of measurable functions', to appear in J. Symbolic Logic.