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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS

OF THE ERDÖS-DUSHNIK-MILLER THEOREM

Saharon Shelah and Lee J. Stanley

Abstract. We present two different types of models where, for certain
singular cardinals λ of uncountable cofinality, λ → (λ, ω + 1)2, although

λ is not a strong limit cardinal. We announce, here, and will present in a
subsequent paper, [7], that, for example, consistently, ℵω1 6→ (ℵω1 , ω+1)2

and consistently, 2ℵ0 6→ (2ℵ0 , ω + 1)2.

§0. INTRODUCTION.

For regular uncountable κ, the Erdös-Dushnik-Miller theorem, Theorem
11.3 of [2], states that κ→ (κ, ω+1)2. For singular cardinals, κ, they were
only able to obtain the weaker result, Theorem 11.1 of [1], that κ→ (κ, ω)2.
It is not hard to see that if cf κ = ω then κ 6→ (κ, ω+1)2. If cf κ > ω and
κ is a strong limit cardinal, then it follows from the General Canonization
Lemma, Lemma 28.1 of [1], that κ → (κ, ω + 1)2. Question 11.4 of [1] is
whether this holds without the assumption that κ is a strong limit cardinal,
e.g., whether, in ZFC,

(1) ℵω1
→ (ℵω1

, ω + 1)2.

Another natural question, which the second author first heard from
Todorcevic, is whether, in ZFC,

(2) 2ℵ0 → (2ℵ0 , ω + 1)2.

In connection with (2), we note that the first author proved, [2], §2, the
consistency of 2ℵ0 → [ℵ1]

2
n,2.

The research of the first author was partially supported by the NSF and the Basic

Research Fund, Israel Academy of Science. This is paper number 419 in the first author’s
list of publications. Theorem 1 was proved in Fall, 1989 when both authors benefitted

from the hospitality of MSRI, for which they record their gratitude. Theorem 3 was
proved in Fall, 1993; Theorem 4 was was proved in Fall 1994.
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2 SAHARON SHELAH AND LEE J. STANLEY

In this paper we address these questions, by presenting two types of
models where there is a singular cardinal λ of uncountable cofinality, such
that λ → (λ, ω + 1)2 even though λ is not a strong limit cardinal. In
either model, λ can be taken to be ℵω1

and in the second, we can also
have, simultaneously, λ = 2ℵ0 . We also announce here, and will present in
a subsequent paper, some very recent results that show that, consistently,
(1) and (2) above may fail. For (1), this answers Question 11.4 of [1]
negatively.

The first type of model seems specific to having the order type of the
homogeneous set for the second color (green, for us, whereas the first color
is the “traditional” red) be ω + 1, whereas the second model allows gener-
alizations to green homogeneous sets of order type θ + 1 for cardinals, θ,
with ω ≤ θ < cf λ, under appropriate hypotheses. On the other hand, the
proof for the first model is an outright implication from a hypothesis which
follows from the existence of certain partition cardinals, either outright, or
in inner models, and therefore, certainly, from the failure of the SCH, for
example.

Theorem 1. If ω < κ = cf λ, 2κ < λ and there is a normal nice filter on
κ, then λ→ (λ, ω + 1)2.

There is no assumption on powersets between κ and λ. We prove The-
orem 1 in §1. The notion of nice filter is due to the first author. In (1.1),
below, we will give a condensed definition, sufficient for our purposes, which
is consistent with the more general treatment of §§0,1 of Chapter V of [3].
This is essentially clause (2) of Definition V.1.9 of [3]. The crucial property
of nice filters, for the purposes of this paper, is that we can define a certain
kind of rank function, rk2

D(f, E), with ordinal values, where D is any nor-
mal nice filter, f : κ→ OR and E is the family of normal nice filters on κ.
This rank function has the following important property:

(#) If D ∈ E , f, g : κ→ OR, X is D-positive and for all γ ∈ X, g(γ) <
f(γ), then then there is D′ ∈ E with D ∪ {X} ⊆ D′ such that
rk2

D′(g, E) < rk2
D(f, E).

This can be extracted from the following items of Chapter V of [3]: Claim
V.2.13, and clause (1) of Fact V.3.16. The existence of a nice filter on
ω1, for example, is an outright consequence of the existence of a µ such

that µ → (α)<ω
ℵo

for all α < (22ℵ1
)+. It can also be obtained in forcing

extensions starting from models with such large cardinals. For these results,
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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS OF THE ERDÖS-DUSHNIK-MILLER THEOREM3

see Conclusion V.1.13 and Remark V.1.13A of [3]. In view of the first fact,
we easily have the following corollary to Theorem 1; a later result in a
similar vein is Woodin’s striking result that from CH and the existence of a
measurable cardinal it follows that the club filter on ℵ1 is not ℵ2-saturated.

Corollary 2. Assume that there is a measurable cardinal and that 2ℵ1 <

ℵω1
. Then ℵω1

→ (ℵω1
, ω + 1)2.

In the second type of model, we have several parameters. We let ω < κ =
cf λ < λ. As mentioned above, we have a cardinal θ with ω ≤ θ < κ. We
have an additional cardinal parameter, σ, with σ 6= κ and θ ≤ σ. The cases
σ < κ and σ > κ require somewhat different different treatment, and lead
to Theorems 3 and 4, below, respectively, proved in §2 and §3. However,
much of the preliminary material developed for Theorem 3 carries over to
the proof of Theorem 4. The main case of Theorem 3 is when θ = σ, and
the connection to Theorem 1 is when θ = σ = ω. Theorem 3 was proved in
Fall 1993 and Theorem 4 was proved in Fall 1994.

For both Theorems, we assume that in V, λ is a strong limit cardinal,
and that σ<σ = σ. Our model is obtained by forcing with P, which is the
partial ordering for adding at least λ Cohen subsets of σ. When θ > ω, we
need additional assumptions to guarantee, for example, that in V P, κ →
(κ, θ+1)2. When θ = ω, this is just the Erdös-Dushnik-Miller theorem for
κ. The additional assumptions will involve cardinal exponentiation, and
will be discussed below. We then have:

Theorem 3. Suppose that in V, ω ≤ θ ≤ σ = σ<σ < κ = cf λ < λ ≤ ν, λ

is a strong limit cardinal and for all µ < κ, µ<θ < κ. Let P be the partial
ordering for adding ν Cohen subsets of σ. Then, in V P, λ→ (λ, θ + 1)2.

Theorem 4. Suppose that in V, ω ≤ θ < κ < σ = σ<σ < λ, κ =
cf λ < λ ≤ ν, λ is a strong limit cardinal and for all µ < κ, µ<θ < κ.
Let P be the partial ordering for adding ν Cohen subsets of σ. Then, in
V P, λ→ (λ, θ + 1)2.

We shall deduce Theorem 4 from the following result about lifting certain
positive partition relations on κ in V to λ in models, V P, where κ, λ, σ, P
are as in Theorem 4.
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4 SAHARON SHELAH AND LEE J. STANLEY

Theorem 4*. Suppose that in V, ω < κ < σ = σ<σ < λ, κ = cf λ ≤ ν, λ

is a strong limit cardinal and P is the partial ordering for adding ν Cohen
subsets of σ. Suppose, further, that ζ < κ and that κ → (κ, ζ)2. Then, in
V P, λ→ (λ, ζ)2.

Of course, when we invoke Theorem 4* to obtain Theorem 4, we shall
take ζ = θ + 1, and we will use the additional hypotheses on cardinal
exponentiation in V to obtain the hypothesis of Theorem 4*, that κ →
(κ, ζ)2. Then, this relation will also hold in V P, since there are no new
subsets of κ. In fact, it is even possible to factor Theorem 3 through a
similar kind of result about lifting positive relations on κ to λ, but now
lifting a V P relation on κ to a V P relation on λ, since this time, forcing
with P will not necessarily preserve a positive V relation on κ. In what
follows, we shall not proceed in this fashion; however, we do state the lifting
theorem:

Theorem 3*. Suppose that in V, ζ ≤ σ + 1, σ = σ<σ < κ = cf λ ≤
ν, λ is a strong limit cardinal and P is the partial ordering for adding ν

Cohen subsets of σ. Suppose, further, that in V P, κ → (κ, ζ)2. Then, in
V P, λ→ (λ, ζ)2.

Once again, in order to obtain Theorem 3 from Theorem 3*, the addi-
tional hypotheses in Theorem 3 on cardinal exponentiation in V are de-
signed to guarantee that the needed positive relation does hold in V P. It
would, of course, be possible to combine Theorems 3* and 4* into a sin-
gle statement, but the proof would certainly reflect the division into cases,
which, here, is transparent in the statements.

Finally, though these more recent results will be presented in a subse-
quent paper, [7], we state here, as numbered theorems, the negative con-
sistency results for questions (1) and (2), mentioned above and in the Ab-
stract.

Theorem 5. Suppose that, in L, µ ≥ λ > κ are cardinals, cf(λ) = κ > ω

(for example, λ = (ℵκ)
L, κ = (ℵ1)

L). Let G be P-generic over L, where P
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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS OF THE ERDÖS-DUSHNIK-MILLER THEOREM5

is (L′s version of) the partial order for adding µ Cohen subsets of κ. Then,
in L[G], λ→ (λ, ω + 1)2 iff, in L, κ is weakly compact.

Taking κ = (ℵ1)
L, λ = (ℵκ)

L, we get the negative consistency result for
(1). Combining the methods used to obtain Theorem 5 for this choice of κ
and λ, an additional forcing to add λ Cohen reals, and a double ∆-system
argument for the second forcing, we get:

Theorem 6. Con(ZFC) implies Con(ZFC & 2ℵ0 6→ (2ℵ0 , ω + 1)2).

Remarks.

(1) The proof of the Erdös-Dushnik-Miller theorem proceeds by assum-
ing that there is no homogeneous set of power κ for the first color
(red, for us), and showing that a certain tree of homogeneous green
sets must have a branch of length ω + 1, which naturally yields a
homogeneous green set of order type ω+1. If θ > ω, θ is a cardinal,
τ > θ is regular, and if:

(∗) for all ν < τ, ν<θ < τ,

then we can carry out essentially the same proof to show that
τ → (τ, θ + 1)2. Thus, taking τ = κ, our hypotheses on car-
dinal exponentiation in Theorem 3, which remain true in V P, do
guarantee that in V P, κ→ (κ, θ + 1)2.

Similary, if ω < ζ, θ = card ζ, θ < τ, τ is regular and if:

(∗∗) for all ν < τ, νθ < τ,

then a similar tree argument shows that τ → (τ, ζ)2. Thus, the
additional hypotheses on cardinal exponentiation in Theorem 4 do
guarantee that we have the hypotheses of Theorem 4*.

For both theorems, we will also need to know that for many
successor cardinals, τ , between κ and λ, we will have τ → (τ, θ +
1)2, or τ → (τ, ζ)2 (for Theorem 4*). In view of the preceding
paragraphs, it will suffice to have (∗) or (∗∗) for τ , in V .

One way of achieving this is to appeal to the fact that, in V , λ
is a strong limit cardinal, and, for example, to take τ = µ+, where
µ = µθ, and where µ is chosen to have various other properties, as
desired.
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6 SAHARON SHELAH AND LEE J. STANLEY

(2) In all of what follows we shall have ω < κ = cf λ < λ. We
shall express λ as sup{λη|η < κ}, where (λη|η < κ) is increasing
and continuous, and for η = 0 or η a successor ordinal, λη is a
successor cardinal. Various other properties of the λη for such η will
be introduced as needed. One such property will be that λη = µ+,
where µ = µθ (and has various other properties, as desired). We
also let ∆0 = λ0 and for η < κ, ∆1+η = [λη, λη+1). For α < λ we
will let η(α) = the unique η < κ such that α ∈ ∆η.

(3) Investigation of the case σ = κ, which is not treated in this paper,
led to Theorems 5, 6, above, among other results. When σ < κ, we
use the σ+-chain condition of P, whereas when σ > κ, we use the
< σ-completeness of P.

(4) In Theorems 3* and 4*, it is clearly necessary that in V P, κ →
(κ, θ + 1)2, respectively, that κ→ (κ, ζ)2.

(5) Our notation and terminology is intended to either be standard or
have a clear meaning, e.g., card X for the cardinality of X, o.t. X
for the order type of X, etc.

(6) Theorems 3 and 5 of [6] are close in spirit to some of the above
material. There are also similarities to certain themes from [4] and
[5].

§1. USING NICE FILTERS.

In this section we prove Theorem 1 of the Introduction, which, for con-
venience, we now restate.

Theorem 1. If ω < κ = cf λ, 2κ < λ and there is a normal nice filter on
κ, then λ→ (λ, ω + 1)2.

Proof. We begin by providing the promised definition of nice filter on κ. If
D is a normal filter on κ and g is an ordinal valued function with domain κ,
we first define the game Gw∗(D, g), as follows. On move 0, player I chooses
D0 := D, and player II chooses A0 ∈ (D0)

+, and chooses g0 := g.
On move n + 1, player I chooses Dn+1, a normal filter on κ extending
Dn ∪ {An}, and player II chooses An+1 ∈ (Dn+1)

+, AND gn+1 <D∗
n+1

gn,

where D∗
n+1 := the normal filter on κ generated by Dn+1∪{An+1}. Player

I wins if at some stage n+ 1, Player II has no legal play. We then state:
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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS OF THE ERDÖS-DUSHNIK-MILLER THEOREM7

(1.1) Definition. D is nice if for all ordinal valued functions, g, with
domain κ, Player I has a winning strategy in Gw∗(D, g).

Proceeding with the proof of the Theorem, we assume that ω < κ =
cf λ < λ, 2κ < λ and that there is a nice normal filter on κ. We will show
that λ→ (λ, ω+1)2. There are no assumptions about powers of cardinals
larger than κ, and, as noted in the Introduction, the interest of the result
is when λ is not a strong limit cardinal. The simplest case, of course, is
when κ = ℵ1 and λ = ℵκ.

So, towards a contradiction, suppose that c : [λ]2 → {red, green}
but has no red set of power λ and no green set of order type ω + 1. Let
λη, ∆η, η < κ be as in Remark 2 of the Introduction. We can clearly
assume, in addition, that λ0 > 2κ, for η < κ, λη+1 ≥ λ++

η , and that
each ∆η is homogeneous red for c. The last is by the Erdös-Dushnik-Miller
theorem for λη+1.

For 0 < η < κ, we define Seqη to be {(i0, ..., in−1)|η(i0) < ... < η(in−1) <

η}. For ζ ∈ ∆η and (i0, ..., in−1) =
⇀

i ∈ Seqη, we say
⇀

i ∈ T ζ iff
{i0, ..., in−1, ζ} is homogeneous green for c. Note that an infinite decreas-
ing (for reverse inclusion) branch in T ζ violates the nonexistence of a green
set of order type ω + 1, so, under reverse inclusion, T ζ is well-founded.
Therefore the following definition of a rank function, rkζ , on Seqη can be
carried out.

We define rkζ : Seqη → OR ∪ {−1} by setting rkζ(
⇀

i ) to be −1 if
⇀

i _ζ

is not homogeneous green; otherwise, define rkζ(
⇀

i ) ≥ η iff for all τ < η

there is j such that rkζ(
⇀

i _j) ≥ τ . Of course, for limit ordinals, δ, if for

all η < δ, rkζ(
⇀

i ) ≥ η, then rkζ(
⇀

i ) ≥ δ, and so for all
⇀

i ∈ T ζ , there is

a largest η such that rkζ(
⇀

i ) ≥ η. We take rkζ(
⇀

i ) to be this largest η.
In fact, it is clear that the range of rkζ is a proper initial segment of µ+

η ,

where µη = card
⋃

{∆τ |τ < η}, and so, in particular, the range of rkζ has
power at most λη. Note that λη+1 > µ+

η .

But then, we can find Bη an end-segment of ∆η such that for all
⇀

i ∈ Seqη

and all 0 ≤ γ < µ+
η , if there is ζ ∈ Bη such that rkζ(

⇀

i ) = γ, then there
are λη+1 such ζ. Recall that ∆η and therefore also Bη are of order type
λη+1, which is a successor cardinal. Everything is now in place for the main
definition.

(1.2) Definition. (
⇀

i , Z, D, f) ∈ K iff

(1) D is a nice, normal filter on κ,



4
1
9
 
 
r
e
v
i
s
i
o
n
:
1
9
9
7
-
0
9
-
1
8
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
1
9
9
7
-
0
9
-
3
0
 
 

8 SAHARON SHELAH AND LEE J. STANLEY

(2) f : κ→ OR,
(3) Z ∈ D,

(4) for some 0 < η < κ,
⇀

i ∈ Seqη, and for all τ ∈ Z \ (η + 1), there is

ζ ∈ Bτ such that rkζ(
⇀

i ) = f(τ) (so, in particular,
⇀

i ∈ T ζ).

Note that K 6= ∅, since if we choose ζτ ∈ Bτ , for τ < κ, take Z = κ,
⇀

i =
the empty sequence, choose D to be any nice normal filter on κ and define

f by f(τ) = rkζτ (
⇀

i ), then (
⇀

i , Z, D, f) ∈ K.
Now, let E be the family of nice normal filters on κ. Since rk2

D(f, E) ∈

OR, clearly among the (
⇀

i , Z, D, f) ∈ K, there is one with rk2
D(f, E) minimal.

So, fix one such, and denote it by (
⇀

i ∗, Z∗, D∗, f∗). For τ ∈ Z∗, set

Cτ = {ζ ∈ Bτ |rk
ζ(

⇀

i ) ≤ f∗(τ)}. Thus card Cτ = λτ+1, and for all ζ ∈

Cτ , range(
⇀

i ∗ ∪ {ζ}) is homogeneous green. Now suppose τ ∈ Z∗. For all
γ ∈ Z∗ \ (τ +1) and ζ ∈ Cτ , let C+

γ (ζ) = {ξ ∈ Cγ |c({ζ, ξ}) = green}. Also,

let Z+(ζ) = {γ ∈ Z∗ \ (β + 1)|card C+
γ (ζ) = λγ+1}. It is, perhaps, worth

pointing out that we could just as well have required only that C+
γ 6= ∅.

(1.3) Lemma. For a D-positive set of τ ∈ Z∗ and for λτ+1 many ζ ∈
Cτ , Z+(ζ) is D-positive.

Proof. For τ ∈ Z∗ and ζ ∈ Cτ , let Y (ζ) = κ \Z+(ζ). Since λ0 > 2κ, for all
τ ∈ Z∗ there is Y = Yτ ⊆ κ and C′

τ ⊆ Cτ with card C ′
β = λτ+1 such that

for all ζ ∈ C ′
τ , Y (ζ) = Yβ .

Let Ẑ = {τ ∈ Z∗|Yτ ∈ D}. We now conclude by showing that Ẑ 6∈ D. If

Ẑ ∈ D, then, since D is normal, we would have Y ∗ ∈ D, where Y ∗ = {τ ∈

Ẑ|for all η ∈ Ẑ ∩ τ, τ ∈ Yη}. But then, by shrinking the C ′
τ for τ ∈ Y ∗,

as in the next paragraph, we would get a homogeneous red set of power λ,
which is impossible.

We define Ĉτ for τ ∈ Y ∗ by recursion on τ in such a way that Ĉτ is a
subset of C ′

τ of power λτ+1. So, let τ ∈ Y ∗, and set ξ ∈ Ĉτ iff ξ ∈ C ′
τ and

for all η ∈ Y ∗ ∩ τ and all ζ ∈ Ĉη, ξ 6∈ C+
τ (ζ). So, in fact, Ĉτ is the result

of removing at most λτ elements from C ′
τ . But then, clearly the union of

the Ĉτ for τ ∈ Y ∗ is homogeneous red. This concludes the proof of Lemma
1.2.

We maintain the notation of the proof of Lemma 1.2. Fix τ as guaranteed
by Lemma 1.2, i.e., such that Yτ is defined, but Yτ 6∈ D. Let X = Z∗ \ Yτ .
Note that, for any ζ ∈ C ′

τ , X \ (τ + 1) = Z+(ζ) and X is D-positive. Now
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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS OF THE ERDÖS-DUSHNIK-MILLER THEOREM9

fix ζ ∈ C ′
τ . For γ ∈ X \ (τ +1), note that by the definition of C+

γ (ζ), there

is j ∈ C+
γ (ζ) such that rkj(

⇀

i ∗) ≤ f∗(γ). Choose one such and call it jγ .

Thus, again by the definition of C+
γ (ζ),

⇀

i ∗_ζ_jγ is homogeneous green,

and so, by the definition of rkjγ , rkjγ (
⇀

i ∗_ζ) < f∗(γ).

Now, define g : κ → OR by g(γ) = rkjγ (
⇀

i ∗_ζ), if γ ∈ X \ (τ + 1),
and g(γ) = 0, otherwise. Now, by the definition of rk2

D(f∗, E), (again,
see Chapter 5 of [3]) there is D′ ∈ E with D ∪ {X} ⊆ D′ and such that

rk2
D′(g, E) < rk2

D(f∗, E). However, it is easily verified that (
⇀

i ∗_ζ, X, D′, g) ∈
K, and, finally, this contradicts the choice of

(
⇀

i ∗, Z∗, D, f∗), and thus completes the proof of Theorem 1.

§2. ADDING COHEN SETS BELOW THE COFINALITY.

In this section, we prove Theorem 3 of the Introduction, whose statement
we now recall for convenience.

Theorem 3. Suppose that in V, ω ≤ θ ≤ σ = σ<σ < κ = cf λ < λ ≤ ν, λ

is a strong limit cardinal and for all µ < κ, µ<θ < κ. Let P be the partial
ordering for adding ν Cohen subsets of σ. Then, in V P, λ→ (λ, θ + 1)2.

Proof. So, let λ, κ, θ, σ, ν, P be as in the statement of Theorem 3, and
let (λη|η < κ) be as in Remark (2) of the Introduction, and suppose, in
addition that λ0 = µ+

0 , where µ0 = (iω(κ))
θ, and for η < κ, λη+1 = µ+

η ,

where µη = (µη)
((iω(λη))θ). Thus, by Remark 1 of the Introduction, we will

have that in V P, κ→ (κ, θ + 1)2 and similarly:

(!) in V P, for each η < κ which is either 0

or a successor ordinal, λη → (λη, θ + 1)2.

This follows from our choice of the λη since forcing with P adds no new
sequences of ordinals of length < θ. Also, let ∆η, and η(α) be as in Remark
2 of the Introduction.

For A ⊆ ν, we let P|A be the subordering of P with underlying set the
set of p ∈ P with domain included in A. If card A = card B and T is
a bijection from A to B, we abuse notation by also taking T to be the
isomorphism from P|A to P|B induced by T .

Suppose, now, that c is a P-name and that p ∈ P forces that c : [λ]2 →
{red, green}. We now embark on an analysis of c as a P-name culminating
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10 SAHARON SHELAH AND LEE J. STANLEY

in (*), following (2.9). This analysis carries over to §3, and even in the
case σ = κ. We use the latter case in our forthcoming paper, [7], when
κ is weakly compact. Therefore, we temporarily drop the assumption the
assumption σ < κ, or even that σ 6= κ, retaining only that σ = σ<σ < λ.

By (!), we can assume, without loss of generality, that for each η < κ, p

forces that ∆η is homogeneous red for c. In order to develop material that
will carry over to the proof of Theorem 4*, in §3, for now, we make no
additional hypotheses about c.

For α < β < λ, let A(α, β) be a subset of ν of power at most σ such
that c(α, β) is a P|A(α, β)-name. Such A(α, β) exists, since P has the
σ+-cc. Let A∗ =

⋃

{A(α, β)|α < β < λ} and let P∗ = P|A∗. Without

loss of generality, dom p ⊆ A∗. Thus, c ∈ V P∗

, so by arguing in V P∗

, and
remarking that card A∗ = λ and therefore that P∗ ∼= P|λ, we can assume,
without loss of generality, that ν = λ, which we do from here on.

For α < β < λ, let π(α, β) = o.t. A(α, β) and let (ρα, β
ζ |ζ < π(α, β))

be the increasing enumeration of A(α, β). Also, let T (α, β) be the order

isomorphism from A(α, β) to π(α, β) (so T (α, β)(ρα, β
ζ ) = ζ). Let c′(α, β)

be the P|π(α, β)-name which results from applying T (α, β) to c(α, β)
where T (α, β) is viewed as the isomorphism from P|A(α, β) to P|π(α, β),
as in the previous paragraph. Fix functions Fi : [λ]

2 → λ, for i < σ, such
that for α < β < λ, A(α, β) = {Fi(α, β)|i < σ}.

(2.1) Definition. Let Y (α, β) = {(i, ζ) ∈ σ×π(α, β)|Fi(α, β) = ρ
α, β
ζ }.

We also let X be the set of ordered 4-tuples, (α, β, γ, δ) from λ such that
α < β and γ < δ, and we define a function c∗ with domain X by:

c∗(α, β, γ, δ) = (π(α, β), π(γ, δ), Y (α, β), Y (γ, δ), c′(α, β), c′(γ, δ)).

Note that the following set is easily recoverable from c∗(α, β, γ, δ):

ĉ(α, β, γ, δ) = {(i, j)|Fi(α, β) = Fj(γ, δ)}.

We abuse notation below by acting as if this were actually part of c∗(α, β, γ, δ).
Also note that range c∗ has power at most 2σ.

Applying the general canonization lemma, Lemma 28.1 of [1] to c∗, we
get Bη ⊆ ∆η with card B0 > κ+ σ and for 0 < η < κ, card Bη > λη, and
such that (Bη : η < κ) is canonical for c∗, i.e, letting B =

⋃

{Bη|η < κ}, if
(αn|n < 4), (βn|n < 4) ∈ X ∩ B4 and for all n < 4, η(αn) = η(βn), then
c∗((αn|n < 4)) = c∗((βn|n < 4)).

Further note that if η(α1) = η(α2) < η(β1) = η(β2) and α1, α2, β1, β2 ∈
B, then since c∗(α1, β1, α1, β1) = c∗(α2, β2, α2, β2), we also have that
c′(α1, β1) = c′(α2, β2). This, in turn, means that if p1 ∈ P |A(α1, β1), p2 =
(T (α2, β2))

−1 ◦ T (α1, β1)(p1), and x ∈ {red, green}, then p1 forces that
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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS OF THE ERDÖS-DUSHNIK-MILLER THEOREM11

c(α1, β1) = x iff p2 forces that c(α2, β2) = x. We will use this observation
in several places in what follows.

(2.2) Lemma. Suppose that (α, β, γ, δ) ∈ X ∩ B4, α 6∈ {γ, δ}, α′ ∈
Bη(α) and Fi(α, β) = Fj(γ, δ). Then also Fi(α

′, β) = Fj(γ, δ), and
analogous statements hold where the values of the other coordinates of
(α, β, γ, δ) are varied instead of varying the first coordinate.

Proof. This is clear since (Bη|η < κ) is canonical for c∗, η(α) = η(α′)
and so, as noted at the end of Definition 2.1, (i, j) ∈ ĉ(α, β, γ, δ) iff
(i, j) ∈ ĉ(α′, β, γ, δ).

(2.3) Definition. Suppose η < τ < κ, i < σ, α ∈ Bη, β ∈ Bτ . We

define F τ
i, α : Bτ → λ and F

β
i, η : Bη → λ by F τ

i, α(β
′) = Fi(α, β′) and

F
β
i, η(α

′) = Fi(α
′, β).

(2.4) Lemma. If η < τ < κ, i < σ then:

(1) either (for all α ∈ Bη, F τ
i, α is constant) or (for all α ∈ Bη, F τ

i, α

is one-to-one).

(2) either (for all β ∈ Bτ , F
β
i, η is constant) or (for all β ∈ Bτ , F

β
i, η

is one-to-one).

Proof. We first argue that each is either constant or one-to-one. We con-
sider the F τ

i, α. Let β1 6= β2 both in Bτ . We claim that if Fi(α, β1) =
Fi(α, β2) then F τ

i, α is constant, while if Fi(α, β1) 6= Fi(α, β1), then F τ
i, α

is one-to-one. In the first case, (i, i) ∈ ĉ(α, β1, α, β2), while in the second
case, (i, i) 6∈ ĉ(α, β1, α, β2). But then, by canonicity, if β ∈ Bτ \{β1, β2},
(i, i) ∈ ĉ(α, β, α, β1) iff (i, i) ∈ ĉ(α, β, α, β2) iff (i, i) ∈ ĉ(α, β1, α, β2).
If (i, i) is a member of none, then Fi, α is one-to-one. If (i, i) is a mem-

ber of all, then Fi, α is constant. The argument for the F
β
i, η is completely

analogous.
We now argue that if α1 6= α2 both in Bη, and F τ

i, α1
is constant then

so is F τ
i, α2

. Once again, the argument for F
β1

i, η and F
β2

i, η is completely
analogous. So, suppose that F τ

i, α1
is constant.

Choose γ1 6= γ2 both inBτ . Since F
τ
i, α1

is constant, (i, i) ∈ ĉ(α1, γ1, α1, γ2),
so, by canonicity, (i, i) ∈ ĉ(α2, γ1, α2, γ2) which means that F τ

i, α2
is con-

stant.

(2.5) Remark. In Lemma 2.4, we cannot conclude that if F τ
i, α is constant

(resp. one-to-one) then F
β
i, η is constant (resp. one-to-one), as this would

involve an “illegal” application of canonization, comparing a “1,2” case to
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12 SAHARON SHELAH AND LEE J. STANLEY

a “2,1” case. It is, however, worth noting that if all the F τ
i, α are constant,

then all the F
β
i, η are constant iff all the F τ

i, α have the same constant value;

similarly, if all the F
β
i, η are constant, then all the F τ

i, α are constant iff all

the F
β
i, η have the same constant value. We argue for the first statement.

Suppose that all the F τ
i, α are constant. Let α1 6= α2 both in Bη and

β ∈ Bτ . Then F
β
i, η is constant iff Fi(α1, β) = Fi(α2, β) and therefore,

since the F τ
i, αj

are constant, this holds iff they have the same constant

value.

(2.6) Definition. For η < τ < κ, i < σ, α ∈ Bη, β ∈ Bτ , we define
Fi(α, τ), Fi(η, β) by Fi(α, τ) = the constant value of F τ

i, α, if F
τ
i, α is a

constant function, and undefined if it is a one-to-one function. Similarly,

Fi(η, β) = the constant value of F
β
i, η, if F

β
i, η is a constant function and

undefined if it is a one-to-one function.

(2.7) Remark. It is immediate from Lemma 2.4 that for fixed i < σ, and
fixed η < τ < κ, either all the Fi(α, τ) are defined or all the Fi(α, τ)
are undefined, and similarly for the Fi(η, β). Further, it is immediate
from Remark 2.5 that if all the Fi(α, τ) are defined then all the Fi(η, β)
are defined iff the function Fi(·, τ) is constant (and, when both of these
statements hold, Fi(η, ·) is also constant, with the same constant value),
and the analogous equivalence holds, starting from the hypothesis that all
the Fi(η, β) are defined.

(2.8) Definition. For η < κ and α ∈ Bη, we define Wα to be {Fi(η
′, α)|i <

σ, η′ < η} ∪ {Fi(α, τ)|i < σ, η < τ > κ}.

Note that for each η < κ, {Wα|α ∈ Bη} is a system of sets of ordinals
of power at most σ + κ. We have stated in terms of σ + κ to emphasize
that we are temporarily working without any assumptions as to the order
relationship between σ and κ. Thus, for all η < κ, we can find B∗

η ⊆ Bη,
with card B∗

η = card Bη such that the (Wα|α ∈ B∗
η) form a ∆-system

whose heart we denote by Hη. We also set H =
⋃

{Hη|η < κ}. We further
assume all of the following, for each η < κ:

(1) (o.t. Wα|α ∈ B∗
η) has constant value, oη; for α ∈ B∗

η , we let (γ
α
ξ |ξ <

oη) be the increasing enumeration of Wα,
(2) there is fixed aη ⊆ oη such that for all α ∈ B∗

η , aη = {ξ < oη|γ
α
ξ ∈

Hη},
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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS OF THE ERDÖS-DUSHNIK-MILLER THEOREM13

(3) there is fixed bη ⊆ (σ × η × oη) ∪ (σ × (κ \ (η + 1))× oη) such that
for all α ∈ B∗

η and all (i, ν, ξ), (i, ν, ξ) ∈ bη iff either (ν < η and
γα
ξ = Fi(ν, α)) or (η < ν and γα

ξ = Fi(α, ν)).

(2.9) Lemma. If αk ∈ B∗
ηk

, βk ∈ B∗
τk
, ηk < τk < κ, k = 0, 1, and

{α0, β0} 6= {α1, β1}, then A(α0, β0) ∩ A(α1, β1) ⊆ H.

Proof. Suppose that Fi(α0, β0) = Fj(α1, β1). Let α∗ ∈ B∗
η1
, α∗ 6∈

{α0, α1} and let β∗ ∈ B∗
τ1
, β∗ 6∈ {β0, β1}. Then, by canonicity, Fi(α0, β0) =

Fj(α
∗, β1), so Fj(α1, β1) = Fj(α

∗, β1), which means that Fi(α0, β0) ∈
Wβ1

. By a similar argument, Fi(α0, β0) = Fj(α1, β∗) = Fj(α
∗, β∗) ∈Wβ∗ ,

and then, since Fi(α0, β0) ∈ Wβ1
∩Wβ∗ , Fi(α0, β0) ∈ Hτ1 ⊆ H, as re-

quired.

Let P0 = P|(H∪dom p) and let V ′ = V P0 . Note that all our hypotheses
on V still hold in V ′ and V P = (V ′)Q, where, in V ′,Q ∼= P. Thus, we can
first force with P0 without changing anything relevant; therefore, we can
assume that H, p = ∅, which we do, from here on. By Lemma 2.9, this, of
course, guarantees that

(∗) For αi, βi as in Lemma 2.9, A(α0, β0) ∩A(α1, β1) = ∅.

Now choose αη ∈ B∗
η for η < κ.

It is at this point that the proof of Theorem 4*, in §3, will begin to
diverge. Here, we will assume that p also forces that c has no homogeneous
green set of order type θ + 1 and we will show that p forces that c has
a homogeneous red set of power λ, while in §3, in the proof of Theorem
4*, our treatment of the colors will be more “symmetrical”. However, the
remainder of the argument, here, will be similar quite similar in spirit to
the argument in Case 2 in §3, below.

Recall that here, we have already argued that, in V P, κ→ (κ, θ + 1)2.
Thus, in V P, there must be S ⊆ κ of power κ such that {αη|η ∈ S} is
homogeneous red for c|{αη|η < κ} (and therefore also for c).

So, let S be a P-name and q ∈ P, p ≤ q be such that q forces that
{αη|η ∈ S} is homogeneous red for c and that S has power κ. Then, in V ,
there are S ⊆ κ, and for η ∈ S, qη ∈ P, q ≤ qη such that qη forces that
αη ∈ S.

We may assume, without loss of generality, that the (qη|η ∈ S) form a
∆-system with heart q (by which we mean that the qη are pairwise isomor-
phic as well). Thus, the qη, for η ∈ S are pairwise compatible and whenever
η < τ are both in S and qη, qτ ≤ r ∈ P, r forces that c(αη, ατ ) = red.
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14 SAHARON SHELAH AND LEE J. STANLEY

Let A∗ =
⋃

{A(αη, ατ )|η < τ, both in S}. We may also assume that
for all η ∈ S, dom qη ⊆ A∗. This is because if this fails, then, letting
qη = qη|A

∗, whenever η < τ are both in S and qη, qτ ≤ r ∈ P, r forces
that c(αη, ατ ) = red, because c(αη, ατ ) is a P|A(αη, ατ )-name and r

forces that c(αη, ατ ) = red, where r = r ∪ (qη \ qη) ∪ (qτ \ qτ ), and this is
all that is required for the rest of the argument.

Further, we can clearly thin out S to obtain a subset, S ′, also of power
κ, such that for τ ∈ S′, letting τ ′ = min S′ \ (τ + 1), dom qτ \ dom q ⊆
⋃

{A(αη1
, αη2

)|η1 < η2 < τ ′ both in S}.
Finally, for τ ∈ S ′ and α ∈ B∗

τ , we make a copy qτα of qi, above q. We
do this by moving only coordinates in the A(αη, ατ ) and the A(ατ , αη)
which are in dom qτ \ dom q. We move these coordinates according to
the order-isomorphisms between the A(αη, ατ ) and the A(αη, α), and the
order-isomorphisms between the A(ατ , αη) and the A(α, αη). Clearly by
(∗), above and by the previous paragraph, this is well-defined. Also, by
Lemma 2.9 and (∗), the qτα are pairwise compatible.

Further, arguing as in the paragraph immediately preceding Lemma 2.2,
it is easy to see that whenever η < τ are both in S ′, α ∈ B∗

η , β ∈ B∗
τ

and qηα ∪ qτβ ≤ r, r forces that c(α, β) = red. Finally, clearly, whenever

q ≤ r ∈ P, r is incompatible with fewer than λ many of the qτα for τ ∈ S′

and α ∈ B∗
τ . But then, letting G be the canonical P-name for the generic,

let Y be the following P-name:

{α| there is τ ∈ S ′ such that α ∈ B∗
τ and qτα ∈ G}

But then q forces that Y has power λ and is homogeneous red for c. This
concludes the proof of Theorem 3.

§3. ADDING COHEN SETS ABOVE THE COFINALITY.

Recall that in the Introduction we have already argued that Theorem 4
follows from Theorem 4*. Here, we will prove Theorem 4*, whose statement
we recall.

Theorem 4*. Suppose that in V, ω < κ < σ = σ<σ < λ, κ = cf λ ≤ ν, λ

is a strong limit cardinal and P is the partial ordering for adding ν Cohen
subsets of σ. Suppose, further, that ζ < κ and that κ → (κ, ζ)2. Then, in
V P, λ→ (λ, ζ)2.

Proof. We carry over from §2 all the material up to and including the choice
of the αη ∈ B∗

η , for η < κ, and in particular, (2.1) - (2.9), except that here,
the analogue of (!) of §2 is:
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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS OF THE ERDÖS-DUSHNIK-MILLER THEOREM15

(!!) in V P, for each η < κ which is either 0

or a successor ordinal, λη → (λη, ζ)2.

The argument for this exactly follows that for (!) in §2. Also, as noted
in the Introduction, it follows from the hypotheses of the Theorem, that in
V P, κ → (κ, ζ)2. Once again, (!!) enables us to assume, without loss of
generality, that p forces that that each ∆η is homogeneous red for c.

Note that it is an easy consequence of Lemma 2.9 and our assumption
that H = ∅ that if η < τ < κ, q ∈ P |Hαη

, r ∈ P |Hατ
then q and r are

compatible. Recall that by the paragraph immediately preceding (∗), of
§2, we are assuming that p = ∅. Let s ∈ P . We now argue, using the
σ-completeness of P and the fact that σ > κ, that:

Lemma 3.1. In V , there is (pη|η < κ) such that for all η < κ, s|Hαη
≤

pη, dom pη ⊆ Hαη
, and such that

(∗∗) if η < τ < κ, x ∈ {red, green} either

s ∪ pη ∪ pτ forces c(αη, ατ ) = x or

there is q ∈ P |A(αη, ατ ) such that

(1) s ∪ pη ∪ pτ ≤ q,
(2) q forces c(αη, ατ ) 6= x,
(3) dom q \ (dom pη ∪ dom pτ ) ⊆ A(αη, ατ ) \ (Hαη

∪Hατ
).

Proof. Let ((ηγ , τγ)|γ < κ) enumerate all the pairs (η, τ) with η < τ < κ.
For γ ≤ κ, we define (pγη |η < κ) by recursion on γ so that pγη ∈ P |Hαη

, and
for all η < κ and all γ1 < γ2 ≤ κ, pγ1

η ≤ pγ2
η .

For η < κ, let p0
η = s|Hαη

and for nonzero limit ordinals, δ < κ, and

η < κ, let pδη =
⋃

{pγη |γ < δ}. So, suppose that γ = ξ+1. If η 6∈ {ηξ, τξ} we

take pγη = pξη. We construct pγηξ , pγτξ . Let η = ηξ, τ = τξ, α = αη, α′ = ατ ,

and let p(0) = pξη, p′(0) = pξτ . Identify red with 0 and green with 1. We
will have pγη = p(2), pγτ = p′(2), where we define p(i), p′(i), i = 1, 2
by the following two-stage recursion. If k = 0, 1 and p(k), p′(k) are
defined, and if s ∪ p(k) ∪ p′(k) forces c(α, α′) = k, then we set p(k + 1) =
p(k), p′(k + 1) = p′(k). Otherwise, choose q ∈ P |A(α, α′) such that
s ∪ p(k) ∪ p′(k) ≤ q and such that q forces c(α, α′) = 1 − k. Finally, let
p(k + 1) = q|Hα, p′(k + 1) = q|Hα′ .

Clearly then, by construction, for η < κ, taking pη = pκη , pη is as
required. This completes the proof of the Lemma.
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16 SAHARON SHELAH AND LEE J. STANLEY

Remarks. Although we have developed it for both colors, we only use the
machinery of (∗∗) of Lemma 3.1 with x = red. Also, in (∗∗), if s∪ pη ∪ pτ
does not force that c(αη, ατ ) = red, we choose qη, τ to be some q whose
existence is guaranteed by (∗∗).

Now, still working in V , we define d : [κ]2 → {red, green} by d(η, τ) =
red iff s ∪ pη ∪ pτ forces c(αη, ατ ) = red. Now, in V, κ→ (κ, θ+ 1)2, so
either (Case 1) there is Y ∈ [κ]ζ which is homogeneous green for d, or (Case
2) there is Y ∈ [κ]κ which is homogeneous red for d. We show that in Case
1, s has an extension which forces that there is a set of order type ζ which
is homogeneous green for c, while in Case 2, s, itself, forces that there is a
set of power λ which is homogeneous red for c. Clearly this suffices, since
then the empty condition forces that λ → (λ, ζ)2. We consider the cases
separately.

Case 1: The Green Case.

Let Y ∈ [κ]ζ be homogeneous green for d. For η < τ both in Y , note
that qη, τ is defined, since d(αη, ατ ) = green. Set

r =
⋃

{qη, τ |η < τ both in Y }

Once we have argued that r is a function, it will be clear that r ∈ P, s ≤ r

(since for any η < τ which are both in Y, s ≤ qη, τ ) and further that r

forces that {αη|η ∈ Y } is homogeneous green for c, since, again, whenever
η < τ are both in Y, qη, τ forces that c(αη, ατ ) = green. But, once again,
it follows from the conjunction of Lemma 2.9 and (∗) that r is a function.
This completes the proof in Case 1.

Case 2: The Red Case.

As we already noted there, the last part of the argument in §2 is quite
similar in spirit to the argument we shall give for this case. Let Y ∈ [κ]κ

be homogeneous red for d. As in §2, for η ∈ Y and α ∈ B∗
η , let pηα = T (pη),

where T is the order isomorphism between Hαη
and Hα. Once again, the

pηα (η ∈ Y, α ∈ B∗
η) are pairwise compatible, by Lemma 2.9 and (∗), and

whenever η < τ are both in Y, α ∈ B∗
η , β ∈ B∗

τ and s∪pηα∪pτβ ≤ q, q forces

that c(α, β) = red, by the fact that d(η, τ) = red and by the argument
of the paragraph immediately preceding Lemma 2.2. Also, once again, for
all s ≤ q ∈ P, q is incompatible with at most σ of the pηα.
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Now, let G again be the canonical P-name of the generic, and for η ∈ Y ,
letXη be the P-name {α ∈ B∗

η |p
η
α ∈ G}. Then, since card B∗

η > σ, s forces
that card Xη = card B∗

η . We conclude by noting that by the previous
paragraph, s also forces that “if η < τ are both in Y, α ∈ Xη, β ∈ Xτ then
c(α, β) = red.”. In other words, “as promised”, s forces that

⋃

{Xη|η ∈ Y }
is homogeneous red for c and has power λ. This concludes the proof of Case
2, and therefore of Theorem 4*.
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