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Abstract
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Annotated Content

Section 0: Introduction.

Section 1: Basic properties.
[We define Ensσ, σ-entangled (Definition 1.1); we give their basic properties
(1.2) and the connection between those properties of linear orders and (the
σ-completion of) the interval Boolean algebras (Definition 1.3) which they
generate (1.5). We recall the definition of inc(+)(B) (see 1.4) and we state
its properties. Then we formulate the properties of linear orders required to
have inc(Bσ/D) > (inc(B))σ/D (1.7).]

Section 2: Constructions for λ = λ<λ.
[In 2.3, assuming λ = 2µ = µ+ (and ♦λ which usually follows), we build
some Boolean algebras derived from a tree, using a construction principle
(see [Sh 405]). The tree is a λ+-Aronszajn tree, the derived linear order is
locally µ-entangled (of cardinality λ+). Next, in 2.5, we force a subtree T of
λ≥λ of cardinality λ+, the derived linear order is µ-entangled (of cardinality
λ+). It provides an example of Boolean algebras Bσ (for σ < µ) with
inc(Bσ) = λ, inc((Bσ)µ/D) = λ+ for each uniform ultrafilter D on µ.]

Section 3: Constructions Related to pcf Theory.
[We give sufficient conditions for Ensσ(λ, κ) when λ can be represented as
tcf(

∏

i
λi/D), λi > max pcf({λj : j < i}) (see 3.1). If 2κ ≥ sup

i
λi (and more)

we can get σ-entangled linear order (3.2). Also we can utilize Ensσ(λi, κi)
(see 3.3, 3.4). Now relaying on a generalization of “δ < ℵδ ⇒ pp(ℵδ) <
ℵ|δ|+4”, we prove that if µ = µ<σ then for many θ ∈ [µ,ℵµ+4) we have
Ensσ(θ+, µ) and if 2µ ≥ ℵµ+4 also σ-entangled linear orders of cardinality
θ+ (see 3.6). Hence for each σ for a class of successor cardinals there is a
σ-entangled linear order of cardinality λ+ (see 3.7).]

Section 4: Boolean Algebras with neither pies nor chains.
[Refining results in Section 3, we get Boolean algebras (again derived from
trees

⋃

i≤δ

∏

j<i
λj using λ = tcf(

∏

i
λi/D), but not as interval Boolean algebras),

which have neither large chains nor large pies. For this we need more on
how λ = tcf(

∏

i
λi/D).]

Section 5: More on entangledness.
[In 5.1, 5.4 we deal with cases 2<λ < 2λ. Then we get finer results from
assumption on pp(µ)’s, improving Section 3. We also deal with pcf(a),
defining pcfexκ (a) =

⋂

{pcf(a \ b) : b ⊆ a, |b| < κ} proving for it parallel of
the old theorem and connecting it to entangledness, mainly: if each µ ∈ a is

1
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(λ, κ, 2)-inaccessible, then θ ∈ pcfexκ (a) ⇒ Ens(θ, 2κ). We extract from the
proof of [Sh 410, §4] on the existence of entangled linear orders a statement
more relevant to pcf. We lastly prove: for a singular fix point µ and µ0 < µ
there is θ+ ∈ (µ,pp+(µ)) in which there is an entangled linear order of
density ∈ (µ0, µ) (see 5.13(2,3).]

Section 6: Variants of entangledness in ultraproducts.
[We investigate what kinds of entangledness (and inc(−) ≤ µ) are preserved
by ultraproducts (6.4). We also find that entangledness can be destroyed
by ultrapowers with little connection to its structure, just its cardinality,
for non separative ultrafilters. So to show the possibility of (inc(B))ω/D >
inc(Bω/D) it suffices to find B = BAinter(I) such that |B| > (inc(B))ℵ0 .]

0 Introduction

In the present paper we investigate σ-entangled linear orders and narrow-
ness of Boolean algebras (if B is the interval Boolean algebra of a linear
order I, then the algebra B is narrow if and only if I is entangled). On
entangled = ℵ0–entangled (= narrow interval Boolean algebra) linear orders
(Definition 1.1(4)) see Bonnet [Bo], Abraham, Shelah [AbSh 106], Abraham,
Rubin, Shelah [ARSh 153], Bonnet, Shelah [BoSh 210], Todorcevic [To] and
[Sh 345, §4], [Sh 345b], [Sh 355, 4.9–4.14], [Sh 410, §4].

We prove that for many cardinals λ there is a σ–entangled linear order
of cardinality λ (see 3.7). For example, if λ is a limit cardinal, λ = λ<σ,
2λ > λ+λ+4

then for some singular cardinal µ ∈ [λ,ℵλ+4) there is one in µ+.
We also prove that for a class of cardinals λ, there is a Boolean algebra B
of cardinality λ+ with neither a chain of cardinality λ+ nor a pie (= set of
pairwise incomparable elements) of cardinality λ+, see 4.3.

Another focus is a problem of Monk [M1]: for a Boolean algebra B, let
inc(B) be sup{|X| : X ⊆ B is a pie (see above)}. He asked: are there
a Boolean algebra B, a cardinal σ and an ultrafilter D on σ such that
inc(Bσ/D) > (inc(B))σ/D, and we may ask whether this holds for σ but for
no smaller σ′ < σ. Now, if I is a σ–entangled linear order of cardinality λ+,
λσ = λ then we get examples: the interval Boolean algebra B of I satisfies
inc(B) = λ (hence (incB)σ/D = λ) but in the cases we construct I, we get
that for any uniform ultrafilter D on σ, inc(Bσ/D) = λ+ (on sufficiency see
1.7; on existence see 2.3(3), 3.2, 3.6(3)). Similarly for the entangledness of
a linear order. Unfortunately, though we know that there are σ–entangled
linear orders of cardinality λ+ for many cardinals λ (as needed), we do not
know this for cardinals λ satisfying λ = λσ (even λℵ0 = λ), and λ < λσ

implies usually (inc(B))σ/D ≥ λ+. Still, the unresolved case requires quite
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peculiar cardinal arithmetic (everywhere): “usually” 2λ is not so large in
the aleph sequence, and there are additional strong restrictions on the power
structure in V. For instance, for every µ

µσ = µ ⇒ 2µ < ℵµ+4

and

µ is strong limit of cofinality > σ ⇒ 2µ < µ+µ & (∃χ)(χ < χσ = 2µ)

and
µ ≥ iω ⇒ 2µ > µ+.

To make the paper more self-contained we give fully the straight general-
izations of [Sh 345], [Sh 355] and [Sh 410]. The research is continued in
Magidor Shelah [MgSh 433], Shafir Shelah [SaSh 553], Ros lanowski Shelah
[RoSh 534], [RoSh 599], and lately [Sh 620].

We thank Andrzej Ros lanowski and Opher Shafir for reading, correcting,
pointing out various flaws and writing down significant expansions.

Notation Our notation is rather standard. We will keep the following
rules for our notation:

1. α, β, γ, δ, ξ, ζ, i, j . . . will denote ordinals,

2. κ, λ, µ, σ, . . . will stand for cardinal numbers,

3. a bar above a name indicates that the object is a sequence, usually X̄
will be 〈Xi : i < ℓg(X̄)〉, where ℓg(X̄) denotes the length of X̄ ,

4. for two sequences η, ν we write ν ⊳ η whenever ν is a proper initial
segment of η, and ν E η when either ν ⊳ η or ν = η. The length of a
sequence η is denoted by ℓg(η).

For a set A of ordinals with no last element, Jbd
A is the ideal of bounded

subsets of A.

1 Basic Properties

In this section we formulate basic definitions and prove fundamental depen-
dencies between the notions we introduce.

Definition 1.1 Let λ, µ, κ, σ be cardinal numbers.

3
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1. A sequence Ī = 〈Iε : ε < κ〉 of linear orders is (µ, σ)–entangled if

(⊛) for every disjoint subsets u, v of κ such that |u ∪ v| < 1 + σ and
sequences 〈tεα : α < µ〉 of pairwise distinct elements of Iε (for
ε ∈ u ∪ v), there are α < β < µ such that

ε ∈ u ⇒ tεα <Iε t
ε
β and ε ∈ v ⇒ tεα >Iε t

ε
β.

Ens(λ, µ, κ, σ) = Ensσ(λ, µ, κ) means:

there is a (µ, σ)–entangled sequence Ī = 〈Iε : ε < κ〉 of
linear orders, each of cardinality λ.

2. If we omit µ, this means λ = µ (i.e. |Iε| = µ), if we omit σ it means
σ = ℵ0.

3. A linear order I is (µ, σ)–entangled if (I has cardinality ≥ µ and)
for every ε(∗) < σ and a partition (u, v) of ε(∗) and pairwise distinct
tεα ∈ I (for ε ∈ u ∪ v, α < µ), there are α < β < µ such that

(⊕) for each ε < ε(∗) we have

ε ∈ u ⇒ tεα <I tεβ and ε ∈ v ⇒ tεα >I tεβ.

4. We omit µ if |I| = µ (and so we write “I is σ–entangled” instead “I
is (|I|, σ)–entangled”); we omit also σ if it is ℵ0.

5. A sequence 〈Iζ : ζ < γ〉 of linear orders is strongly (µ, σ, σ′)–entangled
if

(a) each of Iζ is of cardinality ≥ µ,

(b) if u, v are disjoint subsets of γ, |u ∪ v| < 1 + σ, ξ(ε) < σ′ for
ε ∈ u ∪ v and tαε,ξ ∈ Iε (for α < µ, ε ∈ u ∪ v, ξ < ξ(ε)) are such
that

(∀ε ∈ u ∪ v)(∀ξ, ζ < ξ(ε))(∀α < β < µ)(tαε,ξ 6= tβε,ζ)

then for some α < β < µ we have:

ε ∈ u ⇒ (∀ξ < ξ(ε))(tαε,ξ < tβε,ξ) and

ε ∈ v ⇒ (∀ξ < ξ(ε))(tβε,ξ < tαε,ξ).

Proposition 1.2 1. Assume λ ≥ λ1 ≥ µ1 ≥ µ, κ1 ≤ κ and σ1 ≤ σ.
Then Ensσ(λ, µ, κ) implies Ensσ1(λ1, µ1, κ1).

4
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2. If I is a (µ, σ)–entangled linear order, J ⊆ I, and |I| ≥ |J | ≥ µ1 ≥ µ,
σ1 ≤ σ then J is (µ1, σ1)–entangled.

3. If a linear order I has density χ, χ<σ < µ, µ = cf(µ) and σ ≥ 2

then in Definition 1.1(3) of “I is (µ, σ)–entangled” we can add to the
assumptions

(⊚) there is a sequence 〈[aε, bε] : ε < ε(∗)〉 of pairwise disjoint inter-
vals of I such that tεα ∈ (aε, bε).

4. Moreover, if a linear order I has density χ, χ<σ < µ = cf(µ)

then for each ε(∗) < σ and sequences t̄α = 〈tεα : ε < ε(∗)〉 ⊆ I (for
α < µ) such that ε 6= ζ ⇒ tεα 6= tζα, there are A ⊆ µ, |A| = µ, and
a sequence 〈[aε, bε] : ε < ε(∗)〉 of pairwise disjoint intervals of I such
that for each ε < ε(∗)

either (∀α ∈ A)(tεα ∈ (aε, bε)) or (∀α ∈ A)(tεα = aε).

5. If σ ≥ 2 and a linear order I is (µ, σ)–entangled then I has density
< µ.

6. If there exists a (µ, σ)–entangled linear order of size λ then Ensσ(λ, µ, λ).

7. In Definition 1.1(3), if σ is infinite, we can weaken “α < β < µ” to
“α 6= β, α < µ, β < µ”.

8. If there is a (µ, σ)–entangled linear order of size λ and (∗)κ below holds
then Ensσ(λ, µ, κ), where:

(∗)κ one of the following holds true:

(α) κ = µ+ and if λ = µ then cf(µ) ≥ σ,

(β) there are Ai ⊆ λ for i < κ, |Ai| = λ such that i 6= j ⇒
|Ai ∩Aj | < µ and cf(µ) ≥ σ,

(γ) there are Ai ⊆ λ for i < κ, |Ai| = λ such that sup{|Ai∩Aj| :
i < j < κ} < µ.

Proof 1), 2) are left to the reader.

3) Clearly the new definition is weaker, so we shall prove that the one from
1.1(3) holds assuming the one from 1.2(3). Let J ⊆ I be dense in I and
|J | ≤ χ. Thus for each a, b ∈ I, a <I b, there exists s ∈ J such that
a ≤I s ≤I b.

5
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Suppose that ε(∗), u, v, 〈tεα : ε < ε(∗), α < µ〉 are as in 1.1(3). For
each ε, ζ < ε(∗) and α < µ such that tεα < tζα there exists sε,ζα ∈ J such
that tεα ≤ sε,ζα ≤ tζα (and at least one inequality is strict). Define functions
h0, h1, h2, h3 on µ by:

h0(α) = {〈ε, ζ〉 : ε, ζ < ε(∗) and tεα < tζα}
h1(α) = 〈sε,ζα : 〈ε, ζ〉 ∈ h0(α)〉
h2(α) = 〈〈ε, ζ, ξ,TV(tξα = sε,ζα )〉 : 〈ε, ζ〉 ∈ h0(α), ξ < ε(∗)〉
h3(α) = 〈〈ε, ζ, ξ,TV(tξα < sε,ζα )〉 : 〈ε, ζ〉 ∈ h0(α), ξ < ε(∗)〉,

(where TV(−) is the truth value of −). Now, for each ℓ < 4, dom(hℓ) = µ
and |rang(hℓ)| ≤ |J ||ε(∗)|

3
≤ χ<σ < µ. Since cf(µ) = µ, there exists A ∈ [µ]µ

such that the restrictions hℓ ↾ A are constant for ℓ = 0, 1, 2, 3.
So let sε,ζα = sε,ζ for α ∈ A. As the tεα’s were pairwise distinct (for each ε)
we conclude

(α ∈ A & ε < ε(∗)) ⇒ tεα /∈ {sξ,ζ : 〈ξ, ζ〉 ∈ h0(α)}.

Define for ε < ε(∗):

Iε = {t ∈ I : for every ζ, ξ < ε(∗) such that sξ,ζ is well defined and
for every (≡ some) α ∈ A we have
t ≤ sξ,ζ ⇔ tεα ≤ sξ,ζ and t ≥ sξ,ζ ⇔ tεα ≥ sξ,ζ}.

Note that the value of α is immaterial.
Now, easily Iε does not have cofinality > χ (as I has no monotonic sequence
of length ≥ χ+, remember I has density ≤ χ). Hence we find an unbounded
well ordered subset J +

ε ⊆ Iε, |J +
ε | ≤ χ. Similarly there is an anti-well

ordered J −
ε ⊆ Iε, |J

−
ε | ≤ χ, which is unbounded from below (in Iε). Let

J ∗ =
⋃

ε<ε(∗)
(J+

ε ∪ J−
ε ). Again, for some set A′ ⊆ A of size µ, the Dedekind

cut which tεα realizes in J ∗ does not depend on α for α ∈ A′, and tεα /∈ J ∗.
Now we can easily choose (aε, bε): aε is any member of J −

ε which is < tεα
for α ∈ A′ and bε is any member of J+

ε which is > tεα for α ∈ A′.

4) Included in the proof of 1.2(3).

5) By 1.2(2), without loss of generality σ = 2. Suppose that I has density
at least µ. By induction on α < µ we try to choose t0α, t

1
α such that

(i) t0α < t1α,

(ii) t0α, t
1
α /∈ {t0β, t

1
β : β < α},

(iii) (∀β < α)(∀ℓ ∈ {0, 1})(t0α < tℓβ ⇔ t1α < tℓβ).

6
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Continue to define for as long as possible. There are two possible outcomes.
Outcome (a): One gets stuck at some α < µ.
Let J = {t0β, t

1
β : β < α}. Then

(∀t0 < t1 ∈ I \ J )(∃s ∈ J )(t0 < s ⇔ ¬[t1 < s]).

Since t0, t1 /∈ J , it follows that t0 < s < t1. So J is dense in I and is of
cardinality 2|α| < µ – a contradiction.
Outcome (b): One can define t0α, t

1
α for every α < µ.

Then 〈t0α, t
1
α : α < µ〉, u = {1}, v = {0} constitute an easy counterexample

to the (µ, 2)–entangledness of I.

6) Suppose I is (µ, σ)–entangled and |I| = λ. Take a sequence 〈Iε : ε < λ〉
of pairwise disjoint subsets of I, each of power λ. This sequence witnesses
Ensσ(λ, µ, λ): suppose u, v are disjoint subsets of λ, |u ∪ v| < σ and let
tεα ∈ Iε for α < µ, ε ∈ u ∪ v be pairwise distinct. Now apply “I is (µ, σ)–
entangled”.

7) Let u, v, tεα (for ε ∈ u ∪ v, α < µ) be as in Definition 1.1(3). Put

u′ = {2ε : ε ∈ u} ∪ {2ε + 1 : ε ∈ v}, v′ = {2ε : ε ∈ v} ∪ {2ε + 1 : ε ∈ u},
s2εα = tε2α, s2ε+1

α = tε2α+1.

Now we apply Definition 1.1(3) – the 1.2(7) version to u′, v′, 〈sεα : ε ∈
u′ ∪ v′, α < µ〉, and we get α′ 6= β′ as required there. If α′ < β′ then
α = 2α′, β = 2β′ are as required in 1.1(3). Otherwise α′ > β′ and then
α = 2β′ + 1, β = 2α′ + 1 are as required in 1.1(3).

8) (α) Suppose λ = µ (and so cf(µ) ≥ σ) and let I be a (µ, σ)–entangled
linear order of size λ. Choose a family {Aε : ε < µ+} ⊆ [I]µ such that
(∀ε < ζ < µ+)(|Aε ∩Aζ | < µ), and let Iε = I ↾ Aε (for ε < µ+). We claim
that the sequence 〈Jε : ε < µ+〉 witnesses Ensσ(λ, µ, µ+). Why? Clearly
|Jε| = λ = µ. Suppose that u, v ⊆ µ+ are disjoint, |u ∪ v| < 1 + σ and for
ε ∈ u∪ v let 〈tεα : α < µ〉 ⊆ Jε be pairwise distinct. Since σ ≤ cf(µ) we find
α(∗) < µ such that

(∀ε0, ε1 ∈ u ∩ v)(∀α0, α1 < µ)(ε0 6= ε1 & α0, α1 > α(∗) ⇒ tε0α0
6= tε1α1

)

(remember the choice of the Aε’s). Now apply the assumption that I is
(µ, σ)–entangled to the sequence

〈tεα : ε ∈ u ∪ v, α ∈ (α(∗), µ)〉 ⊆ I.

If λ > µ then we can choose a family {Aε : ε < µ+} of pairwise disjoint sets

from [I]λ and proceed as above.
(β), (γ) Similarly. 1.2

7
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Definition 1.3 Let I be a linear order.

1. The interval Boolean algebra BAinter(I) determined by I is the alge-
bra of finite unions of closed–open intervals of I (including [−∞, x),
[x,∞), [−∞,∞)).

2. For a regular cardinal σ, BAσ
inter(I) is the closure of the family of

subsets of I of the form [−∞, s) (for s ∈ I), by complementation and
unions and intersections of < σ members1.

Definition 1.4 Let B be an infinite Boolean algebra.

1. A set Y ⊆ B is a pie if any two members of Y are incomparable (in
B; “pie” comes from “a set of pairwise incomparable elements”).

2. inc(B) = sup{|Y | : Y ⊆ B is a pie }.

3. inc+(B) = sup{|Y |+ : Y ⊆ B is a pie }.

4. The algebra B is µ–narrow if there is no pie of cardinality ≥ µ.

5. Length(B) = sup{|Y | : Y ⊆ B is a chain },

Length+(B) = sup{|Y |+ : Y ⊆ B is a chain }.

Proposition 1.5 Suppose that I is a linear order and that the regular car-
dinals ℵ0 ≤ σ < µ satisfy (∀θ < µ)[θ<σ < µ]. Then the following conditions
are equivalent:

(a) The order I is (µ, σ)–entangled.

(b) If ε(∗) < σ, and u, v ⊆ ε(∗) are disjoint and tεα ∈ I (for ε < ε(∗),
α < µ)

then for some α, β < µ we have

ε ∈ u ⇒ tεα ≤I tεβ and ε ∈ v ⇒ tεα ≥I tεβ.

(Note: if the tεα are pairwise distinct then the inequalities are in fact
strict; as in the proof of 1.2(7) changing the demand α < β to α 6= β
does not matter.)

(c) The algebra BAσ
inter(I) is µ–narrow.

1Equivalently, the Boolean algebra σ–generated by {xt : t ∈ I} freely except xs ≤ xt

when I |= s < t.

8
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Proof (a) ⇒ (c). By 1.2(5) the order I has density < µ.
Let 〈Aα : α < µ〉 be a sequence of distinct elements of the algebra BAσ

inter(I).
We know that for each α there are: an ordinal εα < σ, a Boolean term τα
(with all unions and intersections of size < σ and εα free variables) and a
sequence 〈tεα : ε < εα〉 ⊆ I such that Aα = τα(. . . , tεα, . . .)ε<εα . By 1.2(4),
without loss of generality for some ε(∗) and pairwise disjoint intervals [aε, bε]
we have: εα = ε(∗) and for each ε < ε(∗) either (∀α < µ)(aε < tεα < bε) or
(∀α < µ)(tεα = aε). Since µ = cf(µ) > ℵ0 and (∀θ < µ)(θ|ε(∗)| < µ) we may
apply the ∆-lemma to the family {xα : α < µ}, where xα =: {tεα : ε < ε(∗)}.
Consequently, we may assume that {xα : α < µ} forms a ∆-system with
the kernel x (i.e. α < β < µ ⇒ xα ∩ xβ = x). Note that if for some
α < µ, tεα ∈ x then (∀α < β < µ)(tεα = tεβ) and if tεα /∈ x (for some α < µ)
then (∀α < β < µ)(tεα 6= tεβ). Thus for each ε < ε(∗) either tεα (for α < µ)
are pairwise distinct or they are pairwise equal. Since µ = cf(µ) > σ and
θ<σ < µ for θ < µ, without loss of generality τα = τ . Let

w = {ε < ε(∗) : 〈tεα : α < µ〉 are pairwise distinct }.

Then for some disjoint sets v, u ⊆ w and a set A ⊆ I \
⋃

ε∈u∪v
[aε, bε] we have

Aα = A ∪
⋃

ε∈u∪v
τ ε(aε, t

ε
α, bε), where we let

τ ε(x, y, z) =

{

[x, y) if ε ∈ u,
[y, z) if ε ∈ v.

Since I is (µ, σ)–entangled, we can find α < β such that

(∀ε ∈ u ∪ v)(tεα < tεβ ⇔ ε ∈ u).

Clearly this implies that Aα ⊆ Aβ, so we are done.

(c) ⇒ (a). First we note that the linear order I has density < µ.
[Why? Easily I has no well ordered subset of power µ nor an inverse well
ordered subset of power µ. Assume I has density ≥ µ. First we show that
there are disjoint closed–open intervals I0,I1 of I with density ≥ µ. To
prove the existence of I0,I1 define the relation E on I by:

a E b if and only if
a = b or [a < b and density([a, b)) < µ] or
[a > b and density([b, a)) < µ].

Clearly E is an equivalence relation and its equivalence classes are convex.
Moreover, the density of each E–equivalence class is less than µ (as there

9
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is no monotonic sequence of length µ of members of I). Consequently we
find a, b ∈ I such that a < b, ¬a E b. Next we can find c, d ∈ (a, b),
c < d such that neither a E c nor d E b. Thus we may put I0 = [a, c),
I1 = [d, b). Now for each Im we choose by induction on β < µ elements
amβ < bmβ from Im such that [amβ , bmβ ] is disjoint from {amα , bmα : α < β}. So

α < β ⇒ [amα , bmα ) 6⊆ [amβ , bmβ ). Now, 〈[a0β , b
0
β) ∪ (I1 \ [a1β , b

1
β)) : β < µ〉

shows that the algebra BAσ
inter(I) is not µ-narrow, a contradiction].

By 1.2(7) it is enough to prove that if ε(∗) < σ and tεα ∈ I are distinct for
α < µ, ε < ε(∗) and u, v are disjoint subsets of ε(∗) then we can find α 6= β
such that:

ε ∈ u ⇒ tεα < tεβ, and ε ∈ v ⇒ tεα > tεβ.

By 1.2(4), without loss of generality for some pairwise disjoint intervals
[aε, bε] of I, we have tεα ∈ (aε, bε). Let xα =: x1α ∪ x2α, where

x1α =:
⋃

{[aε, t
ε
α) : ε ∈ u}, x2α =:

⋃

{[tεα, bε) : ε ∈ v}.

So for α < µ, xα ∈ BAσ
inter(I). The algebra BAσ

inter(I) is µ–narrow, so for
some α 6= β (< µ) we have xα ⊆ xβ. Then for each ε:

ε ∈ u ⇒ I |= tεα ≤ tεβ, and ε ∈ v ⇒ I |= tεα ≥ tεβ.

This is as required.

(a) ⇒ (b). It is included in the proof of (a) ⇒ (c).

(b) ⇒ (a). Trivial. 1.4

Proposition 1.6 Let B be a Boolean algebra.

1. If inc+(B) is a successor cardinal then [inc(B)]+ = inc+(B).

2. If inc+(B) is a limit cardinal then inc(B) = inc+(B).

3. B is µ–narrow if and only if inc+(B) ≤ µ.

4. If B is µ–narrow then so is every homomorphic image of B.

5. If D is a filter on σ and the product algebra Bσ is µ–narrow then the
algebra Bσ/D is µ–narrow. 1.6

Conclusion 1.7 Assume λ∗ ≥ µ, λ ≥ µ = cf(µ) > κ ≥ σ = cf(σ) ≥ ℵ0

and (∀θ < µ)[θ<σ < µ].

10
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1. Then (A)λ∗,λ,µ,σ,κ ⇒ (B)λ∗,λ,µ,σ,κ, using Bj = BAinter(Ij+Jj), where

(A)λ∗,λ,µ,σ,κ there are linear orders Ij, Jj (for j ≤ κ) of cardinality
λ, such that each Ij +Jj is (µ, σ)–entangled and for any uniform
ultrafilter D on κ, the linear orders

∏

j<κ
Ij/D and

∏

j<κ
Jj/D have

isomorphic subsets of cardinality λ∗;

(B)λ∗,λ,µ,σ,κ there are interval Boolean algebras Bj (for j < κ) which
are µ–narrow and of cardinality λ such that for any uniform ul-
trafilter D on κ the algebra B =

∏

i<κ
Bi/D is not λ∗–narrow.

2. Also (A)+λ∗,λ,µ,σ,κ ⇒ (B)+λ∗,λ,µ,σ,κ (using B = BAinter(I + J )), where

(A)+λ∗,λ,µ,σ,κ there are linear orders I,J of cardinality λ, such that I+
J is (µ, σ)–entangled and for any uniform ultrafilter D on κ the
linear orders Iκ/D, J κ/D have isomorphic subsets of cardinality
λ∗.

(B)+λ∗,λ,µ,σ,κ there is a µ-narrow interval Boolean algebra B of cardi-

nality λ such that λ∗ < inc+[Bκ/D] for any uniform ultrafilter D
on κ (i.e. the algebra is not λ∗–narrow).

3. We can replace “uniform ultrafilter D” by “regular ultrafilter D” or
fix a filter D on κ.

Proof Just note that

if B is a Boolean algebra, I,J are linear orders, at ∈ B for
t ∈ I + J are such that t < s ⇒ at <B as and f is an (order)
isomorphism from I to J
then {af(t) − at : t ∈ I} is a pie of B.

1.7

Conclusion 1.8 Assume that σ < µκ = µ < λ and there is a (µ, σ)-
entangled linear order I + J such that for a uniform ultrafilter D on κ
the linear orderings Iκ/D, J κ/D contain isomorphic subsets of cardinality
λ > µ. Then

inc+(BAinter(I + J )) ≤ µ and inc((BAinter(I + J ))κ/D) ≥ λ

and even
inc+((BAinter(I + J ))κ/D) > λ

(so inc((BAinter(I + J ))κ/D) > inc(BAinter(I + J ))κ/D).

11
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Remark: See an example in 3.2(3).

Definition 1.9 We say that a linear order I has exact (λ, µ, κ)–density if
for every J ⊆ I of cardinality ≥ λ we have density(J) ∈ [κ, µ).
If µ = κ+ we may omit µ; if λ = |I| we may omit it. We may also say I
has exact density (λ, µ, κ) or (λ, µ, κ) is an exact density of I (and replace
(λ, µ, κ) by (λ, µ) or (µ, κ) or κ).

Definition 1.10 1. A linear order I is positively σ-entangled if for each
ε(∗) < 1 + σ, u ∈ {∅, ε(∗)} and an indexed set {tαε : α < |I|, ε <
ε(∗)} ⊆ I such that

(∀α < β < |I|)(∀ε < ε(∗))(tαε 6= tβε )

there exist α < β < |I| such that (∀ε < ε(∗))(ε ∈ u ⇔ tαε < tβε ).

2. Similarly we define when Ī = 〈Ii : i < i∗〉 is positively σ-entangled
and PosEnsσ(λ, µ, κ), PosEnsσ(λ, κ).

For more on entangledness in ultraproducts see section 6.

2 Constructions for λ = λ
<λ

In this section we will build entangled linear orders from instances of GCH.
Our main tool here is the construction principle presented in [HLSh 162] and
developed in [Sh 405]. The main point of the principle is that for standard
λ+–semiuniform partial orders (see 2.1 below) there are “sufficiently generic”
filters G, provided ♦λ holds (actually, a weaker assumption suffices). For
the precise definition of “sufficiently generic” we refer the reader to [Sh 405,
Appendix] (compare [HLSh 162, §1] too). Here we recall the definition of
standard λ+–semiuniform partial orders, as it lists the conditions we will
have to check later.

Definition 2.1 Let λ be a regular cardinal.

1. A set u ⊆ λ+ is closed if 0 ∈ u and δ = sup(δ ∩ u) ⇒ δ ∈ u.

2. Let (P,≤) be a partial order such that

P ⊆ λ× {u ⊆ λ+ : |u| < λ+ & u is closed}.

If p = (α, u) ∈ P then we write dom(p) = u.
For an ordinal β < λ+ we let Pβ = {p ∈ P : dom(p) ⊆ β}.
We say that (P,≤) is a standard λ+–semiuniform partial order if the
following conditions are satisfied:

12
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(a) If p ≤ q then dom(p) ⊆ dom(q).

(b) If p ∈ P, α < λ+ is either a successor ordinal or cf(α) = λ then
there exists q ∈ P such that q ≤ p and dom(q) = dom(p) ∩ α;
moreover there is a unique maximal such q which will be denoted
p ↾ α.

(c) If p = (α, u) ∈ P, h : u
1−1
−→ v ⊆ λ+ is an order isomorphism onto

v such that (∀α ∈ u)(cf(α) = λ ⇔ cf(h(α)) = λ) and v is closed

then h[p]
def
= (α, v) ∈ P; moreover, q ≤ p implies h[q] ≤ h[p].

(d) If p, q ∈ P, α < λ+ is either a successor ordinal or cf(α) = λ and
p ↾ α ≤ q ∈ Pα then there is r ∈ P such that p, q ≤ r.

(e) If 〈pi : i < δ〉 ⊆ P is an increasing sequence, δ < λ then there is
q ∈ P such that

dom(q) = cl(
⋃

i<δ

dom(pi)) and (∀i < δ)(pi ≤ q).

(f) Suppose that 〈pi : i < δ〉 ⊆ Pβ+1 is increasing, δ < λ and β < λ+

has cofinality λ. Assume that q ∈ Pβ is such that (∀i < δ)(pi ↾

β ≤ q). Then the family {pi : i < δ} ∪ {q} has an upper bound r
such that q ≤ r ↾ β.

(g) Assume that 〈βi : i < δ〉 ⊆ λ+ is strictly increasing, each βi is
either a successor or has cofinality λ, δ < λ is a limit ordinal.
Suppose that q ∈ P and (∀i < δ)(q ↾ βi ≤ pi ∈ Pβi

) and 〈pi : i <
δ〉 ⊆ P is increasing. Then the family {pi : i < δ} ∪ {q} has an
upper bound r ∈ P such that (∀i < δ)(pi ≤ r ↾ βi).

(h) Suppose that δ1, δ2 < λ are limit ordinals and 〈βj : j < δ2〉 ⊆
λ+ is a strictly increasing sequence of ordinals, each βj either a
successor or of cofinality λ. Let

〈pi,j : (i, j) ∈ (δ1 + 1) × (δ2 + 1) \ {(δ1, δ2)}〉 ⊆ P

be such that

pi,j ∈ Pβj
, i ≤ i′ ⇒ pi,j ≤ pi′,j, j ≤ j′ ⇒ pi,j ≤ pi,j′ ↾ βj .

Then the family {pi,j : (i, j) ∈ (δ1 + 1) × (δ2 + 1) \ {(δ1, δ2)}} has
an upper bound r ∈ P such that (∀j < δ2)(r ↾ βj = pδ1,j).

Notation 2.2 Let λ, µ be cardinals and T be a tree.

1. For an ordinal α, the α-th level of the tree T is denoted by Tα; for
x ∈ T , lev(x) is the unique α such that x ∈ Tα.

13
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2. We say that the tree T is normal if for each y, z ∈ T we have:

if (∀x ∈ T )(x <T y ≡ x <T z) and lev(y) = lev(z) is a limit ordinal

then y = z.

Usually we assume that T is normal.

3. We say that the tree T is λ+–Aronszajn if it has λ+ levels, each level
is of size ≤ λ, there is no λ+-branch in T , T is normal, and

y ∈ T, lev(y) < β < λ+ ⇒ (∃z ∈ T )[y <T z & lev(z) = β].

4. For ordinals ζ and α let T
[ζ]
α be the set of all sequences of length ζ with

no repetition from Tα. We let T [ζ] =
⋃

α
T
[ζ]
α , but we may identify T [1]

and T (and similarly for T 〈1〉 below);

5. For a sequence x̄ ∈ T [ζ], let lev(x̄) be the unique α such that x̄ ∈ T
[ζ]
α .

6. For x̄, ȳ ∈ T [ζ], let x̄ < ȳ mean (∀ε < ζ)(xε <T yε); similarly for
x̄ ≤ ȳ.

7. Let x̄ ∈ T
[ζ]
α . We define T

[ζ]
x̄

def
= {ȳ ∈ T [ζ] : x̄ <T ȳ}.

8. T 〈ζ〉 =
⋃

{T
[ζ]
α : either α is a successor ordinal or cf(α) = λ},

T
〈ζ〉
x̄ = T

[ζ]
x̄ ∩ T 〈ζ〉.

9. For x, y ∈ T let x∧ y be their maximal lower bound (in T , exists when
T is normal).

10. For x ∈ T and an ordinal α ≤ lev(x) let x ↾ α is the unique y ≤T x
such that lev(y) = α.

11. For x̄ = 〈xε : ε < ζ〉 ∈ T [ζ] and an ordinal α ≤ lev(x̄) let x̄ ↾ α = 〈xε ↾

α : ε < ζ〉.

12. Let H1
µ be the family of all functions h with domains included in

⋃

{ζ(µ+ × µ+) : ζ < µ} and such that for ζ < µ, x̄ ∈ ζ(µ+ × µ+)
we have: h(x̄) ⊆ ζ(µ+) (if defined, and then) there are µ+ members
of h(x̄) with pairwise disjoint ranges.

If h ∈ H1
µ is a partial function, ζ < µ, x̄ ∈ ζ(µ+) and h(x̄) is not

defined then h(x̄) will mean ζ(µ+).

We use mainly h ∈ H1
µ,∗ where

H1
µ,∗ =

⋃

ζ<µ

H1
µ,ζ , H1

µ,ζ = {h ∈ H1
µ : dom(h) = ζ(µ+ × µ+)}.

14
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13. Let H0
µ be the set of all h from H1

µ such that the value of h(〈(α0
ε , α

1
ε) :

ε < ζ〉) does not depend on 〈α0
ε : ε < ζ〉 (so we may write h(〈α1

ε : ε <
ζ〉)).

14. Let H3
µ be the family of all functions h with domain µ such that h(ζ)

is a subset of ζ((µ+)3) with the following property

(⊠) for each 〈α0
ε : ε < ζ〉 ⊆ µ+ and every β < µ+ there is 〈α1

ε : ε <
ζ〉 ⊆ (β, µ+) with

(∀β′ < µ+)(∃〈α2
ε : ε < ζ〉 ⊆ (β′, µ+))(〈(α0

ε , α
1
ε, α

2
ε) : ε < ζ〉 ∈ h(ζ)).

15. H2
µ is the collection of those h ∈ H3

µ that the truth value of “〈(α0
ε , α

1
ε, α

2
ε) :

ε < ζ〉 ∈ h(ζ)”does not depend on 〈α0
ε : ε ∈ ζ〉 (so we may write

〈(α1
ε, α

2
ε) : ε < µ〉 ∈ h(ζ)).

Theorem 2.3 Suppose λ = µ+ = 2µ and ♦λ (the second follows e.g. if
µ ≥ iω; see [Sh 460, 3.5(1)]). Then:

1. There exists a dense linear order I of cardinality λ+ and density λ+

(really exact density λ+, see 1.9) such that:

(∗)1 I is hereditarily of the cellularity λ+, i.e. every interval in I
contains λ+ pairwise disjoint subintervals, and

(∗)2 I is µ–locally entangled, i.e. if κ < µ, (ai, bi)I (for i < κ) are
pairwise disjoint intervals then the sequence 〈I ↾ (ai, bi) : i < κ)〉
is κ+–entangled2.

2. Let H1,∗
µ ⊆ H1

µ and H3,∗
µ ⊆ H3

µ have cardinality ≤ λ. There is a

λ+–Aronszajn tree T ⊆ λ+>λ in which each node has λ immediate
successors and there are two functions c, d̄ such that:

(a) c is a function from T to λ,

(b) for every x̄ ∈ T [µ] and a function h ∈ H1,∗
µ ∪H3,∗

µ we have dx̄,h :

T
[µ]
x̄ −→ λ such that if ȳ, z̄ ∈ T

〈µ〉
x̄ are distinct, dx̄,h(ȳ) = dx̄,h(z̄)

then for some t̄ ∈ T
[µ]
x̄ we have

(α) ti = yi ∧ zi, and the values of lev(ti) do not depend on i,

(β) lev(t̄) < lev(z̄), lev(t̄) < lev(ȳ),

2Note: for µ ∈ (2, λ), λ = cf(λ) such that (∀α < λ)(|α|<µ < λ) and a linear order I
of cardinality λ we have: I is µ–entangled if and only if I is µ–locally entangled of
density < λ

15



(
4
6
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
1
1
-
1
2
 
 

(γ) if dx̄,h(ȳ) < dx̄,h(t̄) then (∀ε < µ)(∃µi < µ)(c(ti) = ε),

(δ) if ζ < µ and h ∈ H1,∗
µ then for µ ordinals i < µ divisible by

ζ we have
(i) either 〈zi+ε(lev(t̄)) : ε < ζ〉 belongs to

h(〈c(ti+ε), yi+ε(lev(t̄)) : ε < ζ〉)

(ii) or 〈yi+ε(lev(t̄)) : ε < ζ〉 belongs to

h(〈c(ti+ε), zi+ε(lev(t̄)) : ε < ζ〉),

(ε) if ζ < µ and h ∈ H3,∗
µ and dx̄,h(ȳ) < dx̄,h(t̄) then for µ ordi-

nals i < µ divisible by ζ we have
(i) either 〈(c(ti+ε), yi+ε(lev(t̄)), zi+ε(lev(t̄))) : ε < ζ〉 be-
longs to h(ζ)
(ii) or 〈(c(ti+ε), zi+ε(lev(t̄)), yi+ε(lev(t̄))) : ε < ζ〉 belongs
to h(ζ).

Explanation: Some points in 2.3(2) may look unnatural.

1. Why ȳ, z̄ ∈ T
〈µ〉
x̄ and not dom(dx̄,h)? As in proving amalgamation

we should compare 〈xβi : i < µ〉, 〈xαi : i < µ〉; necessary when α =
sup(wq). However, working a little bit harder we may wave this.

2. Why e.g in clause (b)(ε) we demand dx̄,h(ȳ) < dx̄,h(t̄)? Otherwise we
will not be able to prove the density of

Dx̄,h,ȳ =: {p ∈ AP : ȳ ∈ dom(dx̄,h) ( or ¬x̄ < ȳ)}.

3. Why do we have clauses (b)(δ) and (b)(ε)? For the application here
(b)(δ) suffices, if this is enough for the reader then clause (J) in the
definition of AP may be omitted. But they both look “local maximal”.

Proof of 2.3(1) We will use 2).
Let T ⊆ λ+>λ and c, d̄ be as there and let all the functions hκ,u ∈ H0

µ defined
in the continuation of the proof of 2.3(1) below be in H1,∗

µ . We may assume
that if x ∈ T and α < λ then x⌢〈α〉 ∈ T . Let <⊗ be a linear order on λ
such that (λ,<⊗) has neither first nor last element and is λ-dense (i.e. if
αi <⊗ βj for i < i0 < λ, j < j0 < λ then for some γ, αi ≤⊗ γ ≤⊗ βj).
We define the order <I on I = T 〈1〉 = {x ∈ T : lev(x) is a successor or of
cofinality λ}:

y <I z if and only if
either z = (y ∧ z) ⊳ y or y(α)) <⊗ z(α), where α = lev(y ∧ z).

16
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Clearly (I, <I) is a dense linear order of the density λ+ and the size λ+.
To show that I has exact density λ+ (i.e. its exact density is (λ+, λ++, λ+))
assume that J ⊆ I, |J | = λ+. We want to show that J has density λ+.
Suppose that J0 ⊆ J , |J0| ≤ λ. Then for some α(∗) < λ+, J0 ⊆

⋃

α<α(∗)
Tα

and we may find distinct x, y ∈ J \
⋃

α≤α(∗)
Tα such that x ↾ α(∗) = y ↾ α(∗).

Then x, y show that J0 is not dense in J .

Now we are proving that I satisfies (∗)2.

Suppose that κ < µ and (ai, bi) are disjoint intervals in I (for i < κ).

Suppose that ȳξ = 〈yξi : i < κ〉 (for ξ < λ+) are such that ai <I yξi <I bi
and yξi ’s are pairwise distinct for ξ < λ+. Let u ⊆ κ. Take α(∗) < λ+ such

that (∀i < κ)(lev(ai), lev(bi) < α(∗)). As yξi ’s are pairwise distinct we may
assume that

(∀ξ < λ+)(∀i < κ)(α(∗) < lev(yξi ) and ξ ≤ lev(yξi )).

Note that if i < j < κ, and ξ, ζ < λ+ then yξi ↾ α(∗) 6= yζj ↾ α(∗). Now the

following claim (of self interest) is applicable to 〈〈yξi : i < κ〉 : ξ ∈ [α(∗), λ)〉
and as we shall see later this finishes the proof of 2.3(1) shortly.

Claim 2.3.1 Assume (for the objects constructed in 2.3(2)):

(a) κ < µ,

(b) for each ξ < λ+ we have a sequence ȳξ = 〈yξi : i < κ〉 such that yξi ∈ T
and either

(α) (ξ1, i1) 6= (ξ2, i2) ⇒ yξ
1

i1
6= yξ

2

i2
or

(β) lev(yξi ) ≥ ξ,

(c) h ∈ H1,∗
µ ∪H3,∗

µ ,

(d) for some α(∗) < λ+,

ξ, ζ < λ+, i < j < κ ⇒ yξi ↾ α(∗) 6= yζj ↾ α(∗).

Then we can find ξ1 < ξ2 < λ+ such that clause (b)(δ)(i) (or (b)(ε)(i),
respectively) of 2.3(2) holds with (ȳξ1 , ȳξ2) standing for (ȳ, z̄), i.e.:

(δ) if h ∈ H1,∗
µ then

(i) 〈yξ2ε (lev(t̄)) : ε < κ〉 ∈ h(〈c(tε), y
ξ1
ε (lev(t̄)) : ε < κ〉,
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(ε) if h ∈ H3,∗
µ then

(i) 〈(c(tε), y
ξ1
ε (lev(t̄)), yξ2ε (lev(t̄))) : ε < κ〉 belongs to h(κ),

where t̄ = 〈tj : j < κ〉 and tj = yξ1j ∧ yξ2j etc.

Proof of the claim: First note that, by easy thining (as either (b)(α)
or (b)(β) holds; remember clause (e)) we can assume (b)(α) & (b)(β). As
λ = λκ we may assume that 〈yδi ↾ α(∗) : i < κ〉 is the same for all δ ∈ λ+.
Let

Z = {α ∈ [α(∗), λ+) : (∃Y ∈ [Tα]<λ)(|{ξ < λ+ : (∀i < κ)(yξi ↾ α /∈ Y )}| ≤ λ)}.

First we are going to show that Z 6= [α(∗), λ+). If not then for each α ∈
[α(∗), λ+) we find a set Yα ∈ [Tα]<λ and an ordinal ξ(α) < λ+ such that

{ξ < λ+ : (∀i < κ)(yξi ↾ α /∈ Y )} ⊆ ξ(α).

For α ∈ [α(∗), λ+), choose x̄α ∈ T
[µ]
α such that

(i) (∀i < κ)(yαi ↾ α = xαi ),

(ii) Yα ⊆ {xαi : i < µ}.

For each δ ∈ [α(∗), λ+) with cf(δ) = λ we can find γδ < δ such that x̄∗δ =
〈xδi ↾ γδ : i < µ〉 is with no repetition (recall that xδi ∈ Tδ are pairwise
distinct, i < µ < λ and the tree T is normal). By Fodor’s lemma, for some
γ∗ the set

S0
def
= {δ ∈ [α(∗), λ+) : cf(δ) = λ & γδ = γ∗}

is stationary. For δ ∈ S0 there are at most λµ = λ possibilities for 〈xδi ↾ γ∗ :

i < µ〉 and hence for some x̄∗ = 〈x∗i : i < µ〉 ∈ T
[µ]
γ∗ the set

S1
def
= {δ ∈ S0 : x̄∗ = 〈xδi ↾ γ∗ : i < µ〉}

is stationary. Hence the set

S2
def
= {δ ∈ [α(∗), λ+) ∩ S1 : (∀i < µ)(xδi ↾ γ∗ = x∗i ) & (∀α < δ)(ξ(α) < δ)}

is stationary. Look at dx̄∗,h (really any h′ ∈ Hℓ,∗
µ will do here). Note that

x̄δ ∈ dom(dx̄∗,h) for δ ∈ S2 (remember cf(δ) = λ), and therefore we find
δ1, δ2 ∈ S2, δ1 < δ2 such that dx̄∗,h(x̄δ1) = dx̄∗,h(x̄δ2). As ξ(δ1) < δ2 we

can find i < κ such that yδ2i ↾ δ1 ∈ Yδ1 . Thus for some j < µ necessarily
yδ2i ↾ δ1 = xδ1j and hence xδ2i ↾ δ1 = xδ1j and consequently xδ2i ↾ γ∗ = xδ1j ↾ γ∗.
This implies i = j (as δ1, δ2 ∈ S2 ⊆ S0 and hence γδ1 = γ∗ = γδ2 and now
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apply the definition of γδ1 , γδ2 , S2) and thus xδ1i ⊳ xδ2i , what contradicts
clause (β) of 2.3(2b). So we have proved Z 6= [α(∗), λ+), but by its definition
Z is an initial segment of [α(∗), λ+). Hence for some β(∗) ∈ [α(∗), λ+) we
have Z = [α(∗), β(∗)).

Let β ∈ [β(∗), λ+) be a successor ordinal.

By induction on ε < µ choose3 pairwise disjoint x̄ε = 〈xεi : i < κ〉 ∈ T
[κ]
β

such that the sets

Zε
def
= {ξ ∈ [β, λ+) : (∀i < κ)(yξi ↾ β = xεi )}

are of the size λ+. Suppose we have defined x̄ε for ε < ε′. Let Y =
{xεi : i < κ, ε < ε′}. Then Y ∈ [Tβ]<λ and by the choice of β the set

{ξ < λ+ : (∀i < κ)(yξi ↾ β /∈ Y )} is of the size λ+. As λκ = λ we can find

x̄ε
′

∈ T
[κ]
β such that

|{ξ < λ+ : (∀i < κ)(yξi ↾ β = xε
′

i /∈ Y )}| = λ+.

Now for ε < µ and i < κ let xκ·ε+i = xεi and let x̄ = 〈xj : j < µ〉. Thus

x̄ ∈ T
[µ]
β . For each α ∈ [β, λ+) choose 〈ζα,ε : ε < µ〉 such that ζα,ε ∈ Zε

and α1 < α2 implies α1 < ζα1,ε < ζα2,ε. For ε < µ, i < κ and α ∈ [β, λ+)

put zακ·ε+i = y
ζα,ε

i ↾ α. Then z̄α = 〈zαj : j < µ〉 ∈ T
[µ]
α , x̄ < z̄α. Consider

the function dx̄,h. Let S3
def
= {δ ∈ (β, λ+) : cf(δ) = λ} and note that for

each α ∈ S3 the restriction dx̄,h ↾ {z̄α ↾ γ : β < γ ≤ α} is a one-to-one
function (since cf(α) = λ and we have clause (β) of 2.3(2b)). Consequently,
for α ∈ S3, we find δ(α) such that

δ(α) ≤ δ < α ⇒ dx̄,h(z̄α ↾ δ) > dx̄,h(z̄α); δ(α) > β.

Next, applying Fodor Lemma, we find a stationary set S′
4 ⊆ S3 and δ∗ > β

such that dx̄,h(z̄α ↾ δ) > dx̄,h(z̄α) for α ∈ S′
4, δ ∈ (δ∗, α) and z̄α1 ↾ δ∗ = z̄α2 ↾

δ∗ for all α1, α2 ∈ S′
4. Let

S4
def
= {δ ∈ S′

4 : (∀α < δ)(|{β ∈ S′
4 : z̄β ↾ α = z̄δ ↾ α}| = λ+)}.

If S4 is not stationary then for δ ∈ S′
4 \ S4 choose αδ < δ contradicting the

demand in the definition of S4. For some stationary S∗ ⊆ S′
4 \ S4 we have

αδ = α∗ for δ ∈ S∗ and we get an easy contradiction.
As rang(dx̄,h) ⊆ λ, for some stationary S5 ⊆ S4, dx̄,h ↾ {z̄α : α ∈ S5} is
constant. Choose α1 6= α2 from S5. By clauses (α), (β) of 2.3(2b) we get

3We could have done it for ε < λ, but no need here.

19



(
4
6
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
1
1
-
1
2
 
 

that if tj = zα1
j ∧zα2

j (for j < µ) then t̄ ∈ T
[µ]
x̄ and lev(x̄) ≤ lev(t̄) < lev(z̄α1),

lev(t̄) < lev(z̄α2). Moreover by the definition of S′
4 we have lev(t̄) ≥ δ∗ and

dx̄,h(t̄) > dx̄,h(z̄α1). Hence by the clause (δ) of 2.3(2b) we find i < µ divisible
by κ such that either (i) or (ii) of clause (δ) of 2.3(2b) holds with (ȳ, z̄) there
standing for (z̄α1 , z̄α2) here. By the symmetry wlog (i) of 2.3(2b)(δ) holds.
Let lev(t̄) < βℓ < αℓ (for ℓ = 1, 2), hence by the definition of S4 (and as
α2 ∈ S5 ⊆ S4) and by the character of the requirement on α1, α2 wlog
α1 < α2, so we are done. �2.3.1

Continuation of the proof of 2.3(1): Remember we have κ < µ,

(ai, bi) (for i < µ), u ⊆ κ and we have 〈ȳξ : ξ ∈ [α(∗), λ+)〉, ȳξ = 〈yξi : i < κ〉.
Define h = hκ,u ∈ H0

µ (and assume that for each κ < µ and u ⊆ κ we have
hκ,u ∈ H1,∗

µ ):

h(〈β1
i : i < κ〉) = {〈β2

i : i < κ〉 ∈ κλ : (∀i < κ)(β1
i <⊗ β2

i ⇔ i ∈ u)}.

By the choice of <⊗ it is easy to check that h ∈ H0
µ. So by Claim 2.3.1 for

κ, h, ȳξ, there are α1 < α2 as there and we are done.

We still have to prove (∗)1.
Suppose that a, b ∈ I, a <I b. By the definition of the order there is t ∈ T
such that t E s ∈ T ⇒ s ∈ (a, b)I . As the tree T is λ+–Aronszajn we

find x̄ ∈ T
[µ]
α (for some α ∈ (lev(t), λ+)) such that (∀j < µ)(t E xj). Next

for every β ∈ (α, λ+) we can choose ȳβ ∈ T
[µ]
β such that x̄ < ȳβ. Take any

h ∈ H1,∗
µ ∪H3,∗

µ . For some unbounded S ⊆ (α, λ+) the sequence 〈dx̄,h(ȳβ) :

β ∈ S〉 is constant. Consequently, elements yβ0 for β ∈ S are pairwise ⊳–

incomparable (in the tree T ). Hence {{y ∈ T : yβ0 E y} : β ∈ S} is a family
of pairwise disjoint convex subsets of (a, b)I (each with λ+ elements), so we
have finished. �2.2(1)

Proof of 2.3(2): We want to apply [Sh 405, Appendix]. For this we
have to define a set AP of approximations and check the conditions of 2.1.

Definition 2.3.2 The set AP of approximations consists of all tuples p =
〈t, w,≤,D, d̄, ē, f, c〉 (we may write tp, wp etc) such that

(A) t is a subset of λ+ of cardinality < λ, t ∩ [0, λ) = {0},

(B) w = {α < λ+ : [λ·α, λ·(α + 1)) ∩ t 6= ∅} is such that

(∀α < λ+)(α ∈ w ⇔ α + 1 ∈ w), and

the set {α < λ+ : ω · α ∈ w} is closed,
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(C) ≤=≤t is a partial order on t such that t = tp = (t,≤) is a normal tree
(so x∧ y is well defined) and for each α ∈ w the set t∩ [λ·α, λ·(α+ 1))
is the otp(w ∩ α)-th level of t (but possibly α < β are in w, and for
some x in the α-th level of t there is no y in the β-th level, x ≤t y)

[obviously, the intention is: t approximates T ; we may use t for (t,≤t)],

(D) D is a set of < λ pairs (x̄, h) such that x̄ ∈ t[µ] and h ∈ H1,∗
µ ∪H3,∗

µ ,

(E) d̄ = 〈dx̄,h : (x̄, h) ∈ D〉, each dx̄,h is a partial function from t
[µ]
x̄ to λ

with domain of cardinality < λ such that:

[ȳ ∈ t
[µ]
x̄ & x̄ <t ȳ <t z̄ & z̄ ∈ dom(dx̄,h)] ⇒ ȳ ∈ dom(dx̄,h),

(F) ē = 〈ex̄,h : (x̄, h) ∈ D〉, each ex̄,h is a partial function from t
[µ]
x̄ × λ to

{0, 1, 2} of size < λ and such that:

(i) (ȳ, γ) ∈ dom(ex̄,h) ⇒ ȳ ∈ dom(dx̄,h), and

dom(ex̄,h) ⊇ {(ȳ, γ) : ȳ∈dom(dx̄,h) & (∃z̄∈dom(dx̄,h))(γ ≤ dx̄,h(z̄))},

(ii) if ȳ ∈ t
[µ]
x̄ , x̄ <t ȳ <t z̄ ∈ dom(dx̄,h) and ex̄,h(z̄, β) is defined then

ex̄,h(ȳ, β) is defined and ex̄,h(ȳ, β) ≤ ex̄,h(z̄, β) and if ȳ ∈ t
〈µ〉
x̄ then

at most one of them is 1,

[here, we interpret t
〈µ〉
x̄ as the set of those ȳ ∈ t

[µ]
x̄ that lev(ȳ) is

either a successor ordinal or is otp(w ∩ α) for some α ∈ w such
that cf(α) = λ],

(iii) dx̄,h(ȳ) = α ⇔ ex̄,h(ȳ, α) = 1,

[the intention: ex̄,h is not explicitly present in 2.3(2b), but ex̄,h(ȳ, γ) =
ℓ will mean that: if ℓ = 0 then for some z̄ we have ȳ < z̄ and dx̄,h(z̄) =
γ; if ℓ = 1 then dx̄,h(ȳ) = γ and if ℓ = 2 then none of these],

(G) f is a function from t+ = {α ∈ t : α is of a successor level in t} to λ
such that:

if γ 6= β are immediate successors (in t) of some α
then f(β) 6= f(γ),

[the intention is that if α represents η ∈ Ti+1, then f(α) = η(i)],

(H) c is a function from t to λ,
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(I) if (x̄, h) ∈ D, ex̄,h(ȳ, α), ex̄,h(z̄, α) ≤ 1, ¬[ȳ ≤t z̄], ¬[z̄ ≤t ȳ]

then clauses (α)—(ε) of 2.3(2b) hold (with 〈f(yε ↾ (i + 1)), f(zε ↾

(i + 1))〉 replacing 〈yε(i), zε(i)〉) and α in place of dx̄,h(ȳ) = dx̄,h(z̄)),

(J) if α ∈ wp, x̄ < ȳ0 < ȳ1, all in (tp)[µ], (x̄, h) ∈ D, h ∈ H3,∗
µ and

ȳ0, ȳ1 ∈ dom(dx̄,h), lev(ȳ0) = α, lev(ȳ1) = α + 1, ex̄,h(ȳ1, γ) ≤ 1 and
γ < dx̄,h(ȳ0)

then in looking at ȳ0, ȳ1 as candidates for t̄, ȳ (or t̄, z̄) in clause (I)
(i.e. in clauses (α)—(ε) from 2.3(2b)) in (ε) there, for each ζ < µ,
for µ ordinals i < µ divisible by ζ, the values we have i.e. cp(y0i+ε),
fp(y1i+ε) for ε < ζ, are compatible with the demand (i) there, i.e. for
every β < λ there are α2

ε ∈ (β, λ) for ε < ζ such that

〈(cp(y0i+ε), f
p(y1i+ε), α

2
ε) : ε < ζ〉 ∈ h(ζ),

(K) if x̄ < ȳ are in t[µ], (x̄, h) ∈ D, ȳ ∈ dom(dx̄,h), α < dx̄,h(ȳ) and
ex̄,h(ȳ, α) = 0 then (∀ε < µ)(∃µi < µ)(c(yi) = ε) (i.e. looking at ȳ as
a candidate for t̄ in 2.3(2b)(γ) the values we have are compatible with
the demand there).

The set AP of approximations is equipped with the natural partial order.

We will want to apply the machinery of [Sh 405, Appendix] to the par-
tial order (AP,≤). For this we have to represent it as a standard λ+–

semiuniform partial order. In representing it as a partial order on λ×[λ+]<λ

we define the set of terms such that:

(a) {τ(u) : τ a term with otp(u) places} = {p ∈ AP : {α < λ+ : ω·α ∈
wp} = u}, for a closed set u ∈ [λ+]<λ,

(b) if pℓ = τ(uℓ) for ℓ = 1, 2 then otp(tp1 ,≤) = otp(tp2 ,≤) and the one-
to-one order preserving mapping g from tp1 onto tp2 maps p1 to p2
(i.e. α ≤p1 β ⇔ g(α) ≤p2 g(β), etc).

Note that for p ∈ AP, its domain dom(p) (in the sense of 2.1) is {α : ω ·α ∈
wp}. Hence, APα = {p ∈ AP : wp ⊆ ω · α}.

Now we have to check that (with this representation) AP satisfies the
demands 2.1(2)(a)–(h). Clauses (a) and (c) there should be clear.

To deal with the clause (b) of 2.1(2), for an approximation p ∈ AP and
α < λ+ such that either α is a successor ordinal or cf(α) = λ, we define
q = p ↾ ω · α by:

• tq = tp ∩ λ·(ω · α), wq = wp ∩ ω · α, ≤q=≤p↾ tq,
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• Dq = {(x̄, h) ∈ Dp : x̄ ⊆ tq},

• if (x̄, h) ∈ Dq then dqx̄,h = dpx̄,h ↾ (tq)
[µ]
x̄ and eqx̄,h = epx̄,h ↾ ((tq)

[µ]
x̄ × λ),

• f q = fp ↾ (tq ∩ dom(f q)), cq = cp ↾ tq.

Observation 2.3.3 If p ∈ AP is an approximation and α < λ+ is either a
successor or of cofinality λ then p ↾ ωα ∈ AP is a unique maximal approxi-
mation such that p ↾ ω · α ≤ p and wp↾ω·α = wp ∩ ω · α. �

Thus p ↾ ω ·α corresponds to p ↾ α as required in 2.1(2c). The main difficulty
of the proof is checking the amalgamation property 2.1(2d). Before we deal
with this demand we will check that some sets are dense in AP (which will
allow us to simplify some arguments and will be of importance in drawing
conclusions) and we will deal with existing of some upper bounds.

Claim 2.3.4 In AP, if 〈pi : i < δ〉 is increasing, δ < λ and for i0 < i1 < δ
we have wpi0 = wpi1 then its union (defined naturally) is its least upper
bound in AP. �

Claim 2.3.5 (Density Observation) Assume p ∈ AP.

1. Suppose that α ∈ wp, u ⊆ [λ·α, λ·α + λ) \ tp, |u| < λ and for i ∈ u we
are given a full branch Ai of (tp ∩ λ·α,≤p) (i.e. Ai is linearly ordered
by ≤p and β ∈ wp ∩ α ⇒ [λ·β, λ·β + λ) ∩ Ai 6= ∅), i 6= j ⇒ Ai 6= Aj.
Furthermore, assume that if α is limit then

γ ∈ tp ∩ [λ·α, λ·α + λ) & i ∈ u ⇒ Ai 6= {y ∈ tp : y <p γ}.

Then there is q ∈ AP, p ≤ q such that tq = tp ∪ u, <q=<p ∪{(y, i) :
y ∈ Ai, i ∈ u}, and the rest is equal (i.e. wq = wp, Dq = Dp, d̄q = d̄p,
ēq = ēp, f q ⊇ fp, cq ⊇ cp naturally).

2. If α ∈ wp, i ∈ [λ·α, λ·α + λ) then there is q ∈ AP, p ≤ q such that
i ∈ tq, wp = wq, Dq = Dp, d̄q = d̄p, ēq = ep, and naturally f q ⊇ fp,
cq ⊇ cp.

3. If x̄ ∈ (tp,≤p)[µ] and h ∈ H1,∗
µ ∪H3,∗

µ then there is q ∈ AP such that
p ≤ q and Dq = Dp ∪ {(x̄, h)}.

4. If (x̄, h) ∈ Dp, x̄ < ȳ ∈ (tp,≤p)[µ] then for some q ∈ AP, p ≤ q we
have: ȳ ∈ dom(dqx̄,h) = dom(dpx̄,h)∪{ȳ′ : x̄ < ȳ′ ≤ ȳ, ȳ′ ∈ (tp,≤p)[µ]},

tp = tq, wp = wq, ≤p=≤q, Dp = Dq, dqx̄′,h′ = dpx̄′,h′, e
q
x̄′,h′ = epx̄′,h′ for

(x̄′, h′) ∈ Dp \ {(x̄, h)}, and f q = fp, cq = cp.

23



(
4
6
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
1
1
-
1
2
 
 

Proof of the claim: 1) Check.

2) Iterate (1) (in the j-th time – on the j-th level of t) using 2.3.4 for limit
stage. More elaborately, for each β ∈ wp \{0} choose iβ ∈ [λ ·β, λ ·β +λ)\tp

such that iα = i. Next by induction on β ∈ wp∩(α+1) choose an increasing
sequence 〈pβ : β ∈ wp ∩ (α + 1)〉 ⊆ AP of approximations such that p0 = p
and tpβ = tp ∪ {iγ : 0 < γ ∈ wp ∩ (β + 1)} (so wpβ = wp) and the sequence
〈iγ : 0 < γ ∈ wp ∩ (β + 1)〉 is ≤pβ–increasing.

3) We just put: tq = tp, wq = wp, f q = fp, cq = cp, dqx̄′,h′ = dpx̄′,h′ if

(x̄′, h′) ∈ Dp, dqx̄,h is empty if (x̄, h) /∈ Dp, and similarly for eqx̄′,h′.

4) Let {ȳε : ε < ζ} list dom(dqx̄,h) \ dom(dpx̄,h) in the <p–increasing way

and let α∗ = sup(rang(dpx̄,h) ∪ {γ : (∃ȳ′)((ȳ′, γ) ∈ dom(epx̄,h))}). Now put

dom(eqx̄,h) = {(ȳ, α) : ȳ ∈ dom(dqx̄,h) & α < α∗ + 1 + ζ},

declare that epx̄,h ⊆ eqx̄,h and

• if ȳ ∈ dom(dqx̄,h), ȳ < ȳε, ε < ζ then eqx̄,h(ȳ, α∗ + 1 + ε) = 0,

• eqx̄,h(ȳε, α
∗ + 1 + ε) = 1,

• eqx̄,h(ȳ, γ) = 2 in all other instances.

It should be clear that this defines correctly an approximation q ∈ AP and
that it is as required. [Note that clauses (γ), (ε) of 2.3(2b) relevant to
clauses (J), (K) in the definition of AP hold by the requirement “dx̄,h(t̄) <
dx̄,h(ȳ) = dx̄,h(z̄)”.] �2.3.5

Claim 2.3.6 If p ∈ AP and an ordinal α ∈ λ+ \ wp is divisible by ω then
for some q ∈ AP, p ≤ q we have wq = wp ∪ [α,α + ω), Dp = Dq and

β ∈ wp ⇒ tq ∩ [λ·β, λ·β + λ) = tp ∩ [λ·β, λ·β + λ).

Proof of the claim: Let β = min(wp \ α) (if β is undefined then it is
much easier; of course β > α as α /∈ wp and therefore β ≥ α + ω). Let

tp ∩ [λ·β, λ·β + λ) = {yβi : i < i∗} be an enumeration with no repetitions
and for n < ω let

{yα+n
i : i < i∗} ⊆ [λ·(α + n), λ·(α + n) + λ)

be with no repetition. Let tq = tp ∪ {yα+n
i : n < ω, i < i∗}, and

≤q=≤p ∪ {(yα+n
i , yα+m

i ) : n ≤ m < ω, i < i∗}∪

{(yα+n
i , x) : n < ω, i < i∗, yβi ≤p x}∪

{(x, yα+n
i ) : n < ω, i < i∗, x <p yβi }.
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By 2.3.5 we may assume that i∗ = µ. For (x̄, h) ∈ Dp = Dq we let

dom(dqx̄,h) = dom(dpx̄,h) ∪ {ȳ ∈ (tq)[µ] : (∃ȳ′ ∈ dom(dpx̄,h))(x̄ < ȳ < ȳ′) and

(∃n < ω)(∀ε < µ)(yε ∈ [λ · (α + n), λ · (α + n + 1)))},

and let α∗
x̄,h = sup(rang(dpx̄,h) ∪ {γ : (∃ȳ′)((ȳ′, γ) ∈ dom(epx̄,h))}). Fix an

enumeration {ȳξ : ξ < ζ} of dom(dqx̄,h) \ dom(dpx̄,h) such that ȳξ0 < ȳξ1 ⇒

ξ0 < ξ1. We put dqx̄,h(ȳξ) = α∗
x̄,h+1+ξ for ξ < ζ (and we declare dqx̄,h ⊇ dpx̄,h).

Next we define eqx̄,h similarly as in 2.3.5(4) putting the value 2 whenever

possible (so dom(eqx̄,h) = {(ȳ, γ) : ȳ ∈ dom(dqx̄,h) & γ < α∗
x̄,h + 1 + ζ}).

Now comes the main point: we have to define functions f q, cq (extending
fp, cp, respectively) such that clauses (I) + (J) + (K) hold. But it should be
clear that each instance of clause (I) in tq can be reduced to an instance of
this clause in tp (just look at the definitions of tq, dqx̄,h, e

q
x̄,h). Thus what we

really have to take care of are instances of (J) and (K). For this we define
cq ↾ {yα+n

i : i < µ} and f q ↾ {yα+n+1
i : i < µ} by induction on n < ω. At

the first stage (for n = 0) we let

P = {(ζ, x̄, h, ȳ, z̄) : (x̄, h) ∈ Dq and ζ < µ and x̄ < ȳ < z̄ ∈ dom(dqx̄,h),

and z̄ ⊆ {yα+1
i : i < µ} and ȳ ⊆ {yαi : i < µ}}.

Take a list 〈(XΥ, ζΥ, x̄Υ, hΥ, ȳΥ, z̄Υ) : Υ < µ〉 of

{(X, ζ, x̄, h, ȳ, z̄) : X ∈ {J,K} & (ζ, x̄, h, ȳ, z̄) ∈ P}

in which each 6-tuple appears µ times and ζΥ ≤ 1 + Υ. Next by induction
on Υ < µ choose a sequence 〈cΥ, fΥ : Υ ≤ µ〉 such that

(α) cΥ : dom(cΥ) −→ µ, dom(cΥ) ⊆ {yαi : i < µ}, |dom(cΥ)| < ℵ0 + |Υ|+,

(β) fΥ : dom(fΥ) −→ λ, dom(fΥ) ⊆ {yα+1
i : i < µ}, |dom(fΥ)| < ℵ0+ |Υ|+,

(γ) 〈cΥ : Υ ≤ µ〉, 〈fΥ : Υ ≤ µ〉 are increasing continuous,

(δ) for each Υ < µ there is iΥ < µ divisible by ζΥ such that

rang(z̄Υ ↾ [iΥ, iΥ + ζΥ)) ⊆ dom(fΥ+1) \ dom(fΥ) and

rang(ȳΥ ↾ [iΥ, iΥ + ζΥ)) ⊆ dom(cΥ+1) \ dom(cΥ),

(ε) if XΥ = J and hΥ ∈ H3,∗
µ then condition 2.3.2(J) holds for x̄Υ, hΥ, ȳΥ,

z̄Υ with i = iΥ,

(ζ) if XΥ = K then cΥ+1((ȳΥ)iΥ) = ζΥ,
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(ι) yαΥ ∈ dom(cΥ+1), yα+1
Υ ∈ dom(fΥ+1).

There are no difficulties with carrying out the construction: the only possible
troubles could come from demand (ε) above. But look at the definition
2.2(14) of H3

µ. Taking sufficiently large β < µ+ = λ, the respective sequences

〈α0
ε : ε < ζΥ〉, 〈α1

ε : ε < ζΥ〉 will be good candidates for cΥ+1 ↾ (ȳΥ ↾

[iΥ, iΥ + ζΥ)) and fΥ+1 ↾ (z̄Υ ↾ [iΥ, iΥ + ζΥ)) in clause (ε).
The functions cµ, fµ will be the respective restrictions cq ↾ {yαi : i < µ} and
f q ↾ {yα+1

i : i < µ}. Next, arriving to a stage n + 1 of the definition we
repeat the above procedure with no changes. Note that at this stage we
know cq ↾ {yα+n

i : i < µ}, f q ↾ {yα+n+1
i : i < µ} but they have no influence

on defining cq, f q at levels α + n + 1, α + n + 2. �2.3.6

Claim 2.3.7 (The Amalgamation Property) Assume that α < λ+ is
either a successor ordinal or cf(α) = λ, p, q ∈ AP and p ↾ ω · α ≤ q ∈ APα.
Then there is r ∈ AP such that p, q ≤ r.

Proof of the claim: First try just the r defined by:

wr = wp ∪ wq, tr = tp ∪ tq, ≤r=≤p ∪ ≤q, Dr = Dp ∪Dq,

drx̄,h is: dpx̄,h if (x̄, h) ∈ Dp \Dq

dqx̄,h if (x̄, h) ∈ Dq \Dp

dpx̄,h ∪ dqx̄,h if (x̄, h) ∈ Dq ∩Dp

and erx̄,h ⊇ epx̄,h∪e
q
x̄,h (defined naturally, i.e. with dom(erx̄,h) minimal possible

to satisfy demand (F) and value 2 whenever possible), f r = fp ∪ f q, cr =
cp ∪ cq. Clearly p ≤ r, q ≤ r, wr = wp ∪wq, but does r belong to AP? The
things that might go wrong are:

• there is y ∈ tp \ tq which has nothing below it in some levels, or

• y ∧ z not defined for some y, z, or

• the relevant cases of clauses (I)–(K) fail.

Let β0 =
⋃

{γ : ω · γ ∈ wp ∩ ω · α} = sup(dom(p) ∩ α). Note that β0 ∈
dom(p) ∩ α (as α is either successor or of cofinality λ) and

(⊛) if wq ⊆ ω · β0 + ω then r ∈ AP.

So we assume from now on that wq 6⊆ ω · β0 + ω (by (⊛) above). Then
necessarily β0+1 < α (as wq ⊆ ω·α). Without loss of generality dom(p)\α 6=
∅ (as if wp ⊆ ω · α we can let r = q) and q ↾ ω · (β0 + 1) = p ↾ ω · α. Let
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α∗ def
= min(dom(p) \ α) and β∗ def

= min(dom(q) \ (β0 + 1)). By 2.3.6 we
may assume that β∗ = β0 + 1 (i.e. ω · β0 + ω ∈ wq). Let {xω·α

∗

i : i < i∗}
list tp ∩ [λ · (ω · α∗), λ · (ω · α∗) + λ). By 2.3.5(1) (i.e. increasing q only by
increasing tq ∩ [λ · (ω · β∗), λ · ((ω · β∗) + 1)) we may assume that there is a

list {xω·β
∗

i : i < i∗} of distinct members of tq ∩ [λ · (ω · β∗), λ · (ω · β∗) + λ)

such that (∀z ∈ tp ∩ tq)[z <p xω·α
∗

i ≡ z <q xω·β
∗

i ]. Let xβi ∈ [λ·β, λ·β + λ)
(for β ∈ wq \ (ω ·β∗ + 1) and i < i∗) be pairwise distinct and not in tq. Now
we shall “correct” r to r∗:

tr
∗

= tr ∪ {xβi : β ∈ wq \ (ω · β∗ + 1), i < i∗}, wr∗ = wr,

≤r∗=≤r ∪ {(xβi , x) : i < i∗, x ∈ tp, xω·α
∗

i ≤p x, β ∈ wq \ ω · β∗}∪

{(x, xβi ) : i < i∗, x ∈ tq, x ≤q xω·β
∗

i , β ∈ wq \ ω · β∗}∪

{(xβ0
i , xβ1

i ) : β0, β1 ∈ wq \ ω · β∗, β0 ≤ β1, i < i∗}.

Put Dr∗ = Dr. If (x̄, h) ∈ Dr \ Dp↾ω·α then we can let dr
∗

x̄,h = drx̄,h, but if
(x̄, h) ∈ Dp↾ω·α then we first let

γ∗x̄,h = sup(rang(drx̄,h)∪{γ : (∃ȳ′)((ȳ, γ) ∈ dom(epx̄,h)∪dom(eqx̄,h))}) and

dom(dr
∗

x̄,h) = {ȳ ∈ (tr
∗

)[µ] : ȳ ∈ dom(drx̄,h) or for some

z̄ = 〈xω·α
∗

ε(j) : j<µ〉 ∈ (tp)
[µ]
otp(wp∩ω·α∗) and β ∈ wq \ (ω·β∗ + 1)

we have z̄ ∈ dom(dpx̄,h) and ȳ = 〈xβ
ε(j) : j < µ〉}.

Choose dr
∗

x̄,h in such a manner that dr
∗

x̄,h ⊇ drx̄,h and the values dr
∗

x̄,h(ȳ), if not
defined before, are distinct ordinals from (γ∗x̄,h, λ). Thus, in particular,

dr
∗

x̄,h(ȳ) = dr
∗

x̄,h(z̄) & ȳ 6= z̄ ⇒ {ȳ, z̄} ⊆ dom(drx̄,h).

Next we define er
∗

x̄,h extending erx̄,h to satisfy clause (F) – we put the value 2
whenever it is possible. [Note that this is the place in which the assumption

that ȳ ∈ t
〈µ〉
x̄ in clause (F)(ii), and so the respective assumption in 2.3(2b),

play role: the values of eqx̄,h at the level ω · β∗ = ω · β0 + ω do not interfere

with the values of epx̄,h at the level ω · α∗ since β∗ is a successor, not of

cofinality λ.] Now we have to define cr
∗

⊇ cr, f r∗ ⊇ f r, i.e. to define

cr
∗

↾ {xβi : i < i∗, β ∈ wq \ (ω · β∗ + 1)}, and

f r∗ ↾ {xβi : i < i∗, β ∈ wq \ ω · β∗ is a successor},

such that clauses 2.3.2(G)–(K) hold. This is done like in 2.3.6, but now the
clause (I) is “active” too. Of course, the point is that we have µ commit-
ments, each has “µ disjoint chances”, so we list them in a list of length µ

27



(
4
6
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
1
1
-
1
2
 
 

and inductively we can easily do it (for µ singular – at place i of the list
there may appear only a commitment of “size ≤ |i| + ℵ0”). More fully, let

P 1 = {(ζ, x̄, h, ȳ, z̄) : (x̄, h) ∈ Dp ∩Dq and ζ < µ and for some ε
(z̄, ε) ∈ dom(er

∗

x̄,h) \ dom(erx̄,h) and (ȳ, ε) ∈ dom(eqx̄,h) and

er
∗

x̄,h(z̄, ε) ≤ 1 and eqx̄,h(ȳ, ε) ≤ 1 and

ȳ ⊆ [λ(ω · β∗ + 1), λ(ω · β∗ + 1) + λ) and z̄ ⊆ {xω·β
∗+1

i : i < i∗}}.

Defining f we have to take care of condition (I) for all (ζ, x̄, h, ȳ, z̄) ∈ P 1.
We also have to take care of conditions (J), (K) for

P 2 = {(ζ, x̄, h, ȳ, z̄) : (x̄, h) ∈ Dp ∩Dq and ζ < µ and

z̄ ∈ dom(dr
∗

x̄,h), z̄ ⊆ {xγ+1
i : i < i∗}, ȳ = z̄ ↾ γ, γ ∈ wq \ ω · β∗}.

So we use a list 〈(XΥ, ζΥ, x̄Υ, hΥ, ȳΥ, z̄Υ) : Υ < µ〉 of {(X, ζ, x̄, h, ȳ, z̄) : X ∈
{1, 2} and (ζ, x̄, h, ȳ, z̄) ∈ P 1 ∪ P 2} in which each 6-tuple appears µ times
and ζΥ ≤ 1 + Υ. Let {xΥ : Υ < µ} list tr

∗

\ tr. Now we define by induction
on Υ ≤ µ functions cΥ, fΥ such that

(α) cΥ is a function extending cr, rang(cΥ) ⊆ λ,

(β) dom(cΥ) \ dom(cr) is a subset of {xβi : i < i∗, β ∈ wq \ (ω · β∗ + 1)} of
cardinality < ℵ0 + |Υ|+,

(γ) fΥ is a function extending f r, rang(fΥ) ⊆ λ,

(δ) dom(fΥ) \ dom(f r) is a subset of

{xβi : i < i∗, β is a successor ordinal and β ∈ wq \ (ω · β∗ + 1)}

of cardinality < ℵ0 + |Υ|+,

(ε) the sequences 〈cΥ : Υ ≤ µ〉, 〈fΥ : Υ ≤ µ〉 are increasing continuous,

(ζ) for each Υ there is iΥ < µ divisible by ζΥ such that:

if XΥ = I then

rang(z̄Υ ↾ [iΥ, iΥ+ζΥ)) ⊆ [dom(cΥ+1)\dom(cΥ)]∩[dom(fΥ+1)\dom(fΥ)],

and if XΥ ∈ {J,K}, (ζΥ, x̄Υ, hΥ, ȳΥ, z̄Υ) ∈ P 2 then

rang(z̄Υ ↾ [iΥ, iΥ + ζΥ)) ⊆ dom(fΥ+1) \ dom(fΥ), and

rang(ȳΥ ↾ [iΥ, iΥ + ζΥ)) ⊆ (dom(cΥ+1) \ dom(cΥ)) ∪ cr,
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(ι) if XΥ = I and (ζΥ, x̄Υ, hΥ, ȳΥ, z̄Υ) ∈ P 1 then condition 2.3.2(I) holds
for (ζΥ, x̄Υ, hΥ, ȳΥ, z̄Υ, iΥ),

(κ) if XΥ = J , (ζΥ, x̄Υ, hΥ, ȳΥ, z̄Υ) ∈ P 2 and hΥ ∈ H3,∗
µ then condition

2.3.2(J) holds for (x̄Υ, hΥ, ȳΥ, z̄Υ, iΥ),

(λ) if XΥ = K, ȳΥ 6⊆ dom(cr) then cΥ+1((ȳΥ)iΥ) = ζΥ,

(µ) xΥ ∈ dom(cΥ+1) and if xΥ is from a successor level of tr
∗

then xΥ ∈
dom(fΥ+1),

(ν) rang(fΥ ↾ {xω·β
∗+1

i : i < i∗}) ∩ rang(f q) = ∅.

The definition is carried out as in 2.3.6. The new points are clause (ι) and

instances of clause (κ) for Υ such that ȳΥ ⊆ {xω·β
∗

i : i < i∗}. In the second
case a potential trouble could be caused by the fact that the function cΥ is
defined on ȳΥ already. But the definition 2.2(14) of H3

µ was exactly what we

need to handle this: we may find suitable values for fΥ+1 ↾ (z̄ ↾ [iΥ, iΥ, ζΥ)).
To deal with clause (ι) note that if hΥ ∈ H3,∗

µ then demand 2.3.2(J) for q

provides the needed candidates for values of fΥ+1; if hΥ ∈ H1,∗
µ then the

definition 2.2(12) of H1
µ works.

The functions cµ, fµ are as required. �2.3.7

The demands (e)–(h) of 2.1(2) are easy now:

Claim 2.3.8 1. If a sequence 〈pi : i < δ〉 ⊆ AP is increasing, δ < λ then
it has an upper bound q ∈ AP such that dom(q) = cl(

⋃

i<δ

dom(pi))).

2. Assume β < λ+, cf(β) = λ, δ < λ. Let 〈pi : i < δ〉 ⊆ APβ+1 be an
increasing sequence and let q ∈ APβ be an upper bound to 〈pi ↾ ω · β :
i < δ〉. Then the family {pi : i < δ} ∪ {q} has an upper bound r such
that r ↾ ω · β ≥ q.

3. Assume that 〈βi : i < δ〉 ⊆ λ+ is strictly increasing, each βi is either
a successor or has cofinality λ, δ < λ is limit. Suppose that q ∈ AP
and 〈pi : i < δ〉 ⊆ AP is an increasing sequence such that

(∀i < δ)(q ↾ ω · βi ≤ pi ∈ APβi
).

Then the family {pi : i < δ} ∪ {q} has an upper bound r ∈ AP such
that (∀i < δ)(pi ≤ r ↾ ω · βi).
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4. Suppose that δ1, δ2 < λ are limit ordinals and 〈βj : j < δ2〉 ⊆ λ+ is a
strictly increasing sequence of ordinals, each βj either a successor or
of cofinality λ. Let

〈pi,j : (i, j) ∈ (δ1 + 1) × (δ2 + 1) \ {(δ1, δ2)}〉 ⊆ AP

be such that

pi,j ∈ APβj
, i ≤ i′ ⇒ pi,j ≤ pi′,j, j ≤ j′ ⇒ pi,j ≤ pi,j′ ↾ ω · βj .

Then the family {pi,j : (i, j) ∈ (δ1 + 1) × (δ2 + 1) \ {(δ1, δ2)}} has an
upper bound r ∈ AP such that (∀j < δ2)(r ↾ ω · βj = pδ1,j).

Proof of the claim: 1) The first try may be to take the natural union of
the sequence 〈pi : i < δ〉. However, it may happen that we will not get a legal
approximation, as

⋃

i<δ

dom(pi) does not have to be closed. But we may take

its closure cl(
⋃

i<δ

dom(pi)) and apply a procedure similar to the one described

in 2.3.6 (successively at each element of cl(
⋃

i<δ

dom(pi)) \
⋃

i<δ

dom(pi)) and

construct the required q.

2)–4) Similarly as 1) above plus the proof of 2.3.7. �2.3.8

Now we apply [Sh 405, Appendix]: we find a “sufficiently generic” G ⊆
AP which gives the T, c, d we need (remember 2.3.5):

T = {ηε : ε ∈ tp for some p ∈ G}

where for ε ∈ [λα, λα + λ) we define ηε ∈
αλ by:

γ = ηε(β) if and only if

(∃p ∈ G)(∃ε′ ∈ [λ·(β + 1), λ·(β + 1) + λ))(tp |= “ε′ < ε” & fp(ε′) = γ).

This finishes the proof. 2.3

Remark 2.4 1. Theorem 2.3 is close to [Sh 50], which is a strengthening
of the construction of special Aronszajn trees. There essentially we
replace (γ) + (δ) by

(γ)′ yi(lev(ti)), zi(lev(ti)) do not depend on i.

2. By the proof of 2.3(2), T is λ-complete.

3. We may add to 2.3(2):
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(c) T is special, i.e. there is a function d :
⋃

α
Tα −→ λ such that

d(η) = d(ρ) ⇒ ¬[η <T ρ].

[Just in the definition of p ∈ AP (see 2.3.2) add such dp : tp −→ λ.]

4. The reader may wonder why we need the condition “h(x̄) has µ pair-
wise disjoint members”. The point is that when we amalgamate p
and q when p ↾ α ≤ q, it may happen that p gives information on
levels αn < αn+1 (for n < ω), β =

⋃

n<ω
αn < α, q gives information

on the level β, and when amalgamating the function f q gives infor-
mation on f on this level and f is supposed to be one-to-one on every
succT (η). So considering x̄ ∈ (tq)β+1, ȳ ∈ (tp)α, when we try to define
f ↾ rang(ȳ ↾ (β + 1)), some values are excluded.

Theorem 2.5 Assume that λ = µ+ = 2µ. Then there is a forcing notion P

which is (< λ)–complete of size λ+ and satisfies the λ+–cc (so it preserves
cardinalities, cofinalities and cardinal arithmetic) and such that in VP:

1. There is a µ-entangled linear order I of cardinality λ+ and density λ.

2. Let σ ≤ µ be a regular cardinal. There exist linear orders I ′, I ′′ of the
cardinality λ+ such that for any uniform ultrafilter D on σ the linear
orders (I ′)σ/D, (I ′′)σ/D have isomorphic subsets of cardinality λ+,
but I ′ + I ′′ is µ-entangled.
Hence there is a Boolean algebra B which is λ+-narrow but Bσ/D is
not λ+-narrow for any uniform ultrafilter D on σ.

3. There are a set R ⊆ λλ, |R| = λ+ and functions c, d̄ such that, letting
T+ = (λ>λ ∪R,⊳) (⊳ is being initial segment), we have:

(a) c is a function from λ>λ to λ,

(b) R = {ηα : α < λ+} (with no repetition), <R= {(ηα, ηβ) : α < β};
define

R∗ = {〈ηαi
: i < µ〉 : αi < λ+, 〈αi : i < λ+〉 is increasing},

(c) for every x̄ ∈ T
[µ]
<λ, ζ < µ, and h ∈ ζ(λ×λ×λ), dx̄,h is a function

from {ȳ ∈ R∗ : x̄ < ȳ} to λ such that:

[dx̄,h(ȳ) = dx̄,h(z̄) & ȳ, z̄ ∈ T
[µ]
x̄ are distinct] implies

sup{α : ηα appears in ȳ} 6= sup{α : ηα appears in z̄}

and for some t̄ ∈ T
[µ]
x̄ ∩ T

[µ]
<λ and i∗ < µ we have:
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(α) ti = yi ∧ zi, lev(ti) = lev(ti∗) for i ≥ i∗,

(β) (∀ε < µ)(∃µi < µ)(c(ti) = ε),

(γ) for µ ordinals i < µ divisible by ζ we have

(i) either there are ξ0 < ξ1 < λ such that

(∀ε < ζ)(ζ·ξ0 ≤ yi+ε(lev(t̄)) < ζ·ξ1 ≤ zi+ε(lev(t̄))) and

h = 〈(c(ti+ε), yi+ε(lev(t̄))−ζ·ξ0, zi+ε(lev(t̄))−ζ·ξ1) : ε < ζ〉,

(ii) or a symmetrical requirement interchanging ȳ and z̄.

Proof 1) We apply 2.5(3): let R, c, d̄ be as there (of course we are in
the universe VP all time). We define the order <I on I = R by

y <I z if and only if
either c(y ∧ z) = 0 and y(α) < z(α)
or c(y ∧ z) 6= 0 and y(α) > z(α),

where α = lev(y ∧ z).

Clearly <I is a linear order of the density λ, |I| = λ+. To show that it is
µ-entangled suppose that yαε ∈ R (for α < λ+, ε < ε(∗) < µ) are pairwise
distinct, u ⊆ ε(∗). Let yαε = ηβ(α,ε) (for α < λ+, ε < ε(∗)). We may
assume that the truth value of “β(α, ε1) < β(α, ε2)” does not depend on
α < λ+. For simplicity, we may assume that for each α < λ+, ε < ε′ < ε(∗)
implies yαε <R yαε′ . Finally, without loss of generality we may assume that
if α < α′ < λ+ and ε, ε′ < ε(∗) then yαε <R yα

′

ε′ (i.e. β(α, ε) < β(α′, ε′)). For

ε < ε(∗), i < µ and α < λ+ let zαi·ε(∗)+ε = y
α·µ+i·ε(∗)
ε and z̄α = 〈zαi : i < µ〉.

Clearly each z̄α is in R∗. Now for α < λ+ choose ξ(α) < λ such that
zαi ↾ ξ(α) (for i < µ) are pairwise distinct. Without loss of generality we
may assume that ξ(α) = ξ for α < λ+. There are λµ = λ possibilities for
〈zαi ↾ ξ : i < µ〉, so we may assume that for all α < λ+

〈zαi ↾ ξ : i < µ〉 = 〈xi : i < µ〉 = x̄ ∈ T
[µ]
ξ .

Let h
def
= 〈(0, ℓuε , 1−ℓuε ) : ε < ε(∗)〉 ∈ ε(∗)(λ×λ×λ), where ℓuε is 0 if ε ∈ u and 1

otherwise. For some distinct α1, α2 < λ+ we have dx̄,h(z̄α1) = dx̄,h(z̄α2). By
the properties of dx̄,h, possibly interchanging α1, α2, we find i < µ, ordinals

ξ0 < ξ1 < λ and t̄ ∈ T
[µ]
x̄ such that

(∀ε < ε(∗))(zα1

i·ε(∗)+ε
∧ zα2

i·ε(∗)+ε
= ti·ε(∗)+ε) and

(∀ε < ε(∗))(ε(∗) · ξ0 ≤ zα1

i·ε(∗)+ε
(β) < ε(∗) · ξ1 ≤ zα2

i·ε(∗)+ε
(β) and

h = 〈(c(ti·ε(∗)+ε), z
α1

i·ε(∗)+ε
(β) − ε(∗) · ξ0, z

α2

i·ε(∗)+ε
(β) − ε(∗) · ξ1) : ε < ε(∗)〉,
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where β = lev(t̄). Then α1·µ + i·ε(∗) 6= α2·µ + i·ε(∗) (for i < µ) and

(∀ε < ε(∗))(yα1 ·µ+i·ε(∗)
ε <I yα2·µ+i·ε(∗)

ε iff ε ∈ u)

(by the definition of the order <I and the choice of h), so using 1.2(7) we
are done.

2) As in 1) above, we work in VP and we use 2.5(3). Suppose σ ≤ µ. For
a set A ⊆ λ we define the order <A on R by

y <A z if and only if
either c(y ∧ z) ∈ A and y(α) < z(α)
or c(y ∧ z) /∈ A and z(α) < y(α),

where α = lev(y ∧ z).

[Note that the order <I from part 1) above is just <{0}).]
Clearly <A is a linear order. As in the proof of 2.5(1) one can show that it
is µ-entangled. As σ<σ ≤ λ we may choose sets Ai ⊆ λ for i ≤ σ such that

(i) for each α < λ the set {i < σ : α ∈ Ai ≡ α /∈ Aσ} has cardinality < σ,
and

(ii) if v ⊆ σ, |v| < σ, h : v ∪ {σ} −→ {0, 1} then there is α ∈ λ such that

(∀i ∈ v ∪ {σ})(α ∈ Ai ⇔ h(i) = 1).

For i ≤ σ let Ii = (R,<Ai
). Put I ′ =

∑

i<σ
Ii, I

′′ = Iσ, I = I ′ + I ′′ =
∑

i≤σ
Ii.

So it is notationally clearer to let Ii = ({i} × R,<i), (i, y1) <i (i, y2) iff
y1 <Ai

y2, and I = ((σ + 1) × R,<∗), (i1, y1) <∗ (i2, y2) iff i1 < i2 or
(i1 = i2 & y1 <Ai1

y2).

Claim 2.5.1 If y0, y1 ∈ R, y0 <Aσ y1 then that the set {i < σ : y0 <Ai
y1}

is co-bounded.

Proof of the claim: Let t = y0 ∧ y1, y0 <Aσ y1. The set

u =: {i < σ : c(t) ∈ Ai ≡ c(t) ∈ Aσ}

satisfies u ⊆ σ & |σ\u| < σ. If c(t) ∈ Aσ then y0(lev(t)) < y1(lev(t)). Hence
y0 <Ai

y1 for i ∈ u. If c(t) /∈ Aσ then y0(lev(t)) > y1(lev(t)) and y1 <Ai
y0

for i ∈ u. �2.5.1

Let π : I ′′ −→
∏

i<σ
I ′ be such that for y ∈ Iσ, π(y)(i) is the element of

Ii that corresponds to y; recall that all orders Ii are defined on R. Now, if
D is a uniform ultrafilter on σ then π/D : I ′′ → (I ′)σ/D is an embedding.
Thus both (I ′)σ/D and (I ′′)σ/D contain a copy of I ′′. Now we will finish
by the following claim.

33



(
4
6
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
1
1
-
1
2
 
 

Claim 2.5.2 The linear order I = I ′ + I ′′ is µ-entangled.

Proof of the claim: Suppose that ε(∗) < σ and (jαε , y
α
ε ) ∈ I for α < λ+,

ε < ε(∗) are pairwise distinct and u ⊆ ε(∗). As 2σ ≤ λ wlog jαε = jε. Let
{zαζ : ζ < ζα} be an enumeration of Yα =: {yαε : ε < ε(∗)} and let {iξ : ξ <
ξ∗} enumerate v =: {jε : ε < ε(∗)}. Wlog the sequences 〈zαζ : ζ < ζα〉 are
<R-increasing and pairwise disjoint (for α < λ+) as each z may appear in at
most ε(∗) of these sequences. Moreover we may assume that {(ζα, ε, ζ, ξ) :
(jε, y

α
ε ) = (iξ, z

α
ζ )} does not depend on α, so ζα = ζ∗ and by enlarging and

renaming instead 〈(jαε , y
α
ε ) : ε < ε(∗)〉 we have 〈(iξ, z

α
ζ ) : ζ < ζ∗, ξ < ξ∗〉 and

so u ⊆ ζ∗ × ξ∗. Now, for each ζ < ζ∗ we choose c[ζ] < λ such that

(∀ξ < ξ∗)[c[ζ] ∈ Aiξ ⇔ (ξ, ζ) ∈ u]

and we proceed as in earlier cases (considering h = 〈(c[ζ], 0, 1) : ζ < ζ∗〉 ∈
ζ∗(λ× λ× λ))4. �2.5.2

3) The definition of the forcing notion P is somewhat similar to that of the
approximations is 2.3(2).

Definition 2.5.3 A condition in P is a tuple p = 〈t, δ, w,≤,D, d̄, ē, c〉 (we
may write tp, wp, etc) such that:

(A) w ⊆ λ+ is a set of cardinality < λ, δ is a limit ordinal < λ; let w[µ] be
the family of all increasing sequences ȳ ⊆ w of length µ,

(B) t is a non-empty closed under initial segments subset of δ≥λ of cardi-
nality < λ,

(C) ≤ is such that (t ∪ w,≤) is a normal tree, ≤p↾ t is ⊳, and for α ∈ w,

bpα
def
=

⋃

{ν ∈ t : ν ≤p α} ∈ t ∩ δλ, and α 6= β ⇒ bpα 6= bpβ,

(D) c is a function from t to λ,

(E) D is a set of < λ pairs (x̄, h) such that x̄ ∈ t[µ] and h ∈
⋃

ζ<µ

ζ(λ×λ×λ),

(F) d̄ = 〈dx̄,h : (x̄, h) ∈ D〉, each dx̄,h is a partial function from w[µ] to δp

with domain of cardinality < λ,

(G) ē = 〈ex̄,h : (x̄, h) ∈ D〉, each ex̄,h is a partial function from t
[µ]
x̄ × δp to

{0, 2} such that for (x̄, h) ∈ D:

4Alternatively, let R be the disjoint union of Ri (i ≤ σ) and use I∗

i = Ii ↾ ({i} ×Ri).
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(i) dom(ex̄,h) ⊇ {(ȳ, γ) : for some z̄0, z̄1 ∈ dom(dx̄,h) we have

x̄ < ȳ ≤ z̄0 and γ = dx̄,h(z̄1))},

(ii) if ȳ ∈ t
[µ]
x̄ , x̄ <t ȳ <t z̄ and ex̄,h(z̄, β) is defined then ex̄,h(ȳ, β) is

defined and ex̄,h(ȳ, β) ≤ ex̄,h(z̄, β),

(iii) if z̄ ∈ dom(dx̄,h) and x̄ < ȳ < z̄ then ex̄,h(ȳ, dx̄,h(z̄)) = 0,

and letting h = 〈(α0
ε, α

1
ε, α

2
ε) : ε < ζ〉 we have

(iv) if (ȳ, α) ∈ dom(ex̄,h), lev(ȳ) = δp and ex̄,h(ȳ, α) = 0 then

(∀ε < µ)(∃µi < µ)(c(ui) = ε) and

for µ ordinals i < µ divisible by ζ, for some ξ < λ

(∀ε < ζ)(c(yi+ε) = α0
ε),

(v) if x̄ < ȳ0 < ȳ1, α ≤ lev(ȳ0)+1 = lev(ȳ1) < δp and ex̄,h(ȳ1, α) = 0,
then for µ ordinals i < µ divisible by ζ, for some ξ < λ

(∀ε < ζ)(c(y0i+ε) = α0
ε & ζ · ξ + α1

ε = y1i+ε(lev(ȳ0))),

(H) if ex̄,h(ȳ, α) = ex̄,h(z̄, α) = 0, ¬[ȳ ≤t z̄], ¬[z̄ ≤t ȳ] then clauses (α),
(β), (γ) of 2.5(4c) hold.

P is equipped with the natural partial order:
p ≤ q if and only if
tp ⊆ tq, δp ≤ δq, wp ⊆ wq, cp ⊆ cq, Dp ⊆ Dq, and

(x̄, h) ∈ Dp ⇒ dpx̄,h ⊆ dqx̄,h & epx̄,h ⊆ eqx̄,h.

For a condition p ∈ P and an ordinal α < λ+ we define q = p ↾ α by:

• δq = δp, tq = tp, wq = wp ∩ α, ≤q=≤p↾ tq, Dq = Dp, cq = cp,

• if (x̄, h) ∈ Dq then dqx̄,h = dpx̄,h ↾ (wq)[µ] and eqx̄,h = epx̄,h ↾ ((tq)
[µ]
x̄ × δq).

Observation 2.5.4 If p ∈ P and α < λ+ is either a successor or of cofinal-
ity λ then p ↾ α ∈ AP is the unique maximal condition such that p ↾ α ≤ p
and wp↾α = wp ∩ α. �

Claim 2.5.5 (Density Observation) Assume p ∈ P.

1. Suppose η ∈ λ>λ. Then there is q ∈ P such that

p ≤ q, η ∈ tq, wp = wq, Dp = Dq, d̄q = d̄p.
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2. For each β ∈ λ+ \ wp there is q ∈ P such that p ≤ q and β ∈ wq.

3. If x̄ ∈ (tp,≤p)[µ], ζ < µ and h ∈ ζ(λ× λ× λ) then there is q ∈ P such
that p ≤ q and Dq = Dp ∪ {(x̄, h)}.

4. If (x̄, h) ∈ Dp, x̄ < ȳ ∈ (wp)[µ] then there is q ∈ AP, p ≤ q such that
wq = wp and ȳ ∈ dom(dx̄,h).

Proof of the claim: 1) We may assume that |tp ∩ δpλ| = µ, as otherwise
it is even easier. So let 〈νβ : β < µ〉 enumerate tp ∩ δpλ. Put δq = max{δp +
ω, ℓg(η) + ω} and fix ρ ∈ δqλ such that η ⊳ ρ. Next, by induction on
γ ∈ (δp, δq ] define sequences νγβ for β < µ and functions cγ such that

(a) cγ : {νγβ : β < µ} −→ λ, νγβ ∈ γλ.

(b) δp < γ0 < γ1 ≤ δq ⇒ νβ ⊳ νγ0β ⊳ νγ1β .

(c) Suppose that (x̄, h) ∈ Dp, h = 〈(α0
ε , α

1
ε, α

2
ε) : ε < ζ〉 ∈ ζ(λ × λ × λ),

x̄ < ȳ = 〈νε(i) : i < µ〉 ⊆ tp∩δpλ, (ȳ, α) ∈ dom(epx̄,h) and epx̄,h(ȳ, α) = 0.
Then

(α) for µ ordinals i < µ divisible by ζ, for some ξ < λ

(∀j < ζ)(cp(νε(i+j)) = α0
j & νδ

p+1
ε(i+j)(δ

p) = ζ · ξ + α1
j ),

(β) for each γ ∈ (δp, δq) we have

(∀ξ < µ)(∃µi < µ)(cγ(νγ
ε(i)) = ξ) and

for µ ordinals i < µ divisible by ζ there is ξ < λ such that

(∀j < ζ)(cγ(νγ
ε(i+j)) = α0

j & νγ+1
ε(i+j) = ζ · ξ + α1

j ),

(γ) (∀ξ < µ)(∃µi < µ)(cδq (νδ
q

ε(i)) = ξ) and for µ ordinals i < µ
divisible by ζ

(∀j < ζ)(cδq (νδ
q

ε(i+j) = α0
j).

The construction is easy and can be done like the one in 2.3.6. Next we put

tq = tp ∪ {ρ ↾ γ : γ ≤ δq} ∪ {νγβ : β < µ, δp < γ ≤ δq},

wq = wp, Dq = Dp, d̄q = d̄p.

The function cq is defined as any extension of cp ∪ {cγ : δp < γ ≤ δq} (note
that the possibly non-defined values are that at some initial segments of ρ).
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For α ∈ wq let bqα be νδ
q

β for beta such that bpα = νβ. This determines the
tree ordering ≤q of tq ∪ wq (remember 2.5.3(C)). To define eqx̄,h we let

eqx̄,h ⊇ epx̄,h,

dom(eqx̄,h) = dom(epx̄,h) ∪ {(ȳ, ι) : ȳ = 〈νγ
β(i) : i < µ〉 > ȳ′ = 〈νβ(i) : i < µ〉,

γ ∈ (δp, δq], (ȳ′, ι ∈ dom(epx̄,h) },

if x̄ < ȳ′ < ȳ, (ȳ′, ι) ∈ dom(epx̄,h), lev(ȳ′) = δp then eqx̄,h(ȳ, ι) = epx̄,h(ȳ′, ι).

Now one easily checks that the condition q defined above is as required.

2) Choose ν ∈ δpλ such that ν ↾ 1 /∈ tp. Let

δq = δp, tq = tp ∪ {ν ↾ γ : γ < δp} and wq = wp ∪ {β}.

Define ≤q by letting bqα = bpα for α ∈ wp and bqβ = {ν ↾ ε : ε < δq}. Finally

put Dq = Dp, dqx̄,h = dpx̄,h and eqx̄,h = eqx̄,h.

3) Let tq = tp, wq = wp, cq = cp, dqx̄′,h′ = dpx̄′,h′ if (x̄′, h′) ∈ Dp, dqx̄,h is

empty if (x̄, h) /∈ Dp, and similarly for eqx̄′,h′ .

4) Let h = 〈(α0
ε , α

1
ε, α

2
ε) : ε < ζ〉. Declare that δq = δp + ω and fix an

enumeration 〈νβ : β < µ〉 of tp ∩ δpλ. Let ȳ′ = 〈νβ(i) : i < µ〉 be such that

ȳ′ < ȳ (∈ w[µ]). Next, like in (1) above build cγ , ν
γ
β for γ ∈ (δp, δq], β < µ

satisfying demands (a)–(c) there plus:

(c) (δ) for each γ ∈ (δp, δq)

(∀ξ < µ)(∃µi < µ)(cγ(νγ
β(i)) = ξ) and

for µ ordinals i < µ divisible by ζ there is ξ < λ such that

(∀j < ζ)(cγ(νγ
β(i+j)) = α0

j & νγ+1
β(i+j)(γ) = ζ · ξ + α1

j ),

(ε) (∀ξ < µ)(∃µi < µ)(cδq (νδ
q

β(i)) = ξ) and for µ ordinals i < µ
divisible by ζ

(∀j < ζ)(cδq (νδ
q

β(i+j) = α0
j ).

Next we put dom(dqx̄,h) = dom(dpx̄,h) ∪ {ȳ}, dqx̄,h ⊇ dpx̄,h, dqx̄,h(ȳ = δp + 2,

dqx̄′,h′ = dpx̄′,h′ for (x̄′, h′) ∈ Dp \ {(x̄, h)}, and Dq = Dp. The functions cq

and eqx̄′,h′ (for (x̄′, h′) ∈ Dq) are defined as in (1), but dealing with (x̄, h)

we take into account the new obligation: dqx̄,h(ȳ) = δp + 2 (and we put the
value 2 whenever possible). There is no problem with it as we demanded
clauses (c)(δ, ε). Now one easily checks that q is as required. �2.5.5
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Claim 2.5.6 The forcing notion P is (< λ)–complete, i.e. if p̄ = 〈pi : i <
i∗〉 ⊆ P is increasing, i∗ < λ then p̄ has an upper bound in P.

Proof of the claim: It is easy: the first candidate for the upper bound is
the natural union of the pi’s. What may fail is that the tree

⋃

i<i∗
tp

i
does not

have the last level. But this is not a problem as we may use the procedure
of 2.5.5(1) to add it. �

Claim 2.5.7 (The Amalgamation Property) If α < λ+ is either a suc-
cessor ordinal or of cofinality λ, p, q ∈ P, p ↾ α ≤ q and wq ⊆ α then there
is r ∈ P such that p ≤ r, q ≤ r and wr = wp ∪ wq.

Proof of the claim: By 2.5.5(1) we may assume that δp < δq. Moreover
we may assume that |wp \ α| = µ (as otherwise everything is easier). Let
δr = δq and wr = wp ∪ wq. By induction on γ ∈ [δp, δq] choose sequences
〈νβ,γ : β ∈ wp \ α〉 and functions cγ such that

(α) νβ,γ ∈ γλ are ⊳–increasing with γ,

(β) νβ,δp = bpβ , νβ,δp+1 /∈ tq

[note that 〈νβ,δp : β ∈ wp \ α〉 is with no repetition],

(γ) cγ : {νβ,ξ : β ∈ wp \ α, ξ ∈ [δp, γ)} −→ λ are continuously increasing
with γ, cδp+1 is cp restricted to {νβ,δp : β ∈ wp \ α},

and for each (x̄, h) ∈ Dp, h = 〈(α0
ε , α

1
ε, α

2
ε) : ε < ζ〉, z̄ ∈ dom(dpx̄,h) \

dom(dqx̄,h) and i∗ < µ such that zi ≥ α for i ≥ i∗ we have

(δ) for each γ ∈ [δp, δq), for µ ordinals i ∈ [i∗, µ) divisible by ζ, for some
ξ < λ

(∀ε < ζ)(cγ+1(νzi+ε,γ) = α0
ε & νzi+ε,γ+1(γ) = ζ · ξ + α1

ε),

(ε) for µ ordinals i ∈ [i∗, µ) divisible by ζ

(∀ε < ζ)(cδq+1(νzi+ε,δq ) = α0
ε),

(ζ) if x̄ < ȳ < z̄, lev(ȳ) = δp, ȳ < ȳ′, lev(ȳ′) = δp + 1, (ȳ′, dpx̄,h(z̄)) ∈

dom(eqx̄,h) and eqx̄,h(ȳ′, dpx̄,h(z̄)) = 0 then for µ ordinals i ∈ [i∗, µ) divis-
ible by ζ there are ξ0 < ξ1 < λ such that

(∀ε < ζ)(ζ · ξ0 ≤ y′i+ε(δ
p) < ζ · ξ1 ≤ yi+ε(δ

p)) and

(∀ε < ζ)(cp(νzi+ε,δp) = α0
ε, y′i+ε(δ

p) = ζ ·ξ0+α1
ε, yi+ε(δ

p) = ζ ·ξ1+α2
ε,
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(ι) for each γ ∈ (δp, δq], for every ε < µ there are µ ordinals i < µ such that
cγ+1(νzi,γ) = ε.

[Our intension here is that brβ = νβ,δq and cr ⊇ cδq .] We have actually µ
demands, each of which can be satisfied by µ pairwise disjoint cases of size
ζ < µ. So we may carry out the procedure analogous to that from the end
of the proof of 2.3.7. Note that in handling instances of clause (ζ) we use
demand 2.5.3(G)(v) for q (applicable as dpx̄,h(z̄) < δp) and for clause (δ) we
use 2.5.3(G)(iv). After the construction is carried out we easily define a
condition r as required. �2.5.7

Claim 2.5.8 The forcing notion P satisfies the λ+–cc.

Proof of the claim: Suppose that 〈pα : α < λ+〉 is an antichain in P.
By passing to a subsequence we may assume that otp(wpα) is constant and
that the order isomorphism of wpα , wpβ carries the condition pα to pβ (so
tpα = tpβ , Dpα = Dpβ etc). Moreover, we may assume that the family
{wpα : α < λ+} forms a ∆–system with kernel w∗ (remember λ = 2µ = µ+).
Now we may find an ordinal α∗ < λ+ of cofinality λ and α0 < α1 < λ+ such
that wpα0 ⊆ α∗, wpα1 ∩ α∗ = w∗ and w∗ is an initial segment of both wpα0

and wpα1
. Note that then pα1 ↾ α∗ ≥ pα0 . So applying 2.5.7 we conclude

that the conditions pα0 , pα1 have a common upper bound, a contradiction.
�2.5.8

To finish the proof note that if G ⊆ P is a generic filter over V then, in
V[G] we may define the tree T by:

T = (λ>λ) ∪ {ηα : α < λ+}

where for α < λ+ we define ηα ∈ λλ by

ηα =
⋃

{ν ∈ λ>λ : (∃p ∈ G)(ν ∈ bpα)}

(and c, d are defined similarly). By 2.5.5 and 2.5.6 (no new µ–sequences of
ordinals are added) we easily conclude that these objects are as needed. 2.5

We may want to improve 2.3(2) so that it looks more like 2.5(4); we can
do it at some price.

Proposition 2.6 Let J ∗ be a linear order, J ∗ =
∑

α<λ+

Iα, each Iα a λ-

dense linear order of cardinality λ (as in the proof of 2.3(1)). Then ω×J ∗
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is a λ+-like linear order such that every j ∈ I which is neither successor
nor the first element (under <I) satisfies

cf({i : i <J j}, <J ) = λ

and each member of ω × J has an immediate successor.

Definition 2.7 For a λ+-like linear order J , a J -Aronszajn tree is T =
(T,≤T , lev) such that

(a) T is a set of cardinality λ+,

(b) (T,≤T ) is a partial order which is a tree, i.e. for every y ∈ T the set
{x : x ≤T y} is linearly ordered by ≤T ,

(c) lev is a function from T to J , Tj =: {y ∈ T : lev(y) = j},

(d) for every y ∈ T , lev is a one-to-one order preserving function from
{x : x <T y} onto {j ∈ J : j <J lev(y)}, so y ↾ j is naturally defined,

(e) for y ∈ T and j ∈ J , lev(y) <J j there is z such that y <T z ∈ T ,
lev(z) = j,

(f) {y : lev(y) = j} has cardinality λ,

(g) normality: if y 6= z, both in Tj , j is neither successor nor the first
element of (J , <J ) then {x : x <T y} 6= {x : x <T z},

(h) for y 6= z ∈ T there is j ∈ J such that y ↾ j = z ↾ j and

(∀i)(j <J i ⇒ y ↾ i 6= z ↾ i)

[we write y ↾ j = z ↾ j for z ∧ y].

Theorem 2.8 Assume that λ = µ+ = 2µ and ♦λ (the second follows e.g. if
µ ≥ iω – see [Sh 460, 3.5(1)]) and J is as constructed in 2.6. Then there
are a J -Aronszajn tree T and functions f , c, d such that

(a) f , c are functions from T to λ, if y is the successor of j in J , y ∈ Ti

then f is one to one from {z ∈ Tj : z ↾ i = y} onto λ

(b) for every x̄ ∈ T [µ] (=
⋃

j∈J
T
[µ]
j ) and h ∈ H⊗

µ,ζ , ζ < µ we have dx̄,h :

T
[µ]
x̄ −→ λ such that:

if dx̄,h(x̄) = dx̄,h(ȳ) then for some t̄ ∈ T
[µ]
x̄ we have
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(α) ti = yi ∧ zi,

(β) lev(t̄) < lev(ȳ), lev(t̄) < lev(z̄),

(γ) (∀ε < µ)(∃µi < µ)(c(ti) = ε),

(δ) for µ ordinals i < µ divisible by ζ we have

h(ζ) = 〈(c(ti), f(yi ↾ (α +J 1)), f(zi ↾ (α +J 1))),

where α = lev(t̄).

Proof Like 2.3.

3 Constructions Related to pcf Theory

Lemma 3.1 1. Suppose that

(A) 〈λi : i < δ〉 is a strictly increasing sequence of regular cardinals,
|δ| < λi < λ = cf(λ) for i < δ and D is a σ-complete filter on
δ containing all co-bounded subsets of δ (follows by clause (D);
hence cf(δ) ≥ σ),

(B) tcf(
∏

i<δ

λi/D) = λ, i.e. there is a sequence 〈fα : α < λ〉 ⊆
∏

i<δ

λi

such that

(i) α < β < λ implies fα <D fβ,

(ii) (∀f ∈
∏

i<δ

λi)(∃α < λ)(f <D fα),

(C) sets Ai ⊆ δ (for i < κ) are such that the family {Ai : i < κ}
is σ-independent in P(δ)/D (i.e. if u, v are disjoint subsets of κ,
|u ∪ v| < σ then

⋂

i∈u
Ai \

⋃

j∈v
Aj 6= ∅ mod D),

(D) |{fα ↾ i : α < λ}|<σ < λi for each i < δ.

Then Ensσ(λ, κ).

2. The linear orders in part (1) have exact density µ =:
∑

i<δ

λi (see Def-

inition 1.9) and they are positively µ-entangled (see Definition 1.10).
Moreover, if 〈fα : α < λ〉 is as gotten in [Sh 355, §1] (i.e. it is µ-free)
then they have exact density (µ+, µ+, µ).

Remark: By [Sh 355, 3.5], if δ < λ0 and max pcf({λi : i < α}) < λα

(for α < δ) then we can have (D); i.e. we can find fα (for α < λ) satisfying
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(i) + (ii) of (B) and (D). If in addition λ ∈ pcfσ−complete{λi : i < δ} (but
λ /∈ pcf({λi : i < α}) for α < λ) then we can find a filter D as required in
(A) + (B). So if µ > cf(µ) = κ and α < µ ⇒ |α|κ < µ, then we can
find λ̄ = 〈λi : i < κ〉 as above and λ̄ strictly increasing with limit µ.

Proof 1) Let I = {fα : α < λ}. For each ζ < κ we define a linear
order <∗

ζ of I. It is <∗
Aζ

, where for A ⊆ δ we define <∗
A by:

fα <∗
A fβ if and only if

(∃i < δ)(fα(i) 6= fβ(i) & fα ↾ i = fβ ↾ i & [fα(i) < fβ(i) ⇔ i ∈ A]).

Let u, v be disjoint subsets of κ, |u ∪ v| < σ and for each ε ∈ u ∪ v let
tεα = fγ(ε,α) be pairwise distinct (for α < λ). We should find α < β < λ as
in 1.1(1). Let

gα(i) =: min{fγ(ε,α)(i) : ε ∈ u ∪ v},
iα =: min{i < δ : 〈fγ(ε,α) ↾ i : ε ∈ u ∪ v〉 are pairwise distinct}.

Since |u ∪ v| < σ ≤ cf(δ), iα < δ. Clearly gα ∈
∏

i<δ

λi. Without loss of

generality iα = i∗ for every α < λ. Let

B = {i < δ : (∀ξ < λi)(∃
λα < λ)(gα(i) > ξ)}.

Claim 3.1.1 B ∈ D.

Proof of the claim: Assume not, so δ \ B 6= ∅ modD. For i ∈ δ \ B
let ξi < λi, βi < λ exemplify i /∈ B, i.e. α ∈ [βi, λ) ⇒ gα(i) ≤ ξi. Define
h ∈

∏

i<δ

λi by:

h(i) =:

{

ξi + 1 if i ∈ δ \B;
0 if i ∈ B.

Now 〈fα/D : α < λ〉 is cofinal in
∏

i<δ

λi/D (i.e. clause (ii) of (B)), so there

exists β < λ such that h < fβ modD. Without loss of generality sup
i∈δ\B

βi < β

(remember that δ \B ⊆ δ, |δ| < λ = cf(λ) and (∀i ∈ δ \B)(βi < λ)). Since,
for each ε ∈ u ∪ v, γ(ε, α) (for α < λ) are pairwise distinct and β < λ,
there exists α < λ such that (∀ε ∈ u ∪ v)(γ(ε, α) > β). Without loss of
generality β < α and hence sup

i∈δ\B
βi < α. Now by the choice of α we have

(∀ε ∈ u ∪ v)(fβ < fγ(ε,α) modD) and for every i ∈ δ \B, gα(i) ≤ ξi. Hence
Eε =: {i < δ : fβ(i) < fγ(ε,α)(i)} ∈ D and as D is σ-complete and σ > |u∪v|
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we get
⋂

ε∈u∪v
Eε ∈ D. By gα’s definition and the choice of β, it now follows

that {i < δ : h(i) < gα(i)} ∈ D and thus

(δ \B) ∩ {i < δ : h(i) < gα(i)} 6= ∅ modD.

Choosing i in this (non-empty) intersection, one obtains gα(i) ≤ ξi < ξi+1 =
h(i) < gα(i) (the first inequality – see above, the third equality – see choice
of h, the last inequality – see choice of i), a contradiction. So B ∈ D,
proving the claim. �3.1.1

Remember that |{fα ↾ i : α < λ}| < λi for each i < δ, and cf(
∏

i<δ

λi/D) =

λ, D contains all co-bounded subsets of δ. By our hypothesis,

A =:
⋂

ε∈u

Aε ∩
⋂

ε∈v

(δ \ Aε) 6= ∅ modD,

so C =: {i < δ : i∗ < i} ∩ A ∩ B 6= ∅ modD, and one can choose i ∈ C.
For each ξ < λi choose αξ < λ such that gαξ

(i) > ξ. Then easily for some
unbounded S ⊆ λi we have:

ξ1 < ξ2 ∈ S & ε1, ε2 ∈ u ∪ v ⇒ fγ(ε1,αξ1
)(i) < fγ(ε2,αξ2

)(i).

Without loss of generality the sequence 〈〈fγ(ε,αξ) ↾ i : ε ∈ u ∪ v〉 : ξ ∈ S〉 is
constant (by hypothesis (D) of 3.1(1)). The conclusion should be clear now
(look at the definition of <∗

ζ and the choice of i being in
⋂

ε∈u
Aε \

⋃

ε∈v
Aε).

2) We will state the requirements and prove them one by one.

Claim 3.1.2 The linear orders constructed in the first part have exact den-
sity µ.

Proof of the claim: Let us consider I = (I, <A). For each i < δ choose
a set Xi ⊆ λ such that |Xi| ≤ λi and {fα ↾ i : α < λ} = {fα ↾ i : α ∈ Xi}.
Then {fα : α ∈

⋃

i<δ

Xi} is a dense subset of (I, <A) (and its size is ≤ µ).

Suppose now that J ⊆ I, |J | = λ and assume that J0 ⊆ J is a dense
subset of J , |J0| < µ. The set X = {α < λ : fα ∈ J } has cardinality λ, so
it is unbounded in λ. Let i(∗) = min{i < δ : λi > |J0|}. Then

(∀i ≥ i(∗))(γi =: sup{fα(i) + 1 : fα ∈ J0} < λi)

(as γi is a supremum of a set of |J0| < λi = cf(λi) ordinals < λi). Let
γi = 0 for i < i(∗). Then 〈γi : i < δ〉 ∈

∏

i<δ

λi and, as 〈fα : α < λ〉 is cofinal
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in (
∏

i<δ

λi, <D), for some α(∗) < λ we have 〈γi : i < δ〉 <D fα(∗). Since

(∀α ∈ X \ α(∗))(fα(∗) ≤D fα), we have

(∀α ∈ X \ α(∗))({i < δ : γi < fα(i)} ∈ D).

Consequently, for each α ∈ X \α(∗) we find iα ∈ (i(∗), δ) such that fα(iα) >
γiα . As λ = cf(λ) > |δ|, there is j ∈ (i(∗), δ) such that the set

X ′ =: {α ∈ X : α > α(∗) & iα = j}

is unbounded in λ. Since |{fα ↾ j : α < λ}| < λj < λ = cf(λ), for some
unbounded set X ′′ ⊆ X ′ and a sequence ν we have (∀α ∈ X ′′)(fα ↾ j = ν).
But now note that the convex hull of {fα : α ∈ X ′′} in (I, <A) is disjoint
from J0, a contradiction. �3.1.2

Claim 3.1.3 (I, <A) is positively σ-entangled.

Proof of the claim: Like in part (1).

Claim 3.1.4 If the sequence 〈fα : α < λ〉 is µ–free and the set A ⊆ δ
is neither bounded nor co-bounded then the linear order (I, <A) has exact
density (µ+, µ+, µ).

Proof of the claim: Suppose that J ⊆ I is of size ≥ µ+. By 3.1.2 its
density is ≤ µ. For the other inequality suppose that J0 is a dense subset
of J of cardinality < µ. Let

J ′ = {fα ∈ J : for each i < δ there are β1, β2 such that fβ1 , fβ2 ∈ J and
fβ1 ↾ i = fα ↾ i = fβ2 ↾ i & fβ1 <A fα <A fβ2)}.

Plainly |J \ J ′| = µ, so |J ′| ≥ µ+. Since θ =: |J0| < µ and µ is a
limit cardinal, we have σ = (θ + |δ|)+ < µ. Let X = {α : fα ∈ J ′} and
choose X1 ⊆ X of size σ. Now we may find 〈Bα : α ∈ X1〉 ⊆ D such
that for each j < δ the sequence 〈fα(j) : α ∈ X & j ∈ Bα〉 is strictly
increasing (or just without repetitions). Then for some i(∗) < δ the set
X2 = {α ∈ X1 : i(∗) ∈ Bα} has cardinality σ. But then the set

X =: {α ∈ X2 : ¬(∃fβ ∈ J0)(fβ ↾ (i(∗) + 1) = fα ↾ (i(∗) + 1))}

is of size σ (remember |J0| < σ = cf(σ)), a contradiction with the choice of
J ′. �3.1.4

This finishes the proof of the lemma. 3.1
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Lemma 3.2 Suppose that a is a set of regular cardinals satisfying

|a|+ < min(a), λ = max pcf(a) and [θ ∈ a ⇒ θ > (max pcf(θ ∩ a))<σ].

1. Assume that κ = |a|, κ = κ<σ and for ε < κ, J is a σ-complete ideal
on a extending J<λ[a] and aε ⊆ a are pairwise disjoint not in J . If
2κ ≥ λ or just 2κ ≥ sup(a) then there is a σ-entangled linear order of
power λ.

2. We can replace “κ = |a|” by “cf(sup a) ≤ κ”.

Clearly in parts (1) and (2) we have: a has no last element and |a| ≥
cf(sup a) ≥ σ.

3. If in (1) we omit the aε, still there is a positively σ-entangled linear
order of power λ.

4. The linear order above has the exact density µ =: sup a. If there is a
µ-free sequence 〈fα : α < λ〉 which is <J<λ[a]–increasing and cofinal
(see [Sh 355, §1]) then the linear order has the exact density (µ+, µ)
(see Definition 1.9).

Proof 1) It follows from part (2) as cf(sup a) ≤ |a| ≤ κ.

2) Let 〈fα : α < λ〉 be ≤J<λ[a]-increasing cofinal in
∏

a/J<λ[a] with

|{fα ↾ θ : α < λ}| ≤ max pcf(a ∩ θ) for θ ∈ a

(exists by [Sh 355, 3.5]). For each θ ∈ a we can find sets Fθ,ζ (for ζ < κ)
such that Fθ,ζ ⊆ {fα ↾ θ : α < λ}, and for any disjoint subsets X,Y of
{fα ↾ θ : α < λ} of cardinality < σ, for some ζ < κ, Fθ,ζ ∩ (X ∪ Y ) = X
(possible as κ = κ<σ and 2κ ≥ |{fα ↾ θ : α < λ}| – by [EK] or see [Sh:g,
AP1.10]). Clearly a has no last element (as Jbd

a
⊆ J and by the existence

of the aε’s) and cf(sup a) ≤ κ, so there is an unbounded b ⊆ a of cardinality
≤ κ. As a can be partitioned to κ pairwise disjoint sets each not in J (and
Jbd
a

⊆ J), we can find a sequence 〈(θΥ, ζΥ) : Υ ∈ a〉 such that

• for each Υ ∈ a: θΥ ∈ a, Υ ≥ θΥ, ζΥ < κ, and

• for each θ ∈ b, ζ < κ the set {Υ ∈ a : θΥ = θ, ζΥ = ζ} is 6= ∅ mod J .

Now we define a linear order <et on {fα : α < λ} as follows:
fα <et fβ if and only if for some Υ ∈ a we have

fα ↾ (a ∩ Υ) = fβ ↾ (a ∩ Υ), fα(Υ) 6= fβ(Υ) and
fα(Υ) < fβ(Υ) ⇔ fα ↾ θΥ ∈ FθΥ,ζΥ .

45



(
4
6
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
1
1
-
1
2
 
 

Readily <et is a linear order on the set I = {fα : α < λ}. We are going to
show that it is as required (note that in the definition of fα <et fβ we have
fα ↾ θΥ = fβ ↾ θΥ as θΥ ≤ Υ). Suppose that ε(∗) < σ, u ⊆ ε(∗),v = ε(∗) \u,
tεα = fγ(ε,α) (for ε < ε(∗), α < λ) and γ(ε, α)’s are pairwise distinct. For each
α < λ take θα ∈ b such that {fγ(ε,α) ↾ θα : ε < ε(∗)} is with no repetitions
(possible as ε(∗) < σ ≤ cf(sup a) ≤ κ, b ⊆ a is unbounded). Since λ is
regular, λ > κ, we may assume that for each α < λ, θα = θ∗ ∈ b. We have
that |{fα ↾ θ∗ : α < λ}| ≤ max pcf(a∩ θ∗) and (max pcf(a∩ θ∗))<σ < θ∗ and
hence we may assume that for some 〈gε : ε < ε(∗)〉:

(∀α < λ)(∀ε < ε(∗))(fγ(ε,α) ↾ θ
∗ = gε).

Let X = {gε : ε ∈ u}, Y = {gε : ε ∈ ε(∗) \ u} and let ζ < κ be such that
Fθ∗,ζ ∩ (X ∪ Y ) = X. Like in the proof of 3.1 one can show that

{µ ∈ a : (∀ξ < µ)(|{α < λ : gα(µ) > ξ}| = λ)} = a mod J,

where gα(µ) = min{fγ(ε,α)(µ) : ε < ε(∗)}. Thus we can find Υ ∈ a such that
θ∗ = θΥ, ζ = ζΥ and (∀ξ < Υ)(|{α < λ : gα(Υ) > ξ}| = λ). Next, as in 3.1,
we can find αξ < λ (for ξ < Υ) and S ∈ [Υ]Υ such that for each ξ < Υ we
have ξ < gαξ

(Υ), (∀ζ < ξ)(αζ < αξ) and

(∀ε < ε(∗))(∀ζ < ξ)
(

fγ(ε,αζ)(Υ) < gαξ
(Υ)

)

and the sequence
〈

〈fγ(ε,αξ) ↾ Υ : ε < ε∗〉 : ξ ∈ S
〉

is constant. Choose any

ξ1, ξ2 ∈ S, ξ1 < ξ2 and note that for every ε < ε(∗) we have

fγ(ε,αξ1
) ↾ Υ = fγ(ε,αξ2

) ↾ Υ, fγ(ε,αξ1
)(Υ) < fγ(ε,αξ2

)(Υ),

and fγ(ε,αξ1
) ↾ θΥ = gε = fγ(ε,αξ2

) ↾ θΥ. Thus αξ1 < αξ2 satisfy the condition
given by entangledness for tεα’s.

3) Let 〈fα : α < λ〉 be as in the proof of part (2). We define a linear order
<pet on {fα : α < λ} as follows:

fα <pet fβ if and only if for some Υ ∈ a we have
fα ↾ (a ∩ Υ) = fβ ↾ (a ∩ Υ) and fα(Υ) < fβ(Υ).

The rest is even simpler than in the proof of part (2) after defining <et

(remember 1.2(6)).

4) It is similar to the proof of 3.1(2), noting that

if f̄ ℓ = 〈f ℓ
α : α < λ〉 is <J–increasing cofinal in

∏

a for ℓ = 1, 2,
λ = cf(λ) and f̄1 is µ–free

then for some X ∈ [λ]λ, f̄2 ↾ X is µ–free. 3.2
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Proposition 3.3 1. Assume

(a) Ensσ(λi, κi) for i < δ,

(b) λi are regular cardinals for i < δ, 〈λi : i < δ〉 is strictly increasing,
δ < λ0,

(c) J is a σ–complete ideal on δ extending Jbd
δ ,

(d) κ < T+
J (〈κi : i < δ〉) (=: sup{|F |+ : F ⊆

∏

i<δ

κi and f 6= g ∈ F ⇒

f 6=J g}),

(e)
∏

i<δ

λi/J has the true cofinality λ as exemplified by {fα : α < λ}

and for each i < δ, λi > |{fα ↾ i : α < λ}|<σ

(if for each i, max pcf({λj : j < i}) < λi then we have such fα’s).

Then Ensσ(λ, κ).

2. Assume that in part (1) we omit (d) but in addition we have

(f) for each i < δ, κi ≥ |{fα ↾ i : α < λ}|

[and we have such fα’s e.g. if κi ≥ max pcf({λj : j < i})], or at least
lim inf

J
(κi) = sup

i<δ

λi, or

(f ’) δ can be partitioned5 to |δ| many J-positive sets and for each
i < δ for J-almost all j < δ we have κj ≥ |{fα ↾ i : α < λ}|

(if κj strictly increasing this means “every large enough j”).

Then there is a σ-entangled linear order I of cardinality λ.

3. Assume (f’) or (f) + (g), where

(g) there is a decreasing sequence 〈Bε : ε < σ〉 of elements of J+ with
empty intersection.

Then in (2) we can get: I = I1 + I2 such that for any uniform ul-
trafilter D on σ the orders (I1)

σ/D, (I2)
σ/D have isomorphic subsets

of cardinality λ (see 1.8 for a conclusion).

4. The linear order has exact density µ =: sup
i<δ

λi, if 〈fα : α < λ〉 is µ–free

even exact density (µ, . . .).

5. In 3.3(1) we can weaken clause (d) to:

5If κj is non-decreasing then partition to cf(δ) sets suffices.
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(d)− for some F ⊆
∏

i<δ

κi, |F | = κ and for every F ′ ⊆ F of cardinality

< σ we have

{i < δ : 〈g(i) : g ∈ F ′〉 is with no repetition} ∈ J+.

6. In 3.3(2) we can replace (f’) by

(⊕) there is h : δ −→ δ such that i ≥ h(i), κi ≥ |{fα ↾ h(i) : α < λ}|
and for every i < δ, {j < δ : h(j) ≥ i} ∈ J+.

Proof Similar. (About part (3) look at the proof of 2.3(3)). However
we will give some details.
1) As Ensσ(λi, κi) (by clause (a)), we can find linear orders <i

α of λi (for
α < κi) such that the sequence 〈(λi, <

i
α) : α < κi〉 is σ-entangled. By clause

(d) we can find gζ ∈
∏

i<δ

κi (for ζ < κ) such that

ε < ζ < κ ⇒ {i < δ : gε(i) = gζ(i)} ∈ J.

Now for each ζ < κ we define a linear order Iζ = (F,<∗
ζ) with the set of

elements F =: {fα : α < λ} as follows:
fα <∗

ζ fβ if and only if for some i < δ we have

fα(i) 6= fβ(i), fα ↾ i = fβ ↾ i and fα(i) <i
gζ(i)

fβ(i).

It is easy to check that <∗
ζ is a linear order of F . For the relevant part of

(4) note that its density is ≤ |{fα ↾ i : α < λ and i < δ}| = µ =:
∑

i<δ

λi. As

in the proof of 3.1,

A =: {i < δ : (∃f ∈
∏

j<i

λj)(λi = |{fα(i) : α < λ & f = fα ↾ i}|)} = δ mod J

and for i ∈ A let f∗
i exemplify i ∈ A. If G ⊆ F is dense, |G| cannot be < µ

as then it is < λi(∗) for some i(∗) ∈ A and so for some γ < λi(∗) for no α < λ
is

fα ↾ i(∗) = f∗
i(∗) & γ ≤ fα(i(∗)) < λi(∗),

thus proving µ = dens(Iζ). The part “if {fα : α < λ} is µ-free then any
J ⊆ Ij of cardinality ≥ µ has density µ (i.e. has exact (µ+, µ)-density)”
can be proven similarly.

Finally “〈Iζ : ζ < κ〉 is σ-entangled” is proved as in the proof of 3.1. Assume
u ∪ v = ε(∗) < σ, u ∩ v = ∅, and ζε < κ for ε < ε(∗) are pairwise distinct.
Now

A =: {i < δ : 〈gε(i) : ε < ε(∗)〉 are pairwise distinct} 6= ∅ mod J
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(as J is σ-complete, (d) ⇒ (d)−). We continue as in the proof of 3.1 (only
with A as here) and using 〈(λi, <

i
α) : α < κi〉 is σ-entangled.

2) First we assume clause (f). As Ensσ(λi, κi) and κi ≥ |Πi| where Πi =:
{fα ↾ i : α < λ}, we can find linear orders <i

η of λi (for η ∈ Πi) such
that 〈(λi, <

i
η) : η ∈ Πi〉 is σ-entangled. We define the linear order <∗ of

F =: {fα : α < λ} as follows:
fα <∗ fβ if and only if for some i < δ we have

fα(i) 6= fβ(i), fα ↾ i = fβ ↾ i, and fα(i) <i
fα↾i fβ(i).

The rest is as in 3.3(1).

Next we assume clause (f’) instead of (f). So let 〈Ai : i < δ〉 be a partition
of δ with every Aj in J+ and so necessarily

A′
i =: {j ∈ Ai : κj ≥ |Πi|} = Ai mod J.

Then we can choose6 a function h such that

(⊗) h : δ −→ δ, h(i) ≤ i, κi ≥ |Πh(i)| and for every i < δ we have

{j < δ : h(j) ≥ i} ∈ J+.

Let 〈(λi, <
i
η) : η ∈ Πh(i)〉 be a σ-entangled sequence of linear orders. Now

we define a linear order on F =: {fα : α < λ}:
fα <∗ fβ if and only if for some i < δ we have

fα(i) 6= fβ(i), fα ↾ i = fβ ↾ i, and fα(i) <i
fα↾h(i) fβ(i).

3) Without loss of generality, for each ξ < σ + σ the set Jξ =: {α < λ :
fα(0) = ξ} has cardinality λ. Let F = {fα : α < λ & fα(0) < σ + σ}. We
can find Bε ∈ J+ (for ε < σ), decreasing with ε and such that

⋂

ε<σ
Bε = ∅

and in the proof from (f’) replace (⊗) by

(⊗′) h : δ −→ δ, h(i) ≤ i, κi ≥ |Πh(i)| and for every i < δ, ξ < σ + σ we
have

{j ∈ Bξ : h(j) ≥ i} ∈ J+,

6Actually we can replace the assumption (g) (in 3.3(3)) by the existence of such h.
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and define <∗ as
fα <∗ fβ if and only if for some i < δ we have

fα(i) 6= fβ(i), fα ↾ i = fβ ↾ i, and
[i = 0 ⇒ fα(0) < fβ(0)], [0 < i ∈ Bfα(0) ⇒ fα(i) <i

fα↾h(i) fβ(i)] and

[0 < i /∈ Bfα(0) ⇒ fα(i) < fβ(i)].

The rest is as before (we can replace σ by other cardinal ≥ σ but ≤ λ0).

4) For 3.3(1) see in its proof, other cases similar.

5) Really included in the proof of 3.3(1).

6) Really included in the proof of 3.3(2). 3.3

Proposition 3.4 1. Assume that:

(a) Ensσ(λi, µi, κi) for i < δ,

(b) 〈λi : i < δ〉 is a strictly increasing sequence of regular cardinals,
2|δ| < λ0,

(c) J is a σ-complete ideal on δ extending Jbd
δ ,

(d) κ < T+
J (〈κi : i < δ〉),

∑

i<δ

λi ≤ µ < λ, µ = cf(µ) and

(∀α < µ)(|α|<δ < µ),

(e) F = {fα : α < λ} ⊆
∏

i<δ

λi, fα 6=J fβ for α 6= β, and

|{fα ↾ i : α < λ}|<σ < µi,

(f) if µ′
i = cf(µ′

i) < λi, A ∈ J+ then tcf(
∏

i∈A
µ′
i/J) = µ is impossible,

(g) (∀α < µ)(|α|<σ < µ).

Then Ensσ(λ, µ, κ).

2. Assume in addition

(h) κi ≥ |{fα ↾ i : α < λ}|,

or at least

(h’) cf(δ) = ω and lim infJ κi = sup
i<δ

λi,
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or at least

(h”) there is h : δ −→ δ such that i ≥ h(i), κi ≥ |{fα ↾ h(i) : α < λ}
and δ = lim sup

i<δ

h(i).

Then there is a (µ, σ)-entangled linear order I of cardinality λ.

3. Suppose also that

(i) we can partition δ into σ sets from J+ (or clause (g) from 3.3(3)
holds).

Then we can get: for any uniform ultrafilter D on σ, Iσ/D has two
isomorphic subsets with disjoint convex hulls of cardinality λ.

Proof Similar proof but for reader’s convenience we will present some
details.
1) We repeat the proof of 3.3(1) up to proving entanglness. To show
“〈Iζ : ζ < κ〉 is (µ, σ)–entangled” suppose that u ∪ v = ε(∗) < σ, u ∩ v = ∅
and 〈ζε : ε < ε(∗)〉 is a sequence of pairwise distinct ordinals < κ and
〈γ(β, ε) : β < µ, ε < ε(∗)〉 ⊆ λ is such that

(∀ε < ε(∗))(∀β1 < β2 < λ)(γ(β1, ε) 6= γ(β2, ε)).

We want to find β1 < β2 < µ such that

(∀ε < ε(∗))(γ(β1 , ε) <ζε γ(β2, ε) ⇔ ε ∈ u).

Claim 3.4.1 Assume that

(α) 〈λi : i < δ〉 is a strictly increasing sequence of regular cardinals,

(β) J is a σ-complete ideal on δ extending Jbd
δ ,

(γ) a sequence f̄ = 〈fα : α < λ〉 ⊆
∏

i<δ

λi is <J–increasing,

(δ)
∑

i<δ

µi < µ = cf(µ) ≤ λ and (∀α < µ)(|α|<σ < µ),

(ε) one of the following occurs:

(i) 2|δ| < λ0, or

(ii) f̄ is µ–free,

(ζ) if µ′
i < µi for i < δ and A ∈ J+ then tcf(

∏

i∈A
µi/J) = µ is impossible,
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(θ) a sequence 〈γ(β, ε) : β < µ, ε < ε(∗) < σ〉 of ordinals < λ satisfies

(β1, ε1) 6= (β2, ε2) ⇒ γ(β1, ε1) 6= γ(β2, ε2).

Then there are a set X ∈ [µ]µ and a sequence 〈hε : ε < ε(∗)〉 ⊆
∏

i<δ

λi such

that

(a) for each ε < ε(∗) the sequence 〈γ(β, ε) : β ∈ X〉 is strictly increasing,

(b) (∀β ∈ X)(∀ε < ε(∗))(fγ(β,ε) <J hε),

(c) 〈hε(i) : i < δ〉 is the <J-eub of 〈fγ(β,ε) : β ∈ X〉,

(d) B∗ = {i < δ : (∀ε < ε(∗))(cf (hε(i)) ≥ µi)} = δ mod J .

Proof of the claim: Since (∀α < µ)(|α|<σ < µ) and cf(µ) = µ we know
that for some X ∈ [µ]µ we have

(∀ε < ε(∗))(the sequence 〈γ(β, ε) : β ∈ X〉 is strictly increasing).

[Why? For β < µ, ε < ε(∗) define f(β, ε) as follows:

if there exists δ such that γ(δ, ε) > γ(β, ε) and [γ(β, ε), γ(δ, ε)]∩
{γ(α, ε) : α < β} = ∅ then f(β, ε) is this unique δ,
otherwise f(β, ε) = −1.

By Fodor Lemma, there is a stationary set S ⊆ µ such that sup f [S×ε(∗)] <
µ. Since |α|ε(∗) < µ, on a stationary set X ⊆ S the sequence 〈f(α, ε) : ε <
ε(∗)〉 does not depend on α. This X is as required.]
By renaming we may assume that X = µ. Consequently, for each ε < ε(∗)
the sequence 〈fγ(β,ε) : β < µ〉 is <J–increasing. Since µ = cf(µ) > 2|δ|

or the sequence is µ-free, we may use [Sh 355, §1] to conclude that it has
a <J–eub, call it hε. We may assume that, for each i < δ, hε(i) is a
limit ordinal. Since hε <J 〈λi : i < δ〉, wlog (∀i < δ)(hε(i) < λi). Also
µ = tcf(

∏

i<δ

cf(hε(i))/J) and cf(hε(i)) ≤ hε(i) < λi, so by the assumption

(ε) we have

{i < δ : cf(hε(i)) < µi or max pcf({λj : j < i} < cf(hε(i))}) = ∅ mod J.

Since J is σ-complete we conclude

B∗ = {i < δ : (∀ε < ε(∗))(cf (hε(i)) ≥ µi)} = δ mod J,

finishing the proof of the claim. �3.4.1

52



(
4
6
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
1
1
-
1
2
 
 

Note that we may assume that for some i⊗ < δ, for every β < µ the
sequence 〈fγ(β,ε) ↾ i

⊗ : ε < ε(∗)〉 is with no repetition and does not depend
on β. Now we may apply 3.4.1 to find X ∈ [µ]µ and 〈hε : ε < ε(∗)〉 as there.
We shall continue like in the proof of 3.1 with some changes, however. We
let

Gi = {〈fγ(β,ε)(i) : ε < ε(∗)〉 : β < µ} ⊆
∏

ε<ε(∗)

hε(i), and

B = {i ∈ B∗ : for each 〈ξε : ε < ε(∗)〉 ∈
∏

ε<ε(∗) hε(i)

there are µ many ordinals β < µ such that
(∀ε < ε(∗))(ξε < fγ(β,ε)(i))}.

We have to show the following.

Claim 3.4.2 B = δ mod J .

Proof of the claim: Assume not. Then, as B∗ = δ mod J , necessarily
B∗ \B 6= ∅ mod J . For each i ∈ B∗ \B choose a sequence 〈ξiε : ε < ε(∗)〉 ∈
∏

ε<ε(∗)
hε(i) and an ordinal βi < µ exemplifying i /∈ B. Thus

if i ∈ B∗ \B and β ∈ [βi, µ) then (∃ε < ε(∗))(ξiε ≥ fγ(β,ε)(i)).
For ε < ε(∗) define a function hε ∈

∏

i<δ

hε(i) by

hε(i) =

{

ξiε + 1 if i ∈ B∗ \B,
0 if i ∈ δ \B∗ or i ∈ B.

Now, for each ε, for every sufficiently large β < µ we have hε <J fγ(β,ε).
Consequently, we find β∗ < µ such that

ε < ε(∗) & β ∈ [β∗, µ) ⇒ hε <J fγ(β,ε).

But the ideal J is σ-complete, so for each β ∈ [β∗, µ)

Bβ =: {i < δ : (∀ε < ε(∗))(hε(i) < fγ(β,ε)(i))} = δ mod J.

Now we may take β ∈ [β∗, µ) and then choose i ∈ Bβ ∩ (B∗ \B) and get a
contradiction as in the proof of 3.1.1. �3.4.2

Remember that

|{〈fγ(β,ε) ↾ i : ε < ε(∗)〉 : β < µ}| ≤ |{fα ↾ i : α < λ}|<σ < µi

(not just < λi), see clause (e) of the assumptions of 3.4(1). Hence there is
β⊗ < µ such that

(∀j < δ)(|{〈fγ(β,ε) ↾ j : ε < ε(∗)〉 : β ∈ [β⊗, µ)}| = µ).
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For each i ∈ B (defined above) we know that (∀ε < ε(∗))(cf (hε(i)) ≥ µi),
and hence

∏

ε<ε(∗)
hε(i) is µi-directed and the set

{〈fγ(β,ε)(i) : ε < ε(∗)〉 : β ∈ [β⊗, µ)}

is cofinal in
∏

ε<ε(∗)
hε(i). Putting these together, there are νiε ∈

∏

j<i
λj (for

ε < ε(∗)) such that

for every 〈ξε : ε < ε(∗)〉 ∈
∏

ε<ε(∗)
hε(i) for some β ∈ [β⊗, µ) we

have (∀ε < ε(∗))(fγ(β,ε) ↾ i = νiε & ξε < fγ(β,ε)(i)).

Now take any i ∈ B, i > i⊗ such that the sequence 〈gζε(i) : ε < ε(∗)〉 is
with no repetition. Again, as

∏

ε<ε(∗)
hε(i) is µi–directed we can choose by

induction on α < µi a sequence 〈βα : α < µi〉 ⊆ µi such that for each α < µi

sup{βα′ : α′ < α} < βα and (∀α′<α)(∀ε<ε(∗))(fγ(βα′ ,ε)(i) < fγ(βα,ε)(i)).

Now remember that the sequence 〈<i
ζ : ζ < κi〉 exemplifies Ensσ(λi, µi, κi).

So we apply this to 〈gζε(i) : ε < ε(∗)〉 and 〈〈fγ(βα,ε) : ε < ε(∗)〉 : α < µ〉,
and we find α1 < α2 < µ such that

ε ∈ u ⇒ fγ(α1,ε)(i) <
i
gζε(i)

fγ(α2,ε)(i),

ε ∈ v ⇒ fγ(α2,ε)(i) <
i
gζε(i)

fγ(α1,ε)(i),

so we are done.

2) The proof is exactly like that of 3.4(1) except of two points. First we
have to define a linear order I (rather than Iζ for ζ < κ). Assuming that
the clause (h) of the assumptions holds, for each i we can find linear orders
<i

η on λi (for η ∈ Ti = {fα ↾ i : α < λ}) such that 〈(λi, <
i
η) : η ∈ Ti〉 is

a (µi, σ)-entangled sequence of linear orders. This does no affect the proof
except in the very end when we use the entangledness.

3) Combine the proofs above. 3.4

Remark 3.5 1. We can also vary σ.

2. The “2|δ| < λ0” rather than just “|δ| < λ0” is needed just to have
<J -eub (to use that “if µi = cf(µi) < µi . . .”) so if {fα : α < λ} is
(
∑

i<δ

λi)-free, we can weaken “2|δ| < λ0” to “|δ| < λ0”.
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3. Instead of T+
J (〈κi : i < δ〉) we may use any χ = |G|, G ⊆

∏

i<δ

κi such

that for every sequence 〈gε : ε < ε(∗)〉 of distinct elements of G the
set

{i < δ : 〈gε(i) : ε < ε(∗)〉 is with no repetition}

belongs to J+. But then in 3.4(3) we have to change (i).

Proposition 3.6 1. Suppose µ = µ<σ. Then the set

{δ < µ+4 : if cf(δ) ≥ σ then Ensσ(µ+δ+1, 2cf(δ)) or Ensσ(µ+δ+1, 2µ
+

)}

contains a club of µ+4.

2. If in addition 2µ ≥ ℵµ+4 (or 2µ
+
≥ ℵµ+4) then the set

{δ ≤ µ+4 : if cf(δ) ≥ µ (or cf(δ) ≥ µ+ ) then
there is a σ-entangled linear order in µ+δ+1}

contains a club of µ+4 and µ+4 itself. (We can weaken the assump-
tions.)

3. We can add in part (2) the conditions needed for 1.7. Also in parts (1),
(2) the exact density of the linear orders is µ+δ provided cf(δ) ≤ µ+.

Proof 1) By [Sh 400, §4], for some club C of µ+4,

(∗) α < δ ∈ C ⇒ µ+δ > cov(µ+α, µ+, µ+, 2),

and hence, if cf(δ) ≥ σ and δ ∈ C then (µ+δ)<σ = µ+δ.
Let δ be an accumulation point of C of cofinality ≥ ℵ1 and let A ⊆ δ be
a closed unbounded set such that

∏

α∈A
µ+α+1/Jbd

A has the true cofinality

µ+δ+1 and otp(A) = cf(δ) (exists by [Sh 355, 2.1]). Now for β ∈ A we have
max pcf({µ+α+1 : α ∈ β ∩ A}) is < µ+δ < µ+δ+1 if cf(δ) ≤ µ by (∗) (and
[Sh 355, 5.4]). Hence for some closed unbounded set B ⊆ A we have

α ∈ nacc(B) ⇒ cov(µ+sup(A∩α)+1, µ+, µ+, 2) < µ+α.

Hence, if α ∈ nacc(B) then max pcf({µ+(β+1) : β ∈ B ∩α}) < µ+α+1. Wlog
otp(B) = cf(δ), B = A. Now if σ ≤ cf(δ) ≤ µ+ then we may apply 3.1 to
{µ+α+1 : α ∈ nacc(A)} (for λ̄) and get Ensσ(µ+δ+1, 2cf(δ)). We still have to
deal with the case cf(δ) > µ+. We try to choose by induction on i ordinals
αi ∈ A \

⋃

j<i
(αj + 1) such that

µ+αi > max pcf({µ+αj : j < i}) < σ, cf(αi) = µ+.
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For some γ the ordinal αi is defined if and only if i < γ. Necessarily γ
is limit and by (∗) + [Sh 371, 1.1] we have cf(γ) ≥ µ+. Now for each
i < γ, Ensσ(µ+αi+1, 2µ

+
) holds by the part we have already proved (as

cf(αi) = µ+). So we may apply 3.3(1).

2) Let C be as in the proof of part (1) and exemplifying its conclusion. If
δ = sup(C ∩ δ) < µ+4, cf(δ) ≤ µ+, 2cf(δ) ≥ µ+δ then we can apply 3.2(1)
(and the proof of part (1)). So we are left with the case cf(δ) > µ+. Now
we can repeat the proof of part (1) the case cf(δ) > ℵ0. Choose A as there
and also αi ∈ A, but demand in addition Ensσ(µ+(δ+1), 2µ

+
), αi ∈ acc(C)

and cf(αi) = µ+, hence Ensσ(µ+(δ+1), 2µ
+

). In the end apply 3.3(2) to
〈µ+(αi+1) : i < γ〉.

3) Similar to the proof of 3.3(4), 3.3(5). 3.6

Conclusion 3.7 Assume σ ≥ ℵ0. Then for arbitrarily large cardinals λ
there is are σ-entangled linear orders of cardinality λ+.

Proof Let χ > σ be given. We choose by induction on i < σ regular
cardinals λi > χ such that Ensσ(λi,ℵ0 +

∏

j<i
λj) holds and λi >

∏

j<i
λj .

The inductive step is done by 3.6. Now for some σ-complete ideal I on σ
extending Jbd

σ ,
∏

j<i
λj/I has a true cofinality, say λ. By 3.3 there is a σ-

entangled linear order of cardinality λ, so if λ is a successor cardinal we are
done (as λ > χ). If not, necessarily λ is inaccessible and letting µ =

∑

j<i
λj

clearly µ = µ<σ < λ ≤ µσ. Now we use 3.6(2) to find λi ∈ (µ,ℵµ+4) such
that there is an entangled linear order in λ+

i , so in any case we are done.

3.7

4 Boolean Algebras with neither pies nor chains

Let us recall the following definition.

Definition 4.1 Let B be a Boolean algebra.

(a) We say that a set Y ⊆ B is a chain of B if

(∀x, y ∈ Y )(x 6= t ⇒ x <B y or y <B x).

(b) We say that a set Y ⊆ B is a pie of B if

(∀x, y ∈ Y )(x 6= y ⇒ x 6≤ y and y 6≤ x).
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(c) π(B), the (algebraic) density of B, is

min{|X| : X ⊆ B \ {0} and (∀y)(∃x ∈ X)(0 <B y ∈ B ⇒ x ≤B y)}.

Lemma 4.2 1. Suppose that

(a) 〈λi : i < δ〉 is a strictly increasing sequence of regular cardinals,
λ is a regular cardinal,

(b) J is a σ-complete ideal on δ extending Jbd
δ ,

(c) 〈fα : α < λ〉 is a <J -increasing sequence of functions from
∏

i<δ

λi,

cofinal in (
∏

i<δ

λi, <J),

(d) for every i < δ, |{fα ↾ i : α < λ}|<σ < λi,

(e) 〈Aζ : ζ < κ〉 ⊆ δ is a sequence of pairwise disjoint sets such that
for every B ∈ J and ζ < κ there is i ∈ δ such that {2i, 2i + 1} ⊆
Aζ \B,

(f) 2κ ≥ µ =: sup
i<δ

λi and κ = κ<σ (so κ ≤ |δ| ≤ µ) and cf(δ) ≤ κ.

Then there is a Boolean algebra B of cardinality λ such that:

(⊕)Bλ B has neither a chain of cardinality λ nor a pie of cardinality
λ (i.e. inc+(B) ≤ λ, Length+(B) ≤ λ).

(⊗)Bµ B has the algebraic density π(B) = µ (in fact, for a ∈ B \ {0},
π(B ↾ a) = µ)

This applies also to the σ-complete algebra which B generates, provided
(∀α < λ)(|α|<σ < λ).

2. Suppose 2 ≤ n∗ ≤ ω and that in part (1) we replace (e) by

(e)n
∗

κ (α) Aζ ⊆ δ for ζ < κ, are pairwise disjoint,

(β) e is an equivalence relation on δ such that each equivalence
class is a finite interval,

(γ) for every n < n∗, B ∈ J and ζ < κ for some α < δ we have:
α/e ⊆ Aζ \B and |α/e| ≥ n.

Then there is a Boolean algebra B of cardinality λ as in part (1) but
(⊕)Bλ is strengthened to

(⊛)Bλ,n if:

(α) aα ∈ B for α < λ are distinct,
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(β) n < n∗,

(γ) B∗
n is the finite Boolean algebra of subsets of n× (n+1), and

for ℓ ≤ n, fℓ : n −→ n is a function such that

ℓ < m < n & i < n ⇒ fℓ(i) 6= fm(i) and

xℓ = {(i, j) : i < n, j < n + 1, j ≤ fℓ(i)}

then for some α0 < · · · < αn−1 < λ, the quantifier free type
which 〈aα0 , . . . aαn−1〉 realizes in B is equal to the quantifier free
type which 〈x0, . . . , xn−1〉 realizes in B∗.

Remark: 1) The case δ = sup
i<δ

λi is included.

2) Of course, no order Boolean Algebra of cardinality λ can satisfy (⊕)Bλ .
3) Again, B has density µ and if 〈fα : α < λ〉 is µ-free then B has the exact
density µ.

Proof We shall prove only part (1) as the proof of part (2) is similar.
Without loss of generality δ is additively indecomposable.
We define B as an algebra of subsets of Y =

⋃

i<δ

Y2i where Yi = {fα ↾ i :

α < λ} for i < δ. For each i < δ we can find subsets F2i,ζ (for ζ < κ) of
Y2i such that for any disjoint subsets X1,X2 of Y2i, each of cardinality < σ,
for some ζ < κ we have F2i,ζ ∩ (X1 ∪X2) = X1 (possible as κ = κ<σ and
2κ ≥ λ2i+1 > |Y2i|, by [EK] or see [Sh:g, Appendix 1.10]). We can find a
sequence 〈(ji, ζi) : i < δ〉 such that

ji ≤ i < δ, ζi < κ and for an unbounded set of j < δ for every
ζ < κ for some ε < κ we have

{2i, 2i+1 : 2i < δ & 2i, 2i+1 ∈ Aε} ⊆ {2i, 2i+1 < δ : (ji, ζi) = (j, ζ)}

(we use: cf|δ| = cf(µ) ≤ κ). Now for each α < λ we define a set Zα ⊆ Y :
f ∈ Zα if and only if for some i < δ

(α) f ↾ (2i) = fα ↾ (2i),

(β) f ↾ (2i + 2) 6= fα ↾ (2i + 2),

(γ) f ↾ (2ji) ∈ F2ji,ζi ⇒ f(2i) ≤ fα(2i) & f(2i + 1) ≤ fα(2i + 1),

(δ) f ↾ (2ji) /∈ F2ji,ζi ⇒ f(2i) ≥ fα(2i) & f(2i + 1) ≥ fα(2i + 1).

Let B be the σ-complete Boolean algebra of subsets of Y generated by the
family {Zα : α < λ}. For f ∈ Y let [f ] = {g ∈ Y : g extends f}. For
notational simplicity let σ = ℵ0.
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Claim 4.2.1 If for ℓ = 1, 2, Zℓ ∈ B are the same Boolean combinations
of Zαℓ

0
, . . . , Zαℓ

n−1
, say Zℓ = τ [Zαℓ

0
, . . . , Zαℓ

n−1
] (where τ is a Boolean term)

and i < δ is such that 〈fαℓ
m

↾ (2i) : m < n〉 is with no repetition and
(∀m < n)(fα1

m
↾ (2i) = fα2

m
↾ (2i)) then:

(a) Z1 \
⋃

m<n
[fα1

m
↾ (2i)] = Z2 \

⋃

m<n
[fα2

m
↾ (2i)],

(b) for each m < n:

(α) either Z1 ∩ [fα1
m

↾ (2i)] = [fα1
m

↾ (2i)] ∩ Zα1
m

and

Z2 ∩ [fα2
m

↾ (2i)] = [fα2
m

↾ (2i)] ∩ Zα2
m
,

(β) or Z1 ∩ [fα1
m

↾ (2i)] = [fα1
m

↾ (2i)] \ Zα1
m

and

Z2 ∩ [fα2
m

↾ (2i)] = [fα2
m

↾ (2i)] \ Zα2
m
.

Proof of the claim: Check the definition of Zα. �4.2.1

Clearly B is a Boolean algebra of cardinality λ. Now the proof of “B
has no chain of cardinality λ” is similar to the proof of 3.1, 3.2 noting that
for each i:

(∗) if (⊚) Γ ⊆ λ2i×λ2i+1 and for arbitrarily large α < λ2i, for arbitrarily
large β < λ2i+1 we have (α, β) ∈ Γ

then we can find (α1, β1) ∈ Γ, (α2, β2) ∈ Γ such that α1 < α2 & β1 <
β2.

Up to now, the use of the pairs 2i, 2i+1 was not necessary. But in the proof
of “B has no pie of cardinality λ”, instead of (∗) we use:

(∗∗) if (⊚) of (∗) holds

then we can find (α1, β1) ∈ Γ and (α2, β2) ∈ Γ such that α1 <
α2 & β1 > β2,

easily finishing the proof 4.2

Conclusion 4.3 For a class of cardinals λ, there is a Boolean algebra B of
cardinality λ+, with no chain and no pie of cardinality λ+. [We can say, in
fact, that this holds for many λ.]

Proof For any regular κ, if 2κ > ℵκ+4 then (by [Sh 400, §4]) for some
club E of κ+4,

a ⊆ (κ+5,ℵκ+4) & |a| ≤ κ & sup(a) < ℵδ & δ ∈ E ⇒ max pcf(a) < ℵδ.
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Next we choose by induction on i < κ cardinals λi ∈ Reg ∩ [κ+4,ℵκ+4 ],
λi > max pcf({λj : j < i}). Let µ be minimal such that µ ≥ sup

i<κ
λi and

µ ∈ pcf({λi : i ∈ κ}). Then (by [Sh 345a, 1.8], replacing {λi : i < κ} by a
subset of the same cardinality, noting {λi : i ∈ A} ∈ J<µ[{λi : i < κ}] when
A ∈ [κ]<κ) we have µ = tcf(

∏

i<κ
λi/J

bd
κ ). Also, as µ ∈ [κ,ℵκ+4 ] is regular,

it is a successor cardinal; now the conclusion follows by 4.2. Generally,
for any κ let α0 = 0, λ0 = κ+. Choose by the induction on n, αn+1 and
〈λi : αn ≤ i < αn+1〉, un and regular λn+1 such that αn+1 = αn + λn,
〈λi : αn ≤ i < αn+1〉 is a strictly increasing sequence of regular cardinals in
[λn,ℵ(λn)+4 ] such that λi > max pcf({λj : αn ≤ j < i}) (possible by [Sh 400,

§2] as above). Let un ⊆ [αn, αn+1), |un| = λn be such that
∏

i∈un

λi/J
bd
un

has a true cofinality which we call λn+1. Lastly, for some infinite v ⊆ ω,
∏

n∈v
λn/J

bd
v has a true cofinality, which we call λ. By renaming v = ω,

un = [αn, αn+1). Then δ =: supn αn, λ, 〈λi : i < δ〉 are as required in 4.2, if
we let:

J = {u ⊆ δ : for every large enough n, sup(u ∩ αn) < αn}.

One point is left: why is λ a successor cardinal? Because it is in [sup
n<ω

λn,
∏

n<ω
λn]

and either
∏

n<ω

λn ≤ [sup
n<ω

λn]ℵ0 ≤ 2

∑

n

λn

< ℵ(
∑

n<ω

λn)+4 ,

or the first attempt succeeds for κ =
∑

n<ω
λn. 4.3

We have actually proved the existence of many such objects. If we waive
some requirements, even more.

Proposition 4.4 For any regular cardinal θ we can find δ, J , λ, λi (for
i < δ) as in 4.2 and such that:

(x) λ is a successor cardinal,

(y) for each i for some regular cardinal µi we have λi = µ+
i and (µi)

θ = µi,

(z) one of the following occurs:

(i) δ is a regular cardinal < λ0, δ > 0 and J = Jbd
δ ,

(ii) δ = iδ has cofinality θ, and for some λj (j < cf(δ)) we have:

J = {a : a ⊆ δ, {j < cf(δ) : a ∩ λj /∈ Jbd
λj } ∈ Jbd

cf(δ)}
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and µα = (µα)sup{λi:i<α}.

Lemma 4.5 Assume 〈λi : i < δ〉, λ, J , σ, 〈fα : α < λ〉 are as in (a)–(d) of
4.2(1) and

(e’) for every B ∈ J for some i < δ we have: 2i /∈ B & 2i + 1 /∈ B,

(f ’) for every i < δ we have Ensσ(λi, λi) or at least for some club C of δ,
if i < δ and i = sup{j ∈ C : |i∩C \ j| ≥ 1} then Ensσ(λ2i, |{fα ↾ (2i) :
α < λ}|).

Then the conclusion of 4.2(1) holds.
[We can weaken (f’) as in 3.3(6).]

Proof For each i < δ let 〈(λ2i, <
2i
η ) : η = fα ↾ 2i for some α < λ〉 be a

σ-entangled sequence of linear orders (each of cardinality λ2i).
Now repeat the proof of 4.2 with no F2i’s, but defining Zα we let:
f ∈ Zα if and only if for some i < δ, letting j = 2i or be as in

clause (f’) for 2i we have:

f ↾ (2i) = fα ↾ (2i), f ↾ (2i + 2) 6= fα ↾ (2i + 2), and
f(2i) ≤2i

f↾(2i) fα(2i) and f(2i + 1) ≤2i
f↾(2i) fα(2i + 1).

4.5

Discussion: Now instead of using on each set {η⌢〈α〉 : α < λℓg(η)} a
linear order we can use a partial order; we can combine 4.6 below with
4.2(2) or with any of our proofs involving pcf for the existence of entangled
linear order.

Lemma 4.6 1. Assume 〈λi : i < δ〉, λ, J , σ, 〈fα : α < λ〉 are as in
(a)–(d) of 4.2(1) and

(e) for each i < δ there is a sequence P̄ = 〈Pε : ε < κi〉 where
κi = |{fα ↾ i : α < λ}|, each Pε is a partial order, P̄ is (λ, σ)-
entangled which means:

if u0, u1, u2 are disjoint subsets of κi of cardinality < σ and for
ε ∈ u0 ∪ u1 ∪ u2, t

ε
α ∈ Pε (for α < λ) are pairwise distinct

then for some α < β:

ε ∈ u0 ⇒ Pε |= tεα < tεβ,

ε ∈ u1 ⇒ Pε |= tεα > tεβ,

ε ∈ u2 ⇒ Pε |= “tεα, t
ε
β are incomparable”.

61



(
4
6
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
1
1
-
1
2
 
 

Then the conclusion of 4.2(1) holds.

2. Assume as in (1) but

(e’) for some A ⊆ δ, A /∈ J , δ \ A /∈ J and

(e’)1 like (e) of 4.6(1) for i ∈ A with u2 = ∅,

(e’)2 like (e) of 4.6(1) for i ∈ δ \A, with u0 = u1 = ∅, u2 = 1 (so we
can use Pα = (λi,=)).

Then the conclusion of 4.2(1) holds.

3. We can weaken “κi = |{fα ↾ i : α < λ}|” as in 4.5(f’).

Proof Similar to earlier ones. 4.6

5 More on Entangledness

Proposition 5.1 Suppose that 〈λi : i < i(∗)〉 is a strictly increasing se-
quence of regular cardinals, Ti ⊆ λi>2 is closed under initial segments,
i + 1 < i(∗) ⇒ |Ti| < λi+1 and the set

Bi = {η ∈ λi2 : for every α < λi, η ↾ α ∈ Ti}

has cardinality ≥ µ = cf(µ) > λi + |Ti| (for each i < i(∗)).
Then 〈(Bi, <ℓx) : i < i(∗)〉 is a (µ,ℵ0)-entangled sequence of linear orders
(<ℓx is the lexicographic order).

Remark 5.2 So if µ = cf(µ), θ = |{λ : λ < µ ≤ 2λ and 2<λ < 2λ}| then
Ens(µ, θ), see [Sh 430, 3.4].

Proof Clearly |Ti| ≥ λi (as Bi 6= ∅). So let n < ω, i0 < i1 < . . . <
in−1 < i(∗), and ηℓζ ∈ Biℓ for ℓ < n, ζ < µ be such that:

ζ < ξ < µ & ℓ < n ⇒ ηℓζ 6= ηℓξ,

and let u ⊆ n. We should find ζ < ξ < µ such that (∀ℓ < n)(ηℓζ <ℓx

ηℓξ ⇔ i ∈ u). To this end we prove by downward induction on m ≤ n that
(stipulating λn = µ):

(∗)m there is a set w ⊆ µ of cardinality ≥ λim such that:

if m ≤ ℓ < n and ζ < ξ are from w then
[

ηℓζ <ℓx ηℓξ

]if (ℓ∈u)
.
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Note that (∗)n is exemplified by w =: µ and (∗)0 says (more than) that the
conclusion holds, so this suffices. Hence assume (∗)m+1 is exemplified by
w∗ and we shall find w ⊆ w∗ exemplifying (∗)m, |w| = λim . Without loss
of generality m ∈ u (otherwise replace each η ∈ Tim ∪ {ηmζ : ζ ∈ w∗} by
〈1 − η(α) : α < ℓg(η)〉). Let for α < λim and ν ∈ Ti ∩

α2:

w∗
ν =: {ζ ∈ w∗ : ν = ηmζ ↾ α, ¬(∃ξ ∈ w∗)(ξ < ζ & ηmξ ↾ α = ν & ηmξ <ℓx ηmζ )},

w∗
α =

⋃

{w∗
ν : ν ∈ Tim ∩ α2}.

As in (Bim , <ℓx) there is no monotonic sequence of length λ+
im

, clearly |w∗
ν | ≤

λim . Moreover,

|w∗
α| ≤ |{ν ∈ Tim : ℓg(ν) = α}| × sup{|w∗

ν | : ν ∈ Tim ∩ α2} ≤ |Tim | × λim,

and hence |
⋃

α<λim

w∗
α| ≤ λim + |Tim |. But |Tim | < λim+1 and λim < λim+1 .

Hence we find ζ(∗) ∈ w∗ \
⋃

α<λim

w∗
α. Now, for every α < λim let ξα ∈ w∗

exemplify ζ(∗) /∈ w∗
ηm
ζ
(∗)↾α ⊆ w∗

α, so

ξα < ζ(∗), ηmξα ↾ α = ηmζ(∗) ↾ α and ηmξα <ℓx ηmζ(∗).

Then some γα, α ≤ γα < λim , we have

ηmζ(∗) ↾ γα = ηmξα ↾ γα, ηmζ(∗)(γα) = 1, ηmξα(γα) = 0.

So for some unbounded set A ⊆ λi the sequence 〈γα : α ∈ A〉 is strictly
increasing in α and also 〈ξα : α ∈ A〉 is increasing. Let w =: {ξα : α ∈ A} ⊆
w∗. It exemplifies (∗)m, hence we finish. 5.1

Proposition 5.3 1. Assume that

(a) λ = max pcf(aε) for ε < ε(∗),

(b) |aε| ≤ κ < κ∗ ≤ min(aε),

(c) θ ∈ aε ⇒ θ is (κ∗, κ+, 2)-inaccessible,

(d) for n < ω and distinct ε0, ε1, . . . , εn < ε(∗) we have

aε0 \
n
⋃

ℓ=1

aεℓ /∈ J<λ[aε0 ].

Then Ens(λ, λ, ε(∗)).
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2. Assume in addition that

(d) if u ∈ [ε(∗)]<σ , ε ∈ ε(∗) \ u then aε \
⋃

ζ∈u
aζ /∈ J<λ[aε],

(e) if θ ∈ aε then max pcf(
⋃

ζ

aζ ∩ θ) < θ,

(f) (∀α < λ)(|α|<σ < λ).

Then Ensσ(λ, λ, ε(∗)).

Proof As in §3. 5.3

Proposition 5.4 For any cardinal λ satisfying (∀κ < λ)(2κ < 2λ) there is
a successor cardinal θ ∈ [λ, 2λ] such that there is an entangled linear order
of cardinality θ.

Proof We prove slightly more, so let λ and χ ∈ [λ, 2λ] be any cardinals
(we shall try to find θ+ ∈ [χ, 2λ] for χ as below; for the proposition µ = λ
below).
Let µ =: min{µ : 2µ = 2λ}, so µ ≤ λ and µ < cf(2µ) and κ < µ ⇒ 2κ < 2µ.
First assume 2<µ = 2µ. Then necessarily µ is a limit cardinal. If cf(2<µ) =
cf(µ) we get a contradiction to the previous sentence. Hence 〈2θ : θ < µ〉
is eventually constant so for some θ < µ we have 2θ = 2<µ but 2<µ = 2µ,
a contradiction to the choice of µ. Thus we have 2<µ < 2µ = 2λ. Assume
χ = λ + 2<µ or just 2λ > χ ≥ 2<µ. The proof splits to cases: if cf(2λ) is
a successor, use cases B or C or D, if cf(2λ) is a limit cardinal (necessarily
> λ) use case A.

Case A: χ+(µ+4) ≤ 2λ.
By 3.6(2).

Case B: cf(2λ) is a successor, µ is strong limit (e.g. ℵ0).
Clearly there is a dense linear order of cardinality cf(2λ) and density µ, hence
there is an entangled linear order in cf(2λ), which is as required ([BoSh 210]).

Case C: cf(2λ) is a successor cardinal, µ is regular uncountable.
Look at [Sh 410, 4.3] (with µ here standing for λ there); conditions (i) +
(ii) hold. Now on the one hand, if the assumption (iii) of [Sh 410, 4.3] fails,
we know that there is an entangled linear order of cardinality cf(2λ) (as in
Case B). But on the other hand, if (iii) holds, the conclusion of [Sh 410,
4.3] gives more than we asked for. In both cases there is an entangled linear
order in cf(2λ) (which is a successor).
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Case D: µ is singular, not strong limit.
By [Sh 430, 3.4] there are regular cardinals θi (for i < cf(µ)) such that the
sequence 〈θi : i < cf(µ)〉 is increasing with limit µ, µ < 2θi , 〈2θi : i < cf(µ)〉
is strictly increasing and

for all σ such that σ = cf(σ) ≤ 2θi there is a tree T i
σ, |T i

σ| = θi
or at least 2|T

i
σ| = 2θi and T i

σ has ≥ σ θi-branches.

If for some i either 2θi is a successor ≥ χ or cf(2θi) is a successor ≥ χ we
finish as in Case B, if cf(2θi) is a limit cardinal, we finish as in Case A (or
use 5.5). 5.4

Proposition 5.5 Assume 2µ is singular. Then there is an entangled linear
order of cardinality (2µ)+.

Proof Let λ be the first singular cardinal > µ such that (∃κ < λ)(ppκ(λ) >
2µ). Now, λ is well defined, and moreover λ ≤ 2µ (as 2µ is singular so
pp(2µ) ≥ (2µ)+ > 2µ) and (by [Sh 355, 2.3], [Sh 371, 1.9])

cf(λ) < χ ∈ (µ, λ) \ Reg ⇒ ppcf(λ)+cf(χ)(χ) < λ,

so pp(λ) > 2µ and cf(λ) > µ (otherwise pp(λ) ≤ λcf(λ) ≤ λµ ≤ (2µ)µ = 2µ).
Lastly apply 3.2(1). 5.5

Proposition 5.6 If κ+ < χ0 < λ and κ+4 < cf(λ) < λ ≤ 2κ, then (a) or
(b) holds:

(a) there is a strictly increasing sequence 〈λ∗
i : i < δ〉 of regular cardinals

from (χ, λ), δ = cf(δ) ∈ [κ, cf(λ)] ∩ Reg and λ∗
i > max pcf({λ∗

j : j <

i}), such that λ+ = tcf
∏

i<δ

λ∗
i /J

bd
δ ,

(b) there is a strictly increasing sequence 〈λ∗
i : i < δ〉 of regular cardinals

from (χ, λ) such that λ∗
i > max pcf({λ∗

j : j < i}) and Ens(λ∗
i , λ

∗
i ) and

λ+ = tcf
∏

i<δ

λ∗
i /I, I a proper ideal on δ extending Jbd

δ .

Moreover for some µ ∈ (χ0, λ), µ < λ∗
0 and there is a sequence 〈bi,j :

i < δ, j < κ+〉 such that bi,j ⊆ Reg ∩ µ \ χ0, |bi,j| ≤ κ, each θ ∈
⋃

i,j
bi,j is (χ0, κ

+,ℵ0)-inaccessible (i.e. a ⊆ Reg ∩ θ \ χ0, |a| ≤ κ ⇒

max pcf(a) < θ) and

j1 < j2 < κ+ ⇒ bi,j1 ∩ bi,j2 = ∅, λ∗
i = max pcf(bi,j),

µ = sup(bi,j), Jbd
bi,j

⊆ J<λ∗

i
[bi,j].

(This implies Ens(λ∗
i , λ

∗
i ).)
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Remark 5.7 1. Why λ+ instead of λ∗ = cf(λ∗) ∈ (λ,pp+
Jbd
cf(λ)

(λ))? To

be able to apply [Sh 410, 3.3] in case III of the proof of [Sh 410, 4.1].
So if 〈λi : i < cf(λ)〉 fits in such a theorem we can get λ+.

2. We could have improved the theorem if we knew that always

cf([λ]≤ κ,⊆) = λ + sup{ppκ(µ) : cf(µ) ≤ κ < µ < λ},

particularly σ-entangledness.

Proof This is like the proof of [Sh 410, 4.1]. (In case II when σ = ℵ0

imitate [Sh 410, 4.1].) However, after many doubts, for reader’s convenience
we present the proof fully, adopting for our purposes the proof of [Sh 410,
4.1].

By [Sh 355, 2.1] there is an increasing continuous sequence 〈λi : i <
cf(λ)〉 of singular cardinals with limit λ such that tcf(

∏

i<cf(λ)
λ+
i , <Jbd

cf(λ)
) = λ+

and λ0 > χ0. The proof will split to cases. Wlog χ0 > cf(λ).

Case I: max pcf({λ+
j : j < i}) < λ for i < cf(λ).

So for some unbounded A ⊆ cf(λ) we have

(∀i ∈ A)(max pcf({λ+
j : j ∈ A ∩ i}) < λ+

i ).

Consequently a = {λ+
i : i ∈ A} satisfies the demands of 3.6 and hence (a)

holds true with δ = cf(λ), λ∗
i = λi.

Thus assume that Case I fails. So there is µ such that χ0 < µ < λ, cf(µ) <
cf(λ) and pp<cf(λ)(µ) > λ. Choose a minimal such µ. Then, by [Sh 410,
3.2], we have:

(∗) [a ⊆ Reg \ χ0 & sup a < µ & |a| < cf(λ)] ⇒ max pcf(a) < λ.

By [Sh 355, 2.3] in the conclusion of (∗) we may replace “< λ” by “< µ”
and we get

(∗)′ [a ⊆ Reg \ χ0 & sup a < µ & |a| < cf(λ)] ⇒ max pcf(a) < µ.

Let σ = cf(µ). Then pp(µ) = pp<cf(λ)(µ) (and pp<cf(λ)(µ) > λ). Wlog
µ < λ0.

Case II: σ > κ (and not Case I).
By [Sh 371, 1.7], if σ > ℵ0 and by [Sh 430, 6.x] if σ = ℵ0 we find a strictly
increasing sequence 〈µ∗

i : i < σ〉 of regular cardinals, µ =
⋃

i<σ
µ∗
i and an ideal

J on σ extending Jbd
σ (if σ > ℵ0 then J = Jbd

σ ) such that

λ+ = max pcf({µ∗
i : i < σ}) = tcf

∏

i<σ

µ∗
i /J.
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If σ > ℵ0, since we may replace 〈µ∗
i : i < σ〉 by 〈µ∗

i : i ∈ A〉 for any
unbounded A ⊆ σ, we may assume that µ∗

i > max pcf({µ∗
j : j < i}). If

σ = ℵ0 this holds automatically, so in both cases we can apply 3.6. So we
get (a), as σ > κ.

Case III: σ ≤ κ.
So σ+4 ≤ cf(λ). Let

P =: {C ⊆ cf(λ) : otp(C) = κ+3, C is closed in sup(C) and
max pcf({λ+

i : i ∈ C}) < λ}.

[Why there are such C’s? For any δ < cf(λ), cf(δ) = κ+3 we have a club C ′

of λδ such that tcf(
∏

κ∈C′

κ+/Jbd
κ+3) = λ+

δ . Now C ′ ∩ 〈λi : i < δ〉 will do.]

For each C ∈ P try to choose by induction on i < κ+, bi = bi,C and γi = γi,C
such that:

(i) bi ⊆ Reg ∩ µ \
⋃

j<i
bj \ χ0,

(ii) γi ∈ C \
⋃

j<i
(γj + 1),

(iii) λ+
γi

∈ pcf(bi),

(iv) |bi| ≤ σ,

(v) all members of bi are (χ0, κ
+,ℵ0)-inaccessible,

(vi) γi is minimal under the other requirements.

Let (bi,C , γi,C) be defined if and only if i < iC(∗). So success in defining
means iC(∗) = κ+, failure means iC(∗) < κ+.

Subcase IIIA: For some j < κ+, for every C ∈ P with min(C) ≥ j we
have iC(∗) < κ+, so we cannot define biC(∗),C , γiC(∗),C .
Let C, iC(∗) be as above. Let γ∗C =

⋃

i<iC(∗)
γi,C , so γ∗C ∈ C. Now, if γ ∈ C\γ∗C

then (by [Sh 355, 1.5B]) as ppσ(µ) ≥ λ+ > λ+
γ , there is aγ ⊆ Reg ∩ (χ, µ),

|aγ | ≤ σ such that λ+
γ ∈ pcf(aγ). By [Sh 410, 3.2] there is cγ ⊆ Reg ∩ (χ, µ)

of cardinality ≤ κ consisting of (χ, κ+,ℵ0)-inaccessible cardinals such that
λ+
γ ∈ pcf(cγ). Now γ, cγ \

⋃

i<iC(∗)
bi,C cannot serve as γiC(∗),C , biC(∗),C , so

necessarily λ+
γ /∈ pcf(cγ \

⋃

i<iC(∗)
bi,C). Hence wlog cγ ⊆

⋃

i<iC(∗)
bi,C . So

{λ+
i : i ∈ C \ γ∗C} ⊆ pcf(

⋃

i<iC(∗)

bi,C) and |
⋃

i<iC(∗)

bi,C | ≤ κ.
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By the proof of [Sh 400, 4.2] (or see [Sh 410, §3]) we get a contradiction
(note that cf(λ) > κ+4 does not disturb).

Subcase IIIB: For every j < cf(λ) there is C ∈ P such that min(C) > j
and iC(∗) = κ+, i.e. bi,C , γi,C are defined for every i < κ+.
We will show

(⊗) for every j(∗) < cf(λ) there is λ′ ∈ λ ∩ pcf({λ+
j : j < cf(λ)}) \ λj(∗)

such that

(α) Ens(λ′, λ′) (exemplified by linear order which has density charac-
ter > χ0 in every interval),

(β) for some b ⊆ µ ∩ Reg \ χ0 we have: |b| ≤ κ+, λ′ = max pcf(b).
Moreover, b can be divided to κ+ subsets of cardinality ≤ κ, no
one in J<λ′ [b] and

(∀θ ∈ b)(θ > max pcf(b ∩ θ))

(even θ is (χ0, κ
+,ℵ0)-inaccessible).

Why does (⊗) suffice?
Suppose that we have proved (⊗) already. So for i < cf(λ) we can choose
µ∗
i , λi < µ∗

i = cf(µ∗
i ) ∈ λ ∩ pcf({λ+

j : j < cf(λ)}) as required in (⊗). Since
(∀i)(µ∗

i < λ), wlog the sequence 〈µ∗
i : i < cf(λ)〉 is strictly increasing. By

induction on ε < cf(λ) choose strictly increasing i(ε) < cf(λ) such that
µ∗
i(ε) > max pcf({µ∗

i(ζ) : ζ < ε}).

Let i(ε) be defined if and only if ε < ε(∗). So ε(∗) is limit,

λ+ = max pcf({µ∗
i(ε) : ε < ε(∗)}), and µ∗

i(ε) > max pcf({µ∗
i(ζ) : ζ < ε}),

µ∗
i(ε) is strictly increasing and Ens(µ∗

i(ε), µ
∗
i(ε)). Thus applying [Sh 355, 4.12]

we finish, getting clause (b) of 5.6.

Why does (⊗) hold?
Choose C ⊆ (j(∗), cf(λ)) of order type κ such that 〈γi : i < κ+〉, 〈bi : i < κ+〉
are well defined and

max pcf({λ+
γi

: i ∈ C}) < λ

(possible by our being in subcase IIIB, see the definition of P). Let d =:
{λ+

γi
: i < κ+} and let 〈bθ[d] : θ ∈ pcf(d)〉 be as in [Sh 371, 2.6]. Let θ be

minimal such that otp(bθ[d]) = κ. We can find pairwise disjoint sets Bε ⊆ C
(for ε < κ) such that

{λ+
γ : γ ∈ Bε} ⊆ bθ[d], otp(Bε) = κ.
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Clearly max pcf({λ+
γi

: γi ∈ Bε}) = θ, since {λ+
γi

: γi ∈ Bε} ⊆ bθ[d] but it is
not a subset of any finite union of bθ′ [c], θ

′ < θ. Now letting a
∗ =:

⋃

j∈C
bj,

we find (by [Sh 371, 2.6]) a subset a of a
∗ such that θ = max pcf(a) but

θ /∈ pcf(a∗ \ a). Now as θ ∈ pcf({λ+
γ : γ ∈ Bε}), λ+

γ ∈ pcf(bγ) we have
(by [Sh 345a, 1.12]) θ ∈ pcf(

⋃

γ∈Bε

bγ). Hence by the previous sentence θ ∈

pcf(a ∩
⋃

γ∈Bε

bγ). Let

cε =: a ∩
⋃

j∈Bε

bj, λ′ = θ.

We can apply 3.2 and get that there is an entangled linear order of cardinality
λ′ (which is more than required) and, of course,

λj(∗) < λ′ ∈ λ ∩ pcf({λj : j < cf(λ)}).

The assumptions of 3.2 hold as the cε are pairwise disjoint (by (i) above),

θ ∈ pcf({λ+
γi

: γi ∈ Bε}), pcf(
⋃

j∈Bε

bj) = pcf(cε) and

θ1 ∈ a ⇒ max pcf(a ∩ θ1) < θ1,

as θ1 is (χ0, κ
+,ℵ0)-inaccessible and

θ = λ′ ≥ sup{λ+
γi

: i ∈ C} > λj(∗) > χ0.

So clause (α) of (⊗) holds and clause (β) was done along the way. Thus we
finish subcase IIIb and hence case III. 5.6

Conclusion 5.8 For λ as in 5.6 there is a Boolean algebra B of cardinality
λ+ satisfying (⊕)B

λ+ , (⊗)Bsup
i<δ

λ∗

i
from 4.1 (and also there is an entangled linear

order in λ+).

Proof If (a) of 5.6 holds, apply 4.2. If (b) of 5.6 holds use 4.5. 5.8

Definition 5.9 1. pcfexκ (a) = {λ : if b ⊆ a, ‖b| < κ then λ ∈ pcf(a \ b)}
(equivalently: λ ∈ pcf(a) and b ∈ J<λ[a] ⇒ |bλ[a] \ b| ≥ κ).

2. Jex,κ
<θ [a] =: {b : b ⊆ a and for some c ⊆ a we have: |c| < κ and

b \ c ∈ J<θ[a]}.
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Proposition 5.10 Assume that µ is a singular cardinal which is a fix point
(i.e. µ = ℵµ) and µ∗ < µ.

1. For some successor cardinal λ+ ∈ (µ,pp+(µ)) there is an entangled
linear I order of cardinality λ+ and density ∈ (µ∗, µ].

2. If µ ≤ χ0, χ
+µ+4

0 ≤ pp+(µ) then we can find an entangled linear order

I, |I| = λ+ ∈ (χ0, χ
+µ+4

0 ) of density ∈ (µ∗, µ].

3. In both parts we get also a Boolean Algebra B satisfying (⊕)B
λ+ , (⊗)Bµ

of 4.2.

4. In both parts 1), 2), if J is an interval of I or J ∈ [I]λ
+

then
dens(J ) = dens(I). This applies to 5.10.1, 5.10.3, 5.10.2, too.

Proof Let 〈µi : 1 ≤ i < cf(µ)〉 be a strictly increasing continuous
sequence with limit µ. Wlog µ1 > µ0 > µ∗ + cf(µ), ℵ0 ≤ cf(µi) <
max{cf(µ),ℵ1}.
1) We try to choose by induction on i < cf(µ) regular cardinals λi such
that

µi < λi < µ, max pcf({λj : j < i}) < λi,

and there is an entangled sequence of linear orders each of cardinality λi of
length max pcf({λj : j < i}) (i.e., Ens(λi,max pcf({λj : j < i}))). For some
α, λi is defined if and only if i < α. Clearly, α is a limit ordinal ≤ cf(µ),
and λ =: max pcf({λj : j < α}) is > µ [as otherwise λ < µ (as λ is regular
by [Sh 345a, 1.x]), so there is λα as required among {(λ + µα)+γ : γ <
(λ + µα)+4}]. So clearly µ < λ = cf(λ) < pp+(µ) and by 3.3(2) there is an
entangled linear order of cardinality λ and density ≤

∑

i<α
max pcf({λj : j <

i}) ≤ µ. If λ is a successor cardinal then we are done. Otherwise, clearly
µ+µ+4

≤ pp+(µ), and hence we can apply part (2).
2) It follows by the claims below, each has the conclusion of 5.10(2) from
assumptions which are not necessarily implied by the assumption of 5.10(2),
but always at least one applies.

Claim 5.10.1 1. Assume cf(µ) ≤ κ ≤ µ∗ < µ ≤ 2κ, µ ≤ χ and χ+κ+4
≤

ppκ(µ). Then there is λ+ ∈ [χ, χ+κ+4
] in which there is an entangled

linear order I of density ≤ µ but ≥ µ∗.

2. If in addition (∀α < µ)(|α|κ < µ) then we can add “I is cf(µ)-
entangled.”
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3. There is γ < κ+4 and a set b ⊆ Reg ∩ µ \µ∗ of (µ∗, κ+, 2)-inaccessible
cardinals, |b| ≤ κ, b is the disjoint union of bε (for ε < κ), sup(bε) is
the same for ε < κ and Jbd

b
⊆ J<χ+γ+1 [b] and χ+(γ+1) ∈ pcf(bε).

Proof of the claim: 1) Of course we can decrease µ as long as µ∗ < µ,
cf(µ) ≤ κ, χ+κ+4

≤ ppκ(µ). By [Sh 355, 2.3], without loss of generality we
have:

a ⊆ (µ∗, µ) ∩ Reg & |a| ≤ κ ⇒ max pcf(a) < pp+(µ).

We choose by induction on i < κ, bi and γi such that:

(i) bi ⊆ Reg ∩ µ \
⋃

j<i
bj \ µ

∗,

(ii) γi < κ+4 is a successor ordinal,

(iii) χ+γi ∈ pcf(bi),

(iv) γi is the first successor ordinal for which χ+γi /∈ pcf(
⋃

j<i
bj),

(v) all members of bi are (µ0, κ
+, 2)-inaccessible

(i.e. θ ∈ bi & a ⊆ (µ0, θ) & |a| ≤ κ ⇒ max pcf(a) < θ),

(vi) bi has cardinality ≤ κ.

Note that this is possible, since if |b| ≤ κ then pcf(b) cannot contain the
interval [χ, χ+κ+4

]∩Reg (see [Sh 410, §3]). Let d =: {χ+γi : i < κ}, let 〈bθ[d] :
θ ∈ pcf(d)〉 be as in [Sh 371, 2.6]. Note that we know pcf(d) ⊆ [χ, χ+κ+4

]
(by [Sh 400, 4.2]). Let θ ∈ pcf(d) be minimal such that otp(bθ[d]) ≥ κ, so
necessarily θ is a successor cardinal. Let 〈dα : α < κ〉 be a partition of bθ[d]
to pairwise disjoint subsets of order type ≥ κ. Let b

′
α =

⋃

{bi : χ+γi ∈ dα}
(for α < κ) and a =

⋃

α<κ
b
′
α. Now we can finish by 3.2(1).

2) In this case we can in the beginning increase µ∗ (still µ∗ < µ) such that
the “wlog” in the second sentence of the proof of 5.10.1(1) holds. Necessarily
sup(bi) = µ for each i < κ.
3) Included in the proof above. �5.10.1

Claim 5.10.2 If cf(µ) < κ = cf(κ) < µ ≤ χ, χ+κ+4
≤ pp(µ), µ is

(∗, κ+, 2)-inaccessible then
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1. We can find an increasing sequence 〈λi : i < cf(µ)〉 of regular cardinals
with limit µ such that for each i, Ens(λi, κ) and pcf({λi : i < cf(µ)})
has a member in (χ, χ+κ+4

) and λi > max(pcf({λj : j < i})) and
λi > κ.

2. In addition λi ∈ pcfexκ (ai) for some sets ai ⊆ Reg ∩ λi \
⋃

j<i
λj of

(µ, κ+, 2)-inaccessible cardinals of cardinality κ. If cf(µ) > ℵ0 then
∏

i<cf(µ)
λi/J

bd
cf(µ) has true cofinality.

Proof of the claim: Choose µ∗ ∈ (κ, µ) such that

µ′ ∈ (µ∗, µ) & cf(µ′) ≤ κ ⇒ ppκ(µ′) < µ

(exists, as µ is (∗, κ+, 2)-inaccessible; see [Sh 355, 2.3]). Let bi, γi (for i < κ)
be as in the proof of 5.10.1; so min(bi) > µ∗, d =: {χ+γi : i < κ}, 〈bθ[d] :
θ ∈ pcf(d)〉 be as in [Sh 371, 2.6]. Let θ ∈ pcf(d) be minimal such that
otp(bθ[d]) = κ. Without loss of generality bθ[d] = d, so θ = max pcf(d). Note
that θ ∈ pcf(d) ⊆ (χ, χ+κ+4

) is a successor cardinal. Let 〈µi : i < cf(µ)〉
be strictly increasing continuous with limit µ with µ0 > µ∗. Let a =:

⋃

i<κ
bi

and let 〈bσ[a] : σ ∈ pcf(a)〉 be as in [Sh 371, 2.6]. For each ε < cf(µ),
we can find finite eε ⊆ pcfexκ (a ∩ µε) and cε ⊆ a ∩ µε, |cε| < κ such that
a ∩ µε ⊆

⋃

σ∈eε

bσ[a] ∪ cε. As cf(µ) < κ = cf(κ), we can find ζ < κ such that:

(∗) (∀ε < cf(µ))(cε ⊆
⋃

i<ζ

bi).

So by renaming ζ = 0 (so cε = ∅). By 5.12(4) below each σ ∈ eε satisfies
Ens(σ, κ). As in the proof of [Sh 371, 1.5] and [Sh 430, 6.5] one of the
following holds:

(∗)1 cf(µ) > ℵ0 and for some S ⊆ cf(µ) unbounded, otp(S) = cf(µ), and
σε ∈ eε for ε ∈ S, θ = tcf(

∏

ε∈S
σε/J

bd
S ),

(∗)2 cf(µ) = ℵ0 and for some increasing sequence 〈σζ : ζ < cf(µ)〉 of regular
cardinals from

⋃

ε<cf(µ)
eε with limit µ, and an ideal I on ω extending

Jbd
cf(µ), θ = tcf(

∏

ζ<cf(µ)
σζ/I).

If (∗)1 holds then (by the choice of µ0) without loss of generality ε ∈ S ⇒
σε > max pcf({σζ : ζ < ε}), so we can apply 3.1. If (∗)2 holds, necessarily
max pcf({σζ : ζ < ε}) is σε−1 so we can apply 3.1. In both cases we get the
desired conclusion. �5.10.2
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Claim 5.10.3 Assume that µ is a singular strong limit cardinal, or at least
that it is (∗, κ, 2)-inaccessible for every κ < µ, cf(µ) < µ ≤ χ and χ+µ+4

≤
pp(µ). Then

1. We can find λ+ ∈ (χ, χ+µ+4
) in which there is an entangled linear

order with density µ.

2. Moreover we can find a strictly increasing sequence 〈λi : i < cf(µ)〉
with limit µ, max pcf({λj : j < i}) < λi, λ+ = max pcf({λi : i <
cf(µ)}). Letting κi = (

∑

j<i
λj + µ∗)+ we can also find a set ai ⊆

Reg ∩ λi \
⋃

j<i
λj of (κ+ji , κ

+
ji
, 2)-inaccessible cardinals of cardinality κji

such that λi ∈ pcfexκi
(ai) and ji ≤ i. Also cf(µ) > ℵ0 implies λ =

tcf(
∏

i<cf(µ)
λi/J

bd
cf(µ)) and (∀i < cf(µ))(ji = i).

Proof of the claim: Choose 〈µi : i < cf(µ)〉 be strictly increasing contin-
uous with limit µ. By induction on ε < cf(µ) we choose θε ∈ (χ, χ+µ+4

)
and 〈λε

ζ : ζ < cf(µ)〉 as follows: arriving to ε we apply the proof of 5.10.2 to

κε = µ+
ε and7 χε = sup({θζ : ζ < ε}∪{χ}) and get 〈λε

ζ : ζ < cf(µ)〉 as there.

So there is a successor θε ∈ pcf({λε
ζ : ζ < cf(µ)}) ∩ [χε, χ

κ+4
ε

ε ) such that

θε = max pcf({λε
ζ : ζ < cf(µ)}). Hence θε >

⋃

ζ<ε

θζ and χ < θε < χ+µ+4
, and

without loss of generality µ+4
i < µi+1. Let χ+γε be θε, bε =: {λε

ζ : ζ < cf(µ)}
(for ε < cf(µ)), θ = max pcf({θε : ε < cf(µ)}), a =:

⋃

{bε : ε < cf(µ)} and
without loss of generality

J<θ[{θε : ε < cf(µ)}] ⊆ {{θε : ε ∈ a} : a ⊆ cf(µ), |a| < cf(µ)}.

Note:

pcf({θε : ε < cf(µ)}) ⊆ pcf({χ+γ+1 : γ < µ+4}) ⊆

Reg ∩ [χ, χ+µ+4
] ∩ (χ,pp+(µ)),

so each member of pcf({θε : ε < cf(µ)}) is a successor cardinal. Let 〈bσ[a] :
σ ∈ pcf(a)〉 be as in [Sh 371, 2.6].

First assume cf(µ) > ℵ0. For every limit ε < cf(µ) let eε be a finite
subset of pcf(a ∩ µε) such that

(α) for some ζε < ε, (a ∩ µε) \
⋃

σ∈eε

bσ[a] ⊆ {λξ
i : i < cf(µ) and λξ

i < µζε},

7We could have asked χε = max{max pcf({θζ : ζ < ε}), χ} and thus later “the {λε
ζ :

ζ < cf(µ)} are pairwise disjoint” (while omitting “few” λε
ζ for each ε)
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(β) for every ζ < ε and for every σ ∈ eε, we have

σ ∈ pcf({λξ
i : i < cf(µ) & µζ < λξ

i < µε}).

(Exist by [Sh 430, 6.x].)

So for every σ ∈ eε, by 3.3(2), there is an entangled linear order of cardinality
σ. Also, by [Sh 430, 6.7] for some unbounded set S ⊆ cf(µ) and σε ∈ eε we
have θ = tcf

∏

ε∈S
σε/J

bd
S . Note that without loss of generality σε >

∏

ζ<ε

σζ

(when µ is strong limit!) or at least σε > max pcf({σζ : ζ < ε}), so by 3.3(2)
we can get the desired conclusion.

Now assume cf(µ) = ℵ0. Use [Sh 430, 6.7] to find finite eε ⊆ pcf(a ∩ µε)
for ε < ω such that

ε < ξ < ω ⇒ max(eε ∪ {ℵ0}) < min(eζ ∪ {µ})

(the {ℵ0}, {µ} are for empty en’s), and so otp(e) = ω, sup(e) = µ where
e =

⋃

ε
eε and a ∩ µε = ∪{bσ[a] : σ ∈

⋃

n≤ε
en}; hence σ ∈ pcf(e). Define

h : pcf(a) −→ ω by h(σ) = max{n < ω : Ens(σ, µn) or n = 0}. By 3.4(2) it
suffices to prove, for each n < ω, that {σ ∈ e : h(σ) ≤ n} ∈ J<σ[e]. This can
be easily checked. �5.10.3

3), 4) Left to the reader. 5.10

Remark 5.11 1. Under the assumptions of 5.10.2 we can get

(⊛) there are a successor cardinal λ+ ∈ (χ, χ+µ+4
) and an increasing

sequence λ̄ = 〈λi : i < δ〉 with limit µ such that

δ < κ+, λ+ = tcf(
∏

i<δ

λi/J), J an ideal on δ extending Jbd
δ ,

λi is (µ∗, κ+, 2)-inaccessible (where µ∗ = min{µ′ : µ∗ is (µ′, κ+, 2)-
inaccessible}) and

there is an entangled linear order of cardinality λ+.

2. In the proof of 5.10.3 we can have a =
⋃

i<cf(µ)
ai, µ = sup(ai) for each

i < cf(µ), and let a = {λε
ζ : ε, ζ < cf(µ)},

ai = {λε
ζ ∈ a : ε ∈ ai but for no ξ < ε does λε

ζ ∈ {λξ
j : j < cf(µ)}}

and apply 3.2(1).

Proposition 5.12 Let 〈bθ[a] : θ ∈ pcf(a)〉 be as in [Sh 371, 2.6].
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1. If |a| ≥ κ (and |a| < min(a)) then pcfexκ (a) has a last element.

2. Assume that θ = max pcf(a), c ⊆ θ ∩ pcf(a), |c| < min(c) and

b ∈ J<θ[a] ⇒ c ∩ pcf(a \ b) 6= ∅.

Then θ ∈ pcf(c).

3. If a =
⋃

i<σ
ai, σ < cf(κ), θ ∈ pcfexκ (a) then we can find finite ei ⊆

pcfexκ ai for i < σ such that |ai \
⋃

λ∈ei

bλ[ai]| < κ, and θ ∈ pcf(
⋃

i<σ
ei).

[And if cf(σ) > ℵ0, ai increasing with i and S ⊆ σ = supS then
θ ∈ pcf(

⋃

i∈S
ei).]

4. Assume χ < min(a), and each µ ∈ a is (χ, κ, 2)-inaccessible and κ >
ℵ0. If θ ∈ pcfexκ (a) then Ens(θ, 2κ) holds exemplified by linear orders
of density > χ.

Proof 1) Among the c ⊆ a of cardinality < κ choose one with
max pcf(a \ c) minimal. So max pcf(a \ c) = max pcfexκ (a).
2) By [Sh 345a, 1.16].
3) Easy, as in [Sh 371, §1].
4) Without loss of generality θ = max pcf(a), a has no last element and

µ ∈ a ⇒ θ /∈ pcfexκ (a ∩ µ),

so Jbd
a

⊆ Jex,κ
<θ [a] (see Definition 5.9). We are going to prove the statement

by induction on θ.

If a (= bθ[a]) can be divided to κ sets, no one of which is in J<θ[a]+Jbd
a

, this
should be clear (use e.g. 3.1(1): there are such Ai by [EK], see e.g. [Sh:g,
Appendix]).

Also, if there are c ⊆ θ ∩ pcfexκ (a), (such that |c| < min(c) and ) an ideal
I on c, satisfying θ = tcf

∏

c/I, then we can find d ⊆ θ ∩ pcf(c) such that
(∀σ ∈ d)(max pcf(d ∩ σ) < σ), θ = max pcf(d) and then use the induction
hypothesis and 3.4(1). So by part (1) (of 5.12) the remaining case is:

(⊠) if c ⊆ θ ∩ pcfexκ (a), |c| < min(c) then θ /∈ pcf(c).

Without loss of generality

(⊞) a
′ ⊆ a & θ ∈ pcfexκ (a′) ⇒ sup(θ ∩ pcfexκ (a′)) = sup(θ ∩ pcfexκ (a)).
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We can try to choose by induction on i, θi ∈ pcfexκ (a) such that θ > θi >
max pcf({θj : j < i}). By localization (see [Sh 371, §3]) we cannot have 〈θi :
i < |a|+〉 (as max pcf({θi : i < |a|+}) ∈ pcf({θi : i < α}) for some α < |a|+,
hence θα < θα+1 < max pcf({θi : i < |a|+} ≤ max pcf({θi : i < α}) = θα, a
contradiction). So for some α < |a|+, θi is defined if and only if i < α. If
max pcf({θi : i < α}) < θ we can get a contradiction to (⊞) (by 5.12(1)). If
the equality holds, we get contradiction to (⊠). 5.12

We want to state explicitly the pcf theorems behind 5.10.

Proposition 5.13 Assume µ is a singular cardinal which is a fix point and
µ0 < µ.

1. There are λ, 〈(λi, λ̄
i) : i < δ〉 such that:

(a) 〈λi : i < δ〉 is a strictly increasing sequence of regular cardinals, δ
is a limit ordinal ≤ cf(µ), λi ∈ Reg ∩ µ \ µ0, λ

∗
i = max pcf({λj :

j < i}) < λi, λ ∈ Reg ∩ (µ,pp+(µ)), λ = tcf(
∏

i<δ

λi/J
bd
δ ),

(b) λ̄i = 〈λi
j : j < (λ∗

i )+〉 is strictly increasing, λi
j ∈ Reg ∩ λi \ λ∗

i ,

λi = tcf(
∏

j
λi
j/J

bd
(λ∗

j
)+), λi

j > max pcf({λi
ζ : ζ < j})

2. Assume in addition µ ≤ χ0 and χ+µ+4

0 ≤ pp+(µ). Then for some
γ < µ+4, letting λ = χ+γ+1, we can find a strictly increasing sequence
〈λi : i < δ〉 of regular cardinals of the length δ = cf(δ) < cf(µ),
λi ∈ Reg ∩ µ \ µ∗, λi > max pcf({λj : j < i}), λ = max pcf({λi :
i < δ}) and letting κi = (

∑

j<i
λj + µ∗)+ we can also find sets ai ⊆

Reg∩λi\
⋃

j<i λj \µ
∗ of (κji , κ

+
ji
, 2)-inaccessible cardinals of cardinality

κji such that λi ∈ pcfexκi
(ai), ji ≤ i. Also if cf(µ) > ℵ0 then λ =

tcf(
∏

i<cf(µ)
λi/J

bd
cf(µ)).

3. If part 2) does not apply then in 1) λ is a successor.

Proof Let 〈µi : 1 ≤ i < cf(µ)〉 be increasing continuous with limit µ,
µ1 > µ0 and wlog if µ is (∗, cf(µ), 2)-inaccessible then

µ′ ∈ [µ0, µ) & cf(µ′) ≤ cf(µ) ⇒ pp(µ′) < µ,

and hence

a ⊆ [µ0, µ) ∩ Reg & |a| ≤ cf(µ) & sup(a) < µ ⇒ max pcf(a) < µ.

1) Try to choose by induction on i < cf(µ), λi and ai, λi, λ̄
i, λ+

i , ji such
that
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(α) {λi
j : j} ∪ {λi, λ

∗
i } ⊆ (µji , λ) ∩ Reg,

(β) µ > µji ,

(γ) λ∗
i , λ̄

i, λi are as required in 1).

So for some α, (ji, λ
∗
i , λ̄

i, λi) is defined if and only if i < α, in fact α is limit
and pcf({λi : i < α}) 6⊆ µ (as in the proof of 5.10.1). For some unbounded
set A ⊆ δ we have max pcf({λi : i ∈ A}) > µ but it is minimal under this
restriction. Now restricting ourselves to A (and renaming) we finish.

2) It follows from 5.10.1, 5.10.3.
3) Should be clear. 5.13

Let us finish this section with stating some results which will be devel-
oped and presented with all details in a continuation of the present paper.

Proposition 5.14 Assume:

(A) (a) T ⊆
⋃

j≤δ

∏

i<j
λi,

(b) T closed under initial segments,

(c) Tj =: T ∩
∏

i<j
λi 6= ∅ for j ≤ δ,

(d) for j < δ, η ∈ Tj we have (∃λjα < λj)(η
⌢〈α〉 ∈ T ),

(e) |Tδ | = κ ≥ µ = cf(µ) >
∑

i<δ

|Ti| > σ,

(f) for η ∈ Ti, Iη is a σ-complete ideal on λi,

(g) σ is a regular cardinal, cf(δ) ≥ σ,

(B) (a) J is an ideal on δ extending Jbd
δ ,

(b) gi is a function from Ti to κi,

(c) for i < δ, α < κi, I
i
α is a σ-complete ideal on λi,

(d) if 〈ηβ,ε : ε < ε∗, β < µ〉 are pairwise distinct members of Tδ,
ε∗ < σ, i(∗) < δ, for each ε < ε∗, (∀β < µ)(ηε = ηβ,ε ↾ i(∗)) and
〈ηε : ε < ε∗〉 are pairwise distinct

then for some A ∈ J , for every i ∈ δ \ A there are νε ∈ Ti for
ε < ε∗ such that:

(α) 〈gi(νε) : ε < ε∗〉 are pairwise distinct,

(β) for every Bνε ∈ Iigi(νε) (for ε < ε∗), for some β < µ we have

(∀ε < ε∗)(νε ⊳ ηβ,ε) and ηβ,ε(i) /∈ Bνε ,
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(C) for i < δ, 〈I i
ζ : ζ < κi〉 is a sequence of linear orders with universe λi

such that:

if ε(∗) < σ, 〈ζε : ε < ε(∗)〉 is a sequence of distinct members
of κ1, 〈αβ,ε : β < β(∗), ε < ε(∗)〉 is a sequence of ordinals
< λ such that

(∀B̄ ∈
∏

ε<ε(∗)

Iζε)(∃β < β∗)(∀ε < ε(∗))(αβ,ε /∈ Bε)

and ε(∗) = u ∪ v, u ∩ v = ∅
then for some β1, β2 < β(∗) we have

ε ∈ u ⇒ I i
ζε

|= “αβ1,ε < αβ2,ε”,

ε ∈ v ⇒ I i
ζε |= “αβ1,ε > αβ2,ε”.

Then there is a (µ, σ)-entangled linear order of cardinality λ.

Remark 5.15 1. The proof is derived from the proof of 3.3 (and so from
[Sh 355, 4.10]).

2. Are the assumptions reasonable? At least they are not so rare, see
[Sh 430, §5].

Proof The desired linear order I has the universe Tδ (which has cardi-
nality λ) with the order:

η <I ν if and only if for the minimal i < δ for which η(i) 6= ν(i)
we have

Ig(η↾i) |= “ η(i) < ν(i) ”.

Details, as said before, will be presented somewhere else, but they should
be clear already. 5.14

Proposition 5.16 We can replace (B)(d) of 5.14 by

(d1) if 〈ηβ,ε : ε < ε∗, β < µ〉 are pairwise distinct members of Tδ, ε
∗ < σ,

i(∗) < δ and

(∀ε < ε(∗))(∀β < µ)(ηε = ηβ,ε ↾ i(∗))

and 〈ηε : ε < ε∗〉 are pairwise distinct

then for some β < µ

{i < δ : for every B̄ ∈
∏

ε<ε∗
Iigi(ηβ,ε↾i)

for some γ < µ we have

(∀ε < ε∗)(ηγ,ε ↾ i = ηβ,ε ↾ i) and (∀ε < ε∗)(ηγ,ε(i) ∈ Bε)} = δ mod J,
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(d2) if ηε ∈ Tδ (ε < ε∗ < σ) are distinct, then

{i < δ : 〈gi(ηε ↾ i) : ε < ε∗〉 is with no repetition } 6= ∅ mod J.

Proposition 5.17 Assume

(A) λ = tcf(
∏

i<δ

λi/J), λi > θi =: max pcf({λj : j < i}),

(B) J a σ-complete ideal on the limit ordinal δ, λi = cf(λi) > δ,

(C) gi,j : θi −→ κi,j for j < ji are such that for any w ∈ [θi]
<σ for some

j < ji the restriction gi,j ↾ w is one to one,

(D) ā = 〈ai : i < δ〉, ai ⊆ (
⋃

ζ<i

{ζ} × jζ) are such that for any ζ and j < jζ

we have
{i : (ζ, jζ) ∈ ai} 6= ∅ mod J,

(E) Ensσ(λi,
∏

(ζ,j)∈ai

κζ,j).

Then for some T the assumptions of 5.14 hold for µi = λi, κi =:
∏

(ζ,j)∈ai

κζ,j.

Proposition 5.18 In 5.17, (C) + (D) + (E) holds if

(C’) Ensσ(λi, κ),

(D’) (α) κ|δ| ≥
∑

i<δ

λi but for i < δ, κ|i| = κ (so δ is a regular cardinal) or

(β) κ|δ| ≥
∑

i<δ

λi and there is a regular ultrafilter E on δ disjoint from

J ∪ {A ⊆ δ : otp(A) < δ}.

Proposition 5.19 Suppose (A), (B) as in 5.14 and

(C) there is a sequence 〈I i
ζ : ζ < κi〉 of partial orders with universe λi such

that

if ε(∗) < σ, 〈ζε : ε < ε(∗)〉 a sequence of ordinals < κi
with no repetitions, 〈αβ,ε : β < β(∗), ε < ε(∗)〉 a sequence of
ordinals < λ such that

(∀B̄ ∈
∏

ε<ε(∗)

Iζε)(∃β < β∗)(∀ε < ε(∗))(αβ,ε /∈ Bε)
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and ε(∗) = u ∪ v, u ∩ v = ∅,
then for some β1, β2 < β(∗) we have:

ε ∈ u ⇒ I i
ζε |= “αβ,ε < αβ2,ε”,

ε ∈ v ⇒ I i
ζε

|= “¬αβ,ε < αβ2,ε”.

Then there is a Boolean Algebra B, |B| = λ with neither chain nor pie of
cardinality λ; moreover for ε < σ, Bσ has those properties.

Proof Combine 5.14 and proof of 4.2. 5.19

Remark 5.20 The parallels of 5.16, 5.17 and 5.18 hold too.

6 Variants of entangledness in ultraproducts

In this section we develop results of section 1. The following improves 1.8:

Proposition 6.1 Assume that:

(a) D is an ultrafilter on κ, E is an ultrafilter on θ,

(b) gε : κ −→ θ for ε < ε(∗) are such that:

if ε1 < ε2 < ε(∗) then gε1 6= gε2 mod D and
if ε < ε(∗), A ∈ E then g−1

ε [A] ∈ D,

(c) I is a linear order of the cardinality λ ≥ θ.

Then there exists a sequence 〈fα
ε /D : ε < ε(∗), α < λ〉 of pairwise distinct

members of Iκ/D such that for each α < β < λ:

either (∀ε < ε(∗))(fα
ε /D < fβ

ε /D) or (∀ε < ε(∗))(fβ
ε /D < fα

ε /D).

In particular, the linear order Iκ/D is not entangled (here ε(∗) = 2 suffices)
and the Boolean algebra (BAinter(I))κ/D is not λ-narrow.

Proof Choose pairwise distinct aαζ ∈ I for α < λ, ζ < θ. Let fα
ε : κ −→

I be given by fα
ε (i) = aαgε(i). Note that if α1 6= α2 then {i < κ : fα1

ε1
(i) =

fα2
ε2

(i)} = ∅. If α1 = α2 = α but ε1 6= ε2 then

{i ∈ κ : fα
ε1

(i) = fα
ε2

(i)} = {i ∈ κ : gε1(i) = gε2(i)} /∈ D
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(as gε1 6= gε2 mod D). Consequently, if (α1, ε1) 6= (α2, ε2) then fα1
ε1

/D 6=

fα2
ε2

/D. Suppose now that α < β < λ. Let A = {ζ < θ : aαζ < aβζ }. Assume
that A ∈ E and let ε < ε(∗). Then

{i < κ : fα
ε (i) < fβ

ε (i)} = {i < κ : aαgε(i) < aβ
gε(i)

} = g−1
ε [A] ∈ D

and hence fα
ε /D < fβ

ε /D. Similarly, if A /∈ E then for each ε < ε(∗),
fα
ε /D > fβ

ε /D.
Now clearly Iκ/D is not entangled, but what about the narrowness of

(BAinter(I))κ/D? Remember that BAinter(I
κ/D) embeds into BAinter(I)κ/D.

So if the cardinality of BAinter(I) is regular we can just quote 1.5 (a) ⇔ (c)
(here σ = ℵ0, see Definition 1.3). Otherwise, just note that for a linear
order J , if aℓ < bℓ (for ℓ = 0, 1) and [aℓ, bℓ) ∈ BAinter(J ) are comparable
and {a0, b0, a1, b1} is with no repetition then

a0 <J a1 ⇔ ¬(b0 <J b1);

this can be applied by the statement above. 6.1

Remark 6.2 Proposition 6.1 shows that entangledness can be destroyed
by ultraproducts. Of course, to make this complete we have to say how one
can get D,E, gε’s satisfying (a)–(b) of 6.1. But this is easy:

1. For example, suppose that E is a uniform ultrafilter on θ, D = E ×E
is the product ultrafilter on θ × θ = κ, ε(∗) = 2 and gε : θ × θ −→ θ
(for ε < 2) are given by g0(i, j) = i, g1(i, j) = j. Then E, D, ε(∗), gε
satisfy the requirements (a)–(b) of 6.1.

2. More general, assume that θ ≤ κ, E is a non-principal ultrafilter on
θ, ε(∗) ≤ 2κ. Let gε : κ −→ θ for ε < ε(∗) constitute an independent
family of functions. Then the family {g−1

ε [A] : ε < ε(∗), A ∈ E} has
the finite intersections property so we can complete it to an ultrafilter
D. One can easily check that D,E, gε’s satisfy (a)–(b) of 6.1.

Remark 6.3 1. In 6.1 we did not use “< is a linear order”. Thus for
any binary relation R the parallel (with R, ¬R instead of <, >) holds.
In particular we can apply this to Boolean algebras.

2. We can weaken assumption (b) in 6.1 and accordingly the conclusion.
For example we can replace (b) by

(b)∗ P ⊆ P(ε(∗)) and for each A ∈ E

{ε < ε(∗) : g−1
ε [A] ∈ D} ∈ P,
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and the conclusion by

{ε < ε(∗) : fα
ε /D < fβ

ε /D} ∈ P.

3. A kind of entangledness can be preserved by ultraproducts, see 6.4
below. More entangledness is preserved if we put additional demands
on the ultrafilter, see 6.8.

4. Let us explain why we introduced “positive entangledness” in 1.10.
The proof of 6.1 excludes not only “full” entangledness but many vari-
ants (for the ultrapower). Now the positive σ-entangledness seems to
be the maximal one not excluded. Rightly so by 6.4.

5. So if we can find an linear order I which is µ+-entangled for some µ
such that µℵ0 = µ (or at least µℵ0 < |I|) then we can answer Monk’s
problem from the introduction: if D is a non principal non separative
ultrafilter on ω (see Definition 6.5; they exist by 6.2(1)), then Iω/D is
not µ+-entangled (by 6.1). Thus if B is the interval Boolean algebra
of I then

inc(B) ≤ µ, µℵ0 < |I|, but inc(Bω/D) ≥ |I|ℵ0

(in fact inc+(Bω/D) = |Iω/D|+ = (|I|ω/D)+, inc+(B) ≤ µ+). In fact
for any infinite Boolean algebra B and a non principal ultrafilter D
on ω we have inc(Bω/D) ≥ (inc(B))ω/D (as for λn inaccessible the
linear order

∏

n<ω
(λn, <)/D cannot be µ+-like (see [MgSh 433]).

Proposition 6.4 Suppose that κ < σ < λ are regular cardinals such that
(∀θ < λ)(θ<σ < λ). Assume that D is an ultrafilter on κ. Then:

if I is a positively σ-entangled linear order of the size λ
then Iκ/D is positively σ-entangled.

Proof Suppose fα
ε /D ∈ Iκ/D (for ε < ε(∗) < σ, α < λ) are such that

(∀α < β < λ)(∀ε < ε(∗))(fα
ε /D 6= fβ

ε /D).

Let u ∈ {∅, ε(∗)}. For α < λ let Aα = {fα
ε (i) : ε < ε(∗), i < κ}, A<α =

⋃

β<α

Aβ, Bα = Aα ∩ A<α. Note that |Aα| < σ, |A<α| < λ (for α < λ). If

δ < λ, cf(δ) = σ then |Bδ| < cf(δ) and consequently for some h(δ) < δ we
have Bδ ⊆ A<h(δ). By Fodor’s lemma we find β0 < λ and a stationary set
S ⊆ λ such that

δ ∈ S ⇒ cf(δ) = σ & Bδ ⊆ A<β0 .
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For δ ∈ S let Yδ = {(ε, i, f δ
ε (i)) : ε < ε(∗), i < κ, f δ

ε (i) ∈ A<β0}. As there are
|A<β0 |

<σ < λ possibilities for Yδ, we can find a stationary set S1 ⊆ S and
Y such that for δ ∈ S1 we have Yδ = Y . Let α, β ∈ S1, α < β and ε < ε(∗).
If there is x such that (ε, i, x) ∈ Y then fα

ε (i) = fβ
ε (i). Thus

Eε = {i < κ : (∃x)((ε, i, x) ∈ Y )} = ∅ mod D,

as {i < κ : fα
ε (i) = fβ

ε (i)} = ∅ mod D (for distinct α, β ∈ S1). Clearly if
α, β ∈ S1, α < β, ε < ε(∗) and i ∈ κ\Eε then fα

ε (i) 6= fβ
ε (i). Hence we may

apply the positive σ-entangledness of I to

{fα
ε (i) : α ∈ S1, ε < ε(∗), i ∈ κ \ Eε} and u′ = {(ε, i) : ε ∈ u, i ∈ κ \ Eε}.

Consequently we have α < β, both in S1 and such that

(∀ε < ε(∗))(∀i ∈ κ \ Eε)(f
α
ε (i) < fβ

ε (i) ⇔ ε ∈ u).

Since κ \ Eε ∈ D we get (∀ε < ε(∗))(fα
ε /D < fβ

ε /D ⇔ ε ∈ u). 6.4

Definition 6.5 An ultrafilter D on κ is called separative if for every ᾱ, β̄ ∈
κκ such that (∀i < κ)(αi 6= βi) there is A ∈ D such that

{αi : i ∈ A} ∩ {βi : i ∈ A} = ∅.

Remark 6.6 So 6.2(1) says that D ×D is not separative.

Proposition 6.7 Suppose that D is a separative ultrafilter on κ, n < ω and
ᾱℓ ∈ κκ (for ℓ < n) are such that

(∀ℓ0 < ℓ1 < n)(ᾱℓ0/D 6= ᾱℓ1/D).

Then there is A ∈ D such that the sets {αℓ
i : i ∈ A} (for ℓ < n) are pairwise

disjoint.

Proof For ℓ < m < n, by 6.5, there is Aℓ,m ∈ D such that

{αℓ
i : i ∈ Aℓ,m} ∩ {αm

i : i ∈ Aℓ,m} = ∅.

Now A =
⋂

ℓ<m<n

Aℓ,m is as required. 6.7

Proposition 6.8 Assume µ = cf(µ), (∀α < µ)(|α|κ < µ). Suppose that
I is a (µ, κ+)-entangled linear order and D is a separative ultrafilter on κ.
Then the linear order Iκ/D is (µ,ℵ0)-entangled.
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Proof Let n < ω, u ⊆ n and f ℓ
α/D ∈ Iκ/D for ℓ < n, α < µ be

pairwise distinct. By 6.7 we may assume that (for each α < µ) the sets
〈{f ℓ

α(i) : i < κ} : ℓ < n〉 are pairwise disjoint. Applying ∆-lemma we may
assume that {〈f ℓ

α(i) : i < κ, ℓ < n〉 : α < µ} forms a ∆-system of sequences
and that the diagram of the equalities does not depend on α. Let

A = {(i, ℓ) ∈ κ× n : (∀α < β < µ)(f ℓ
α(i) = f ℓ

β(i))}

(i.e. the heart of the ∆-system). Note that for each ℓ < n the set {i ∈ κ :
(i, ℓ) ∈ A} is not in D (as f ℓ

α/D’s are pairwise distinct). Consequently we
may modify the functions f ℓ

α and we may assume that A = ∅. Now we have

f ℓ0
α0

(i0) = f ℓ1
α1

(i1) ⇒ α0 = α1 & ℓ0 = ℓ1.

It is easy now to apply the (µ, κ+)-entangledness of I and find α < β < µ
such that f ℓ

α/D < f ℓ
β/D ≡ ℓ ∈ u. 6.8

Proposition 6.9 1. If D is a selective ultrafilter on κ (i.e. for every
f : κ −→ κ there is A ∈ D such that either f ↾ A is constant or f ↾ A
is one-to-one) then D is separative.

2. If no uniform ultrafilter on ω is generated by less than continuum sets
(i.e. u = 2ℵ0) then there exists a separative ultrafilter on ω.

Proof 1) Suppose that ᾱ, β̄ ∈ κκ are such that (∀i < κ)(αi 6= βi). We
find A ∈ D such that ᾱ ↾ A, β̄ ↾ A are either constant or one-to-one. If
at least one of them is constant then, possibly omitting one element from
A, the sets {αi : i ∈ A}, {βi : i ∈ A} are disjoint, so assume that both
sequences are one-to-one. Choose inductively mi ∈ {0, 1, 2} (for i ∈ A) such
that

i, j ∈ A & αi = βj ⇒ mi 6= mj .

There are m∗ and B ⊆ A, B ∈ D such that (∀i ∈ B)(mi = m∗). Then

{αi : i ∈ B} ∩ {βi : i ∈ B} = ∅.

2) Straightforward. 6.9

Proposition 6.10 If D is a uniform not separative ultrafilter on κ, I is
a linear ordering of size λ ≥ κ then the linear order Iκ/D is not (λ, 2)-
entangled.
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Proof As D is not separative we have ᾱ, β̄ ∈ κκ witnessing it. This
means that ᾱ 6= β̄ mod D and the family

{{αi : i ∈ A}, {βi : i ∈ A} : A ∈ D}

has the finite intersection property. Consequently we may apply 6.1. 6.10

Conclusion 6.11 1. If θκ/D > 22
θ
then D is not separative.

2. If D is regular ultrafilter on κ, 2κ > i2 then D is not separative.

Remark 6.12 If there is no inner model with measurable then every D is
regular or close enough to this to give the result.

Proof 1) For every f ∈ κθ the family Ef = {A ⊆ θ : f−1[A] ∈ D} is an
ultrafilter on θ. For some g0, g1 ∈ κθ we have Eg0 = Eg1 but g0/D 6= g1/D
and hence we are done.
2) The regularity implies ℵκ

0/D = 2κ (see [?]), so by the first part we are
done. 6.11

Definition 6.13 Let κ, σ be cardinal numbers.

1. We say that a linear order I is strongly (µ, σ)-entangled if:

(|I|, µ ≥ σ + ℵ0 and) for every ε(∗) < 1 + σ, tζα ∈ I (for α < µ, ζ <
ε(∗)) and u ⊆ ε(∗) such that

α < µ & ζ ∈ u & ξ ∈ ε(∗) \ u ⇒ tζα 6= tξα

for some α < β < µ we have:

(a) ε ∈ u ⇒ tεα ≤I tεβ,

(b) ε ∈ ε(∗) \ u ⇒ tεβ ≤I tεα.

2. We say that a linear order I is strongly positively [positively∗] (µ, σ)-
entangled if for every ε(∗) < 1 + σ, tζα ∈ I (for α < µ, ζ < ε(∗)) and
u ∈ {∅, ε(∗)} for some α < β < µ [for some α 6= β < µ] we have

(a) ε ∈ u ⇒ tεα ≤I tεβ,

(b) ε ∈ ε(∗) \ u ⇒ tεβ ≤I tεα.

Remark 6.14 For “positively∗” it is enough to use u = ε(∗), so only clause
(a) applies. [Why? as we can interchange α, β.]
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Proposition 6.15 1. If σ = ℵ0 and µ = cf(µ) ≥ σ then in Definition
6.13(1) we can weaken α < β < µ to α 6= β (< µ). [Why? As in
1.2(6).]

2. For a linear order: “strongly (µ, σ)-entangled” implies both “(µ, σ)-
entangled” and “strongly positively (µ, σ)-entangled” and the last im-
plies “positively (µ, σ)-entangled”. Lastly “strongly positively (µ, σ)-
entangled” implies “strongly positively∗ (µ, σ)-entangled”.

3. In Definition 6.13 the properties are preserved when increasing µ and/or
decreasing σ and/or decreasing I.

4. If µ = cf(µ), (∀ε < σ)(∀θ < µ)(θ|ε| < µ) then:

(a) I is (µ, σ)-entangled if and only if I is strongly (µ, σ)-entangled,

(b) I is positively (µ, σ)-entangled if and only if I is strongly posi-
tively (µ, σ)-entangled.

5. If µ = cf(µ), (∀ε < σ)(2|ε| < µ) then in Definition 6.13(1),(2) we can
assume

(∀α < µ)(∀ζ < ξ < ε(∗))(tζα 6= tξα).

6. (µ,<) and (µ,>) are not strongly (µ, 2)-entangled (even if I is strongly
(µ, 2)-entangled then there is no partial function f from I to I such
that x <I f(x), |dom(f)| = µ and f preserves <I).

7. If (∀ε < σ)(|I||ε| < µ) then I is strongly (µ, σ)-entangled.

8. Assume σ is a limit cardinal, I is a linear order. Then

(a) I is strongly (µ, σ)-entangled if and only if for every σ1 < σ the
order I is strongly (µ, σ1)-entangled.

(b) Similarly for other notions of 1.1, 1.10, 6.13. 6.15

Proposition 6.16 Assume that I is a (µ, 2)-entangled linear order and θ =
cf(θ) < µ. Then for some A ⊆ I, |A| < µ we have:

x <I y & {x, y} 6⊆ A ⇒ |(x, y)I | ≥ θ.

Proof Let Eθ
I be the following two place relation on I:

x Eθ
I y if and only if

x = y or [x <I y & |(x, y)I | < θ] or [y <I x & |(y, x)I | < θ].
Obviously:
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(a) Eθ
I is an equivalence relation,

(b) each equivalence class has cardinality ≤ θ,

(c) if an equivalence class has cardinality θ then there is a monotonic se-
quence of length θ in it.

It is enough to show that the set A = {x : |x/Eθ
I | > 1} has cardinality

less than µ. Suppose that |A| ≥ µ. Then there are at least µ equivalence
classes (as each class is of the size ≤ θ < µ). Consequently we can find
t0α, t

1
α ∈ I for α < µ such that t0α < t1α, t0α Eθ

I t1α and there is no repetition
in {t0α/E

θ
I : α < µ}. For ε(∗) = 2 and u = {0} we get contradiction to

Definition 6.13. 6.16

Remark: Easily, θ = cf(θ) is redundant.

Proposition 6.17 If I is strongly (µ, σ)-entangled, ℵ0 ≤ θ < σ, µ ≤ |I|
then

(a) 2θ < µ and

(b) the cardinal χ =: |{x/Eθ
I : x/Eθ

I not a singleton}| satisfies χθ < µ
(where Eθ

I is from the proof of 6.16).

Proof Take x00 >I x10 <I x01 <I x11. For f ∈ θ2 let t2ε+ℓ
f = xℓ

f(ε) (for

ε < θ). If 2θ ≥ µ then we may consider u = {2ε : ε < θ} and find (by the
strongly (µ, σ)-entangledness) functions f 6= g such that for all ε < θ:

t2εf ≤I t2εg , t2ε+1
f ≥I t2ε+1

g .

But if ε < θ is such that f(ε) 6= g(ε) then we get x0f(ε) <I x0g(ε). Hence

f(ε) = 0, g(ε) = 1 and consequently x1f(ε) <I x1g(ε). But the last contradicts

to t2ε+1
f ≥I t2ε+1

g . Hence 2θ < µ as required in (a).

For (b), let 〈x0i /E
θ
I : i < χ〉 be with no repetition, x1i ∈ x0i /E

θ
I , x0i <I x1i .

Let {fα : α < χθ} list all functions f : θ −→ χ (so for each α < β there is
ε < θ such that fα(ε) 6= fβ(ε)). Let t2ε+ℓ

α (for α < λ, ε < θ, ℓ < 2) be xℓfα(ε)
and u = {2ε : ε < θ} ⊆ θ (so ε(∗) = θ). If µ ≤ χθ then we get α < β < µ by
Definition 6.13(1) and we get contradiction, so µ > χθ as required. 6.17

Remark: See more in[SaSh 553].

Proposition 6.18 If I is a linear order, |I| ≥ θ ∈ [ℵ0, σ) then BAσ
inter(I)

is not 2θ-narrow.
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Proof Choose J ⊆ I, |J | = θ such that for every t ∈ J for some
τ ∈ BAσ

inter(I) we have τ ∩ J = {t} (τ =
⋂

{[t, s) : t <I s ∈ J }). Hence for
every J ′ ⊆ J for some τ ∈ BAσ

inter(I) we have τ ∩ J = J ′. The conclusion
now follows. 6.18

Proposition 6.19 In Definition 6.13(1), if cf(µ) = µ (or less) we can wlog
demand

(∀α < µ)(∀ζ < ξ < ε(∗))(tζα 6= tξα)

and for some linear order <∗ on ε(∗)

ζ <∗ ξ, ζ, ξ < ε(∗) ⇒ tζα <I tξα.

Proof Clearly the new version of the definition implies the old one.
So now assume the old definition and we shall prove the new one. Let
ε(∗) < 1 + σ and tζα (for α < µ, ζ < ε(∗)). By 6.17(a) we have µ > 2|ε(∗)|

so we can replace 〈〈tζα : ζ < ε(∗)〉 : α < µ〉 by 〈〈tζα : ζ < ε(∗)〉 : α ∈ A〉 for a
suitable A ∈ [µ]µ, and we are done. 6.19

Proposition 6.20 1. Assume σ ≥ ℵ0 and cf(µ) = µ. Then in Defini-
tion 6.13(1), if we allow first to discard < µ members of I we can
add

(c) for ζ, ξ < ε(∗), if tζα <I tξα then {tζα, t
ζ
β} <I {tξα, t

ξ
β}

(i.e. we get an equivalent definition).

2. Even without “if we allow first to discard < µ members of I” part (1)
still holds true. It holds also for (µ, σ)-entangledness.

Proof 1) The new definition is apparently stronger so we have to prove
that it follows from the old one. Wlog µ > ℵ0. By 6.16 wlog

x <I y ⇒ |(x, y)I | > 2|ε(∗)|2.

Let ε(∗) < σ, tζα ∈ I be given. By 6.19 we may assume that

(∀α < µ)(∀ζ < ξ < ε(∗))[tζα 6= tξα & (tζα < tξα ≡ ζ <∗ ξ)].

So for α < µ, ζ <∗ ξ we can choose sζ,ξ,ℓα ∈ I (ℓ = 1, 2) such that for each
α < µ:

tζα <I sζ,ξ,1α <I sζ,ξ,2α <I tξα
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and there are no repetitions in {tζα, s
ζ,ξ,ℓ
α : ζ < ε(∗), ζ <∗ ξ and ℓ ∈ {1, 2}}.

So for some α < β we have

ζ ∈ u ⇒ tζα ≤I tζβ,

ζ ∈ ε(∗) \ u ⇒ tζα ≥I tζβ,

ζ <∗ ξ ⇒ sζ,ξ,1α ≤I sζ,ξ,1β ,

ζ <∗ ξ ⇒ sζ,ξ,2α ≥I sζ,ξ,2β .

Now (c) follows immediately.

2) Use 6.16 + 6.17(b).
For (µ, σ)-entangledness – straightforward. 6.20

Proposition 6.21 Assume ℵ0 ≤ θ < σ, χ = dens(I) and: I is a strongly
(µ, σ)-entangled or BAσ

inter(I) is µ-narrow. Then χθ < µ.

Proof First note the following fact:

Claim 6.21.1 Assume that 〈Iε : ε < θ〉 is a sequence of pairwise disjoint
convex subsets of I, χε = dens(Iε) ≥ ℵ0 and χ =

∏

ε<θ

χε. Then χ < µ and

BAσ
inter(I) is not χ-narrow.

Proof of the claim: Choose by induction on i < χε, a
ε
i < bεi from Iε such

that [aεi , b
ε
i ]I is disjoint to {aεj , b

ε
j : j < i}. Let {fα : α < χ} list

∏

ε<θ

χε (with

no repetitions) and let ε(∗) = θ, t2ε+ℓ
α be: aεfα(ε) if ℓ = 0, bεfα(ε) if ℓ = 1, and

u = {2ε : ε < θ} – we get a contradiction to “I is strongly (χ, σ)-entangled”.
The proof for the Boolean version is similar. �6.21.1

By an argument similar to that of 6.21.1 one can show that χ(= dens(I)) <
µ. So the interesting case is when χθ > θ. As 2θ < µ (see 6.15) we may
assume that χ > 2θ. Let χ1 = min{λ : λθ ≥ χ}, so cf(χ1) ≤ θ, and let
χ1 =

∑

ε<θ(∗)
χ+
1,ε, θ(∗) = cf(χ1) ≤ θ, χθ

1,ε < χ1. For each ε < θ(∗) we define a

two place relation E∗
ε on I:

x E∗
ε y if and only if

either x = y or x < y, dens(I ↾ (x, y)) ≤ χ1,ε or
y < x, dens(I ↾ (y, x)) ≤ χ1,ε.

It is an equivalence relation, each equivalence class has density ≤ χ+
1,ε, and

the number of E∗
ε -equivalence classes is ≥ χ. So by the Erdös–Rado theorem

we can find a monotonic sequence 〈xεi : i < θ+〉 such that i 6= j ⇒
¬(xεi E

∗
ε xεj).
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Without loss of generality, for all ε the monotonicity is the same, so wlog
i < j ⇒ xεi <I xεj . Throughing away a long initial segment from each
〈xεi : i < θ+〉 we may assume that for each ε, ζ < θ(∗) either

(∀i < θ+)(∃j < θ+)(xεi <I xζj & xζi <I xεj)

or
⋃

i<j

[xεi , x
ε
j ]I ,

⋃

i<j

[xζi , x
ζ
j ]I are disjoint.

Now it is easy to satisfy the assumptions of 6.21.1. 6.21

Conclusion 6.22 Assume that µ = cf(µ) ≥ σ = cf(σ) ≥ ℵ0, I is a linear
order of cardinality ≥ µ. Then in Definition 6.13(1) we can demand (∗) of
1.2(3).

Proof By 6.21 (and see the proof of 1.2(3)). 6.22

Proposition 6.23 Assume µ = cf(µ) > σ = cf(σ) ≥ ℵ0, I is a linear
order, |I| ≥ µ. Then the following conditions are equivalent:

(a) I is strongly (µ, σ)-entangled,

(b) BAσ
inter(I) is µ-narrow.

Proof (a) ⇒ (b) By 6.22 the situation is similar enough to the one
in 1.5 to carry out the proof.

(b) ⇒ (a) By 6.21 we can apply the parallel of 1.2(3), so the situation
is similar enough to the one in 1.5 to carry out the proof as there. 6.23

Proposition 6.24 Assume σ = θ+ > ℵ0, µ > σ.

1. If I is not strongly [or strongly positively] [or strongly positively∗]
(µi, σ)-entangled for i < θ then I is not strongly [or strongly posi-
tively] [or strongly positively∗] (µ, σ)-entangled for µ =

∏

i<θ µi.

2. If µ is singular and I is strongly (µ, σ)-entangled then for some µ′ < µ,
I is strongly (µ′, σ)-entangled (so this holds for every large enough
µ′ < µ).

3. The parallel of (2) holds for “strongly (µ, σ)-entangled”, “strongly pos-
itively (µ, σ)-entangled” and “strongly positively∗ (µ, σ)-entangled”.
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Proof 1) First we deal with “strongly (µ, σ)-entangled”. We know
|I| ≥ σ. Suppose that 〈ti,ζα : α < µi, ζ < εi(∗)〉, ui form a counterexample
for µi. As we can extend the sequences and ui wlog |ui| = |εi(∗) \ ui| = θ.
So by renaming εi(∗) = θ, ui = {2ζ : ζ < θ}. Let fβ ∈

∏

i<θ

µi for β < µ be

pairwise distinct. Let us choose ε(∗) = θ · θ, tθi+ζ
β = ti,ζ

fβ(i)
for i < θ, ζ < θ,

β < µ and u = {2ζ : ζ < θ·θ}. Now check.
For the cases “strongly positively(∗)” (µi, σ)-entangled first wlog εi(∗) =

θ; then as ui has two values for some u∗ we have

∏

{µi : i < θ, ui = u∗} = µ.

Thus wlog ui = u and let u =
⋃

i<θ

{i} × u∗. Next follow as above.

2) Assume not. Let µ =
∑

i<κ
µi, κ < µi < µ, κ = cf(µ), i < j ⇒ µi < µj.

So for each i < κ we can find a sequence 〈ti,ζα : ζ < εi(∗), α < µ+
i 〉, ui

exemplifying the failure of “I is (µ+
i , σ)-entangled”. Thus for each i and for

every α < µ+
i , there are no repetitions in {ti,ζα : ζ < εi(∗)} and |I| ≥ µ. Now

let ε(∗) = θ+ θ, u = {2ζ : ζ < θ+ θ}. For ζ < θ, β ∈ µ+
i \

⋃

{µ+
j : 0 < j < i}

we put tζβ = ti,ζβ , tθ+ζ
β = t0,ζi . Wlog for every α < µ there are no repetitions

in {tζα : ζ < θ + θ}. Now check.

3) Let κ, µi (for i < κ), ti,ζα (for i < κ, ζ < εi(∗), α < µ∗
i , ui be as in

the proof of (2) (for the appropriate notion). Again wlog εi(∗) = θ, ui = u∗,
but the choice of αi does not transfer. But by 6.24(1) we have: µθ

i < µ
and hence wlog (

∑

j<i
µ+
j )θ ≤ µi = µθ

i , so for some vi ⊆ εi(∗)

(ζ ∈ vi ⇒ [ti,ζα = ti,ζβ ⇔ α = β]) and [ζ ∈ εi(∗)\vi ⇒ ti,ζα = ti,ζβ ]

and ti,ζα = ti,ξα ⇔ ti,ζβ = ti,ξβ . We can omit εi(∗) \ vi etc, so 〈ti,ζα : ζ <

εi(∗), α < µ+
i 〉 is with no repetition and proceed as there. 6.24

Remark 6.25 In 6.24(2) we cannot replace “strongly entangled” by “en-
tangled”; see [SaSh 553].

Conclusion 6.26 If |I| ≥ µ > σ = θ+ > ℵ0 then:
I is (µ, σ)-entangled if and only if I is strongly (µ, σ)-entangled.

Conclusion 6.27 If µ ≥ σ = θ+ ≥ ℵ0, I is a strongly (µ, σ)-entangled
linear order then for some regular µ∗ we have:
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µ∗ ≤ µ, (∀α < µ∗)(|α|θ < µ∗) and I is (strongly) (µ∗, σ)-
entangled.

Consequently in 6.23 regularity is not needed.
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