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Abstract

We investigate o-entangled linear orders and narrowness of Boolean
algebras. We show existence of o-entangled linear orders in many
cardinals, and we build Boolean algebras with neither large chains nor
large pies. We study the behavior of these notions in ultraproducts.
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Annotated Content

Section 0: Introduction.

Section 1: Basic properties.

[We define Ens,, o-entangled (Definition 1.1); we give their basic properties
(1.2) and the connection between those properties of linear orders and (the
o-completion of) the interval Boolean algebras (Definition 1.3) which they
generate (1.5). We recall the definition of inc*)(B) (see 1.4) and we state
its properties. Then we formulate the properties of linear orders required to

have inc(B?/D) > (inc(B))?/D (1.7).]

Section 2: Constructions for \ = A<},

[In 2.3, assuming A = 2# = p* (and <, which usually follows), we build
some Boolean algebras derived from a tree, using a construction principle
(see [Sh 405]). The tree is a AT-Aronszajn tree, the derived linear order is
locally p-entangled (of cardinality A1). Next, in 2.5, we force a subtree T' of
AZ X of cardinality A, the derived linear order is y-entangled (of cardinality
A1). Tt provides an example of Boolean algebras B, (for ¢ < u) with
inc(By) = A, inc((B,)*/D) = AT for each uniform ultrafilter D on p.]

Section 3: Constructions Related to pcf Theory.

[We give sufficient conditions for Ens, (A, k) when A can be represented as

tef(ITAi/D), Ai > maxpcf({\; : j < i}) (see 3.1). If 2% > sup A; (and more)
; )

1
we can get o-entangled linear order (3.2). Also we can utilize Ens,(\;, k)
(see 3.3, 3.4). Now relaying on a generalization of “0 < N5 = pp(Ns) <
Njs51+4”, we prove that if p = p=7 then for many 6 € [u,N,+4) we have
Ens, (6%, 1) and if 2 > R, +4 also o-entangled linear orders of cardinality
6% (see 3.6). Hence for each o for a class of successor cardinals there is a
o-entangled linear order of cardinality AT (see 3.7).]

Section 4: Boolean Algebras with neither pies nor chains.
[Refining results in Section 3, we get Boolean algebras (again derived from

trees J [ Aj using A = tcf(J] Ai/D), but not as interval Boolean algebras),
<8 j<i i
which have neither large chains nor large pies. For this we need more on
how A = tcf([TA;/D).]

i

Section 5: More on entangledness.

[In 5.1, 5.4 we deal with cases 2<* < 2. Then we get finer results from
assumption on pp(u)’s, improving Section 3. We also deal with pcf(a),
defining pcf*(a) = ({pcf(a\ b) : b C a,|b] < x} proving for it parallel of
the old theorem and connecting it to entangledness, mainly: if each p € a is
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(A, K, 2)-inaccessible, then 6 € pcfi(a) = Ens(6,2%). We extract from the
proof of [Sh 410, §4] on the existence of entangled linear orders a statement
more relevant to pcf. We lastly prove: for a singular fix point p and pg < p
there is 6 € (u,pp* (1)) in which there is an entangled linear order of
density € (1o, 1) (see 5.13(2,3).]

Section 6: Variants of entangledness in ultraproducts.

[We investigate what kinds of entangledness (and inc(—) < p) are preserved
by ultraproducts (6.4). We also find that entangledness can be destroyed
by ultrapowers with little connection to its structure, just its cardinality,
for non separative ultrafilters. So to show the possibility of (inc(B))“/D >
inc(B* /D) it suffices to find B = BAjyer(Z) such that |B| > (inc(B))*0 ]

0 Introduction

In the present paper we investigate o-entangled linear orders and narrow-
ness of Boolean algebras (if B is the interval Boolean algebra of a linear
order Z, then the algebra B is narrow if and only if Z is entangled). On
entangled = Np—entangled (= narrow interval Boolean algebra) linear orders
(Definition 1.1(4)) see Bonnet [Bo|, Abraham, Shelah [AbSh 106], Abraham,
Rubin, Shelah [ARSh 153], Bonnet, Shelah [BoSh 210], Todorcevic [To] and
[Sh 345, §4], [Sh 345b], [Sh 355, 4.9-4.14], [Sh 410, §4].

We prove that for many cardinals A there is a o—entangled linear order
of cardinality A (see 3.7). For example, if A is a limit cardinal, A = A<7,
2% > AT then for some singular cardinal p € [\, Ny14) there is one in pu*.
We also prove that for a class of cardinals A, there is a Boolean algebra B
of cardinality AT with neither a chain of cardinality A™ nor a pie (= set of
pairwise incomparable elements) of cardinality A, see 4.3.

Another focus is a problem of Monk [M1]: for a Boolean algebra B, let
inc(B) be sup{|X| : X C B is a pie (see above)}. He asked: are there
a Boolean algebra B, a cardinal ¢ and an ultrafilter D on o such that
inc(B?/D) > (inc(B))? /D, and we may ask whether this holds for o but for
no smaller o/ < 0. Now, if 7 is a o—entangled linear order of cardinality \™,
A% = X then we get examples: the interval Boolean algebra B of 7 satisfies
inc(B) = A (hence (incB)?/D = X) but in the cases we construct Z, we get
that for any uniform ultrafilter D on o, inc(B?/D) = A" (on sufficiency see
1.7; on existence see 2.3(3), 3.2, 3.6(3)). Similarly for the entangledness of
a linear order. Unfortunately, though we know that there are o—entangled
linear orders of cardinality A for many cardinals A (as needed), we do not
know this for cardinals \ satisfying A = A7 (even A®0 = )\), and A < \?
implies usually (inc(B))?/D > A*. Still, the unresolved case requires quite
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peculiar cardinal arithmetic (everywhere): “usually” 2* is not so large in
the aleph sequence, and there are additional strong restrictions on the power
structure in V. For instance, for every pu

,u" =u = M < NM+4
and
p is strong limit of cofinality > o = 2* < u™ & (3x)(x < x° = 2")

and
w>3, = 2>t

To make the paper more self-contained we give fully the straight general-
izations of [Sh 345], [Sh 355] and [Sh 410]. The research is continued in
Magidor Shelah [MgSh 433], Shafir Shelah [SaSh 553], Rostanowski Shelah
[RoSh 534], [RoSh 599], and lately [Sh 620].

We thank Andrzej Rostanowski and Opher Shafir for reading, correcting,
pointing out various flaws and writing down significant expansions.

Notation  Our notation is rather standard. We will keep the following
rules for our notation:

1. o,8,7,6,§,(, 4,7 ... will denote ordinals,
2. K, A\ i, 0,... will stand for cardinal numbers,

3. a bar above a name indicates that the object is a sequence, usually X
will be (X; : i < £g(X)), where £g(X) denotes the length of X,

4. for two sequences 7, v we write v < 1 whenever v is a proper initial
segment of 1, and v < n when either v << n or v = 1. The length of a
sequence 7 is denoted by £g(n).

For a set A of ordinals with no last element, Jljld is the ideal of bounded
subsets of A.

1 Basic Properties

In this section we formulate basic definitions and prove fundamental depen-
dencies between the notions we introduce.

Definition 1.1 Let A\, u, k,0 be cardinal numbers.
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1. A sequence T = (I. : € < k) of linear orders is (u,o)-entangled if

(®) for every disjoint subsets u,v of k such that luUv| < 14 o and
sequences (t5, : a < p) of pairwise distinct elements of Z. (for
€ € uUw), there are o < 8 < p such that

e€u = i<z tj and e€v = >zt

Ens(\, p, k,0) = Ensy (A, pu, k) means:

there is a (u,o)-entangled sequence T = (I. : ¢ < K) of
linear orders, each of cardinality \.

2. If we omit p, this means A = p (i.e. |I| = u), if we omit o it means
g = NQ.

3. A linear order T is (u,o)—entangled if (Z has cardinality > 1 and)
for every e(x) < o and a partition (u,v) of () and pairwise distinct
t5, € (fore € uUv, a < p), there are a < 5 < p such that

(®) for each e < g(*) we have
e€u = t,<ztj and E€EV = ty>1th

4. We omit p if |Z| = p (and so we write “L is o—entangled” instead “T
is (|Z],0)—entangled”); we omit also o if it is Ng.

5. A sequence (Z; : ¢ < =) of linear orders is strongly (p1, 0, 0')-entangled
if
(a) each of I is of cardinality > p,

(b) if u,v are disjoint subsets of v, [uUwv| < 1+ 0o, {(e) < o' for
e€ulv and t2; € I (for a < p, e €ulv, § <¢(€)) are such
that

(Ve € uUv)(VE, ¢ < &(e)(Va < B < p)(t2¢ # 12 )
then for some o < 8 < p we have:

ecu = (VE<&e)(te, <tly) and

ecv = (V<& <t

Proposition 1.2 1. Assume A > A\ > 1 > u, k1 < k and o1 < 0.
Then Ens, (A, p, k) tmplies Ensy, (A1, 1, K1)-
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2. IfT is a (u, 0)—entangled linear order, 7 C L, and |Z| > |T| > p1 > p,
o1 < o then J is (1, 01)—entangled.

3. If a linear order T has density x, x<% < p, p=cf(n) and o > 2

then in Definition 1.1(3) of “L is (u,o)—entangled” we can add to the
assumptions

(®) there is a sequence ([ac,be] : € < (%)) of pairwise disjoint inter-
vals of T such that t5, € (ac,b:).

4. Moreover, if a linear order I has density x, x<7 < u = cf(u)

then for each e(x) < o and sequences to, = (t5, : € < g(x)) C I (for
o < u) such that € # ¢ = t5, # S, there are A C p, |A| = p, and
a sequence ([az,bs] : € < (%)) of pairwise disjoint intervals of T such
that for each € < e(x)

either (Yo € A)(t;, € (az,b.)) or (Ya € A)(t;, = ac).

5. If o > 2 and a linear order T is (u,o)—entangled then T has density
< .

6. If there exists a (p, o)—entangled linear order of size X then Ensy (A, 1, A).

7. In Definition 1.1(3), if o is infinite, we can weaken “‘a < < u” to
‘aFfa<p, B<p’

8. If there is a (u, o) —entangled linear order of size X\ and (%), below holds
then Ens, (A, i, k), where:

(%), one of the following holds true:
() w=up" and if X = p then cf(u) > o,
(B) there are A; C X fori < k, |A;| = X such that i # j =
|A; NAj| < pand cf(p) > o,
(v) there are A; C X fori < K, |A;] = X such that sup{|A;NA;| :
i <j<K}<p.

PROOF 1), 2) are left to the reader.

3) Clearly the new definition is weaker, so we shall prove that the one from
1.1(3) holds assuming the one from 1.2(3). Let J C Z be dense in Z and
|7| < x. Thus for each a,b € I, a <z b, there exists s € J such that
a<7s<zb
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Suppose that e(x), u,v, (t;, : € < e(x),a < p) are as in 1.1(3). For
each €,¢ < (%) and a < p such that t5 < t5 there exists s5¢ € J such
that 5 < s5¢ <t (and at least one inequality is strict). Define functions
ho, hi, ho, hs on u by:

ho(e) = {(g,¢) :6,¢ < e(x) and 5, < 1}
hi(a) = (s5¢: (e,¢) € ho(a))
hﬂag = <(,Q§JTVQ3“839>Z<&C>€fMOﬂ @%

= ((,¢,&TV(t] < 539) = (£.0) € hola), & <e(%)),

(where TV(—) is the truth value of —). Now, for each ¢ < 4, dom(hy) =
and |rang(he)| < | T]F®F < x<7 < 4. Since cf (1) = p, there exists A € [ ]
such that the restrictions hy | A are constant for £ =0,1,2, 3.

So let s5¢ = s5¢ for a € A. As the t5’s were pairwise distinct (for each ¢)
we conclude

hs(a

(@aeA&e<e(x) = t5&{s":(6C) €hola)).
Define for € < e(x):

I. ={t € I: forevery (,& < (%) such that s5¢ is well defined and
for every (= some) o € A we have
t<s8C e ts <s5C and  t>s5C e tE > s8¢}

Note that the value of « is immaterial.

Now, easily Z. does not have cofinality > x (as Z has no monotonic sequence
of length > x™, remember Z has density < x). Hence we find an unbounded
well ordered subset J-f C Z., |J-F| < x. Similarly there is an anti-well
ordered J. C Z., |J; | < x, which is unbounded from below (in Z.). Let
J*= U (JFuUJo). Again, for some set A’ C A of size p, the Dedekind

e<e(x*)

cut which ¢, realizes in J* does not depend on « for a € A’ and s, & T
Now we can easily choose (ac,b:): ac is any member of J which is < ¢,

for « € A’ and b. is any member of J-* which is > ¢, for a € A’.
4) Included in the proof of 1.2(3).

5) By 1.2(2), without loss of generality ¢ = 2. Suppose that Z has density
at least . By induction on o < p we try to choose t2,¢! such that

(1) to <ti
(i) 2, ts & {t3.t5: 8 < al,
(ili) (V8 < @)(V£ € {0,1})(£0, < t§ & 1L < t5).

6
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Continue to define for as long as possible. There are two possible outcomes.
OUTCOME (a): One gets stuck at some o < p.
Let J = {to,té : 8 < a}. Then

(V' <t eZ\T)3s € T)(t° < s & —[th < 3]).

Since t°,t! ¢ J, it follows that t° < s < t!. So J is dense in Z and is of
cardinality 2|a| < p — a contradiction.
OutcoME (b): One can define t2,t} for every a < pu.

Then (t2,t! : a < ), u = {1}, v = {0} constitute an easy counterexample

[e2ge
to the (u,2)—entangledness of Z.
6) Suppose Z is (i, o)—entangled and |Z| = A. Take a sequence (Z. : ¢ < \)
of pairwise disjoint subsets of Z, each of power A. This sequence witnesses
Ensg (A, g, A): suppose u,v are disjoint subsets of A\, |u Uv| < o and let
ts, € I. for a < p, € € uw U v be pairwise distinct. Now apply “Z is (u,0)—
entangled”.

7) Let u,v,t§, (for ¢ € uUwv, a < p) be as in Definition 1.1(3). Put
wW={2:ecutU{2e+1:c€v}, vV ={2:e€v}U{2+1:¢c€u},

2e __ g€ 2e+1 _ 4¢
Sq = 1loas  Sa ' = taaq1-

Now we apply Definition 1.1(3) — the 1.2(7) version to v/, v/, (s§ : ¢ €
w Uv,a < p), and we get o/ # [’ as required there. If o/ < 3’ then
a = 2d, B = 20 are as required in 1.1(3). Otherwise o/ > 3 and then

a=28"+4+1, 8=2d+1 are as required in 1.1(3).

8) (o) Suppose A = u (and so cf(u) > o) and let Z be a (u, o)—entangled
linear order of size A. Choose a family {A. : ¢ < u™} C [Z]* such that
(Ve < ¢ < pM)(|Ae N A¢| < p), and let Z. =T | A, (for € < pt). We claim
that the sequence (7. : ¢ < pt) witnesses Ens, (A, p, u+). Why? Clearly
|J:| = A = p. Suppose that u,v C uT are disjoint, |[u Uv| < 1+ o and for
e€ulUwlet (t5 : a < p) C J. be pairwise distinct. Since o < cf(u) we find
a(x) < p such that

(Veo,e1 € uNo)(Vag, a1 < p)(eo # €1 & ap,a1 > a(x) = 130 #1))

(remember the choice of the A.’s). Now apply the assumption that Z is
(1, o)—entangled to the sequence
(£ e €uln, ae(a(x)m) CT.

If A > u then we can choose a family {A. : € < ut} of pairwise disjoint sets
from [I])‘ and proceed as above.
(8), (y) Similarly. T
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Definition 1.3 Let T be a linear order.

1. The interval Boolean algebra BAiner(Z) determined by I is the alge-
bra of finite unions of closed—open intervals of T (including [—oo,x),
[x,00), [—00,00)).

2. For a regular cardinal o, BA{,. . (Z) is the closure of the family of

inter

subsets of T of the form [—o0,s) (for s € T), by complementation and
unions and intersections of < o members'.

Definition 1.4 Let B be an infinite Boolean algebra.

1. A set Y C B is a pie if any two members of Y are incomparable (in
B; “pie” comes from “a set of pairwise incomparable elements”).

inc(B) =sup{|Y|: Y C B is a pie }.
inc™(B) =sup{|Y|" : Y C B is a pie }.

The algebra B is p—narrow if there is no pie of cardinality > .

v e e

Length(B) = sup{|Y|: Y C B is a chain },
Length™ (B) = sup{|Y|* : Y C B is a chain }.
Proposition 1.5 Suppose that T is a linear order and that the regular car-

dinals Vo < o < p satisfy (V0 < p)[0<° < p]. Then the following conditions
are equivalent:

(a) The order T is (u,o0)—entangled.

(b) If e(x) < o, and u,v C e(x) are disjoint and t5, € T (for e < e(x),
a<p)

then for some o, B < i we have
ceu = tigzt‘% and ceev = tizztﬁ.

(Note: if the t, are pairwise distinct then the inequalities are in fact
strict; as in the proof of 1.2(7) changing the demand o < 3 to o # 3
does not matter.)

(c) The algebra BA, .. (T) is p—narrow.

inter

'"Equivalently, the Boolean algebra o—generated by {x: : t € T} freely except s < ¢
when Z s < t.
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Proor (a) = (c). By 1.2(5) the order Z has density < p.

Let (Aq @ a < p) be a sequence of distinct elements of the algebra BA{,.. (7).
We know that for each « there are: an ordinal €, < o, a Boolean term 7,
(with all unions and intersections of size < ¢ and &, free variables) and a
sequence (t5, : € < g4) € T such that Ay = 75(...,15,.. )ece,. By 1.2(4),
without loss of generality for some e(*) and pairwise disjoint intervals [a., b¢]
we have: g, = (%) and for each £ < e(x) either (Vo < p)(a. < t5, < b.) or
(Vo < p)(t5, = ae). Since p = cf (1) > No and (V0 < p) (01| < 1) we may
apply the A-lemma to the family {z, : @ < pu}, where zo =: {t : e < e(x)}.
Consequently, we may assume that {z, : @ < p} forms a A-system with
the kernel x (ie. o < f < p = xz,Naxg = x). Note that if for some
a < p, tg € x then (Voo < 8 < p)(tg = t3) and if t, & z (for some a < )
then (Va < B < p)(t; # t3). Thus for each e < e(x) either #7, (for o < p)
are pairwise distinct or they are pairwise equal. Since p = cf(u) > o and

0= < p for 6 < p, without loss of generality 7, = 7. Let
w = {e <e(x): (L, : « < p) are pairwise distinct }.

Then for some disjoint sets v,u Cw and aset A CZ\ | lae,b:] we have

eculv
Ay =AU U 7%(ae,t5,b:), where we let
eculUv

. ) xy) ifeen,
T(x,y,z)—{ ly,z) ife €.

Since Z is (i, o)—entangled, we can find o < 3 such that
(VeeuUw)(t;, <tj & c€u).

Clearly this implies that A, C Ag, so we are done.

(c) = (a). First we note that the linear order Z has density < pu.
[Why? Easily Z has no well ordered subset of power p nor an inverse well
ordered subset of power u. Assume Z has density > p. First we show that
there are disjoint closed—open intervals Zy,Z; of Z with density > u. To
prove the existence of Zy,Z; define the relation £ on Z by:

aED if and only if
a=0b or [a<banddensity([a,b)) <pu] or
[a > b and density([b,a)) < u].

Clearly F is an equivalence relation and its equivalence classes are convex.
Moreover, the density of each E—equivalence class is less than p (as there
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is no monotonic sequence of length p of members of 7). Consequently we
find a,b € Z such that a < b, ma E b. Next we can find ¢,d € (a,b),
¢ < d such that neither @ E ¢ nor d E b. Thus we may put Zy = [a,c),
7, = [d,b). Now for each Z,, we choose by induction on 5 < p elements
agt < by from I, such that [a}f’,b7'] is disjoint from {ag’, by’ : o < B}. So

a<f = [al,by) € [aF,bF). Now, ([ag,b}) U (Ty\ [ag,bp)) : B < p)

shows that the algebra BA{,..(Z) is not p-narrow, a contradiction].

By 1.2(7) it is enough to prove that if e(x) < ¢ and 5, € Z are distinct for
a < p, e < e(x) and u,v are disjoint subsets of £(x) then we can find o #
such that:

e€u = t, <tz and c€v = >t}

By 1.2(4), without loss of generality for some pairwise disjoint intervals
[ac,be] of T, we have t5, € (ac,b.). Let xo =: 2} U 22, where

x(lx =: U{[ag,ta) € € ul, xi =: U{[tfx,bg) 1e € v}

So for a < p, o € BA{.(Z). The algebra BA{,..(Z) is p—narrow, so for

inter inter

some o # 8 (< p) we have x, C x3. Then for each e:

e€u = Ikt,<t; and ccv = TITkEt;,>15
This is as required.
(a) = (b). It isincluded in the proof of (a) = (c).

(b) = (a) Trivial. Hy

Proposition 1.6 Let B be a Boolean algebra.

1. Ifinc™(B) is a successor cardinal then [inc(B)]T = inc™(B).
If inc™(B) is a limit cardinal then inc(B) = inc™(B).
B is u—narrow if and only if inc™(B) < p.

If B is p—narrow then so is every homomorphic image of B.

v Lo e

If D is a filter on o and the product algebra B is p—narrow then the
algebra B? /D is p—narrow. W

Conclusion 1.7 Assume \* > p, A > p = cf(p) > k > o0 = cf(o) > Ny
and (V0 < p)[0<7 < pl.

10
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1. Then (A)xs apon = (B)asapons using By = BAiyer(Z;+J;), where

(A)a* o there are linear orders Ij, J; (for j < k) of cardinality
A, such that each T+ J; is (u, o) —entangled and for any uniform
ultrafilter D on K, the linear orders [] Z;/D and [] J;/D have

i<k i<k
isomorphic subsets of cardinality \*;

(B)x* Ao there are interval Boolean algebras Bj (for j < k) which
are p—narrow and of cardinality A such that for any uniform ul-

trafilter D on k the algebra B = [ B;/D is not \*—narrow.
1<K

2. Also (A):\ZA%U,K = (B)j\;’)\%o,#_i (using B = BAinter(Z + J) ), where
(A);\'; Ao there are linear orders I, J of cardinality \, such that T+

J is (u, 0)—entangled and for any uniform ultrafilter D on k the
linear orders I¢/D, J" /D have isomorphic subsets of cardinality
A*.

(B)}\L*’)\%Uﬁ there is a p-narrow interval Boolean algebra B of cardi-
nality X such that \* < inct[B* /D] for any uniform ultrafilter D
on Kk (i.e. the algebra is not \*—narrow).

3. We can replace “uniform ultrafilter D” by “regular ultrafilter D” or
fix a filter D on k.

PRrROOF Just note that

if B is a Boolean algebra, Z,J are linear orders, a; € B for
t € T+ J are such that t <s = a; <p as and f is an (order)
isomorphism from Z to J

then {asy —a; :t € I} is a pie of B.

L

Conclusion 1.8 Assume that o < p" = p < X and there is a (u,0)-
entangled linear order T + J such that for a uniform ultrafilter D on s
the linear orderings Z" /D, J%/D contain isomorphic subsets of cardinality
A > u. Then

inct (BAier T+ 7)) <p and  inc((BAiner (T + J))*/D) > A

and even
inc™ ((BAinter(Z + J))*/D) > A

(s0 inc((BAnter(Z + J))/D) > inc(BAiner (T + J))*/D). m

11
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Remark: See an example in 3.2(3).

Definition 1.9 We say that a linear order T has exact (A, p, k)—density if
for every J C T of cardinality > \ we have density(J) € [k, ).

If u =kt we may omit pu; if X\ = |Z| we may omit it. We may also say T
has exact density (A, p, k) or (A, u, k) is an exact density of Z (and replace
(A, &) by (A, ) or (p, k) or k).

Definition 1.10 1. A linear order T is positively o-entangled if for each
e(x) < 140, u € {0,e(x)} and an indexed set {t& : a < |Z|, ¢ <
e(x)} €T such that

(Vo < B < [Z])(Ve < e(x))(t2 # t2)
there exist o < 8 < |Z| such that (Ve < e(x))(e € u <t < 19).

2. Similarly we define when T = (I; : i < i*) is positively o-entangled
and PosEns, (A, u, k), PosEns, (A, k).

For more on entangledness in ultraproducts see section 6.

2 Constructions for \ = A<}

In this section we will build entangled linear orders from instances of GCH.
Our main tool here is the construction principle presented in [HLSh 162] and
developed in [Sh 405]. The main point of the principle is that for standard
At—semiuniform partial orders (see 2.1 below) there are “sufficiently generic”
filters G, provided {, holds (actually, a weaker assumption suffices). For
the precise definition of “sufficiently generic” we refer the reader to [Sh 405,
Appendix| (compare [HLSh 162, §1] too). Here we recall the definition of
standard AT-semiuniform partial orders, as it lists the conditions we will
have to check later.

Definition 2.1 Let A be a regular cardinal.
1. A setu C AT isclosed if 0 € w and 6 =sup(6Nu) = §E€u.
2. Let (P,<) be a partial order such that
PCAx{uCA:|ul <At & u is closed}.

If p=(a,u) € P then we write dom(p) = u.

For an ordinal 8 < At we let Pg = {p € P: dom(p) C B}.

We say that (P,<) is a standard AT—semiuniform partial order if the
following conditions are satisfied:

12
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(a) If p < q then dom(p) C dom(q).

(b) If p e P, a < A" is either a successor ordinal or cf(a) = X then
there exists ¢ € P such that ¢ < p and dom(q) = dom(p) N «;
moreover there is a unique mazximal such q which will be denoted
ploa.

(c) If p=(a,u) € P, h:u 124 o C A* s an order isomorphism onto

v such that (Vo € u)(cf(a) = A & cf(h(a)) = N) and v is closed

then h[p] def (o, v) € P; moreover, q < p implies hlq] < h[p].

(d) Ifp,q € P, a < AT is either a successor ordinal or cf(a)) = X and
p |l a<qé¢€ P, then there is v € P such that p,q < r.

(e) If (p; : i < §) C P is an increasing sequence, § < X then there is
q € P such that

dom(q) = CI(U dom(p;)) and (Vi <d)(p; <q).
<6

(f) Suppose that (p; : i < 8) C Pgyq is increasing, § < X and f < A\
has cofinality X\. Assume that q¢ € Pg is such that (Vi < 0)(p; |
B < q). Then the family {p; : i < d} U {q} has an upper bound r
such that g <r | 8.

(g) Assume that (B; : i < §) C AT is strictly increasing, each [3; is
either a successor or has cofinality A\, & < X\ is a limit ordinal.
Suppose that ¢ € P and (Vi < 0)(q | Bi < pi € Pg,) and (p; : i <
d) C P is increasing. Then the family {p; : 1 < 6} U{q} has an
upper bound r € P such that (Vi < 0)(p; <1 | Bi).

(h) Suppose that 61,62 < X are limit ordinals and (B; : j < 62) C
AT is a strictly increasing sequence of ordinals, each j3; either a
successor or of cofinality . Let

(piyj : (4,7) € (01 +1) x (02 + 1) \ {(01,02)}) C P
be such that
pij €Psy, i <i = pij<ppj, J<j = pij<pij B

Then the family {p; ; : (1,7) € (61 +1) x (62 +1) \ {(01,02)}} has
an upper bound r € P such that (Vj < d2)(r | B = ps,.)-

Notation 2.2 Let )\, u be cardinals and T be a tree.

1. For an ordinal «, the a-th level of the tree T is denoted by T,; for

x €T, lev(x) is the unique « such that x € T,,.

13
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o

10.

11.

12.

We say that the tree T is normal if for each y,z € T we have:

if Ve eT)(x <ry=x<rz) andlev(y) =lev(z) is a limit ordinal
then y = z.

Usually we assume that T is normal.

We say that the tree T is X™-Aronszajn if it has \* levels, each level
is of size < A, there is no AT -branch in T, T is normal, and

yeT, leviy) < B <At = (FzeDy<rz&lev(z) =4

. For ordinals ¢ and « let To[f] be the set of all sequences of length ¢ with

no repetition from T,. We let TIS] = UTO[{C], but we may identify T
and T (and similarly for TV below);

For a sequence & € T, let lev(Z) be the unique o such that T € To[f],

For &,5 € T, let < § mean (Ve < {)(ze <7 y.); similarly for

S]]
IN 3
QL oy

Let 7 € TS, we define T;EC] def {eTl:z <7}

T = U{TO[[G . either « is a successor ordinal or cf(a) = A},
78 = Tl A 740,

For z,y € T let x Ay be their mazimal lower bound (in T, exists when
T is normal).

For x € T and an ordinal o < lev(x) let x | «v is the unique y <p x
such that lev(y) = .

For &= (z.:e < () € T and an ordinal a <lev(Z) let T | a = (x. |
a:e <().

Let H}L be the family of all functions h with domains included in
ULt x ut) : ¢ < p} and such that for ¢ < p, & € S(ut x pt)
we have: h(Z) C S(ut) (if defined, and then) there are p™ members
of h(Z) with pairwise disjoint ranges.

If h € Hﬁ is a partial function, ¢ < p, T € “(ut) and h(z) is not
defined then h(z) will mean ¢(u™).

We use mainly h € Hﬁ* where

H,.=JH. H,.={heH):dom(h)="(u" xph)}.
C<p

14
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13. Let Hg be the set of all h from H}L such that the value of h({(a2,a}) :

(3
e <)) does not depend on (a? : e < () (so we may write h({al : e <

))-

14. Let Hf;’ be the family of all functions h with domain p such that h(¢)
is a subset of S(()3) with the following property

(R) for each (a2 :e < ¢) C ut and every B < pt there is (o} : e <
¢) € (B, u*) with

(VB < )3l e <) C (B 1), al,a?) re < ) € h(Q)).

15. Hﬁ 1s the collection of those h € Hfj that the truth value of “{(a2,al,a?) :
e < ¢) € h(¢)”does not depend on (a2 : e € ¢) (so we may write

((a,02) 1 £ < 1) € h(C)). )

Theorem 2.3 Suppose A\ = u™ = 21 and ) (the second follows e.g. if
w>1,; see [Sh 460, 3.5(1)]). Then:

1. There exists a dense linear order T of cardinality \T and density A"
(really exact density AT, see 1.9) such that:

(x)1 Z is hereditarily of the cellularity AT, i.e. every interval in T
contains \T pairwise disjoint subintervals, and

(%)2 T is p—locally entangled, i.e. if k < p, (a;,b;)z (for i < k) are
pairwise disjoint intervals then the sequence (I | (a;,b;) 11 < K))
is kT —entangled®.

2. Let H}l* - H}L and Hﬁ* - Hf; have cardinality < X. There is a

AT —Aronszajn tree T C AT>N in which each node has A immediate
successors and there are two functions c,d such that:

(a) cis a function from T to A,

(b) for every Z € T and a function h € Hﬁv* U Hz”* we have dg p, :
T:,—E“] — A such that ify,z € Tém are distinct, dz 1, (y) = dz n(2)
then for some t € Tjw we have
() t;i =yi A z;, and the values of lev(t;) do not depend on i,
(B) lev(t) <lev(z), lev(t) < lev(y),

*Note: for u € (2,A), A = cf(A\) such that (Va < A)(|a|<* < A) and a linear order 7
of cardinality A we have: Z is py—entangled if and only if Z is u-locally entangled of
density < A

15
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(7) if dzn(y) < dzn(t) then (Ve < p)(3"i < p)(c(ts) = ¢),

(0) if (< pand h € H;* then for p ordinals © < p divisible by
¢ we have
(i) either (zi+c(lev(t)) : € < ¢) belongs to

h({c(tive), yive(lev(t)) : € < ()
(ii) or (Yyi+e(lev(t)) : € < ) belongs to
h({c(tive), zite(lev(t)) : € <)),

(e) if (< pand h € Hz”* and dz ,(y) < dz.p(t) then for p ordi-
nals 1 < p divisible by ¢ we have
(i) either ((c(tive), Yire(lev(t)), zize(lev(t))) : e < () be-
longs to h(Q)
(ii) or ((c(tite), zire(lev(?)), yive(lev(t))) : € < () belongs
to h(¢).

Explanation: Some points in 2.3(2) may look unnatural.

1. Why 7,z € Tg—ﬁm and not dom(dz)? As in proving amalgamation

we should compare <3:ZB D1 < ), (¢ i < p); necessary when a =

sup(w?). However, working a little bit harder we may wave this.

2. Why e.g in clause (b)(¢) we demand dz ,(y) < dz 4 (t)? Otherwise we
will not be able to prove the density of

Dipg=:{p€ AP :y € dom(dzp) (or —z<g)}.

3. Why do we have clauses (b)(d) and (b)(e)? For the application here
(b)(9) suffices, if this is enough for the reader then clause (J) in the
definition of AP may be omitted. But they both look “local maximal”.

PRrROOF OF 2.3(1)  We will use 2).

Let T C *>) and ¢, d be as there and let all the functions hiu € HS defined
in the continuation of the proof of 2.3(1) below be in H }L* We may assume
that if z € T and a < X then z (o) € T. Let <® be a linear order on A
such that (A, <®) has neither first nor last element and is A-dense (i.e. if
a; <® B for i < igp < X\, j < jo < A then for some v, a; <® v <% ;).
We define the order <7 on Z = T = {z € T : lev(x) is a successor or of
cofinality A}:

y <tz if and only if
either 2 = (y A 2) <y or y(a)) <® 2(a), where a = lev(y A z2).

16



nodi fi ed: 2001- 11- 12

revi sion: 2001-11-12

(462)

Clearly (Z,<z) is a dense linear order of the density AT and the size \T.

To show that Z has exact density AT (i.e. its exact density is (AT, ATT, A1)

assume that J C Z, |J| = AT. We want to show that J has density A*.

Suppose that Jy € J, |Jo| < A. Then for some a(x) < AT, Jo C U Ta

a<a(x)

and we may find distinct z,y € 7\ U T4 such that = | a(x) =y | a(*).
a<a(*)

Then x,y show that Jy is not dense in J.

Now we are proving that Z satisfies (x)s.

Suppose that x < p and (a;,b;) are disjoint intervals in Z (for i < k).

Suppose that g¢ = (yf 11 < k) (for &£ < AT) are such that a; <z yf <z b

and yf’s are pairwise distinct for £ < AT. Let u C . Take a(x) < At such

that (Vi < k)(lev(a;),lev(b;) < a(x)). As y:’s are pairwise distinct we may

assume that

(V€ < AT)(Vi < k)(a(%) <lev(y$) and € <lev(y})).

Note that if i < j < &, and £,¢ < At then ¢} | a(x) # yjc I a(x). Now the
following claim (of self interest) is applicable to ({3 :i < k) : £ € [a(%), A))
and as we shall see later this finishes the proof of 2.3(1) shortly.

Claim 2.3.1 Assume (for the objects constructed in 2.3(2)):
(a) K <pu,

(b) for each & < AT we have a sequence J* = (yf 11 < K) such that yf eT
and either

(a) (i) # (i) = yfll #* yzj or
(B) lev(ys) > €,
(c) he HY*UHD",

(d) for some a(x) < AT,
EC<AT i<j<k = ylalx) £yl alk).

Then we can find & < & < A1 such that clause (b)(5)(i) (or (b)(€)(i),
respectively) of 2.3(2) holds with (75, 5%?) standing for (9, %), i.e.:

(9) ifhe H};* then
(i) (ye*(lev(?)) : € < 5) € h(({e(te), y2* (lev (D)) : € < w),
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(¢) if h € HY* then
(i) ((c(te), Y& (lev (D)), yE (1ev(?))) : € < ) belongs to h(x),

where t = (tj : j < k) and t; = y]51 Ay;* ete.

Proof of the claim: First note that, by easy thining (as either (b)(«)
or (b)(8) holds; remember clause (e)) we can assume (b)(a) & (b)(5). As
A = \* we may assume that (y¢ | a(x) : i < k) is the same for all § € A*.
Let

Z ={a €fa(x) ) AY € [T ({E < A= (Vi< r)(yf Ta g V) <N}

First we are going to show that Z # [a(x), \T). If not then for each a €
[(¥),\T) we find a set Y, € [T,]<* and an ordinal £(a) < At such that

(€< AT (Vi< r)(yf TagY)} CEla).
For a € [a(%), \*), choose 7 € Iﬂf}such,that
(1) (Vi <r)(ys | a=a),
(ii) Yo C {20 1i < pl.

For each § € [a(*),AT) with ¢f(6) = A we can find s <  such that z} =
(x? | 745 : i < p) is with no repetition (recall that 0 € Ts are pairwise
distinct, ¢ < p < A and the tree T' is normal). By Fodor’s lemma, for some

~* the set
So 165 € [a(x), AT cf(5) = A & 75 = 7*}

is stationary. For § € Sy there are at most \* = X\ possibilities for (x f ™
i < p) and hence for some T* = (x} : 1 < pu) € T,gﬁf] the set

Z

S ¥ s e Sy at = (2 14" i< )}

is stationary. Hence the set
So {5 € [a(x),AT) NSy : (Vi < p)(ad [ 7" = af) & (Va < 8)(E(a) < 8)}

is stationary. Look at dgz« (really any h' € Hﬁ’* will do here). Note that
7% € dom(dg~p,) for 6 € Sy (remember cf(§) = \), and therefore we find
01,09 € S9, 1 < 9 such that dj*,h(j‘sl) = dz- 1 (T 92). As £(61) < 69 we
can find ¢ < k such that y I 01 € Ys,. Thus for some ] < ,u necessarily
y?Q [ 01 = mjl and hence m52 [ 01 = mf and consequently m 2t = x‘sl Fy*.
This implies ¢ = j (as 51,52 € S2 C Sy and hence 5, = 7" = s, and now
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apply the definition of ~s,,7s,,52) and thus xfl gz

;2, what contradicts
clause () of 2.3(2b). So we have proved Z # [a(*), AT), but by its definition
Z is an initial segment of [a(x), AT). Hence for some B(x) € [a(x),\T) we
have Z = [a(x), 5(*)).

Let 3 € [B(x),A") be a successor ordinal.

By induction on ¢ < p choose® pairwise disjoint 7° = (2§ : i < k) € Tﬁ[ﬁ]
such that the sets

def .
Z: € {6 € [B.N): (Vi <w)(y; | B=17)}
are of the size AT. Suppose we have defined z° for ¢ < &'. Let Y =
{25 i < K, ¢ < €'}. Then Y € [T5]<* and by the choice of 3 the set
{6 <At (Vi< k)W 1B ¢Y)}is of the size AT, As A" = X we can find
= eT BM such that

e < AT (Vi< r)(yf 1 B=2af ¢Y)} =AY,

Now for ¢ < pand ¢ < K let z4.cq; = af and let T = (z; : j < p). Thus
T € T[gﬂ}. For each a € [8,A\") choose ((ne : € < p) such that ¢, € Z:
and oy < ag implies a1 < Coye < Cape Fore < p, i < k and a € [B, A1)

put zg.; = y;"° [ a. Then 2% = (2§ : j < p) € To[fd, z < z%. Consider

the function dz . Let Ss e {6 € (B,A") : cf(§) = A} and note that for

each a € S3 the restriction dz 5 | {2 | v : 8 < v < a} is a one-to-one
function (since cf(a) = A and we have clause (3) of 2.3(2b)). Consequently,
for a € S3, we find 0(«) such that

o) <d<a = dzp(Z®106)>dzn(zY); d(a) > B.

Next, applying Fodor Lemma, we find a stationary set S} C S3 and 6* > 8
such that dz 5(2% | 6) > dz (%) for a € S}, § € (6%, ) and 2% | 6* = 2% |
§* for all aq, a0 € ). Let

def
Sy =

(68 :(Ya<®)({Besy:2 1a=21a} =)

If Sy is not stationary then for 6 € S} \ Sy choose a5 < § contradicting the
demand in the definition of Sy. For some stationary S* C S \ Sy we have
as = o for 6 € §* and we get an easy contradiction.

As rang(dz ) C A, for some stationary S5 C Sy, dzp | {2% 1 a € S5} is
constant. Choose a1 # ag from S5. By clauses («), (8) of 2.3(2b) we get

3We could have done it for € < A, but no need here.
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that if £; = 25" Az (for j < p) thent € TEM and lev(z) < lev(t) < lev(z*),
lev(t) < lev(z*?). Moreover by the definition of S we have lev() > ¢* and
dz 1 (t) > dzp(Z*"). Hence by the clause (0) of 2.3(2b) we find ¢ < p divisible
by & such that either (i) or (ii) of clause (9) of 2.3(2b) holds with (g, z) there
standing for (2*1,z%?) here. By the symmetry wlog (i) of 2.3(2b)(d) holds.
Let lev(t) < B¢ < ay (for £ = 1,2), hence by the definition of Sy (and as
ag € S; C S4) and by the character of the requirement on ajg,ay wlog
a1 < ag, so we are done. Oo.3.1

CONTINUATION OF THE PROOF OF 2.3(1):  Remember we have k < p,
(a;,b;) (fori < p), w C k and we have (¢ : € € [a(x), 7)), 7¢ = (yf D1 < K).
Define h = hy,, € HB (and assume that for each k < p and u C k we have
P € H;’*):

(Bl i< k) ={(B:i<k)€™\: (Vi<r)(B <® B & icu)}.

By the choice of <® it is easy to check that h € Hg. So by Claim 2.3.1 for
K, h, 7%, there are a' < a? as there and we are done.

We still have to prove (x);.
Suppose that a,b € Z, a <z b. By the definition of the order there is t € T
such that t < s € T = s € (a,b)z. As the tree T is A\T—Aronszajn we

find z € T (for some a € (lev(t),A")) such that (Vj < u)(¢t < z;). Next
for every 8 € (o, AT) we can choose g € Tﬁ[u I such that 7 < yg. Take any
h € H};* U Hﬁ’*. For some unbounded S C (a, AT) the sequence (dz 4 (¥g) :
B € S) is constant. Consequently, elements yg for § € S are pairwise <—
incomparable (in the tree T'). Hence {{y € T : yg Jdy}:p e S}is afamily

of pairwise disjoint convex subsets of (a,b)r (each with AT elements), so we
have finished. Ua.2(1)

PROOF OF 2.3(2): We want to apply [Sh 405, Appendix]. For this we
have to define a set AP of approximations and check the conditions of 2.1.

Definition 2.3.2 The set AP of approximations consists of all tuples p =
(t,w,<,D,d, e, f,c) (we may write t*, wP etc) such that

(A) tis a subset of AT of cardinality < X\, t N [0,\) = {0},
B) w={a< At :[Na,\(a+1))Nt#D} is such that
Va<AN(acew < a+lecw), and

the set {a < A1 :w-a € w} is closed,
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(C) <=< is a partial order on t such that t = tP = (t,<) is a normal tree
(so x Ay is well defined) and for each o € w the set tN[A-a, A\-(a+1))
is the otp(w N «)-th level of t (but possibly o < B are in w, and for
some x in the a-th level of t there is no y in the B-th level, © <; y)

[obviously, the intention is: ¢ approximates T'; we may use ¢ for (¢, <;)],

(D) D is a set of < \ pairs (Z,h) such that T € t and h € H};* U Hz”*,

(E) d = (dzp, : (%,h) € D), each dzp, is a partial function from tgd to A
with domain of cardinality < \ such that:

et & z<,5< 2 & zedom(dyy)] = 7€ dom(dyy),

(F) e = (ezn : (z,h) € D), each ez, is a partial function from tgd X \ to
{0,1,2} of size < X and such that:

(i) (g77) € dom(ef,h) = :’j € dom(di',h)f and

dom(ez) 2 {(77): §€dom(dsp) & (32 € dom(dzp))(y < di(2))},

(ii) ify € tgd, T <4y <t zedom(dzp) and ez (%, B) is defined then

ez.n(Y, B) is defined and ez 1,(y, B) < ez n(Z, ) and if y € t;w then
at most one of them is 1,

[here, we interpret tém as the set of those § € t[f“] that lev(y) is

either a successor ordinal or is otp(w N «a) for some o € w such
that cf(a) = N,

(iii) dzp(¥) = &  ezn(fa)=1,

[the intention: ez p, is not explicitly present in 2.3(2b), but ez 4(y,7v) =
¢ will mean that: if £ = 0 then for some z we have y < Z and dz ;(2) =
7v; if £ =1 then dz ,(y) = v and if £ = 2 then none of these],

(G) f is a function fromtT ={a €t: « is of a successor level in t} to A
such that:

if v # B are immediate successors (in t) of some a

then f(B) # f(v),
[the intention is that if o represents n € Tj41, then f(a) = n(i)],

(H) ¢ is a function from t to X,
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(I) Zf (j’h) € D7 eiz,h(g’a)aei,h(zﬂ Oé) < 1; _'[g < Z]; _'[2 < g]
then clauses (a)—(c) of 2.3(2b) hold (with (f(ye | (i + 1)), f(ze |
(i +1))) replacing (ye(2), 22())) and o in place of dz p(y) = dz (%)),

@) ifaewr, z <y’ <yl al in ()W, (z,h) € D, h € H>* and
7.yt € dom(dz p), lev(7°) = o, lev(y!) = a + 1, ef,h(gl,’y) <1 and
v < dzn(7°)
then in looking at §°,4' as candidates for t,3 (or t,z) in clause (I)
(i.e. in clauses (a)—(c) from 2.3(2b)) in (c) there, for each ¢ < p,
for p ordinals © < p divisible by ¢, the values we have i.e. cp(y?+€),
fP(yty.) for e < ¢, are compatible with the demand (i) there, i.e. for
every B < X there are o € (B3, \) for e < ¢ such that

<(Cp(y?+e)’fp(yi1+s)’ag) < C> € h(C),

(K) if 2 < g are in tW, (z,h) € D, § € dom(dzp), a < dzp(y) and
ezn(¥, ) = 0 then (Ve < p)(F*i < p)(c(ys) =€) (i.e. looking at § as
a candidate for t in 2.3(2b)(~y) the values we have are compatible with
the demand there).

The set AP of approximations is equipped with the natural partial order.

We will want to apply the machinery of [Sh 405, Appendix]| to the par-
tial order (AP,<). For this we have to represent it as a standard \"-
<A

semiuniform partial order. In representing it as a partial order on Ax [AT]
we define the set of terms such that:

(a) {r(u) : 7 a term with otp(u) places} = {p € AP : {a < A" : wa €
wP} = u}, for a closed set u € [AT]<A,

(b) if p¢ = 7(uy) for £ = 1,2 then otp(tP*, <) = otp(t’2, <) and the one-
to-one order preserving mapping g from tP1 onto tP2 maps p; to po
(ie. a <P B & g(a) <P? g(p), etc).

Note that for p € AP, its domain dom(p) (in the sense of 2.1) is {a: w-«a €
wP}. Hence, AP, ={p€ AP : w? Cw-a}.

Now we have to check that (with this representation) AP satisfies the
demands 2.1(2)(a)—(h). Clauses (a) and (c) there should be clear.

To deal with the clause (b) of 2.1(2), for an approximation p € AP and
a < AT such that either « is a successor ordinal or cf(a) = A, we define

q=plw-aby:

o t1=PNA\(w-a), w! =wP Nw-a, <I=<P| 9,
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° D‘I:{(j,h) eDP:a—;gtq},
o if (.h) € DY then dl, =2, 1 (¢ and e, = 1 (0 x ),
o f1=fP| (19N dom(f7)), c? =cP | tl.

Observation 2.3.3 Ifp € AP is an approzimation and oo < \T is either a
successor or of cofinality \ then p | wa € AP is a unique maximal approzi-
mation such thatp | w-a < p and WP =wP Nw-a. O

Thus p | w-a corresponds to p | a as required in 2.1(2¢). The main difficulty
of the proof is checking the amalgamation property 2.1(2d). Before we deal
with this demand we will check that some sets are dense in AP (which will
allow us to simplify some arguments and will be of importance in drawing
conclusions) and we will deal with existing of some upper bounds.

Claim 2.3.4 In AP, if (p; : i <) is increasing, § < \ and for ig <iy3 <0
we have wPio = wPir then its union (defined naturally) is its least upper

bound in AP. O

Claim 2.3.5 (Density Observation) Assume p € AP.

1. Suppose that o € wP, u C [A-o, h-a + X) \ tp, [u| < X and for i € u we
are given a full branch A; of (tP N A\, <P) (i.e. A; is linearly ordered
by <P and f e wPNa= NB,AB+ANNA #0), i #j= A #A,.

Furthermore, assume that if o is limit then
yet!Nhaa+A) &icu = A #{yetl:y<Py}

Then there is q € AP, p < q such that t9 = tP Uu, <i=<P U{(y,1) :

y € A;,i € u}, and the rest is equal (i.e. wl = wP, DI = DP d1 = dP,
el=2eP, f1D fP, ¢1 D P naturally).

2. If o € wP, i € [\, A+ A) then there is ¢ € AP, p < q such that
1€ td, wP =wl, DI = DP, d? =dP, el = eP, and naturally f7 2 [P,
c? D cP.

3. Ifz e (tr, <P\ and h e Hﬁv* U Hz”* then there is ¢ € AP such that
p<q and D= DPU{(z,h)}.

4. If (z,h) € DP, & < §j € (t*,<P)¥ then for some q € AP, p < q we
have: § € dom(dy ;) = dom(d ) U{7' : 7 <7 <7, §' € (#, <P)l},
tp e tqy U)p = wq7 Sp:Sq; Dp = qu d%/,h/ e d§/7h/7 e%/7h/ — egl,h/ fo,r.
(fl’h/) € Dp\{(j’h)}; and fq — fp, cl =P,
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Proof of the claim: 1) Check.

2) Iterate (1) (in the j-th time — on the j-th level of ¢) using 2.3.4 for limit
stage. More elaborately, for each 8 € w?\ {0} choose ig € [A-5,X-B+N)\tP
such that i, = i. Next by induction on € wP N (a+1) choose an increasing
sequence (pg : f € wP’ N (a+ 1)) C AP of approximations such that py = p
and 78 =tP U {iy : 0 <y e wPN(B+1)} (sowPs = wP) and the sequence
(iy : 0 <y ewPN(B+1)) is <PA-increasing.

3)  We just put: ¢4 = P, w? = wP, f4 = fP 1 = P, d%,ﬁ, = d§,7h, if
(Z',h') € DP, d%h is empty if (Z,h) ¢ DP, and similarly for eqj,’h,.

4)  Let {g. : e < (} list dom(dZ ) \ dom(dZ ;) in the <P-increasing way
and let o = sup(rang(dy, ) U {v: (37)((¢',7) € dom(e, ;))}). Now put

dom(ef ;) = {(y,0) : g € dom(d} ;) & a < " +1+},
declare that eg n € e%,h and
o ifye dom(d%h), g < Ye, € < ( then e%,h(ﬂ, a*+1+¢)=0,
o eip(le 0" +1+e) =1,
o el ,(y,7) =2 in all other instances.

It should be clear that this defines correctly an approximation ¢ € AP and
that it is as required. [Note that clauses (7), (g) of 2.3(2b) relevant to
clauses (J), (K) in the definition of AP hold by the requirement “dz j(f) <

dz,n(y) = dz,n(2)” ] 0235

Claim 2.3.6 Ifp € AP and an ordinal o € AT\ wP is divisible by w then
for some q € AP, p < q we have w? = wP U [a,a + w), DP = D? and

Bew = tIANBAB+N)=N[AB S+ N).

Proof of the claim:  Let 8 = min(wP \ «) (if 8 is undefined then it is
much easier; of course § > a as a ¢ wP and therefore 5 > a + w). Let
PONBANE+N) = {y? : 1 < ©*} be an enumeration with no repetitions
and for n < w let

{y2™™ i < i*} C[M(a+n),A(a+n)+N)

(2

be with no repetition. Let t9 = t? U {y?*" : n < w,i < i*}, and

<I=<PU {E Yt i <m <w,i < iU
tn Y e B
{(i™ ) :n <w,i <i*y, <Paxiy

{(z, g8 in < w,i < i,z <P y?}
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By 2.3.5 we may assume that i* = p. For (z,h) € DP = D we let

dom(d} ,) = dom(d} ,) U{y € (Ol . 3y e dom(d} ,))(z <y < y') and
(Gn <w)(Ve <p)(ye € [A- (@ +n),A-(a+n+1)))},

and let o , = sup(rang(d} ,) U {y : 3y)((¥,7) € dom(e} ,))}). Fix an
enumeration {g¢ : & < ¢} of dom(d%h) \ dom(d%h) such that g¢, < 7¢, =
&o < &1. We put d%h(gjg) = aj ,+1+& for § < ¢ (and we declare d%h ) d%h).
Next we define e%h similarly as in 2.3.5(4) putting the value 2 whenever
possible (so dom(ef ) = {(9,7) : y € dom(d,) & v < o}, + 1+ (}).
Now comes the main point: we have to define functions f9,¢? (extending
1P, P, respectively) such that clauses (I) + (J) + (K) hold. But it should be
clear that each instance of clause (I) in ¢¢ can be reduced to an instance of
this clause in P (just look at the definitions of ¢9, d%h, eqf’h). Thus what we
really have to take care of are instances of (J) and (K). For this we define
A1yt i < p}oand £ {y? i < p} by induction on n < w. At
the first stage (for n = 0) we let

P={(,z,h,y,2): (z,h)eDland (<pandz<y<ze€ dom(dq:z’h),
and 2 C {y?™ 1i < p}and g C {yf i < p}}.

Take a list (X1, ¢T, 27, hY, 57, 27) : T < u) of
{(X,¢,z,h,y,2): X e {J,K} & ((,z,h,y,Z) € P}

in which each 6-tuple appears p times and (¥ < 1+ Y. Next by induction
on T < p choose a sequence (cy, fy : T < p) such that

(a) ey : dom(ey) — p, dom(ey) C {yf* 1 i < p}, |[dom(ey)| < Vo + YT,
(8) fr:dom(fr) — A, dom(fr) C {y{"™" : i < u}, [dom(fr)| < Ro+|T|",
(7) {ex : Y <p), (fr: T < u) are increasing continuous,
(6) for each Y < p there is i¥ < p divisible by ¢T such that
rang(z" [ [i",i" +¢Y)) € dom(fry1) \dom(fy)  and
rang(y* | [i",i" +¢")) € dom(ery1) \ dom(ey),

(e) if XT =J and hY ¢ Hfj* then condition 2.3.2(J) holds for z¥, hY, §¥,

zZ¥ with i =¥,

(¢) if XT = K then cy1((57);x) =¢7¥,
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(t) y§ € dom(cy41), yﬁ"rﬂ € dom(fy41)-

There are no difficulties with carrying out the construction: the only possible
troubles could come from demand () above. But look at the definition
2.2(14) of H ;?2 Taking sufficiently large 8 < pu* = )\, the respective sequences
(@2 e < ¢, (ol 1 e < ¢Y) will be good candidates for cyy1 [ (§¥ |
[iY,30 +¢0)) and froq [ (27 1 [iY,i7 +¢T)) in clause (¢).

The functions ¢, f,, will be the respective restrictions ¢? | {yf* : 4 < u} and
71 {yf‘Jrl 14 < p}. Next, arriving to a stage n + 1 of the definition we
repeat the above procedure with no changes. Note that at this stage we
know ¢ | {y*" i < p}, £91 {y>™ T i < p} but they have no influence

on defining ¢4, f? at levels a+n+ 1, a+n+ 2. U236

Claim 2.3.7 (The Amalgamation Property) Assume that o < A\ is
either a successor ordinal or cf(a) =\, p,g € AP andp |w-a < q € AP,.
Then there is r € AP such that p,q <.

Proof of the claim:  First try just the r defined by:
W =wPUw!, ¢ =#Ut!, <'=<Pyu<i D"'=DPUDI,

i, s db, if (z,h) € DP\ DA
di, if (z,h) € D9\ DP
db,udi, if (z,h) € DINDP

and €7 j, 2 eghUe%,h (defined naturally, i.e. with dom(e7, ;) minimal possible
to satisfy demand (F) and value 2 whenever possible), f" = fPU f4, ¢ =
PUct. Clearly p<r,q<r,w" =wPUwi but does r belong to AP? The
things that might go wrong are:

e there is y € tP \ t? which has nothing below it in some levels, or
e y A z not defined for some y, z, or
e the relevant cases of clauses (I)—(K) fail.

Let Bo = U{yv: w-v € w’P Nw - a} = sup(dom(p) N ). Note that [y €
dom(p) N« (as « is either successor or of cofinality A\) and

(®) ifw! Cw-pPy+ w then r e AP.

So we assume from now on that w? € w - fy + w (by (®) above). Then
necessarily fp+1 < a (as w? C w-a). Without loss of generality dom(p)\« #
D (asifuP Cw-awecanlet r =¢)and g w-(fp+1) =p | w-a. Let
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*

o ¢ min(dom(p) \ «) and S* o min(dom(q) \ (6o + 1)). By 2.3.6 we
may assume that * = 50 +1 (le w-fo+w e wd). Let {z2° :i < i*}
list P N[N (w-a®), A ( a®) 4+ A). By 2.3.5(1) (i.e. increasing ¢ only by
increasing t?N [A- (w- 8%), A ((w- B*) + 1)) we may assume that there is a
list {xl F" .4 < i*} of distinct members of t4 N [ (w B*) (w- B+ A)
such that (Vz € P Nt9)[z <P 29 = 2 < 7" 7). Let xi € ANBAB+A)
(for € w?\ (w-P*+1) and i < i*) be pairwise distinct and not in t?. Now
we shall “correct” r to r*:

tr*:trU{xiB:Bewq\(w-ﬁ*+1),i<i*}, w' =w",

Sx) i <if,x €tP v <Py Bewl\w-BfIU

, f) i<t xeth<qxw6 B ewl\w- U
Pal) o € w\w - B By < Bri <t

Put D™ = D". If (z,h) € D"\ DP'““ then we can let dg:h = d , but if
(Z,h) € DPI“ then we first let

Va.n = sup(rang(d; ) U{7 : (35)((,7) € dom(e ;) Udom(eg ,))})  and

dom(dy,) = {ye(t T*)[“] :y € dom(dy ;) or for some
Z= < 5(]) ‘7 <M> ( )([);é}p(wpﬂw-a*) and B € w? \ (W,B* + 1)

we have Z € dom(d} ;) and y= (xﬁ( i <mt

Choose d, o, In such a manner that dm n =2 di , and the values d, (), if not
defined before are distinct ordinals from (’y%h, A). Thus, in partlcular,

iy =dpn(2) &g#2 = {g,z} C dom(dy,).

Next we define egh extending e7 ,, to satisfy clause (F) — we put the value 2
whenever it is possible. [Note that this is the place in which the assumption

that g € t;” ) in clause (F)(ii), and so the respective assumption in 2.3(2b),
play role: the values of e%,h at the level w - * = w - By + w do not interfere
with the values of egh at the level w - a* since B* is a successor, not of
cofinality X.] Now we have to define ¢~ D ¢, f7" D f7, i.e. to define

[{xiﬁ:i<i*,,8€wq\(w-ﬁ*+1)}, and

i {xf 11 <", €wl\w- B is a successor},

such that clauses 2.3.2(G)—(K) hold. This is done like in 2.3.6, but now the
clause (I) is “active” too. Of course, the point is that we have p commit-
ments, each has “u disjoint chances”, so we list them in a list of length g
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and inductively we can easily do it (for p singular — at place i of the list
there may appear only a commitment of “size < |i| + X¢”). More fully, let

Pl = {(¢ 2,h,7,2): (x h) € DP N D? and ¢ < p and for some ¢
Z,e) € dom(el h) \ dom(ef ,) and (7,¢) € dom(ef ;) and
Z, )<1ande$h(y, g) <1and
Mw:- S+ 1),A(w-*+1)+A) andzC{ow i <in)

Defining f we have to take care of condition (I) for all (¢,z,h,9,2) € P
We also have to take care of conditions (J), (K) for

P2: {(Cajahag72):(jah)€meDq andC<uand
Zedom(dg:h), Zg{x3+1:i<i*}, g=2z7v, yewl\w-[B*}.

So we use a list (XY, ¢V, 20, hY, 57, 20) : ¥ < p) of {(X,(,%,h,9,2): X €
{1,2} and (¢,z,h,7y,2) € P1 U P2} in which each 6-tuple appears p times
and ¢T <14 17. Let {z¥ : T < p} list " \ #". Now we define by induction
on T < u functions ¢y, fy such that

(o) ex is a function extending ¢”, rang(cy) C A,

(8) dom(cy) \ dom(c") is a subset of {xf i<, fewl\ (w-p*+1)} of
cardinality < Ng + | T[T,

(7) fr is a function extending f", rang(fy) C A,

(6) dom(fy)\ dom(f") is a subset of

{xf 11 < 4", [ is a successor ordinal and f € w? \ (w- "+ 1)}
of cardinality < g + |T|T,
(e) the sequences (cy : T < p), (fr : T < u) are increasing continuous,

(¢) for each Y there is i¥ < p divisible by ¢T such that:
if XT =TI then

rang(z" | [, 7 4+¢T)) C [dom(ers1)\dom(ey)]N[dom(fr41)\dom(fr)],
and if XT e {J,K}, (¢¥,z7,nY, 5 ,27) € P? then
rang(ZY | [i¥,iT 4+ ¢Y)) C dom(fyy1) \ dom(fy), and

vang(y™ [ [i¥,i" +¢T)) € (dom(ey1) \ dom(er)) U,
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() if XT =T and (¢¥,z7,h7,57,2Y) € P! then condition 2.3.2(I) holds
for (¢T, 2T, nY, g, 27 ,iT),

(k) if XT =7, (Y, zY,nY,5Y,27) € P? and hY € Hz”* then condition
2.3.2(J) holds for (z¥,hY, 57, 2Y "),

() if XT = K, 57 ¢ dom(¢") then ev.p1((57)ir) = ¢,

(1) ¥ € dom(cyy1) and if 2T is from a successor level of " then x¥ €

dom(fry1),
(v) rang(f¥ | {27 1i <i*}) Nrang(f7) = 0.

The definition is carried out as in 2.3.6. The new points are clause (¢) and
instances of clause () for Y such that g¥ C {xfﬁ i< i*}. In the second
case a potential trouble could be caused by the fact that the function cy is
defined on 77 already. But the definition 2.2(14) of H 3 was exactly what we
need to handle this: we may find suitable values for fy 1 | (2 [i¥,i¥,¢T)).
To deal with clause (¢) note that if hT € H>* then demand 2.3.2(J) for ¢
provides the needed candidates for values of fyq; if AT € H ;11* then the
definition 2.2(12) of Hﬁ works.

The functions ¢, f,, are as required. Oo.3.7

The demands (e)—(h) of 2.1(2) are easy now:

Claim 2.3.8 1. If a sequence (p; : i < ) C AP is increasing, § < X then
it has an upper bound q € AP such that dom(q) = cl(J dom(p;))).
i<d

2. Assume B < \T, cf(8) =\, § < A. Let (p; : i < &) C APgyq be an
increasing sequence and let ¢ € APg be an upper bound to (p; |w - B :
i < 9). Then the family {p; : i < 6} U{q} has an upper bound r such
thatr |w- 08 >q.

3. Assume that (B; : i < &) C AV is strictly increasing, each [3; is either
a successor or has cofinality A, & < X is limit. Suppose that ¢ € AP
and (p; : i < ) C AP is an increasing sequence such that

(Vi <0)(qlw- B <p; € APg,).

Then the family {p; : i < 0} U{q} has an upper bound r € AP such
that (Vi < 8)(p; <7 lw-B).
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4. Suppose that 61,02 < X are limit ordinals and (B : j < d2) C AT is a

strictly increasing sequence of ordinals, each 3; either a successor or
of cofinality . Let

(pij:(1,7) € (01 +1) x (d2+ 1)\ {(61,62)}) C AP
be such that
pij € APs,, i<i = pij<pyj, J<j = pij<piylw-p

Then the family {p; ; : (i,7) € (01 + 1) x (62 + 1) \ {(01,02)}} has an
upper bound r € AP such that (Vj < 62)(r [ w- Bj = ps, ;)-

Proof of the claim: 1) The first try may be to take the natural union of
the sequence (p; : i < J). However, it may happen that we will not get a legal

approximation, as ‘U dom(p;) does not have to be closed. But we may take
its closure cl( dog(zpi)) and apply a procedure similar to the one described
in 2.3.6 (succzgsésively at each element of cI( U dom(p;)) \ U dom(p;)) and
construct the required gq. = =

2)-4) Similarly as 1) above plus the proof of 2.3.7. O2.3.8

Now we apply [Sh 405, Appendix]: we find a “sufficiently generic” G C
AP which gives the T ¢,d we need (remember 2.3.5):

T ={n.:e€t? for some p € G}

where for € € [Aa, \a + \) we define 1. € “\ by:
v =n:(8) if and only if

Fpe@EF e MB+1),AB+1)+ AP E < <e & fP(e) =7).

This finishes the proof. W3

Remark 2.4 1. Theorem 2.3 is close to [Sh 50], which is a strengthening
of the construction of special Aronszajn trees. There essentially we
replace () + (6) by

(v) yi(lev(t;)), zi(lev(t;)) do not depend on i.
2. By the proof of 2.3(2), T" is A-complete.

3. We may add to 2.3(2):
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(c) T is special, i.e. there is a function d : |JT, — A such that
[e%

d(n) =d(p) = = <rpl
[Just in the definition of p € AP (see 2.3.2) add such dP : t# — A ]

4. The reader may wonder why we need the condition “h(z) has p pair-
wise disjoint members”. The point is that when we amalgamate p
and ¢ when p | a < ¢, it may happen that p gives information on

levels o, < g1 (for n < w), B = U an < «, q gives information
n<w
on the level 8, and when amalgamating the function f? gives infor-

mation on f on this level and f is supposed to be one-to-one on every
succr (7). So considering T € (t9)41, ¥ € (t*)a, when we try to define
f I rang(g | (B4 1)), some values are excluded.

Theorem 2.5 Assume that A\ = ™ = 2#. Then there is a forcing notion P
which is (< X)-complete of size AT and satisfies the A\t —cc (so it preserves
cardinalities, cofinalities and cardinal arithmetic) and such that in V¥ :

1. There is a p-entangled linear order T of cardinality A\ and density \.

2. Let o < p be a regular cardinal. There exist linear orders ', " of the
cardinality X\ such that for any uniform ultrafilter D on o the linear
orders (Z')? /D, (Z")° /D have isomorphic subsets of cardinality \T,
but T' +I" is p-entangled.

Hence there is a Boolean algebra B which is X -narrow but B° /D is
not XT-narrow for any uniform ultrafilter D on o.

3. There are a set R C )\, |R| = AT and functions c,d such that, letting
T+ = (XU R,<) (< is being initial segment), we have:
(a) c is a function from *> X to A,
(b) R={ny:a <At} (with no repetition), <p= {(na,np) : @ < B};
define
R ={(na, 11 < p):c; < AT, (o 11 < A\T) s increasing},

(c) for every € TL“)}\, ¢ <, and h € S(Ax Ax N), dz, is a function
from {y € R* : & <y} to A such that:

[dzpn(y) = dzpn(2) & 4,% € T‘,zM are distinct] implies
sup{a : 1, appears in y} # sup{a : N appears in z}
and for some t € TQ—E“] N TL“;\ and i* < p we have:
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(@) t; =yi Az, lev(ty) = lev(tx) fori > i*,

(8) (Ve < p)(3Hi < p)(c(ts) = e),

() for p ordinals i < p divisible by ¢ we have
(1) either there are §y < & < A such that

(Ve < O)(C60 < wite(lev(t)) < (&1 < zive(lev(t)))  and
h = ((c(tite), Yite(lev(?)) =0, zite (lev(t)) —C-&1) € < (),

(ii) or a symmetrical requirement interchanging y and Z.

PrROOF 1) We apply 2.5(3): let R,c,d be as there (of course we are in
the universe V¥ all time). We define the order <7 on Z = R by

y <z z if and only if
either ¢(y A z) = 0 and y(«o) < z(«a)
or c(y A z) # 0 and y(a) > z(a),
where a = lev(y A z).

Clearly <7 is a linear order of the density A, |Z| = AT. To show that it is
p-entangled suppose that y* € R (for a < AT, € < e(x) < p) are pairwise
distinct, u C e(x). Let y& = g, (for a < AT, e < g(x)). We may
assume that the truth value of “f(a,e1) < B(a,e2)” does not depend on
a < AT, For simplicity, we may assume that for each a < AT, & < &’ < g(*)
implies y& <g y<. Finally, without loss of generality we may assume that
if o < o' <At and g,¢ < e(x) then y2 <g y% (i.e. B(a,e) < B(/,¢’)). For
e<e(*),i<pand a < At let Ze(n)pe = y?'uﬂ'e(*) and 2% = (2% 17 < p).
Clearly each z® is in R*. Now for a < AT choose £(a) < A such that
28 | &(a) (for i < p) are pairwise distinct. Without loss of generality we
may assume that £(a) = £ for a < A*. There are ¥ = X possibilities for

(281 €14 < p), so we may assume that for all a < At

(zf‘[£:i<,u>:(xl-:i<,u>:i€T£M.

Let h & (0,04 1—0%) - e < e(%)) € =B (AxAx ), where £%is 0if ¢ € wand 1
otherwise. For some distinct a1, as < A* we have dz ,(2*') = dz ,(2°2). By

the properties of dz j, possibly interchanging a1, ae, we find ¢ < p, ordinals
<& <Xandte Tjw such that

(Ve<6(*))(z§‘;(*) N 252 20 4e = bi e(x)+<) and
(e < ()0 0 < 20 (3) < E00) -0 € 82, (9) ond

h = <(C(ti'€(*)+€)7Z@-g(*)-{-g( ) 5( ) 507 Zg(* +5(5) ( ) : 51) e < 5(*)>7
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where 8 =lev(t). Then aq-p + i-e(x) # ag-pu + i-e(x) (for i < ) and
(Ve < e(%))(y2rrHiet) <p gorntiet) i ¢ ¢ )

(by the definition of the order <7 and the choice of h), so using 1.2(7) we
are done.

2) Asin 1) above, we work in V¥ and we use 2.5(3). Suppose o < u. For
a set A C A we define the order <4 on R by

y <a z if and only if
either c(y A z) € A and y(a) < z(«)
orc(yAz) ¢ Aand z(a) < y(a),
where a = lev(y A z).

[Note that the order <z from part 1) above is just <(q}).]
Clearly <4 is a linear order. As in the proof of 2.5(1) one can show that it
is p-entangled. As =7 < \ we may choose sets A; C X for ¢ < o such that

(i) for each a < Atheset {i <o:a€ A; = a ¢ A,} has cardinality < o,
and

(i) if v C o, |v| <o, h:vU{oc} — {0,1} then there is & € A such that
VievU{o})la€e Ay < h(i)=1).

Fori<oletZ,= (R,<a,). PutZ' =Y 7,, 7" =7,, I =7"+7" = > I,
<o <o
So it is notationally clearer to let Z; = ({i} x R, <;), (i,y1) <; (i,y2) iff

Y1 <a; Y2, and T = ((0 + 1) x R, <¥), (in,y1) < (iz,y2) iff i1 < i or
(il =iy & Y1 <Ai1 yg).

Claim 2.5.1 Ifyo,y1 € R, yo <a, Y1 then that the set {i < o :yo <a, y1}
s co-bounded.

Proof of the claim:  Let t = yo A y1, Yo <4, y1. The set
u=:{i<o:c(t) e Ai = c(t) € Ay}

satisfies u C 0 & |o\u| < 0. If ¢(t) € A, then yo(lev(t)) < yi(lev(t)). Hence
Yo <a, y1 for i € u. If ¢(t) ¢ A, then yo(lev(t)) > yi(lev(t)) and y1 <a, Yo
for i € u. U2.5.1

Let m: Z” — [I Z’ be such that for y € Z,, 7(y)(i) is the element of
<o

Z; that corresponds to y; recall that all orders Z; are defined on R. Now, if

D is a uniform ultrafilter on o then 7/D : Z” — (Z')? /D is an embedding.

Thus both (Z")?/D and (Z"”)? /D contain a copy of Z”. Now we will finish

by the following claim.
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Claim 2.5.2 The linear order T =1 + 1" is p-entangled.

Proof of the claim:  Suppose that e(x) < o and (j&,y%) € Z for a < AT,
e < g(x) are pairwise distinct and u C e(x). As 27 < X wlog j& = j.. Let
{28 : ¢ < (o} be an enumeration of Y, =: {y2 : ¢ < e(x)} and let {i¢ : { <
£*} enumerate v =: {j: : £ < e(x)}. Wlog the sequences (2 : ( < () are
< g-increasing and pairwise disjoint (for a < A™) as each z may appear in at
most &(*) of these sequences. Moreover we may assume that {((a,&,¢,§) :
(Jer y&) = (g, z‘g)} does not depend on «, so (, = (* and by enlarging and
renaming instead ((j&', y&') : € < e(x)) we have ((ig, 2¢) : ¢ < (%, § < &) and
sou C ¢* x &*. Now, for each { < ¢* we choose ¢[¢] < A such that

(V€< &)elCl € A, & (§,0) €y

and we proceed as in earlier cases (considering h = ((¢[¢(],0,1) : { < (*) €
CAXAX A Ua.5.2

3) The definition of the forcing notion P is somewhat similar to that of the
approximations is 2.3(2).

Definition 2.5.3 A condition in P is a tuple p = (t,6,w,<,D,d,&,c) (we
may write tP, wP, etc) such that:

(A) w C A" s a set of cardinality < X, § is a limit ordinal < \; let wl* be
the family of all increasing sequences y C w of length u,

(B) t is a non-empty closed under initial segments subset of 02X of cardi-
nality < A,

(C) < is such that (t Uw, <) is a normal tree, <P| t is <, and for a € w,
bg{défU{yetzugpa}etﬂ‘s)\, and o # 3 = WP # b,
(D) c is a function from t to A,

(E) D is a set of < X pairs (Z,h) such that Z € t and h € |J S(AxAx\),
(<p

(F) d = (dzp, : (Z,h) € D), each dg, is a partial function from wl¥ to 57

with domain of cardinality < A,

(G) e=(ezh: (&, h) € D), each ez}, is a partial function from t[f“] x 0P to
{0,2} such that for (Z,h) € D:

4 Alternatively, let R be the disjoint union of R; (i < o) and use Z; = T; | ({i} x R;).
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(i) dom(ez ) 2 {(¥,7) : for some Zy, z1 € dom(dzp) we have
T<y<Z and vy =dgp(Z1))},

(ii) ify € t:[z“], T <ty <tz and ez p(Z, B) is defined then ez (9, ) is

deﬁned and ei,h(ga /8) < ei,h(za /8)}
(iii) if z € dom(dz ) and T < § < Z then ez p(¥,dz 1(2)) = 0,
and letting h = ((a?,al,a?) : e < ¢) we have
(iv) if (g, ) € dom(ezp), lev(y) = 6 and ez p(y, ) = 0 then

(Ve < ) (3 < p)(c(u;) =€) and
for u ordinals © < p divisible by ¢, for some £ < A
(Ve < O)(clyire) = o),

(v) ifz <y° <y, a <lev(y®)+1 = lev(y') < 67 and ez (', ) = 0,
then for p ordinals i < p divisible by C, for some & < A

(Ve < O(elyise) = @ & (-E+az =yi(ev(z"))),

(H) if ez (7, ) = ez n(Z,a) =0, 2y <; 2], -[2 <; 9] then clauses (a),
(B), (v) of 2.5(4¢) hold.

P is equipped with the natural partial order:
p<gq if and only if
tP Ctl, 6P <69, wP Cwl, P Cc?, DP C DY, and

(z,h) e DP = df, Cdi, &el) Cel,.
For a condition p € P and an ordinal o < AT we define ¢ = p | a by:
e Y =0 t1=tP wi=wPNa, <I=<P| 9, DI =DP 1 =cP,
o if (z,h) € DY then d? , =, | ()" and e, = e”, | (1)L x 69).

Observation 2.5.4 Ifp € P and o < A\ is either a successor or of cofinal-
ity A then p | @ € AP is the unique maximal condition such that p | a < p
and wP'* = wP N a. O

Claim 2.5.5 (Density Observation) Assume p € P.

1. Suppose n € *>X. Then there is q¢ € P such that

p<q, net!, wP=wi DP=DI dI=d".

35



nodi fi ed: 2001- 11- 12

revi sion: 2001-11-12

(462)

2. For each B € XT \ wP there is ¢ € P such that p < q and 8 € wi.

3 Ifze (P, <P)M, ¢ < pand h € C(\ x X\ x \) then there is ¢ € P such
that p < q and D9 = DP U {(z,h)}.

4. If (,h) € DP, & < §j € (wP)M then there is ¢ € AP, p < q such that
w? =wP and y € dom(dzp).

Proof of the claim: 1) We may assume that [tP N \| = p, as otherwise
it is even easier. So let (v5 : B < i) enumerate t? N°°\. Put 67 = max{d? +
w,lg(n) + w} and fix p € %\ such that n < p. Next, by induction on
v € (0P, §9] define sequences yg for B < p and functions ¢, such that

(@) ey {yg:B<pu}— A wvjeN
(b) P <yv<m<d = VﬁQVEOQVgI.
c) Suppose that (Z,h) € DP, h = ((a2,al,a?) 1 e < ¢) € S(A x X x \),
[ €)1 €
7<= (v i < p) CPOPN, (7,0) € dom(el,) and ¢, (7, @) = 0.
Then
(a) for p ordinals i < p divisible by ¢, for some & < A
(V) < O (veginy)) = 0 & VL (67) = €€+ ab),
(B) for each v € (67,99) we have
(V€ < p)(Fi < N)(Cv(’/g(i)) =¢)  and
for u ordinals ¢ < u divisible by ( there is £ < A such that

(V5 < Oley (Vi) = 0f & Vil = C- &+ aj),

(v) (V¢ < p)(Fi < u)(c(;q(ugé)) = ¢) and for pu ordinals i < pu
divisible by ¢

(Vj < C)(CM(V.?EIH]’) = af).
The construction is easy and can be done like the one in 2.3.6. Next we put

=1 U{p 7y < U{]: B < u o <y <),
wl=wP, DI=DP, di=dP.

The function ¢? is defined as any extension of ¢” U {cy : 67 <y < §7} (note
that the possibly non-defined values are that at some initial segments of p).
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For a € w? let b be ng for beta such that b5, = vg. This determines the
tree ordering <7 of t9 U w? (remember 2.5.3(C)). To define el , we let

el DéP

z,h = “T,h°
dom(ef ;) = dom(ef ;) U{(y,¢) : (yg(Z i< ) > = (Vg i< ),
(07,69, (7,0 € dom(ef ) },
v(y') = 6 then el ,(9,¢) = e} (¥, 1).

Now one easily checks that the condition ¢ defined above is as required.

2) Choose v € %X\ such that v | 1 ¢ tP. Let

Y=
S
ifz <y <y, (¥,1) €dom(el ), lev

=06 t1=tPU{rv|v:v<dé’} and w?=wPU{B}.

Define <7 by letting b4 = b2 for a € wP and bqﬁ ={v | e:e < d?}. Finally
put DY = DP, dqjh:dghandeqjh:eqjh.

3) Let t7 =P, wl = wP, ¢? = P, d%,vh, = dg,ﬁ, if (z',h') € DP, d%,h is
empty if (Z,h) ¢ DP, and similarly for eZ, ,,.

4) Let h = {(a?,al,a?) : ¢ < ¢). Declare that 67 = 6 + w and fix an
enumeration (vg : B < pu) of P N\, Let ¥ = (va(s) : @ < p) be such that
7 < 7 (€ w). Next, like in (1) above build ¢y, vy for y € (07,69, B < p
satisfying demands (a)—(c) there plus:

(c) (6) for each v € (6P,07)

(V€ < p)(3i < M)(Cv(Vg(i)) =¢) and

for p ordinals ¢ < p divisible by ¢ there is € < A such that
(%) < ey ipy) = 0 & VIEE () = C- € + ),

(e) (V¢ < w)(Fi < ,u)(c(gq(ugréi)) = ¢) and for pu ordinals i < p
divisible by ¢
. q
(V7 < C)(epa (V3(i45) = 0)-

Next we put dom(df ) = dom(dy ;) U{y}, di, 2 d%,, di,(y = &" +2,
i, = dy  for (7',h') € DP\ {(z,h)}, and D7 = DP. The functions ¢
and el, ,, (for (Z',h') € D) are defined as in (1), but dealing with (z,h)
we take into account the new obligation: d2 ,(y) = 6” + 2 (and we put the
value 2 whenever possible). There is no problem with it as we demanded
clauses (c)(d,¢). Now one easily checks that ¢ is as required. 0255
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Claim 2.5.6 The forcing notion P is (< X)-complete, i.e. if p = (p' : i <
i*) C P is increasing, i* < X\ then p has an upper bound in P.

Proof of the claim: It is easy: the first candidate for the upper bound is

the natural union of the p"’s. What may fail is that the tree |J t** does not
1<*

have the last level. But this is not a problem as we may use the procedure

of 2.5.5(1) to add it. O

Claim 2.5.7 (The Amalgamation Property) Ifa < A" is either a suc-
cessor ordinal or of cofinality A\, p,q € P, p | a < q and w? C « then there
isr € P such that p <7, ¢ <r and w" = wP Uw?.

Proof of the claim: By 2.5.5(1) we may assume that 67 < §9. Moreover
we may assume that |wP \ a] = p (as otherwise everything is easier). Let
0" = % and w" = wP Uw?. By induction on v € [6?, 7] choose sequences
(vg~ : f € wP\ a) and functions c, such that

o) vg~ € YA are <—increasing with ~,
By
(B) vaor =by, vpory1 17
[note that (vg s : f € w” \ ) is with no repetition],

(v) ¢y : {vge: Bewl\a, £€[P,v)} — X are continuously increasing
with 7, ¢sp41 is ¢ restricted to {vg s : f € WP \ o},

and for each (Z,h) € DP, h = ((a2,0l,a?) : e < (), z € dom(dl,) \
dom(d? ,) and i* < p such that z; > « for ¢ > i* we have

(6) for each v € [0P,d7), for p ordinals i € [i*, ) divisible by (, for some
E<A

(Ve <O ert1(Vzipey) = al & Vaeer+1(7) = C- €+ ap),

(e) for p ordinals i € [i*, u) divisible by ¢

(V& < C)(C5q+1(’/2i+s,5q) = ag)’

(O T <g<zlev@) =0 § <7 levy!) = &+ 1, (7,d2,(2) €
dom(el ) and el , (¥, d> , (%)) = 0 then for p ordinals i € [i*, p) divis-
ible by (¢ there are £y < & < A such that

(Ve <O)(C- &0 < i (0") < ¢ & < 9ite(0”))  and

(Ve < O Waipep0) = 02, Yipe(07) = C-Eotag, yiye(8”) = C-E1+al,
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(¢) for each v € (87, 67], for every € < p there are p1 ordinals ¢ < p such that

Cr+1(Vay) = €.

[Our intension here is that by = vgse and ¢ 2 csa.] We have actually
demands, each of which can be satisfied by u pairwise disjoint cases of size
¢ < p. So we may carry out the procedure analogous to that from the end
of the proof of 2.3.7. Note that in handling instances of clause ({) we use
demand 2.5.3(G)(v) for ¢ (applicable as d? , (z) < 67) and for clause (§) we
use 2.5.3(G)(iv). After the construction is carried out we easily define a
condition 7 as required. Oo.5.7

Claim 2.5.8 The forcing notion P satisfies the A\* —cc.

Proof of the claim: Suppose that (p, : @ < AT) is an antichain in P.
By passing to a subsequence we may assume that otp(wP*) is constant and
that the order isomorphism of wPe, wP# carries the condition p, to pg (so
tPe = P8, DPe = DPB etc). Moreover, we may assume that the family
{wP> : a < AT} forms a A-system with kernel w* (remember A\ = 2# = ).
Now we may find an ordinal a* < A" of cofinality A and ag < a1 < At such
that wPeo C o, wP>1 Na* = w* and w* is an initial segment of both wPeo
and wy, . Note that then p,, [ a* > pa,. So applying 2.5.7 we conclude
that the conditions py,, po, have a common upper bound, a contradiction.
U2.5.8

To finish the proof note that if G C P is a generic filter over V then, in
V|[G] we may define the tree T by:

T=MMNU{ne:a< AT}
where for o < At we define 7, € *\ by
ne=J{r e x: (B e ) v en)}

(and ¢, d are defined similarly). By 2.5.5 and 2.5.6 (no new p—sequences of
ordinals are added) we easily conclude that these objects are as needed. Wy 5

We may want to improve 2.3(2) so that it looks more like 2.5(4); we can
do it at some price.

Proposition 2.6 Let J* be a linear order, J* = Y. I, each I, a \-
a<it
dense linear order of cardinality X (as in the proof of 2.3(1)). Then w x J*
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is a AT-like linear order such that every j € I which is neither successor
nor the first element (under <z) satisfies

cd{i:i<sj},<g)=A

and each member of w x J has an immediate successor. [ |

Definition 2.7 For a \T-like linear order J, a J-Aronszajn tree is T =
(T, <p,lev) such that

(a) T is a set of cardinality AT,

(b) (T, <) is a partial order which is a tree, i.e. for everyy € T the set
{x : 2 <py} is linearly ordered by <r,

(c) lev is a function from T to J, T; =:{y € T : lev(y) = j},

(d) for every y € T, lev is a one-to-one order preserving function from
{z:x<py}lonto{jeT:j<glev(y)}, soy | jis naturally defined,

() fory e T and j € T, lev(y) <z j there is z such that y <p z € T,
lev(z) = j,

(f) {y:lev(y) = j} has cardinality X,

(g) normality: if y # z, both in T}, j is neither successor nor the first
element of (J,<7) then {z:x <py} # {x:z <p z},

(h) fory+#z €T thereisj € J such thaty | j==z|j and
(Vi) <gi = yli#zli)
[we write y | j =z | j for z ANy].

Theorem 2.8 Assume that A = ut = 2 and {y (the second follows e.g. if
w> 2, — see [Sh 460, 3.5(1)]) and T is as constructed in 2.6. Then there
are a J-Aronszajn tree T and functions f, ¢, d such that

(a) f, ¢ are functions from T to A, if y is the successor of j in J, y € T;
then f is one to one from {z € Tj : z | i = y} onto A

(b) for every & € T (= jngj[”]) and h € HE?C, ¢ < p we have dgzp, :
TQ—E“] — A such that:
if dz 1 (Z) = dz 1 (y) then for somet € TEM we have
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(Oé) tl =Y A Zis

(8) lev(t) < lev(g), lev(t) < lev(z),

(v) (Ve <p)(3"i < p)(elts) =€),

(6) for w ordinals i < p divisible by ¢ we have

h(¢) = ((c(te), f(yi I (a+7 1)), f(zi | (a+7 1)),

where o = lev(t).

PROOF Like 2.3. [ |

3 Constructions Related to pcf Theory
Lemma 3.1 1. Suppose that

(A) (N :i < 0) is a strictly increasing sequence of reqular cardinals,
0] < Xi < XA =cf(X) fori < and D is a o-complete filter on
d containing all co-bounded subsets of & (follows by clause (D);
hence cf(8) > o),
(B) tcf(IT Ai/D) = A, i.e. there is a sequence (fo : v < X) C [] N\
<6 <6
such that

(i) a < B < X implies fo <p f3,
(i) (Vf € ,1;[5)\1‘)(306 <M(f <p fa),

(C) sets A; C 6§ (for i < k) are such that the family {A; : i < K}
is o-independent in P(5)/D (i.e. if u,v are disjoint subsets of k,
luUov| <o then N A\ U Aj # 0 mod D),

i€ JjEv

(D) {fali:a<AHS7 <\ for eachi <.
Then Ens, (A, k).

2. The linear orders in part (1) have exact density u =: > \; (see Def-
1<0

inition 1.9) and they are positively p-entangled (see Definition 1.10).

Moreover, if (fo : a < \) is as gotten in [Sh 355, §1] (i.e. it is p-free)

then they have exact density (u*, u™, p).

Remark: By [Sh 355, 3.5, if 6 < A\g and maxpcf({)\; : i < a}) < A\,
(for @ < §) then we can have (D); i.e. we can find f, (for a < \) satisfying
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(i) + (ii) of (B) and (D). If in addition A\ € pcf,_ ompleteiNi @ < 0} (but
A & pef({\; 1 i < a}) for < A) then we can find a filter D as required in
(A) + B). Soif p > cf(p) =k anda < p = |a|f < p, then we can
find A = (\; : i < k) as above and A strictly increasing with limit .

Proor 1) LetZ = {fy:a < A}. For each ( < k we define a linear
order <¢ of Z. Tt is <j‘4<, where for A C § we define <% by:
fa <4 f3 if and only if

(Fi <0)(fali) # f5(i) & fa Ti=fs i & [fa(i) < fo(i) <& i€ A]).

Let u,v be disjoint subsets of k, |uUv| < o and for each ¢ € u U v let
to = fy(e,) be pairwise distinct (for a < ). We should find a < 3 < A as
in 1.1(1). Let

9o (i) = min{f, (i) : e €uUv},
o =: min{i < §: (fy(a) [i:€ €ulv) are pairwise distinct}.

Since |uUv| < o < cf(d), iq < d. Clearly go € [] A;. Without loss of
1<0
generality i, = * for every a < \. Let

B=1{i<d§:(VE<N)(Fa < N(gali) > )}
Claim 3.1.1 Be D.

Proof of the claim: Assume not, so 6 \ B # () modD. For i € §\ B
let & < A, Bi < A exemplify i ¢ B, i.e. a € [Bi,A) = gal(i) < &. Define
h e [ A\ by:

<8

) &+1 if ied\B
M”‘"{o if icB.

Now (fa/D : a < A) is cofinal in [] A;/D (i.e. clause (ii) of (B)), so there
1<d
exists 8 < Asuch that h < fg mod D. Without loss of generality sup 3; < 8
ic5\B
(remember that 6 \ B C 4, [6] < A =cf(A) and (Vi € 6 \ B)(B; < A)). Since,
for each € € uUw, vy(e,a) (for o < A) are pairwise distinct and § < A,
there exists @ < A such that (Ve € uwUv)(vy(e,a) > 5). Without loss of
generality 8 < « and hence sup (; < a. Now by the choice of o we have
i€\ B
(Ve € uU)(fs < fy(e,a) mod D) and for every i € 0\ B, ga(i) < &;. Hence
Ee=:{i <6: fg(i) < fy(c,0)(i)} € D and as D is o-complete and o > [uUv|
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we get (| E. € D. By g,’s definition and the choice of 3, it now follows
eculUv

that {i < 0 : h(i) < go(i)} € D and thus
(0\B)N{i <d:h(i) < ga(i)} #0 modD.

Choosing i in this (non-empty) intersection, one obtains g, (i) < §; < §;+1 =
h(i) < go(7) (the first inequality — see above, the third equality — see choice
of h, the last inequality — see choice of z), a contradiction. So B € D,
proving the claim. O3.1.1

Remember that [{f, [7: a < A}| < \; for each i < §, and cf(]] \;/D) =

1<
A, D contains all co-bounded subsets of §. By our hypothesis,

A= ()40 ((6\ A) # 0 mod D,
E€uU g€V
soC=:{i<éd:1*" <i}NANB # 0 modD, and one can choose i € C.

For each § < A; choose ag < A such that g, (i) > §. Then easily for some
unbounded S C \; we have:

L <&eS&ke,eoculn = f“/(t?l,agl)(i) < f,y(@’a@)(i).

Without loss of generality the sequence <(f7(57a5) li:e€uUv):£€S)is
constant (by hypothesis (D) of 3.1(1)). The conclusion should be clear now
(look at the definition of <7 and the choice of ¢ being in (] A\ U Ap).

IS

2)  We will state the requirements and prove them one by one.

Claim 3.1.2 The linear orders constructed in the first part have exact den-
Sty L.

Proof of the claim:  Let us consider Z = (Z <4). For each i < 0 choose
a set X; C X\ such that | X;| < N and {fo li:a<A}={fali:ac X;}.
Then {fo: a € U X;} is a dense subset of (I <4) (and its size is < p).

Suppose now that J CZ, |J| = X and assume that Jy C J is a dense
subset of J, |Jo| < p. The set X = {a < A: fq € J} has cardinality A, so
it is unbounded in \. Let i(x) = min{i < ¢ : \; > |Jo|}. Then

(Vi > (%)) (v =:sup{fa(i) + 1: fo € To} < N\i)
(as ; is a supremum of a set of |Jp| < A; = cf(\;) ordinals < ;). Let

vi = 0 for 4 < i(x). Then (y; : i < d) € [[ A\; and, as (f, : @ < A) is cofinal
i<6
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in ([] A\i,<p), for some a(x) < A we have (y; : i < 0) <p fa(x). Since
1<d
(Vo € X\ a(+))(far) <D fa), We have

(V€ X\ a(x)({i < 6: % < fuli)} € D).

Consequently, for each a € X \ a(x) we find iy, € (i(%),0) such that f,(is) >
Vi - As A =cf(X) > |d|, there is j € (i(x),d) such that the set

X ={aeX:a>ak) &iy,=j}

is unbounded in A. Since [{fo | j : @ < A} < Aj < XA = cf(N), for some
unbounded set X” C X’ and a sequence v we have (Vo € X")(fo | j = v).
But now note that the convex hull of {f, : @« € X"} in (Z,<4) is disjoint
from Jpy, a contradiction. O3.1.9

Claim 3.1.3 (Z, <) is positively o-entangled.
Proof of the claim:  Like in part (1).

Claim 3.1.4 If the sequence (fo : o < A) is u—free and the set A C ¢
is neither bounded nor co-bounded then the linear order (Z,<4) has ezxact

density (p*, u™, ).

Proof of the claim: Suppose that J C T is of size > pu™. By 3.1.2 its
density is < p. For the other inequality suppose that Jj is a dense subset
of J of cardinality < u. Let

J' ={fa€J: foreach i< there are 81, B2 such that fg,, fz, € J and
faoli=fali=fg, 1i& fg <a fa<afs)}

Plainly |J \ J'| = u, so |J'| > pt. Since § =: |Jy| < p and p is a
limit cardinal, we have o = (6 + [6))T < p. Let X = {a : f, € J'} and
choose X7 C X of size 0. Now we may find (B, : @ € Xj) € D such
that for each j < ¢ the sequence (f,(j) : @ € X & j € B,) is strictly
increasing (or just without repetitions). Then for some i(x) < 0 the set
Xy ={a € X :i(x) € By} has cardinality 0. But then the set

X ={ae Xy:-(3fs € Jo)(fp I (i(x) +1) = fo I (i(x) + 1))}

is of size o (remember |Jy| < 0 = cf(0)), a contradiction with the choice of

J'. Os.1.4
This finishes the proof of the lemma. s
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Lemma 3.2 Suppose that a is a set of reqular cardinals satisfying

la|" < min(a), X =maxpcf(a) and [§ €a = 0> (maxpcf(dNa))<7].

1. Assume that k = |a|, K = k<7 and for e < K, J is a o-complete ideal

on a extending Joy[a] and a; C a are pairwise disjoint not in J. If
2% > X or just 2% > sup(a) then there is a o-entangled linear order of
power .

”

2. We can replace “xk = |a|” by “cf(supa) < k7.

Clearly in parts (1) and (2) we have: a has no last element and |a| >
cf(supa) > 0.

3. If in (1) we omit the a., still there is a positively o-entangled linear
order of power .

4. The linear order above has the exact density p =: supa. If there is a
p-free sequence (fo : a < A) which is <;_,|q~increasing and cofinal
(see [Sh 355, §1]) then the linear order has the exact density (u™, p)
(see Definition 1.9).

PrOOF 1) It follows from part (2) as cf(supa) < |a| < k.

2) Let (fo:a < A) be <j_ (q-increasing cofinal in []a/J<x[a] with

H{fa10:a< A} <maxpcf(anb) for f€a

(exists by [Sh 355, 3.5]). For each § € a we can find sets Fy ¢ (for ( < k)
such that Fp¢ C {fa | 0 : o < A}, and for any disjoint subsets X,Y of
{fa 10 :a < A} of cardinality < o, for some ( < k, Fp N (X UY) =X
(possible as k = k<7 and 2% > [{f, | 6 : @ < A}| — by [EK] or see [Sh:g,
AP1.10]). Clearly a has no last element (as J°? C J and by the existence
of the a.’s) and cf(supa) < &, so there is an unbounded b C a of cardinality
< k. As a can be partitioned to x pairwise disjoint sets each not in J (and
JP4 C J), we can find a sequence {(fy,Cy): T € a) such that

e foreach T € a: Oy €a, T >0y, (v <k, and
e foreach § €b, ( <k theset {Y €a:0y =06,(y =(}is # () mod J.

Now we define a linear order <. on {f, : @ < A} as follows:
fa <et f3 if and only if for some T € a we have

fal(@nX)=fgl(@an), fa(Y) # f3(Y) and
fa(T) < f5(T) < falbr € Foyp iy
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Readily <. is a linear order on the set Z = {f, : @ < A}. We are going to
show that it is as required (note that in the definition of f, <¢ fg we have
fa 10 = fg 16y as Oy <T). Suppose that e(x) < o, u C e(*),v = (*) \ u,
to = fy(e,a) (fore <e(x), a < A) and y(¢, @)’s are pairwise distinct. For each
a < A take 0, € b such that {fyc ) [ 0o : € < &(*)} is with no repetitions
(possible as () < o < cf(supa) < K, b C a is unbounded). Since A is
regular, A > K, we may assume that for each a < A, 0, = 6* € b. We have
that [{fo [ 6*: @ < A} < maxpcf(and*) and (maxpcf(anf*))<? < 6* and
hence we may assume that for some (g. : € < (x)):

(Va < A)(Ve < e())(fyea) 107 = ge)-

Let X ={g- e €u}, Y ={g- : € € () \ u} and let { < x be such that
Fy- ¢ N (X UY) = X. Like in the proof of 3.1 one can show that

{pea: (V€ <p)({a <A:galp) > & =A)} =amodJ,
where gq (1) = min{f, o) (1) : € < e(*)}. Thus we can find T € a such that
0* =6y, ( =Cy and (V& < T)({a < A:ga(T) > &} = A). Next, as in 3.1,
we can find o < A (for € < Y) and S € [Y]¥ such that for each £ < Y we
have € < ga,(Y), (V¢ < &)(a¢ < ag) and

(Ve < e(9)(VC < ) (fyeiae) (1) < gae (1))

and the sequence <(f,y(€,a§) [T:e<e*): €€ S> is constant. Choose any
&1,82 € S, & < & and note that for every € < £(x) we have

fy(a,ozgl) I T = f'y(e,a52) I T, f'y(e,agl)(r) < fv(a,aEQ)(T),

and fv(e,agl) [ Oy = ge = fv(&a@) I Oy. Thus ag, < ag, satisfy the condition
given by entangledness for ¢ ’s.

3) Let (fa:a < A) be as in the proof of part (2). We define a linear order

<pet 01 { fo 1 @ < A} as follows:
fa <pet f3 if and only if for some T € a we have

fal(@nY)=fgl(anX) and fo(T) < f5(T).
The rest is even simpler than in the proof of part (2) after defining <.

(remember 1.2(6)).
4) It is similar to the proof of 3.1(2), noting that

if f¢=(f!:a < \)is <;-increasing cofinal in [Ja for £ = 1,2,
A =cf(\) and f!is p-free
then for some X € [)\])‘, 21 X is pfree. [ I
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Proposition 3.3 1. Assume

(a) Ensy(\;, ki) fori<§é,

(b) A; are regular cardinals fori < 6, (\; : 1 < ) is strictly increasing,

o< Ao,
(c) J is a o—complete ideal on § extending JP4,
(d) Kk <TF({(k;:i<d)) (=sup{|F|T:FC [[ K and f #g€ F =
<9
f#59}),
(e) II N\i/J has the true cofinality X as exemplified by {fao : @ < A}

1<6
and for each i < 6, N\j > [{fa [1:a < A}<°
(if for each i, max pcf({\; : j < i}) < A; then we have such f,’s).

Then Ens, (A, k).

. Assume that in part (1) we omit (d) but in addition we have

(f) foreachi < 9§, ki > [{fali:a <A}

[and we have such fo’s e.g. if k; > maxpcf({\; : j < i})/, or at least
liminf(k;) = sup A;, or
J i<d

(f’) 0 can be partitioned® to |6| many J-positive sets and for each
i <6 for J-almost all j < 6 we have k; > |[{fa 17 :a < A}

(if Kj strictly increasing this means “every large enough j”).

Then there is a o-entangled linear order I of cardinality \.

. Assume (f’) or (f) + (g), where

(g) there is a decreasing sequence (B. : € < o) of elements of J* with
empty intersection.

Then in (2) we can get: T = Ty + Iy such that for any uniform ul-
trafilter D on o the orders (Z1)? /D, (Z3)? /D have isomorphic subsets
of cardinality X (see 1.8 for a conclusion,).

. The linear order has exact density p =: sup \;, if (fo : @ < A) is p—free

<6
even exact density (u,...).

5. In 3.3(1) we can weaken clause (d) to:

°If k; is non-decreasing then partition to cf(d) sets suffices.
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(d)~ for some F C [] &4, |F| = k and for every F' C F of cardinality
1<0
< o we have

{i<6:(g(i): g € F') is with no repetition} € J*.
6. In 3.3(2) we can replace (f’) by

(®) there is h: 6 — & such that i > h(i), k; > |{fa [ h(i) : @ < A}
and for every i < 6, {j <46 :h(j) >i} € JT.

PrROOF  Similar. (About part (3) look at the proof of 2.3(3)). However
we will give some details.
1) As Ens,(\;,k;) (by clause (a)), we can find linear orders <%, of \; (for
o < k;) such that the sequence ((\;, <%) : a < ;) is o-entangled. By clause
(d) we can find g¢ € [] &; (for ¢ < k) such that

<9

e<(<k = {i<d:9:(1) =gc(i)} € J.

Now for each ¢ < k we define a linear order Z, = (F, <f) with the set of
elements F' =: {f, : @ < A} as follows:
fa <¢ f3 if and only if for some i < § we have
fa(i) 7& fﬁ(i)a fali= fﬁ I 7 and fa(i) <;<(z’) fﬁ(l)
It is easy to check that <Z is a linear order of F'. For the relevant part of
(4) note that its density is < {fa [i:a < Xand i <0} =p=: > \i. As
<9

in the proof of 3.1,

A= {i<d:Af e [[A) i =Hfali) :a <X & f = fali}])} =6modJ]

Jj<i

and for ¢ € A let f* exemplify i € A. If G C F is dense, |G| cannot be <
as then it is < \;(,) for some i(*) € A and so for some 7y < A;(,) for no o < A
is

thus proving p = dens(Z¢). The part “if {f, : o < A} is p-free then any
J C IZj of cardinality > p has density p (i.e. has exact (u™, p)-density)”
can be proven similarly.

Finally “(Z¢ : ¢ < k) is o-entangled” is proved as in the proof of 3.1. Assume
uUv=c¢e(x) <o,unuv=1_0,and (. < k for ¢ < £(x) are pairwise distinct.
Now

A=:{i <d:(g-(i) : € < e(x)) are pairwise distinct} # ) mod J
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(as J is o-complete, (d) = (d)7). We continue as in the proof of 3.1 (only
with A as here) and using ((\;, <%,) : a < K;) is o-entangled.
2) First we assume clause (f). As Ens,()\;, x;) and k; > |II;| where II; =:
{fa 1'i:a < A}, we can find linear orders <i] of \; (for n € II;) such
that ((A;,<;) : n € II;) is o-entangled. We define the linear order <* of
F =:{fy:a <A} as follows:

fa <* f3 if and only if for some i < § we have

foz(i)#fﬁ(i% foz ri:fﬁ M and foz(i) <§fam' fB(Z)
The rest is as in 3.3(1).

Next we assume clause (f’) instead of (f). So let (A; : i < §) be a partition
of § with every A; in J* and so necessarily

Al =:{j € A : r; > |IL;|} = A; mod J.
Then we can choose® a function h such that
(®) h:6— 0, h(i) <i, Ky > || and for every i < & we have
{i<d:n(j)>ite g
Let ((Ai, <) : m € () be a o-entangled sequence of linear orders. Now

we define a linear order on F' =: {f, : a < A\}:
fa <" f3 if and only if for some i < § we have

foz(i) # fﬁ(i% Jali= fﬁ [4, and foz(i) <jfa[h(i) fﬁ(Z)

3) Without loss of generality, for each £ < o + o the set Je =: {a < A :
fa(0) = &} has cardinality \. Let F = {fo: a < A & fo(0) <o +o0}. We
can find B. € J* (for € < 0), decreasing with ¢ and such that (| B. = 0

e<o

and in the proof from (f’) replace (®) by

(®") h:d — 0, h(i) < i, ki > || and for every i < 6, § < o+ 0 we
have
{7 € Be:h(j) zi} e J7,

6 Actually we can replace the assumption (g) (in 3.3(3)) by the existence of such .
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and define <* as
fa <* f3 if and only if for some i < § we have

fa(i)#fﬁ(i)v fa ri:fﬁ [, and _
=0 = ful0)< f5O)], [0<i€ B = fali) < e fo@)] and
[0 <1 ¢ Bfa(O) = fa(i) < fﬁ(z)]

The rest is as before (we can replace o by other cardinal > o but < \g).

4)
5)
6)

For 3.3(1) see in its proof, other cases similar.
Really included in the proof of 3.3(1).
Really included in the proof of 3.3(2). W3

Proposition 3.4 1. Assume that:

2.

(a) Ens, (N, pi, ki) fori <a,

(b) (N i < 9) is a strictly increasing sequence of reqular cardinals,
209l < Ao,

(c) J is a o-complete ideal on § extending JP9,
(d) k< Tf({Ki:i<8)), 'Zé)\i <pu <A p=cf(u) and
1<

(Voo < p)(le] = < ),

() F={fa:ax<A}C 1;[5>\i, fa #5 f3 for o B, and

{fa Tis o < A7 < pug,
(F) if pf = cf(ul) < Xi, A€ J" then th('le_[AMg/J) = 1 is impossible,
(8) (Vo< p)(|af=7 < ).
Then Ensy (A, i, k).
Assume in addition
(h) ki = [{fa li:a <A},
or at least

(h?) cf(0) = w and liminf; k; = sup A;,
1<d
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or at least

(h”) there is h : § — § such that i > h(i), ki > [{fa [ h(i) : @ < A}
and 0 = limsup h(7).
1<d
Then there is a (p, 0)-entangled linear order I of cardinality A.

3. Suppose also that

(i) we can partition § into o sets from JT (or clause (g) from 3.3(3)
holds).

Then we can get:  for any uniform ultrafilter D on o, Z°/D has two
isomorphic subsets with disjoint convexr hulls of cardinality \.

PrROOF  Similar proof but for reader’s convenience we will present some
details.

1) We repeat the proof of 3.3(1) up to proving entanglness. To show
“(Z¢ - ¢ < k) is (1, 0)—entangled” suppose that u Uv =e(x) < o, uNv =0
and ((- : € < e(x)) is a sequence of pairwise distinct ordinals < x and
(v(B,e) : B < e <e(x)) C Ais such that

(Ve <e(®))(VBL < B2 < AN)(V(Br,€) # 7(B2,€))-

We want to find 81 < 2 < p such that

(Ve <e(®)(v(Br,€) <¢. V(P2 e) & € €w)
Claim 3.4.1 Assume that
() (N i< d) is a strictly increasing sequence of reqular cardinals,
(B) J is a o-complete ideal on § extending J29,

(7) a sequence f = (fo:a<A) C [ \; is < j—increasing,
i<d

(6) %u <p=cf(p) <A and (Voo < p)(jo|~7 < p),

(¢) one of the following occurs:
(i) 2100 < X, or
(ii) f is u-free,

(Q) if p < p; fori<é and A€ J* then tcf(AHA,ui/J) = p 1s impossible,
1€
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(0) a sequence (y(B,¢e) : < p, € <e(x) <o) of ordinals < X\ satisfies
(Br,e1) # (B2,e2) = (Br,e1) # (P2, €2)-

Then there are a set X € [u]"* and a sequence (h. : e < e(x)) C [[ \; such
<6
that

(a) for each e < e(x) the sequence (y(B,¢) : f € X) is strictly increasing,
(b) (V8 € X)(Ve < £(6)) () < Do)

(c) (he(i) 1 <) is the <j-eub of (fy5.) : B € X),

(d) B* ={i<d: (Ve <e(x))(cf(he(z)) > pi)} = mod J.

Proof of the claim:  Since (Vo < p)(|a|<? < p) and cf(u) = p we know
that for some X € [u]#* we have

(Ve < e(x))(the sequence (y(5,¢) : B € X) is strictly increasing).

[Why? For 5 < u, € < e(x) define f(f3,¢) as follows:

if there exists ¢ such that v(d,¢) > v(B8,¢) and [v(8,¢),v(d,¢)] N
{v(a,e) : a« < B} = 0 then f(B,¢) is this unique 4,
otherwise f(8,e) = —1.

By Fodor Lemma, there is a stationary set S C p such that sup f[S xe(x)] <
p. Since |a*™) < u, on a stationary set X C S the sequence (f(a,¢) :e <
(*)) does not depend on «. This X is as required.]

By renaming we may assume that X = pu. Consequently, for each & < (%)
the sequence (fy3e) : B < p) is <j-increasing. Since u = cf(u) > 20l
or the sequence is u-free, we may use [Sh 355, §1] to conclude that it has
a <j—eub, call it h.. We may assume that, for each i < §, h.(7) is a
limit ordinal. Since h, <j (X\; : i < 0), wlog (Vi < §)(he(i) < \;). Also
= tcf([1 cf(he(d))/J) and cf(he(i)) < he(i) < Ai, so by the assumption

1<6
(e) we have

{i <0 :cf(he(i)) < pi or maxpcf({\;:j <i} <cf(he(i))}) =0 mod J.
Since J is o-complete we conclude
B*={i<d: (Ve <e(x))(ct(he(i)) > pi)} =0 mod J,

finishing the proof of the claim. O3.4.1
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Note that we may assume that for some i® < §, for every 3 < u the
sequence (fy(g,e) [ 1% : € < (*)) is with no repetition and does not depend
on 3. Now we may apply 3.4.1 to find X € [u]* and (h. : € < (%)) as there.
We shall continue like in the proof of 3.1 with some changes, however. We
let

Gi={{fype():e<e):8<prC [ he(d), and
e<e(x*)
B={ieB*: foreach (§ e <&(x)) € [[ecp) he(i)
there are y many ordinals # < u such that
(Ve < e(x))(& < fype) (@)}

We have to show the following.
Claim 3.4.2 B =§ mod J.

Proof of the claim: Assume not. Then, as B* = § mod J, necessarily
B*\ B # () mod J. For each i € B*\ B choose a sequence (£ : ¢ < g(*)) €
[T he(i) and an ordinal 3; < p exemplifying i ¢ B. Thus
e<e(%)
if i € B*\ B and § € [B;, ) then (e < e(%)) (L > fr(8,e)(9))-
For € < g(x) define a function h® € ] h.(i) by

1<0
B (i) = € +1 if i€ B*\ B,
10 if ied\B*orieB.

Now, for each ¢, for every sufficiently large 8 < p we have h® <j fyp.)-
Consequently, we find 5* < p such that

€< 6(*) & B e [B*HU‘) = h° <J f’y(ﬁ,e)'
But the ideal J is o-complete, so for each 5 € [5*, u)
Bg =:{i <d: (Ve <e(x))(h*(i) < fype)(i))} = 0 mod J.

Now we may take 8 € [3*, u) and then choose i € Bg N (B* \ B) and get a
contradiction as in the proof of 3.1.1. O340

Remember that

{(fype Tiie<e(n) i B<ul < {fuliza <A< <p

(not just < \;), see clause (e) of the assumptions of 3.4(1). Hence there is
B® < p such that

(Vi < O)({(Ffyp0) 1716 <e(x)): BE B, )} = p).
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For each i € B (defined above) we know that (Ve < e(x))(cf(he(7)) > p4),

and hence [[ hc(i) is p;-directed and the set
e<e(x*)

{<f7(6,€)(i) e < 8(*)> : /8 € [5®aﬂ)}

is cofinal in [] h.(i). Putting these together, there are v € ] A; (for
e<e(x) j<i
e < (%)) such that

for every (£, : e < e(x)) € [l he(i) for some B € [B%,u) we
e<e(x*)

have (Ve < e(%))(fy(g,e) |1 = VE & & < fy(p,0)(0)).

Now take any ¢ € B, i > i® such that the sequence (g, (i) : € < e(%)) is

with no repetition. Again, as [[ h(¢) is p;—directed we can choose by
e<e(x*)
induction on o < p; a sequence (B, : o < p;) C p; such that for each o <

sup{Bu : ¢/ < a} < B, and (VO/<a)(V€<6(*))(fy(6a,75)(i) < Sy (Bare) (7).

Now remember that the sequence <<2: ¢ < k;) exemplifies Ens, (\;, pi, ;).

So we apply this to (g¢. (1) : € < e(*)) and ((fy(8..c) 1 € < &(¥)) : @ < p),
and we find a1 < as < p such that

ECu = f'y(al,s)(i) <z<s(i) f'y(ag,e)(i),
ECVW = f’y(ag,e)(i) <Zg<5(@') fw(al,e)(i)a

so we are done.

2) The proof is exactly like that of 3.4(1) except of two points. First we
have to define a linear order Z (rather than Z, for ( < x). Assuming that
the clause (h) of the assumptions holds, for each i we can find linear orders
<t on X (for n € Ty = {fo i : a < A}) such that (X, <)) : n € T;) is
a (g, 0)-entangled sequence of linear orders. This does no affect the proof
except in the very end when we use the entangledness.

3) Combine the proofs above. [ EW

Remark 3.5 1. We can also vary o.

2. The “21l < X\g” rather than just “|§| < A¢” is needed just to have
<j-eub (to use that “if u; = cf(u;) < pi...”) soif {fo : @ < A} is

(Z{S)\i)—free, we can weaken “20% < \g” to “|6] < Ao”.
1<
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3. Instead of T ({k; : i < §)) we may use any x = |G|, G C [] k; such
1<d
that for every sequence (g. : € < &(x)) of distinct elements of G the
set
{i <& :{ge(i) : € < e(x)) is with no repetition}

belongs to JT. But then in 3.4(3) we have to change (i).
Proposition 3.6 1. Suppose = u~°. Then the set
{6 < u™: if cf(6) > o then Ensy(u+o+,290)) o Ens, (0, 2“+)}
contains a club of p*.
2. If in addition 2" > N4 (or o > N, +4) then the set

{6 <pt: ifcf(8) > p (or cf(6) > pt ) then
there is a o-entangled linear order in p+o+1}

contains a club of u* and p** itself. (We can weaken the assump-
tions.)

3. We can add in part (2) the conditions needed for 1.7. Also in parts (1),
(2) the exact density of the linear orders is p° provided cf(§) < ut.

ProorF 1) By [Sh 400, §4], for some club C of u™4,
() a<deC = p*>cov(ut pt,put,2),

and hence, if ¢f(§) > o and § € C then (u9)<7 = p*9.
Let 6 be an accumulation point of C of cofinality > N; and let A C 6 be

a closed unbounded set such that [[ ptetl/ J}Zld has the true cofinality
a€cA

pF 1 and otp(A) = cf(8) (exists by [Sh 355, 2.1]). Now for 3 € A we have
max pef({utetl :a € BN A}) is < ptd < pTOFLif ¢f(6) < u by (%) (and
[Sh 355, 5.4]). Hence for some closed unbounded set B C A we have

= naCC(B) = COV(Iqusup(Aﬂa)Jrl”qu”qu, 2) < M+a-

Hence, if o € nacc(B) then max pef({utP*t) : 3 € Bna}) < ptotl. Wlog
otp(B) = cf(8), B = A. Now if 0 < c¢f(d) < pT then we may apply 3.1 to
{putot! . o € nacc(A)} (for \) and get Ens,(u0t!,2¢10)), We still have to
deal with the case cf(d) > put. We try to choose by induction on ¢ ordinals
a; € A\ U (o + 1) such that

1<t

pt > maxpef({ut® : j <i}) <o, cf(o) =pt.
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For some v the ordinal «a; is defined if and only if ¢ < ~. Necessarily ~
is limit and by (%) + [Sh 371, 1.1] we have cf(y) > u*. Now for each
i < 7y, Ens,(ut®11 247 holds by the part we have already proved (as
cf(a;) = p™). So we may apply 3.3(1).

2) Let C be as in the proof of part (1) and exemplifying its conclusion. If
§ = sup(C'NJ) < ptt, cf(6) < pt, 2F0) > 4 +9 then we can apply 3.2(1)
(and the proof of part (1)). So we are left with the case cf(§) > u™. Now
we can repeat the proof of part (1) the case cf(d) > Ry. Choose A as there
and also o; € A, but demand in addition Ens,(ut@+tD) 207 o, € ace(C)
and cf(oy) = pt, hence Ensy(ut+) 267) In the end apply 3.3(2) to
<M+(a¢+1) L < '7>-

3) Similar to the proof of 3.3(4), 3.3(5). [ I

Conclusion 3.7 Assume o > Wg. Then for arbitrarily large cardinals A
there is are o-entangled linear orders of cardinality \*.

PrROOF  Let x > o be given. We choose by induction on ¢ < ¢ regular
cardinals A; > x such that Ens;(\;,Rg + [] A;) holds and A; > [] A;.
j<i j<i
The inductive step is done by 3.6. Now for some o-complete ideal I on o
extending J?4, T] A;j/I has a true cofinality, say A. By 3.3 there is a o-
j<i

entangled linear order of cardinality A, so if X is a successor cardinal we are

done (as A > x). If not, necessarily A is inaccessible and letting p = Y A;
i<t

clearly p = p=? < A < p?. Now we use 3.6(2) to find \; € (u, N, +4) such

that there is an entangled linear order in A", so in any case we are done.

)
W37

4 Boolean Algebras with neither pies nor chains

Let us recall the following definition.
Definition 4.1 Let B be a Boolean algebra.
(a) We say that a set Y C B is a chain of B if

Vz,yeY)(z#t = z<pyory<px).
(b) We say that a set Y C B is a pie of B if

Ve,yeY)(z#y =z <Ly andy £ x).

o6



nodi fi ed: 2001- 11- 12

revi sion: 2001-11-12

(462)

(c) 7(B), the (algebraic) density of B, is

min{|X|: X C B\ {0} and (Vy)3x € X)(0<py€e B = z<py)}

Lemma 4.2 1. Suppose that

(a) (N i < 0) is a strictly increasing sequence of reqular cardinals,
A is a reqular cardinal,

(b) J is a o-complete ideal on § extending JP9,

(c) (fa:a < A)isa<j-increasing sequence of functions from [] A;,
<6
cofinal in (T] Ni, <),
<6

() for everyi <0, |{fa li:a <A} <)\,

(e) (A¢: (¢ < k) €4 is a sequence of pairwise disjoint sets such that
for every B € J and { < k there is i € 0 such that {21,2i + 1} C
Ac\ B,

(f) 26 > p=:sup); and k = k<7 (so k < |0| < p) and cf(d) < k.
i<d

Then there is a Boolean algebra B of cardinality A such that:

(@)f B has neither a chain of cardinality A nor a pie of cardinality
A (i.e. inct(B) < X, Length™(B) < \).

(®)5 B has the algebraic density m(B) = p (in fact, for a € B\ {0},
m(B I a)=pu)

This applies also to the o-complete algebra which B generates, provided

(Va < N)(Ja|<7 < N).

. Suppose 2 < n* < w and that in part (1) we replace (e) by

()" (a) A¢ C 4 for ¢ < K, are pairwise disjoint,
(B) e is an equivalence relation on § such that each equivalence
class is a finite interval,

() for everyn <n*, B € J and ( < k for some o < 0 we have:
aje C Ac\ B and |a/e| > n.

Then there is a Boolean algebra B of cardinality \ as in part (1) but
(@)% is strengthened to

(@)%, i
(a) aq € B for a < X\ are distinct,
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(B) n <n’,
(y) B} is the finite Boolean algebra of subsets of n x (n+1), and
for £ <n, fr:n — nis a function such that

t<m<n&i<n = fi(i)# fm(i) and

ze={(i,5) i <n, j<n+1, j< fu(i)}

then for some ap < -+ < anp—1 < A, the quantifier free type
which (agg, - - - Qa,_,) Tealizes in B is equal to the quantifier free
type which (xq,...,x,_1) realizes in B*.

Remark: 1) The case 6 = sup ); is included.

1<6
2) Of course, no order Boolean Algebra of cardinality A can satisfy (®)%.
3) Again, B has density p and if (f, : @ < A) is p-free then B has the exact

density .

PrROOF  We shall prove only part (1) as the proof of part (2) is similar.

Without loss of generality ¢ is additively indecomposable.

We define B as an algebra of subsets of Y = |J Yo; where Y; = {f, | @
<6

a < A} for i < §. For each i < ¢ we can find subsets Fy; o (for ¢ < k) of

Y5; such that for any disjoint subsets X7, Xs of Ys;, each of cardinality < o,

for some ¢ < & we have Fy; c N (X1 U Xy) = X (possible as k = k<7 and

2% > Xogip1 > |Yai|, by [EK] or see [Sh:g, Appendix 1.10]). We can find a

sequence ((j;, (i) =i < 6) such that

ji <i <0, § <k and for an unbounded set of j < § for every
¢ < k for some £ < Kk we have

{26,2i+1: 20 < 6&2i,2i+1 € A} C{20,2i+1 <6 (i, &) = (5, O}

(we use: cf|d] = cf(pn) < k). Now for each av < A we define a set Z, C Y:
feZz, if and only if for some i < ¢

( [(20) = fa 1 (20),

( (20 4+2) # fo I (20 +2),

(V) F1(20) € P = f(20) < fal2i) & f(2i+1) < fa(2i+ 1),
) f12) ¢ Fjee = f(20) 2 [a(20) & f(2i+1) = fa(2i + 1)

Let B be the o-complete Boolean algebra of subsets of Y generated by the
family {Z, : a < A}. For f € YV let [f] = {9 € Y : g extends f}. For
notational simplicity let o = V.

f
fi
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Claim 4.2.1 If for £ = 1,2, Z* € B are the same Boolean combinations
of Zag7---7Zag_1; say Z¢ = T[Zaé"”’Zafl_l] (where T is a Boolean term)
and i < 0 is such that (foe | (2i) : m < n) is with no repetition and
(Vm < n)(fa}n [ (2i) = foz?n [ (2)) then:

() 2\ U [fay, 120] = 22\ U [fug, 1 2],

m<n
(b) for each m < n:
(@) either Z' 0 [for 1 (20)] = [far 1 (20)] N Zy1 and
Z*N [fa?n | (21)] = [fa?n I (21)] N Zagnf
(B) or Z' 0 [fay, 1 (20)] = [far, 1 (20)]\ Zay, and
Z*n [foz?n I (21)] = [foz%n I (21)] \Zozgn'
Proof of the claim: Check the definition of Z,,. 0491

Clearly B is a Boolean algebra of cardinality A. Now the proof of “B
has no chain of cardinality A\” is similar to the proof of 3.1, 3.2 noting that
for each i:

(x) if (©) I' C Ag; X Agj41 and for arbitrarily large oo < Ag;, for arbitrarily
large 8 < Ag;+1 we have (a, 3) € T

then we can find (g, 51) € T, (a2, f2) € T'such that a; < ag & 1 <
Ba.

Up to now, the use of the pairs 2¢, 2i + 1 was not necessary. But in the proof
of “B has no pie of cardinality A\”, instead of (x) we use:

() if (@) of (%) holds

then we can find (a1,01) € T and (ag,2) € T such that a; <
az & B > P,

easily finishing the proof W)

Conclusion 4.3 For a class of cardinals A, there is a Boolean algebra B of
cardinality A%, with no chain and no pie of cardinality \*. [We can say, in
fact, that this holds for many A.]

ProOOF  For any regular «, if 2% > N, +4 then (by [Sh 400, §4]) for some
club E of k14,

aC (KT, N04) & |a| <k & sup(a) <Ns & § € E = maxpcf(a) < Ns.
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Next we choose by induction on i < & cardinals \; € Reg N [T, R, +4],

Ai > maxpef({A; : j < i}). Let g be minimal such that p > sup A; and
1<K

w € pef({N; : ¢ € k}). Then (by [Sh 345a, 1.8], replacing {)\; : i < k} by a

subset of the same cardinality, noting {)\; : i € A} € Jo,[{\i : i < k}] when

A € [k]<F) we have p = tef([] A;/JPY). Also, as u € [k, R, +4] is regular,
<K
it is a successor cardinal; now the conclusion follows by 4.2. Generally,

for any & let ap = 0, A\ = k*. Choose by the induction on n, a,4; and

N @ an < i < apy1), up and regular A"T! such that a,.1 = a, + A,

(N\i : oy <@ < apy1) is a strictly increasing sequence of regular cardinals in

[A™, R(yn)+a] such that A; > max pef({A; : a, < j < i}) (possible by [Sh 400,

§2] as above). Let up, C [an, ant1), |un| = A" be such that ] A;/J0d
1€EUR

has a true cofinality which we call A**!. Lastly, for some infinite v C w,

[T A\n/JP4 has a true cofinality, which we call A. By renaming v = w,
nev

Up = [y, Apt1). Then § =: sup,, ay, A, (\; 1 i < d) are as required in 4.2, if
we let:
J={uCd: for every large enough n, sup(uNay,) < a}.

One point is left: why is \ a successor cardinal? Because it is in [sup A,, [T A\,

n<w n<w
and either
N 2 A
IT A < Bsup AaJ™ <2 <Ris~ i,
n<w n<w n<w
or the first attempt succeeds for Kk = Y. A" M3

n<w

We have actually proved the existence of many such objects. If we waive
some requirements, even more.

Proposition 4.4 For any regular cardinal 0 we can find 6, J, A\, \; (for
i <0) as in 4.2 and such that:

(x) A is a successor cardinal,
(y) for each i for some regular cardinal ji; we have A; = p and (11;)% = p,
(z) one of the following occurs:

(i) 6 is a regular cardinal < \g, 6 >0 and J = JP4,
(ii) § = Js has cofinality 0, and for some N (j < cf(8)) we have:

J={a:aCo,{j<ct) :aﬂ)\j¢J'§f‘}eJ§C(‘5)}
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and o = (Iua)sup{)\i:z(a}' m

Lemma 4.5 Assume (\; 11 <), A\, J, 0, (fa: a < A) are as in (a)-(d) of
4.2(1) and

(e’) for every B € J for some i < 6 we have: 2i¢ B & 2i+1¢ B,

(£?) for every i < § we have Ensy (i, \;) or at least for some club C' of §,
ifi<d andi=sup{j € C:|iNnC\j| > 1} then Ens, (Ao, |[{fa I (27) :
a < A}).

Then the conclusion of 4.2(1) holds.
[We can weaken (f’) as in 3.3(6).]

PROOF  For each i < 6 let ((Ag;, <}') : ) = fo | 2i for some a < \) be a
o-entangled sequence of linear orders (each of cardinality Ag;).

Now repeat the proof of 4.2 with no Fy;’s, but defining Z, we let:

f ez, if and only if for some i < §, letting j = 2¢ or be as in
clause (f’) for 2i we have:

f T(QZ) ?foz T(Qi)7 f f(2i+2)7éfa f (2i+2)7 and
f(24) S?y(%) fa(2)  and f(2i+1) S%(zi) fa(2i+1).

M5

Discussion:  Now instead of using on each set {n™(a) : a < Ayp)} 2
linear order we can use a partial order; we can combine 4.6 below with
4.2(2) or with any of our proofs involving pcf for the existence of entangled
linear order.

Lemma 4.6 1. Assume (\; : i < 0), A\, J, 0, (fa : @ < X) are as in

(a)-(d) of 4.2(1) and

(e) for each i < & there is a sequence P = (P. : ¢ < k;) where
ki = {fa Ii:a < A}|, each P is a partial order, P is (A, 0)-
entangled which means:

if ug, u1, ue are disjoint subsets of k; of cardinality < o and for
e € upUug Uug, t5 € P. (for a < \) are pairwise distinct
then for some o < f3:

EE€uUuy = Pe’:ta<t6,
cew = P.E=t,>15
e€uy = P.E “t;,t% are incomparable”.
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Then the conclusion of 4.2(1) holds.
2. Assume as in (1) but

(e’) for some ACS, A¢J,6\A¢J and
(€)1 like (e) of 4.6(1) fori € A with uy =0,

(e”)2 like (e) of 4.6(1) fori € d\ A, with ug =uy =0, us =1 (so we
can use P, = (X, =)).

Then the conclusion of 4.2(1) holds.

3. We can weaken “c; = |{fa Ii:a <A} as in 4.5(f).

PrOOF Similar to earlier ones. LT

5 More on Entangledness

Proposition 5.1 Suppose that (\; : i < i(x)) is a strictly increasing se-
quence of reqular cardinals, T; C =2 is closed under initial segments,
i+1<i(x) = |Ti| < Ait1 and the set

B; :{776)"'2: for every a < \j,n | a € T;}

has cardinality > p = cf(pu) > \j + |T;| (for each i < i(x)).
Then ((B;, <gz) : 1 < i(x%)) is a (u,Rg)-entangled sequence of linear orders
(<gz is the lexicographic order).

Remark 5.2 So if p = cf(u), 8 = [{\: A < p < 2* and 2<* < 2*}| then
Ens(p, 0), see [Sh 430, 3.4].

PrROOF  Clearly |T;| > \; (as B; # 0). Solet n < w, ip < i1 < ... <
in—1 < i(*), and nf € B;, for £ <n, ¢ < p be such that:

(<E<p&l<n = nt#g,

and let v € n. We should find { < £ < p such that (V¢ < n)(né <tz

775 < i € u). To this end we prove by downward induction on m < n that
(stipulating A, = p):

(%) there is a set w C p of cardinality > A, such that:

l

if (teu)
ifm </ < nand (< ¢ are from w then [nf <gz 775} .
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Note that (x),, is exemplified by w =: p and (*)g says (more than) that the
conclusion holds, so this suffices. Hence assume (%),,41 is exemplified by
w* and we shall find w C w* exemplifying (), |w| = \;,,. Without loss
of generality m € u (otherwise replace each n € T; U {772” : ¢ € w'} by
(1 —=n(a):a<lg(n))). Let for a < A;,, and v € T; N “2:

wy, =A{Cew v =n"Ta, (A € w)(§ <C&ng" Ta=v&n <pn)}

wh = U{wl’i veT;, N2}

As in (B;,,, <¢) there is no monotonic sequence of length A | clearly |wj| <
Ai,,- Moreover,
wa| < v €Ty, i g(v) = o} xsup{|wy| : v € Ti,, N2} < |Ti,, | X Ay,
and hence | U wi| <\, +|T;
C“<)‘im

Hence we find ((x) € w*\ U w}. Now, for every a < \;, let &, € w*
a<)\¢m

exemplify ((x) ¢ w;?(*)[a C wy, so

But ‘sz’ < )‘im+1 and \;,, < )‘im+1-

o <C(¥), M Ta=ny la and n <@ nfl.

Then some 74, o < 74 < A;,,, we have

im )
N Ve =g [ Ve i) =1, e (va) =0.

So for some unbounded set A C \; the sequence (v, : « € A) is strictly
increasing in « and also (£, : a € A) is increasing. Let w =: {{, :a € A} C
w*. Tt exemplifies (x),,, hence we finish. W

Proposition 5.3 1. Assume that

(a) A =maxpcf(as) fore < e(x),
(b) |ac] <k < k* < min(a,),
(c) 0€a. = 0is(k* KkT,2)-inaccessible,

(d) for n <w and distinct €g,€1,...,e, < €(*) we have

Agp \ U ac, & Joxlag)-

(=1

Then Ens(\, A\, e(x)).
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2. Assume in addition that
(@) i€ (I, £ € o)\ then 0\ U ac ¢ Teale],
(e) if 0 € a. then maxpcf(LCJ acNB) <0,
(f) (Va < N)(Ja|<7 < N).
Then Ensy(\, A, £(%)).

PrROOF  Asin §3. ;3

Proposition 5.4 For any cardinal \ satisfying (Ve < \)(2% < 2*) there is
a successor cardinal 0 € [\, 2)] such that there is an entangled linear order
of cardinality 6.

PrROOF  We prove slightly more, so let A and x € [\, 2*] be any cardinals
(we shall try to find 8T € [x,2"] for x as below; for the proposition p = A
below).

Let u =:min{p:2* =2 )}, sop < Aand pu < cf(2*) and k < pu = 28 < 2M.
First assume 2<# = 2. Then necessarily p is a limit cardinal. If c¢f(2<H) =
cf(u) we get a contradiction to the previous sentence. Hence (29 : 6§ < pu)
is eventually constant so for some 6 < p we have 20 = 2<F but 2<# = 2#,
a contradiction to the choice of x. Thus we have 2<# < 2¢ = 2}, Assume
X = A+ 2<H or just 2* > x > 2<K. The proof splits to cases: if cf(2*) is
a successor, use cases B or C or D, if cf(2") is a limit cardinal (necessarily
> \) use case A.

CASE A: X+(“+4) < 2N
By 3.6(2).
CASE B: cf(2*) is a successor, u is strong limit (e.g. No).

Clearly there is a dense linear order of cardinality cf(2*) and density y, hence
there is an entangled linear order in cf(2*), which is as required ([BoSh 210]).

CaAsk C: cf(2}) is a successor cardinal, p is regular uncountable.

Look at [Sh 410, 4.3] (with p here standing for A\ there); conditions (i) +
(ii) hold. Now on the one hand, if the assumption (iii) of [Sh 410, 4.3] fails,
we know that there is an entangled linear order of cardinality cf(2}) (as in
Case B). But on the other hand, if (iii) holds, the conclusion of [Sh 410,
4.3] gives more than we asked for. In both cases there is an entangled linear
order in cf(2*) (which is a successor).
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CASE D: u is singular, not strong limit.
By [Sh 430, 3.4] there are regular cardinals 6; (for ¢ < cf(u)) such that the
sequence (0; : i < cf(p)) is increasing with limit p, pu < 2%, (2% : i < cf(u))
is strictly increasing and

for all o such that o = cf(0) < 2% there is a tree T, |TL| = 6;

or at least 2/7sl = 2% and T? has > ¢ 6;-branches.

If for some i either 2% is a successor > x or cf(2%) is a successor > y we
finish as in Case B, if cf(2%) is a limit cardinal, we finish as in Case A (or
use 5.5). W54

Proposition 5.5 Assume 2" is singular. Then there is an entangled linear
order of cardinality (2*)%.

PROOF  Let A be the first singular cardinal > p such that (3x < \)(pp,(N) >
2#). Now, A is well defined, and moreover A < 2* (as 2* is singular so
pp(2#) > (2#)* > 2#) and (by [Sh 355, 2.3], [Sh 371, 1.9])

cf(A) <x € (1, AN)\Reg = PPer(n)ter()(X) <A,

so pp(A) > 2# and cf(\) > p (otherwise pp(A) < ATV < \w < (20)0 = 21,
Lastly apply 3.2(1). W5

Proposition 5.6 If kT < xo < A and k™ < cf(\) < X\ < 2%, then (a) or
(b) holds:

(a) there is a strictly increasing sequence (N} : i < 6) of regular cardinals
from (x,A), 6 = cf(9) € [K,cf(A)] N Reg and A7 > maxpcf({\] : j <
i}), such that \* = tef T Af/JPd,

<9

(b) there is a strictly increasing sequence (A} : i1 < d) of reqular cardinals
from (x,A) such that \; > maxpcf({)\] : j <i}) and Ens(\], A}) and
AT =tef [T A\f/I, I a proper ideal on 6 extending J(?d.

1<d

Moreover for some jn € (xo0,A), p < A§ and there is a sequence (b :
i < 0,5 < K1) such that b;; € Reg N\ xo, |bij| < K, each § €
Ubs,; is (xo0. kT, Ro)-inaccessible (i.e. a C RegN O\ xo0, |o| <k =
0]

max pcf(a) < 6) and
71 < g2 < kT = b, Nbij = @, )\2k = maxpcf(bi7j),
= sup(b; ), Jéflj C Jaar[big]-
(This implies Ens(Af, AY).)

177"

65



nodi fi ed: 2001- 11- 12

revi sion: 2001-11-12

(462)

Remark 5.7 1. Why AT instead of \* = cf(\*) € ()\,pp}Lbc(1 )()\))? To
cf(X

be able to apply [Sh 410, 3.3] in case III of the proof of [Sh 410, 4.1].
So if (\; : i < cf())) fits in such a theorem we can get A*.

2. We could have improved the theorem if we knew that always

cf(INJ= 7, C) = A+ sup{pp, (i) : cf (i) <k < < A},
particularly o-entangledness.

ProOOF  This is like the proof of [Sh 410, 4.1]. (In case IT when o = Ry
imitate [Sh 410, 4.1].) However, after many doubts, for reader’s convenience
we present the proof fully, adopting for our purposes the proof of [Sh 410,
4.1].

By [Sh 355, 2.1] there is an increasing continuous sequence (\; : i <
cf(\)) of singular cardinals with limit A such that tcf( [ A, <jpa )= AT

i<cf(N) f(A)

and Ag > xo. The proof will split to cases. Wlog xo > cf(\).
CASE I: maxpcf({)\;F 1j <i}) < Xfor i < cf(N).
So for some unbounded A C cf(\) we have

(Vi e A)(maxpcf({)\;r 1§ € ANid}) < A).
Consequently a = {\;" : i € A} satisfies the demands of 3.6 and hence (a)
holds true with § = cf(\), X} = \;.
Thus assume that Case I fails. So there is p such that yo < p < A, cf(u) <
cf(A) and ppgs(n)(#) > A. Choose a minimal such p. Then, by [Sh 410,
3.2], we have:
(¥) [a CReg\ xo & supa < p & |a| < cf(A)] = maxpcf(a) < A.
By [Sh 355, 2.3] in the conclusion of (x) we may replace “< A\’ by “< p”
and we get
(x) [a CReg\ xo & supa < p & |a| < cf(N)] = maxpcf(a) < p.
Let o = cf(p). Then pp(n) = PPcr(n) (1) (and pp_crn) (1) > A). Wlog
< Ag-

Cask II: o > £ (and not Case I).
By [Sh 371, 1.7], if 0 > R and by [Sh 430, 6.x] if 0 = Xy we find a strictly

increasing sequence (i} : i < o) of regular cardinals, 4 = |J g and an ideal
<o
J on ¢ extending J?4 (if o > R then J = JP9) such that

AT = maxpef({uf :i < o}) = tef H wi/J.

<o
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If o > Rg, since we may replace (uf : i < o) by (uf : i € A) for any
unbounded A C o, we may assume that pf > maxpcf({y] : j < i}). If
o = Ng this holds automatically, so in both cases we can apply 3.6. So we
get (a), as 0 > K.

CASE I1I: o < K.
So o4 < cf(\). Let

P=:{C Ccf(N): otp(C)=r"3 Cis closed in sup(C) and
max pcf({\ i € C}) < A}

[Why there are such C’s? For any & < cf()), cf(6) = k73 we have a club C’

of As such that tcf( [ «T/JP%) = Af. Now €' N (\; 1 i < §) will do.]
reC’
For each C € P try to choose by induction on i < k™, b; = b; c and v; = ¢

such that:

(i) b; CRegNp\ U b;\ Xo,
1<t

(i) v e C\ Uy +1),
1<

(iii) )\:)t,’ € pcf(b;),

(iv) [bi| <o,

(v) all members of b; are (o, ", Ng)-inaccessible,
(vi) ~; is minimal under the other requirements.

Let (b;c,vi,c) be defined if and only if i < ic(x). So success in defining
means ic(x) = k1, failure means ic(x) < k.

Subcase IITA: For some j < k™, for every C' € P with min(C) > j we
have ic(x) < kT, so we cannot define bic(x),05 Yic(x),C-

Let C,ic(x) beas above. Let v = U  7i,c,5075 € C. Now, if v € C\n§

i<ic (%)

then (by [Sh 355, 1.5B]) as pp, (1) > AT > AT, there is a;, C Reg N (x, i),
lay| < o such that AT € pcf(a,). By [Sh 410, 3.2] there is ¢, € Reg N (x, )
of cardinality < k consisting of (y, k™, Ng)-inaccessible cardinals such that
)@r € pef(ey). Now 7, ¢\ U by cannot serve as v,,(x).c» big(x),cr SO

i<io(x)
necessarily )\jy' ¢ pef(ey \ 4 U bs,c). Hence wlog ¢y C ' U bic. So
i<ic(*) i<ic(*)
{AfrieC\yg) Cpef( | bie) and | (] bic| <k
i<ic(*) i<ic(*)
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By the proof of [Sh 400, 4.2] (or see [Sh 410, §3]) we get a contradiction
(note that cf(A\) > k¥ does not disturb).

Subcase ITIB: For every j < cf(\) thereis C' € P such that min(C) > j
and ic(x) = kT, L.e. by ¢, vi,c are defined for every i < k™.
We will show

(®) for every j(x) < cf(\) there is X € AN pcf({)\;»F 2 g < cf (M) N\ A
such that

(o) Ens(N, ) (exemplified by linear order which has density charac-
ter > yo in every interval),

(B) for some b C N Reg \ xo we have: |b] < kT, X = max pcf(b).
Moreover, b can be divided to kT subsets of cardinality < s, no
one in J_y[b] and

(V6 € b)(0 > maxpcf(bN6))
(even 0 is (xo, kT, Ro)-inaccessible).

Why does (®) suffice?
Suppose that we have proved (®) already. So for i < cf(\) we can choose
i A < pf=cf(py) € )\ﬁpcf({)\;F : j < cf(A\)}) as required in (®). Since
(Vi)(ur < A), wlog the sequence (u} : i < cf(\)) is strictly increasing. By
induction on & < cf(\) choose strictly increasing i(e) < cf(A\) such that
15y > max pef({p) 1 ¢ <e}).
Let i(e) be defined if and only if € < &(x). So &(x) is limit,

AT = max pef({pjey e <e(¥)}), and gy > maxpef({u) : ¢ <e}),
M;k(g) is strictly increasing and Ens(,u;k(a), ,u;k(a)). Thus applying [Sh 355, 4.12]
we finish, getting clause (b) of 5.6.

Why does (®) hold?
Choose C C (j(x),cf (X)) of order type x such that (vy; : 4 < k1), (b; : i < k™)
are well defined and

max pcf({AF :ie C}) < A

(possible by our being in subcase I1IB, see the definition of P). Let o =:
{AY ci < w*} and let (bg[o] : 6 € pcf(d)) be as in [Sh 371, 2.6]. Let 6 be
minimal such that otp(bg[o]) = k. We can find pairwise disjoint sets B, C C
(for € < k) such that

{AJ 1y € B} Chgl,  otp(Be) = k.
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Clearly max pcf({\Y, : 7 € B:}) = 6, since {\Y, :; € B-} C bg[0] but it is
not a subset of any finite union of by[c], ¢ < 6. Now letting a* =: |J bj,
jec
we find (by [Sh 371, 2.6]) a subset a of a* such that # = maxpcf(a) but
0 ¢ pcf(a* \ a). Now as 0 € pcf({\] : v € B:}), AT € pcf(b,) we have
(by [Sh 345a, 1.12]) 6 € pcf( U by). Hence by the previous sentence 6 €
YEB:
pcf(an U b,). Let
YEB:

¢ =:an U bj, N =4.
JE€B:

We can apply 3.2 and get that there is an entangled linear order of cardinality
A (which is more than required) and, of course,

Ny <X e Xnpef({A; : j < cf(A)}).
The assumptions of 3.2 hold as the ¢, are pairwise disjoint (by (i) above),

0 € pef({M, : v € Be}), pef( U b;) = pcf(ce) and
JEB:

01 €a = maxpcf(anby) < by,
as 01 is (xo, kT, Ng)-inaccessible and
H=N\N> sup{)\fyri 11 € CF > Aj) > Xo-
So clause () of (®) holds and clause () was done along the way. Thus we

finish subcase I1Ib and hence case III. u;;

Conclusion 5.8 For A as in 5.6 there is a Boolean algebra B of cardinality

A satisfying (@)%, (®)§1p v+ from 4.1 (and also there is an entangled linear
i<s
order in AT ).

Proor  If (a) of 5.6 holds, apply 4.2. If (b) of 5.6 holds use 4.5. L)

Definition 5.9 1. pcfi(a) ={A: if b Ca,||b] < Kk then A € pcf(a b)}
(equivalently: \ € pcf(a) and b € Jopla] = |brla] \ b > k).

2. Jop"[a] =: {b : b C a and for some ¢ C a we have: || < k and
b\ c€ Jegla]}.
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Proposition 5.10 Assume that p is a singular cardinal which is a fix point
(i.e. p=2X,) and p* < p.

1. For some successor cardinal A\t € (u,ppt(p)) there is an entangled
linear T order of cardinality \™ and density € (u*, p].

2. If u < xo, XSFMH < ppt(p) then we can find an entangled linear order
4
I,|Z| =" € (Xo,XaL“+ ) of density € (u*, u].

B

8. In both parts we get also a Boolean Algebra B satisfying (@)fﬂ (®)

of 4.2.

4. In both parts 1), 2), if J is an interval of T or J € [I]* then
dens(J) = dens(Z). This applies to 5.10.1, 5.10.3, 5.10.2, too.

PrOOF  Let (u; : 1 < ¢ < cf(n)) be a strictly increasing continuous
sequence with limit u. Wlog p1 > po > p* + cf(p), Ro < cf(p;) <
max{cf(u), N1}
1)  We try to choose by induction on i < cf(u) regular cardinals A; such
that

pi < X < p, maxpcef({\; 7 <i}) <\,

and there is an entangled sequence of linear orders each of cardinality \; of
length max pcf({\; : j < i}) (i.e., Ens(\;, maxpcf({\; : j < i}))). For some
a, A; is defined if and only if ¢ < a. Clearly, « is a limit ordinal < cf(u),
and A =: maxpcf({)\; : j < a})is > p [as otherwise A < p (as A is regular
by [Sh 345a, 1.x]), so there is A\, as required among {(A + ua)™7 : v <
(A + p1a) T}, So clearly < A = cf(\) < ppT () and by 3.3(2) there is an
entangled linear order of cardinality A and density < > maxpcf({\; : j <
<

i}) < p. If A is a successor cardinal then we are done<. Otherwise, clearly
pt < ppt(u), and hence we can apply part (2).

2) It follows by the claims below, each has the conclusion of 5.10(2) from
assumptions which are not necessarily implied by the assumption of 5.10(2),
but always at least one applies.

Claim 5.10.1 1. Assumecf(u) <k
pp.(1). Then there is AT € [x, x
linear order T of density < p but >

Su <p <2 <y and Xt <

Tt 4] in which there is an entangled
> .

2. If in addition (Vo < p)(Jaff < w)

entangled.”

then we can add “T is cf(u)-
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3. There is v < kt* and a set b C RegNp\ p* of (u*, kT, 2)-inaccessible
cardinals, |b| < K, b is the disjoint union of b. (for e < k), sup(b.) is
the same for € < k and JP4 C J_,+r+1[0] and xTOFD € pef(b,).

Proof of the claim: 1)  Of course we can decrease p as long as p* < p,
of(p) < K, x™" < pp,. (). By [Sh 355, 2.3], without loss of generality we
have:

aC (u*,u)NReg & |a| <k = maxpcf(a) < ppt(u).
We choose by induction on ¢ < k, b; and ~; such that:

(i) b; CRegnp\ Lg,bj\u*,
j<i

(ii) v < kT is a successor ordinal,
(iii) x™ € pef(b;),

(iv) ~; is the first successor ordinal for which x™7 ¢ pcf( U b;),
Jj<i

(v) all members of b; are (ug, s, 2)-inaccessible

(ie. 0€b; & aC (up,0) &la| <k = maxpcf(a)<¥6),

(vi) b; has cardinality < &.

Note that this is possible, since if |b] < x then pcf(b) cannot contain the
interval [x, x T JNReg (see [Sh 410, §3]). Let o =: {x ™ : i < &}, let (bg[0] :
6 € pcf(d)) be as in [Sh 371, 2.6]. Note that we know pcf(d) C [x, x ™ ]
(by [Sh 400, 4.2]). Let 6 € pcf(d) be minimal such that otp(bg[d]) > &, so
necessarily 6 is a successor cardinal. Let (9, : o < k) be a partition of by[d]
to pairwise disjoint subsets of order type > k. Let b/, = J{b; : Y™ € 0.}
(for « < k) and a = |J b,,. Now we can finish by 3.2(1).

a<k

2) In this case we can in the beginning increase p* (still u* < p) such that
the “wlog” in the second sentence of the proof of 5.10.1(1) holds. Necessarily
sup(b;) = p for each i < k.

3) Included in the proof above. Os.10.1

Claim 5.10.2 If cf(p) < k = cf(k) < p < x, X < pplu), p is
(%, k7T, 2)-inaccessible then
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1. We can find an increasing sequence (X; : i < cf(u)) of reqular cardinals
with limit p such that for each i, Ens(A;, k) and pcf({\; : i < cf(p)})
has a member in (x,x™""") and \; > max(pcf({A; : j < i})) and
i > K.

2. In addition \; € pcfi®(a;) for some sets a; € Reg N A\ U A;j of
7<i
(i, 57, 2)-inaccessible cardinals of cardinality r. If cf(u) > No then
[T Xi/JRd | has true cofinality.
. cf(p)
i<cf(p)

Proof of the claim:  Choose pu* € (k, u) such that

pe W ) &cd)<r = pp.(1)<n

(exists, as p is (*, kT, 2)-inaccessible; see [Sh 355, 2.3]). Let b;,~y; (for i < k)
be as in the proof of 5.10.1; so min(b;) > p*, 0 =: {x™ : i < K}, (bg[7] :
0 € pcf(d)) be as in [Sh 371, 2.6]. Let 6 € pcf(d) be minimal such that
otp(bg[d]) = k. Without loss of generality bg[d] = 9, so § = max pcf(d). Note
that 6 € pef(d) C (x, x™ ") is a successor cardinal. Let (y; : i < cf(u))

be strictly increasing continuous with limit g with pg > p*. Let a=: |J b;
1<K

and let (by[a] : ¢ € pcf(a)) be as in [Sh 371, 2.6]. For each £ < cf(u),

we can find finite ¢ C pcfS(anpe) and ¢ € a N pe, || < K such that

aNu: € U bola]Uc.. As cf(u) < k = cf(k), we can find ( < x such that:

o€ee
(%) (Ve < cf(p))(e= C U bi).
i<(
So by renaming ¢ = 0 (so ¢ = ()). By 5.12(4) below each o € ¢, satisfies
Ens(o,k). As in the proof of [Sh 371, 1.5] and [Sh 430, 6.5] one of the
following holds:

()1 cf(u) > Ng and for some S C cf(u) unbounded, otp(S) = cf(u), and
o €. fore € S, 0 =tcf([] o./J2Y),
ecS

(x)2 cf(p) = Np and for some increasing sequence (o¢ : ¢ < cf(p)) of regular
cardinals from |J ¢, with limit pu, and an ideal I on w extending

o e<cf(p)
Jhd 0 =tef( I1 oc/D).
fu) C<ci(u)

If (%); holds then (by the choice of o) without loss of generality € € § =
0. > maxpcf({o¢ : ( < €}), so we can apply 3.1. If (x)2 holds, necessarily
max pef({o¢ : ( < €}) is 0.—1 so we can apply 3.1. In both cases we get the
desired conclusion. Os.10.2
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Claim 5.10.3 Assume that p is a singular strong limit cardinal, or at least
that it is (*, k,2)-inaccessible for every k < p, cf(pu) < p < x and Yt <
pp(p). Then

1. We can find \* € (X,X+“+4) in which there is an entangled linear
order with density (.

2. Moreover we can find a strictly increasing sequence (X\; : i < cf(u))
with limit p, maxpef({)\; : j < i}) < A, AT = maxpef({\; : i

<
cf(u)}). Letting ki = (X Aj + p*)T we can also find a set a; C
7<t

RegN A\ U Aj of (k1 K j,Z) -inaccessible cardinals of cardinality kj,
i<t
such that \; € pcfex(al) and j; < i. Also cf(u) > Ro implies A =
tef( T Ni/J5d et (s )) and (Vi < cf(p))(ji =1).
1<cf(p)

Proof of the claim:  Choose (u; : i < cf(p)) be strictly increasing contin-
uous with limit x. By induction on € < cf(u) we choose 6° € (x, X*“H)
and (A7 : ¢ < cf(u)) as follows: arriving to € we apply the proof of 5.10.2 to

= pd and” x. =sup({6; : ¢ < e}U{x}) and get (AZ 1 ¢ < cf(u)) as there.

So there is a successor 0. € pcf({A; : ¢ < cf(p)}) N [Xg,x’g#) such that

0 = maxpcf({A¢ : ¢ <cf(p)}). Hence 0. > <U Oc and x < 0. < Xt and
<e

without loss of generality ulﬂ < piv1. Let ™= be b, b, =: {)\‘Z (¢ <cf(p)}

(for e < cf(n)), @ = maxpcf({0e : € < cf(p)}), a = U{bs : € < cf(p)} and
without loss of generality

Jep[{b: e <cf(u)}] C{{b::e€a}:aCcf(n),lal <cf(u)}.
Note:

pef({fe s e <cf(u)}) © pef({x* iy <p™}) C
Reg N [, x ™" 1N (x,pp* (1)),

so each member of pcf({f. : € < cf(u)}) is a successor cardinal. Let (b,[a] :
o € pcf(a)) be as in [Sh 371, 2.6].

First assume cf(p) > No. For every limit ¢ < cf(u) let ¢, be a finite
subset of pcf(an pe) such that

(a) for some (. <€, (aNpu:)\ U bsla] C {)\f 11 < cf(p) and >‘z§ < pe.t

oCee

"We could have asked x. = max{maxpcf({f¢ : { < €}),x} and thus later “the {Af :
¢ < cf(p)} are pairwise disjoint” (while omitting “few” A for each ¢)
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(B) for every ¢ < e and for every o € ¢, we have
o € pef({AS i < cf(u) & pe < S < p)).
(Exist by [Sh 430, 6.x].)

So for every o € ¢, by 3.3(2), there is an entangled linear order of cardinality
o. Also, by [Sh 430, 6.7] for some unbounded set S C cf(u) and o, € ¢ we

have 6 = tcf [] o/ Jde. Note that without loss of generality o. > [] o¢
€S (<e

(when g is strong limit!) or at least oo > max pcf({o¢ : ( < €}), so by 3.3(2)
we can get the desired conclusion.

Now assume cf(p) = Rg. Use [Sh 430, 6.7] to find finite e. C pef(an pe)
for € < w such that

e<é<w = max(e U{Ro}) < min(ec U{u})

(the {No}, {u} are for empty e¢,’s), and so otp(e) = w, sup(e) = p where

e = Ues and aNpe = U{bsfa] : o € U ep}; hence o € pcf(e). Define
€ n<

h: pef(a) — w by (o) = max{n < w : Ens(o, u,) or n = 0}. By 3.4(2) it
suffices to prove, for each n < w, that {o € ¢ : h(0) < n} € Jo,[e]. This can
be easily checked. Os5.10.3

3), 4) Left to the reader. W10

Remark 5.11 1. Under the assumptions of 5.10.2 we can get

(®) there are a successor cardinal A € (x, x™'") and an increasing
sequence A = (\; : ¢ < ¢) with limit p such that
§ < kT, AT = tef( H6 Ai/J), J an ideal on § extending J(?d,
i<
Ai is (p*, kT, 2)-inaccessible (where p* = min{y’ : p* is (', 51, 2)-
inaccessible}) and
there is an entangled linear order of cardinality AT.

2. In the proof of 5.10.3 we can have a = |J a;, p = sup(a;) for each
i<cf(p)
i <cf(p), and let a = {A¢ : e,( < cf(p)},

G ={\ €EacEq butforno£<6does)\2E{A§:j<cf(,u)}}
and apply 3.2(1).

Proposition 5.12 Let (byp[a] : 6 € pcf(a)) be as in [Sh 371, 2.6].
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1. If |a] > k (and |a] < min(a)) then pctf®(a) has a last element.
2. Assume that § = maxpcf(a), ¢ C 6 Npcf(a), |¢| < min(c) and
beJgla] = cNpcf(a\b)#0.
Then 6 € pcf(c).
3. Ifa= U a, o <cl(k), 0 € pcti®(a) then we can find finite ¢; C
<o
pcfifa; for i < o such that |a;\ U balai]| < K, and 6 € pcf( U ¢).
A€e; <o
[And if cf(o) > Vo, a; increasing with i and S C o = supS then
0 €pctf(U e)./
€S

4. Assume x < min(a), and each p € a is (X, k,2)-inaccessible and Kk >
Ro. If 0 € pcff®(a) then Ens(0,2%) holds exemplified by linear orders
of density > x.

PRrROOF 1) Among the ¢ C a of cardinality < k choose one with
max pcf(a\ ¢) minimal. So max pcf(a\ ¢) = max pcf*(a).

2) By [Sh 345a, 1.16].

3) Easy, as in [Sh 371, §1].

4) Without loss of generality # = max pcf(a), a has no last element and

pea = 0¢pcff(anp),

so JP4 C JZ"[a] (see Definition 5.9). We are going to prove the statement
by induction on 6.

If a (= bg[a]) can be divided to & sets, no one of which is in J_g[a] +.JP, this
should be clear (use e.g. 3.1(1): there are such A; by [EK], see e.g. [Sh:g,
Appendix]).

Also, if there are ¢ C 6 N pcfi¥(a), (such that |¢] < min(c) and ) an ideal
I on ¢, satisfying 6 = tcf [[¢/1I, then we can find @ C 6 N pef(c) such that
(Vo € ?)(maxpcf(dNo) < o), § = maxpcf(d) and then use the induction
hypothesis and 3.4(1). So by part (1) (of 5.12) the remaining case is:

(X) if ¢ € ONpcfi(a), [¢f < min(c) then 6 ¢ pcf(c).
Without loss of generality

(B) o/ Ca&Oepefi(a/) = sup(dNpcfi¥(a’)) = sup(d Npcfi®(a)).
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We can try to choose by induction on i, 6; € pcfi*(a) such that 6 > 60; >
max pef({0; : j < i}). By localization (see [Sh 371, §3]) we cannot have (¢; :
i < |a|t) (as maxpcf({6; : i < |a|T}) € pcf({6; : i < a}) for some a < |a|T,
hence 0, < 0p41 < maxpef({6; : i < |a|t} < maxpcf({6; : i < a}) =04, a
contradiction). So for some a < |a|T, 6; is defined if and only if i < a. If
max pef({6; : i < a}) < 6 we can get a contradiction to (B) (by 5.12(1)). If
the equality holds, we get contradiction to (X). [ T RD)

We want to state explicitly the pcf theorems behind 5.10.

Proposition 5.13 Assume u is a singular cardinal which is a fix point and
Ho < b
1. There are X\, {(\i, \P) 1 i < §) such that:

(a) (N :1 <) is a strictly increasing sequence of reqular cardinals, §
is a limit ordinal < cf(u), Ai € Reg N\ po, Aj = maxpcf({A; :
§<i}) < i, M € RegN (1, ppT (1)), A = tef([T Ai/Jb9),

<9

(b) X\t = <)\§ 1§ < (AT s strictly increasing, )\;» € Regn A\ \ AS,
Ai = tef ([] )\;/J(bgﬁ), A% > max pef({AL : ¢ < j})
J

2. Assume in addition p < xo and XBL”+4 < ppt (). Then for some
v < ut?, letting A = xT7H, we can find a strictly increasing sequence
(Ai @i < 0) of regular cardinals of the length § = cf(d) < cf(p),
Ai € Regnp\ p*, Ay > maxpcef({\; : j < i}), A = maxpcf({\; :
i < 0}) and letting k; = (3 \j + p*)T we can also find sets a; C

7<i
RegNAi\U,<; Aj\ 1" of (xj,, m;ri, 2)-inaccessible cardinals of cardinality
Kkj, such that \; € pecfyl(a;), ji < i. Also if cf(u) > No then X =
_/ 7bd
tef( ] )\Z/ch(u)).
i<cf(p)
3. If part 2) does not apply then in 1) X is a successor.

PrROOF  Let (u; : 1 < i < cf(u)) be increasing continuous with limit s,
w1 > po and wlog if p is (x,cf (), 2)-inaccessible then

)_
W€ [po,p) & ct(p') <cf(n) = pp(K) <,
and hence
a C [uo, ) NReg & Ja| < cf(p) & sup(a) < = maxpcf(a) < p.
1) Try to choose by induction on i < cf(u), A; and a;, A;, A%, )\;r, j; such
that
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(7) Af, Af, )\; are as required in 1).

So for some a, (j;, Af, A%, ;) is defined if and only if i < a, in fact o is limit
and pcef({\; : i < a}) € p (as in the proof of 5.10.1). For some unbounded
set A C § we have maxpcf({)\; : i € A}) > p but it is minimal under this
restriction. Now restricting ourselves to A (and renaming) we finish.

2) It follows from 5.10.1, 5.10.3.
3) Should be clear. [ P

Let us finish this section with stating some results which will be devel-
oped and presented with all details in a continuation of the present paper.

Proposition 5.14 Assume:
(A) (@) TS U TN,
J<éi<y
(b) T closed under initial segments,

(c) Tj=TNn I[N #0 forj <9,

1<)
(d) for j <6, neT; we have (F¥a < \j)(n(a) € T),

(&) [Tl == p=ci() > £ 1] > o,
1<
(f) forn e T, I, is a o-complete ideal on A;,

(g) o is a regular cardinal, cf(5) > o,

(B) (a) J is an ideal on § extending J29,

(b) g: is a function from T; to kK,

(c) fori<é, a< ki, IL is a o-complete ideal on \;,

(d) if (npe : € < €, 8 < ) are pairwise distinct members of Ty,
e <o, i(x) <9, for each e <e*, (VB < p)(n- =nge | i(*)) and
(e 1 € < €%) are pairwise distinct
then for some A € J, for every i € § \ A there are v. € T; for
€ < g* such that:
() (gi(ve) : e < &%) are pairwise distinct,
(B) for every B, € Iéi(Vs) (for e < €*), for some B < p we have

(Ve < €")(v: < ms,e) and 18,(t) & Bu.,
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(C) fori<yé, (Ié : ¢ < Kq) 18 a sequence of linear orders with universe \;
such that:

ife(x) < o, ((: € < e(x)) is a sequence of distinct members
of k1, (age : B < B(x),e < e(x)) is a sequence of ordinals
< X such that

(vBe [ Zo)BEB < B*)(ve < e(x))(ap. ¢ B:)
e<e(x*)
and e(x) =uUv, uNv =10
then for some B1, P2 < B(x) we have
ce€u = Iés = “ag e < g,
ce€EV = Iég E ‘ag e > ap,: .

Then there is a (u,o)-entangled linear order of cardinality .

Remark 5.15 1. The proof is derived from the proof of 3.3 (and so from
[Sh 355, 4.10]).

2. Are the assumptions reasonable? At least they are not so rare, see
[Sh 430, §5].

PrROOF  The desired linear order Z has the universe T (which has cardi-
nality A) with the order:

n<gv if and only if ~ for the minimal ¢ < ¢ for which 7(i) # v(4)
we have

Loy = (i) <wv(i) 7.
Details, as said before, will be presented somewhere else, but they should
be clear already. [ TRV

Proposition 5.16 We can replace (B)(d) of 5.14 by
(d1) if (nge 1€ < €*,B < p) are pairwise distinct members of Ts, €* < o,
i(x) <6 and

(Ve < e())(VB < p)(ne = np,e [ i(*))

and (ne : € < €*) are pairwise distinct

then for some 3 <
{i<d: for every Be [] I

e<E* i(nB,E

(Ve <e*)(myeli=mngeli) and (Ve <e*)(nye(i) € B:)} =6 mod J,

) for some v < 1 we have
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(d2) ifn. € T5 (e < e* < o) are distinct, then

{i <0 :{gi(ne 11) : € < &™) is with no repetition } # O mod J.

Proposition 5.17 Assume

(A) A= th(H )\z/J); A > 0; =: maxpcf({)\j 17 < Z}),
<6

(B) J a o-complete ideal on the limit ordinal 6, \; = cf(\;) > 9,

(C) gij : 0 — ki j for j < j; are such that for any w € [0;]<7 for some
J < Jji the restriction g; ; | w is one to one,

(D) a={a;:1<9), a; € (U{C} x j¢) are such that for any ¢ and j < j¢
¢<i

we have
{1:(¢,J¢) € ai} # 0 mod J,

(E) EDSU()\Z‘, H Iigj).

(C,])Eal

Then for some T' the assumptions of 5.14 hold for p; = N;, k; =1 [ K¢y
(CJ)GG'Z

Proposition 5.18 In 5.17, (C) + (D) + (E) holds if

(C’) Ensy (i, k),

(D) (o) sl > ';5 A but fori < 8, k'l = K (s0 & is a regqular cardinal) or
(8) kIOl > %)\i and there is a reqular ultrafilter E on § disjoint from

JU{AC:otp(A) <}

Proposition 5.19 Suppose (A), (B) as in 5.14 and

(C) there is a sequence (Ié : ( < Ki) of partial orders with universe \; such
that

if e(x) < o, (( : € < e(%) a sequence of ordinals < k;
with no repetitions, (age : f < B(x),e < e(*)) a sequence of
ordinals < X\ such that

(VBe ] Zo)(38 < B7)(Ve < e(+))(ape ¢ Be)

e<e(x)
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and e(x) =uUv, uNv =10,
then for some 1, B2 < B(x) we have:

cEU = 1'26 = ‘age < ag,e”

eev = Iés E “Cage < agye”

Then there is a Boolean Algebra B, |B| = X with neither chain nor pie of
cardinality A\; moreover for e < o, B has those properties.

ProoF  Combine 5.14 and proof of 4.2. ;9

Remark 5.20 The parallels of 5.16, 5.17 and 5.18 hold too.

6 Variants of entangledness in ultraproducts
In this section we develop results of section 1. The following improves 1.8:

Proposition 6.1 Assume that:
(a) D is an ultrafilter on k, E is an ultrafilter on 0,
(b) g : & — 0 for e <e(x) are such that:

if e1 < 9 < (%) then ge, # ge, mod D and
ife <e(x), A€ E then g-'[A] € D,

(c) Z is a linear order of the cardinality A > 6.

Then there exists a sequence (f&/D :e < e(x),a < ) of pairwise distinct
members of I¥/D such that for each o < B < A:

either (Ve < e(x))(f*/D < f?/D) or (Ve <e(+))(f?/D < f&/D).

In particular, the linear order Z%/D is not entangled (here e(x) = 2 suffices)
and the Boolean algebra (BAinter(Z))"/D is not A-narrow.

Proor  Choose pairwise distinct a¢ € Z for a < A, ¢ < 0. Let f:x —
7 be given by f&(i) = ag ;- Note that if ay # oy then {i <w: f234) =
22(i)} = 0. If oy = ap = @ but 1 # €3 then

liern: fE0) =f50)) ={ier:g5() =9())} ¢ D
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(as g, # gep, mod D). Consequently, if (a1,e1) # (a2,e2) then f&1/D #
f&2/D. Suppose now that o < 8 < A. Let A={( <0:af < a?}. Assume
that A € E and let € < e(x). Then

{i<r:ifoG) < fla)}y={i<r:aly<d ,}=g'[A]eD

and hence f¢/D < f8/D. Similarly, if A ¢ E then for each ¢ < (%),
j2/D > 2/D.

Now clearly Z"/D is not entangled, but what about the narrowness of
(BAinter(Z))"/D? Remember that BAjyter (Z/D) embeds into BAipter(Z)*/D.
So if the cardinality of BAjpter(Z) is regular we can just quote 1.5 (a) < (c)
(here 0 = Ng, see Definition 1.3). Otherwise, just note that for a linear
order J, if ay < by (for £ = 0,1) and [ag,by) € BAjnter(J) are comparable
and {ag, bg, a1, b1} is with no repetition then

ag <7 a1 = —|(b0 <7 bl);

this can be applied by the statement above. N1

Remark 6.2 Proposition 6.1 shows that entangledness can be destroyed
by ultraproducts. Of course, to make this complete we have to say how one
can get D, F, g.’s satisfying (a)—(b) of 6.1. But this is easy:

1. For example, suppose that E is a uniform ultrafilter on 0, D = E x E
is the product ultrafilter on 0 x § = k, e(x) =2 and g. : 0 x § — 0
(for e < 2) are given by go(4,5) =i, g1(i,j) = j. Then E, D, £(x), gc
satisfy the requirements (a)—(b) of 6.1.

2. More general, assume that 6 < k, F is a non-principal ultrafilter on
6, e(x) < 2%. Let g. : Kk — 6 for € < g(*) constitute an independent
family of functions. Then the family {g-'[A] : € < e(x), A € E} has
the finite intersections property so we can complete it to an ultrafilter
D. One can easily check that D, F, g.’s satisfy (a)—(b) of 6.1.

Remark 6.3 1. In 6.1 we did not use “< is a linear order”. Thus for
any binary relation R the parallel (with R, =R instead of <, >) holds.
In particular we can apply this to Boolean algebras.

2. We can weaken assumption (b) in 6.1 and accordingly the conclusion.
For example we can replace (b) by

(b)* P C P(e(x)) and for each A € E
{e <e(x):g-'[A] € D} € P,
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and the conclusion by
{e <e(x): f)D < f8)D} e P.

3. A kind of entangledness can be preserved by ultraproducts, see 6.4
below. More entangledness is preserved if we put additional demands
on the ultrafilter, see 6.8.

4. Let us explain why we introduced “positive entangledness” in 1.10.
The proof of 6.1 excludes not only “full” entangledness but many vari-
ants (for the ultrapower). Now the positive o-entangledness seems to
be the maximal one not excluded. Rightly so by 6.4.

5. So if we can find an linear order Z which is y"-entangled for some g
such that ™ =y (or at least p™° < |Z|) then we can answer Monk’s
problem from the introduction: if D is a non principal non separative
ultrafilter on w (see Definition 6.5; they exist by 6.2(1)), then Z¥/D is
not p*-entangled (by 6.1). Thus if B is the interval Boolean algebra
of Z then

inc(B) <p, p<|Z|, but inc(B¥/D)> |Z|%

(in fact inc™(B*/D) = |Z¥/D|* = (|Z|*/D)™", inct(B) < p™). In fact
for any infinite Boolean algebra B and a non principal ultrafilter D
on w we have inc(B%¥/D) > (inc(B))*“/D (as for A, inaccessible the
linear order [] (An,<)/D cannot be p*t-like (see [MgSh 433]).
n<w
Proposition 6.4 Suppose that k < o < X are regular cardinals such that
(VO < X\)(0<7 < \). Assume that D is an ultrafilter on k. Then:

if T is a positively o-entangled linear order of the size A
then Z% /D s positively o-entangled.

PROOF  Suppose f&/D € 7" /D (for € < e(x) < 0, a < \) are such that
(Va < B < A)(Ve < e()(f2/D # f2/D).

Let u € {0,e(x)}. For a < A let Ay = {f2(i) : € < e(x),1 < Kk}, Acq =

U As, Ba = Aa N Ay. Note that [Ay| < o, |[Aca| < A (for a < A). If

§<§ A, cf(8) = o then |Bs| < cf(d) and consequently for some h(§) < 0 we

have Bs C A_js5). By Fodor’s lemma we find Sy < A and a stationary set
S C )\ such that

iesS = Cf((S):O'&B(;gA<BO.
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For 6 € Slet Y5 = {(c,1, f2(i)) 1 € < &(x),i < K, f2(i) € Acp,}. As there are
|Acp,|<7 < A possibilities for Y5, we can find a stationary set S; C S and
Y such that for 6 € S; we have Y5 =Y. Let a, 5 € S1, o < § and € < ().
If there is = such that (£,4,2) € Y then f&(i) = f5(i). Thus

E.={i<k:(3x)((e,4,2) €Y)} =0 mod D,

as {i < k: fo(i) = f2(i)} = 0 mod D (for distinct o, B € Sy). Clearly if
o, B €S, a<f,e<e(x)andi € r\ E. then f2(i) # f5(i). Hence we may
apply the positive o-entangledness of Z to

{f&():a€ S,e<e(x),ierx\E:} and o ={(gi):e€uick)\E}
Consequently we have a < , both in S7 and such that
(Ve < e(x))(Vi € 6\ E)(f2(i) < f26) & eecu).

Since 1\ E. € D we get (Ve < e(¥))(f&/D < f2/D < ¢ € u). [T

Definition 6.5 An ultrafilter D on k is called separative if for every a, B €
"k such that (Vi < k)(ay # B;) there is A € D such that

{aj:ie Ayn{Bi:ie A} =0.
Remark 6.6 So 6.2(1) says that D x D is not separative.

Proposition 6.7 Suppose that D is a separative ultrafilter on k, n < w and
at € *r (for £ < n) are such that

(Vly < £y < n)(@™/D # a" /D).

Then there is A € D such that the sets {af :i € A} (for £ < n) are pairwise
disjoint.

Proor  For £ <m < n, by 6.5, there is Ay ,, € D such that
{af i€ Appyni{al i€ Agy} = 0.

Now A= [\ A, is as required. N7
{<m<n

Proposition 6.8 Assume p = cf(u), (Va < p)(Ja|® < p). Suppose that
T is a (u,k")-entangled linear order and D is a separative ultrafilter on k.
Then the linear order Z" /D 1is (u, Rg)-entangled.
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PrROOF Letn < w, v C n and f{/D € I¢/D for £ < n, a < p be
pairwise distinct. By 6.7 we may assume that (for each a < p) the sets
{fE@) 1 i < K} : £ < n) are pairwise disjoint. Applying A-lemma we may
assume that {(f£(i) : i < k,£ < n):a < p} forms a A-system of sequences
and that the diagram of the equalities does not depend on «. Let

A={(i,0) €k xn: (Va < B < p)(fi(i) = F50)}

(i.e. the heart of the A-system). Note that for each ¢ < n the set {i € K :
(i,£) € A} is not in D (as f£/D’s are pairwise distinct). Consequently we
may modify the functions f{ and we may assume that A = (). Now we have

Do) = fl(i1) = ao=a1 & ly=1.

It is easy now to apply the (i, x™)-entangledness of Z and find a < 8 <
such that f¢/D < fé/D = (cu. NG g

Proposition 6.9 1. If D is a selective ultrafilter on k (i.e. for every
f ik —> K there is A € D such that either f | A is constant or f | A
is one-to-one) then D is separative.

2. If no uniform ultrafilter on w is generated by less than continuum sets
(i.e. uw=2%0) then there exists a separative ultrafilter on w.

PROOF 1) Suppose that &, 3 € %k are such that (Vi < k)(c; # 3;). We
find A € D such that @ | A, B | A are either constant or one-to-one. If
at least one of them is constant then, possibly omitting one element from
A, the sets {a; : i € A}, {f; : i € A} are disjoint, so assume that both
sequences are one-to-one. Choose inductively m; € {0,1,2} (for i € A) such
that

Z',]'GA&OZZ':,BJ‘ = mz#m]

There are m* and B C A, B € D such that (Vi € B)(m; = m*). Then
{a; i€ Byn{p;:i € B} =0.

2)  Straightforward. M9

Proposition 6.10 If D is a uniform not separative ultrafilter on k, I is
a linear ordering of size X > k then the linear order /D is not (X,2)-
entangled.
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PROOF  As D is not separative we have &, 3 € "k witnessing it. This
means that & # 8 mod D and the family

Haj:1€ A}, {B;:i€ A} : A€ D}

has the finite intersection property. Consequently we may apply 6.1. Mg 1g

Conclusion 6.11 1. If 6*/D > 22’ then D is not separative.

2. If D is reqular ultrafilter on k, 2% > Jo then D is not separative.

Remark 6.12 If there is no inner model with measurable then every D is
regular or close enough to this to give the result.

PrROOF 1) For every f € ®0 the family Ef = {A C 0: f~1[A] € D} isan
ultrafilter on 6. For some go, g1 € “8 we have E,y = Eg4 but go/D # g1/D
and hence we are done.

2) The regularity implies N§/D = 2" (see [?]), so by the first part we are
done. Mg 11

Definition 6.13 Let k, o be cardinal numbers.

1. We say that a linear order T is strongly (u,o)-entangled if:
(IZ|, 10 > o +Rg and) for every e(x) < 1+ 0, t5, € T (for a < p,( <
e(x)) and u C e(x) such that
a<p&leu&tee(x)\u = 5465
for some a < B < p we have:
(a) ecu = <7t
(b) e€e(x)\u = 5<zt.
2. We say that a linear order T is strongly positively /positively*/ (u,o)-

entangled if for every e(x) < 1+ 0, t§, € T (for a < u, ¢ < (%)) and
u € {0,e(x)} for some a < < p [for some o # 8 < ] we have

(a) ecu = <7t
(b) e€e(x)\u = 5<zt.

k99

Remark 6.14 For “positively*” it is enough to use u = (), so only clause
(a) applies. [Why? as we can interchange «, (3.]
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Proposition 6.15 1. If 0 = Xy and p = cf(u) > o then in Definition
6.13(1) we can weaken o < f < p to o # B (< p). [Why? As in
1.2(6).]

2. For a linear order: “strongly (u,oc)-entangled” implies both “(u,o)-
entangled” and “strongly positively (u,o)-entangled” and the last im-
plies “positively (u,o)-entangled”. Lastly “strongly positively (u,o)-
entangled” implies “strongly positively* (u,o)-entangled”.

3. In Definition 6.13 the properties are preserved when increasing . and/or
decreasing o and/or decreasing T.

4. If p=cf(p), (Ve < o) (VO < p)(0El < p) then:

(a) Z is (u,0)-entangled if and only if T is strongly (u,o)-entangled,
(b) Z is positively (u,o)-entangled if and only if T is strongly posi-
tively (u, o)-entangled.

5 If u=cf(u), (Ve < 0)(26l < ) then in Definition 6.13(1),(2) we can
assume

(Va < p)(V¢ < € < e(x))(t5, # 1)

6. (1, <) and (p,>) are not strongly (i, 2)-entangled (even if I is strongly
(1, 2)-entangled then there is no partial function f from I to I such
that x <z f(z), |dom(f)| = pu and f preserves <z).

7. If (Ve < o) (||l < p) then T is strongly (u, o)-entangled.
8. Assume o is a limit cardinal, T is a linear order. Then

(a) Z is strongly (u,o)-entangled if and only if for every o1 < o the
order T is strongly (u, o1)-entangled.

(b) Similarly for other notions of 1.1, 1.10, 6.13. ;.15

Proposition 6.16 Assume that T is a (u, 2)-entangled linear order and 6 =
cf(0) < p. Then for some A C T, |A| < p we have:

r<zy&{z,yt A = |(z,y)z| > 0.
PrROOF  Let EY be the following two place relation on Z:
T Eg Y if and only if

z=yorlr<zy&|(z,y)z| <O orly<zz & |(y,x)z] <0
Obviously:
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(a) EY is an equivalence relation,
(b) each equivalence class has cardinality < 6,

(c) if an equivalence class has cardinality 6 then there is a monotonic se-
quence of length 6 in it.

It is enough to show that the set A = {x : |z/E%| > 1} has cardinality
less than p. Suppose that |A| > u. Then there are at least u equivalence
classes (as each class is of the size < 6 < u). Consequently we can find
t9.t! € T for a < p such that t9 < ¢}, t9 EY t1 and there is no repetition

[e2ngeY o) o
in {t%/E% : a < p}. For e(x) = 2 and u = {0} we get contradiction to
Definition 6.13. M5 16

Remark: Easily, 6 = cf(0) is redundant.

Proposition 6.17 If T is strongly (u,o)-entangled, Xg < 0 < o, p < |Z|
then

(a) 29 <y and

(b) the cardinal x =: |{x/E% : x/EY% not a singleton}| satisfies x¥ < p
(where EY is from the proof of 6.16).

Proor  Take :U8 >7 56(1] <z 2 <z z}. For f € 92 let t?f” = xff(s) (for

e < 0). If 29 > p then we may consider u = {2¢ : ¢ < 0} and find (by the
strongly (u, o)-entangledness) functions f # g such that for all £ < 6:

2e 2e 2e+1 2e+1
tF <gtE,  tFT gt

But if £ < 0 is such that f(g) # g(e) then we get x(}(a) <z xg(s). Hence
f(e) =0, g(¢) = 1 and consequently x}(e) <z x;(e). But the last contradicts
to t?f“ >7 t§5+1. Hence 2 < 1 as required in (a).

For (b), let (9/EY : i < x) be with no repetition, z} € 29/E%, 20 <7 x}.
Let {fa : @ < x?} list all functions f : § — x (so for each a < 3 there is

e < 0 such that fo(e) # fa(e)). Let 37 (for a < A\, e <0, £ < 2) bexl

andu = {2e:e <0} CO (soe(x)=0). If u < x? then we get o < 8 < p by
Definition 6.13(1) and we get contradiction, so u > x? as required. Mg 17

Remark: See more in[SaSh 553].

Proposition 6.18 If 7 is a linear order, |Z| > 0 € [Ng,0) then BA{,..(Z)
is not 2% -narrow.
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ProOF  Choose J C Z, |J| = 6 such that for every ¢t € J for some
T € BA{;;(Z) we have 1N T = {t} (1 =({[t,s) : t <z s € J}). Hence for
every J' C J for some 7 € BAY,..(Z) we have TN J = J’. The conclusion

inter
now follows. N s

Proposition 6.19 In Definition 6.13(1), if cf(u) = p (or less) we can wlog
demand

(Vo < ) (V¢ < € < e()) (18 # )
and for some linear order <* on &(x)

(<FE (E<elx) = th<zt.

Proor Clearly the new version of the definition implies the old one.
So now assume the old definition and we shall prove the new one. Let
e(x) <140 and t§ (for a < p, ¢ < &(x)). By 6.17(a) we have p > 2/l
so we can replace (£, : ¢ < e(*)) :a < u) by (5 : ( <e(*)) : a € A) for a
suitable A € [u]#, and we are done. M 19

Proposition 6.20 1. Assume o > Xy and cf(u) = p. Then in Defini-
tion 6.13(1), if we allow first to discard < p members of T we can
add

() for ¢.& <e(x), if th <zt then {15, 15} <z {t5.t5)
(i.e. we get an equivalent definition).

2. Even without “if we allow first to discard < pu members of T” part (1)
still holds true. It holds also for (u,o)-entangledness.

PrOOF 1) The new definition is apparently stronger so we have to prove
that it follows from the old one. Wlog p > Ng. By 6.16 wlog

v<zy = |(y)zl>2e()
Let £(¥) < 0, t, € T be given. By 6.19 we may assume that
(Vo < ) (V¢ < & <e(o)[ts, #15 & (1§ <5 =¢ <€)
So for a < p, ¢ <* & we can choose s € T (¢ = 1,2) such that for each

o < [
tgé <z Sg’g’l <z 832672 <z tg
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and there are no repetitions in {tS, 555 : ¢ < e(x),¢ <* ¢ and £ € {1,2}}.
So for some o < 3 we have

= = 15 <75,
Ceex)\u = t§>1t5
(e = st sragt
(<€ = s$52>7 55

Now (c) follows immediately.

9) Use 6.16 + 6.17(b).
For (u,o0)-entangledness — straightforward. s 20

Proposition 6.21 Assume Ny < 0 < o, x =dens(Z) and: T is a strongly
(p, o)-entangled or BAZ,..(T) is p-narrow. Then x? < p.

inter
ProoOF  First note the following fact:

Claim 6.21.1 Assume that (Z. : € < 0) is a sequence of pairwise disjoint
convex subsets of T, x. = dens(Z.) > Xy and x = [[ xe. Then x < p and
e<6

BA{

O ter(Z) is not x-narrow.

Proof of the clatim:  Choose by induction on 7 < x., a; < b5 from Z. such

that [a7, b5z is disjoint to {a5, 5 : j <i}. Let {fo :a < x} list ] xc (with

e<6
no repetitions) and let (x) = 6, t27 be: a‘;}a(e) if ¢ =0, b‘;}a(e) if ¢ =1, and
u={2¢:e < 0} —we get a contradiction to “Z is strongly (x, o)-entangled”.
The proof for the Boolean version is similar. Og.21.1

By an argument similar to that of 6.21.1 one can show that x(= dens(Z)) <
. So the interesting case is when x? > 0. As 2¢ < u (see 6.15) we may
assume that x > 2%, Let x; = min{\ : \? > x}, so cf(x1) < 6, and let
X1= . Xfe, O(x) =cf(x1) <6, X?,e < x1. For each e < 0(x) we define a
e<O(*

two placé i‘elation E? on I:

xEly if and only if

either z =y or z < y, dens(Z | (z,y)) < x1,c or

y <z,dens(Z | (y,2)) < X1.-
It is an equivalence relation, each equivalence class has density < Xfe, and
the number of Ef-equivalence classes is > x. So by the Erdos—Rado theorem
we can find a monotonic sequence (zf : i < 6T) such that i # j =
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Without loss of generality, for all € the monotonicity is the same, so wlog
i<j = f <z 5. Throughing away a long initial segment from each
(x5 i < 0) we may assume that for each &, < 0(x) either

(Vi < 07)(Fj < 07)(af <z 25 & af <7 25)

or
U 25, 90;]17 U [acf, HCJC]I are disjoint.
1<j i<j
Now it is easy to satisfy the assumptions of 6.21.1. o)

Conclusion 6.22 Assume that p = cf(u) > o = cf(0) > RNo, Z is a linear
order of cardinality > . Then in Definition 6.13(1) we can demand (%) of
1.2(3).

PrROOF By 6.21 (and see the proof of 1.2(3)). [ o)

Proposition 6.23 Assume p = cf(pn) > o = cf(o) > No, Z is a linear
order, |Z| > . Then the following conditions are equivalent:

(a) Z is strongly (u,o)-entangled,

(b) BA{,..(Z) is p-narrow.

inter

ProorF (a) = (b) By 6.22 the situation is similar enough to the one
in 1.5 to carry out the proof.

(b) = (a) By 6.21 we can apply the parallel of 1.2(3), so the situation
is similar enough to the one in 1.5 to carry out the proof as there. Mg o3

Proposition 6.24 Assume o = 07 > R, u > 0.

1. If T is not strongly [or strongly positively] [or strongly positively*]
(i, 0)-entangled for i < 6 then T is not strongly [or strongly posi-
tively/ [or strongly positively*| (u, o)-entangled for pn = TT;q t4i-

2. If u is singular and T is strongly (u, o)-entangled then for some p/ < p,
T is strongly (1',0)-entangled (so this holds for every large enough

p <)

3. The parallel of (2) holds for “strongly (u, o)-entangled”, “strongly pos-
itively (u, o)-entangled” and “strongly positively* (u,o)-entangled”.
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Proor 1) First we deal with “strongly (u,o)-entangled”. We know

|Z| > 0. Suppose that (t5¢ : o < p;,¢ < &;(*)), u; form a counterexample

for p;. As we can extend the sequences and u; wlog |u;| = |e;(x) \ u;| = 6.

So by renaming g;(x) = 0, u; = {2¢ : ( < 0}. Let fz € [] p; for B < p be
i<0

pairwise distinct. Let us choose e(x) =6 - 0, tg”c = ti;[f(l.) forv <0, (<0,
B < pand u={2¢:(¢ <00} Now check.

For the cases “strongly positively®)” (u;, o0)-entangled first wlog &;(%) =
f; then as u; has two values for some u* we have

Tk i <0, ui=u*}=p

Thus wlog u; = u and let w = |J {i} x u*. Next follow as above.
<0
2) Assumenot. Let p= Y pi, c < py < p, c=cf(p), i <j = p <pj.
1<K
So for each i < k we can find a sequence (ti¢ : ¢ < g;i(*),a < pf), w;
exemplifying the failure of “Z is (,u;r, o)-entangled”. Thus for each ¢ and for
every a < g1, there are no repetitions in {56 : ¢ < &;(x)} and |Z| > u. Now
let e(x) =0+60,u={2¢:( <O+0}. For (< H,ﬁeuj\U{pj 0<j<i}
we put tg = tgc, t%ﬂ = t?’c. Wilog for every a < u there are no repetitions

in {t$,: ¢ <0+ 0}. Now check.

3) Let r, p; (for i < k), t5¢ (for i < Kk, ¢ < &;(x), a < uf, u; be as in
the proof of (2) (for the appropriate notion). Again wlog &;(x) = 0, u; = u*,
but the choice of o; does not transfer. But by 6.24(1) we have:  pf < u
and hence wlog (- uj)e < i = pf, so for some v; C g;(*)

1<t

(Cew = [B=tf ¢ a=p) ad [(ea@\u = =1

and t5¢ =48 & tgc = tgg. We can omit &;(*) \ v; etc, so (ti¢ : ¢ <
gi(*), < pi) is with no repetition and proceed as there. WG 04

Remark 6.25 In 6.24(2) we cannot replace “strongly entangled” by “en-
tangled”; see [SaSh 553].

Conclusion 6.26 If |Z| > p > o = 0" > Ny then:
T is (u,0)-entangled if and only if T is strongly (u,o)-entangled. m

Conclusion 6.27 If u > o = 07 > Vg, T is a strongly (u,0)-entangled
linear order then for some reqular pu* we have:
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pt < op, (Voo < p*)(lof® < p*) and T is (strongly) (u*,0)-
entangled.

Consequently in 6.23 regularity is not needed. [ |
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