ON MONK’S QUESTIONS

SH479

SAHARON SHELAH

Institute of Mathematics
The Hebrew University
Jerusalem, Israel

Rutgers University
Department of Mathematics
New Brunswick, NJ USA

Partially supported by the Deutsche Forschungsgemeinschaft, Grant Ko 490/7-1.

I would like to thank Alice Leonhardt for the beautiful typing.

Publication 479

Typeset by AMS-TEX
§1 Introduction

§2 Existence of subalgebras with a preassigned algebraic density

We first note (in 2.1) that if \(\pi(B) \geq \theta = \text{cf}(\theta) \) then for some \(B' \subseteq B \) we have \(\pi(B') = \theta \). Call this statement (\(* \)). Then we give a criterion for \(\pi(B) = \mu > \text{cf}(\mu) \) (in 2.2) and conclude for singular \(\mu < \mu \) the (\(* \)) above holds (2.2A), and investigate the criterion (in 2.3). Our main aim is, starting with \(\mu = \mu < \mu \), \(\text{cf}(\lambda) < \lambda \), to force the existence of a Boolean algebra \(B \) with \(\pi(B) > \theta \) but for no \(B' \subseteq B \) do we have \(\pi(B') = \lambda \) (in fact \(\exists B' \subseteq B \)\(\pi(B') = \theta \iff \theta = \text{cf}(\theta) \vee \text{cf}(\theta) \leq \mu \)) for every \(\theta \leq |B| \). Toward this, we define the forcing (Definition 2.5: how \(\langle x_\alpha : \alpha \in \mathcal{W} \rangle \) generate a Boolean algebra, \(BA[p], W^p \in |\lambda|_{< \mu} \) with \(x_\alpha > \theta \) has no non-zero member of \(\langle x_\beta : \beta \in W^p \cap \alpha \rangle_{BA[p]} \) below it). We prove the expected properties of the generic (2.6), also the forcing has the expected properties (\(\mu \)-complete, \(\mu^+ \)-c.c) (in 2.7). The main theorem (2.9) stated, the main point brings that if \(\mu < \text{cf}(\theta) < \theta \) for \(B \subseteq BA[G], \pi(B) \neq \theta \); we use the criterion from above, a lemma related to \(\triangle \)-systems (see [Sh 430], 6.6D, [Sh 513], 6.1) quoted in 2.4; to reduce the problem to some special amalgamation of finitely many copies (the exact number is in relation to the arity of the term defining the relevant elements from the \(x_\alpha \)'s). The existence of such amalgamation was done separately earlier (2.8).

Lastly in 2.10 we show that the \(\text{cf}(\theta) > \mu \) above was necessary by proving the existence of a subalgebra with prescribed singular algebraic density \(\lambda : \pi(B) > \lambda \) and (\(\forall \mu < \lambda \)[\(\mu \leq \text{cf}(\lambda) < \lambda \)]).

§3 On \(\pi \) and \(\pi \chi \) of Products of Boolean Algebras

If e.g. \(\aleph_0 < \kappa = \text{cf}(\chi) < \chi < \lambda = \text{cf}(\lambda) < \chi^\kappa, (\forall \theta < \chi)(\theta^\kappa < \chi) \) we show that for some Boolean algebras \(B_i \) (for \(i < \kappa \)) \(: \chi - \sum_{i < \chi} \pi \chi(B_i) < \lambda \) but (for \(D \) a regular ultrafilter on \(\kappa \)) \(\lambda = \pi \chi(\prod_{i < \kappa} B_i/D) \) but \(\prod_{i < \kappa} (\pi \chi(B_i))/D = \chi^\kappa. \) For this we use interval Boolean algebras on order of the form \(\lambda_i \times \mathbb{Q} \).

We also prove for infinite Boolean algebras \(B_i \) (for \(i < \kappa \)) and \(D \) an ultrafilter on \(\kappa \), if \(n_i < \aleph_0, \mu = \prod_{i < \kappa} n_i/D \) is regular (infinite) cardinal then \(\pi \chi(\prod_{i < \kappa} B_i/D) \geq \mu. \)
§1 Introduction

Monk [M] asks: (problems 13, 15 in his list; π is the algebraic density, see 1.1 below)

For a (Boolean algebra) B, $\aleph_0 \leq \theta \leq \pi(B)$, does B have a subalgebra B' with $\pi(B') = \theta$?

If θ is regular the answer is easily positive (see 2.1), we show that in general it may be negative (see 2.9(3)), but for quite many singular cardinals - it is positive (2.10); the theorems are quite complementary. This is dealt with in §2.

In §3 we mainly deal with $\pi\chi$ (see Definition 3.2) show that the $\pi\chi$ of an ultraproduct of Boolean algebras is not necessarily the ultraproduct of the $\pi\chi$’s. Note: in Koppelberg Shelah [KpSh 415],Theorem 1.1 we prove that if SCH holds, $\pi(B_i) > 2^\alpha$ for $i < \kappa$ then $\pi \left(\prod_{i<\kappa} B_i/D \right) = \prod_{i<\kappa} (\pi(B_i))/D$.

We also prove that for infinite Boolean algebras $A_i(i < \kappa)$ and a non-principal ultrafilter D on κ: if $n_i < \aleph_0$ for $i < \kappa$ and $\mu =: \prod_{i<\kappa} n_i/D$ is regular, then $\pi\chi(A) \geq \mu$.

Here $A =: \prod_{i<\kappa} A_i/D$. By a theorem of Peterson the regularity of μ is needed.

1.1 Notation: Boolean algebras are denoted by B and sometimes A.

For a Boolean algebra B

$$B^+ =: \{ x \in B : x \neq 0 \}$$

$$\pi(B) =: \text{Min}\{ |X| : X \subseteq B^+ \text{ is such that } \forall y \in B^+ \exists x \in X[x \leq y] \}.$$

X like that is called dense in B. More generally if $X,Y \subseteq B$ we say X is dense in Y if $y \in Y$ & $y \neq 0 \Rightarrow (\exists x \in X)(0 < x \leq y)$. For a $Y \subseteq B$, $\langle Y \rangle_B$ is the subalgebra of B which Y generates.

0_A is the constant function with domain A and value zero.

1_A is defined similarly.
§2 Existence of subalgebras with a preassigned algebraic density

Note

2.1 Observation. If \(\pi(B) > \theta = \text{cf}(\theta) \geq |Y| + \aleph_0 \) and \(Y \subseteq B \) then for some subalgebra \(A \) of \(B \), \(Y \subseteq A \) and \(\pi(A) = \theta \).

Proof. Without loss of generality \(|Y| = \theta \). Let \(Y = \{ y_\alpha : \alpha < \theta \} \). Choose by induction on \(\alpha \leq \theta \) subalgebras \(A_\alpha \) of \(B \), increasing continuous in \(\alpha \), \(|A_\alpha| < \theta \), \(y_\alpha \in A_{\alpha+1} \) such that: for each \(\alpha < \theta \), some \(x_\alpha \in A_{\alpha+1} \) is not above any \(y \in A_\alpha \). This is possible because for no \(\alpha < \theta \) can \(A_\alpha \) be dense in \(B \).

Now \(A = A_\theta \) is as required. \(\square_{2.1} \)

2.2 Claim. Assume \(B \) is a Boolean algebra, \(\pi(B) = \mu > \text{cf}(\mu) \geq \aleph_0 \) (see Definition 1.1). Then for arbitrarily large regular \(\theta < \mu \)

\[
(*)^B_\theta \quad \text{for some set } Y \text{ we have:}
\]

\[
(*)^B_\theta[Y] \quad Y \subseteq B^+, |Y| = \theta, \text{ and there is no } Z \subseteq B^+
\]

of cardinality \(< \theta \), dense in \(Y \left(\text{i.e. } \bigwedge_{y \in Y} \bigvee z \leq y \right) \).

2.2A Conclusion. If \(B \) is a Boolean algebra, \(\pi(B) = \mu > \text{cf}(\mu) \geq \aleph_0 \) and \(\langle \mu_\zeta : \zeta < \text{cf}(\mu) \rangle \) is increasing continuously with limit \(\mu \) (so \(\mu_\zeta < \mu \) then for some club \(C \) of \(\text{cf}(\mu) \) for every \(\zeta \in C \) for some \(B' \subseteq B \) we have \(\pi(B') = \mu_\zeta \).

Proof of 2.2. Let \(Z^* \subseteq B^+ \) be dense, \(|Z^*| = \mu \).

If the conclusion fails, then for some \(\theta^* < \mu \), for no regular \(\theta \in (\theta^*, \mu) \) does \((*)^B_\theta \) hold. We now assume we chose such \(\theta^* \), and show by induction on \(\lambda \leq \mu \) that:

\[\otimes_{\lambda} : \text{if } Y \subseteq B^+, |Y| \leq \lambda \text{ then for some } Z \subseteq B^+, |Z| \leq \theta^* \text{ and } Z \text{ is dense in } Y. \]

First Case. \(\lambda \leq \theta^* \).

Let \(Z = Y \).

Second Case. \(\theta^* < \lambda \leq \mu \) and \(\text{cf}(\lambda) < \lambda \).

Let \(Y = \bigcup\{ Y_\zeta : \zeta < \text{cf}(\lambda) \}, |Y_\zeta| < \lambda \). By the induction hypothesis for each \(\zeta < \text{cf}(\lambda) \) there is \(Z_\zeta \subseteq B^+ \) of cardinality \(\leq \theta^* \) which is dense in \(Y_\zeta \).
Now $Z' = \bigcup_{\zeta < \operatorname{cf}(\lambda)} Z_\zeta$ has cardinality $\leq \theta^* + \operatorname{cf}(\lambda) < \lambda$, hence by the induction hypothesis there is $Z \subseteq B^+$ dense in Z' with $|Z| \leq \theta^*$. Easily Z is dense in Y, $|Z| \leq \theta^*$ and $Z \subseteq B^+$ so we finish the case.

Third Case. $\theta^* < \lambda \leq \mu$, λ regular.

If for this Y, $(\ast)^B_\lambda[Y]$ holds, we get the conclusion of the claim. We are assuming not so; so there is $Z' \subseteq B^+$, $|Z'| < \lambda$, Z' dense in Y. Apply the induction hypothesis to Z' and get Z as required.

So we have proved \otimes_λ.

We apply \otimes_λ to $\lambda = \mu$, $Y = Z^*$ and get a contradiction. \(\square\)

2.3 Claim. 1) If B, μ, θ, Y are as in 2.2 (so $(\ast)^B_\theta[Y]$ and θ is regular) then we can find $\bar{y} = \langle y_\alpha : \alpha < \theta \rangle$ contained in B^+ and a proper θ-complete filter D on θ containing all cobounded subsets of θ such that:

$$\otimes^{B, D}_{\bar{y}, \theta} \text{ for every } z \in B^+, \{\alpha < \theta : z \leq y_\alpha\} = \emptyset \bmod D.$$

2) If in addition θ is a successor cardinal then we can demand that D is normal.

Remark. Part (2) is for curiosity only.

Proof. 1) Let $Y = \{y_\alpha : \alpha < \theta\}$. Define D:

for $\mathcal{U} \subseteq \theta$; $\mathcal{U} \in D$ if for some $0 < \zeta < \theta$ and $z_\epsilon \in B^+$ for $\epsilon < \zeta$, we have $\mathcal{U} \supseteq \{\alpha < \theta : \bigwedge_{\epsilon < \zeta} z_\epsilon \not\approx y_\alpha\}$.

Trivially D is closed under superset and intersections of $< \theta$ members and every cobounded subset of θ belongs to it. Now $\emptyset \notin D$ because $(\ast)^B_\theta[Y]$.

2) Let $\theta = \sigma^+$. Assume there are no such \bar{y}, D. We try to choose by induction on $n < \omega$, $Y^n_\alpha (\alpha < \theta)$ and club E_n of θ such that:

(a) Y^n_α is a subset of B^+ of cardinality $< \theta$, increasing continuous in α

(b) $Y^n_\alpha \subseteq Y_{\alpha+1}^n$

(c) $Y^0_\alpha = \{y_\beta : \beta < \alpha\}$ (taken from part (1))

(d) E_n is a club of θ, $E_{n+1} \subseteq E_n$, $E_0 = \{\delta < \theta : \delta \text{ divisible by } \sigma\}$

(e) if $\delta \in E_{n+1}$ and $\delta < \alpha < \text{Min}(E_n \setminus (\delta + 1))$ then for every $y \in Y^n_\alpha$ there is $z \in Y^\alpha_{\delta+1}$, $z \leq y$.

If we succeed, let $\beta^* = \bigcup_{n < \omega} \text{Min}(E_n) (\angle \theta)$, and we shall prove that $\bigcup_{n < \omega} Y^n_{\beta^*}$ is dense in Y, getting a contradiction. For every $y \in \bigcup_{n < \omega} Y^n_\alpha$ let $\beta(y)$ be the minimal $\beta < \theta$ such that $\left(\exists z \in \bigcup_{n < \omega} Y^n_\beta\right) (z \leq y)$. Now β is well defined as $\langle \bigcup_{n < \omega} Y^n_{\beta} : \beta < \theta \rangle$ is increasing continuous and $y \in \bigcup_{\beta \angle \theta} \bigcup_{n < \omega} Y^n_\beta$. If $\beta(y) \leq \beta^*$ for every
for every \(\gamma \) (by clause (b)); note constant, say \(\omega \) is this. Now let \(\beta \in E \) such that \(Y^n = \bigcup_{n<\omega} Y^n \) exemplifies this. Clearly \(\langle \sup(\beta \cap E_n) : n < \omega \rangle \) is well defined; clearly it is a non-increasing sequence of ordinals hence eventually constant, say \(n \geq n^* \Rightarrow \sup(\beta \cap E_n) = \gamma \). Now, without loss of generality \(z \in Y^{n^*} \) (by clause (b)); note \(\gamma \in E_n \) for \(n \geq n^* \) (hence for every \(n \)). But by clause (e) there is \(z' \in Y^{n^*+1}, z' \leq z \), contradicting the choice of \(\beta \).

So we cannot carry the construction, so we are stuck at some \(n \). Fix such an \(n \). Let \(E_n \cup \{0\} = \{\delta : \varepsilon < \theta\} \) (increasing with \(\varepsilon \)). Let \(Y^n_{\delta+1} \setminus Y^n_{\delta} \subseteq \{y^\varepsilon : \varepsilon < \theta\} \). For each \(\zeta < \sigma \), let \(D_\zeta \) be the normal filter generated by the family of subsets of the form \(\{\varepsilon < \theta : z \notin y^\varepsilon\} \) for \(z \in B^+ \). If for every \(\zeta < \sigma \), \(\emptyset \in D_\zeta \) we can define \(Y^{n^*+1}, E_{n^*+1} \), contradiction. So for some \(\zeta \), \(\overline{y}^\zeta = \langle Y^\varepsilon : \varepsilon < \sigma\rangle \), \(D_\zeta \) are as required in \(\bigotimes_{y^\zeta,D_\zeta} \).

2.4 Claim. Suppose \(D \) is a filter on \(\theta \), \(\sigma \)-complete, \(\theta = cf(\theta) > \sigma > 2^\kappa \), and for each \(\alpha < \theta \), \(\beta^\alpha = \langle \beta^\alpha : \varepsilon < \kappa \rangle \) is a sequence of ordinals. Then for every \(U \subseteq \theta \), \(U \not= \emptyset \mod D \) there are \(\langle \beta^\varepsilon : \varepsilon < \kappa \rangle \) (a sequence of ordinals) and \(w \subseteq \kappa \) such that:

(a) \(\varepsilon \in \kappa \setminus w \Rightarrow cf(\beta^\varepsilon) \leq \theta \)

(b) if \(\bigwedge_{\alpha < \sigma} |\alpha|^\kappa < \sigma \) then:
\(\varepsilon \in \kappa \setminus w \Rightarrow \sigma \leq cf(\beta^\varepsilon) \)

(c) if \(\beta^\varepsilon \leq \beta^\zeta \) for all \(\varepsilon \) and \(\varepsilon \in w \equiv \beta^\varepsilon = \beta^\zeta \) then:
\(\{\alpha \in U : \beta^\alpha \leq \beta^\varepsilon \leq \beta^\zeta \text{ for all } \varepsilon \text{ and } \varepsilon \in w \equiv \beta^\alpha = \beta^\zeta\} \not= \emptyset \mod D. \)

Proof. [Sh 430], 6.1D and better presented in [Sh 513], 6.1.

2.5 Definition. 1) If \(F \subseteq w^2 \) let
\(cl(F) = \{g \in w^2 : \text{for every finite } u \subseteq w \text{ for some } f \in F \text{ we have } g \restriction u = f \restriction u\}. \)
If \(f \in w^2 \), \(w \subseteq \text{Ord} \) and \(\alpha \in \text{Ord} \) let \(f^{[\alpha]} \) be \((f \restriction (w \cap \alpha)) \cup 0_{w \setminus \alpha} \); let \(f^{[\infty]} = f \).

2) Let \(\mu = \mu < \mu < \lambda \). We define a forcing notion \(Q = Q_{\lambda, \mu} \):
(a) the members are pairs \(p = (w, F) = (w^p, F^p) \), \(w \subseteq \lambda \), \(|w| < \mu \), and \(F \) is a family of \(< \mu \) functions from \(w \) to \(\{0, 1\} \) satisfying
\((\alpha) \) for every \(\alpha \in w \), for some \(f \in F \), \(f(\alpha) = 1 \)
\((\beta) \) if \(f \in F \) and \(\alpha \in w \) then \(f^{[\alpha]} \in F \)

(b) the order: \(p \leq q \) iff \(w^p \subseteq w^q \) and
\((\alpha) \) if \(f \in F^q \Rightarrow f \restriction w^p \in cl(F^p) \)
\((\beta) \forall f \in F^p \exists g \in F^q (f \subseteq g) \).

3) For \(w \subseteq \lambda \), \(F \subseteq w^2 \) let \(BA[w, F] = BA[(w, F)] \) be the Boolean algebra freely generated by \(\{x_\alpha : \alpha \in w\} \) except that: if \(u, v \) are finite subsets of \(w \) and for no \(f \in F \), \(1_u \cup 0_v \subseteq f \) then \(\bigcap_{\alpha \in u} x_\alpha - \bigcup_{\beta \in v} x_\beta = 0. \)
4) If \(G \subseteq Q_{\lambda, \mu} \) is generic over \(V \) then \(BA[G] \) is \(\bigcup_{p \in G} BA[p] \) (see 2.6(2),(3) below). Here \(BA[p] = BA[w^p, F^p] \).

2.6 Claim. 0) For \(p \in Q_{\lambda, \mu} \), \(BA[p] \) is a Boolean algebra; also for \(f \in F^p \) and ordinal \(\alpha \in w^p \) (or \(\infty \)) we have \(f^{[\alpha]} \in F^p \).

1) If \(f \in F^p, p \in Q_{\lambda, \mu} \) then \(f \) induces a homomorphism we call \(f^{\text{hom}} \) from \(BA[p] \) to the two members Boolean algebra \(\{0, 1\} \). In fact for a term \(\tau \) in \(\{x_\alpha : \alpha \in w^p\} \), \(BA[p] \models "\tau \neq 0" i f f \) for some \(f \in F^p \), \(f^{\text{hom}}(\tau) = 1 \).

2) If \(p \leq q \) then \(BA[p] \) is a Boolean subalgebra of \(BA[q] \).

3) Hence \(BA[\mathcal{G}] \) is well defined, \(p \models " BA[p] \) is a Boolean subalgebra of \(BA[\mathcal{G}]".

4) For \(p \in Q_{\lambda, \mu}, \) for \(\alpha \in w^p, x_\alpha \) is a non-zero element which is not in the subalgebra generated by \(\{x_\beta : \beta < \alpha\} \) nor is there below it a non-zero member of \(\langle x_\beta : \beta < \alpha \rangle_{BA[p]} \).

Proof. Check. Part (0) should be clear, also part (1). Now part (2) follows by 2.5(2)(b) and the definition of \(BA[p] \); so (3) should become clear. Lastly, concerning part (4), \(x_\alpha \) is a non-zero member of \(BA[p] \) by clause (\(\alpha \)) of 2.5(2)(a). For \(\alpha \in w^p \), by 2.5(2)(a)(\(\alpha \)) there is \(f^1 \in F^p, f^1(\alpha) = 1 \), and by 2.5(2)(a)(\(\beta \)) there is \(f^0 \in F^p, f^0(\alpha) = 0 \). \(f^0 \upharpoonright (w \cap \alpha) = f^1 \upharpoonright (w \cap \alpha) \); together with part (1) this proves the second phrase of part (4). As for the third phrase, let \(\tau \) be a non-zero element of the subalgebra generated by \(\{x_\beta : \beta < \alpha\} \), so for some \(f \in F^p \), \(f^{\text{hom}}(\tau) = 1 \). By 2.5(2)(a)(\(\beta \)), letting \(f_1 = f^{[\alpha]} \), we have \(f_1(\alpha) = 0 \) and \(f_1 \in F^p \) and \(f_1 \upharpoonright (w \cap \alpha) \subseteq f \). Hence \(f_1^{\text{hom}}(\tau) = f^{\text{hom}}(\tau) = 1 \) and \(f_1(\alpha) = 0 \), hence \(f_1^{\text{hom}}(x_\alpha) = 0 \). This proves \(BA[p] \models "\tau \not\subseteq x_\alpha." \) \(\square \) 2.6

2.7 Claim. Assume \(\mu = \mu^{< \mu} < \lambda \).

(1) \(Q_{\lambda, \mu} \) is a \(\mu \)-complete forcing notion of cardinality \(\leq \lambda^{< \mu} \).

(2) \(Q_{\lambda, \mu} \) satisfies the \(\mu^+ \)-c.c.

Proof of 2.7. 1) The number of elements of \(Q_{\lambda, \mu} \) is at most

\[
|\{(w, F) : \lambda \leq |w| < \mu \text{ and } F \text{ is a family of } < \mu \text{ functions from } w \text{ to } \{0, 1\}\}| \\
\leq \sum_{\substack{w \subseteq \lambda \subseteq \lambda \text{, } |w| < \mu}} |\{F : F \subseteq w^2, \text{ and } |F| < \mu\}| \\
\leq \sum_{\substack{w \subseteq \lambda \subseteq \lambda \text{, } |w| < \mu}} (2^{|w|})^{< \mu} \leq |\{w : \lambda \leq |w| < \mu\}| \times \mu \\
= \lambda^{< \mu} + \mu = \lambda^{< \mu}.
\]

As for the \(\mu \)-completeness, let \(\langle p_\zeta : \zeta < \delta \rangle \) be an increasing sequence of members of \(Q_{\lambda, \mu} \) with \(\delta < \mu \). Let \(p_\zeta = \langle w_\zeta, F_\zeta \rangle \), let \(F' \zeta = c \ell(F_\zeta) \), let \(w = \bigcup_{\zeta < \delta} w_\zeta \) and let...
$F' = \{ f \in w^2 : \text{for every } \zeta < \delta \text{ we have } f \upharpoonright w_\zeta \in F'_\zeta \}.$

Clearly for every $\zeta < \delta$ and $f \in F_\zeta$ there is $g = g_f \in F'$ extending F. Lastly, let $F = \{ g_f : f \in \bigcup_{\zeta < \delta} F_\zeta \}$. Then $p = (w, F) \in Q_{\lambda, \mu}$ is an upper bound of $\langle p_\zeta : \zeta < \delta \rangle$, as required.

2) By the Δ-system argument it suffices to prove that p^0_λ, p^1_λ are compatible when:

(a) $otp\left(w^{p^0} \right) = otp\left(w^{p^1} \right)$ and (letting $H = H^{OP}_{w^{p^1}, w^{p^0}}$ be the unique order preserving function from w^{p^0} onto w^{p^1}).

(b) H maps p^0 onto p^1 i.e.

$$f \in F^{p^0} \iff (f \circ H^{-1}) \in F^{p^1}$$

(c) $\alpha \in w^{p^0} \Rightarrow \alpha \leq H(\alpha)$

(d) for $\alpha \in w^{p^0}$ we have $\alpha \in w^{p^1}$ iff $\alpha = H(\alpha)$.

We define now $q \in Q : w^q = w^{p^0} \cup w^{p^1}$,

$$F^q = \left\{ (f \cup (f \circ H))^{[\beta]} : f \in F^{p^1}, \beta \in w^q \cup \{ \infty \} \right\}. \quad \square_{2.7}$$

2.8 Claim. Suppose $Q = Q_{\lambda, \mu}$ and

(a) $p^\ell \in Q$ for $\ell < m$

(b) $otp\left(w^{p^\ell} \right) = otp\left(w^{p^0} \right)$, and $H_{\ell, k} = H^{OP}_{w^{p^\ell}, w^{p^k}}$ (see the proof of 2.7(2))

(c) $H_{\ell, k}$ maps p^k onto p^ℓ

(d) for $\alpha \in w^{p^0}$ the sequence $\langle H_{\ell, 0}(\alpha) : \ell = 1, \ldots, m - 1 \rangle$ is either strictly increasing or constant; and $\{ \alpha, \beta \} \subseteq w^{p^0}$ & $\ell, k < m$ & $H_{\ell, 0}(\alpha) = H_{k, 0}(\beta)$ implies $\alpha = \beta$. Lastly letting $w^* = w^{p^0} \cap w^{p^1}$ we have $[\ell \neq k \Rightarrow w^\ell \cap w^k = w^*]$ and $H_{\ell, k} \upharpoonright w^*$ is the identity.

(e) $\tau(x_1, \ldots, x_n)$ is a Boolean term, $\alpha^0_i \in w^{p^0}$ for $i \in \{1, \ldots, n\}, \alpha^0_1 < \cdots < \alpha^0_n, \alpha^\ell_i = H_{\ell, 0}(\alpha^0_i)$.

(f) In $BA[p^0]$, $\tau(x_1, \ldots, x_n)$ is not zero and even not in the subalgebra generated by $\{ x_\alpha : \alpha \in w^* \}$.

(g) $m - 1 > n + 1$.

Then there is $q \in Q$ such that:

(a) $p^\ell \leq q$ for $\ell < m$; and $w^q = \bigcup_{\ell < m} w^{p^\ell}$

(b) $q \models \text{“in } BA[G], \text{there is a non-zero Boolean combination } \tau^* \text{ of }$

$$\left\{ \tau(x_{\alpha^\ell_1}, \ldots, x_{\alpha^\ell_n}) : 1 \leq \ell < m \right\} \text{ which is } \leq \tau(x_{\alpha^0_1}, \ldots, x_{\alpha^0_n}) \text{”}.$$

Proof. By assumption (f) (and 2.6(0),(4)) there are $f^*_0, f^*_1 \in cl\left(F^{p^0} \right)$ such that:

(A) $f^*_0 \upharpoonright w^* = f^*_1 \upharpoonright w^*$

(B) in the two members Boolean algebra $\{0, 1\}$ we have
\[\tau \left(f_0^* (\alpha_1^0), \ldots, f_0^* (\alpha_m^0) \right) = 0\]

\[\tau \left(f_1^* (\alpha_1^0), \ldots, f_1^* (\alpha_m^0) \right) = 1.\]

Now there is \(\gamma \in w^{p^0} \cup \{\infty\}\) such that (\(f_0^*\))\(\gamma\) = \(f_0^*\) & (\(f_1^*\))\(\gamma\) = \(f_1^*\) (e.g. \(\gamma = \infty\)). Choose such (\(\gamma, f_0^*, f_1^*\)) with \(\gamma\) minimal.

Let \(w^q = \bigcup_{\ell=0}^{m-1} w^{p^\ell}\). We define a function \(g \in (w^q)^2\) as follows:

First Case. \(g \upharpoonright w^{p_0^0} = f_1^*\)

Second Case. For odd \(\ell \in [1, m)\), \(g \upharpoonright w^{p^\ell} = f_1^* \circ H_{0,\ell}\) and

Third Case. For even \(\ell \in [1, m)\), (but not \(\ell = 0\!\)! \(g^* \upharpoonright w^{p^\ell} = f_0^* \circ H_{0,\ell}\).

Now \(g\) is well defined by clause (A) above. Let us define \(q:\)

\[F^q = \left\{ \left(\bigcup_{\ell=0}^{m-1} f \circ H_{0,\ell} \right)^{[\alpha]} : \alpha \in w^q \cup \{\infty\} \text{ and } f \in F^{p_0} \right\}\]

\[\bigcup \left\{ g^{[\alpha]} : \alpha \in w^q \cup \{\infty\} \right\}.

\quad q = (w^q, F^q).

Let us check the requirements.

First Requirement: \(q \in Q\).

Clearly \(w^q \in [\lambda]^{<\mu}\). Also \(F^q \subseteq (w^q)^2\), \(|F^q| < \mu\) so we have to check the conditions (\(\alpha\)) and (\(\beta\)) of Definition 2.5(2)(a):

Condition (\(\alpha\)).

If \(\alpha \in w^q\) then for some \(\ell < m\), \(\alpha \in w^{p^\ell}\), so as \(p^\ell \in Q\) there is \(f_\ell \in F^{p^\ell}\) such that \(f_\ell (\alpha) = 1\). Now for some \(f_0 \in F^{p_0}\), \(f_0 = f_\ell \circ H_{0,\ell}\) so

\[f =: \bigcup_{k<m} (f_0 \circ H_{0,k}) = \left(\bigcup_{k<m} (f_0 \circ H_{0,k}) \right)^{[\alpha]} \] belongs to \(F^q\) and

\[f(\alpha) = (f_0 \circ H_{0,\ell})(\alpha) = f_\ell (\alpha) = 1.\]

Condition (\(\beta\)).

As for \(\alpha, \beta \in w \cup \{\infty\}\) and \(f \in (w^q)^2\) we have \((f[\alpha])^{[\beta]} = f^{[\text{Min}(\alpha, \beta)]}\) and as

\[\left(\bigcup_{\ell<m} f_\ell \right)^{[\alpha]} = \bigcup_{\ell<m} (f_\ell)^{[\alpha]},\] this condition holds by the way we have defined \(F^q\).
Second Requirement: For \(\ell < m, p^\ell \leq q \).

By the choice of \(q \) clearly \(w^{p^\ell} \subseteq w^q \).

Also if \(f \in F^{p^\ell} \) then \((f \circ H_{\ell,0}) \in F^{p^0} \) and

\[
\bigcup_{k<m} (f \circ H_{\ell,0}) \circ H_{0,k})^{[\infty]}
\]

belongs to \(F^q \) and extends \(f \).

Lastly, if \(f \in F^q \) we shall prove that \(f \upharpoonright w^{p^\ell} \in c\ell(F^{p^\ell}) \) (in fact, \(\in F^{p^\ell} \)); we have two cases: in the first case \(f = \left(\bigcup_{\ell<m} (f_0 \circ H_{0,\ell}) \right) \) for some \(f_0 \in F^{p^0} \), let \(\beta = \text{Min} \left[w^{\ell} \cup \{ \infty \} \right] \), so \(f[\alpha] \upharpoonright w^{\ell} = (f_0 \circ H_{0,\ell})[\beta] \), clearly \(f_0 \circ H_{0,\ell} \in F^{p^\ell} \) hence \((f_0 \circ H_{0,\ell})[\beta] \in F^{p^\ell} \) is as required. The second case is \(f = g[\alpha] \), let \(\beta = \text{Min} \left[w^{\ell} \cup \{ \infty \} \right] \), now \(f \upharpoonright w^{p^\ell} \) is \(f_0 \circ H_{0,\ell} \) or \(f_1 \circ H_{0,\ell} \) so \(f \upharpoonright w^{p^\ell} \) is \((f_0 \circ H_{0,\ell})[\beta] \) or \((f_1 \circ H_{0,\ell})[\beta] \) hence belongs to \(F^{p^\ell} \).

Third Requirement: There is a non-zero Boolean combination of

\[
\{ \tau\left(x_{\alpha_1^\ell}, \ldots, x_{\alpha_n^\ell}\right) : \ell = 1, m - 1 \}
\]

which is \(\leq \tau\left(x_{\alpha_1^1}, \ldots, x_{\alpha_n^0}\right) \) in \(BA[q] \).

The required Boolean combination will be

\[
\tau^* = \bigcap_{\ell=0}^{[m-2]} \tau\left(x_{\alpha_1^{2\ell+1}}, \ldots, x_{\alpha_n^{2\ell+1}}\right) - \bigcup_{\ell=1}^{[m-1]} \tau\left(x_{\alpha_1^{2\ell}}, \ldots, x_{\alpha_n^{2\ell}}\right).
\]

So we have to prove the following two assertions.

First assertion: \(BA[q] \models "\tau^* \neq 0" \).

Now \(g = g[\infty] \in F^q \) satisfies, for each \(\ell \in [0, \left[\frac{m-2}{2} \right]] \):

\[
g_{\text{hom}}^{\tau\left(x_{\alpha_1^{2\ell+1}}, \ldots, x_{\alpha_n^{2\ell+1}}\right)} = (f_1^* \circ H_{0,2\ell+1})_{\text{hom}}^{\tau\left(x_{\alpha_1^{2\ell+1}}, \ldots, x_{\alpha_n^{2\ell+1}}\right)} = 1;
\]

also for each \(\ell \in [1, \left[\frac{m-1}{2} \right]] \),

\[
g_{\text{hom}}^{\tau\left(x_{\alpha_1^{2\ell}}, \ldots, x_{\alpha_n^{2\ell}}\right)} = (f_0^* \circ H_{0,2\ell})_{\text{hom}}^{\tau\left(x_{\alpha_1^{2\ell}}, \ldots, x_{\alpha_n^{2\ell}}\right)} = 0.
\]

Putting the two together, we get the assertion.

Second assertion: \(BA[q] \models "\tau\left(x_{\alpha_1^0}, \ldots, x_{\alpha_n^0}\right) \geq \tau^*" \).

So we have to prove just that:

\[
f \in F^q \Rightarrow f_{\text{hom}}^{\tau^* - \tau\left(x_{\alpha_1^0}, \ldots, x_{\alpha_n^0}\right)} = 0.
\]
First Case. For some $\alpha \in w^q \cup \{\infty\}$ and $f_0 \in F^{\tau^0}$ we have

$$f = \left(\bigcup_{\ell < m} f_0 \circ H_{0,\ell} \right)^{[\alpha]}.$$

Let $\beta_\ell = \text{Min} \left(w^{\tau^\ell} \cup \{\infty\} \setminus \alpha \right)$, and let $\gamma_\ell \in w^{\tau^\ell}$ be such that $\gamma_\ell = H_{0,\ell}(\beta_\ell)$ or $\gamma_\ell = \beta_\ell = \infty$.

Now by the assumption on $\langle w^{\tau^\ell} : \ell < m \rangle$ we have $\langle \gamma_\ell : \ell < m \rangle$ is non-increasing. Let for $\ell < m$, $j_\ell = \text{Min} \{ j : j = n + 1 \text{ or } j \in \{1, \ldots, n\} \text{ and } \alpha_j^0 \geq \gamma_\ell \}$. So $\langle j_\ell : \ell < m \rangle$ is non-increasing and there are $\leq n + 1$ possible values for each j_ℓ. But by assumption (g), $m - 1 > n + 1$, so for some $k, 0 < k < k + 1 < m$ and $j_k = j_{k+1}$.

So (as $\alpha_1^i < \cdots < \alpha_n^i$)

$$\bigwedge_{j=1}^n f\left(x_{\alpha_j^k}\right) = f\left(x_{\gamma_{j+1}^1}\right),$$

hence

$$\bigwedge_{j=1}^n f^{\text{hom}}\left(x_{\alpha_j^k}\right) = f^{\text{hom}}\left(x_{\gamma_{j+1}^1}\right)$$

hence

$$f^{\text{hom}}\left(\tau\left(x_{\alpha_1^k}, \ldots, x_{\alpha_n^k}\right)\right) = f^{\text{hom}}\left(\tau\left(x_{\alpha_1^{k+1}}, \ldots, x_{\alpha_n^{k+1}}\right)\right),$$

hence (see Definition of τ^*) $f^{\text{hom}}(\tau^*) = 0$ hence

$$f^{\text{hom}}\left(\tau^* - \tau\left(x_{\alpha_1^k}, \ldots, x_{\alpha_n^k}\right)\right) = 0,$$

as required.

Second Case. For some $\alpha \in w^q \cup \{\infty\}$, $f = g^{[\alpha]}$.

Let again $\beta_\ell = \text{Min} \left(w^{\tau^\ell} \cup \{\infty\} \setminus \alpha \right)$, $\gamma_\ell = H_{0,\ell}(\beta_\ell)$ (or $\gamma_\ell = \beta_\ell = \infty$), and

$$\gamma_\ell' = \begin{cases}
\gamma_\ell & \text{if } \gamma_\ell < \gamma \\
\infty & \text{if } \gamma_\ell \geq \gamma
\end{cases}$$

and

$$j_\ell = \text{Min} \{ j : j = n + 1 \text{ or } j \in \{1, \ldots, n\} \text{ and } \alpha_j^0 \geq \gamma_\ell' \}.$$ So $\langle \gamma_\ell' : \ell < m \rangle$ are non-increasing and so is $\langle j_\ell : \ell < m \rangle$. Here γ is the ordinal we chose before defining q_1 just after (B) in the proof.

If for some $k, 0 < k < k + 1 < m$, $j_k = j_{k+1} \leq n$,

(hence $\gamma_{k+1} \leq \gamma_k < \gamma$) then

$$f^{\text{hom}}\left(\tau^* - \tau\left(x_{\alpha_1^k}, \ldots, x_{\alpha_n^k}\right)\right) = 0$$

as $f^{\text{hom}}(\tau^*) = 0$ which holds because

$$f^{\text{hom}}\left(\tau\left(x_{\alpha_1^k}, \ldots, x_{\alpha_n^k}\right)\right) = f^{\text{hom}}\left(\tau\left(x_{\alpha_1^{k+1}}, \ldots, x_{\alpha_n^{k+1}}\right)\right)$$

(the last equality holds by the choice of γ; i.e. if inequality holds then the triple $(\gamma_k, (f_0^0)^{[\gamma_k]}, (f_1^1)^{[\gamma_k]})$ contradicts the choice of γ as minimal). But $j_\ell (\ell = 1, m - 1)$ is non-increasing.
hence we can show inductively on \(\ell = 1, \ldots, n + 1 \) that \(j_{m-\ell} \geq \ell \). So necessarily \(j_1 = n + 1 \) but as \(j_\ell \) is non-increasing clearly \(j_0 = n + 1 \) hence
\[
f^{\text{hom}}\left(\tau \left(x_{\alpha_1^0}, \ldots, x_{\alpha_n^0} \right) \right) = g^{[\alpha]} \left(\tau \left(x_{\alpha_1^0}, \ldots, x_{\alpha_n^0} \right) \right) = g \left(\tau \left(x_{\alpha_1^0}, \ldots, x_{\alpha_n^0} \right) \right) = f^*_1 \left(\tau \left(x_{\alpha_1^0}, \ldots, x_{\alpha_n^0} \right) \right) = 1
\]

hence
\[
f^{\text{hom}}\left(\tau^* - \tau \left(x_{\alpha_1^0}, \ldots, x_{\alpha_n^0} \right) \right) = 0,
\]
as required. \(\square \)

2.9 Theorem. Suppose \(\mu = \mu^{<\mu} < \lambda \), \(Q = Q_{\lambda, \mu} \) and \(V \models \text{G.C.H.} \) (for simplicity). Then:
\begin{enumerate}
\item \(Q \) is \(\mu \)-complete, \(\mu^+ \)-c.c. (hence forcing with \(Q \) preserves cardinals and cofinalities).
\item \(\models \forall Q \cdot "2^\mu = (\lambda^\mu)^V", \ |Q| = \lambda^{<\mu}, \) so cardinal arithmetic in \(V^Q \) is easily determined.
\item Let \(G \subseteq Q \) be generic over \(V \). Then \(BA[G] \) (see Definition 2.5(4)) is a Boolean algebra of cardinality \(\lambda \) such that:
\begin{enumerate}
\item if \(\theta \leq \lambda \) is regular then for some subalgebra \(B \) of \(BA[G] \), \(\pi(B) = \theta \)
\item if \(\theta \leq \lambda \) and \(\theta > \text{cf}(\theta) > \mu \) then for no \(B \subseteq BA[G] \) is \(\pi(B) = \theta \)
\item \(BA[G] \) has \(\mu \)-non-zero pairwise disjoint elements but no \(\mu^+ \)-such elements (so its cellularity is \(\mu \))
\item if \(a \in B^+ \) then \(BA[G] \upharpoonright a \) satisfies (a), (b), (c) above (also (e))
\item if \(\theta \leq \lambda \) and \(\text{cf}(\theta) \leq \mu \) then for some \(B' \subseteq BA[G] \) we have \(\pi(B') = \theta \)
\item in \(BA[G] \) for every \(\alpha < \lambda \), \(\{ x_\beta : \alpha \leq \beta < \alpha + \mu^+ \} \subseteq B^+ \) is dense in \(\langle \{ x_\beta : \beta < \alpha \} \rangle_{BA[G]} \).
\end{enumerate}
\end{enumerate}

2.9A Remark. 1) This shows the consistency of a negative answer to problems 13 + 15 of Monk [M].
2) We could of course make \(2^\mu\) bigger by adding the right number of Cohen subsets of \(\mu \).

Proof. By Claim 2.7 clearly parts (1), (2) hold. We are left with part (3), by 2.6(3) \(BA[G] \) is a Boolean algebra, by 2.6(4) it has cardinality \(\lambda \). As for clause (a), it is exemplified by \(\langle x_\alpha : \alpha < \theta \rangle_{BA[G]} \) (by 2.6(4)). Clause (c), the first statement is easy by the genericity of \(G \) (i.e. as for \(p \in Q, \alpha \in \lambda \setminus \omega^p \) we can find \(q, p \leq q \in Q, w^q = w^p \cup \{ \alpha \} \) and in \(BA[q], x_\alpha \) is disjoint to all \(y \in J \), for any ideal \(J \) of \(BA[p] \)).

As for clause (c), second statement, it follows from the \(\Delta \)-system argument and the proof of 2.7(2).

Clause (d): concerning the generalization of clause (a), let \(a \in (BA[G])^+ \), so we can find finite disjoint \(u, v \subseteq \lambda \) such that \(0 < \bigcap_{\alpha \in u} x_\alpha - \bigcap_{\alpha \in v} x_\alpha \leq a \), choose \(\beta = \text{sup}(u \cup v) \), let
\[U = \left\{ x_\gamma : \beta < \gamma < \beta + \mu, \text{ and } \right\} \]

This set is forced to be of cardinality \(\mu \) and the subalgebra of \((BA[G]) \restriction a\) generated by \(\{x_\gamma \cap a : \gamma \in [\beta, \beta + \mu]\}\) is as required.

Clause (d), the generalization of clause (b) will follow from clause (c). Clause (d) the generalization of clause (c); the cellularity \(\leq \mu \) follows from clause (c), the existence of \(\mu \) pairwise disjoint elements follows from: for every \(p \in Q_{\lambda,\mu}, \alpha < \lambda \) and \(a \in BA[p] \) such that \(a \in \langle x_\beta : \beta \in \omega^p \cap \alpha \rangle_{BA[p]} \) and \(\beta \in [\alpha, \lambda) \setminus \omega^p \) there is \(q \) such that \(p \leq q \in Q_{\lambda,\mu} \) and \(BA[q] \models \quad \bigwedge_{\gamma \in \omega^p \setminus \alpha} x_\beta \cap x_\gamma = 0 \& x_\beta \leq a \).

As for clause (e), (and the generalization in clause (d)), let \(a \in (BA[G])^+ \), let \(u \subseteq \lambda \) be finite such that \(a \in \langle x_\alpha : \alpha \in u \rangle_{BA[G]} \). Then we can find \(\langle a_i : i < \mu \rangle \) pairwise disjoint non-zero member of \(\langle x_\alpha : \alpha \in [\sup(u), \sup(u) + \mu) \rangle_{BA[G]} \) which are below \(a \). Let \(\theta = \sum_{\zeta < \text{cf}(\theta)} \theta_{\zeta} \), each \(\theta_{\zeta} \) regular, let \(B_{\zeta} \subseteq (BA[G]) \restriction a_{\zeta} \) be a subalgebra with \(\pi(B_{\zeta}) = \theta_{\zeta} \), and lastly let \(B \) be the subalgebra of \(BA[G] \restriction a \) generated by \(\{a_i : i < \text{cf}(\theta)\} \cup \bigcup_{\zeta < \text{cf}(\theta)} B_{\zeta} \); check that \(\pi(B) = \theta \).

Clause (f) follows by a density argument. The real point (and the only one left) is to prove Clause (b) of part (3). So suppose toward contradiction that \(\mu < \text{cf}(\chi) < \chi \leq \lambda \) and \(p \in Q \) but \(p \not\models \forall \zeta_{\chi} \in \check{B} \subseteq BA[G] \) is a subalgebra, \(\pi(\check{B}) = \chi^\prime \).

So by Claim 2.2(1)+2.3(1) \(p \not\models \forall \zeta_{\chi} \in \check{B} \) holds (see 2.3(1)).

Let \(\kappa = \text{cf}(\chi) \), so we can find regular \(\theta_{\zeta} \in (\text{cf}(\chi), \chi) \), (so \(\theta_{\zeta} > \mu \)) increasing with \(\zeta, \chi = \sum_{\zeta < \kappa} \theta_{\zeta} \), for \(i < \kappa, \left(\sum_{j < i} \theta_{\zeta_j} \right) \kappa \leq \theta_i \) (remember \(V \models \text{G.C.H.} \)) and for each \(\zeta, \kappa < \kappa \) condition \(p_{\zeta}, p \leq p_{\zeta} \in Q, \text{and } \check{y}_{\zeta} = \langle \check{y}_{\zeta}^\prime : \alpha < \theta_{\zeta} \rangle, \text{ and } (Q\text{-name of a}) \) proper \(\theta_{\zeta}\)-complete filter \(D_{\zeta} \) on \(\theta \) containing the co-bounded subsets of \(\theta \) such that \(p_{\zeta} \not\models \forall \check{y}_{\zeta}^{D_{\zeta}} \) (and without loss of generality \(p_{\zeta} \not\models \exists y_{\zeta}^{D_{\zeta}} \in (\check{B})^{+} \)). For each \(\zeta > \kappa \) and \(\alpha < \theta_{\zeta} \) there is a maximal antichain \(p_{\zeta, \alpha, \epsilon} = \langle p_{\zeta, \alpha, \epsilon} : \epsilon < \mu \rangle \) of members of \(Q \) above \(p_{\zeta} \) and terms \(\tau_{\zeta, \alpha, \epsilon} = \tau_{\zeta, \alpha, \epsilon}^\prime (x_\beta(\zeta, \alpha, \epsilon, 0), \ldots, x_\beta(\zeta, \alpha, \epsilon, n_{\alpha}(\zeta, \epsilon))) \) (i.e. Boolean terms in \(\{x_\alpha : \alpha < \lambda\} \)) such that \(p_{\zeta} \leq p_{\zeta, \alpha, \epsilon} \) and \(p_{\zeta, \alpha, \epsilon} \not\models \forall y_{\zeta}^{\check{y}_{\zeta}^{D_{\zeta}}} = \tau_{\zeta, \alpha, \epsilon} \).

Without loss of generality \(\{\beta(\zeta, \alpha, \epsilon, \ell) : \ell \leq n_{\alpha}(\zeta, \epsilon)\} \subseteq w[p_{\zeta, \alpha, \epsilon}] \). Clearly for each \(\zeta < \kappa, p_{\zeta} \not\models \forall \theta_{\zeta} \) the disjoint union of \(\{\alpha < \theta_{\zeta} : p_{\zeta, \alpha, \epsilon} \in G\} \) for \(\epsilon < \mu \) so for some \(Q\text{-name } \epsilon_{\zeta} < \mu \), we have \(p_{\zeta} \not\models \forall \left\{ \alpha < \theta : p_{\zeta, \alpha, \epsilon} \in G\right\} \neq \emptyset \text{ mod } D_{\zeta} \). So there are \(\epsilon_{\zeta} < \mu \) and \(q_{\zeta} \) satisfying \(p_{\zeta} \leq q_{\zeta} \in Q \), such that \(q_{\zeta} \not\models \forall \epsilon_{\zeta} \) is as
above” and let $p_{\zeta,\alpha} = p_{\zeta,\alpha,\epsilon,\xi}$. So we have a Q-name A_ζ such that $q_\zeta \Vdash Q "A_\zeta \subseteq \theta_\zeta, A_\zeta \neq \emptyset \mod D_\zeta$ and $\alpha \in A_\zeta \Leftrightarrow p_{\zeta,\alpha} \in G_\zeta$.”

By possibly replacing θ_ζ, A_ζ by $A_{\zeta}^\alpha \in [\theta_\zeta]^{\emptyset}$, $A_{\zeta}^\epsilon = A_\zeta \cap A_\zeta^\epsilon$ respectively, and increasing q_ζ, we can assume:

\[
\text{otp}(w^{\rho_\alpha, \zeta}) = i_\alpha^\zeta(< \mu), \text{ and letting } w^{\rho_\alpha, \zeta} = \{\beta_{\alpha, \zeta, i} : i < i_\alpha^\zeta\}, (\text{increasing with } i) \text{ and (by Claim 2.4) for some } w_\zeta^* \subseteq i_\alpha^\zeta, \langle \beta_{\xi, i}^*: i < i_\alpha^\zeta \rangle \text{ and } \tau_\zeta^* \text{ we have: } \tau_{\zeta, \alpha, \epsilon, \xi}^* = \tau_\zeta^*, \text{ and for some strictly increasing } \langle j(\zeta, \ell) : \ell \leq n_\zeta \rangle \text{ we have:}
\]

\[
q_\zeta \Vdash Q "(a) \alpha \in A_{\zeta} & i \in w_\zeta^* \Rightarrow \beta_{\alpha, \zeta, i} = \beta_{\zeta, i}^* \\
(b) \beta(\zeta, \alpha, \epsilon, \xi, \ell) = \beta_{\zeta, \alpha, j(\zeta, \ell)} \text{ and } n(\zeta, \epsilon, \xi) = n_\zeta \\
(c) \text{ for every } \beta_{\zeta, i}^* < \beta_{\zeta, i, j}^* \text{ (for } i \in i_\alpha^\zeta \setminus w_\zeta^* \text{) we have:}
\]

\[
\left\{ \alpha < \theta_\zeta : \alpha \in A_{\zeta}, [i \in w_\zeta^* \Rightarrow \beta_{\alpha, \zeta, i} = \beta_{\zeta, i}^*] \text{ and for } i \in i_\alpha^\zeta \setminus w_\zeta^* \text{ we have } \beta_{\zeta, i}^* < \beta_{\alpha, \zeta, i} < \beta_{\zeta, i}^* \right\} \neq \emptyset \mod D_\zeta^*".
\]

Also $[i \in i_\alpha^\zeta \setminus w_\zeta^* \Rightarrow \left(2 + \sum_{j < i} \theta_j\right)^k < cf(\beta_{\zeta, i}^*) \leq \theta_\zeta]$ (remember D_ζ is a θ_ζ-complete filter) on θ_ζ.

As we can replace $(\theta_\zeta : \zeta < \kappa)$ by any subsequence of length κ, and $\kappa = cf(\kappa) > \mu$ without loss of generality: $i_\zeta^* = i^*$, $w_\zeta^* = w^*$, $\text{otp}(w^{\rho_\zeta}) = j^*$. Let $w^{\rho_\zeta} = \{\beta_{\zeta, i}^*: i^* \leq i < j^*\}$. Now we apply 2.4 to κ, D_κ (filter of closed unbounded sets) and $(\langle \beta_{\zeta, i}^*: i < j^*\rangle : \zeta < \kappa)$ and get $(\beta_{\zeta, i}^*: i < j^*)$ and $w^{\rho_\zeta} \subseteq j^*$. Without loss of generality the q_ζ are pairwise isomorphic. Note $[i \in i^* \setminus w^* \in \zeta < \xi < \kappa \Rightarrow \beta_{\zeta, i}^* \neq \beta_{\zeta, i}^*]$ (as $cf(\beta_{\zeta, i}^*) \leq \theta_\zeta$, $cf(\beta_{\zeta, i}^*) > \theta_\zeta$).

Hence $w^{\rho_\zeta} \cap i^* \subseteq w^*$. For every $\zeta < \kappa$ and $i \in i^* \setminus w^*$, let $\beta_{\zeta, i}^* < \beta_{\zeta, i}^*$ be such that the interval $[\beta_{\zeta, i}^*: \beta_{\zeta, i}^*]$ is disjoint to $\{\beta_{\zeta, j}^*: \xi < j \leq i^*\} \cup \{\beta_{\zeta, j}^*: i < i^*\}$, and as we can omit an initial segment of $(\theta_\zeta : i < \kappa)$ without loss of generality $[\beta_{\zeta, i}^*, \beta_{\zeta, j}^*]$ is disjoint to $\{\beta_{\zeta, j}^*: j < i^*\}$. Choose for each $\zeta < \kappa$, $\alpha_\zeta \in A_{\zeta}^\epsilon$, such that

\[
\left\{ i \in i^* \setminus w^* : \beta_{\zeta, \alpha_\zeta, i} \in [\beta_{\zeta, i}^* + \mu, \beta_{\zeta, i}^*] \right\}.
\]

\[Y = \text{the Boolean subalgebra generated by } \left\{ \tau_{\zeta, \alpha} : q_\zeta \in G \text{ and } p_{\zeta, \alpha} \in \tilde{G} \right\}. \text{ This set has cardinality } \leq \kappa, \text{ and we shall prove}
\]

\[\left(\ast\right) \quad q_\zeta \Vdash Q "Y \cap \{0\} \text{ is dense in } \left\{ \tau_{0, \beta} : \beta \in A_0 \right\}.
\]

This contradicts the choice $q_0 \Vdash "\left(\ast\right)_{i^*, D_\kappa}^B, A_\zeta \neq \emptyset \mod D_\zeta^*".$

To prove $\left(\ast\right)$ assume $q_0 \leq r_0 \in Q$, we can choose $\zeta^* < \kappa$ and r_{ζ}^+, for $\zeta \in [\zeta^*, \kappa)$ such that $r_0 \leq r_{\zeta}^+, r_\zeta \leq r_{\zeta}^+$, $p_{\zeta, \alpha} \leq r_{\zeta}^+$ and $r_\zeta : \zeta = 0 \text{ or } \zeta \in [\zeta^*, \kappa)$ is as in 2.8; apply 2.8 and get a contradiction. \[\Box_{2.9}\]

A theorem complementary to 2.9 is:
2.10 Theorem. If $\pi(B) > \lambda$ and

(A) $\text{cf}(\lambda) = \aleph_0$ or
(B) $\bigwedge_{\mu < \lambda} \mu < \text{cf}(\lambda) < \lambda$ or
(C) $\bigwedge_{\mu < \lambda} 2^\mu < \pi(B)$ (or just) $\bigwedge_{\mu < \lambda} 2^\mu < |B| \& \lambda \leq \pi(B)$.

Then B has a subalgebra B' such that $\lambda = \pi(B') = |B'|$.

Remark. The conclusion of 2.10 implies that $\lambda \in \pi_{Ss}(B)$.

Proof. Case (C) is easier so we ignore it. By 2.1 without loss of generality $\pi(B) = \lambda + \lambda = |B|$. We try to choose by induction on $\alpha < \lambda$, a_α such that:

(a) $a_\alpha \in B^+$
(b) for $\beta < \alpha$ we have $B \models "a_\alpha \cap a_\beta = 0"
(c) \pi(B \upharpoonright a_\alpha) < \lambda^+$.

Let a_α be defined iff $\alpha < \alpha^*$.

Case a. $\alpha^* \geq \lambda$.

Let B' be the subalgebra generated by $\{a_\alpha : \alpha < \lambda\}$ clearly $|B'| = \pi(B') = \lambda$.

Case b. Not Case a but $\sum_{\alpha < \alpha^*} \pi(B \upharpoonright a_\alpha) \geq \lambda$.

So we can find distinct $\alpha_{\zeta} < \alpha^*$ for $\zeta < \text{cf}(\lambda)$ such that $\sum_{\zeta} \pi(B \upharpoonright a_{\alpha_{\zeta}}) \geq \lambda$.

We can find regular $\theta_{\zeta} \leq \pi(B \upharpoonright a_{\alpha_{\zeta}})$, such that $\sup_{\zeta < \text{cf}(\lambda)} \theta_{\zeta} = \lambda$ then find $B_{\zeta} \subseteq B \upharpoonright a_{\alpha_{\zeta}}$, such that $|B_{\zeta}| = \theta_{\zeta}$ and $\pi(B_{\zeta}) = \theta_{\zeta}$ (by 2.1). Let B' be the subalgebra of B generated by $\bigcup_{\zeta < \text{cf}(\lambda)} B_{\zeta} \cup \{a_{\alpha_{\zeta}} : \zeta < \text{cf}(\lambda)\}$.

Clearly $|B'| = \pi(B') = \lambda$.

Case c. Cases a, b fail.

Let $I = \{a \in B : \bigwedge_{\alpha < \alpha^*} a \cap a_\alpha = 0\}$, so I is an ideal of B and $a \in I \Rightarrow \pi(B \upharpoonright a) \geq \lambda$.

Also $I \neq \{0\}$ (as if $I = \{0\}$ then $\pi(B) \leq \sum_{\alpha < \alpha^*} \pi(B \upharpoonright a_\alpha) < \lambda$). So easily without loss of generality:

(*) if $a \in I \cap B^+$ then $\pi(B \upharpoonright a) > \lambda$.

(**) if $a \in I \cap B^+$ then $B \upharpoonright a$ is an atomless Boolean algebra

Now without loss of generality B satisfies $\text{cf}(\lambda)$-c.c. (otherwise act as in Case b), so we have finished if Case (A) of the hypothesis holds.

So case (B) of the hypothesis holds, hence we can use Lemma 4.9, p.88 of [Sh:92] and find a free subalgebra B' of B of cardinality $(\lambda < \text{cf}(\lambda))^+$ hence of cardinality λ, this B' is as required.
§3 On π and π_{χ} of Products of Boolean Algebras

3.1 Theorem. Suppose

$$\bigotimes \aleph_0 < \kappa = \text{cf}(\chi) < \chi < \lambda = \text{cf}(\lambda) < (\chi^\kappa) \quad \text{and} \quad \bigwedge_{\theta < \chi} \theta^\kappa < \chi.$$

Then there are Boolean Algebras B_i (for $i < \kappa$) such that (on $\pi(F, B)$, $\pi_{\chi}(B)$ see below)

$(*)$ (a) $\pi_{\chi}(B_i) < \chi = \sum_{j < \kappa} \pi_{\chi}(B_j)$

(b) for any uniform ultrafilter D on κ

$$\lambda = \pi_{\chi} \left(\prod_{i < \kappa} B_i / D \right)$$

(c) if D is a regular ultrafilter on κ then $\prod_{i < \kappa} (\pi_{\chi}(B_i)) / D = \chi^\kappa$.

3.2 Definition. 1) For a Boolean algebra B and ultrafilter F of B, let

$$\pi(F, B) = \text{Min} \left\{ |X| : X \subseteq B^+ \quad \text{and} \quad (\forall y \in F)(\exists x \in X)[x \leq y] \right\}.$$

We say X is dense in F (though possibly $x \notin F$).

2) For a Boolean algebra B,

$$\pi_{\chi}(B) = \sup \left\{ \pi(F, B) : F \text{ an ultrafilter of } B \right\}$$

$$\pi_{\chi}^+(B) = \cup \{ \pi(F, B)^+ : F \text{ an ultrafilter of } B \}.$$

3.3 Remark. 1) If $\kappa = \aleph_0$ the theorem holds almost always and probably always, but we omit it to simplify the statement. (The theorem holds for $\kappa = \aleph_0$, e.g. if $\chi < \lambda = \text{cf}(\lambda)$, more generally if

$$\bigotimes' \kappa = \text{cf}(\chi) < \chi < \lambda = \text{cf}(\lambda) < (\text{first fix point} > \chi),$$

see [Sh:g]. The point is that [Sh 355],5.4 deals with uncountable cofinalities).

3.4 Proof of Theorem 3.1. Let for a linear order \mathcal{I}, $BA[\mathcal{I}]$ be the Boolean algebra of subsets of \mathcal{I} generated by the close-open intervals $[a, b) = \{x \in \mathcal{I} : a \leq x < b\}$ where we allow $a \in \{-\infty\} \cup \mathcal{I}, b \in \mathcal{I} \cup \{\infty\}, (a \leq b)$. Now clearly

$(*)_1$ if F is an ultrafilter on \mathcal{I}, then there is a Dedekind cut $(\mathcal{I}^d, \mathcal{I}^u)$ of \mathcal{I} (i.e. $\mathcal{I}^d \cap \mathcal{I}^u = \emptyset, \mathcal{I}^d \cup \mathcal{I}^u = \mathcal{I}$ and $(\forall x_0 \in \mathcal{I}^d)(\forall x_1 \in \mathcal{I}^u)[x_0 < x_1]$) such that for $x \in BA[\mathcal{I}], x \in F$ if for some $a_0 \in \mathcal{I}^d, a_1 \in \mathcal{I}^u$ we have $[a_0, a_1) \leq x$. $(*)_2$ if $\mathcal{I}, F, (\mathcal{I}^d, \mathcal{I}^u)$ are as above then

$$\pi(F, BA[\mathcal{I}]) = \begin{cases} \text{Max} \{ \text{cf}(\mathcal{I}^d), \text{cf}((\mathcal{I}^u)^*) \} & \text{if} \quad \text{cf}(\mathcal{I}^d), \text{cf}((\mathcal{I}^u)^*) \geq \aleph_0 \\ \text{cf}(\mathcal{I}^d) & \text{if} \quad \text{cf}((\mathcal{I}^u)^*) = 1 \\ \text{cf}((\mathcal{I}^u)^*) & \text{if} \quad \text{cf}(\mathcal{I}^d) = 1 \\ 1 & \text{if} \quad \text{cf}(\mathcal{I}^d) = \text{cf}((\mathcal{I}^u)^*) = 1 \end{cases}$$
note also

\[\pi\chi(BA(I)) = \operatorname{Max}\{\operatorname{cf}(I^d), \operatorname{cf}((I^u)^*) : (I^d, I^u) \text{ a Dedekind cut of } I\}. \]

Now by the assumption \(\otimes \) (and \([Sh:g], \Pi.5.4 + \text{VIII.}5\))], we can find a (strictly) increasing sequence \(\langle \lambda_i : i < \kappa \rangle \) of regular cardinals, \(\kappa < \lambda_i < \chi = \sum_{i<\kappa} \lambda_i \) such that \(\prod_{i<\kappa} \lambda_i/J_{\kappa}^{bd} \) has true cofinality \(\lambda \) (where \(J_{\kappa}^{bd} \) is the ideal of bounded subsets of \(\kappa \)).

Let \(\mathbb{Q} \) be the rational order and \(I_i = \lambda_i \times \mathbb{Q} \) (i.e. the set of elements is \(\{ (\alpha, q) : \alpha < \lambda_i, q \in \mathbb{Q} \} \), the order is lexicographical). Let \(B_i = BA[I_i] \), so by \((*)_1, (*)_2 \) we know that \(\pi\chi(B_i) = \lambda_i \). Moreover, if \(F \) is an ultrafilter of \(B_i \), then \(\pi(F, B) = \aleph_0 \) except when \(F \) is the ultrafilter \(F_i \) generated by \(\{ x_{\alpha, q}^i = [(\alpha, 0), \infty) : \alpha < \lambda_i \} \). Let \(x_{\alpha, q}^i = [(\alpha, q), \infty) \). Let \(D \) be a uniform ultrafilter on \(\kappa \), so \(\prod_{i<\kappa} \lambda_i/D \) has cofinality \(\lambda \). Also if \(D \) is regular, then (see \([\mathfrak{C}K]\)) we know \(\chi^\kappa = \prod_{i<\kappa} \lambda_i/D = \prod_{i<\kappa} (\pi\chi B_i)/D \). So parts (a) and (c) of \((*) \) of Theorem 3.1 are satisfied. To prove part (b) of \((*) \), let \(D \) be a uniform ultrafilter on \(\kappa \) and let \(B = \prod_{i<\kappa} B_i/D \). Let \(F \) be such that \((B, F) = \prod_{i<\kappa} (B_i, F_i)/D \). Clearly \(F \) is an ultrafilter of \(B \), it is generated by \(X = \prod_{i<\kappa} X_i/D \) where \(X_i = \{ x_{\alpha, q}^i : \alpha < \lambda, q \in \mathbb{Q} \} \subseteq B_i \), which is linearly ordered in \(B \), and this linear order has the same cofinality as \(\prod_{i<\kappa} \lambda_i/D \), which has cofinality \(\lambda \). So \(\pi\chi(F, B) = \lambda \) hence \(\pi\chi(B) \geq \lambda \). Let \(F' \) be an ultrafilter of \(B, F' \neq F \).

Let \(X_d := \{ x \in X : x \in F' \} \), and \(X_u := \{ x \in X : x \notin F' \text{ (i.e. } 1_B - x \in F') \} \). Clearly \((X_d, X_u) \) is a Dedekind cut of \(X \) (which is linearly ordered: as a subset of \(B \), or as \(\prod_{i<\kappa} X_i/D \) where \(X_i \subseteq B_i \) inherit the order from \(B_i \), so \(x_{\alpha, a}^i < x_{\beta, b}^i \Leftrightarrow (\alpha, a) < (\beta, b) \).) If \(X_d = X \) easily \(F' = F \) contradiction, so \(X_u \neq \emptyset \).

We shall prove now that \(\pi\chi(F, B) \leq 2^\kappa \). If not, we shall choose by induction on \(\zeta < (2^\kappa)^+ \) a set \(Y_\zeta \), subsets \(Z_{\zeta}^i \) of \(\lambda_i \) for \(i < \kappa \), increasing continuous in \(\zeta \) and \(y_\zeta \) such that:

\[|Z_{\zeta}^i| \leq 2^\kappa \]

\[\xi < \zeta \Rightarrow Z_{\xi}^i \subseteq Z_{\zeta}^i \]

\[Y_\zeta = \prod_{i<\kappa} (Z_{\zeta}^i \times \mathbb{Q})/D\{0\} \text{, so } |Y_\zeta| \leq 2^\kappa \]

\[y_\zeta \in F' \]
\[y_\zeta \in Y_{\zeta+1} \]

\[(\forall y \in Y_\zeta)(y > 0 \Rightarrow \neg y \leq y_\zeta).\]

There is no problem in doing this for \(i = 0\), let \(Z_0^i = \{0\}\), for \(i\) limit let \(Z_i^i = \bigcup_{\varepsilon < \zeta} Z_\varepsilon^i.\)

Now having defined \(\langle Z_i^i : i < \kappa \rangle\) (hence \(Y_{\zeta}\)) let

\[y_\zeta = \langle y_\zeta^i : i < \kappa \rangle/D, \]

where \(\langle (\alpha_i, \zeta, q_i, \xi, \ell) : \ell < 2n_{i, \zeta} \rangle\) is a strictly increasing sequence of members of \(Z_i^i \cup \{-\infty, +\infty\}\) (we write \(-\infty = (\infty, 0), +\infty = (\infty, 0)\).) Let \(Z_{i+1}^i = Z_i^i \cup \{\alpha_i, \zeta, \ell : \ell < 2n_{i, \zeta}\}\).

For some unbounded \(U \subseteq (2^\kappa)^+;\)

(a) \(q_i, \zeta, \ell = q_i, \ell\) and \(n_{i, \zeta} = n_i,\)

apply 2.4, we get an easy contradiction. \(\square_{3.4}\)

3.4A Remark. We can similarly analyze (when \(B_i = BA[I_i]\))

\[\left\{ \pi(F, \prod_{i < \kappa} B_i/D) : F \text{ an ultrafilter of } \prod_{i < \kappa} B_i/D \right\} \setminus (2^\kappa)^+ = \]

\[\left\{ \lambda : \lambda'_i = \text{cf}(\lambda'_i) > 2^\kappa \text{ and in } I_i \text{ there is a Dedekind cut} \right\} \]

\[(X_d, X_u) \text{ such that } (\text{cf}(X_d), \text{cf}(X_u)) = (\lambda'_d, \lambda'_u) \text{ such that} \]

\[\lambda = \text{Min} \left\{ \{\text{cf}(\Pi \lambda_i^u/D), \text{cf}(\Pi \lambda'_i/D)\}\setminus\{1\} \right\}. \]

Note in comparison that by Koppelberg Shelah [KpSh 415], Th.1.1

3.5 Theorem. Assume \(D\) is an ultrafilter on \(\kappa\), for \(i < \kappa\), \(A_i\) is a Boolean Algebra, \(\lambda_i = \pi(A_i)\). Assume the Strong Hypothesis - [Sh 420], 6.2, i.e. \(pp(\mu) = \mu^+\) for all singulars or just SCH. If \(2^\kappa < \lambda_i\) (or just \(\{i : 2^\kappa < \lambda_i\} \in D\) then \(\pi(\prod_{i < \kappa} A_i/D) = \prod_{i < \kappa} \lambda_i/D.\)
3.6 Claim. Assume that for \(i < \kappa, A_i \) is an infinite Boolean algebra, \(D \) is a non-principal ultrafilter on \(\kappa \) and \(A = \prod_{i<\kappa} A_i/D \). If \(n_i < \omega \) for \(i < \kappa \) and \(\mu =: \prod_{i<\kappa} n_i/D \) and \(\mu \) is a regular cardinal then \(\pi \chi(A) \geq \mu \).

Proof. Let \(\chi \) be a large enough regular cardinal (i.e. such that \(\kappa, D, A_i, A \) belong to \(H(\chi) \)). Let \(\mathcal{C}_i = (H(\chi), \in, <^+\text{)} \) and \(\mathcal{C} = \prod_i \mathcal{C}_i/D \), so \(A \) is a member of \(\mathcal{C} \).

Clearly \(\omega^* =: (\omega : i < \kappa)/D \) is considered by \(\mathcal{C} \) a limit ordinal and, from the outside, has a cofinality, which we call \(\lambda \). Without loss of generality \(i < \kappa \Rightarrow n_i > 2 \).

The proof is divided to two cases.

Case 1. There are no \(\mu_0 < \mu \) and \(n_i^0 < n_i \) such that \(\mathfrak{N}_0 \leq \mu_0 = \left| \prod_{i<\kappa} n_i^0/D \right| \).

We can find \(n_i^* \) such that:

\[
(1) \quad \mu = \prod_{i<\kappa} n_i^*/D \\
(2) \quad \mu = \prod_{i<\kappa} 2(\prod_{i<\kappa} n_i^*)/D
\]

Let for \(i < \kappa, \langle a_k^i : k < 2(\prod_{i<\kappa} n_i^*) \rangle \) be pairwise disjoint non-zero members of \(A_i \) with union \(1_{A_i} \). Let \(P^i \) be the Boolean subalgebra generated by \(\{a_k^i : k < 2(\prod_{i<\kappa} n_i^*)\} \). Let \(R^i =: \{a_k^i : k < 2(\prod_{i<\kappa} n_i^*)\} \). Let for \(k < n_i^* \), \(Q_k^i \subseteq P^i \) be such that: \(Q_k^i \) is a set of \(n_i^* \) pairwise disjoint non-zero elements of \(P^i \) such that if \(\langle b_k : k < n_i^* \rangle \in \prod_{k<n_i^*} Q_k^i \) then \(\cap\{b_k : k < n_i^*\} \) is not zero.

Let \(F^i(x) =: \cup\{a_k^i : x \cap a_k^i \neq 0_{A_i} \text{ and } \ell < k \Rightarrow x \cap a_k^i = 0_{A_i}\} \) so the union is on at most one element and \(F^i(x) = 0_{A_i} \Leftrightarrow x = 0_{A_i} \).

Let \((A, P, Q, R, F, n^*) =: \prod_{i<\kappa} (A_i, P^i, Q^i, R^i, F^i, n_i^*) \). (We consider \(Q \) as a two place relation). Note that

\[
(*)_1 \quad P \text{ is a Boolean subalgebra of } A \\
(*)_2 \quad \text{If } D \text{ is a subset of } P^+ \text{ then its density in } A \text{ is equal to its density in } P.
\]

[Why? If \(Y \subseteq A^+ \) is dense in \(D \), then \(\{F(c) : c \in Y\} \) is a subset of \(P^+ \) dense in \(D \) of cardinality \(\leq |Y| \), for the other direction use the same set].

Now let us enumerate the members of \(n^* \) as \(\{k_\alpha : \alpha < \mu \} \) (no repetitions) we also list the members of \(P^+ \) as \(\{c_\alpha : \alpha < \mu \} \). Now we choose by induction on \(\alpha < \mu \) a member \(b_\alpha \) of \(Q_{k_\alpha} \) such that it contains (in \(A \)) no one among \(\{c_\beta : \beta < \alpha \} \). As each \(c_\beta \) can “object” to at most one \(b \in Q_{k_\alpha} \) (as the candidates are pairwise disjoint) and \(Q_{k_\alpha} \) has cardinality \(\mu > |\alpha| \) we can do this. Also by the choice of the \(Q^i \)’s there is a filter of \(P \) to which \(b_\alpha \) belongs for every \(\alpha < \mu \), so we are done.

Case 2\(^1 \). There is \(\mu_0 < \mu \) and \(n_i^0 < n_i \) such that \(\mathfrak{N}_0 \leq \mu_0 = \prod_{i<\kappa} n_i^0/D \).

We can define \(X_i, Y_i \) such that: \(X_i \) is the family of those subsets of \(Y_i \) with exactly

\(^1 \)in this case the regularity of \(\mu \) is not used
n_0 elements and $|Y_i| = n_i \times n_i^0 + 1$ and e.g. Y_i is a set of natural numbers; note that $|X_i| > n_i$. Let $X =: \{X_i : i < \kappa\}/D$, $Y =: \{Y_i : i < \kappa\}/D$, for $y \in Y$ (in C’s sense) let $S_y =: \{x \in X : y \in x\}$. Let $n_1^i =: |X_i|$, note $\prod_{i < \kappa} n_1^i / D \geq \mu$; let $\langle a_k^i : k < n_1^i \rangle$ be a partition of 1_{A_i} to non-zero members of A_i and h_i be a one to one function from X_i onto $R_i =: \{a_k^i : k < n_1^i \}$ and for $y \in Y_i$ let $b_y^i =: \bigcup \{h_i(x) : x \in S_y\} \in A_i$; we define $h_i, n_1^i, \langle b_y^i : y \in Y_i \rangle \in C$ naturally, let $P_i^* = \prod P_i / D$ be the subalgebra of A_i generated by $\{a_k^i : k < n_1^i \}$ and $P^* = \prod P_i / D$ as in the other case. By a cardinality argument if $k < \omega$, $[n_1^i > k \& y_0, \ldots, y_{k-1} \in Y \Rightarrow A_i \models \langle b_y^i \cap \cdots \cap b_y^{i-1} \neq 0_{A_i} \rangle$] hence $\{b_y^i : y \in Y\} \subseteq P^*$ generates a filter of P^*. Let D be an ultrafilter of P^* containing b_y^i for $y \in Y$. If $Z \subseteq A \setminus \{0\}$ exemplifies the density of D in A^* and is of cardinality $\mu_2 < \mu$, as in case 1 without loss of generality $Z = \{a_f : f \in F\} \subseteq P^*$ where $F \subseteq \prod_{i < \kappa} n_1^i$, $|F| < \mu$, $a_f =: \langle a_f^i : i < \kappa \rangle / D$. Let $n = \langle n_i : i < \kappa \rangle / D$,

$n_0 = \langle n_0^i : i < \kappa \rangle / D$.

Each $f \in F$, $h^{-1}(f)$ is from X, so is a subset of Y of cardinality n_0 from inside (“considered” by C to be so) so μ_0 from the outside; from the inside has cardinality n and from the outside n has cardinality μ so there is a member of X disjoint to all of the $h^{-1}(f)$, contradiction to the density. So D has in A density μ, hence for every ultrafilter F of A extending D, $\pi(F, A) \geq \mu$.

Hence $\pi(A) \geq \mu$ as required. □

Remark. 1) If we ignore regularity, case (1) suffices as for every $\bar{n}/D \in \omega^\kappa / D$, $\mu = \Pi \bar{n}/D \geq \aleph_0$ we can find $\bar{n}/D \in \omega^\kappa / D$ such that $\omega^\kappa / D \models \langle 2^{\bar{n}^\ell+1}/D \leq \bar{n}^\ell/D \rangle$, so $\langle |\bar{n}^\ell/D| : \ell < \omega \rangle$ is eventually constant.

2) If each A_i is of cardinality \aleph_0, $\mu = \aleph_0^\kappa / D$ is regular the proof above gives $\pi(A) = \mu$ (if 3.6 does not apply, ω^κ / D is μ-like, so we can apply case 2 with $|X_i| = |Y_i| = \aleph_0$).
ADDED IN PROOF

We can add to claim 2.3:

CLAIM 2.3(3): Assume that \(B \) is a Boolean algebra and \(\sigma < \theta = cf(\theta) \) and \((\ast)^B[Y] \) and for no \(\tau \in (\sigma, \theta) \) and \(Y' \) do we have \((\ast)^B[Y'] \).

Then in the conclusion of 2.3(1) we can add: \(D \) is normal (hence in 2.2 we get that for arbitrarily large \(\theta < \mu \), there are a normal filter \(D \) on \(\theta \) and \(\langle y_i : i < \theta \rangle \) as in 2.3(1)).

Remark: If \(\theta = \tau^+ \) then 2.3(2) gives the conclusion.

Proof: Let \(Y = \{ y_i : i < \theta \} \), we choose by induction of \(n < \omega \) a club \(E_n \) of \(\theta \) and sequence \(\vec{y}^n = \langle y^n_i : i < \theta \rangle \) of non zero members of \(B \) such that:

(a) letting \(Y_n = \{ y^n_i : i < \theta \} \), we have \(Y = Y_0, Y_n \subseteq Y_{n+1} \) and \(E_{n+1} \subseteq E_n \)

(b) if \(\delta \in E_{n+1} \) and if \(\delta < \alpha < \min(E_n \setminus (\delta + 1)) \) then for some \(\beta < \delta, y^{n+1}_\beta \leq_B y^n_\alpha \).

Let for \(n = 0, \vec{y}^0 \) list \(Y \) and \(E_0 = \{ \delta < \theta : \delta \text{ a limit ordinal divisible by } \sigma \} \).

For \(n = m + 1 \), for each \(\delta \in E_n \), let \(\gamma_\delta = \min(E_n \setminus (\delta + 1)) \) and let \(Z^0_\delta \) be a subset of \(B^+ \) of cardinality \(\leq \sigma \) dense in \(\{ y^m_i : \delta \leq i < \gamma_\delta \} \) which exist by the proof of 2.2. Let \(Z^n_\delta = \{ z^n_{\delta+1} : i < \sigma \} \). (no double use of the same index).

Also for each \(\zeta < \sigma \) let \(D^n_\zeta \) be the normal filter on \(\theta \) generated by the subsets of \(\theta \) of the form \(\{ i < \theta : z \notin y^n_{i+\zeta} \} \) for \(z \in B^+ \); by our assumption toward contradiction there are \(z^n_{\zeta, \epsilon} \in B^+ \) for \(\epsilon < \theta \) and club \(E^n_\zeta \) of \(\theta \) such that if \(\delta \in E^n_\zeta \) and \(\zeta < \sigma \) then for some \(\epsilon < \delta \) we have \(z^n_{\zeta, \epsilon} \leq y^n_{\delta+\zeta} \).

Let \(E_{n+1} \) be a club of \(\theta \) included in \(E_n \) and in each \(E^n_\zeta \) and choose \(\vec{y}^{n+1} \) such that: its range include the range of \(\vec{y}^n \) and for \(\delta_1 < \delta_2 \in E_{n+1} \) we have \(\{ y^{n+1}_{i+\zeta} : \zeta < \sigma \} \) include \(\{ y^n_{\delta_1+\zeta} : \zeta < \sigma \} \cup Z^n_\delta \) and \(\{ y^n_{i+1} : i < \delta \} \) include each \(z^n_{\zeta, \epsilon} \) for \(\zeta < \sigma \) and \(\epsilon < \delta \). The rest as as in the proof of 2.3(2).
REFERENCES

