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A POLARIZED PARTITION RELATION AND FAILURE OF GCH
AT SINGULAR STRONG LIMIT
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SAHARON SHELAH

ABSTRACT. The main result is that for A\ strong limit singular failing the con-
tinuum hypothesis (i.e. 22X > AT), a polarized partition theorem holds.

§ 0. INTRODUCTION

In the present paper we show a polarized partition theorem for strong limit
singular cardinals \ failing the continuum hypothesis. Let us recall the following
definition.

Definition 0.1. For ordinal numbers a1, as, 81, B2 and a cardinal €, the polarized

partition symbol
o s 1,1
()~ (%),
means:

if d is a function from «y x [y into 6 then for some A C «; of order type as and
B C 5y of order type (2, the function d [ A x B is constant.

We address the following problem of Erdos and Hajnal:
(*) if p is strong limit singular of uncountable cofinality, 6§ < cf(u) does

11
()-(2)
I r),

The particular case of this question for 4 = N, and 8 = 2 was posed by Erdos,
Hajnal and Rado (under the assumption of GCH) in [EHR65, Problem 11, p.183]).
Hajnal said that the assumption of GCH in [EHR65] was not crucial, and he added
that the intention was to ask the question “in some, preferably nice, Set Theory”.

Baumgartner and Hajnal have proved that if p is weakly compact then the

answer to (*) is “yes” (see [BH95]), also if p is strong limit of cofinality Ro. But
for a weakly compact p we do not know if for every a < p*:
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1,1
()0,
K o Jg

The first time I heard the problem (around 1990) I noted that (*) holds when p
is a singular limit of measurable cardinals. This result is presented in Theorem 1.2.
It seemed likely that we can combine this with suitable collapses, to get “small”
such p (like Ry, ) but there was no success in this direction.

In September 1994, Hajnal reasked me the question putting great stress on it.
Here we answer the problem (*) using methods of [Sh:g]. But instead of the as-
sumption of GCH (postulated in [EHR65]) we assume 2# > u*. The proof seems
quite flexible but we did not find out what else it is good for. This is a good example
of the major theme of [Sh:g]:

Thesis 0.2. Whereas CH and GCH are good (helpful, strategic) assumptions hav-
ing many consequences, and, say, “CH is not, the negation of GCH at singular
cardinals (i.e. for u strong limit singular 2# > u™ or, really the strong hypothesis:
cf(p) <p = pp(p) > p")is a good (helpful, strategic) assumption.

Foreman pointed out that the result presented in Theorem 1.1 below is preserved
by pT-closed forcing notions. Therefore, if

ve(V)- (),

1,1
Levy(AT,2%) AF A
1% E ( N Ed Y .

0

then

Consequently, the result is consistent with 2* = AT & X is small. (Note that
although our final model may satisfy the Singular Cardinals Hypothesis, the inter-
mediate model still violates SCH at A, hence needs large cardinals, see [Jec03].) For
A not small we can use Theorem 1.2).

Before we move to the main theorem, let us recall an open problem important
for our methods:

Question 0.3.

(1) Let & = cf(p) > Vo, > 2% and X = cf(\) € (u,
and Ga € [u N Reg]? such that: A\ € pcf(Ga),

ppT(1)). Can we find 6 < p
Ga = |J Ga;, Ga; bounded
<K
inpand o€ Ga; = A |aff <o?
a<lo
For this it is enough to show:

(2) If u = cf(u) > 2<% but \/ |a|<? > u then we can find Ga € [ N Reg]<?
a<p
such that A € pcf(Ga).

As shown in [Sh:g]

Theorem 0.4. If u is strong limit singular of cofinality k > Rg, 2 > X = cf(N\) > p
then for some strictly increasing sequence (A; : i < k) of requlars with limit pu,

IT \i/JPY has true cofinality . If k = Ng, it still holds for A = p*+.

<K
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[More fully, by [Sh:g, Ch.IL,§5], we know pp(u) = 2# and by [Sh:g, Ch.II1,1.6(2)],
we know ppT(p) = ppjbd (1). Note that for K = Ry we should replace J?4 by a
possibly larger ideal, using [Sh:430, 1.1,6.5] but there is no need here.]

Remark 0.5. Note the problem is pp = cov problem, see more [Sh:430, §1]; so if
Kk = Ng, A < ut1 the conclusion of 0.4 holds; we allow to increase JP9, even “there
are < pt fixed points < A7 suffices.
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§ 1. MAIN RESULT

Theorem 1.1. Suppose u is strong limit singular satisfying 2* > pu*. Then

(1) ( W > - ( ptl )1’1 for any 0 < cf(u),

7 wo),

(2) if d is a function from p* x p to 0 and 6 < cf(u) then for some sets A C ™+
and B C p we have: otp(A) = p+ 1, otp(B) = p and the restriction
d ] A x B does not depend on the first coordinate.

Proof. 1) Tt follows from part (2), (as if d(a, 8) = d'(B) for « € A, § € B, where
d : B —0,and |B| = p, 6 < cf(u) then there is B’ C B, |B’| = p such that d' | B’
is constant and hence d | (A x B’) is constant as required).
2) Let d : pt x p — 0. Let k = cf(u) and @ = (u; : i < k) be a continuous
strictly increasing sequence such that = > p;, o > k. We can find a sequence
1<K

C = (Cy : a < puT) such that:

(A) C, C ais closed, otp(Cy) < p,

(B) B €nacc(Cy) = Cg=0CyNp,

(C) if C, has no last element then o = sup(Cly,), (so « is a limit ordinal) and

any member of nacc(C,) is a successor ordinal,

(D) if o = cf(0) < p then the set
S, ={§<pt:cf(0)=0 & §=sup(Cs) & otp(Cs) =o}
is stationary

(possible by [Sh:420, §1]); we could have added

(E) for every o € RegNpu™ and a club E of u™, for stationary many § € S, F
separates any two successive members of Cs.

Let ¢ be a symmetric two place function from p* to s such that for each i < x and
B < uT the set

B (a) the set af = {a < p:c(a,B) <i} has cardinality < y;

(b) a<fB<vy=clay) <max{c(a,B),c(B,7)}
(¢) aeCgandp; >|Csl=cla,B) <i

(as in [Sh:108], easily constructed by induction on j).

Let A = (\; : i < k) be a strictly increasing sequence of regular cardinals
with limit p such that [] A;/JP? has true cofinality pu*+ (exists by 0.4 with A =
<K

ptt < 2M). As we can replace A by any subsequence of length x, without loss of
generality (Vi < k)(\; > 2#?)_ Lastly, let x = Jg(u)™ and <} be a well ordering of
A (x)(=: {x: the transitive closure of x is of cardinality < x}).

Now we choose by induction on a < u* sequences M, = (M, ; : i < k) such
that:

(Z) Ma,i = (%(X)vev <;)7

(1) || Mol = 2% and % (My;) € My, and 24 +1 C M.,
(iii) d,c,C,\, i, € My, (Mg ;: B < ,j < k) belongs to M, ;,
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(iv) U Ms,; C M,,; and
Beay

(v) (Ma,j:j <i) € Mag,
(vi) U Ma; € Mo,
j<i
(vit) (Mg, : B € af) belongs to M, ;.
There is no problem to carry out the construction. Note that actually the clause
(vii) follows from (i)—(vi), as a$* is defined from ¢, a, 7, see Hj.
Our demands imply that
By (a) BE€af= Mg; < My,
(b) j<i=Mqyj; <My,
(¢) a € Mg, hence a C |J My ;.
1<K
For a < put let fo € J] \i be defined by f, (i) = sup(X\; N M, ;). Note that f, (i) <
<K
Aias A = cf(\) > 247 = | Mgl Also, if 3 < a then for every i € [¢(8, a), k)
we have 8 € M,; and hence Mg € M, ;. Therefore, as also A € M, ;, we have
fa € My, and fg(i) € My, N A
Consequently

3 (Vi € [e(8,0), k) (f5(i) < fa(i)) and thus f5 < fo.

Since {fa : @ < p*} C [ \i has cardinality p™ and ] A\;/JP¢ is pt+-directed,
i<k i<k
there is f* € [] A; such that
1<K
()1 (Ya < pb)(fa <gpa f5).
Let, for a < put, go € "6 be defined by g, (i) = d(c, f*(i)). Since |"0] < p < p* =
cf(u™), there is a function g* € 0 such that

(x)2 the set A* = {a < u" : go = ¢g*} is unbounded in pt.
Now choose, by induction on ¢ < p*, models N, such that:
(@) Ne < (A (X), € <3),
(b) the sequence (N¢ : ¢ < p') is increasing continuous,
(¢) |IN¢|| = p and "~ (N¢) € N¢ if ¢ is not a limit ordinal,
(d) (N¢:& <) € Neqa,
()
)

(f U Moz,i c NC
a<¢
1<K

(9) (Mo :a<pti<k),(fo:a<pt) g* A* and d belong to the first model
No.

Let B =: {¢ < p™ : Nenpt =(}. Clearly, E is a club of u™, and thus we can find
an increasing sequence (J; : i < k) such that

(*)3 9; € S+ Nacc(E)(C pT), (see clause (D) in the beginning of the proof).
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For each i < k choose a successor ordinal of € nacc(Cs,) \ {0, +1:j < i}. Take
any o* € A*\ | ¢;.
<K

We choose by induction on i < k an ordinal j; and sets A;, B; such that:

() ji < K such that pj, > A; (so j; > i) and j; strictly increasing in 1,

(/3) f&' r [jivK’) < f&:ﬁrl r [jia’i) < f(l* r [jia’i) < f* r [jivK’)a

(y) for each ig < iy we have: c(d;y, ;) < ji,, and c(oj , ;) < ji, and
cof %) < gy, and (9, ") < jiy,
) Ai © A" N (af, bi),
) otp(4;) = p;",
) Ai € Ms, j,
) otp(Bi) = Aj,,
) B. € Maf,ji for e <7 and B; € U{Ma;?‘7_j _j < H}
)

for every aw € |J A. U{a*} and ¢ < i and 8 € Be U {f*(jc)} we have
e<i

d(e, B) = g™ (j¢)-

If we succeed then A = |J A. U{a*} and B = |J B¢ are as required. During the
e<kK (<K
induction in stage i concerning () we already know ¢ < i = \/ B. € Myr ;. So
<K
assume that the sequence ((j., Ac, Bc) : € < i) has already been defined.
We can find j;(0) < s satisfying requirements («), (8), (y) and (¢) and such

that A Aj. < j,00). Then by “j1(0) satisfies clause (y)” for each ¢ < i we have
e<i

0e € a?-i(o) and hence Ms_ j. < M- j,0) (for e <i). But A. € M;_ ;. (by clause

(Q)) and B. € Mg j,0) (for e < i), so {Ac,B: + ¢ < i} C My j(0)- Since

"2 (Mar ji0)) © Mar j0) (see (ii)), the sequence ((Ae,Be) : e < i) belongs to

Ma: j,0)- We know that for 71 < 72 in nace(Cys,) we have ¢(y1,72) < ¢ (remember

clause (B) and the choice of ¢). As j;(0) > i and so pj, (o) > wi, the sequence

M* =: (M, ;o) : « € nacc(Cs,))

is <-increasing and M* | o € M, j,(0) for a € nacc(Cs,) and My: j(0) appears in
it. Also, as 0; € acc(E), there is an increasing sequence (¢ : £ < uﬂ of members of
nacc(Cs,) such that vo = o and (ye,7e41) N E # 0, say fe € (7¢,ve+1) N E. Each
element of nacc(Cy,) is a successor ordinal, so every e is a successor ordinal. Each
model M., j; (o) is closed under sequences of length < ,u:r by clause (ii), and hence
(v¢: ¢ < &) € My, j (0 (by choosing the right C' and d;’s we could have managed
to have af = min(Cs,), {ve : £ < i} = nace(Cjs), without using this amount of
closure).

For each ¢ <y, recalling ((A., B.) 1€ < i) € M-

= ji(s) We know that

(A (X), €, <) | “(Fr € A%)[z > ¢ and (Ve <i)(Vy € Be)(d(z,y) = g"(J=))]”

because z = o satisfies it. As all the parameters, i.e. A*, v¢, d, ¢* and (B. : ¢ < 1),
belong to Np, (remember clauses (e) and (c); note that B. € M+ j,(0), @ < Be),

i
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there is an ordinal 8¢ € (v¢, 8¢) € (7e, Ye+1) satisfying the demands on 2. Now,

necessarily for some j;(1,£) € (ji(0), k) we have 8; € M., j,(1,¢). Hence for some
Ji < k the set

Ai={B:£< i and j;(1,€) = j;}

has cardinality p;. Clearly A; C A* (as each Be € A*). Now, the sequence (M., j, :
€ < uf ) (Ms, j,) is <-increasing, and hence A; C Ms, j,. Since uj > pf = A
we have A; € My, ;,. Note that at the moment we know that the set A; satisfies
the demands (6)—(¢). By the choice of j;(0), as j; > ji(0), clearly Ms, ;, < My~ j,,
and hence A; € M~ j,. Similarly, (A, : € <1i) € My~ j,, @ € My~ j, and

sup(Mar j, N Aj;) = far (Gi) < f*(5i)-

Consequently, J A: U{a*} C My~ j, (by the induction hypothesis or the above)
e<i

and it belongs to My~ j,. Since |J A U{a*} C A*, clearly
e<i

(A (), €, <) (Ve € | Ac u{a ) (d(e, (i) = 9 ()

e<i
Note that
UA-Ufa™}, 9°Go)s d A, € Man,
e<i

and

(i) € Aji \ sup(Ma~ 5, N A, ).
Hence the set
B =:{y <\, : (Vo e|JA-U{a"})(d(z,y) = g"(ji))}
e<i

has to be unbounded in \;,. It is easy to check that j;, A;, B; satisfy clauses (a)—(x).
Thus we have carried out the induction step, finishing the proof of the theorem.

Ui
{piec}
Theorem 1.2. Suppose u is singular limit of measurable cardinals.
Then
pt p\
(1) ( > — ( > if 0 =2 or at least 0 < cf(u)
I m),
1,1
. ut a* \"
(2) Moreover, if a* < ut and 0 < cf(u) then ( i ) — ( i )
0

(3) If 0 < p, «* < u" and d is a function from u* x pu to O then for some
ACut, otp(A) =a*, and B= |J B; Cpu,|B| = pn we have:
i<cf(p)

d | Ax B; is constant for each i < cf(p).
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Proof. Easily 3) = 2) = 1), so we shall prove part 3).

Let d:p™ X p— 0. Let k =: cf(n). Choose sequences (\; : i < k) and (u; : i < K)
such that (u; : i < k) is increasing continuous, u = > p;, po > &+ 0, each \;

i<K

is measurable and p; < A\; < pip1 (for i < k). Let D; be a A;-complete uniform
ultrafilter on \;. For a < pt define g, € ©0 by: go(i) = v iff {8 < N 1 d(, B) =
v} € D; (as 0 < \; it exists). The number of such functions is 0" < p (as p is
necessarily strong limit), so for some g* € ®6 the set A =: {a < pT : go = g*} is
unbounded in p*. For each i < k we define an equivalence relation e; on pu*:

aeif if (Vy < N)[d(e,y) = d(B, 7))

So the number of e;-equivalence classes is < %16 < u. Hence we can find (¢ : ( <
pT) an increasing continuous sequence of ordinals < p* such that:

(%) for each i < k and e;-equivalence class X we have:
either X N A C «p
or for every ¢ < pu™, (o, ac+1) N X N A has cardinality p.

Let o = U a4, |ai|l = pi, {a; : ¢ < k) pairwise disjoint. Now we choose by
i<K
induction on i < k, A;, B; such that:
(a) A; C U{(ac,acq1) : ¢ € a;} N A and each A; N (a¢,act1) is a singleton,
(b) B; € Di,
(c) if € A;, B € Bj,j <i then d(e, 8) = g*(j)-

Now, in stage i, ((A, B:) : € < i) are already chosen. Let us choose A;. For each
¢ € a; choose B¢ € (a¢, acy1) N A such that if ¢ > 0 then for some ' € Ag, Bee;f,
and let A; = {f¢ : ¢ € a;}. Now clause (a) is immediate, and the relevant part of
clause (c), i.e. j <i,is O.K.
Next, as |J A; C A, the set
i<i
Bi=:() [ {y<Xi:dB~) =g"()}

J<i BEA;

is the intersection of < p; < A; sets from D; and hence B; € D;. Clearly clauses
(b) and the remaining part of clause (c) (i.e. j = i) holds. So we can carry the
induction and hence finish the proof. (Y
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